Using Flexible NetFlow Top N Talkers to Analyze Network Traffic

Last Updated: September 4, 2012

This document contains information about and instructions for using the Flexible NetFlow--Top N Talkers Support feature. The Flexible NetFlow--Top N Talkers Support feature helps you analyze the large amount of data that Flexible NetFlow captures from the traffic in your network by providing the ability to filter, aggregate, and sort the data in the Flexible NetFlow cache as you display it. When you are sorting and displaying the data in the cache, you can limit the display output to a specific number of entries with the highest values (Top N Talkers) for traffic volume, packet counters, and so on. The Flexible NetFlow--Top N Talkers Support feature facilitates real-time traffic analysis by requiring only the use of show commands, which can be entered in many different variations using the available keywords and arguments to meet your traffic data analysis requirements.

NetFlow is a Cisco IOS technology that provides statistics on packets flowing through the router. NetFlow is the standard for acquiring IP operational data from IP networks. NetFlow provides data to support network and security monitoring, network planning, traffic analysis, and IP accounting.

Flexible NetFlow improves on original NetFlow by adding the capability to customize the traffic analysis parameters for your specific requirements. Flexible NetFlow facilitates the creation of more complex configurations for traffic analysis and data export through the use of reusable configuration components.

- Finding Feature Information, page 1
- Prerequisites for Flexible NetFlow Top N Talkers, page 2
- Information About Flexible NetFlow Top N Talkers, page 2
- How to Analyze Network Traffic Using Flexible NetFlow Top N Talkers, page 4
- Configuration Examples for Flexible NetFlow Top N Talkers, page 9
- Additional References, page 12
- Feature Information for Flexible NetFlow Top N Talkers, page 13

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Flexible NetFlow Top N Talkers

- You are familiar with the information in the "Cisco IOS Flexible NetFlow Overview" module.
- The networking device is running a Cisco IOS release that supports the Flexible NetFlow--Top N Talkers Support feature. See the Feature Information for Flexible NetFlow Top N Talkers, page 13 for a list of Cisco IOS software releases that support Flexible NetFlow.

No configuration tasks are associated with the Flexible NetFlow--Top N Talkers Support feature. Therefore, in order for you to use the Flexible NetFlow--Top N Talkers Support feature, traffic analysis with Flexible NetFlow must already be configured about the networking device.

Information About Flexible NetFlow Top N Talkers

- Flexible NetFlow Data Flow Filtering, page 2
- Flexible NetFlow Data Flow Aggregation, page 2
- Flow Sorting and Top N Talkers, page 2
- Documented Flexible NetFlow Top N Talkers Command Names and Actual Syntax, page 3
- Combined Use of Flow Filtering and Flow Aggregation and Flow Sorting with Top N Talkers, page 3
- Memory and Performance Impact of Top N Talkers, page 4

Flexible NetFlow Data Flow Filtering

The flow filtering function of the Flexible NetFlow--Top N Talkers Support feature filters the flow data in a flow monitor cache based on the criteria that you specify, and displays the data.

The flow filtering function of the Flexible NetFlow--Top N Talkers Support feature is provided by the show flow monitor cache filter command. For more information on the show flow monitor cache filter command, refer to the Cisco IOS Flexible NetFlow Command Reference.

Flexible NetFlow Data Flow Aggregation

Flow aggregation using the show flow monitor cache aggregate command allows you to dynamically view the flow information in a cache using a different flow record than the cache was originally created from. Only the fields in the cache will be available for the aggregated flows.

The flow aggregation function of the Flexible NetFlow--Top N Talkers Support feature is provided by the show flow monitor cache aggregate command. For more information on the show flow monitor cache aggregate command, refer to the Cisco IOS Flexible NetFlow Command Reference.

Flow Sorting and Top N Talkers

The flow sorting function of the Flexible NetFlow--Top N Talkers Support feature sorts flow data from the Flexible NetFlow cache based on the criteria that you specify and displays the data. You can also use the flow sorting function of the Flexible NetFlow--Top N Talkers Support feature to limit the display output to
a specific number of entries (top n talkers, where n is the number or talkers to display) by using the `top` keyword.

