
Implementing Tunnels

This module describes the various types of tunneling techniques. Configuration details and examples are
provided for the tunnel types that use physical or virtual interfaces.Many tunneling techniques are implemented
using technology-specific commands, and links are provided to the appropriate technology modules.

Tunneling provides a way to encapsulate arbitrary packets inside a transport protocol. Tunnels are implemented
as virtual interfaces to provide a simple interface for configuration purposes. The tunnel interface is not tied
to specific “passenger” or “transport” protocols, but rather is an architecture to provide the services necessary
to implement any standard point-to-point encapsulation scheme.

Cisco ASR 1000 Series Aggregation Services Routers support VPN routing and forwarding (VRF)-aware
generic routing encapsulation (GRE) tunnel keepalive features.

Note

• Finding Feature Information, on page 1
• Restrictions for Implementing Tunnels, on page 1
• Information About Implementing Tunnels, on page 2
• How to Implement Tunnels, on page 6
• Configuration Examples for Implementing Tunnels, on page 15
• Additional References, on page 19
• Feature Information for Implementing Tunnels, on page 21

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Implementing Tunnels
• It is important to allow the tunnel protocol to pass through a firewall and access control list (ACL) check.

Implementing Tunnels
1

https://tools.cisco.com/bugsearch/search
http://www.cisco.com/go/cfn


• Multiple point-to-point tunnels can saturate the physical link with routing information if the bandwidth
is not configured correctly on a tunnel interface.

• A tunnel looks like a single hop link, and routing protocols may prefer a tunnel over a multihop physical
path. The tunnel, despite looking like a single hop link, may traverse a slower path than a multihop link.
A tunnel is as robust and fast, or as unreliable and slow, as the links that it actually traverses. Routing
protocols that make their decisions based only on hop counts will often prefer a tunnel over a set of
physical links. A tunnel might appear to be a one-hop, point-to-point link and have the lowest-cost path,
but the tunnel may actually cost more in terms of latency when compared to an alternative physical
topology. For example, in the topology shown in the figure below, packets from Host 1 will appear to
travel across networks w, t, and z to get to Host 2 instead of taking the path w, x, y, and z because the
tunnel hop count appears shorter. In fact, the packets going through the tunnel will still be traveling
across Router A, B, and C, but they must also travel to Router D before coming back to Router C.

Figure 1: Tunnel Precautions: Hop Counts

• A tunnel may have a recursive routing problem if routing is not configured accurately. The best path to
a tunnel destination is via the tunnel itself; therefore recursive routing causes the tunnel interface to flap.
To avoid recursive routing problems, keep the control-plane routing separate from the tunnel routing by
using the following methods:

• Use a different autonomous system number or tag.
• Use a different routing protocol.
• Ensure that static routes are used to override the first hop (watch for routing loops).

The following error is displayed when there is recursive routing to a tunnel destination:
%TUN-RECURDOWN Interface Tunnel 0
temporarily disabled due to recursive routing

Information About Implementing Tunnels

Tunneling Versus Encapsulation
To understand how tunnels work, you must be able to distinguish between concepts of encapsulation and
tunneling. Encapsulation is the process of adding headers to data at each layer of a particular protocol stack.
The Open Systems Interconnection (OSI) reference model describes the functions of a network. To send a

Implementing Tunnels
2

Implementing Tunnels
Information About Implementing Tunnels



data packet from one host (for example, a PC) to another on a network, encapsulation is used to add a header
in front of the data packet at each layer of the protocol stack in descending order. The header must contain a
data field that indicates the type of data encapsulated at the layer immediately above the current layer. As the
packet ascends the protocol stack on the receiving side of the network, each encapsulation header is removed
in reverse order.

Tunneling encapsulates data packets from one protocol within a different protocol and transports the packets
on a foreign network. Unlike encapsulation, tunneling allows a lower-layer protocol and a same-layer protocol
to be carried through the tunnel. A tunnel interface is a virtual (or logical) interface. Tunneling consists of
three main components:

• Passenger protocol—The protocol that you are encapsulating. For example, IPv4 and IPv6 protocols.

• Carrier protocol—The protocol that encapsulates. For example, generic routing encapsulation (GRE)
and Multiprotocol Label Switching (MPLS).

• Transport protocol--The protocol that carries the encapsulated protocol. The main transport protocol is
IP.

Tunnel ToS
Tunnel type of service (ToS) allows you to tunnel network traffic and group all packets in the same ToS byte
value. The ToS byte values and Time-to-Live (TTL) hop-count value can be set in the encapsulating IP header
of tunnel packets for an IP tunnel interface on a router. Tunnel ToS feature is supported for Cisco Express
Forwarding (formerly known as CEF), fast switching, and process switching.

The ToS and TTL byte values are defined in RFC 791. RFC 2474, and RFC 2780 obsolete the use of the ToS
byte as defined in RFC 791. RFC 791 specifies that bits 6 and 7 of the ToS byte (the first two least significant
bits) are reserved for future use and should be set to 0.

EoMPLS over GRE
Ethernet over MPLS (EoMPLS) is a tunneling mechanism that allows you to tunnel Layer 2 traffic through
a Layer 3 MPLS network. EoMPLS is also known as Layer 2 tunneling.

EoMPLS effectively facilitates Layer 2 extension over long distances. EoMPLS over GRE helps you to create
the GRE tunnel as hardware-based switched, and encapsulates EoMPLS frames within the GRE tunnel. The
GRE connection is established between the two core routers, and then the MPLS label switched path (LSP)
is tunneled over.

