Signed Tcl Scripts

Last Updated: October 16, 2012

The Signed Tcl Scripts feature allows you to create a certificate to generate a digital signature and sign a
Tool Command Language (Tcl) script with that digital signature. This feature also allows you to work with
existing scripts and certificates. The digital signature is verified for authentication and then run with trusted
access to the Tcl interpreter. If the script does not contain the digital signature, the script may run in a
limited mode for untrusted scripts, or may not run at all.

* Finding Feature Information, page 1

» Prerequisites for Signed Tcl Scripts, page 1

» Restrictions for Signed Tcl Scripts, page 2

» Information About Signed Tcl Scripts, page 2

» How to Configure Signed Tcl Scripts, page 3

» Configuration Examples for Signed Tcl Script, page 16
» Additional References, page 19

e Feature Information for Signed Tcl Scripts, page 21

e Glossary, page 21

* Notices, page 22

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats
and feature information, see Bug Search Tool and the release notes for your platform and software release.
To find information about the features documented in this module, and to see a list of the releases in which
each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Signed Tcl Scripts

I
CISCO.

For this feature to work, the Cisco public key infrastructure (PKI) configuration trustpoint commands must
be enabled.

For further details, see the Prerequisites for Signed Tcl Scripts, page 1.

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

http://www.cisco.com/cisco/psn/bssprt/bss
http://www.cisco.com/go/cfn

Cisco PKI

. Restrictions for Signed Tcl Scripts

Restrictions for Signed Tcl Scripts

For this feature to work, you must be running the following:

e Cisco IOS Crypto image
e OpenSSL Version 0.9.7a or above
* Expect

Information About Signed Tcl Scripts

Cisco PKI

The Signed Tcl Scripts feature introduces security for the Tcl scripts. This feature allows you to create a
certificate to generate a digital signature and sign a Tcl script with that digital signature. This certificate
examines the Tcl scripts prior to running them. The script is checked for a digital signature from Cisco. In
addition, third parties may also sign a script with a digital signature. You may wish to sign your own
internally developed Tcl scripts or you could use a script developed by a third party. If the script contains
the correct digital signature, it is believed to be authentic and runs with full access to the Tcl interpreter. If
the script does not contain the digital signature, the script may be run in a limited mode, known as Safe Tcl
mode, or may not run at all.

To create and use signed Tcl scripts, you should understand the following concepts:

e Cisco PKI, page 2
e RSA Key Pair, page 3
e Certificate and Trustpoint, page 3

Cisco PKI provides certificate management to support security protocols such as IP security (IPsec), secure
shell (SSH), and secure socket layer (SSL). A PKI is composed of the following entities:

e Peers communicating on a secure network

e At least one certification authority (CA) that grants and maintains certificates

« Digital certificates, which contain information such as the certificate validity period, peer identity
information, encryption keys that are used for secure communication, and the signature of the issuing
CA

< An optional registration authority (RA) to offload the CA by processing enroliment requests

e Addistribution mechanism (such as Lightweight Directory Access Protocol [LDAP] or HTTP) for
certificate revocation lists (CRLS)

PKI provides you with a scalable, secure mechanism for distributing, managing, and revoking encryption
and identity information in a secured data network. Every routing device participating in the secured
communication is enrolled in the PKI in a process where the routing device generates a Rivest, Shamir, and
Adelman (RSA) key pair (one private key and one public key) and has its identity validated by a trusted
routing device (also known as a CA or trustpoint).

After each routing device enrolls in a PKI, every peer (also known as an end host) in a PKI is granted a
digital certificate that has been issued by a CA. When peers must negotiate a secured communication
session, they exchange digital certificates. Based on the information in the certificate, a peer can validate
the identity of another peer and establish an encrypted session with the public keys contained in the
certificate.

| RSAKey Pair

How to Configure Signed Tcl Scripts .

RSA Key Pair

An RSA key pair consists of a public key and a private key. When setting up your PKI, you must include
the public key in the certificate enrollment request. After the certificate has been granted, the public key is
included in the certificate so that peers can use it to encrypt data that is sent to the device. The private key
is kept on the device and used both to decrypt the data sent by peers and to digitally sign transactions when
negotiating with peers.

RSA key pairs contain a key modulus value. The modulus determines the size of the RSA key. The larger
the modulus, the more secure the RSA key. However, keys with large modulus values take longer to
generate, and encryption and decryption operations take longer with larger keys.

Certificate and Trustpoint

A certification authority (CA), also known as a trustpoint, manages certificate requests and issues
certificates to participating network devices. These services (managing certificate requests and issuing
certificates) provide centralized key management for the participating devices and are explicitly trusted by
the receiver to validate identities and to create digital certificates. Before any PKI operations can begin, the
CA generates its own public key pair and creates a self-signed CA certificate; thereafter, the CA can sign
certificate requests and begin peer enroliment for the PKI.

You can use a CA provided by a third-party CA vendor, or you can use an internal CA, which is the Cisco
Certificate Server.

How to Configure Signed Tcl Scripts

» Generating a Key Pair, page 3

» Generating a Certificate, page 5

» Signing the Tcl Scripts, page 6

» Verifying the Signature, page 7

e Converting the Signature into Nonbinary Data, page 8
» Configuring the Device with a Certificate, page 11

» Verifying the Trustpoint, page 14

» Verifying the Signed Tcl Script, page 14

* What to Do Next, page 15

Generating a Key Pair

The key pair consists of a private key and a public key. The private key is intended to be kept private,
accessible only to the creator. The public key is generated from the private key and is intended to be known
to the public.

To generate a key pair, use the openssl genrsa command and then the openssl rsa command.

Generating a Key Pair

. How to Configure Signed Tcl Scripts

SUMMARY STEPS

openssl genrsa -out private-key-file bit-length

Is-I

openssl rsa -in private-key-file -pubout -out public-key-file
Is-I

Eel

DETAILED STEPS

Step 1 openssl genrsa -out private-key-file bit-length
This command generates a private key that is bit-length bits long and writes the key to the private-key-fil€file.

Host % openssl genrsa -out privkey.pem 2048

Example:

CGenerating RSA private key, 2048 bit |ong nodul us
+++

e is 65537 (0x10001)

Step 2 Is-I
This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

Example:

Host% |s -1

total 8
SPWr--r1-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem

The privkey.pem file contains the private key generated using the openssl genr sa command.

Step 3 openssl rsa -in private-key-file -pubout -out public-key-file
This command generates a public key based on the specified private key in the private-key-file file and writes the
public key to the public-key-filefile.

Example:

Host % openssl rsa -in privkey. pem -pubout -out pubkey.pem

witing RSA key

Step 4 Is-I
This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

Example:

Host% | s -1

| Generating a Certificate

How to Configure Signed Tcl Scripts .

total 16
SPWr--r1-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
STWr--T-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

The pubkey.pem file contains the public key generated from the private key using the openssl rsa command.

