
Signed Tcl Scripts

The Signed Tcl Scripts feature allows you to create a certificate to generate a digital signature and sign a Tool
Command Language (Tcl) script with that digital signature. This feature also allows you to work with existing
scripts and certificates. The digital signature is verified for authentication and then run with trusted access to
the Tcl interpreter. If the script does not contain the digital signature, the script may run in a limited mode for
untrusted scripts, or may not run at all.

• Finding Feature Information, on page 1
• Prerequisites for Signed Tcl Scripts, on page 1
• Restrictions for Signed Tcl Scripts, on page 2
• Information About Signed Tcl Scripts, on page 2
• How to Configure Signed Tcl Scripts, on page 3
• Configuration Examples for Signed Tcl Script, on page 16
• Additional References, on page 20
• Feature Information for Signed Tcl Scripts, on page 21
• Glossary, on page 21
• Notices, on page 22

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and
feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each
feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Signed Tcl Scripts
For this feature to work, the Cisco public key infrastructure (PKI) configuration trustpoint commands must
be enabled.

Signed Tcl Scripts
1

https://tools.cisco.com/bugsearch/search
http://www.cisco.com/go/cfn

Restrictions for Signed Tcl Scripts
For this feature to work, you must be running the following:

• Cisco IOS Crypto image

• OpenSSL Version 0.9.7a or above

• Expect

Information About Signed Tcl Scripts
The Signed Tcl Scripts feature introduces security for the Tcl scripts. This feature allows you to create a
certificate to generate a digital signature and sign a Tcl script with that digital signature. This certificate
examines the Tcl scripts prior to running them. The script is checked for a digital signature from Cisco. In
addition, third parties may also sign a script with a digital signature. You may wish to sign your own internally
developed Tcl scripts or you could use a script developed by a third party. If the script contains the correct
digital signature, it is believed to be authentic and runs with full access to the Tcl interpreter. If the script does
not contain the digital signature, the script may be run in a limited mode, known as Safe Tcl mode, or may
not run at all.

To create and use signed Tcl scripts, you should understand the following concepts:

Cisco PKI
Cisco PKI provides certificate management to support security protocols such as IP security (IPsec), secure
shell (SSH), and secure socket layer (SSL). A PKI is composed of the following entities:

• Peers communicating on a secure network

• At least one certification authority (CA) that grants and maintains certificates

• Digital certificates, which contain information such as the certificate validity period, peer identity
information, encryption keys that are used for secure communication, and the signature of the issuing
CA

• An optional registration authority (RA) to offload the CA by processing enrollment requests

• A distributionmechanism (such as Lightweight DirectoryAccess Protocol [LDAP] or HTTP) for certificate
revocation lists (CRLs)

PKI provides you with a scalable, secure mechanism for distributing, managing, and revoking encryption and
identity information in a secured data network. Every routing device participating in the secured communication
is enrolled in the PKI in a process where the routing device generates a Rivest, Shamir, and Adelman (RSA)
key pair (one private key and one public key) and has its identity validated by a trusted routing device (also
known as a CA or trustpoint).

After each routing device enrolls in a PKI, every peer (also known as an end host) in a PKI is granted a digital
certificate that has been issued by a CA. When peers must negotiate a secured communication session, they
exchange digital certificates. Based on the information in the certificate, a peer can validate the identity of
another peer and establish an encrypted session with the public keys contained in the certificate.

Signed Tcl Scripts
2

Signed Tcl Scripts
Restrictions for Signed Tcl Scripts

RSA Key Pair
An RSA key pair consists of a public key and a private key. When setting up your PKI, you must include the
public key in the certificate enrollment request. After the certificate has been granted, the public key is included
in the certificate so that peers can use it to encrypt data that is sent to the device. The private key is kept on
the device and used both to decrypt the data sent by peers and to digitally sign transactions when negotiating
with peers.

RSA key pairs contain a key modulus value. The modulus determines the size of the RSA key. The larger the
modulus, the more secure the RSA key. However, keys with large modulus values take longer to generate,
and encryption and decryption operations take longer with larger keys.

Certificate and Trustpoint
A certification authority (CA), also known as a trustpoint, manages certificate requests and issues certificates
to participating network devices. These services (managing certificate requests and issuing certificates) provide
centralized key management for the participating devices and are explicitly trusted by the receiver to validate
identities and to create digital certificates. Before any PKI operations can begin, the CA generates its own
public key pair and creates a self-signed CA certificate; thereafter, the CA can sign certificate requests and
begin peer enrollment for the PKI.

You can use a CA provided by a third-party CA vendor, or you can use an internal CA, which is the Cisco
Certificate Server.

How to Configure Signed Tcl Scripts

Generating a Key Pair
The key pair consists of a private key and a public key. The private key is intended to be kept private, accessible
only to the creator. The public key is generated from the private key and is intended to be known to the public.

To generate a key pair, use the openssl genrsa command and then the openssl rsa command.

SUMMARY STEPS

1. openssl genrsa -out private-key-file bit-length
2. ls -l
3. openssl rsa -in private-key-file -pubout -out public-key-file
4. ls -l

DETAILED STEPS

Step 1 openssl genrsa -out private-key-file bit-length

This command generates a private key that is bit-length bits long and writes the key to the private-key-filefile.

Host% openssl genrsa -out privkey.pem 2048

Signed Tcl Scripts
3

Signed Tcl Scripts
RSA Key Pair

Example:

Generating RSA private key, 2048 bit long modulus
.........+++
...+++
e is 65537 (0x10001)

Step 2 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

total 8
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem

The privkey.pem file contains the private key generated using the openssl genrsa command.

Step 3 openssl rsa -in private-key-file -pubout -out public-key-file

This command generates a public key based on the specified private key in the private-key-file file and writes the public
key to the public-key-filefile.

Example:

Host% openssl rsa -in privkey.pem -pubout -out pubkey.pem

writing RSA key

Step 4 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

total 16
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

The pubkey.pem file contains the public key generated from the private key using the openssl rsa command.

Generating a Certificate
Perform this task to generate a certificate. To generate an X.509 certificate, use the openssl req command.