The flow sorting and Top N Talkers function of the Flexible NetFlow--Top N Talkers Support feature is provided by the `show flow monitor cache sort` command. For more information on the `show flow monitor cache sort` command, refer to the Cisco IOS Flexible NetFlow Command Reference.

Documented Flexible NetFlow Top N Talkers Command Names and Actual Syntax

The three commands that make up the Flexible NetFlow--Top N Talkers Support feature are documented using the Cisco documentation convention of using the initial words in the CLI syntax, omitting subsequent words in the CLI syntax, and using a word in the CLI syntax that follows the omitted words. Therefore the syntax that you use for entering the commands is different from the actual documented command name. The table below shows the documented commands names and the actual command CLI syntax. The `monitor-name` argument is the name of a flow monitor that was previously configured.

<table>
<thead>
<tr>
<th>Documented Command Name</th>
<th>Actual CLI Syntax for Using the Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show flow monitor cache filter</code></td>
<td><code>show flow monitor monitor-name cache filter</code></td>
</tr>
<tr>
<td><code>show flow monitor cache aggregation</code></td>
<td><code>show flow monitor monitor-name cache aggregation</code></td>
</tr>
<tr>
<td><code>show flow monitor cache sort</code></td>
<td><code>show flow monitor monitor-name cache sort</code></td>
</tr>
</tbody>
</table>

Note

The arguments and keywords that you can use after `filter`, `aggregation`, and `sort` are not included in the table below. For more information on the arguments and keywords that you can use after `filter`, `aggregation`, and `sort`, refer to the Cisco IOS Flexible NetFlow Command Reference.

Combined Use of Flow Filtering and Flow Aggregation and Flow Sorting with Top N Talkers

Although each of the `show` commands that make up the Flexible NetFlow--Top N Talkers Support feature can be used individually for traffic analysis, they provide much greater analytical capabilities when they are used together. When you use any combination of the three `show` commands, you enter only the common prefix of `show flow monitor monitor-name cache` followed by `filter`, `aggregation`, `sort`, and the arguments and keywords available for `filter`, `aggregation`, `sort`, as required. For example,

```
show flow monitor
monitor-name
   cache
   filter
options
   aggregation
options
   sort
options
```
where *options* is any permissible combination of arguments and keywords. See the *Configuration Examples for Flexible NetFlow Top N Talkers*, page 9 for more information.

Memory and Performance Impact of Top N Talkers

The Flexible NetFlow--Top N Talkers Support feature can use a large number of CPU cycles and possibly also system memory for a short time. However, because the Flexible NetFlow--Top N Talkers Support feature uses only `show` commands, the CPU usage should be run at a low priority because no real-time data processing is involved. The memory usage can be mitigated by using a larger granularity of aggregation, or no aggregation at all.

How to Analyze Network Traffic Using Flexible NetFlow Top N Talkers

- Filtering Flow Data from the Flexible NetFlow Cache, page 4
- Aggregating Flow Data from the Flexible NetFlow Cache, page 5
- Sorting Flow Data from the Flexible NetFlow Cache, page 6
- Displaying the Top N Talkers with Sorted Flow Data, page 8

Filtering Flow Data from the Flexible NetFlow Cache

This task shows you how to use the `show flow monitor cache filter` command with a regular expression to filter the flow monitor cache data, and display the results. For more information on regular expressions and the `show flow monitor cache filter` command, refer to the *Cisco IOS Flexible NetFlow Command Reference*.

To filter the flow monitor cache data using a regular expression and display the results, perform the following task.

SUMMARY STEPS

1. `enable`
2. `show flow monitor [name] monitor-name cache filter options [regexp regexp] [...options [regexp regexp]] [format {csv | record | table}]`

DETAILED STEPS

Step 1 `enable`
Enters privileged EXEC mode.