Generating a Certificate

Perform this task to generate a certificate. To generate an X.509 certificate, use the openssl req command.
SUMMARY STEPS

1. opensd req -new -x509 -key private-key-file -out certificate-file -days expiration-days
2. |Is-l

DETAILED STEPS

Step 1 openssl req -new -x509 -key private-key-file -out certificate-file -days expiration-days
This command creates an X.509 certificate, with full access to a private key that is stored in the private-key-filefile,
and stores the certificate in the certificate-filefile. The certificate is configured to expire in expiration-days days.

To complete the command, enter the following Distinguished Name (DN) information when prompted:

¢ Country name

e State or province hame

¢ Organization name

¢ Organizational unit name
e Common name

e Email address

At each prompt, text enclosed in square brackets indicates the default value that will be used if you do not enter a
value before you press Enter.

This example shows how to create an X.509 certificate that has full access to the private key in the privkey.pem file.
The certificate is written to the cert.pem file and will expire 1095 days after the creation date.

Example:

Host % openssl req -new -x509 -key privkey. pem-out cert.pem -days 1095

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Nane or a DN.

There are quite a few fields but you can | eave sone bl ank

For sone fields there will be a default value, If you enter '.', the field will be left blank.

Country Nane (2 letter code) [GB]:US
State or Province Nanme (full nane) [Berkshire]:California
Locality Nane (eg, city) [Newbury]:San Jose

Organi zati on Name (eg, conpany) [My Conpany Ltd]:Ci sco Systens, Inc.

Signing the Tcl Scripts

. How to Configure Signed Tcl Scripts

Organi zational Unit Name (eg, section) []:DEPT_ACCT
Common Nane (eg, your nane or your server's hostnane) []:Jane

Emai| Address []:]janedoe@onpany.com

Step 2 Is-I
This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

Example:

Host% s -1

total 24

SPW-r--r-- 1 janedoe engl2 1659 Jun 12 15:01 cert.pem
SrWr--r1-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
SPWr--r-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

The cert.pem file contains the X.509 certificate created using the openssl req command.

Signing the Tcl Scripts

Perform this task to sign the Tcl scripts. You will need to sign the Tcl file and output in OpenSSL
document in pkcs7 (PKCS#7) format.

To sign the Tcl file, use the openss smime command with the -sign keyword.
SUMMARY STEPS

1. openss smime -sign -in tcl-file -out signed-tcl-file -signer certificate-file -inkey private-key-file -
outform DER -binary
2. Is-l

DETAILED STEPS

Step 1 openssl smime-sign -in tcl-file -out signed-tcl-file -signer certificate-file -inkey private-key-file -outform DER -
binary
This command signs the Tcl filename tcl-file using the certificate stored in certificate-file and the private key stored in
private-key-file file and then writes the signed Tcl file in DER PKCS#7 format to the signed-tcl-filefile.

Example:
Host % openssl smime -sign -in hello -out hello.pk7 -signer cert.pem-inkey privkey. pem -outform
DER - bi nary

Step 2 Is-I
This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

| Verifying the Signature

How to Configure Signed Tcl Scripts .

Example:

Host%Is -1

total 40

STWr--T-- 1 janedoe engl2 1659 Jun 12 15:01 cert.pem
SPWr--r-- 1 janedoe engl2 115 Jun 13 10:16 hello
SPWr--r1-- 1 janedoe engl2 1876 Jun 13 10: 16 hel |l o. pk7
STWr--T-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
SPWr--r-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

The hello.pk7 file contains the signed Tcl file created by the openssl smime command from the unsigned Tcl file
named hello and using the X.509 certificate in the cert.pem file.

Verifying the Signature

Perform this task to verify that the signature matches the data, use the openssl smime command with the -
verify keyword. The original Tcl content must be provided in the input file, because the file does not have
the original content.

SUMMARY STEPS
1. opensd smime -verify -in signed-tcl-file -CAfile certificate-file -inform DER -content tcl-file
2. Is-l
DETAILED STEPS
Step 1 openss smime -verify -in signed-tcl-file -CAfile certificate-file -inform DER -content tcl-file

This command verifies the signed Tcl file stored in DER PKCS#7 format in signed-tcl-file using the trusted
Certificate Authority (CA) certificates in certificate-file and then writes the detached content to the file tcl-file.

The following example shows how to verify the signature with the input file hello.pk7:

Example:

Host % openssl smime -verify -in hello.pk7 -CAfile cert.pem-informDER -content hello

puts hello

puts "argc = $argc"

puts "argv = $argv"

puts "argv0 = $argv0"

puts "tcl _interactive = $tcl_interactive"
Verification successful

Note The SSL command page describes -in filename as the input message to be encrypted or signed or the MIME
message to be decrypted or verified. For more information, go to http://www.openssl.org/ .

Step 2 Is-I
This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

http://www.openssl.org/

Converting the Signature into Nonbinary Data |

. How to Configure Signed Tcl Scripts

Example:

Host% Is -1

total 40

STWr--T-- 1 janedoe engl2 1659 Jun 13 10: 18 cert.pem
SPWr--r-- 1 janedoe engl2 115 Jun 13 10:17 hello
STWr--r-- 1 janedoe engl2 1876 Jun 13 10: 16 hel |l o. pk7
STWr--T-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
SPWr--r-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

The hello file contains the content detached from the signed Tcl file hello.pk7 by running the opensd smime
command with the -verify keyword. If the verification was successful, the signer’s certificates are written to the X.509
certificate in the cert.pem file.

Converting the Signature into Nonbinary Data

Perform this task to convert the signature from binary to nonbinary data.

SUMMARY STEPS

1. xxd -ps signed-tcl-file > nonbinary-signature-file

2. Create a script that displays #Cisco Tcl Signature V1.0 in the first line andinserts a comment character
(#) at the beginning of each line of the input file and writes each line to a file whose name is formed by
appending the text string “_sig” to the name of the input file.

3. Run the script, supplying the name of the file containing the nonbinary signature file (nonbinary-
signature-file) as the input argument.

4, |s-|
5. cat signed-tcl-file commented-nonbinary-signature-file > signed-tcl-script
6. cat signed-tcl-script

DETAILED STEPS

Step 1 xxd -ps signed-tcl-file > nonbinary-signature-file
This command converts the signature in signed-tcl-file from binary to nonbinary data and stores it as a hexadecimal
dump in the file nonbinary-signature-file.

Example:

Host % xxd -ps hell o. pk7 > hell o. hex

Step 2 Create a script that displays #Cisco Tcl Signature V1.0 in the first line andinserts a comment character (#) at the
beginning of each line of the input file and writes each line to a file whose name is formed by appending the text
string “_sig” to the name of the input file.

In this example the cat command is used to display the contents of the script file named my_append.

Example:

Host % cat my_append

I Converting the Signature into Nonbinary Data

Step 3

Step 4

Step 5

Step 6

How to Configure Signed Tcl Scripts .