SUMMARY STEPS

1. openssl req -new -x509 -key private-key-file -out certificate-file -days expiration-days
2. ls -l

Signed Tcl Scripts
4

Signed Tcl Scripts
Generating a Certificate

DETAILED STEPS

Step 1 openssl req -new -x509 -key private-key-file -out certificate-file -days expiration-days

This command creates an X.509 certificate, with full access to a private key that is stored in the private-key-file file, and
stores the certificate in the certificate-filefile. The certificate is configured to expire in expiration-days days.

To complete the command, enter the following Distinguished Name (DN) information when prompted:

• Country name

• State or province name

• Organization name

• Organizational unit name

• Common name

• Email address

At each prompt, text enclosed in square brackets indicates the default value that will be used if you do not enter a value
before you press Enter.

This example shows how to create an X.509 certificate that has full access to the private key in the privkey.pem file. The
certificate is written to the cert.pem file and will expire 1095 days after the creation date.

Example:

Host% openssl req -new -x509 -key privkey.pem -out cert.pem -days 1095

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value, If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:California

Locality Name (eg, city) [Newbury]:San Jose

Organization Name (eg, company) [My Company Ltd]:Cisco Systems, Inc.

Organizational Unit Name (eg, section) []:DEPT_ACCT

Common Name (eg, your name or your server's hostname) []:Jane

Email Address []:janedoe@company.com

Step 2 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

Signed Tcl Scripts
5

Signed Tcl Scripts
Generating a Certificate

total 24
-rw-r--r-- 1 janedoe eng12 1659 Jun 12 15:01 cert.pem
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

The cert.pem file contains the X.509 certificate created using the openssl req command.

Signing the Tcl Scripts
Perform this task to sign the Tcl scripts. You will need to sign the Tcl file and output in OpenSSL document
in pkcs7 (PKCS#7) format.

To sign the Tcl file, use the openssl smime command with the -sign keyword.

SUMMARY STEPS

1. openssl smime -sign -in tcl-file -out signed-tcl-file -signer certificate-file -inkey private-key-file
-outform DER -binary

2. ls -l

DETAILED STEPS

Step 1 openssl smime -sign -in tcl-file -out signed-tcl-file -signer certificate-file -inkey private-key-file -outform DER
-binary

This command signs the Tcl filename tcl-file using the certificate stored in certificate-file and the private key stored in
private-key-file file and then writes the signed Tcl file in DER PKCS#7 format to the signed-tcl-filefile.

Example:

Host% openssl smime -sign -in hello -out hello.pk7 -signer cert.pem -inkey privkey.pem -outform DER
-binary

Step 2 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

total 40
-rw-r--r-- 1 janedoe eng12 1659 Jun 12 15:01 cert.pem
-rw-r--r-- 1 janedoe eng12 115 Jun 13 10:16 hello
-rw-r--r-- 1 janedoe eng12 1876 Jun 13 10:16 hello.pk7
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

The hello.pk7 file contains the signed Tcl file created by the openssl smime command from the unsigned Tcl file named
hello and using the X.509 certificate in the cert.pem file.

Signed Tcl Scripts
6

Signed Tcl Scripts
Signing the Tcl Scripts

Verifying the Signature
Perform this task to verify that the signature matches the data, use the openssl smime command with the
-verify keyword. The original Tcl content must be provided in the input file, because the file does not have
the original content.

SUMMARY STEPS

1. openssl smime -verify -in signed-tcl-file -CAfile certificate-file -inform DER -content tcl-file
2. ls -l

DETAILED STEPS

Step 1 openssl smime -verify -in signed-tcl-file -CAfile certificate-file -inform DER -content tcl-file

This command verifies the signed Tcl file stored in DER PKCS#7 format in signed-tcl-file using the trusted Certificate
Authority (CA) certificates in certificate-file and then writes the detached content to the file tcl-file.

The following example shows how to verify the signature with the input file hello.pk7:

Example:

Host% openssl smime -verify -in hello.pk7 -CAfile cert.pem -inform DER -content hello

puts hello
puts "argc = $argc"
puts "argv = $argv"
puts "argv0 = $argv0"
puts "tcl_interactive = $tcl_interactive"
Verification successful

The SSL command page describes -in filename as the input message to be encrypted or signed or the MIME
message to be decrypted or verified. For more information, go to http://www.openssl.org/ .

Note

Step 2 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

total 40
-rw-r--r-- 1 janedoe eng12 1659 Jun 13 10:18 cert.pem
-rw-r--r-- 1 janedoe eng12 115 Jun 13 10:17 hello
-rw-r--r-- 1 janedoe eng12 1876 Jun 13 10:16 hello.pk7
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

The hello file contains the content detached from the signed Tcl file hello.pk7 by running the openssl smime command
with the -verify keyword. If the verification was successful, the signer’s certificates are written to the X.509 certificate
in the cert.pem file.

Signed Tcl Scripts
7

Signed Tcl Scripts
Verifying the Signature

http://www.openssl.org/

Converting the Signature into Nonbinary Data
Perform this task to convert the signature from binary to nonbinary data.

SUMMARY STEPS

1. xxd -ps signed-tcl-file > nonbinary-signature-file
2. Create a script that displays #Cisco Tcl Signature V1.0 in the first line andinserts a comment character

(#) at the beginning of each line of the input file and writes each line to a file whose name is formed by
appending the text string “_sig” to the name of the input file.

3. Run the script, supplying the name of the file containing the nonbinary signature file
(nonbinary-signature-file) as the input argument.

4. ls -l
5. cat signed-tcl-file commented-nonbinary-signature-file > signed-tcl-script
6. cat signed-tcl-script

DETAILED STEPS

Step 1 xxd -ps signed-tcl-file > nonbinary-signature-file

This command converts the signature in signed-tcl-file from binary to nonbinary data and stores it as a hexadecimal dump
in the file nonbinary-signature-file.

Example:

Host% xxd -ps hello.pk7 > hello.hex

Step 2 Create a script that displays #Cisco Tcl Signature V1.0 in the first line andinserts a comment character (#) at the beginning
of each line of the input file and writes each line to a file whose name is formed by appending the text string “_sig” to
the name of the input file.

In this example the cat command is used to display the contents of the script file named my_append.