GRE encapsulation is used to define a packet that has header information added to it prior to being forwarded.
De-encapsulation is the process of removing the additional header information when the packet reaches the
destination tunnel endpoint.

When a packet is forwarded through a GRE tunnel, two new headers are added to the front of the packet and
hence the context of the new payload changes. After encapsulation, what was originally the data payload and
separate IP header are now known as the GRE payload. A GRE header is added to the packet to provide
information on the protocol type and the recalculated checksum. A new IP header is also added to the front
of the GRE header. This IP header contains the destination IP address of the tunnel.

The GRE header is added to packets such as IP, Layer 2 VPN, and Layer 3 VPN before the header enters into
the tunnel. All routers along the path that receives the encapsulated packet use the new IP header to determine
how the packet can reach the tunnel endpoint.

Implementing Tunnels
3

Implementing Tunnels
Tunnel ToS



In IP forwarding, on reaching the tunnel destination endpoint, the new IP header and the GRE header are
removed from the packet and the original IP header is used to forward the packet to the final destination.

The EoMPLS over GRE feature removes the new IP header and GRE header from the packet at the tunnel
destination, and the MPLS label is used to forward the packet to the appropriate Layer 2 attachment circuit
or Layer 3 VRF.

The scenarios in the following sections describe the L2VPN and L3VPN over GRE deployment on provider
edge (PE) or provider (P) routers:

Provider Edge to Provider Edge Generic Routing EncapsulationTunnels
In the Provider Edge to Provider Edge (PE) GRE tunnels scenario, a customer does not transition any part of
the core to MPLS but prefers to offer EoMPLS and basic MPLS VPN services. Therefore, GRE tunneling of
MPLS traffic is done between PEs.

Provider to Provider Generic Routing Encapsulation Tunnels
In the Provider to Provider (P) GRE tunnels scenario, Multiprotocol Label Switching (MPLS) is enabled
between Provider Edge (PE ) and P routers but the network core can either have non-MPLS aware routers or
IP encryption boxes. In this scenario, GRE tunneling of the MPLS labeled packets is done between P routers.

Provider Edge to Provider Generic Routing Encapsulation Tunnels
In a Provider Edge to Provider GRE tunnels scenario, a network hasMPLS-aware P to P nodes. GRE tunneling
is done between a PE to P non-MPLS network segment.

Features Specific to Generic Routing Encapsulation
You should understand the following configurations and information for a deployment scenario:

• Tunnel endpoints can be loopbacks or physical interfaces.

• Configurable tunnel keepalive timer parameters per endpoint and a syslog message must be generated
when the keepalive timer expires.

• Bidirectional forwarding detection (BFD) is supported for tunnel failures and for the Interior Gateway
Protocol (IGP) that use tunnels.

• IGP load sharing across a GRE tunnel is supported.

• IGP redundancy across a GRE tunnel is supported.

• Fragmentation across a GRE tunnel is supported.

• Ability to pass jumbo frames is supported.

• All IGP control plane traffic is supported.

• IP ToS preservation across tunnels is supported.

• A tunnel should be independent of the endpoint physical interface type; for example, ATM, Gigabit,
Packet over SONET (POS), and TenGigabit.

• Up to 100 GRE tunnels are supported.

Implementing Tunnels
4

Implementing Tunnels
Provider Edge to Provider Edge Generic Routing EncapsulationTunnels



Features Specific to Ethernet over MPLS
• Any Transport over MPLS (AToM) sequencing.

• IGP load sharing and redundancy.

• Port mode Ethernet over MPLS (EoMPLS).

• Pseudowire redundancy.

• Support for up to to 200 EoMPLS virtual circuits (VCs).

• Tunnel selection and the ability to map a specific pseudowire to a GRE tunnel.

• VLAN mode EoMPLS.

Features Specific to Multiprotocol Label Switching Virtual Private Network
• Support for the PE role with IPv4 VRF.

• Support for all PE to customer edge (CE) protocols.

• Load sharing through multiple tunnels and also equal cost IGP paths with a single tunnel.

• Support for redundancy through unequal cost IGP paths with a single tunnel.

• Support for the IP precedence value being copied onto the expression (EXP) bits field of theMultiprotocol
Label Switching (MPLS) label and then onto the precedence bits on the outer IPv4 ToS field of the
generic routing encapsulation (GRE) packet.

See the section, “Example: Configuring EoMPLS over GRE” for a sample configuration sequence of EoMPLS
over GRE. For more details on EoMPLS over GRE, see the Deploying and ConfiguringMPLSVirtual Private
Networks In IP Tunnel Environments document.

Path MTU Discovery
Path MTU Discovery (PMTUD) can be enabled on a GRE or IP-in-IP tunnel interface. When PMTUD (RFC
1191) is enabled on a tunnel interface, the router performs PMTUD processing for the GRE (or IP-in-IP)
tunnel IP packets. The router always performs PMTUD processing on the original data IP packets that enter
the tunnel. When PMTUD is enabled, packet fragmentation is not permitted for packets that traverse the tunnel
because the Don’t Fragment (DF) bit is set on all the packets. If a packet that enters the tunnel encounters a
link with a smaller MTU, the packet is dropped and an Internet Control Message Protocol (ICMP) message
is sent back to the sender of the packet. This message indicates that fragmentation was required (but not
permitted) and provides the MTU of the link that caused the packet to be dropped.