#!/usr/ bi n/ env expect
set nmy_first {#CG sco Tcl Signature V1.0}
set newine {}
set ny_file [lindex $argv 0]
set ny_new file ${ny_file}_sig
set my_new_handl e [open $nmy_new file w
set ny_handl e [open $ny_file r]
puts $ny_new _handl e $new i ne
puts $ny_new handl e $ny_first
foreach line [split [read $ny_handle] "\n"] {
set new_line {#}
append new_|ine $line
puts $ny_new_handl e $new_|ine

cl ose $my_new_handl e
cl ose $ny_handl e

Run the script, supplying the name of the file containing the nonbinary signature file (nonbinary-signature-file) as the
input argument.

In this example, the my_append script is run with the nonbinary signature file hello.hex specified as input. The output
file will be named hello.hex_sig.

Example:

Host % ny_append hel | 0. hex

Is-I

This command displays detailed information about each file in the current directory, including the permissions,
owners, size, and when last modified.

Example:

Host% s -1

total 80

SrWr--r1-- 1 janedoe engl2 1659 Jun 13 10:18 cert. pem
STWr--T-- 1 janedoe engl2 115 Jun 13 10:17 hello
SPWr--r-- 1 janedoe engl2 3815 Jun 13 10: 20 hel | 0. hex
SrWr--r1-- 1 janedoe engl2 3907 Jun 13 10: 22 hell 0. hex_si g
STWr--T-- 1 janedoe engl2 1876 Jun 13 10: 16 hell o. pk7
-FWXF--T-- 1 janedoe engl2 444 Jun 13 10: 22 my_append
SrWr--r1-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
STWr--T-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

The hello.hex file contains nonbinary data (stored as a hexadecimal dump) converted from the binary signature in the
signed Tcl file hello.pk7. The my_append file contains the script that inserts a comment character at the beginning of
each line of the input file. The hello.hex_sig file is the file created by running the my_append script on the nonbinary
signature file.

cat signed-tcl-file commented-nonbinary-signature-file > signed-tcl-script

This command appends the contents of the nonbinary signature file (commented-nonbinary-signature-file) to the
signed Tcl file stored in DER PKCS#7 format (in the signed-tcl-file file). The concatenated output is written to the file
signed-tcl-script.

Example:

Host % cat hello hello.hex_sig > hello.tcl
cat signed-tcl-script

Converting the Signature into Nonbinary Data

. How to Configure Signed Tcl Scripts

This command displays the contents of the file signed-tcl-script, which is the concatenation of content detached from
the signed Tcl file and the nonbinary signature file.

Example:

Host % cat hello.tc

puts hello
puts "argc = $argc"
puts "argv = $argv"

puts "argv0 = $argv0"

puts "tcl _interactive = $tcl _interactive"

#Cisco Tcl Signature V1.0

#3082075006092a864886f 70d010702a08207413082073d020101310b3009
#06052b0e03021a0500300b06092a864886f 70d010701a08204a13082049d
#30820385a003020102020100300d06092a864886f 70d0101040500308195
#310b3009060355040613025553311330110603550408130a43616c69666f
#726e€69613111300f 0603550407130853616e204a6f 7365311¢c301a060355
#040a1313436973636f 2053797374656d732¢20496e632e310e300c060355
#040b13054e53535447310d300b060355040313044a6f 686€3121301f 0609
#2a864886f 70d01090116126a6¢c6175746d616e40636973636f 2e636f 6d30
#1e170d3037303631323232303134335a170d313030363131323230313433
#5a308195310b3009060355040613025553311330110603550408130a4361
#6c69666f 726€69613111300f 0603550407130853616e204a6f 7365311c30
#1a060355040a1313436973636f 2053797374656d732¢c20496e632e310e30
#0c060355040b13054e€53535447310d300b060355040313044a6f 686e3121
#301f 06092a864886f 70d01090116126a6¢c6175746d616e40636973636f 2e
#636f 6d30820122300d06092a864886f 70d01010105000382010f 00308201
#0a0282010100a751eb5ec1f 3009738c88a55987c07b759¢c36f 3386342283
#67ea20a89d9483ae85e0c63eeded8ab3eb7a08006689f 09136f 172183665
#c971099ba54e77ab47706069bbef aaab8c50184396350e4cc870c4c3f 477
#88c55c52e2cf 411f 05b59f 0Oeaec0678f f 5cc238f dce2263a9f c6b6c244b8
#f f aead865c19¢c3d3172674a13b24c8f 2c01dd8b1bd491c13e84e29171b85
#f 28155d81ac8c69bb25ca23¢c2921d85f bf 745c106e7af f 93¢72316¢cbc654
#4a34eaB88174a8ba7777f a60662974elf bac85a0f Daeac925dba6e5e850b8
#7caf f ce2f e8bb04b61b62f 532b5893¢c081522d538005df 81670b931b0ad0
#ele76ae648f 598a9442d5d0976e67¢8d55889299147d0203010001a381f 5
#3081f 2301d0603551d0e04160414bc34132be952f f 8b9elaf 3b93140a255
#e54a667c¢3081c20603551d230481ba3081b78014bc34132be952f f 8b9ela
#f 3b93140a255e54a667cal1819ba48198308195310b300906035504061302
#5553311330110603550408130a43616c69666f 726€69613111300f 060355
#0407130853616e204a6f 7365311c301a060355040a1313436973636f 2053
#797374656d732¢20496e632e310e300c060355040b13054e53535447310d
#300b060355040313044a6f 686e3121301f 06092a864886f 70d0109011612
#6a6c6175746d616e40636973636f 2e636f 6d820100300c0603551d130405
#30030101f f 300d06092a864886f 70d010104050003820101000¢c83¢c1b074
#6720929c9514af 6d5df 96f 0a95639f 047¢c40a607¢83d8362507c58f a7f 84
#aa699ec5e5bef 61b2308297a0662c653f f 446acf bb6f 5¢b2dd162d939338
#a5e4d78a5c45021e5d4dbabb8784ef bf 50cab0f 5125d164487b31f 5¢f 933
#a9f 68f 82cd111cbabl1739d7f 372ec460a7946882874b0a0f 22dd53achd62
#a944al5e52e54a24341b3b8a820f 23a5bc7ea7b2278bb56838b8a4051926
#af 9c167274f f 8449003a4e012bcf 4f 4b3e280f 85209249a390d14df 47435
#35ef abce720ea3d56803a84a2163db4478ae19d7d987ef 6971c8312e280a
#aac0217d4f e620c6582a48f aa8ea5e3726a99012e1d55f 8d61b066381f 77
#4158d144a43f b536¢77d6a318202773082027302010130819b308195310b
#3009060355040613025553311330110603550408130a43616c69666f 726e
#69613111300f 0603550407130853616e204a6f 7365311¢c301a060355040a
#1313436973636f 2053797374656d732¢c20496e€632e310e300¢c060355040b
#13054e€53535447310d300b060355040313044a6f 686e3121301f 06092a86
#4886f 70d01090116126a6¢c6175746d616e40636973636f 2e636f 6d020100
#300906052b0e03021a0500a081b1301806092a864886f 70d010903310b06
#092a864886f 70d010701301¢c06092a864886f 70d010905310f 170d303730
#3631333137313634385a302306092a864886f 70d01090431160414372cbh3
#72dc607990577f d0426104a42ee4158d2b305206092a864886f 70d01090f
#31453043300a06082a864886f 70d0307300e06082a864886f 70d03020202
#0080300d06082a864886f 70d0302020140300706052b0e030207300d0608
#2a864886f 70d0302020128300d06092a864886f 70d010101050004820100
#72db6898742f 449b26d3ac18f 43a1e7178834f b05ad13951bf 042el127eea
#944b72b96f 3b8ecf 7eb52f 3d0e383bf 63651750223ef e69eae04287c9dae