Example:

Host% cat my_append

#!/usr/bin/env expect
set my_first {#Cisco Tcl Signature V1.0}
set newline {}
set my_file [lindex $argv 0]
set my_new_file ${my_file}_sig
set my_new_handle [open $my_new_file w]
set my_handle [open $my_file r]
puts $my_new_handle $newline
puts $my_new_handle $my_first
foreach line [split [read $my_handle] "\n"] {

set new_line {#}
append new_line $line
puts $my_new_handle $new_line

}

close $my_new_handle
close $my_handle

Signed Tcl Scripts
8

Signed Tcl Scripts
Converting the Signature into Nonbinary Data

Step 3 Run the script, supplying the name of the file containing the nonbinary signature file (nonbinary-signature-file) as the
input argument.

In this example, the my_append script is run with the nonbinary signature file hello.hex specified as input. The output
file will be named hello.hex_sig.

Example:

Host% my_append hello.hex

Step 4 ls -l

This command displays detailed information about each file in the current directory, including the permissions, owners,
size, and when last modified.

Example:

Host% ls -l

total 80
-rw-r--r-- 1 janedoe eng12 1659 Jun 13 10:18 cert.pem
-rw-r--r-- 1 janedoe eng12 115 Jun 13 10:17 hello
-rw-r--r-- 1 janedoe eng12 3815 Jun 13 10:20 hello.hex
-rw-r--r-- 1 janedoe eng12 3907 Jun 13 10:22 hello.hex_sig
-rw-r--r-- 1 janedoe eng12 1876 Jun 13 10:16 hello.pk7
-rwxr--r-- 1 janedoe eng12 444 Jun 13 10:22 my_append
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

The hello.hex file contains nonbinary data (stored as a hexadecimal dump) converted from the binary signature in the
signed Tcl file hello.pk7. The my_append file contains the script that inserts a comment character at the beginning of
each line of the input file. The hello.hex_sig file is the file created by running the my_append script on the nonbinary
signature file.

Step 5 cat signed-tcl-file commented-nonbinary-signature-file > signed-tcl-script

This command appends the contents of the nonbinary signature file (commented-nonbinary-signature-file) to the signed
Tcl file stored in DER PKCS#7 format (in the signed-tcl-file file). The concatenated output is written to the file
signed-tcl-script.

Example:

Host% cat hello hello.hex_sig > hello.tcl

Step 6 cat signed-tcl-script

This command displays the contents of the file signed-tcl-script, which is the concatenation of content detached from the
signed Tcl file and the nonbinary signature file.

Example:

Host% cat hello.tcl

puts hello
puts "argc = $argc"
puts "argv = $argv"
puts "argv0 = $argv0"
puts "tcl_interactive = $tcl_interactive"
#Cisco Tcl Signature V1.0
#3082075006092a864886f70d010702a08207413082073d020101310b3009

Signed Tcl Scripts
9

Signed Tcl Scripts
Converting the Signature into Nonbinary Data

#06052b0e03021a0500300b06092a864886f70d010701a08204a13082049d
#30820385a003020102020100300d06092a864886f70d0101040500308195
#310b3009060355040613025553311330110603550408130a43616c69666f
#726e69613111300f0603550407130853616e204a6f7365311c301a060355
#040a1313436973636f2053797374656d732c20496e632e310e300c060355
#040b13054e53535447310d300b060355040313044a6f686e3121301f0609
#2a864886f70d01090116126a6c6175746d616e40636973636f2e636f6d30
#1e170d3037303631323232303134335a170d313030363131323230313433
#5a308195310b3009060355040613025553311330110603550408130a4361
#6c69666f726e69613111300f0603550407130853616e204a6f7365311c30
#1a060355040a1313436973636f2053797374656d732c20496e632e310e30
#0c060355040b13054e53535447310d300b060355040313044a6f686e3121
#301f06092a864886f70d01090116126a6c6175746d616e40636973636f2e
#636f6d30820122300d06092a864886f70d01010105000382010f00308201
#0a0282010100a751eb5ec1f3009738c88a55987c07b759c36f3386342283
#67ea20a89d9483ae85e0c63eeded8ab3eb7a08006689f09136f172183665
#c971099ba54e77ab47706069bbefaaab8c50184396350e4cc870c4c3f477
#88c55c52e2cf411f05b59f0eaec0678ff5cc238fdce2263a9fc6b6c244b8
#ffaead865c19c3d3172674a13b24c8f2c01dd8b1bd491c13e84e29171b85
#f28155d81ac8c69bb25ca23c2921d85fbf745c106e7aff93c72316cbc654
#4a34ea88174a8ba7777fa60662974e1fbac85a0f0aeac925dba6e5e850b8
#7caffce2fe8bb04b61b62f532b5893c081522d538005df81670b931b0ad0
#e1e76ae648f598a9442d5d0976e67c8d55889299147d0203010001a381f5
#3081f2301d0603551d0e04160414bc34132be952ff8b9e1af3b93140a255
#e54a667c3081c20603551d230481ba3081b78014bc34132be952ff8b9e1a
#f3b93140a255e54a667ca1819ba48198308195310b300906035504061302
#5553311330110603550408130a43616c69666f726e69613111300f060355
#0407130853616e204a6f7365311c301a060355040a1313436973636f2053
#797374656d732c20496e632e310e300c060355040b13054e53535447310d
#300b060355040313044a6f686e3121301f06092a864886f70d0109011612
#6a6c6175746d616e40636973636f2e636f6d820100300c0603551d130405
#30030101ff300d06092a864886f70d010104050003820101000c83c1b074
#6720929c9514af6d5df96f0a95639f047c40a607c83d8362507c58fa7f84
#aa699ec5e5bef61b2308297a0662c653ff446acfbb6f5cb2dd162d939338
#a5e4d78a5c45021e5d4dbabb8784efbf50cab0f5125d164487b31f5cf933
#a9f68f82cd111cbab1739d7f372ec460a7946882874b0a0f22dd53acbd62
#a944a15e52e54a24341b3b8a820f23a5bc7ea7b2278bb56838b8a4051926
#af9c167274ff8449003a4e012bcf4f4b3e280f85209249a390d14df47435
#35efabce720ea3d56803a84a2163db4478ae19d7d987ef6971c8312e280a
#aac0217d4fe620c6582a48faa8ea5e3726a99012e1d55f8d61b066381f77
#4158d144a43fb536c77d6a318202773082027302010130819b308195310b
#3009060355040613025553311330110603550408130a43616c69666f726e
#69613111300f0603550407130853616e204a6f7365311c301a060355040a
#1313436973636f2053797374656d732c20496e632e310e300c060355040b
#13054e53535447310d300b060355040313044a6f686e3121301f06092a86
#4886f70d01090116126a6c6175746d616e40636973636f2e636f6d020100
#300906052b0e03021a0500a081b1301806092a864886f70d010903310b06
#092a864886f70d010701301c06092a864886f70d010905310f170d303730
#3631333137313634385a302306092a864886f70d01090431160414372cb3
#72dc607990577fd0426104a42ee4158d2b305206092a864886f70d01090f
#31453043300a06082a864886f70d0307300e06082a864886f70d03020202
#0080300d06082a864886f70d0302020140300706052b0e030207300d0608
#2a864886f70d0302020128300d06092a864886f70d010101050004820100
#72db6898742f449b26d3ac18f43a1e7178834fb05ad13951bf042e127eea
#944b72b96f3b8ecf7eb52f3d0e383bf63651750223efe69eae04287c9dae
#b1f31209444108b31d34e46654c6c3cc10b5baba887825c224ec6f376d49
#00ff7ab2d9f88402dab9a2c2ab6aa3ecceeaf5a594bdc7d3a822c55e7daa
#aa0c2b067e06967f22a20e406fe21d9013ecc6bd9cd6d402c2749f8bea61
#9f8f87acfbc9e10d6ce91502e34629adca6ee855419afafe6a8233333e14
#ad4c107901d1f2bca4d7ffaadddbc54192a25da662f8b8509782c76977b8
#94879453fbb00486ccc55f88db50fcc149bae066916b350089cde51a6483
#2ec14019611720fc5bbe2400f24225fc