PMTUD on a tunnel interface requires that the tunnel endpoint be able to receive ICMP messages generated
by routers in the path of the tunnel. Ensure that ICMP messages can be received before using PMTUD over
firewall connections.

Note

Use the tunnel path-mtu-discovery command to enable PMTUD for the tunnel packets and use the show
interfaces tunnel command to verify the tunnel PMTUD parameters. PMTUD works only on GRE and
IP-in-IP tunnel interfaces.

Implementing Tunnels
5

Implementing Tunnels
Features Specific to Ethernet over MPLS

http://www.cisco.com/en/US/prod/collateral/routers/ps9343/Deploying_and_Configuring_MPLS_Virtual_Private_Networks_In_IP_Tunnel_Environment.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/Deploying_and_Configuring_MPLS_Virtual_Private_Networks_In_IP_Tunnel_Environment.pdf


QoS Options for Tunnels
A tunnel interface supports various quality of service (QoS) features as a physical interface. QoS provides a
way to ensure that mission-critical traffic has an acceptable level of performance. QoS options for tunnels
include support for applying generic traffic shaping (GTS) directly on the tunnel interface and support for
class-based shaping using the modular QoS CLI (MQC). Tunnel interfaces also support class-based policing,
but they do not support committed access rate (CAR).

GRE tunnels allow the router to copy the IP precedence bit values of the ToS byte to the tunnel or the GRE
IP header that encapsulates the inner packet. Intermediate routers between the tunnel endpoints can use the
IP precedence values to classify packets for QoS features such as policy routing, weighted fair queueing
(WFQ), and weighted random early detection (WRED).

When packets are encapsulated by tunnel or encryption headers, QoS features are unable to examine the
original packet headers and correctly classify the packets. Packets that travel across the same tunnel have the
same tunnel headers, so the packets are treated identically if the physical interface is congested. Tunnel packets
can, however, be classified before tunneling and encryption can occur when a user applies the QoS preclassify
feature on the tunnel interface or on the crypto map.

Class-based WFQ (CBWFQ) inside class-based shaping is not supported on a multipoint interface.Note

For examples of how to implement some QoS features on a tunnel interface, see the section“Configuring QoS
Options on Tunnel Interfaces Examples, on page 18” on page 32.

How to Implement Tunnels

Determining the Tunnel Type
Before configuring a tunnel, you must determine the type of tunnel you want to create.

SUMMARY STEPS

1. Determine the passenger protocol. A passenger protocol is the protocol that you are encapsulating.
2. Determine the tunnel mode command keyword, if appropriate.

DETAILED STEPS

Step 1 Determine the passenger protocol. A passenger protocol is the protocol that you are encapsulating.
Step 2 Determine the tunnel mode command keyword, if appropriate.

The table below shows how to determine the appropriate keyword to be used with the tunnel mode command.

Implementing Tunnels
6

Implementing Tunnels
QoS Options for Tunnels



Table 1: Determining the tunnel mode Command Keyword

PurposeKeyword

Use the dvmrp keyword to specify that the Distance Vector Multicast Routing Protocol
encapsulation will be used.

dvmrp

Use the gre and ip keywords to specify that GRE encapsulation over IP will be used.gre ip

Use the gre and ipv6 keywords to specify that GRE encapsulation over IPv6 will be used.gre ipv6

Use the ipip keyword to specify that IP-in-IP encapsulation will be used. The optional
decapsulate-any keyword terminates any number of IP-in-IP tunnels at one tunnel interface.
Note that this tunnel will not carry any outbound traffic; however, any number of remote
tunnel endpoints can use a tunnel configured as their destination.

ipip [decapsulate-any]

Use the ipv6 keyword to specify that generic packet tunneling in IPv6 will be used.ipv6

Use the ipv6ip keyword to specify that IPv6 will be used as the passenger protocol and IPv4
as both the carrier (encapsulation) and transport protocol. When additional keywords are not
used, manual IPv6 tunnels are configured. Additional keywords can be used to specify
IPv4-compatible, 6to4, or ISATAP tunnels.

ipv6ip

Use thempls keyword to specify that MPLS will be used for configuring traffic engineering
(TE) tunnels.

mpls

Configuring an IPv4 GRE Tunnel
Perform this task to configure a GRE tunnel. A tunnel interface is used to pass protocol traffic across a network
that does not normally support the protocol. To build a tunnel, you must define a tunnel interface on each of
the two routers, and the tunnel interfaces must reference each other. At each router, the tunnel interface must
be configured with a Layer 3 address. The tunnel endpoints, tunnel source, and tunnel destination must be
defined, and the type of tunnel must be selected. Optional steps can be performed to customize the tunnel.

Remember to configure the router at each end of the tunnel. If only one side of a tunnel is configured, the
tunnel interface may still come up and stay up (unless keepalive is configured), but packets going into the
tunnel will be dropped.

GRE Tunnel Keepalive
Keepalive packets can be configured to be sent over IP-encapsulated GRE tunnels. You can specify the rate
at which keepalives are sent and the number of times that a device will continue to send keepalive packets
without a response before the interface becomes inactive. GRE keepalive packets may be sent from both sides
of a tunnel or from just one side.

