HTTP Services Configuration Guide

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2016 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1
Read Me First 1

CHAPTER 2
HTTP/HTTPS 1.1 Web Server and Client 3
Finding Feature Information 3
Information About the HTTP 1.1 Web Server and Client 3
About HTTP/HTTPS Server General Access Policies 4
How to Configure HTTP 1.1 Web Server and Client 5
Configuring the HTTP/HTTPS 1.1 Web Server 5
Configuring the HTTP/HTTPS Client 7
Verifying HTTP/HTTPS Connectivity 9
Configuration Examples for HTTP 1.1 Web Server 9
Configuring the HTTP 1.1 Web Server Example 9
Where to Go Next 10
Additional References 10
Feature Information for the HTTP 1.1 Web Server and Client 12

CHAPTER 3
HTTPS--HTTP Server and Client with SSL 3.0 15
Finding Feature Information 15
Information About HTTPS--HTTP Server and Client with SSL 3.0 15
Secure HTTP Server and Secure HTTP Client 16
Certificate Authority Trustpoints 16
CipherSuites 16
How to Configure the HTTPS--HTTP Server and Client with SSL 3.0 17
Declaring a Certificate Authority Trustpoint 17
Configuring the HTTPS Server with SSL 3.0 20
Verifying the Configuration of the HTTPS Server 23
Providing Additional Security and Efficiency 23
Configuring the HTTPS Client with SSL 3.0 25
CHAPTER 1

Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E (for Catalyst Switching) and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Note

The Feature Information table in the technology configuration guide mentions when a feature was introduced. It may or may not mention when other platforms were supported for that feature. To determine if a particular feature is supported on your platform, look at the technology configuration guides posted on your product landing page. When a technology configuration guide is displayed on your product landing page, it indicates that the feature is supported on that platform.
HTTP/HTTPS 1.1 Web Server and Client

The HTTP/HTTPS 1.1 Web Server and Client feature provides a consistent interface for users and applications by implementing support for HTTP/HTTPS 1.1 in Cisco IOS XE software-based devices. This module describes the concepts and the tasks related to configuring the HTTP/HTTPS 1.1 Web Server and Client feature.

- Finding Feature Information, page 3
- Information About the HTTP 1.1 Web Server and Client, page 3
- How to Configure HTTP 1.1 Web Server and Client, page 5
- Configuration Examples for HTTP 1.1 Web Server, page 9
- Where to Go Next, page 10
- Additional References, page 10
- Feature Information for the HTTP 1.1 Web Server and Client, page 12

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About the HTTP 1.1 Web Server and Client

This feature updates the Cisco implementation of the Hypertext Transfer Protocol (HTTP) from 1.0 to 1.1. The HTTP server allows features and applications, such as the Cisco web browser user interface, to be run on your routing device.
The Cisco implementation of HTTP 1.1 is backward-compatible with previous Cisco IOS XE releases. If you are currently using configurations that enable the HTTP server, no configuration changes are needed, as all defaults remain the same.

The process of enabling and configuring the HTTP server also remains the same as in previous releases. Support for Server Side Includes (SSIs) and HTML forms has not changed. Additional configuration options, in the form of the `ip http timeout-policy` command and the `ip http max-connections` command, have been added. These options allow configurable resource limits for the HTTP server. If you do not use these optional commands, the default policies are used.

Remote applications may require that you enable the HTTP server before using them. Applications that use the HTTP server include:

- Cisco web browser user interface, which uses the Cisco IOS XE Homepage Server, HTTP-based EXEC Server, and HTTP IOS File System (IFS) Server
- VPN Device Manager (VDM) application, which uses the VDM Server and the XML Session Manager (XSM)
- QoS Device Manager (QDM) application, which uses the QDM Server
- IP Phone and Cisco IOS XE Telephony Service applications, which use the ITS Local Directory Search and IOS Telephony Server (ITS)

About HTTP/HTTPS Server General Access Policies

The `ip http timeout-policy` command allows you to specify general access characteristics for the server by configuring a value for idle time, connection life, and request maximum. By adjusting these values you can configure a general policy; for example, if you want to maximize throughput for HTTP/HTTPS connections, you should configure a policy that minimizes connection overhead. You can configure this type of policy by specifying large values for the `life` and `request` options so that each connection stays open longer and more requests are processed for each connection.

Another example would be to configure a policy that minimizes the response time for new connections. You can configure this type of policy by specifying small values for the `life` and `request` options so that the connections are quickly released to serve new clients.

A throughput policy would be better for HTTP/HTTPS sessions with dedicated management applications, as it would allow the application to send more requests before the connection is closed, while a response time policy would be better for interactive HTTP/HTTPS sessions, as it would allow more people to connect to the server at the same time without having to wait for connections to become available.

In general, you should configure these options as appropriate for your environment. The value for the `idle` option should be balanced so that it is large enough not to cause an unwanted request or response timeout on the connection, but small enough that it does not hold a connection open longer than necessary.

Access security policies for the HTTP/HTTPS server are configured using the `ip http authentication` command, which allows only selective users to access the server, the `ip http access-class` command, which allows only selective IP hosts to access the server, and the `ip http accounting commands` command, which specifies a particular command accounting method for HTTP/HTTPS server users.
How to Configure HTTP 1.1 Web Server and Client

Configuring the HTTP/HTTPS 1.1 Web Server

Perform this task to enable the HTTP/HTTPS server and configure optional server characteristics. The HTTP/HTTPS server is disabled by default.