Signed Tcl Scripts
10

Signed Tcl Scripts
Converting the Signature into Nonbinary Data

Configuring the Device with a Certificate
Perform this task to configure the device with a certificate.

Before you begin

You must already have a Cisco IOS Crypto image; otherwise you cannot configure a certificate.

SUMMARY STEPS

1. enable
2. configure terminal
3. crypto pki trustpoint name
4. enrollment terminal
5. exit
6. crypto pki authenticate name
7. At the prompt, enter the base-encoded CA certificate.
8. scripting tcl secure-mode
9. scripting tcl trustpoint name name
10. scripting tcl trustpoint untrusted {execute | safe-execute | terminate}
11. exit
12. tclsafe

DETAILED STEPS

Step 1 enable

Enables privileged EXEC mode. Enter your password if prompted.

Example:

Device> enable

Step 2 configure terminal

Enters global configuration mode.

Example:

Device# configure terminal

Step 3 crypto pki trustpoint name

Declares the device is to use the Certificate Authority (CA) mytrust and enters ca-trustpoint configuration mode.

Example:

Device(config)# crypto pki trustpoint mytrust

Step 4 enrollment terminal

Specifies manual cut-and-paste certificate enrollment.When this command is enabled, the device displays the certificate
request on the console terminal, allowing you to enter the issued certificate on the terminal.

Signed Tcl Scripts
11

Signed Tcl Scripts
Configuring the Device with a Certificate

Example:

Device(ca-trustpoint)# enrollment terminal

Step 5 exit

Exits ca-trustpoint configuration mode and returns to global configuration mode.

Example:

Device(ca-trustpoint)# exit

Step 6 crypto pki authenticate name

Retrieves the CA certificate and authenticates it. Check the certificate fingerprint if prompted.

Because the CA signs its own certificate, you should manually authenticate the public key of the CA by
contacting the CA administrator when you perform this command.

Note

Example:

Device(config)# crypto pki authenticate mytrust

Step 7 At the prompt, enter the base-encoded CA certificate.

Example:

Enter the base 64 encoded CA certificate.
End with a blank line or the word "quit" on a line by itself
MIIEuDCCA6CgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBnjELMAkGA1UEBhMCVVMx
EzARBgNVBAgTCkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMRwwGgYDVQQK
ExNDaXNjbyBTeXN0ZW1zLCBJbmMuMQ4wDAYDVQQLEwVOU1NURzEWMBQGA1UEAxMN
Sm9obiBMYXV0bWFubjEhMB8GCSqGSIb3DQEJARYSamxhdXRtYW5AY2lzY28uY29t
MB4XDTA2MTExNzE3NTgwMVoXDTA5MTExNjE3NTgwMVowgZ4xCzAJBgNVBAYTAlVT
MRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEcMBoGA1UE
ChMTQ2lzY28gU3lzdGVtcywgSW5jLjEOMAwGA1UECxMFTlNTVEcxFjAUBgNVBAMT
DUpvaG4gTGF1dG1hbm4xITAfBgkqhkiG9w0BCQEWEmpsYXV0bWFuQGNpc2NvLmNv
bTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALxtqTMCirMb+CdyWLuH
oWAM8CEJDwQggL7MWBhoi3TSMd/ww2XBB9biBtdlH6jHsjCiOwAR5OorakwfPyf7
mvRJ2PqJALs+Vn93VBKIG6rZUl4+wdOx686BVddIZvEJQPbROiYTzfazWV70aLMV
bd7/B7vF1SG1YK9y1tX9p9nZyZ0x47OAXetwOaGinvlG7VNuTXaASBLUjCRZsIlz
SBrXXedBzZ6+BuoWm1FK45EYSlag5Rt9RGXXMBqzx91iyhrJ3zDDmkExa45yKJET
mAgDVMcpeteJtif47UDZJK30g4MbMyx/c8WGhmJ54qRL9BZEPmDxMQkNP10l8MAl
Q8sCAwEAAaOB/jCB+zAdBgNVHQ4EFgQU9/ToDvbMR3JfJ4xEa4X47oNFq5kwgcsG
A1UdIwSBwzCBwIAU9/ToDvbMR3JfJ4xEa4X47oNFq5mhgaSkgaEwgZ4xCzAJBgNV
BAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEc
MBoGA1UEChMTQ2lzY28gU3lzdGVtcywgSW5jLjEOMAwGA1UECxMFTlNTVEcxFjAU
BgNVBAMTDUpvaG4gTGF1dG1hbm4xITAfBgkqhkiG9w0BCQEWEmpsYXV0bWFuQGNp
c2NvLmNvbYIBADAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBAUAA4IBAQBtEs/4
MQeN9pT+XPCPg2ObQU8y2AadI+I34YK+fDHsFOh68hZhpszTN2VpNEvkFXpADhgr
7DkNGtwTCla481v70iNFViQVL+inNrZwWMxoTnUNCK7Hc5kHkXt6cj0mvsefVUzx
Xl70mauhESRVlmYWrJxSsrEILerZYsuv5HbFdand+/rErmP2HVyfdntLnKdSzmXJ
5lwE/Et2QtYNGor0OBlLesowfslR3LhHi4wn+5is7mALgNw/NuTiUr1zH18OeB4m
wcpBIJsLaJu6ZUJQl7IqdswSa3fHd5qq0/k8P9z0YAYrf3+MFQr4ibvsYvHlO087
o2Js1gW4qz34pqNh
Certificate has the following attributes:

Fingerprint MD5: 1E327DBB 330936EB 2FB8EACB 4FD1133E
Fingerprint SHA1: EE7FF9F4 05148842 B9D50FAC D76FDC9C E0703246

% Do you accept this certificate? [yes/no]: yes
Trustpoint CA certificate accepted.
% Certificate successfully imported

Signed Tcl Scripts
12

Signed Tcl Scripts
Configuring the Device with a Certificate

Step 8 scripting tcl secure-mode

Enables signature verification of the interactive Tcl scripts.

Device(config)# scripting tcl secure-mode

Step 9 scripting tcl trustpoint name name

Associates an existing configured trustpoint name with a certificate to verify Tcl scripts.

Device(config)# scripting tcl trustpoint name mytrust

Step 10 scripting tcl trustpoint untrusted {execute | safe-execute | terminate}

(Optional) Allows the interactive Tcl scripts to run regardless of the scripts failing in the signature check or in untrusted
mode using one of the three keywords: execute, safe-execute, or terminate.

• execute --Executes Tcl scripts even if the signature verification fails. If the execute keyword is configured, signature
verification is not at all performed.

Use of this keyword is usually not recommended because the signature verification is not at all performed.Note

The execute keyword is provided for internal testing purposes and to provide flexibility. For example, in a situation
where a certificate has expired but the other configurations are valid and you want to work with the existing configuration,
then you can use the execute keyword to work around the expired certificate.

• safe-execute --Allows the script to run in safe mode. You can use the tclsafe command and also enter the interactive
Tcl shell safe mode to explore the safe mode Tcl commands that are available. In order to get a better understanding
of what is available in this limited safe mode, use the tclsafe Exec command to explore the options.

• terminate --Stops any script from running and reverts to default behavior. The default policy is to terminate.When
the last trustpoint name is removed, the untrusted action is also removed. The untrusted action cannot be entered
until at least one trustpoint name is configured for Tcl.

The following example shows how to execute the Tcl script in safe mode using the safe-execute keyword when the
signature verification fails.

Device(config)# scripting tcl trustpoint untrusted safe-execute

Step 11 exit

Exits global configuration mode and returns to privileged EXEC mode.

Device(config)# exit

Step 12 tclsafe

(Optional) Enables the interactive Tcl shell untrusted safe mode. This allows you to manually run Tcl commands from
the Cisco command line interface in untrusted safe mode.

Signed Tcl Scripts
13

Signed Tcl Scripts
Configuring the Device with a Certificate

Device# tclsafe

Example:

Verifying the Trustpoint
To display the trustpoints that are configured in the device, use the show crypto pki trustpoints command.

SUMMARY STEPS

1. enable
2. show crypto pki trustpoints

DETAILED STEPS

Step 1 enable

This command enables privileged EXEC mode.

Example:

Device> enable

Step 2 show crypto pki trustpoints

This command displays the trustpoints that are configured in the device.

Example:

Device# show
crypto pki trustpoints

Trustpoint mytrust:
Subject Name:
ea=janedoe@cisco.com
cn=Jane
ou=DEPT_ACCT
o=Cisco
l=San Jose
st=California
c=US

Serial Number: 00
Certificate configured.

Verifying the Signed Tcl Script
To verify that the Signed Tcl Script is properly running, use the debug crypto pki transactions command
and the tclshcommand.

Signed Tcl Scripts
14

Signed Tcl Scripts
Verifying the Trustpoint

SUMMARY STEPS

1. enable
2. debug crypto pki transactions
3. tclsh flash:signed-tcl-file

DETAILED STEPS

Step 1 enable

This command enables privileged EXEC mode.

Example:

Device> enable

Step 2 debug crypto pki transactions

This command display debugging messages for the trace of interaction (message type) between the CA and the device.

Example:

Device# debug crypto pki transactions

Crypto PKI Trans debugging is on

Step 3 tclsh flash:signed-tcl-file

This command executes the Tcl script in Tcl shell.

The file should be a signed Tcl file.Note

Example:

Device# tclsh flash:hello.tcl

hello
argc = 0
argv =
argv0 = flash:hello.tcl
tcl_interactive = 0
device#
*Apr 21 04:46:18.563: CRYPTO_PKI: locked trustpoint mytrust, refcount is 1
*Apr 21 04:46:18.563: The PKCS #7 message has 0 verified signers.
*Apr 21 04:46:18.563: CRYPTO_PKI: Success on PKCS7 verify!
*Apr 21 04:46:18.563: CRYPTO_PKI: unlocked trustpoint mytrust, refcount is 0

What to Do Next
• To get an overview of Crypto, refer to the “Part 5: Implementing and Managing a PKI” section of the
Security Configuration Guide.