Before you begin

Ensure that the physical interface to be used as the tunnel source in this task is up and configured with the
appropriate IP address. For hardware technical descriptions and information about installing interfaces, see
the hardware installation and configuration publication for your product.

Implementing Tunnels
7

Implementing Tunnels
Configuring an IPv4 GRE Tunnel



SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. bandwidth kb/s
5. keepalive [period [retries]]
6. tunnel source {ip-address | interface-type interface-number}
7. tunnel destination {hostname | ip-address}
8. tunnel key key-number
9. tunnel mode gre { ip | multipoint}
10. ip mtu bytes
11. ip tcp mss mss-value
12. tunnel path-mtu-discovery [age-timer {aging-mins | infinite}]
13. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Router> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Router# configure terminal

Specifies the interface type and number, and enters
interface configuration mode.

interface type number

Example:

Step 3

• To configure a tunnel, use tunnel for the type
argument.

Router(config)# interface tunnel 0

Sets the current bandwidth value for an interface and
communicates it to higher-level protocols.

bandwidth kb/s

Example:

Step 4

• Specifies the tunnel bandwidth to be used to transmit
packets.

Router(config-if)# bandwidth 1000

• Use the kb/s argument to set the bandwidth, in kilobits
per second (kb/s).

This is only a routing parameter; it does not
affect the physical interface. The default
bandwidth setting on a tunnel interface is 9.6
kb/s. You should set the bandwidth on a tunnel
to an appropriate value.

Note

Implementing Tunnels
8

Implementing Tunnels
GRE Tunnel Keepalive



PurposeCommand or Action

(Optional) Specifies the number of times the device will
continue to send keepalive packets without response before
bringing the tunnel interface protocol down.

keepalive [period [retries]]

Example:
Router(config-if)# keepalive 3 7

Step 5

• GRE keepalive packets may be configured either on
only one side of the tunnel or on both.

• If GRE keepalive is configured on both sides of the
tunnel, the period and retries arguments can be
different at each side of the link.

This command is supported only on GRE
point-to-point tunnels.

Note

The GRE tunnel keepalive feature should not
be configured on a VRF tunnel. This
combination of features is not supported.

Note

Configures the tunnel source.tunnel source {ip-address | interface-type
interface-number}

Step 6

• Use the ip-address argument to specify the source IP
address.Example:

Router(config-if)# tunnel source GigabitEthernet
0/0/0 • Use the interface-type and interface-number

arguments to specify the interface to be used.

The tunnel source IP address and destination
IP addresses must be defined on two separate
devices.

Note

Configures the tunnel destination.tunnel destination {hostname | ip-address}Step 7

Example: • Use the hostname argument to specify the name of
the host destination.

Router(config-if)# tunnel destination 10.0.2.1
• Use the ip-address argument to specify the IP address
of the host destination.

The tunnel source and destination IP addresses
must be defined on two separate devices.

Note

(Optional) Enables an ID key for a tunnel interface.tunnel key key-numberStep 8

Example: • Use the key-number argument to identify a tunnel key
that is carried in each packet.Router(config-if)# tunnel key 1000

• Tunnel ID keys can be used as a form of weak
security to prevent improper configuration or injection
of packets from a foreign source.

Implementing Tunnels
9

Implementing Tunnels
GRE Tunnel Keepalive



PurposeCommand or Action

This command is supported only onGRE tunnel
interfaces. We do not recommend relying on
this key for security purposes.

Note

Specifies the encapsulation protocol to be used in the
tunnel.

tunnel mode gre { ip | multipoint}

Example:

Step 9

• Use the gre ip keywords to specify that GRE over IP
encapsulation will be used.

Device(config-if)# tunnel mode gre ip

• Use the gre multipoint keywords to specify that
multipoint GRE (mGRE) will be used.

(Optional) Sets the MTU size of IP packets sent on an
interface.

ip mtu bytes

Example:

Step 10

• If an IP packet exceeds theMTU set for the interface,
the Cisco software will fragment it unless the DF bit
is set.

Device(config-if)# ip mtu 1400

• All devices on a physical mediummust have the same
protocol MTU in order to operate.

• For IPv6 packets, use the ipv6 mtu command.

If the tunnel path-mtu-discovery command is
enabled do not configure this command.

Note

(Optional) Specifies the maximum segment size (MSS)
for TCP connections that originate or terminate on a router.

ip tcp mss mss-value

Example:

Step 11

• Use themss-value argument to specify the maximum
segment size for TCP connections, in bytes.

Device(config-if)# ip tcp mss 250

(Optional) Enables PMTUD on a GRE or IP-in-IP tunnel
interface.

tunnel path-mtu-discovery [age-timer {aging-mins |
infinite}]

Step 12

Example: • When PMTUD is enabled on a tunnel interface,
PMTUD will operate for GRE IP tunnel packets toDevice(config-if)# tunnel path-mtu-discovery
minimize fragmentation in the path between the tunnel
endpoints.

Exits interface configurationmode and returns to privileged
EXEC mode.

end

Example:

Step 13

Device(config-if)# end

What to Do Next
Proceed to the “Verifying Tunnel Configuration and Operation” section.

Implementing Tunnels
10

Implementing Tunnels
What to Do Next



Configuring 6to4 Tunnels

Before you begin

With 6to4 tunnels, the tunnel destination is determined by the border-router IPv4 address, which is concatenated
to the prefix 2002::/16 in the format 2002:border-router-IPv4-address ::/48. The border router at each end of
a 6to4 tunnel must support both the IPv4 and IPv6 protocol stacks.