| Configuring the Device with a Certificate

How to Configure Signed Tcl Scripts .

#b1f 31209444108b31d34e46654c6c3ccl0b5baba887825¢c224ec6f 376d49
#00f f 7ab2d9f 88402dab9a2c2ab6aa3ecceeaf 5a594bdc7d3a822c55e7daa
#aa0c2b067e06967f 22a20e406f e21d9013ecc6bd9cd6d402c2749f 8beabl
#9f 8f 87acf bc9e10d6ce91502e34629adcabee855419af af €6a8233333e14
#ad4c107901d1f 2bcadd7f f aadddbc54192a25da662f 808509782¢c76977b8
#94879453f bb00486ccc55f 88db50f cc149bae066916b350089cde51a6483
#2ec14019611720f c5bbe2400f 24225f ¢

Configuring the Device with a Certificate
Perform this task to configure the device with a certificate.

You must already have a Cisco 10S Crypto image; otherwise you cannot configure a certificate.
SUMMARY STEPS

enable

configureterminal

crypto pki trustpoint name

enrollment terminal

exit

crypto pki authenticate name

At the prompt, enter the base-encoded CA certificate.
scripting tcl secure-mode

scripting tcl trustpoint name name

© NS RE w2

10. scripting tcl trustpoint untrusted {execute | safe-execute | terminate}
11. exit
12.tclsafe

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Devi ce> enabl e

Step 2 configureterminal
Enters global configuration mode.

Example:

Devi ce# configure term nal

Step 3 crypto pki trustpoint name
Declares the device is to use the Certificate Authority (CA) mytrust and enters ca-trustpoint configuration mode.

| .

Configuring the Device with a Certificate

. How to Configure Signed Tcl Scripts
Example:
Devi ce(config)# crypto pki trustpoint nytrust
Step 4 enrollment terminal
Specifies manual cut-and-paste certificate enroliment. When this command is enabled, the device displays the
certificate request on the console terminal, allowing you to enter the issued certificate on the terminal.
Example:
Devi ce(ca-trustpoint)# enrol |l ment term nal
Step 5 exit
Exits ca-trustpoint configuration mode and returns to global configuration mode.
Example:
Devi ce(ca-trustpoint)# exit
Step 6 crypto pki authenticate name
Retrieves the CA certificate and authenticates it. Check the certificate fingerprint if prompted.
Note Because the CA signs its own certificate, you should manually authenticate the public key of the CA by
contacting the CA administrator when you perform this command.
Example:
Devi ce(config)# crypto pki authenticate nytrust
Step 7 At the prompt, enter the base-encoded CA certificate.

Example:

Enter the base 64 encoded CA certificate.

End with a blank line or the word "quit" on a line by itself

M | EuDCCA6CgAW BAgl BADANBgkghki GOWOBAQQFADCBNj EL MAk GA1UEBhMCVVMK
Ez ARBgNVBAgTCkNhbG nb3JuaVEX ETAPBgNVBAC TCFNhbi BKb3NI MRwwGg YDVQRK
ExNDaXN by BTe XNOZWLz L CBJ bmivl M4 wWDAYDVQQL EwVOU1 NURz EWVBQGAL UEAX MN
SnBobi BMYXVObWFubj EhMB8GCSqGSI b3DQEJARYSanxhdXRt YWsAY2| zY28uY29t

MB4XDTA2MIEx Nz E3NTgWWoXDTASMIEXNj E3NTgwiWowgZ4x Cz AJBgNVBAYTAI VT
MRMMVEQYDVQQ EwpDYWpZmBy b h MREWDWYDVQQHEWh TYWAg SBz ZTEc MBoGALUE
ChMIrQ2l zY28gU3l zdGVt cywgSWbj Lj EOMAWGALUECKX MFTI NTVECx Fj AUBgNVBAMT
DUpvaG4AgTGF1dGLhbmix| TAf Bgkghki GOWOBCQEVENPS YXVObWFUQGNpc2Nv Lm\v
bTCCASI wDQYJKoZI hvc NAQEBBQADgg EPADCCAQuCggEBAL Xt gTMCI r Mo+CdyW.uH
OoWAVBCEJ DwQggL7MABhoi 3TSMI/ ww2XBB9bi Bt dl H6j Hsj Ci ONARSQor akwf Pyf 7
mvRI2PqJALs+Vn93VBKI G6r ZUl 4+wdOx686BVddl ZvEJQPbRO YTzf azW/70aLW
bd7/ B7vF1SGLYK9y 1t X9p9nZyZ0x470OAXet wOaG nvl G7VNuTXaASBLUj CRZs! | z
SBr XXedBz Z6+BuoWrnLFK45EYS| ag5Rt 9RGXXMBqzx91i yhr J3zDDmk Exa45y KIJET
mAgDVMepet eJt i f 47UDZIK30g4MoMyx/ ¢ 8WGhmI54qRLIBZEPNDx MkNP10I 8MAI

@Bs CAWEAAACB/ j CB+z AdBgNVHQAEFgQUI/ ToDvbMR3JIf J4xEadX470NFq5kwgcsG
AlUdl wSBwz CBwW AU9/ ToDvbMR3Jf J4xEa4X470NFg5mhgaSkgaEwgZ4x Cz AJBgNV
BAYTAl VTMRMAVEQYDVQQ EwpDYWpZBy bl h MREWDWYDVQQHEWh TYWAgSnBz ZTEC
MBoGALUEChMIQ2I zY28gU3| zdGVt cywgSWbj Lj EOVAWGATUECX MFTI NTVECXFj AU
BgNVBAMIDUpvaG4gTGF1dGLhbmax| TAf Bgkghki GOWOBCQEVEENDS YXVObWFuQGNp
c2NvLm\vbYIl BADAMBgNVHRMEBTADAQH MAOGCSqGSI h3DQEBBAUAAA| BAQBE Es/ 4
MENIpT+XPCPg2ChQUBy2Aad| +| 34YK+f DHs FOh68hZhpsz TN2VpNEvKk FXpADhgr

7DKNG wTCl @a481v70i NFVIi QVL+i nNr ZWWWK o TNUNCK7Hc 5k Hk Xt 6¢j Omvsef VUzx
Xl 70mauhESRVI mYW JxSsr El Ler ZYsuv5HbFdand+/ r Er mP2HVyf dnt LnKdSzmXJ
51 wE/ Et 2Qx YNGor 00BI Lesowf sl R3LhHi 4wn+5i s7mALgNw/ NuTi Ur 1zH18CeB4m
wepBl JsLaJu6zuld 71 qdswsSa3f Hd5qq0/ k8P9z0YAYr f 3+MFQr 4i bvsYvH Q087

| Configuring the Device with a Certificate

Step 8

Step 9

Step 10

Step 11

Step 12

How to Configure Signed Tcl Scripts .