Signed Tcl Scripts
15

Signed Tcl Scripts
What to Do Next

Configuration Examples for Signed Tcl Script

Generating a Key Pair Example
The following example shows how to generate the key pair--a private key and a public key:

Generate a Private Key: Example

Host% openssl genrsa -out privkey.pem 2048
Generating RSA private key, 2048 bit long modulus
.........+++
...+++
e is 65537 (0x10001)
Host% ls -l
total 8
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
Host%

Generate a Public Key from the Private Key

Host% openssl rsa -in privkey.pem -pubout -out pubkey.pem
writing RSA key
Host% ls -l
total 16
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

Generating a Certificate Example
The following example shows how to generate a certificate:

Host% openssl req -new -x509 -key privkey.pem -out cert.pem -days 1095
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value, If you enter '.', the field will be left
blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:California
Locality Name (eg, city) [Newbury]:San Jose
Organization Name (eg, company) [My Company Ltd]:Cisco Systems, Inc.
Organizational Unit Name (eg, section) []:DEPT_ACCT
Common Name (eg, your name or your server's hostname) []:Jane
Email Address []:janedoe@company.com
Host% ls -l
total 24
-rw-r--r-- 1 janedoe eng12 1659 Jun 12 15:01 cert.pem
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

Signed Tcl Scripts
16

Signed Tcl Scripts
Configuration Examples for Signed Tcl Script

Signing the Tcl Scripts Example
The following example shows how to sign the Tcl scripts:

Host% openssl smime -sign -in hello -out hello.pk7 -signer cert.pem -inkey privkey.pem
-outform DER -binary
Host% ls -l
total 40
-rw-r--r-- 1 janedoe eng12 1659 Jun 12 15:01 cert.pem
-rw-r--r-- 1 janedoe eng12 115 Jun 13 10:16 hello
-rw-r--r-- 1 janedoe eng12 1876 Jun 13 10:16 hello.pk7
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem

Verifying the Signature Example
The following example shows how to verify the signature:

Host% openssl smime -verify -in hello.pk7 -CAfile cert.pem -inform DER -content hello
puts hello
puts "argc = $argc"
puts "argv = $argv"
puts "argv0 = $argv0"
puts "tcl_interactive = $tcl_interactive"
Verification successful

Converting the Signature with Nonbinary Data Example
The following example shows how to convert the Tcl signature with nonbinary data:

#Cisco Tcl Signature V1.0
Then append the signature file to the end of the file.
Host% xxd -ps hello.pk7 > hello.hex
Host% cat my_append
#!/usr/bin/env expect
set my_first {#Cisco Tcl Signature V1.0}
set newline {}
set my_file [lindex $argv 0]
set my_new_file ${my_file}_sig
set my_new_handle [open $my_new_file w]
set my_handle [open $my_file r]

puts $my_new_handle $newline
puts $my_new_handle $my_first
foreach line [split [read $my_handle] "\n"] {

set new_line {#}
append new_line $line
puts $my_new_handle $new_line

}

close $my_new_handle
close $my_handle
Host% my_append hello.hex
Host% ls -l
total 80
-rw-r--r-- 1 janedoe eng12 1659 Jun 12 15:01 cert.pem
-rw-r--r-- 1 janedoe eng12 115 Jun 13 10:16 hello
-rw-r--r-- 1 janedoe eng12 3815 Jun 13 10:20 hello.hex

Signed Tcl Scripts
17

Signed Tcl Scripts
Signing the Tcl Scripts Example

-rw-r--r-- 1 janedoe eng12 3907 Jun 13 10:22 hello.hex_sig
-rw-r--r-- 1 janedoe eng12 1876 Jun 13 10:16 hello.pk7
-rwxr--r-- 1 janedoe eng12 444 Jun 13 10:22 my_append
-rw-r--r-- 1 janedoe eng12 1679 Jun 12 14:55 privkey.pem
-rw-r--r-- 1 janedoe eng12 451 Jun 12 14:57 pubkey.pem
Host% cat hello hello.hex_sig > hello.tcl
Host% cat hello.tcl
puts hello
puts "argc = $argc"
puts "argv = $argv"
puts "argv0 = $argv0"
puts "tcl_interactive = $tcl_interactive"
#Cisco Tcl Signature V1.0
#3082075006092a864886f70d010702a08207413082073d020101310b3009
#06052b0e03021a0500300b06092a864886f70d010701a08204a13082049d
#30820385a003020102020100300d06092a864886f70d0101040500308195
#310b3009060355040613025553311330110603550408130a43616c69666f
#726e69613111300f0603550407130853616e204a6f7365311c301a060355
#040a1313436973636f2053797374656d732c20496e632e310e300c060355
#040b13054e53535447310d300b060355040313044a6f686e3121301f0609
#2a864886f70d01090116126a6c6175746d616e40636973636f2e636f6d30
#1e170d3037303631323232303134335a170d313030363131323230313433
#5a308195310b3009060355040613025553311330110603550408130a4361
#6c69666f726e69613111300f0603550407130853616e204a6f7365311c30
#1a060355040a1313436973636f2053797374656d732c20496e632e310e30
#0c060355040b13054e53535447310d300b060355040313044a6f686e3121
#301f06092a864886f70d01090116126a6c6175746d616e40636973636f2e
#636f6d30820122300d06092a864886f70d01010105000382010f00308201
#0a0282010100a751eb5ec1f3009738c88a55987c07b759c36f3386342283
#67ea20a89d9483ae85e0c63eeded8ab3eb7a08006689f09136f172183665
#c971099ba54e77ab47706069bbefaaab8c50184396350e4cc870c4c3f477
#88c55c52e2cf411f05b59f0eaec0678ff5cc238fdce2263a9fc6b6c244b8
#ffaead865c19c3d3172674a13b24c8f2c01dd8b1bd491c13e84e29171b85
#f28155d81ac8c69bb25ca23c2921d85fbf745c106e7aff93c72316cbc654
#4a34ea88174a8ba7777fa60662974e1fbac85a0f0aeac925dba6e5e850b8
#7caffce2fe8bb04b61b62f532b5893c081522d538005df81670b931b0ad0
#e1e76ae648f598a9442d5d0976e67c8d55889299147d0203010001a381f5
#3081f2301d0603551d0e04160414bc34132be952ff8b9e1af3b93140a255
#e54a667c3081c20603551d230481ba3081b78014bc34132be952ff8b9e1a
#f3b93140a255e54a667ca1819ba48198308195310b300906035504061302
#5553311330110603550408130a43616c69666f726e69613111300f060355
#0407130853616e204a6f7365311c301a060355040a1313436973636f2053
#797374656d732c20496e632e310e300c060355040b13054e53535447310d
#300b060355040313044a6f686e3121301f06092a864886f70d0109011612
#6a6c6175746d616e40636973636f2e636f6d820100300c0603551d130405
#30030101ff300d06092a864886f70d010104050003820101000c83c1b074
#6720929c9514af6d5df96f0a95639f047c40a607c83d8362507c58fa7f84
#aa699ec5e5bef61b2308297a0662c653ff446acfbb6f5cb2dd162d939338
#a5e4d78a5c45021e5d4dbabb8784efbf50cab0f5125d164487b31f5cf933
#a9f68f82cd111cbab1739d7f372ec460a7946882874b0a0f22dd53acbd62
#a944a15e52e54a24341b3b8a820f23a5bc7ea7b2278bb56838b8a4051926
#af9c167274ff8449003a4e012bcf4f4b3e280f85209249a390d14df47435
#35efabce720ea3d56803a84a2163db4478ae19d7d987ef6971c8312e280a
#aac0217d4fe620c6582a48faa8ea5e3726a99012e1d55f8d61b066381f77
#4158d144a43fb536c77d6a318202773082027302010130819b308195310b
#3009060355040613025553311330110603550408130a43616c69666f726e
#69613111300f0603550407130853616e204a6f7365311c301a060355040a
#1313436973636f2053797374656d732c20496e632e310e300c060355040b
#13054e53535447310d300b060355040313044a6f686e3121301f06092a86
#4886f70d01090116126a6c6175746d616e40636973636f2e636f6d020100
#300906052b0e03021a0500a081b1301806092a864886f70d010903310b06
#092a864886f70d010701301c06092a864886f70d010905310f170d303730
#3631333137313634385a302306092a864886f70d01090431160414372cb3
#72dc607990577fd0426104a42ee4158d2b305206092a864886f70d01090f