The configuration of only one IPv4-compatible tunnel and one 6to4 IPv6 tunnel is supported on a router. If
you choose to configure both of these tunnel types on the same router, Cisco recommends that they not share
the same tunnel source.

A 6to4 tunnel and an IPv4-compatible tunnel cannot share the same interface because both of them are NBMA
“point-to-multipoint” access links, and only the tunnel source can be used to reorder the packets from a
multiplexed packet stream into a single packet stream for an incoming interface. When a packet with an IPv4
protocol type of 41 arrives on an interface, the packet is mapped to an IPv6 tunnel interface on the basis of
the IPv4 address. However, if both the 6to4 tunnel and the IPv4-compatible tunnel share the same source
interface, the router cannot determine the IPv6 tunnel interface to which it should assign the incoming packet.

Manually configured IPv6 tunnels can share the same source interface because a manual tunnel is a
“point-to-point” link, and both IPv4 source and the IPv4 destination of the tunnel are defined.

Note

SUMMARY STEPS

1. enable
2. configure terminal
3. interface tunnel tunnel-number
4. ipv6 address ipv6-prefix/prefix-length [eui-64]
5. tunnel source {ip-address | interface-type interface-number}
6. tunnel mode ipv6ip 6to4
7. exit
8. ipv6 route ipv6-prefix / prefix-length tunnel tunnel-number
9. end

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.
Router> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Router# configure terminal

Specifies a tunnel interface and number and enters interface
configuration mode.

interface tunnel tunnel-number

Example:

Step 3

Implementing Tunnels
11

Implementing Tunnels
Configuring 6to4 Tunnels



PurposeCommand or Action

Router(config)# interface tunnel 0

Specifies the IPv6 address assigned to the interface and
enables IPv6 processing on the interface.

ipv6 address ipv6-prefix/prefix-length [eui-64]

Example:

Step 4

• The 32 bits following the initial 2002::/16 prefix
correspond to an IPv4 address assigned to the tunnel
source.

Router(config-if)# ipv6 address
2002:c0a8:6301:1::1/64

See the "Configuring Basic Connectivity for
IPv6" module for more information on
configuring IPv6 addresses.

Note

Specifies the source IPv4 address or the source interface
type and number for the tunnel interface.

tunnel source {ip-address | interface-type
interface-number}

Step 5

Example: The interface type and number specified in the
tunnel source command must be configured
with an IPv4 address.

Note

Router(config-if)# tunnel source GigabitEthernet
0/0/0

Specifies an IPv6 overlay tunnel using a 6to4 address.tunnel mode ipv6ip 6to4

Example:

Step 6

Router(config-if)# tunnel mode ipv6ip 6to4

Exits interface configuration mode and returns to global
configuration mode.

exit

Example:

Step 7

Router(config-if)# exit

Configures a static route to the specified tunnel interface.ipv6 route ipv6-prefix / prefix-length tunnel
tunnel-number

Step 8

When configuring a 6to4 overlay tunnel, you
must configure a static route for the IPv6 6to4
prefix 2002::/16 to the 6to4 tunnel interface.

Note
Example:
Router(config)# ipv6 route 2002::/16 tunnel 0

• The tunnel number specified in the ipv6 route
command must be the same tunnel number specified
in the interface tunnel command.

Exits global configuration mode and returns to privileged
EXEC mode.

end

Example:

Step 9

Router(config)# end

What to Do Next
Proceed to the “Verifying Tunnel Configuration and Operation” section.

Implementing Tunnels
12

Implementing Tunnels
What to Do Next



Verifying Tunnel Configuration and Operation
The show and ping commands in the steps below can be used in any sequence. The following commands can
be used for GRE tunnels, IPv6 manually configured tunnels, and IPv6 over IPv4 GRE tunnels.

SUMMARY STEPS

1. enable
2. show interfaces tunnel number [accounting]
3. ping [protocol] destination
4. show ip route [address [mask]]
5. ping [protocol] destination

DETAILED STEPS

Step 1 enable

Enables privileged EXEC mode. Enter your password if prompted.

Example:
Device> enable

Step 2 show interfaces tunnel number [accounting]

Two routers are configured to be endpoints of a tunnel. Device A has Gigabit Ethernet interface 0/0/0 configured as the
source for tunnel interface 0 with an IPv4 address of 10.0.0.1 and an IPv6 prefix of 2001:0DB8:1111:2222::1/64. Device
B has Gigabit Ethernet interface 0/0/0 configured as the source for tunnel interface 1 with an IPv4 address of 10.0.0.2
and an IPv6 prefix of 2001:0DB8:1111:2222::2/64.

To verify that the tunnel source and destination addresses are configured, use the show interfaces tunnel command on
Device A.

Example:

Device A# show interfaces tunnel 0

Tunnel0 is up, line protocol is up
Hardware is Tunnel
MTU 1514 bytes, BW 9 Kbit, DLY 500000 usec,

reliability 255/255, txload 1/255, rxload 1/255
Encapsulation TUNNEL, loopback not set
Keepalive not set
Tunnel source 10.0.0.1 (GigabitEthernet0/0/0), destination 10.0.0.2, fastswitch TTL 255
Tunnel protocol/transport GRE/IP, key disabled, sequencing disabled
Tunnel TTL 255
Checksumming of packets disabled, fast tunneling enabled
Last input 00:00:14, output 00:00:04, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue :0/0 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec

4 packets input, 352 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

Implementing Tunnels
13

Implementing Tunnels
Verifying Tunnel Configuration and Operation



8 packets output, 704 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out

Step 3 ping [protocol] destination

To check that the local endpoint is configured and working, use the ping command on Device A.