Note
If you want to configure authentication (step 4), you must configure the authentication type before you begin configuring the HTTP/HTTPS 1.1 web server.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http server
4. ip http authentication {aaa | enable | local }
5. ip http accounting commands level {default | named-accounting-method-list}
6. ip http port port-number
7. ip http path url
8. ip http access-class access-list-number
9. ip http max-connections value
10. ip http timeout-policy idle seconds life seconds requests value

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip http server</td>
<td>Enables the HTTP 1.1 server, including the Cisco web browser user interface.</td>
</tr>
<tr>
<td>Note</td>
<td>To enable HTTP over Secure Socket Layer (HTTPS) server, use the ip http secure-server command. Before enabling HTTPS, you must disable the standard HTTP server using the no ip http server command. This command is required to ensure only secure connections to the server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip http server</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 4
`ip http authentication {aaa | enable | local }`
(Optional) Specifies the authentication method to be used for login when a client connects to the HTTP/HTTPS server. The methods for authentication are:

- **aaa** -- Indicates that the authentication method used for the AAA login service (specified by the `aaa authentication login default` command) should be used for authentication.
- **enable** -- Indicates that the "enable" password should be used for authentication. (This is the default method.)
- **local** -- Indicates that the login user name, password and privilege level access combination specified in the local system configuration (by the `username` global configuration command) should be used for authentication and authorization.

Example:
Device(config)# ip http authentication local

Command or Action

Step 5
`ip http accounting commands level {default | named-accounting-method-list}`
(Optional) Specifies a particular command accounting method for HTTP/HTTPS server users.

Command accounting for HTTP/HTTPS is automatically enabled when authentication, authorization, and accounting (AAA) is configured on the device. It is not possible to disable accounting. HTTP/HTTPS will default to using the global AAA default method list for accounting. The CLI can be used to configure HTTP/HTTPS to use any predefined AAA method list.

- **level** -- Valid privilege level entries are integers from 0 to 15.
- **default** -- Indicates the default accounting method list configured by the `aaa accounting commands` CLI.
- **named-accounting-method-list** -- Indicates the name of the predefined command accounting method list.

Example:
Device(config)# ip http accounting commands 15 default

Command or Action

Step 6
`ip http port port-number`
(Optional) Specifies the server port that should be used for HTTP/HTTPS communication (for example, for the Cisco web browser user interface).

Example:
Device(config)# ip http port 8080

Command or Action

Step 7
`ip http path url`
(Optional) Sets the base HTTP path for HTML files. The base path is used to specify the location of the HTTP/HTTPS server files (HTML files) on the local system. Generally, the HTML files are located in system flash memory.

Example:
Device(config)# ip http path slot1:

Command or Action

Step 8
`ip http access-class access-list-number`
(Optional) Specifies the access list that should be used to allow access to the HTTP/HTTPS server.

Example:
Device(config)# ip http access-class 20
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 ip http max-connections value</td>
<td>(Optional) Sets the maximum number of concurrent connections allowed to the HTTP/HTTPS server. The default value is 5.</td>
</tr>
<tr>
<td>Example: Device(config)# ip http max-connections 10</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10 ip http timeout-policy idle seconds life seconds requests value</th>
<th>(Optional) Sets the characteristics that determine how long a connection to the HTTP/HTTPS server should remain open. The characteristics are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>idle seconds life seconds requests value</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# ip http timeout-policy idle 30 life 120 requests 100</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the HTTP/HTTPS Client

Perform this task to enable the HTTP/HTTPS client and configure optional client characteristics.

The standard HTTP 1.1 client and the secure HTTP client are always enabled. No commands exist to disable the HTTP client. For information about configuring optional characteristics for the HTTPS client, see the HTTPS--HTTP Server and Client with SSL 3.0 feature module.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip http client cache {ager interval minutes | memory {file file-size-limit | pool pool-size-limit}
4. ip http client connection {forceclose | idle timeout seconds | retry count | timeout seconds}
5. ip http client password password
6. ip http client proxy-server proxy-name proxy-port port-number
7. ip http client response timeout seconds
8. ip http client source-interface type number
9. ip http client username username

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip http client cache {ager interval minutes</td>
<td>memory {file file-size-limit</td>
</tr>
<tr>
<td>Example: Device(config)# ip http client cache memory file 5</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip http client connection {forceclose</td>
<td>idle timeout seconds</td>
</tr>
<tr>
<td>Example: Device(config)# ip http client connection timeout 10</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip http client password password</td>
<td>Configures the default password used for connections to remote HTTP servers.</td>
</tr>
<tr>
<td>Example: Device(config)# ip http client password pswd1</td>
<td></td>
</tr>
<tr>
<td>Step 6 ip http client proxy-server proxy-name proxy-port port-number</td>
<td>Configures an HTTP proxy server.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip http client proxy-server server1 proxy-port 52</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

```
ip http client response timeout seconds
```

Specifies the timeout value, in seconds, that the HTTP client waits for a response from the server.

Example:

```
Device(config)# ip http client response timeout 60
```

Step 8

```
ip http client source-interface type number
```

Configures a source interface for the HTTP client.