02Js1gWiqz34pghNh
Certificate has the following attributes:
Fi ngerprint MD5: 1E327DBB 330936EB 2FBS8EACB 4FD1133E
Fi ngerprint SHAl: EE7FF9F4 05148842 B9D50FAC D76FDCIC E0703246
% Do you accept this certificate? [yes/no]: yes
Trustpoint CA certificate accepted.
% Certificate successfully inported

scripting tcl secure-mode
Enables signature verification of the interactive Tcl scripts.

Devi ce(config)# scripting tcl secure-node

scripting tcl trustpoint name name
Associates an existing configured trustpoint name with a certificate to verify Tcl scripts.

Devi ce(config)# scripting tcl trustpoint nane nytrust

scripting tcl trustpoint untrusted {execute | safe-execute | terminate}
(Optional) Allows the interactive Tcl scripts to run regardless of the scripts failing in the signature check or in
untrusted mode using one of the three keywords: execute, safe-execute, or ter minate.

e execute--Executes Tcl scripts even if the signature verification fails. If the execute keyword is configured,
signature verification is not at all performed.

Note Use of this keyword is usually not recommended because the signature verification is not at all performed.

The execute keyword is provided for internal testing purposes and to provide flexibility. For example, in a situation
where a certificate has expired but the other configurations are valid and you want to work with the existing
configuration, then you can use the execute keyword to work around the expired certificate.

» safe-execute --Allows the script to run in safe mode. You can use the tclsafe command and also enter the
interactive Tcl shell safe mode to explore the safe mode Tcl commands that are available. In order to get a better
understanding of what is available in this limited safe mode, use the tclsafe Exec command to explore the
options.

e terminate --Stops any script from running and reverts to default behavior. The default policy is to terminate.
When the last trustpoint name is removed, the untrusted action is also removed. The untrusted action cannot be
entered until at least one trustpoint name is configured for Tcl.

The following example shows how to execute the Tcl script in safe mode using the safe-execute keyword when the
signature verification fails.

Devi ce(config)# scripting tcl trustpoint untrusted safe-execute
exit
Exits global configuration mode and returns to privileged EXEC mode.

Devi ce(config)# exit

tclsafe
(Optional) Enables the interactive Tcl shell untrusted safe mode. This allows you to manually run Tcl commands from
the Cisco command line interface in untrusted safe mode.

Devi ce# tclsafe

Verifying the Trustpoint

. How to Configure Signed Tcl Scripts

Example:

Verifying the Trustpoint

To display the trustpoints that are configured in the device, use the show crypto pki trustpoints command.
SUMMARY STEPS

1. enable
2. show crypto pki trustpoints

DETAILED STEPS

Step 1 enable
This command enables privileged EXEC mode.

Example:

Devi ce> enabl e

Step 2 show crypto pki trustpoints
This command displays the trustpoints that are configured in the device.

Example:

Devi ce# show
crypto pki trustpoints

Trust poi nt nytrust:
Subj ect Nane:
ea=j anedoe@i sco. com
cn=Jane
ou=DEPT_ACCT
o0=Ci sco
| =San Jose
st=California
c=US
Serial Nunber: 00
Certificate configured.

Verifying the Signed Tcl Script

To verify that the Signed Tcl Script is properly running, use the debug crypto pki transactions command
and the tclshcommand.

| What to Do Next

How to Configure Signed Tcl Scripts .

SUMMARY STEPS

1. enable
2. debug crypto pki transactions
3. tclsh flash:signed-tcl-file

DETAILED STEPS

Step 1 enable
This command enables privileged EXEC mode.

Example:

Devi ce> enabl e

Step 2 debug crypto pki transactions
This command display debugging messages for the trace of interaction (message type) between the CA and the
device.

Example:

Devi ce# debug crypto pki transactions

Crypto PKI Trans debugging is on

Step 3 tclsh flash: signed-tcl-file
This command executes the Tcl script in Tcl shell.

Note The file should be a signed Tcl file.

Example:

Devi ce# tclsh flash:hello.tcl

hell o

argc =0

argv =

argv0 = flash:hello.tcl

tcl _interactive = 0

devi ce#

*Apr 21 04:46:18.563: CRYPTO PKI: | ocked trustpoint mytrust, refcount is 1
*Apr 21 04:46:18.563: The PKCS #7 nessage has 0 verified signers.

*Apr 21 04:46:18.563: CRYPTO PKI: Success on PKCS7 verify!

*Apr 21 04:46:18.563: CRYPTO_PKI: unl ocked trustpoint mytrust, refcount is O

What to Do Next

* To get an overview of Crypto, refer to the “Part 5: Implementing and Managing a PKI” section of the
Security Configuration Guide.

| .

Generating a Key Pair Example

. Configuration Examples for Signed Tcl Script

Configuration Examples for Signed Tcl Script

e Generating a Key Pair Example, page 16

» Generating a Certificate Example, page 16

» Signing the Tcl Scripts Example, page 17

» Verifying the Signature Example, page 17

e Converting the Signature with Nonbinary Data Example, page 17
» Configuring the Device with a Certificate Example, page 19

Generating a Key Pair Example

The following example shows how to generate the key pair--a private key and a public key:

Generate a Private Key: Example

Host % openssl genrsa -out privkey. pem 2048
Generating RSA private key, 2048 bit |ong nodul us

......... +++

,,, +++

e is 65537 (0x10001)

Host% Ils -1

total 8

SPWr--r-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem

Host %

Generate a Public Key from the Private Key

Host % openssl rsa -in privkey. pem -pubout -out pubkey.pem

writing RSA key

Host% Is -1

total 16

STWr--T-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem

SPWr--r-- 1 j anedoe engl2 451 Jun 12 14:57 pubkey. pem
Generating a Certificate Example

The following example shows how to generate a certificate:

Host % openssl req -new -x509 -key privkey. pem-out cert.pem -days 1095

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Nane or a DN

There are quite a few fields but you can | eave sone bl ank

For sone fields there will be a default value, If you enter '.', the field will be left

bl ank.