Example:

DeviceA# ping 2001:0DB8:1111:2222::2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2001:0DB8:1111:2222::2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/20/20 ms

Step 4 show ip route [address [mask]]

To check that a route exists to the remote endpoint address, use the show ip route command.

Example:

DeviceA# show ip route 10.0.0.2

Routing entry for 10.0.0.0/24
Known via "connected", distance 0, metric 0 (connected, via interface)
Routing Descriptor Blocks:
* directly connected, via GigabitEthernet0/0/0

Route metric is 0, traffic share count is 1

Step 5 ping [protocol] destination

To check that the remote endpoint address is reachable, use the ping command on Device A.

The remote endpoint address may not be reachable using the ping command because of filtering, but the tunnel
traffic may still reach its destination.

Note

Example:

DeviceA# ping 10.0.0.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.0.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/21/28 ms

To check that the remote IPv6 tunnel endpoint is reachable, use the ping command again on Device A. The note regarding
filtering earlier in step also applies to this example.

Example:

DeviceA# ping 2001:0DB8:1111:2222::2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1::2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 20/20/20 ms

Implementing Tunnels
14

Implementing Tunnels
Verifying Tunnel Configuration and Operation



These steps may be repeated at the other endpoint of the tunnel.

Configuration Examples for Implementing Tunnels

Example: Configuring a GRE IPv4 Tunnel
The following example shows a simple configuration of GRE tunneling. Note that Gigabit Ethernet interface
0/0/1 is the tunnel source for Router A and the tunnel destination for Router B. Fast Ethernet interface 0/0/1
is the tunnel source for Router B and the tunnel destination for Router A.

Router A

interface Tunnel 0
ip address 10.1.1.2 255.255.255.0
tunnel source GigabitEthernet 0/0/1
tunnel destination 192.168.3.2
tunnel mode gre ip
!
interface GigabitEthernet 0/0/1
ip address 192.168.4.2 255.255.255.0

Router B

interface Tunnel 0
ip address 10.1.1.1 255.255.255.0
tunnel source FastEthernet 0/0/1
tunnel destination 192.168.4.2
tunnel mode gre ip
!
interface FastEthernet 0/0/1
ip address 192.168.3.2 255.255.255.0

The following example configures a GRE tunnel running both IS-IS and IPv6 traffic between Router A and
Router B:

Router A

ipv6 unicast-routing
clns routing
!
interface Tunnel 0
no ip address
ipv6 address 2001:0DB8:1111:2222::1/64
ipv6 router isis
tunnel source GigabitEthernet 0/0/0
tunnel destination 10.0.0.2
tunnel mode gre ip
!
interface GigabitEthernet 0/0/0
ip address 10.0.0.1 255.255.255.0
!

Implementing Tunnels
15

Implementing Tunnels
Configuration Examples for Implementing Tunnels



router isis
network 49.0000.0000.000a.00

Router B

ipv6 unicast-routing
clns routing
!
interface Tunnel 0
no ip address
ipv6 address 2001:0DB8:1111:2222::2/64
ipv6 router isis
tunnel source GigabitEthernet 0/0/0
tunnel destination 10.0.0.1
tunnel mode gre ip
!
interface GigabitEthernet 0/0/0
ip address 10.0.0.2 255.255.255.0
!
router isis
network 49.0000.0000.000b.00
address-family ipv6
redistribute static
exit-address-family

Example: Configuring EoMPLS over GRE

Router A Configuration

vrf definition VPN1
rd 100:1
address-family ipv4
route-target both 100:1
exit-address-family
!
mpls label protocol ldp
mpls ldp neighbor 209.165.200.224 targeted
mpls ldp router-id Loopback0 force
!
interface tunnel 0
ip address 209.165.200.225 255.255.255.224
mpls label protocol ldp
mpls ip
keepalive 10 3
tunnel source TenGigabitEthernet 2/1/0
tunnel destination 209.165.200.226
!
interface Loopback 0
ip address 209.165.200.230 255.255.255.224
!
interface TenGigabitEthernet 2/1/0
mtu 9216
ip address 209.165.200.235 255.255.255.224
!
interface TenGigabitEthernet 9/1
no ip address
!
interface TenGigabitEthernet 9/1.11
vrf forwarding VPN1
encapsulation dot1Q 300

Implementing Tunnels
16

Implementing Tunnels
Example: Configuring EoMPLS over GRE



ip address 209.165.200.237 255.255.255.224
!
interface TenGigabitEthernet 9/2
mtu 9216
no ip address
xconnect 209.165.200.239 200 encapsulation mpls
!
router bgp 65000
bgp log-neighbor-changes
neighbor 209.165.200.240 remote-as 65000
neighbor 209.165.200.240 update-source Loopback0
neighbor 209.165.200.245 remote-as 100
!
address-family vpnv4
neighbor 209.165.200.240 activate
neighbor 209.165.200.240 send-community extended
!
address-family ipv4 vrf VPN1
no synchronization
neighbor 209.165.200.247 remote-as 100
neighbor 209.165.200.248 activate
neighbor 209.165.200.249 send-community extended