Example:

```
Device(config)#
```

Step 9

```
ip http client username username
```

Configures the default username used for connections to remote HTTP servers.

Example:

```
Device(config)# ip http client user1
```

Verifying HTTP/HTTPS Connectivity

To verify remote connectivity to the HTTP/HTTPS server, enter the system IP address in a web browser, followed by a colon and the appropriate port number (80 is the default port number).

For example, if the system IP address is 209.165.202.129 and the port number is 8080, enter http://209.165.202.129:8080 as the URL in a web browser.

If HTTP/HTTPS authentication is configured, a login dialog box will appear. Enter the appropriate username and password. If the default login authentication method of "enable" is configured, you may leave the username field blank, and use the "enable" password to log in.

The system home page should appear in your browser.

Configuration Examples for HTTP 1.1 Web Server

Configuring the HTTP 1.1 Web Server Example

The following example shows a typical configuration that enables the server and sets some of the characteristics:

```
ip http server
ip http authentication aaa
ip http accounting commands 15 default
ip http path flash:
```
ip access-list standard 20
 permit 209.165.202.130 0.0.0.255
 permit 209.165.201.1 0.0.255.255
 permit 209.165.200.225 0.255.255.255
! (Note: all other access implicitly denied)
end
ip http access-class 10
ip http max-connections 10
ip http accounting commands 1 oneacct

In the following example, a Throughput timeout policy is applied. This configuration would allow each connection to be idle a maximum of 30 seconds (approximately). Each connection will remain open (be "alive") until either the HTTP/HTTPS server has been busy processing requests for approximately 2 minutes (120 seconds) or until approximately 100 requests have been processed.

ip http timeout-policy idle 30 life 120 requests 100

In the following example, a Response Time timeout policy is applied. This configuration would allow each connection to be idle a maximum of 30 seconds (approximately). Each connection will be closed as soon as the first request has been processed.

ip http timeout-policy idle 30 life 30 requests 1

Where to Go Next

For information about secure HTTP connections using Secure Sockets Layer (SSL) 3.0, refer to the HTTPS--HTTP with SSL 3.0 feature module at:

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>HTTP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS HTTP Services Command Reference</td>
</tr>
</tbody>
</table>
| HTTPS | • HTTPS--HTTP with SSL 3.0 feature module
| | • Firewall Support of HTTPS Authentication Proxy feature module |
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RFC 2616</td>
<td>Hypertext Transfer Protocol -- HTTP/1.1</td>
</tr>
</tbody>
</table>

The Cisco implementation of the HTTP Version 1.1 supports a subset of elements defined in RFC 2616. Following is a list of supported RFC 2616 headers:

- Allow (Only GET, HEAD, and POST methods are supported)
- Authorization, WWW-Authenticate - Basic authentication only
- Cache-control
- Chunked Transfer Encoding
- Connection close
- Content-Encoding
- Content-Language
- Content-Length
- Content-Type
- Date, Expires
- Location

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No specific MIBs are supported for this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Feature Information for the HTTP 1.1 Web Server and Client

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for HTTP 1.1 Web Server and Client

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP 1.1 Web Server and Client</td>
<td>Cisco IOS XE Release 2.1</td>
<td>The HTTP 1.1 Web Server and Client feature provides a consistent interface for users and applications by implementing support for HTTP 1.1 in Cisco IOS XE software-based devices. When combined with the HTTPS feature, the HTTP 1.1 Web Server and Client feature provides a complete, secure solution for HTTP services between Cisco devices. The following commands were introduced or modified by this feature: <code>debug ip http all</code>, <code>debug ip http client</code>, <code>ip http access-class</code>, <code>ip http authentication</code>, <code>ip http client cache</code>, <code>ip http client connection</code>, <code>ip http client password</code>, <code>ip http client proxy-server</code>, <code>ip http client response timeout</code>, <code>ip http client source-interface</code>, <code>ip http client username</code>, <code>ip http max-connections</code>, <code>ip http path</code>, <code>ip http port</code>, <code>ip http server</code>, <code>ip http timeout-policy</code>, <code>show ip http client</code>, <code>show ip http client connection</code>, <code>show ip http client history</code>, <code>show ip http client session-module</code>, <code>show ip http server</code>, <code>show ip http server secure status</code>.</td>
</tr>
</tbody>
</table>
The HTTP TACAC+ Accounting Support feature introduces the `ip http accounting commands` command. This command is used to specify a particular command accounting method for HTTP server users. Command accounting provides information about the commands for a specified privilege level that are being executed on a device. Each command accounting record corresponds to one IOS XE command executed at its respective privilege level, as well as the date and time the command was executed, and the user who executed it. The following sections provide information about this feature:

The following commands were introduced or modified by this feature: `ip http accounting commands`.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| HTTP TACAC+ Accounting Support | Cisco IOS XE Release 2.1 | The HTTP TACAC+ Accounting Support feature introduces the `ip http accounting commands` command. This command is used to specify a particular command accounting method for HTTP server users. Command accounting provides information about the commands for a specified privilege level that are being executed on a device. Each command accounting record corresponds to one IOS XE command executed at its respective privilege level, as well as the date and time the command was executed, and the user who executed it. The following sections provide information about this feature:
| HTTP Security | Cisco IOS XE Release 2.1 | This feature was introduced on Cisco ASR 1000 Series Routers. |
HTTPS--HTTP Server and Client with SSL 3.0

The HTTPS--HTTP Server and Client with SSL 3.0 feature provides Secure Socket Layer (SSL) version 3.0 support for the HTTP 1.1 server and HTTP 1.1 client within Cisco IOS XE software. SSL provides server authentication, encryption, and message integrity to allow secure HTTP communications. SSL also provides HTTP client authentication. HTTP over SSL is abbreviated as HTTPS.