Country Nane (2 letter code) [GB]:US

State or Province Nanme (full nanme) [Berkshire]:California
Locality Name (eg, city) [Newbury]: San Jose

Organi zati on Name (eg, conpany) [My Conpany Ltd]:Ci sco Systens, Inc.
Organi zational Unit Nane (eg, section) []:DEPT_ACCT

Common Nane (eg, your nane or your server's hostnane) []:Jane
Enai| Address []:janedoe@onpany.com

Host% |s -1

total 24

SFTWr--T-- 1 janedoe engl2 1659 Jun 12 15:01 cert.pem

| Signing the Tcl Scripts Example

Configuration Examples for Signed Tcl Script .
SPWr--r-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
SPWr--TF-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

Signing the Tcl Scripts Example

The following example shows how to sign the Tcl scripts:

Host % openssl smine -sign -in hello -out hello.pk7 -signer cert.pem-inkey privkey. pem -
out form DER - bi nary

Host% Is -1

total 40

SPWr--r-- 1 janedoe engl2 1659 Jun 12 15:01 cert.pem
STWr--r1-- 1 janedoe engl2 115 Jun 13 10:16 hello
STWr--T-- 1 janedoe engl2 1876 Jun 13 10: 16 hel |l o. pk7
SPWr--r-- 1 janedoe engl2 1679 Jun 12 14:55 privkey. pem
SrWr--r1-- 1 janedoe engl2 451 Jun 12 14:57 pubkey. pem

Verifying the Signature Example

The following example shows how to verify the signature:

Host % openssl smine -verify -in hello.pk7 -CAfile cert.pem-informDER -content hello
puts hello

puts "argc = $argc"

puts "argv = $argv"

puts "argv0 = $argv0"

puts "tcl_interactive = $tcl_interactive"

Verification successful

Converting the Signature with Nonbinary Data Example

The following example shows how to convert the Tcl signature with nonbinary data:

#Ci sco Tcl Signature V1.0

Then append the signature file to the end of the file.
Host % xxd -ps hell o. pk7 > hell o. hex
Host % cat ny_append

#!/ usr/ bi n/ env expect

set nmy_first {#G sco Tcl Signature V1.0}
set newine {}

set my_file [lindex $argv 0]

set ny_new file ${ny_file}_sig

set ny_new_handl e [open $ny_new file w
set my_handl e [open $ny _file r]

puts $ny_new_handl e $new i ne

puts $ny_new handl e $ny_first

foreach line [split [read $ny_handle] "\n"] {
set new_|ine {#}
append new | ine $line
puts $ny_new_handl e $new_|ine

cl ose $my_new_handl e
cl ose $ny_handl e
Host % ny_append hel | 0. hex

Host % Is -1

total 80

STWr--T-- 1 janedoe engl2 1659 Jun 12 15:01 cert.pem
SPWr--r1-- 1 j anedoe engl2 115 Jun 13 10:16 hello
SrWr--r1-- 1 janedoe engl2 3815 Jun 13 10: 20 hel | 0. hex
STWr--T-- 1 janedoe engl2 3907 Jun 13 10:22 hello. hex_sig
SPWr--r-- 1 janedoe engl2 1876 Jun 13 10: 16 hel | o. pk7
SPWXE--T-- 1 janedoe engl2 444 Jun 13 10: 22 ny_append
STWr--T-- 1 j anedoe engl2 1679 Jun 12 14:55 privkey. pem
SPWr--r-- 1 j anedoe engl2 451 Jun 12 14:57 pubkey. pem

Converting the Signature with Nonbinary Data Example

. Configuration Examples for Signed Tcl Script

Host % cat hello hello.hex_sig > hello.tc

Host % cat hello.tc

puts hello

puts "argc = $argc"

puts "argv = $argv"

puts "argv0 = $argv0"

puts "tcl _interactive = $tcl _interactive"

#Ci sco Tcl Signature V1.0

#3082075006092a864886f 70d010702a08207413082073d020101310b3009
#06052b0e03021a0500300b06092a864886f 70d010701a08204a13082049d
#30820385a003020102020100300d06092a864886f 70d0101040500308195
#310b3009060355040613025553311330110603550408130a43616c69666f
#726e€69613111300f 0603550407130853616e204a6f 7365311¢c301a060355
#040a1313436973636f 2053797374656d732¢c20496e632e310e300c060355
#040b13054e53535447310d300b060355040313044a6f 686€3121301f 0609
#2a864886f 70d01090116126a6¢c6175746d616e40636973636f 2e636f 6d30
#1e170d3037303631323232303134335a170d313030363131323230313433
#5a308195310b3009060355040613025553311330110603550408130a4361
#6c69666f 726€69613111300f 0603550407130853616e204a6f 7365311c30
#1a060355040a1313436973636f 2053797374656d732¢c20496e632e310e30
#0c060355040b13054e€53535447310d300b060355040313044a6f 686e3121
#301f 06092a864886f 70d01090116126a6¢c6175746d616e40636973636f 2e
#636f 6d30820122300d06092a864886f 70d01010105000382010f 00308201
#0a0282010100a751eb5ec1f 3009738c88a55987c07b759¢c36f 3386342283
#67ea20a89d9483ae85e0c63eeded8ab3eb7a08006689f 09136f 172183665
#c971099ba54e77ab47706069bbef aaab8c50184396350e4cc870c4c3f 477
#88c55c52e2cf 411f 05b59f 0Oeaec0678f f 5cc238f dce2263a9f c6b6c244b8
#f f aead865c19¢c3d3172674a13b24c8f 2c01dd8b1bd491c13e84e29171b85
#f 28155d81ac8c69bb25ca23¢c2921d85f bf 745c106e7af f 93¢72316¢cbc654
#4a34eaB88174a8ba7777f a60662974elf bac85a0f Daeac925dba6e5e850b8
#7caf f ce2f e8bb04b61b62f 532b5893¢c081522d538005df 81670b931b0ad0
#ele76ae648f 598a9442d5d0976e67¢8d55889299147d0203010001a381f 5
#3081f 2301d0603551d0€04160414bc34132be952f f 8b9elaf 3b93140a255
#e54a667c¢3081c20603551d230481ba3081b78014bc34132be952f f 8b9ela
#f 3b93140a255e54a667cal1819ba48198308195310b300906035504061302
#5553311330110603550408130a43616c69666f 726€69613111300f 060355
#0407130853616e204a6f 7365311c301a060355040a1313436973636f 2053
#797374656d732¢20496e632e310e300c060355040b13054e53535447310d
#300b060355040313044a6f 686e3121301f 06092a864886f 70d0109011612
#6a6c6175746d616e40636973636f 2e636f 6d820100300c0603551d130405
#30030101f f 300d06092a864886f 70d010104050003820101000¢c83¢c1b074
#6720929c9514af 6d5df 96f 0a95639f 047¢c40a607¢83d8362507c58f a7f 84
#aa699ec5e5bef 61b2308297a0662c653f f 446acf bb6f 5cb2dd162d939338
#a5e4d78a5c45021e5d4dbabb8784ef bf 50cab0f 5125d164487b31f 5¢f 933
#a9f 68f 82cd111cbabl1739d7f 372ec460a7946882874b0a0f 22dd53achd62
#a944al5e52e54a24341b3b8a820f 23a5bc7ea7b2278bb56838b8a4051926
#af 9c167274f f 8449003a4e012bcf 4f 4b3e280f 85209249a390d14df 47435
#35ef abce720ea3d56803a84a2163db4478ae19d7d987ef 6971c8312e280a
#aac0217d4f e620c6582a48f aa8ea5e3726a99012e1d55f 8d61b066381f 77
#4158d144a43f b536¢77d6a318202773082027302010130819b308195310b
#3009060355040613025553311330110603550408130a43616c69666f 726e
#69613111300f 0603550407130853616e204a6f 7365311¢c301a060355040a
#1313436973636f 2053797374656d732c20496e€632e310e300¢c060355040b
#13054e€53535447310d300b060355040313044a6f 686e3121301f 06092a86
#4886f 70d01090116126a6c6175746d616e40636973636f 2e636f 6d020100
#300906052b0e03021a0500a081b1301806092a864886f 70d010903310b06
#092a864886f 70d010701301¢c06092a864886f 70d010905310f 170d303730
#3631333137313634385a302306092a864886f 70d01090431160414372cbh3
#72dc607990577f d0426104a42ee4158d2b305206092a864886f 70d01090f
#31453043300a06082a864886f 70d0307300e06082a864886f 70d03020202
#0080300d06082a864886f 70d0302020140300706052b0e030207300d0608
#2a864886f 70d0302020128300d06092a864886f 70d010101050004820100
#72db6898742f 449b26d3ac18f 43a1e7178834f b05ad13951bf 042e127eea
#944b72b96f 3b8ecf 7eb52f 3d0e383bf 63651750223ef e69eae04287c9dae
#b1f 31209444108b31d34e46654c6¢c3cc10b5baba887825¢c224ec6f 376d49
#00f f 7ab2d9f 88402dab9a2c2ab6aa3ecceeaf 5a594bdc7d3a822c55e7daa
#aa0c2b067e06967f 22a20e406f e21d9013ecc6bd9cd6d402c2749f 8beabl
#9f 8f 87acf bc9e10d6ce91502e34629adcabee855419af af e6a8233333e14
#ad4c107901d1f 2bcadd7f f aadddbc54192a25da662f 8b8509782¢c76977b8
#94879453f bb00486ccc55f 88db50f cc149bae066916b350089cde51a6483
#2ec14019611720f c5bbe2400f 24225f ¢