!
ip route 209.165.200.251 255.255.255.224 tunnel 0
ip route 209.165.200.254 255.255.255.224 209.165.200.256
Router B Configuration
vrf definition VPN1
rd 100:1
address-family ipv4
route-target both 100:1
exit-address-family
!
mpls ldp neighbor 209.165.200.229 targeted
mpls label protocol ldp
mpls ldp router-id Loopback0 force
!
interface tunnel 0
ip address 209.165.200.230 255.255.255.224
mpls label protocol ldp
mpls ip
keepalive 10 3
tunnel source TenGigabitEthernet 3/3/0
tunnel destination 209.165.200.232
!
interface Loopback 0
ip address 209.165.200.234 255.255.255.224
!
interface TenGigabitEthernet 2/1/1
mtu 9216
no ip address
xconnect 209.165.200.237 200 encapsulation mpls
!
interface TenGigabitEthernet 2/3/1
mtu 9216
no ip address
!
interface TenGigabitEthernet 2/3.11/1
vrf forwarding VPN1
encapsulation dot1Q 300
ip address 209.165.200.239 255.255.255.224
!
interface TenGigabitEthernet 3/3/0
mtu 9216
ip address 209.165.200.240 255.255.255.224

Implementing Tunnels
17

Implementing Tunnels
Example: Configuring EoMPLS over GRE



!
router bgp 65000
bgp log-neighbor-changes
neighbor 209.165.200.241 remote-as 65000
neighbor 209.165.200.241 update-source Loopback0
neighbor 209.165.200.244 remote-as 200
!
address-family vpnv4
neighbor 209.165.200.241 activate
neighbor 209.165.200.241 send-community extended
exit-address-family
!
address-family ipv4 vrf VPN1
no synchronization
neighbor 209.165.200.246 remote-as 200
neighbor 209.165.200.246 activate
neighbor 209.165.200.246 send-community extended
exit-address-family
¡
ip route 209.165.200.226 255.255.255.224 tunnel 0
ip route 209.165.200.229 255.255.255.224 209.165.200.235

Configuring QoS Options on Tunnel Interfaces Examples
The following sample configuration applies GTS directly on the tunnel interface. In this example, the
configuration shapes the tunnel interface to an overall output rate of 500 kb/s.

interface Tunnel 0
ip address 10.1.2.1 255.255.255.0
traffic-shape rate 500000 125000 125000 1000
tunnel source 10.1.1.1
tunnel destination 10.2.2.2

The following sample configuration shows how to apply the same shaping policy to the tunnel interface with
the MQC commands:

policy-map tunnel
class class-default
shape average 500000 125000 125000
!
interface Tunnel 0
ip address 10.1.2.1 255.255.255.0
service-policy output tunnel
tunnel source 10.1.35.1
tunnel destination 10.1.35.2

Policing Example
When an interface becomes congested and packets start to queue, you can apply a queueing method to packets
that are waiting to be transmitted. Logical interfaces--tunnel interfaces in this example--do not inherently
support a state of congestion and do not support the direct application of a service policy that applies a queueing
method. Instead, you must apply a hierarchical policy. Create a "child" or lower-level policy that configures
a queueing mechanism, such as low-latency queueing, with the priority command and CBWFQ with the
bandwidth command.

policy-map child
class voice
priority 512

Implementing Tunnels
18

Implementing Tunnels
Configuring QoS Options on Tunnel Interfaces Examples



Create a "parent" or top-level policy that applies class-based shaping. Apply the child policy as a command
under the parent policy because admission control for the child class is done according to the shaping rate for
the parent class.

policy-map tunnel
class class-default
shape average 2000000
service-policy child

Apply the parent policy to the tunnel interface.

interface tunnel 0
service-policy tunnel

In the following example, a tunnel interface is configured with a service policy that applies queueing without
shaping. A log message is displayed noting that this configuration is not supported.

Router(config)# interface tunnel1
Router(config-if)# service-policy output child
Class Based Weighted Fair Queueing not supported on this interface

Additional References
The following sections provide references related to implementing tunnels.

Related Documents

Document TitleRelated Topic

Cisco IOS Master Command List, All Releases .All Cisco IOS XE commands

Cisco IOS Interface and Hardware Component
Command Reference

Tunnel commands: complete command syntax,
command mode, defaults, command history, usage
guidelines, and examples

Cisco IOS IPv6 Command ReferenceIPv6 commands: complete command syntax, command
mode, defaults, command history, usage guidelines,
and examples

Cisco IOS XE Interface and Hardware Component
Configuration Guide, Release 2

Cisco IOS XE Interface and Hardware Component
configuration modules

Cisco IOS XE IPv6 Configuration Guide, Release 2Cisco IOS XE IPv6 configuration modules

Cisco IOS XE Quality of Service Solutions
Configuration Guide

Cisco IOS XE Quality of Service Solutions
configuration modules

Cisco IOS XE Multiprotocol Label Switching
Configuration Guide

Cisco IOS XE Multiprotocol Label Switching
configuration modules

"DynamicMultipointVPN (DMVPN)" configuration
module in the Cisco IOS XE Security Configuration
Guide: Secure Connectivity

Configuration example for a VRF-aware dynamic
multipoint VPN (DMVPN)

Implementing Tunnels
19

Implementing Tunnels
Additional References

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html


Standards/RFCs

TitleStandard

--No new or modified standards are
supported, and support for existing
standards has not been modified.