• Finding Feature Information, page 15
• Information About HTTPS--HTTP Server and Client with SSL 3.0, page 15
• How to Configure the HTTPS--HTTP Server and Client with SSL 3.0, page 17
• Configuration Examples for the HTTPS--HTTP Server and Client with SSL 3.0 feature, page 27
• Additional References, page 28
• Feature Information for HTTPS--HTTP Server and Client with SSL 3.0, page 29
• Glossary, page 31

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About HTTPS--HTTP Server and Client with SSL 3.0

To configure the HTTP with SSL 3.0 (HTTPS) feature, you should understand the following concepts:
Secure HTTP Server and Secure HTTP Client

A secure HTTP connection means that data sent to and received from an HTTP server are encrypted before being sent out over the Internet. HTTP with SSL encryption provides a secure connection to allow such functions as configuring a router from a web browser. Cisco’s implementation of the secure HTTP server and secure HTTP client uses an implementation of the SSL version 3.0. Application layer encryption provides an alternative to older methods such as having to set up a tunnel to the HTTP server for remote management. HTTP over SSL is abbreviated as HTTPS; the URL of a secure connection will begin with https:// instead of http://.

The Cisco IOS XE HTTP secure server’s primary role is to listen for HTTPS requests on a designated port (the default HTTPS port is 443) and to pass the request to the HTTP 1.1 web server. The HTTP 1.1 server processes requests and passes responses (served pages) back to the HTTP secure server, which, in turn, responds to the original request.

The Cisco IOS XE HTTP secure client’s primary role is to respond to Cisco IOS XE application requests for HTTPS User Agent services, perform HTTPS User Agent services on the application’s behalf, and pass the response back to the application.

Certificate Authority Trustpoints

Certificate authorities (CAs) are responsible for managing certificate requests and issuing certificates to participating IPSec network devices. These services provide centralized security key and certificate management for the participating devices. Specific CA servers are referred to as “trustpoints.”

The HTTPS server provides a secure connection by providing a certified X.509v3 certificate to the client when a connection attempt is made. The certified X.509v3 certificate is obtained from a specified CA trustpoint. The client (usually a web browser), in turn, has a public key that allows it to authenticate the certificate.

Configuring a CA trustpoint is highly recommended for secure HTTP connections. However, if a CA trustpoint is not configured for the routing device running the HTTPS server, the server will certify itself and generate the needed RSA key pair. Because a self-certified (self-signed) certificate does not provide adequate security, the connecting client will generate a notification that the certificate is self-certified, and the user will have the opportunity to accept or reject the connection. This option is available for internal network topologies (such as testing).

The HTTPS--HTTP Server and Client with SSL 3.0 feature also provides an optional command (ip http secure-client-auth) that, when enabled, has the HTTPS server request an X.509v3 certificate from the client. Authenticating the client provides more security than server authentication by itself.

For additional information on certificate authorities, see the “Configuring Certification Authority Interoperability” chapter in the Cisco IOS XE Security Configuration Guide.

CipherSuites

A CipherSuite specifies the encryption algorithm and digest algorithm to use on an SSL connection. Web browsers offer a list of supported CipherSuites when connecting to the HTTPS server, and the client and server will negotiate the best encryption algorithm to use from those that are supported by both. For example, Netscape Communicator 4.76 supports U.S. security with RSA Public Key Cryptography, MD2, MD5, RC2-CBC, RC4, DES-CBC, and DES-EDE3-CBC.
For the best possible encryption, you should use a browser that supports 128-bit encryption, such as Microsoft Internet Explorer version 5.5 (or later), or Netscape Communicator version 4.76 (or later). The SSL_RSA_WITH_DES_CBC_SHA CipherSuite provides less security than the other CipherSuites, because it does not offer 128-bit encryption.

In terms of router processing load (speed), the following list ranks the CipherSuites from fastest to slowest (slightly more processing time is required for the more secure and more complex CipherSuites):

1. SSL_RSA_WITH_DES_CBC_SHA
2. SSL_RSA_WITH_RC4_128_MD5
3. SSL_RSA_WITH_RC4_128_SHA
4. SSL_RSA_WITH_3DES_EDE_CBC_SHA

How to Configure the HTTPS--HTTP Server and Client with SSL 3.0

Declaring a Certificate Authority Trustpoint

Configuring a CA trustpoint is highly recommended for secure HTTP connections. The certified X.509v3 certificate for the secure HTTP server (or client) is obtained from the specified CA trustpoint. If you do not declare a CA trustpoint, then a self-signed certificate will be used for secure HTTP connections. The self-signed certificate is generated automatically.
SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name
4. ip domain-name name
5. crypto key generate rsa usage-keys
6. crypto ca trustpoint name
7. enrollment url url
8. enrollment http-proxy host-name port-number
9. crl {query url | optional | best-effort}
10. primary
11. exit
12. crypto ca authenticate name
13. crypto ca enrollment name
14. Do one of the following:
 • copy running-config startup-config
 • copy system:running-config nvram:startup-config