Signed Tcl Scripts
18

Signed Tcl Scripts
Converting the Signature with Nonbinary Data Example

#31453043300a06082a864886f70d0307300e06082a864886f70d03020202
#0080300d06082a864886f70d0302020140300706052b0e030207300d0608
#2a864886f70d0302020128300d06092a864886f70d010101050004820100
#72db6898742f449b26d3ac18f43a1e7178834fb05ad13951bf042e127eea
#944b72b96f3b8ecf7eb52f3d0e383bf63651750223efe69eae04287c9dae
#b1f31209444108b31d34e46654c6c3cc10b5baba887825c224ec6f376d49
#00ff7ab2d9f88402dab9a2c2ab6aa3ecceeaf5a594bdc7d3a822c55e7daa
#aa0c2b067e06967f22a20e406fe21d9013ecc6bd9cd6d402c2749f8bea61
#9f8f87acfbc9e10d6ce91502e34629adca6ee855419afafe6a8233333e14
#ad4c107901d1f2bca4d7ffaadddbc54192a25da662f8b8509782c76977b8
#94879453fbb00486ccc55f88db50fcc149bae066916b350089cde51a6483
#2ec14019611720fc5bbe2400f24225fc

Configuring the Device with a Certificate Example
The following example shows how to configure the device with a certificate:

crypto pki trustpoint mytrust
enrollment terminal
!
!
crypto pki authentication mytrust
crypto pki certificate chain mytrust
certificate ca 00
308204B8 308203A0 A0030201 02020100 300D0609 2A864886 F70D0101 04050030
819E310B 30090603 55040613 02555331 13301106 03550408 130A4361 6C69666F
726E6961 3111300F 06035504 07130853 616E204A 6F736531 1C301A06 0355040A
13134369 73636F20 53797374 656D732C 20496E63 2E310E30 0C060355 040B1305
4E535354 47311630 14060355 0403130D 4A6F686E 204C6175 746D616E 6E312130
1F06092A 864886F7 0D010901 16126A6C 6175746D 616E4063 6973636F 2E636F6D
301E170D 30363131 31373137 35383031 5A170D30 39313131 36313735 3830315A
30819E31 0B300906 03550406 13025553 31133011 06035504 08130A43 616C6966
6F726E69 61311130 0F060355 04071308 53616E20 4A6F7365 311C301A 06035504
0A131343 6973636F 20537973 74656D73 2C20496E 632E310E 300C0603 55040B13
054E5353 54473116 30140603 55040313 0D4A6F68 6E204C61 75746D61 6E6E3121
301F0609 2A864886 F70D0109 0116126A 6C617574 6D616E40 63697363 6F2E636F
6D308201 22300D06 092A8648 86F70D01 01010500 0382010F 00308201 0A028201
0100BC6D A933028A B31BF827 7258BB87 A1600CF0 21090F04 2080BECC 5818688B
74D231DF F0C365C1 07D6E206 D7651FA8 C7B230A2 3B0011E4 EA2B6A4C 1F3F27FB
9AF449D8 FA8900BB 3E567F77 5412881B AAD9525E 3EC1D3B1 EBCE8155 D74866F1
0940F6D1 3A2613CD F6B3595E F468B315 6DDEFF07 BBC5D521 B560AF72 D6D5FDA7
D9D9C99D 31E3B380 5DEB7039 A1A29EF9 46ED536E 4D768048 12D48C24 59B08973
481AD75D E741CD9E BE06EA16 9B514AE3 91184A56 A0E51B7D 4465D730 1AB3C7DD
62CA1AC9 DF30C39A 41316B8E 72289113 98080354 C7297AD7 89B627F8 ED40D924
ADF48383 1B332C7F 73C58686 6279E2A4 4BF41644 3E60F131 090D3F5D 25F0C025
43CB0203 010001A3 81FE3081 FB301D06 03551D0E 04160414 F7F4E80E F6CC4772
5F278C44 6B85F8EE 8345AB99 3081CB06 03551D23 0481C330 81C08014 F7F4E80E
F6CC4772 5F278C44 6B85F8EE 8345AB99 A181A4A4 81A13081 9E310B30 09060355
04061302 55533113 30110603 55040813 0A43616C 69666F72 6E696131 11300F06
03550407 13085361 6E204A6F 7365311C 301A0603 55040A13 13436973 636F2053
79737465 6D732C20 496E632E 310E300C 06035504 0B13054E 53535447 31163014
06035504 03130D4A 6F686E20 4C617574 6D616E6E 3121301F 06092A86 4886F70D
01090116 126A6C61 75746D61 6E406369 73636F2E 636F6D82 0100300C 0603551D
13040530 030101FF 300D0609 2A864886 F70D0101 04050003 82010100 6D12CFF8
31078DF6 94FE5CF0 8F83639B 414F32D8 069D23E2 37E182BE 7C31EC14 E87AF216
61A6CCD3 37656934 4BE4157A 400E182B EC390D1A DC130A56 B8F35BFB D2234556
24152FE8 A736B670 58CC684E 750D08AE C7739907 917B7A72 3D26BEC7 9F554CF1
5E5EF499 ABA11124 55966616 AC9C52B2 B1082DEA D962CBAF E476C575 A9DDFBFA
C4AE63F6 1D5C9F76 7B4B9CA7 52CE65C9 E65C04FC 4B7642D6 0D1A8AF4 38194B7A
CA307EC9 51DCB847 8B8C27FB 98ACEE60 0B80DC3F 36E4E252 BD731F5F 0E781E26
C1CA4120 9B0B689B BA654250 97B22A76 CC126B77 C7779AAA D3F93C3F DCF46006
2B7F7F8C 150AF889 BBEC62F1 E53B4F3B A3626CD6 05B8AB3D F8A6A361

Signed Tcl Scripts
19

Signed Tcl Scripts
Configuring the Device with a Certificate Example

quit
archive
log config
scripting tcl trustpoint name mytrust
scripting tcl secure-mode
!
!
end

Additional References
The following sections provide references related to the Signed Tcl Scripts feature.