| Configuring the Device with a Certificate Example

Configuring the Device with a Certificate Example

The following example shows how to configure the device with a certificate:

Additional

crypto pki trustpoint nytrust
enrol | ment termna
|
!
crypto pki authentication nytrust
crypto pki certificate chain nytrust
certificate ca 00
308204B8 308203A0 A0030201 02020100
819E310B 30090603 55040613 02555331
726E6961 3111300F 06035504 07130853
13134369 73636F20 53797374 656D732C
4E535354 47311630 14060355 0403130D
1F06092A 864886F7 0D010901 16126A6C
301E170D 30363131 31373137 35383031
30819E31 0B300906 03550406 13025553
6F726E69 61311130 0F060355 04071308
0A131343 6973636F 20537973 74656D73
054E5353 54473116 30140603 55040313
301F0609 2A864886 F70D0109 0116126A
6D308201 22300D06 092A8648 86F70D01
0100BC6D A933028A B31BF827 7258BB87
74D231DF FOC365C1 07D6E206 D7651FA8
9AF449D8 FA8900BB 3E567F77 5412881B
0940F6D1 3A2613CD F6B3595E F468B315
DOD9CO9D 31E3B380 5DEB7039 A1A29EF9
481AD75D E741CD9E BEO6EA16 9B514AE3
62CA1ACO DF30C39A 41316B8E 72289113
ADF48383 1B332C7F 73C58686 6279E2A4
43CB0203 010001A3 81FE3081 FB301D06
5F278C44 6BB5F8EE 8345AB99 3081CB06
F6CCA772 5F278C44 6BB5F8EE 8345AB99
04061302 55533113 30110603 55040813
03550407 13085361 6E204A6F 7365311C
79737465 6D732C20 496E632E 310E300C
06035504 03130D4A 6F686E20 4C617574
01090116 126A6C61 75746D61 6E406369
13040530 030101FF 300D0609 2A864886
31078DF6 94FE5CFO0 8F83639B 414F32D8
61A6CCD3 37656934 4BE4157A 400E182B
24152FE8 A736B670 58CC684E 750D08AE
5E5EF499 ABA11124 55966616 AC9C52B2
CAAE63F6 1D5CO9F76 7B4BICA7 52CE65C9
CA307EC9 51DCB847 8B8C27FB 98ACEE60
C1CA4120 9B0B689B BA654250 97B22A76
2B7F7F8C 150AF889 BBEC62F1 E53B4F3B
quit
archi ve
log config
scripting tcl trustpoint name nytrust
scripting tcl secure-node
|

!
end

References

300D0609
13301106
616E204A
20496E63
4A6F686E
6175746D
5A170D30
31133011
53616E20
2C20496E
O0D4AGF68
6C617574
01010500
A1600CFO
C7B230A2
AADIS25E
6DDEFFO7
46ED536E
91184A56
98080354
4BF41644
03551D0E
03551D23
A181A4A4
0A43616C
301A0603
06035504
6D616EGE
73636F2E
F70D0101
069D23E2
EC390D1A
C7739907
B1082DEA
E65C04FC
0B80DC3F
CC126B77
A3626CD6

2A864886
03550408
6F736531
2E310E30
204C6175
616E4063
39313131
06035504
4A6F7365
632E310E
6E204C61
6D616E40
0382010F
21090F04
3B0011E4
3ECLD3B1
BBC5D521
4D768048
AOE51B7D
C7297AD7
3E60F131
04160414
0481C330
81A13081
69666F72
55040A13
0B13054E
3121301F
636F6D82
04050003
37E182BE
DC130A56
917B7A72
D962CBAF
4B7642D6
36E4E252
CT779AAA
05B8AB3D

F70D0101
130A4361
1C301A06
00060355
746D616E
6973636F
36313735
08130A43
311C301A
30000603
75746061
63697363
00308201
2080BECC
EA2B6A4C
EBCE8155
B560AF72
12D48C24
4465D730
89B627F8
090D3F5D
F7F4E80E
81008014
9E310B30
6E696131
13436973
53535447
06092A86
0100300C
82010100
7C31EC14
B8F35BFB
3D26BECY
E476C575
OD1A8AF4
BD731F5F
D3F93C3F
F8AG6A361

Additional References

04050030
6C69666F
0355040A
040B1305
6E312130
2E636F6D
3830315A
616C6966
06035504
55040B13
6E6E3121
6F2E636F
0A028201
58186888
1F3F27FB
D74866F1
D6 D5FDA7
59B08973
1AB3C7DD
ED40D924
25F0C025
F6CCAT72
F7F4E8OE
09060355
11300F06
636F2053
31163014
4886F70D
0603551D
6D12CFF8
E87AF216
D2234556
9F554CF1
A9DDFBFA
38194B7A
OE781E26
DCF46006

The following sections provide references related to the Signed Tcl Scripts feature.