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>hostname name</td>
<td>Specifies the hostname of the Device.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• This step is needed only if you have not previously configured a hostname for your Device. The hostname is required because a fully qualified domain name is needed for security keys and certificates.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# hostname Router</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ip domain-name name</td>
<td>Specifies the IP domain name of the Device.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# ip domain-name example.com</td>
<td>• This step is needed only if you have not previously configured an IP domain name for your Device. The domain name is required because a fully qualified domain name is needed for security keys and certificates.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crypto key generate rsa usage-keys</td>
<td>(Optional) Generates an RSA key pair.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# crypto key generate rsa usage-keys</td>
<td>• The usage-keys keyword specifies that two RSA special-usage key pairs should be generated (that is, one encryption pair and one signature pair) instead of one general-purpose key pair.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RSA key pairs are used to sign and encrypt Internet key exchange (IKE) key management messages and are required before you can obtain a certificate for your Device.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• RSA key pairs are generated automatically. This command can be used to regenerate the keys, if needed.</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are other keywords and arguments for this command, but they do not pertain to this feature.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crypto ca trustpoint name</td>
<td>Specifies a local configuration name for the CA trustpoint and enters CA trustpoint configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# crypto ca trustpoint TP1</td>
<td>Note The crypto ca identity command was replaced by the crypto ca trustpoint command.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrollment url url</td>
<td>Specifies a URL of the CA where your Device should send certificate requests.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpoint)# enrollment url http://example.com</td>
<td>• If you are using Simple Certificate Enrollment Protocol (SCEP) for enrollment, the URL argument must be in the form http://CA-name, where CA-name is the host Domain Name System (DNS) name or IP address of the CA trustpoint.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enrollment http-proxy host-name port-number</td>
<td>(Optional) Configures the Device to obtain certificates from the CA through an HTTP proxy server.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpoint)# enrollment http-proxy example.com 8080</td>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>crl {query url</td>
<td>optional</td>
<td>best-effort}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(ca-trustpoint)# crl query ldap://example.com</td>
<td>• CRLs ensure that the certificate of the peer has not been revoked.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The crl optional command configures the Device to accept certificates even if the appropriate CRL cannot be downloaded.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

- Use the `crl query url` command to specify the Lightweight Directory Access Protocol (LDAP) URL of the CA server; for example, ldap://another-server.

(Optional) Specifies that this trustpoint should be used as the primary (default) trustpoint for CA requests.

- Use this command if more than one CA trustpoint will be configured on this Device.

Exits CA trustpoint configuration mode and returns to global configuration mode.

Authenticates the CA by getting the public key of the CA.

- Use the same name that you used when declaring the CA in the `crypto ca trustpoint` command.

Obtains the certificate from the specified CA trustpoint.

- This command requests a signed certificate from the CA for each RSA key pair.

Do one of the following:

- `copy running-config startup-config`
- `copy system:running-config nvram:startup-config`

Saves the configuration to NVRAM.

- This command is required to save the certificates into NVRAM. If not used, the certificates would be lost at Device reload.

Note To execute EXEC mode commands in global configuration mode, you can add the `do` keyword before the command. For example, instead of `copy running-config startup-config`, you could enter `do copy running-config startup-config`.

Configuring the HTTPS Server with SSL 3.0

To disable the standard HTTP server and configure the HTTPS server with SSL 3.0, complete the procedure in this section.
Before You Begin

If a certificate authority is to be used for certification, you should declare the CA trustpoint on the routing device before enabling the secure HTTP server.

SUMMARY STEPS

1. enable
2. Device# show ip http server status
3. configure terminal
4. no ip http server
5. ip http secure-server
6. ip http secure-port port-number
7. ip http secure-ciphersuite [3des-ede-cbc-sha] [rc4-128-sha] [rc4-128-md5] [des-cbc-sha]
8. ip http secure-client-auth
9. ip http secure-trustpoint name
10. end
11. show ip http server secure status

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 Device# show ip http server status</td>
<td>(Optional) Displays the status of the HTTP server.</td>
</tr>
<tr>
<td>Example: Device# show ip http server status</td>
<td>• If you are unsure whether the secure HTTP server is supported in the software image you are running, enter this command and look for the line “HTTP secure server capability: {Present</td>
</tr>
<tr>
<td>Example: Device# show ip http server status</td>
<td>• This command displays the status of the standard HTTP server (enabled or disabled).</td>
</tr>
<tr>
<td>Step 3 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 4 no ip http server</td>
<td>Disables the standard HTTP server.</td>
</tr>
<tr>
<td>Example: Device(config)# no ip http server</td>
<td>Note When enabling the HTTPS server you should always disable the standard HTTP server to prevent insecure connections to the same services. This is a precautionary step (typically, the HTTP server is disabled by default).</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td><code>ip http secure-server</code></td>
<td>Enables the HTTPS server.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ip http secure-server</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip http secure-port port-number</code></td>
<td>(Optional) Specifies the port number that should be used for the HTTPS server. The default port number is 443. Valid options are 443 or any number in the range 1025 to 65535.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ip http secure-port 1025</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ip http secure-ciphersuite</code> [3des-ede-cbc-sha] [rc4-128-sha] [rc4-128-md5] [des-cbc-sha]</td>
<td>(Optional) Specifies the CipherSuites (encryption algorithms) that should be used for encryption over the HTTPS connection.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ip http secure-ciphersuite rc4-128-sha rc4-128-md5</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ip http secure-client-auth</code></td>
<td>(Optional) Configures the HTTP server to request an X.509v3 certificate from the client in order to authenticate the client during the connection process.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ip http secure-client-auth</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ip http secure-trustpoint name</code></td>
<td>Specifies the CA trustpoint that should be used to obtain an X.509v3 security certificate and to authenticate the connecting client's certificate.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ip http secure-trustpoint trustpoint-01</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>end</code></td>
<td>Ends the current configuration session and returns you to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Configuration of the HTTPS Server

