
EEM CLI Library Command Extensions

All command-line interface (CLI) library command extensions belong to the ::cisco::eem namespace.

This library provides users the ability to run CLI commands and get the output of the commands in Tcl. Users
can use commands in this library to spawn an exec and open a virtual terminal channel to it, write the command
to execute to the channel so that the command will be executed by exec, and read back the output of the
command.

There are two types of CLI commands: interactive commands and non-interactive commands.

For interactive commands, after the command is entered, there will be a "Q&A" phase in which the device
will ask for different user options, and the user is supposed to enter the answer for each question. Only after
all the questions have been answered properly will the command run according to the user’s options until
completion.

For noninteractive commands, once the command is entered, the command will run to completion. To run
different types of commands using an EEM script, different CLI library command sequences should be used,
which are documented in the "Using the CLI Library to Run a Noninteractive Command" section and in the
"Using the CLI Library to Run an Interactive Command" section in the cli_write Tcl command.

The vty lines are allocated from the pool of vty lines that are configured using the line vty CLI configuration
command. EEMwill use a vty line when a vty line is not being used by EEM and there are available vty lines.
EEM will also use a vty line when EEM is already using a vty line and there are three or more vty lines
available. Be aware that the connection will fail when fewer than three vty lines are available, preserving the
remaining vty lines for Telnet use.

Your release may support XML-PI. For details about the XML-PI support, the new CLI library command
extensions, and some examples of how to implement XML-PI, see EEM CLI Library XML-PI Support.

• cli_close, on page 2
• cli_exec, on page 2
• cli_get_ttyname, on page 3
• cli_open, on page 3
• cli_read, on page 4
• cli_read_drain, on page 4
• cli_read_line, on page 5
• cli_read_pattern, on page 5
• cli_run, on page 6
• cli_run_interactive, on page 7
• cli_write, on page 8

EEM CLI Library Command Extensions
1

cli_close
Closes the exec process and releases the vty and the specified channel handler connected to the command-line
interface (CLI).

Syntax

cli_close fd tty_id

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

None

Set _cerrno

Cannot close the channel.

cli_exec
Writes the command to the specified channel handler to execute the command. Then reads the output of the
command from the channel and returns the output.

Syntax

cli_exec fd cmd

Arguments

(Mandatory) The command-line interface (CLI) channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

The output of the CLI command executed.

Set _cerrno

Error reading the channel.

EEM CLI Library Command Extensions
2

EEM CLI Library Command Extensions
cli_close

cli_get_ttyname
Returns the real and pseudo TTY names for a given TTY ID.

Syntax

cli_get_ttyname tty_id

Arguments

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

pty %s tty %s

Set _cerrno

None

cli_open
Allocates a vty, creates an EXEC command-line interface (CLI) session, and connects the vty to a channel
handler. Returns an array including the channel handler.

Each call to cli_open initiates a Cisco IOS EXEC session that allocates a Cisco IOS vty line. The vty remains
in use until the cli_close routine is called. The vty lines are allocated from the pool of vty lines that are
configured using the line vty CLI configuration command. EEM will use a vty line when a vty line is not
being used by EEM and there are available vty lines. EEMwill also use a vty line when EEM is already using
a vty line and there are three or more vty lines available. Be aware that the connection will fail when fewer
than three vty lines are available, preserving the remaining vty lines for Telnet use

Note

Syntax

cli_open

Arguments

None

Result String

"tty_id {%s} pty {%d} tty {%d} fd {%d}"

EEM CLI Library Command Extensions
3

EEM CLI Library Command Extensions
cli_get_ttyname

DescriptionEvent
Type

TTY ID.tty_id

PTY device name.pty

TTY device name.tty

CLI channel handler.fd

Set _cerrno

• Cannot get pty for EXEC.

• Cannot create an EXEC CLI session.

• Error reading the first prompt.

cli_read
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
of the device prompt occurs in the contents read. Returns all the contents read up to the match.

Syntax

cli_read fd

Arguments

(Mandatory) The CLI channel handler.fd

Result String

All the contents read.

Set _cerrno

Cannot get device name.

This Tcl command extension will block waiting for the device prompt to show up in the contents read.Note

cli_read_drain
Reads and drains the command output of the specified command-line interface (CLI) channel handler. Returns
all the contents read.

EEM CLI Library Command Extensions
4

EEM CLI Library Command Extensions
cli_read

Syntax

cli_read_drain fd

Arguments

(Mandatory) The CLI channel handler.fd

Result String

All the contents read.

Set _cerrno

None

cli_read_line
Reads one line of the command output from the specified command-line interface (CLI) channel handler.
Returns the line read.

Syntax

cli_read_line fd

Arguments

(Mandatory) The CLI channel handler.fd

Result String

The line read.

Set _cerrno

None

This Tcl command extension will block waiting for the end of line to show up in the contents read.Note

cli_read_pattern
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
that is to be matched occurs in the contents read. Returns all the contents read up to the match.

EEM CLI Library Command Extensions
5

EEM CLI Library Command Extensions
cli_read_line

The pattern matching logic attempts a match by looking at the command output data as it is delivered from
the Cisco IOS command. The match is always done on the most recent 256 characters in the output buffer
unless there are fewer characters available, in which case the match is done on fewer characters. If more than
256 characters in the output buffer are required for the match to succeed, the pattern will not match.

Note

Syntax

cli_read_pattern fd ptn

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The pattern to be matched when reading the command output from the channel.ptn

Result String

All the contents read.