Configuring the Device with a Certificate Example

Additional References

Related Documents

Related Topic

Document Title

Cisco PKI Overview: Understanding and Planning
a PKI

Implementing and Managing a PKI

Security Configuration Guide, Release 12.4

PKI commands: complete command syntax,
command mode, command history, defaults, usage
guidelines, and examples.

Cisco 10S Security Command Reference, Release
124

Standards
Standard Title
None --
MIBs
MIB MIBs Link
None To locate and download MIBs for selected
platforms, Cisco software releases, and feature sets,
use Cisco MIB Locator found at the following
URL:
http://www.cisco.com/go/mibs
RFCs
RFC Title
None -
Technical Assistance
Description Link

The Cisco Support website provides extensive

online resources, including documentation and tools

for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various
services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS)
Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

http://www.cisco.com/techsupport

http://www.cisco.com/go/mibs
http://www.cisco.com/public/support/tac/home.shtml

| Configuring the Device with a Certificate Example

Feature Information for Signed Tcl Scripts .

Feature Information for Signed Tcl Scripts

Glossary

The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for Signed Tcl Scripts
Feature Name Releases Feature Information
Signed Tcl Scripts 12.4(15)T The Signed Tcl Scripts feature

allows you to create a certificate
to generate a digital signature and
sign a Tcl script with that digital
signature.

The following commands were
introduced by this feature:
scripting tcl secure-mode,
scripting tcl trustpoint name,
scripting tcl trustpoint
untrusted,and tclsafe.

CA--certification authority. Service responsible for managing certificate requests and issuing certificates to
participating IPsec network devices. This service provides centralized key management for the participating
devices and is explicitly trusted by the receiver to validate identities and to create digital certificates.

certificates--Electronic documents that bind a user's or device's name to its public key. Certificates are
commonly used to validate a digital signature.

CRL--certificate revocation list. Electronic document that contains a list of revoked certificates. The CRL
is created and digitally signed by the CA that originally issued the certificates. The CRL contains dates for
when the certificate was issued and when it expires. A new CRL is issued when the current CRL expires.

IPsec--1P security

peer certificate--Certificate presented by a peer, which contains the peer's public key and is signed by the
trustpoint CA.

PKI--public key infrastructure. System that manages encryption keys and identity information for
components of a network that participate in secured communications.

RA--registration authority. Server that acts as a proxy for the CA so that CA functions can continue when
the CA is offline. Although the RA is often part of the CA server, the RA could also be an additional
application, requiring an additional device to run it.

RSA keys--Public key cryptographic system developed by Ron Rivest, Adi Shamir, and Leonard Adleman.
An RSA key pair (a public and a private key) is required before you can obtain a certificate for your device.

"

http://www.cisco.com/go/cfn

OpenSSL Open SSL Project |

. Notices
SHAZ1--Secure Hash Algorithm 1
SSH--secure shell
SSL--secure socket layer
Notices

The following natices pertain to this software license.

» OpenSSL Open SSL Project, page 22

OpenSSL Open SSL Project

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).
This product includes software written by Tim Hudson (tjh@cryptsoft.com).

» License Issues, page 22

License Issues

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the OpenSSL License and the
original SSLeay license apply to the toolkit. See below for the actual license texts. Actually both licenses
are BSD-style Open Source licenses. In case of any license issues related to OpenSSL please contact
openssl-core@openssl.org.

OpenSSL License:
Copyright © 1998-2007 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1 Redistributions of source code must retain the copyright notice, this list of conditions and the following
disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgment: “This product includes software developed by the OpenSSL Project for use in the
OpenSSL Toolkit (http://www.openssl.org/)”.

4 The names “OpenSSL Toolkit” and “OpenSSL Project” must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please
contact openssl-core@openssl.org.

5 Products derived from this software may not be called “OpenSSL” nor may “OpenSSL” appear in their
names without prior written permission of the OpenSSL Project.

6 Redistributions of any form whatsoever must retain the following acknowledgment:

“This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/)”.

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT “AS IS™ AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/
http://www.openssl.org/

OpenSSL Open SSL Project

License Issues .

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product
includes software written by Tim Hudson (tjh@cryptsoft.com).

Original SSLeay License:

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered
to. The following conditions apply to all code found in this distribution, be it the RC4, RSA, lhash, DES,
etc., code; not just the SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young’s, and as such any Copyright notices in the code are not to be removed. If
this package is used in a product, Eric Young should be given attribution as the author of the parts of the
library used. This can be in the form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1 Redistributions of source code must retain the copyright notice, this list of conditions and the following
disclaimer.

2 Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3 All advertising materials mentioning features or use of this software must display the following
acknowledgement:

“This product includes cryptographic software written by Eric Young (eay@cryptsoft.com)”.

The word “cryptographic’ can be left out if the routines from the library being used are not cryptography-
related.

1 If you include any Windows specific code (or a derivative thereof) from the apps directory (application
code) you must include an acknowledgement: “This product includes software written by Tim Hudson
(tih@cryptsoft.com)”.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

"

OpenSSL Open SSL Project

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be
changed. i.e. this code cannot simply be copied and put under another distribution license [including the
GNU Public License].

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S.
and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2012 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

	Signed Tcl Scripts
	Finding Feature Information
	Prerequisites for Signed Tcl Scripts
	Restrictions for Signed Tcl Scripts
	Information About Signed Tcl Scripts
	Cisco PKI
	RSA Key Pair
	Certificate and Trustpoint

	How to Configure Signed Tcl Scripts
	Generating a Key Pair
	Generating a Certificate
	Signing the Tcl Scripts
	Verifying the Signature
	Converting the Signature into Nonbinary Data
	Configuring the Device with a Certificate
	Verifying the Trustpoint
	Verifying the Signed Tcl Script
	What to Do Next

	Configuration Examples for Signed Tcl Script
	Generating a Key Pair Example
	Generating a Certificate Example
	Signing the Tcl Scripts Example
	Verifying the Signature Example
	Converting the Signature with Nonbinary Data Example
	Configuring the Device with a Certificate Example

	Additional References
	Feature Information for Signed Tcl Scripts
	Glossary
	Notices
	OpenSSL Open SSL Project
	License Issues