Example:
```
Router> enable
```

Step 2 `show flow monitor [name] monitor-name cache filter options [regexp regexp] [...options [regexp regexp]] [format {csv | record | table}]`
Filters the flow monitor cache data on the IPv4 type of service (ToS) value.
Example:

Router# show flow monitor FLOW-MONITOR-3 cache filter ipv4 tos regexp 0x(C0|50)
Cache type: Normal
 Cache size: 4096
 Current entries: 19
 High Watermark: 38
 Flows added: 3516
 Flows aged: 3497
 - Active timeout (1800 secs) 52
 - Inactive timeout (15 secs) 3445
 - Event aged 0
 - Watermark aged 0
 - Emergency aged 0
 IPV4 SOURCE ADDRESS: 10.1.1.1
 IPV4 DESTINATION ADDRESS: 255.255.255.255
 TRNS SOURCE PORT: 520
 TRNS DESTINATION PORT: 520
 INTERFACE INPUT: Et0/0
 FLOW SAMPLER ID: 0
 IP TOS: 0xC0
 IP PROTOCOL: 17
 ip source as: 0
 ip destination as: 0
 ipv4 next hop address: 0.0.0.0
 ipv4 source mask: /24
 ipv4 destination mask: /0
 tcp flags: 0x00
 interface output: Null
 counter bytes: 52
 counter packets: 1
 timestamp first: 18:59:46.199
 timestamp last: 18:59:46.199
Matched 1 flow

Aggregating Flow Data from the Flexible NetFlow Cache

This task shows you how to use the `show flow monitor cache aggregate` command to aggregate the flow monitor cache data with a different record than the cache was created with, and display the results. For more information on the `show flow monitor cache aggregate` command, refer to the Cisco IOS Flexible NetFlow Command Reference.

To aggregate the flow monitor cache data and display the results, perform the following task.

SUMMARY STEPS

1. `enable`
2. `show flow monitor [name] monitor-name cache aggregate [options [...options]] [collect options [...options]] [record record-name] [format {csv | record | table}]`

DETAILED STEPS

Step 1 `enable`
Enters privileged EXEC mode.
Example:
Router> enable

Step 2

show flow monitor [name]
monitor-name cache aggregate [options [...]options] [collect options [...]options] | record
record-name | [format {csv | record | table}]

Aggregates the flow monitor cache data on the IPv4 destination address and displays the cache data for the IPv4 protocol type and input interface nonkey fields:

Example:

Router# show flow monitor
FLOW-MONITOR-3 cache aggregate ipv4 destination address collect ipv4 protocol interface input
Processed 17 flows
Aggregated to 7 flows

<table>
<thead>
<tr>
<th>IPV4 DST ADDR</th>
<th>intf</th>
<th>input</th>
<th>flows</th>
<th>bytes</th>
<th>pkts</th>
<th>ip prot</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.192.16.4</td>
<td>Et0/0</td>
<td></td>
<td>3</td>
<td>42200</td>
<td>2110</td>
<td>1</td>
</tr>
<tr>
<td>224.192.16.1</td>
<td>Et0/0</td>
<td></td>
<td>3</td>
<td>17160</td>
<td>858</td>
<td>1</td>
</tr>
<tr>
<td>224.192.18.1</td>
<td>Et0/0</td>
<td></td>
<td>4</td>
<td>18180</td>
<td>909</td>
<td>1</td>
</tr>
<tr>
<td>224.192.45.12</td>
<td>Et0/0</td>
<td></td>
<td>4</td>
<td>14440</td>
<td>722</td>
<td>1</td>
</tr>
<tr>
<td>255.255.255.255</td>
<td>Et0/0</td>
<td></td>
<td>1</td>
<td>52</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>224.0.0.13</td>
<td>Et0/0</td>
<td></td>
<td>1</td>
<td>54</td>
<td>1</td>
<td>103</td>
</tr>
<tr>
<td>224.0.0.1</td>
<td>Et0/0</td>
<td></td>
<td>1</td>
<td>28</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Sorting Flow Data from the Flexible NetFlow Cache

This task shows you how to use the `show flow monitor cache sort` command to sort the flow monitor cache data, and display the results. For more information on the `show flow monitor cache sort` command, refer to the Cisco IOS Flexible NetFlow Command Reference.

To sort the flow monitor cache data and display the results, perform the following task.

SUMMARY STEPS

1. enable
2. `show flow monitor [name]
monitor-name cache sort options [top [number]][format {csv | record | table}]`

DETAILED STEPS

Step 1

enable
Enters privileged EXEC mode.