Related Documents

Document TitleRelated Topic

Security Configuration Guide, Release 12.4Cisco PKI Overview: Understanding and Planning a PKI

Implementing and Managing a PKI

Cisco IOS Security Command Reference,
Release 12.4

PKI commands: complete command syntax, command mode,
command history, defaults, usage guidelines, and examples.

Standards

TitleStandard

--None

MIBs

MIBs LinkMIB

To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use
Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

None

RFCs

TitleRFC

--None

Signed Tcl Scripts
20

Signed Tcl Scripts
Additional References

http://www.cisco.com/go/mibs

Technical Assistance

LinkDescription

http://www.cisco.com/techsupportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you
can subscribe to various services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services Newsletter, and Really
Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com
user ID and password.

Feature Information for Signed Tcl Scripts
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for Signed Tcl Scripts

Feature InformationReleasesFeature Name

The Signed Tcl Scripts feature allows you to create a certificate to generate
a digital signature and sign a Tcl script with that digital signature.

The following commands were introduced by this feature: scripting tcl
secure-mode, scripting tcl trustpoint name, scripting tcl trustpoint
untrusted,and tclsafe.

Signed Tcl Scripts

Glossary
CA--certification authority. Service responsible for managing certificate requests and issuing certificates to
participating IPsec network devices. This service provides centralized key management for the participating
devices and is explicitly trusted by the receiver to validate identities and to create digital certificates.

certificates--Electronic documents that bind a user's or device's name to its public key. Certificates are
commonly used to validate a digital signature.

CRL--certificate revocation list. Electronic document that contains a list of revoked certificates. The CRL is
created and digitally signed by the CA that originally issued the certificates. The CRL contains dates for when
the certificate was issued and when it expires. A new CRL is issued when the current CRL expires.

IPsec--IP security

Signed Tcl Scripts
21

Signed Tcl Scripts
Feature Information for Signed Tcl Scripts

http://www.cisco.com/public/support/tac/home.shtml
http://www.cisco.com/go/cfn

peer certificate--Certificate presented by a peer, which contains the peer's public key and is signed by the
trustpoint CA.

PKI--public key infrastructure. System that manages encryption keys and identity information for components
of a network that participate in secured communications.

RA--registration authority. Server that acts as a proxy for the CA so that CA functions can continue when the
CA is offline. Although the RA is often part of the CA server, the RA could also be an additional application,
requiring an additional device to run it.

RSA keys--Public key cryptographic system developed by Ron Rivest, Adi Shamir, and Leonard Adleman.
An RSA key pair (a public and a private key) is required before you can obtain a certificate for your device.

SHA1--Secure Hash Algorithm 1

SSH--secure shell

SSL--secure socket layer

Notices
The following notices pertain to this software license.

OpenSSL Open SSL Project
This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (
http://www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

License Issues
The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and the
original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses are
BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact
openssl-core@openssl.org.

OpenSSL License:

Copyright © 1998-2007 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgment: “This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)”.

Signed Tcl Scripts
22

Signed Tcl Scripts
Notices

http://www.openssl.org/
http://www.openssl.org/

4. The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
openssl-core@openssl.org.

5. Products derived from this software may not be called “OpenSSL” nor may “OpenSSL” appear in their
names without prior written permission of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (
http://www.openssl.org/)”.

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS”' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,ORCONSEQUENTIALDAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVERCAUSEDANDONANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License:

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).

The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered
to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES, etc.,
code; not just the SSL code. The SSL documentation included with this distribution is covered by the same
copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If this
package is used in a product, Eric Young should be given attribution as the author of the parts of the library
used. This can be in the form of a textual message at program startup or in documentation (online or textual)
provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

“This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)”.

Signed Tcl Scripts
23

Signed Tcl Scripts
License Issues

http://www.openssl.org/

Theword ‘cryptographic’ can be left out if the routines from the library being used are not cryptography-related.

1. If you include any Windows specific code (or a derivative thereof) from the apps directory (application
code) you must include an acknowledgement: “This product includes software written by Tim Hudson
(tjh@cryptsoft.com)”.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OROTHERWISE)ARISING INANYWAYOUTOFTHEUSEOFTHIS SOFTWARE, EVEN IFADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be
changed. i.e. this code cannot simply be copied and put under another distribution license [including the GNU
Public License].

Signed Tcl Scripts
24

Signed Tcl Scripts
License Issues

	Signed Tcl Scripts
	Finding Feature Information
	Prerequisites for Signed Tcl Scripts
	Restrictions for Signed Tcl Scripts
	Information About Signed Tcl Scripts
	Cisco PKI
	RSA Key Pair
	Certificate and Trustpoint

	How to Configure Signed Tcl Scripts
	Generating a Key Pair
	Generating a Certificate
	Signing the Tcl Scripts
	Verifying the Signature
	Converting the Signature into Nonbinary Data
	Configuring the Device with a Certificate
	Verifying the Trustpoint
	Verifying the Signed Tcl Script
	What to Do Next

	Configuration Examples for Signed Tcl Script
	Generating a Key Pair Example
	Generating a Certificate Example
	Signing the Tcl Scripts Example
	Verifying the Signature Example
	Converting the Signature with Nonbinary Data Example
	Configuring the Device with a Certificate Example

	Additional References
	Feature Information for Signed Tcl Scripts
	Glossary
	Notices
	OpenSSL Open SSL Project
	License Issues