Internet ProtocolRFC 791

Path MTU DiscoveryRFC 1191

TCP Extensions for High PerformanceRFC 1323

Multiprotocol Encapsulation over ATM Adaptation Layer 5RFC 1483

IP Encapsulation Within IPRFC 2003

TCP Selective Acknowledgment OptionsRFC 2018

Internet Protocol, Version 6 (IPv6)RFC 2460

Generic Packet Tunneling in IPv6 SpecificationRFC 2473

Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers

RFC 2474

A Method for Transmitting PPP over Ethernet (PPPoE)RFC 2516

BGP/MPLS VPNsRFC 2547

IANA Allocation Guidelines for Values in the Internet Protocol
and Related Headers

RFC 2780

Generic Routing Encapsulation (GRE)RFC 2784

Key and Sequence Number Extensions to GRERFC 2890

Transition Mechanisms for IPv6 Hosts and RoutersRFC 2893

Connection of IPv6 Domains via IPv4 CloudsRFC 3056

Generic Routing Encapsulation over CLNS NetworksRFC 3147

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/support/index.htmlTheCisco Support andDocumentationwebsite provides
online resources to download documentation, software,
and tools. Use these resources to install and configure
the software and to troubleshoot and resolve technical
issues with Cisco products and technologies. Access to
most tools on the Cisco Support and Documentation
website requires a Cisco.com user ID and password.

Implementing Tunnels
20

Implementing Tunnels
Additional References

http://www.cisco.com/cisco/web/support/index.html


Feature Information for Implementing Tunnels
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2: Feature Information for Implementing Tunnels

Feature InformationReleasesFeature Name

The EoMPLS over GRE feature allows you to tunnel Layer 2
traffic through a Layer 3MPLS network. This feature also helps
to create the GRE tunnel as hardware-based switched, and with
high performance that encapsulates EoMPLS frames within the
GRE tunnel.

No new commands were introduced or modified by this feature.

Cisco IOS XE
Release 2.5

EoMPLS over GRE

The GRE Tunnel IP Source and Destination VRF Membership
feature allows you to configure the source and destination of a
tunnel to belong to any VPN VRF table.

The following command was introduced or modified: tunnel
vrf.

Cisco IOS XE
Release 2.2

GRE Tunnel IP
Source and
Destination VRF
Membership

The GRE Tunnel Keepalive feature provides the capability of
configuring keepalive packets to be sent over IP-encapsulated
GRE tunnels. You can specify the rate at which keepalives will
be sent and the number of times that a device will continue to
send keepalive packets without a response before the interface
becomes inactive. GRE keepalive packets may be sent from
both sides of a tunnel or from just one side.

The following command was introduced by this feature:
keepalive (tunnel interfaces) .

Cisco IOS XE
Release 2.1

GRE Tunnel
Keepalive

The following commands were modified by this feature: tunnel
destination, tunnel mode, and tunnel source.

Cisco IOS XE
Release 2.4

IP over IPv6 Tunnels

This feature was introduced on Cisco ASR 1000 Aggregation
Services Routers.

Cisco IOS XE
Release 2.1

IP Precedence for
GRE Tunnels

High availability support was added to IP Tunnels.

No new commands were introduced or modified by this feature.

Cisco IOS XE
Release 3.6

IP Tunnel— SSO

Implementing Tunnels
21

Implementing Tunnels
Feature Information for Implementing Tunnels

http://www.cisco.com/go/cfn


Feature InformationReleasesFeature Name

The Tunnel ToS feature allows you to configure the ToS and
Time-to-Live (TTL) byte values in the encapsulating IP header
of tunnel packets for an IP tunnel interface on a router. The
Tunnel ToS feature is supported in Cisco Express Forwarding,
fast switching, and process switching forwarding modes.

The following commands were introduced or modified by this
feature: show interfaces tunnel, tunnel tos, tunnel, and ttl.

Cisco IOS XE
Release 2.1

Tunnel ToS

Implementing Tunnels
22

Implementing Tunnels
Feature Information for Implementing Tunnels


	Implementing Tunnels
	Finding Feature Information
	Restrictions for Implementing Tunnels
	Information About Implementing Tunnels
	Tunneling Versus Encapsulation
	Tunnel ToS
	EoMPLS over GRE
	Provider Edge to Provider Edge Generic Routing EncapsulationTunnels
	Provider to Provider Generic Routing Encapsulation Tunnels
	Provider Edge to Provider Generic Routing Encapsulation Tunnels
	Features Specific to Generic Routing Encapsulation
	Features Specific to Ethernet over MPLS
	Features Specific to Multiprotocol Label Switching Virtual Private Network

	Path MTU Discovery
	QoS Options for Tunnels

	How to Implement Tunnels
	Determining the Tunnel Type
	Configuring an IPv4 GRE Tunnel
	GRE Tunnel Keepalive
	What to Do Next

	Configuring 6to4 Tunnels
	What to Do Next

	Verifying Tunnel Configuration and Operation

	Configuration Examples for Implementing Tunnels
	Example: Configuring a GRE IPv4 Tunnel
	Example: Configuring EoMPLS over GRE
	Configuring QoS Options on Tunnel Interfaces Examples
	Policing Example


	Additional References
	Feature Information for Implementing Tunnels