Example:
Router> enable

Step 2

show flow monitor [name]
monitor-name cache sort options [top [number]][format {csv | record | table}]
Displays the cache data sorted on the number of packets from highest to lowest.
Note: When the `top` keyword is not used, the default number of sorted flows shown is 20.

Example:

```
Router# show flow monitor FLOW-MONITOR-1 cache sort highest counter packets
Processed 26 flows
Aggregated to 26 flows
Showing the top 20 flows
IPV4 SOURCE ADDRESS: 10.1.1.3
IPV4 DESTINATION ADDRESS: 172.16.10.11
TRNS SOURCE PORT: 443
TRNS DESTINATION PORT: 443
INTERFACE INPUT: Et0/0.1
FLOW SAMPLER ID: 0
IP TOS: 0x00
ip source as: 0
ip destination as: 0
ipv4 next hop address: 172.16.7.2
ipv4 source mask: /24
tcp flags: 0x00
interface output: Et1/0.1
counter bytes: 22760
counter packets: 1569
timestamp first: 19:42:32.924
timestamp last: 19:57:28.656
IPV4 SOURCE ADDRESS: 10.10.11.2
IPV4 DESTINATION ADDRESS: 172.16.10.6
TRNS SOURCE PORT: 65
TRNS DESTINATION PORT: 65
INTERFACE INPUT: Et0/0.1
FLOW SAMPLER ID: 0
IP TOS: 0x00
ip source as: 0
ip destination as: 0
ipv4 next hop address: 172.16.7.2
ipv4 source mask: /24
tcp flags: 0x00
interface output: Et1/0.1
counter bytes: 22720
counter packets: 568
timestamp first: 19:42:34.264
timestamp last: 19:57:28.428
```

```
IPV4 SOURCE ADDRESS: 192.168.67.6
IPV4 DESTINATION ADDRESS: 172.16.10.200
TRNS SOURCE PORT: 0
TRNS DESTINATION PORT: 3073
INTERFACE INPUT: Et0/0.1
FLOW SAMPLER ID: 0
IP TOS: 0x00
ip source as: 0
ip destination as: 0
ipv4 next hop address: 172.16.7.2
ipv4 source mask: /24
tcp flags: 0x00
interface output: Et1/0.1
counter bytes: 15848
counter packets: 344
timestamp first: 19:42:36.852
timestamp last: 19:57:27.836
```
Displaying the Top N Talkers with Sorted Flow Data

This task shows you how to use the show flow monitor cache sort command to sort the flow monitor cache data, and to limit the display results to a specific number of high volume flows. For more information on the show flow monitor cache sort command, refer to the Cisco IOS Flexible NetFlow Command Reference.

To sort the flow monitor cache data and limit the display output using to a specific number of high volume flows, perform the following task.

SUMMARY STEPS

1. enable
2. show flow monitor [name] monitor-name cache sort options [top [number]] [format {csv | record | table}]

DETAILED STEPS

Step 1

enable
Enters privileged EXEC mode.

Example:

Router> enable

Step 2

show flow monitor [name] monitor-name cache sort options [top [number]] [format {csv | record | table}]
Displays the cache data sorted on the number of packets from highest to lowest and limits the output to the three highest volume flows:

Example:

Router# show flow monitor FLOW-MONITOR-1 cache sort highest counter packets top 3
Processed 25 flows
Configuration Examples for Flexible NetFlow Top N Talkers

- Example Displaying the Top Talkers with Filtered and Aggregated and Sorted Flow Data, page 10
Example Displaying the Top Talkers with Filtered and Aggregated and Sorted Flow Data

The following example combines filtering, aggregation, collecting additional field data, sorting the flow monitor cache data, and limiting the display output to a specific number of high volume flows (top talkers).