To verify the configuration of the HTTPS server, connect to the router running the HTTPS server with a web browser by entering `https://url`, where `url` is the IP address or hostname of the router. Successful connection using the `https` prefix (instead of the standard `http`) indicates that the HTTPS server is configured properly. If a port other than the default port is configured (using the `ip http secure-port` command), you must also specify the port number after the URL. For example:

```
```

or

```
https://host.domain.com:1026
```

Generally, you can verify that the HTTPS server is configured and that you have a secure connection by locating an image of a padlock at the bottom of your browser window. Also note that secure HTTP connections have a URL that starts with "https:" instead of "http:".

Providing Additional Security and Efficiency

The configuration of the standard HTTP server applies to the secure HTTP server as well. To provide additional security and efficiency to both the standard HTTP server and the HTTPS server, complete the procedure in this section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip http path path-name`
4. `ip http access-class access-list-number`
5. `ip http max-connections value`
6. `ip http timeout-policy idle seconds life seconds requests value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip http path path-name</td>
<td>(Optional) Sets the base HTTP path for HTML files.</td>
</tr>
<tr>
<td>Example: Device(config)# ip http path slot1:</td>
<td>• The base path is used to specify the location of the HTTP server files (HTML files) on the local system. Generally, the HTML files are located in system flash memory.</td>
</tr>
<tr>
<td>Step 4 ip http access-class access-list-number</td>
<td>(Optional) Specifies the access list that should be used to allow access to the HTTP server.</td>
</tr>
<tr>
<td>Example: Device(config)# ip http access-class 20</td>
<td></td>
</tr>
<tr>
<td>Step 5 ip http max-connections value</td>
<td>(Optional) Sets the maximum number of concurrent connections to the HTTP server that will be allowed. The default value is 5.</td>
</tr>
<tr>
<td>Example: Device(config)# ip http max-connections 10</td>
<td></td>
</tr>
<tr>
<td>Step 6 ip http timeout-policy idle seconds life seconds requests value</td>
<td>(Optional) Sets the characteristics that determine how long a connection to the HTTP server should remain open. The characteristics are:</td>
</tr>
<tr>
<td>Example: Device(config)# ip http timeout-policy idle 30 life 120 requests 100</td>
<td>• idle --The maximum number of seconds the connection will be kept open if no data is received or response data cannot be sent out on the connection. Note that a new value may not take effect on any already existing connections. If the server is too busy or the limit on the life time or the number of requests is reached, the connection may be closed sooner. The default value is 180 seconds (3 minutes).</td>
</tr>
<tr>
<td></td>
<td>• life --The maximum number of seconds the connection will be kept open, from the time the connection is established. Note that the new value may not take effect on any already existing connections. If the server is too busy or the limit on the idle time or the number of requests is reached, it may close the connection sooner. Also, because the server will not close the connection while actively processing a request, the connection may remain open longer than the specified life time if processing is occurring when the life maximum is reached. In this case, the connection will be closed when processing finishes.</td>
</tr>
</tbody>
</table>
Configuring the HTTPS Client with SSL 3.0

To configure the HTTPS client with SSL 3.0, complete the procedure in this section.

Before You Begin

The standard HTTP client and the secure HTTP client are always enabled.

A certificate authority is required for secure HTTP client certification; the following steps assume that you have previously declared a CA trustpoint on the routing device. If a CA trustpoint is not configured, and the remote HTTPS server requires client authentication, connections to the secure HTTP client will fail.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip http client secure-trustpoint trustpoint-name
4. ip http client secure-ciphersuite [3des-ede-cbc-sha] [rc4-128-sha] [rc4-128-md5] [des-cbc-sha]
5. end
6. show ip http client secure status

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

- Enter your password if prompted.
Purpose

Command or Action	**Purpose**
Step 2 | **configure terminal**
Example:
Device# configure terminal
Enters global configuration mode.

Step 3 | **ip http client secure-trustpoint**
trustpoint-name
Example:
Device(config)# ip http client secure-trustpoint trustpoint01
(Optional) Specifies the CA trustpoint that should be used if the remote HTTP server requests client authentication.
- Use of this command assumes you have already declared a CA trustpoint using the `crypto ca trustpoint` command and associated submode commands.
- Use the same trustpoint name that you used in the associated `crypto ca trustpoint` command.
- This command is optional if client authentication is not needed, or if a primary trustpoint has been configured. If the `ip http client secure-trustpoint` command is not used, the Device will use the primary trustpoint, as specified by the `primary CA trustpoint` configuration mode command.