Set _cerrno

None

This Tcl command extension will block waiting for the specified pattern to show up in the contents read.Note

cli_run
Iterates over the items in the clist and assumes that each one is a command-line-interface (CLI) command to
be executed in the enable mode. On success, returns the output of all executed commands and on failure,
returns error from the failure.

Syntax

cli_run clist

Arguments

(Mandatory) The list of commands to be executed.clist

Result String

Output of all the commands that are executed or an error message.

EEM CLI Library Command Extensions
6

EEM CLI Library Command Extensions
cli_run

Set _cerrno

None.

Sample Usage

The following example shows how to use the cli_run command extension.

set clist [list {sh run} {sh ver} {sh event man pol reg}]
cli_run { clist }

cli_run_interactive
Provides a sublist to the clist which has three items. On success, returns the output of all executed commands
and on failure, returns error from the failure. Also uses arrays when possible as a way of making things easier
to read later by keeping expect and reply separated.

Syntax

cli_run_interactive clist

Arguments

(Mandatory) List of three items:

• command– Command to be executed

• expect– A regular expression pattern match for the expected reply
prompt

• responses– A list of possible responses to the reply prompt constructed
as an array of two items:

• expect– A regular expression pattern match for a possible reply
prompt

• reply- A reply for that expected prompt

clist

Result String

Output of all the commands that are executed or an error message. As each command is executed its output
is appended to a result variable. Upon exhaustion of the input list, the CLI channel is closed and the aggregate
result is returned.

Set _cerrno

None.

Sample Usage

The following example shows how to clear counters for interface fa0/0 use the cli_run_ interactive command
extension.

EEM CLI Library Command Extensions
7

EEM CLI Library Command Extensions
cli_run_interactive

set cmdarr(command) "clear counters fa0/0"
set cmdarr(responses) [list]
set resps(expect) {[confirm]}
set resps(reply) "y"
lappend cmdarr(responses) [array get resps]
set rc [catch {cli_run_interactive [list [array get cmdarr]]} result]

Possible errors raised include:

• cannot get pty for exec

• cannot spawn exec

• error reading the first prompt

• error reading the channel

• cannot close channel

cli_write
Writes the command that is to be executed to the specified CLI channel handler. The CLI channel handler
executes the command.

Syntax

cli_write fd cmd

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

None

Set _cerrno

None

Sample Usage

As an example, use configuration CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
puts stderr $result
exit 1
} else {
array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {
puts stderr $result
exit 1

EEM CLI Library Command Extensions
8

EEM CLI Library Command Extensions
cli_write

}
if [catch {cli_exec $cli1(fd) "config t"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "interface Ethernet1/0"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "no shut"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "end"} result] {
puts stderr $result
exit 1
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} } result] {
puts stderr $result
exit 1

Using the CLI Library to Run a Noninteractive Command

To run a noninteractive command, use the cli_exec command extension to issue the command, and then wait
for the complete output and the device prompt. For example, the following shows the use of configuration
CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
error $result $errorInfo
} else {
set fd $result
}
if [catch {cli_exec $fd "en"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "config t"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "interface Ethernet1/0"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "no shut"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "end"} result] {
error $result $errorInfo
}
if [catch {cli_close $fd} result] {
error $result $errorInfo
}

Using the CLI Library to Run an Interactive Command

To run interactive commands, three phases are needed:

• Phase 1: Issue the command using the cli_write command extension.

• Phase 2: Q&A Phase. Use the cli_read_pattern command extension to read the question (the regular
pattern that is specified to match the question text) and the cli_write command extension to write back
the answers alternately.

EEM CLI Library Command Extensions
9

EEM CLI Library Command Extensions
cli_write

• Phase 3: Noninteractive phase. All questions have been answered, and the commandwill run to completion.
Use the cli_read command extension to wait for the complete output of the command and the device
prompt.

For example, use CLI commands to do squeeze bootflash: and save the output of this command in the Tcl
variable cmd_output.

if [catch {cli_open} result] {
error $result $errorInfo
} else {
array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {
error $result $errorInfo
}

Phase 1: issue the command
if [catch {cli_write $cli1(fd) "squeeze bootflash:"} result] {
error $result $errorInfo
}

Phase 2: Q&A phase
wait for prompted question:
All deleted files will be removed. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "All deleted"} result] {
error $result $errorInfo
}
write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}
wait for prompted question:
Squeeze operation may take a while. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "Squeeze operation"} result] {
error $result $errorInfo
}
write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}

Phase 3: noninteractive phase
wait for command to complete and the router prompt
if [catch {cli_read $cli1(fd) } result] {
error $result $errorInfo
} else {
set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
error $result $errorInfo
}

The following example causes a device to be reloaded using the CLI reload command. Note that the EEM
action_reload command accomplishes the same result in a more efficient manner, but this example is presented
to illustrate the flexibility of the CLI library for interactive command execution.

1. execute the reload command
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result

EEM CLI Library Command Extensions
10

EEM CLI Library Command Extensions
cli_write

}
if [catch {cli_exec $cli1(fd) "en"} result] {

error $result $errorInfo
}
if [catch {cli_write $cli1(fd) "reload"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(System configuration has been modified. Save\\\?
\\\[yes/no\\\]:)"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "no"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(Proceed with reload\\\? \\\[confirm\\\])"} result]
{

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "y"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

EEM CLI Library Command Extensions
11

EEM CLI Library Command Extensions
cli_write

EEM CLI Library Command Extensions
12

EEM CLI Library Command Extensions
cli_write

	EEM CLI Library Command Extensions
	cli_close
	cli_exec
	cli_get_ttyname
	cli_open
	cli_read
	cli_read_drain
	cli_read_line
	cli_read_pattern
	cli_run
	cli_run_interactive
	cli_write