Router# show flow monitor FLOW-MONITOR-1 cache filter ipv4 protocol regexp (1|6) aggregate ipv4 destination address collect ipv4 protocol sort counter bytes top 4

Processed 26 flows
Matched 26 flows
Aggregated to 13 flows
Showing the top 4 flows

<table>
<thead>
<tr>
<th>IPv4 DST ADDR</th>
<th>flows</th>
<th>bytes</th>
<th>pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.2</td>
<td>12</td>
<td>1358370</td>
<td>6708</td>
</tr>
<tr>
<td>172.16.10.19</td>
<td>2</td>
<td>44640</td>
<td>1116</td>
</tr>
<tr>
<td>172.16.10.20</td>
<td>2</td>
<td>44640</td>
<td>1116</td>
</tr>
<tr>
<td>172.16.10.4</td>
<td>1</td>
<td>22360</td>
<td>559</td>
</tr>
</tbody>
</table>

The following example combines filtering using a regular expression, aggregation using a predefined record, sorting the flow monitor cache data, limiting the display output to a specific number of high volume flows (top talkers), and displaying the output in record format.

Router# show flow monitor FLOW-MONITOR-1 cache filter ipv4 source address regexp 10.* aggregate record netflow ipv4 protocol-port sort transport destination-port top 5 format record

Processed 26 flows
Matched 15 flows
Aggregated to 10 flows
Showing the top 5 flows

<table>
<thead>
<tr>
<th>TRNS SOURCE PORT:</th>
<th>0</th>
<th>TRNS DESTINATION PORT:</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLOW DIRECTION:</td>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP PROTOCOL:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter flows:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter bytes:</td>
<td>387800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter packets:</td>
<td>700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp first:</td>
<td>17:12:30.712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp last:</td>
<td>17:30:52.936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS SOURCE PORT:</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS DESTINATION PORT:</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOW DIRECTION:</td>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP PROTOCOL:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter flows:</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter bytes:</td>
<td>56000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter packets:</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp first:</td>
<td>17:12:29.532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp last:</td>
<td>17:30:53.148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS SOURCE PORT:</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS DESTINATION PORT:</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOW DIRECTION:</td>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP PROTOCOL:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter flows:</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter bytes:</td>
<td>56000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter packets:</td>
<td>1400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp first:</td>
<td>17:12:29.572</td>
<td></td>
<td></td>
</tr>
<tr>
<td>timestamp last:</td>
<td>17:30:53.196</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS SOURCE PORT:</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRNS DESTINATION PORT:</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOW DIRECTION:</td>
<td>Input</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP PROTOCOL:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter flows:</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter bytes:</td>
<td>28800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter packets:</td>
<td>700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example Filtering Using Multiple Filtering Criteria

The following example filters the cache data on the IPv4 destination address and the destination port:

```
Router# show flow monitor FLOW-MONITOR-1 cache filter ipv4 destination address regexp 172.16.10* transport destination-port 21
```

```
Cache type:                            Normal
Cache size:                              4096
Current entries:                           26
High Watermark:                            26
Flows added:                              241
Flows aged:
  - Active timeout ( 1800 secs)         50
  - Inactive timeout (  15 secs)        165
  - Event aged                           0
  - Watermark aged                       0
  - Emergency aged                       0
IPV4 SOURCE ADDRESS:       10.10.10.2
IPV4 DESTINATION ADDRESS:  172.16.10.2
TRNS SOURCE PORT:          21
TRNS DESTINATION PORT:     21
INTERFACE INPUT:           Et0/0.1
FLOW SAMPLER ID:           0
IP TOS:                    0x00
IP PROTOCOL:               6
ip source as:              0
ip destination as:         0
ipv4 next hop address:     172.16.7.2
ipv4 source mask:          /0
ipv4 destination mask:     /24
tcp flags:                 0x00
interface output:          Et1/0.1
counter bytes:             17200
counter packets:           430
timestamp first:           17:03:58.071
timestamp last:            17:15:14.615
```

```
IPV4 SOURCE ADDRESS:       172.30.231.193
IPV4 DESTINATION ADDRESS:  172.16.10.2
TRNS SOURCE PORT:          21
TRNS DESTINATION PORT:     21
INTERFACE INPUT:           Et0/0.1
FLOW SAMPLER ID:           0
IP TOS:                    0x00
IP PROTOCOL:               6
ip source as:              0
ip destination as:         0
ipv4 next hop address:     172.16.7.2
ipv4 source mask:          /0
ipv4 destination mask:     /24
tcp flags:                 0x00
interface output:          Et1/0.1
counter bytes:             17160
counter packets:           429
timestamp first:           17:03:59.963
timestamp last:            17:15:14.887
Matched 2 flows
```
Example Aggregation Using Multiple Aggregation Criteria