Step 4 | **ip http client secure-ciphersuite**
[3des-ede-cbc-sha] [rc4-128-sha] [rc4-128-md5] [des-cbc-sha]
Example:
Device(config)# ip http client secure-ciphersuite rc4-128-sha
(Optional) Specifies the CipherSuites (encryption algorithms) that should be used for encryption over the HTTPS connection.
- This command allows you to restrict the list of CipherSuites that the client offers when connecting to a secure HTTP server. For example, you may want to allow only the most secure CipherSuites to be used.
- Unless you have a reason to specify the CipherSuites that should be used, or you are unfamiliar with the details of these CipherSuites, you should leave this command unconfigured and let the server and client negotiate the CipherSuite that they both support (this is the default).

Step 5 | **end**
Example:
Device(config)# end
Ends the current configuration session and returns to privileged EXEC mode.

Step 6 | **show ip http client secure status**
Example:
Device# show ip http client secure status
Displays the status of the HTTP secure server configuration.
Configuration Examples for the HTTPS--HTTP Server and Client with SSL 3.0 feature

The following example shows a configuration session in which the secure HTTP server is enabled, the port for the secure HTTP server is configured as 1025, and the remote CA trustpoint server “CA-trust-local” is used for certification.

Device# show ip http server status
HTTP server status: Disabled
HTTP server port: 80
HTTP server authentication method: enable
HTTP server access class: 0
HTTP server base path:
Maximum number of concurrent server connections allowed: 5
Server idle time-out: 600 seconds
Server life time-out: 600 seconds
Maximum number of requests allowed on a connection: 1
HTTP secure server capability: Present
HTTP secure server status: Disabled
HTTP secure server port: 443
HTTP secure server ciphersuite: 3des-ede-cbc-sha des-cbc-sha rc4-128-md5 rc4-12a
HTTP secure server client authentication: Disabled
HTTP secure server trustpoint:

Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# ip http secure-server
Device(config)# ip http client secure-trustpoint CA-trust-local
Device(config)# ip http secure-port 1024
Invalid secure port value.
Device(config)# ip http secure-port 1025
Device(config)# ip http secure-ciphersuite rc4-128-sha rc4-128-md5
Device(config)# end

Device# show ip http server secure status
HTTP secure server status: Enabled
HTTP secure server port: 1025
HTTP secure server ciphersuite: rc4-128-md5 rc4-128-sha
HTTP secure server client authentication: Disabled
HTTP secure server trustpoint: CA-trust-local

In the following example, the CA trustpoint CA-trust-local is specified, and the HTTPS client is configured to use this trustpoint for client authentication requests:

Device# config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# crypto ca trustpoint CA-trust-local
Device(ca-trustpoint)# enrollment url http://example.com
Device(ca-trustpoint)# crl query ldap://example.com
Device(ca-trustpoint)# primary
Device(ca-trustpoint)# exit
Device(config)# ip http client secure-trustpoint CA-trust-local
Device(config)# end
Device# copy running-config startup-config

Additional References

The following sections provide references related to the HTTPS--HTTP Server and Client with SSL 3.0 feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
| SSL 3.0 | The SSL Protocol Version 3.0
 This document is available from various sources online. |
| Standard Cisco Web Client | HTTP 1.1 Web Client |
| Standard Cisco Web Server | HTTP 1.1 Web Server |
| Certification Authority Interoperability | • Configuring Certification Authority Interoperability |
| | • Certificate Autoenrollment |
| | • Certificate Enrollment Enhancements |
| | • Trustpoint CLI |
| | • Source Interface Selection for Outgoing Traffic |
| | with Certificate Authority |

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by</td>
<td>--</td>
</tr>
<tr>
<td>this feature.</td>
<td></td>
</tr>
</tbody>
</table>
Related MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No new or modified MIBs are supported by this feature and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Related RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2616</td>
<td>Cisco’s implementation of HTTP is based on RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for HTTPS--HTTP Server and Client with SSL 3.0

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 2: Feature Information for HTTPS--HTTP Server and Client with SSL 3.0

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS--HTTP Server and Client with SSL 3.0</td>
<td>Cisco IOS XE Release 2.1</td>
<td>This feature provides Secure Socket Layer (SSL) version 3.0 support for the HTTP 1.1 server and HTTP 1.1 client within Cisco IOS XE software. SSL provides server authentication, encryption, and message integrity to allow secure HTTP communications. SSL also provides HTTP client authentication. This feature is supported only in Cisco software images that support SSL. Specifically, SSL is supported in "IPSec 56" and "IPSec 3DES" images (contains "k8" or "k9" in the image name). The following commands are introduced or modified in the feature or features documented in this module.</td>
</tr>
</tbody>
</table>

- `debug ip http ssl error`
- `ip http client secure-ciphersuite`
- `ip http client secure-trustpoint`
- `ip http secure-ciphersuite`
- `ip http secure-client-auth`
- `ip http secure-port`
- `ip http secure-server`
- `ip http secure-trustpoint`
- `show ip http client secure status`
- `show ip http server secure status`
Glossary

RSA--RSA is a widely used Internet encryption and authentication system that uses public and private keys for encryption and decryption. The RSA algorithm was invented in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. The abbreviation RSA comes from the first letter of the last names of the three original developers. The RSA algorithm is included in many applications, such as the web browsers from Microsoft and Netscape. The RSA encryption system is owned by RSA Security.