The following example aggregates the flow monitor cache data on the destination and source IPv4 addresses:

Router# show flow monitor FLOW-MONITOR-1 cache aggregate ipv4 destination address ipv4 source address

Processed 26 flows
Aggregated to 17 flows

<table>
<thead>
<tr>
<th>IPV4 SRC ADDR</th>
<th>IPV4 DST ADDR</th>
<th>flows</th>
<th>bytes</th>
<th>pkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.251.10.1</td>
<td>172.16.10.2</td>
<td>2</td>
<td>1400828</td>
<td>1364</td>
</tr>
<tr>
<td>192.168.67.6</td>
<td>172.16.10.200</td>
<td>1</td>
<td>19096</td>
<td>682</td>
</tr>
<tr>
<td>10.234.53.1</td>
<td>172.16.10.2</td>
<td>3</td>
<td>73656</td>
<td>2046</td>
</tr>
<tr>
<td>172.30.231.193</td>
<td>172.16.10.2</td>
<td>3</td>
<td>73616</td>
<td>2045</td>
</tr>
<tr>
<td>10.10.10.10.2</td>
<td>172.16.10.2</td>
<td>2</td>
<td>54560</td>
<td>1364</td>
</tr>
<tr>
<td>192.168.87.200</td>
<td>172.16.10.2</td>
<td>2</td>
<td>54560</td>
<td>1364</td>
</tr>
<tr>
<td>10.10.10.4</td>
<td>172.16.10.4</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.10.11.1</td>
<td>172.16.10.5</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.10.11.2</td>
<td>172.16.10.6</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.10.11.3</td>
<td>172.16.10.7</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.10.11.4</td>
<td>172.16.10.8</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>172.16.10.9</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>172.16.10.10</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>10.1.1.1</td>
<td>172.16.10.11</td>
<td>1</td>
<td>27280</td>
<td>682</td>
</tr>
<tr>
<td>172.16.1.84</td>
<td>172.16.10.19</td>
<td>2</td>
<td>54520</td>
<td>1363</td>
</tr>
<tr>
<td>172.16.1.85</td>
<td>172.16.10.20</td>
<td>2</td>
<td>54520</td>
<td>1363</td>
</tr>
<tr>
<td>172.16.6.1</td>
<td>224.0.0.9</td>
<td>1</td>
<td>52</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of Flexible NetFlow</td>
<td>"Cisco IOS Flexible NetFlow Overview"</td>
</tr>
<tr>
<td>Configuring flow exporters to export Flexible NetFlow data</td>
<td>"Configuring Data Export for Cisco IOS Flexible NetFlow with Flow Exporters"</td>
</tr>
<tr>
<td>Configuring flow sampling to reduce the overhead of monitoring traffic with Flexible NetFlow</td>
<td>"Using Cisco IOS Flexible NetFlow Flow Sampling to Reduce the CPU Overhead of Analyzing Traffic"</td>
</tr>
<tr>
<td>Configuring Flexible NetFlow using predefined records</td>
<td>"Configuring Cisco IOS Flexible NetFlow with Predefined Records"</td>
</tr>
<tr>
<td>Configuration commands for Flexible NetFlow</td>
<td>Cisco IOS Flexible NetFlow Command Reference</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Flexible NetFlow Top N Talkers

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible NetFlow--Top N Talkers</td>
<td>12.2(33)SRE</td>
<td>Helps you analyze the large amount of data Flexible NetFlow captures from the traffic in your network by providing the ability to filter, aggregate, and sort the data in the Flexible NetFlow cache as you display it.</td>
</tr>
<tr>
<td>Support</td>
<td>12.2(50)SY</td>
<td>Support for this feature was added for Cisco 7200 and 7300 Network Processing Engine (NPE) series routers in Cisco IOS Release 12.2(33)SRE.</td>
</tr>
<tr>
<td></td>
<td>12.4(22)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0(1)SY</td>
<td>The following commands were introduced or modified: <code>show flow monitor cache aggregate</code>, <code>show flow monitor cache filter</code>, <code>show flow monitor cache sort</code>.</td>
</tr>
</tbody>
</table>