SHA --The Secure Hash Algorithm. SHA was developed by NIST and is specified in the Secure Hash Standard (SHS, FIPS 180). Often used as an alternative to Digest 5 algorithm.

Signatures, digital--In the context of SSL, “signing” means to encrypt with a private key. In digital signing, one-way hash functions are used as input for a signing algorithm. In RSA signing, a 36-byte structure of two hashes (one SHA and one MD5) is signed (encrypted with the private key).

SSL 3.0--Secure Socket Layer version 3.0. SSL is a security protocol that provides communications privacy over the Internet. The protocol allows client and server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. SSL uses a program layer located between the Internet's HTTP and TCP layers. SSL is included as part of most web server products and as part of most Internet browsers.
CHAPTER 4

Nginx/HTTP - Web Security Features

For the Cisco IOS XE Everest 16.4.1 release, the following web security enhancements have been included:

- SSL/TLS Version for HTTP secure-server can be specified.
- Security headers enhancements

Finding Feature Information, page 33

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Nginx/HTTP Web Security Features

- SSL/TLS Version for HTTP secure-server -- This enhancement is used to specify the TLS version to be used for HTTPS Server and HTTPS client sessions.
 - HTTPS Server command -- By default, it supports three versions. If you want to use a particular version for the sessions, you can specify by configuring the `ip http tls-version` command in global configuration mode. The versions are TLSv1.0, TLSv1.1, and TLSv1.2.
 - HTTPS Client command -- By default, it supports three versions. If you want to use a particular version for the sessions, you can specify by configuring the `ip http client tls-version` command in global configuration mode. The versions are TLSv1.0, TLSv1.1, and TLSv1.2.
These commands allow you to set the particular version used for sessions. The underlying SSL infrastructure supports the option of specifying either all or only one TLS version. Hence the HTTPS provides the option to specify the individual version. Use the no form of the command to remove the configuration.

- Security Header Enhancements
 - HTTP Server – The following headers are the web server security enhancements. The actual headers and respective values appear in the response by default:
 - X-XSS-Protection: 1; mode=block -- This header indicates that XSS protection is enabled [value 1] and if the browser finds any attack, it should block rendering the page.
 - X-Frame-Options: SAMEORIGIN - Allows the contents to be rendered in a frame if it belongs to the same domain.
 - X-Content-Type-Options: nosniff - Prevents the browser from doing MIME-type sniffing.
 - Strict-Transport-Security: max-age=7884000 - Strict-Transport-Security HTTP header. Use the [no] ip http HSTS-Header to enable/disable this header for IOS applications. By default, it is enabled and use the no ip http HSTS-Header command disable this header from the response.
 - Nginx – Web user interface - Nginx applications take care of the headers for their response. As Web UI is one of the NginX application, it adds the security headers. The three headers are the following:
 - X-XSS-Protection: 1; mode=block
 - X-Frame-Options: SAMEORIGIN
 - X-Content-Type-Options: nosniff

Verifying the Configured Version

Use the show ip http client all command to see the currently enabled TLS version.

Device# show ip http client all

Maximum number of requests allowed on a connection: 25
Server linger time : 60 seconds
HTTP server active session modules: ALL
HTTP secure server capability: Present
HTTP secure server status: Enabled
HTTP secure server port: 443
HTTP secure server TLS version: TLSv1.2 TLSv1.1 TLSv1.0 <<<This line shows the TLS version that is enabled.
HTTP secure server client authentication: Disabled
HTTP secure server trustpoint:
HTTP secure server active session modules: ALL

Use the show http server status command to see the currently enabled TLS version.

Device# show http server status
Maximum number of concurrent server connections allowed: 50
Maximum number of secondary server connections allowed: 50
Server idle time-out: 180 seconds
Server life time-out: 180 seconds
Server session idle time-out: 180 seconds
Maximum number of requests allowed on a connection: 25
Server linger time: 60 seconds
HTTP server active session modules: ALL
HTTP secure server capability: Present
HTTP secure server status: Enabled
HTTP secure server port: 443
HTTP secure server ciphersuite: 3des-ede-cbc-sha aes-128-cbc-sha
aes-256-cbc-sha dhe-aes-128-cbc-sha ecdhe-rsa-3des-ede-cbc-sha
HTTP secure server TLS version: TLSv1.2 TLSv1.1 TLSv1.0
This line shows the TLS version that is enabled.
HTTP secure server client authentication: Disabled
HTTP secure server trustpoint:

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional HTTP configuration information</td>
<td>Using the Cisco Web Browser User Interface</td>
</tr>
<tr>
<td>Additional HTTPS configuration information</td>
<td>HTTPS - HTTP Server and Client with SSL 3.0</td>
</tr>
<tr>
<td>Additional HTTP and HTTPS commands</td>
<td>Cisco IOS Network Management Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>
Feature Information for Nginx/HTTP -- Web Security Features

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3: Feature Information for Nginx/HTTP -- Web Security Features

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nginx/HTTP -- Web Security Features</td>
<td>Cisco IOS XE Everest 16.4.1</td>
<td>For the Cisco IOS XE Everest 16.4.1 release, the following web security enhancements have been included:</td>
</tr>
<tr>
<td></td>
<td>Release</td>
<td>• SSL/TLS Version for HTTP secure-server can be specified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Security headers enhancements</td>
</tr>
</tbody>
</table>