| EEM CLI Library Command Extensions

EEM CLI Library Command Extensions

Last Updated: September 06, 2011

All command-line interface (CL1) library command extensions belong to the ::cisco::eem namespace.

Thislibrary provides users the ability to run CLI commands and get the output of the commandsin Tcl.
Users can use commands in this library to spawn an exec and open avirtual terminal channel to it, write the
command to execute to the channel so that the command will be executed by exec, and read back the output
of the command.

There are two types of CLI commands: interactive commands and non-interactive commands.

For interactive commands, after the command is entered, there will be a"Q&A" phase in which the router
will ask for different user options, and the user is supposed to enter the answer for each question. Only after
all the questions have been answered properly will the command run according to the user’s options until
completion.

For noninteractive commands, once the command is entered, the command will run to completion. To run
different types of commands using an EEM script, different CLI library command sequences should be
used, which are documented in the "Using the CLI Library to Run a Noninteractive Command" section and
inthe "Using the CLI Library to Run an Interactive Command" section in the cli_write Tcl command.

The vty lines are allocated from the pool of vty lines that are configured using the line vty CLI
configuration command. EEM will use avty line when avty lineis not being used by EEM and there are
available vty lines. EEM will also use avty line when EEM is aready using a vty line and there are three or
more vty lines available. Be aware that the connection will fail when fewer than three vty lines are
available, preserving the remaining vty linesfor Telnet use.

In Cisco 10S Release 12.4(22)T, and later releases, XML-PI support was introduced. For details about the
XML-PI support, the new CLI library command extensions, and some examples of how to implement
XML-PI, see EEM CLI Library XML-PI Support.

e cli_close, page?2

e cli_exec, page?2

» cli_get_ttyname, page3

e cli_open, page3

e cli_read, page4

e cli_read drain, page4

EEM CLI Library Command Extensions I

. cli_close
* cli_read line, page5
e cli_read pattern, page5
e cli_run, page6
e cli_run_interactive, page7
e cli_write, page8
cli_close
Closes the exec process and releases the vty and the specified channel handler connected to the command-
line interface (CL1).
Syntax
cli_close fd tty_id
Arguments
fd (Mandatory) The CLI channel handler.
tty_id (Mandatory) The TTY ID returned from the
cli_open command extension.
Result String
None
Set _cerrno
Cannot close the channel.
cli_exec

Writes the command to the specified channel handler to execute the command. Then reads the output of the
command from the channel and returns the output.

Syntax

cli_exec fd cnd

Arguments
fd (Mandatory) The command-line interface (CLI)
channel handler.
cmd (Mandatory) The CLI command to execute.

Result String
The output of the CLI command executed.

| EEM CLI Library Command Extensions

cli_get_ttyname .

Set _cerrno

Error reading the channel.

cli_get_ttyname

cli_open

DY

Note

Returnsthe real and pseudo TTY namesfor agiven TTY ID.

Syntax

cli_get_ttyname tty_id

Arguments

tty id (Mandatory) The TTY ID returned from the
cli_open command extension.

Result String
pty % tty %

Set _cerrno

None

Allocates avty, creates an EXEC command-line interface (CL1) session, and connects the vty to a channel
handler. Returns an array including the channel handler.

Each call to cli_open initiates a Cisco |OS EXEC session that allocates a Cisco 10S vty line. The vty
remainsin use until the cli_close routine is called. The vty lines are allocated from the pool of vty lines that
are configured using the line vty CLI configuration command. EEM will use avty linewhen avty lineis
not being used by EEM and there are available vty lines. EEM will also use avty line when EEM is already
using avty line and there are three or more vty lines available. Be aware that the connection will fail when
fewer than three vty lines are available, preserving the remaining vty lines for Telnet use

Syntax

cli_open

Arguments

None

EEM CLI Library Command Extensions

. cli_read
Result String
"tty_id {9} pty {%} tty {%} fd {%l}"
Event Type Description
tty id TTY ID.
pty PTY device name.
tty TTY device name.
fd CLI channel handler.
Set _cerrno
e Cannot get pty for EXEC.
e Cannot create an EXEC CLI session.
e Error reading the first prompt.
cli_read

Y

Note

Reads the command output from the specified command-line interface (CLI) channel handler until the
pattern of the router prompt occurs in the contents read. Returns al the contents read up to the match.

Syntax

cli_read fd

Arguments

fd (Mandatory) The CLI channel handler.

Result String
All the contents read.

Set _cerrno

Cannot get router name.

This Tcl command extension will block waiting for the router prompt to show up in the contents read.

cli_read drain

Reads and drains the command output of the specified command-line interface (CLI) channel handler.
Returns al the contents read.

—

| EEM CLI Library Command Extensions

cli_read_line .
Syntax
cli_read_drain fd
Arguments
fd (Mandatory) The CLI channel handler.

Result String
All the contents read.

Set _cerrno

None

cli_read line

Reads one line of the command output from the specified command-line interface (CL1) channel handler.

Returnsthelineread.

Syntax

cli_read_line fd

Arguments

fd (Mandatory) The CLI channel handler.

Result String
Theline read.

Set _cerrno

None

Y

Note This Tcl command extension will block waiting for the end of line to show up in the contents read.

cli_read_pattern

Reads the command output from the specified command-line interface (CLI) channel handler until the
pattern that is to be matched occurs in the contents read. Returns all the contents read up to the match.

EEM CLI Library Command Extensions I

. cli_run
Y
Note The pattern matching logic attempts a match by looking at the command output data as it is delivered from
the Cisco 10S command. The match is always done on the most recent 256 characters in the output buffer
unless there are fewer characters available, in which case the match is done on fewer characters. If more
than 256 characters in the output buffer are required for the match to succeed, the pattern will not match.
Syntax
cli_read_pattern fd ptn
Arguments
fd (Mandatory) The CLI channel handler.
ptn (Mandatory) The pattern to be matched when
reading the command output from the channel.
Result String
All the contents read.
Set _cerrno
None
S
Note This Tcl command extension will block waiting for the specified pattern to show up in the contents read.
cli_run

Iterates over the itemsin the clist and assumes that each one is a command-line-interface (CLI) command
to be executed in the enable mode. On success, returns the output of all executed commands and on failure,
returns error from the failure.

Syntax

cli_run clist

Arguments

clist (Mandatory) The list of commands to be executed.

Result String
Output of all the commands that are executed or an error message.

| EEM CLI Library Command Extensions

cli_run_interactive .

Set _cerrno

None.

Sample Usage
The following example shows how to use the cli_run command extension.

set clist [list {sh run} {sh ver} {sh event man pol reg}]
cli_run { clist }

cli_run_interactive

Provides a sublist to the clist which has four items. On success, returns the output of all executed
commands and on failure, returns error from the failure. Also uses arrays when possible as away of making
things easier to read later by keeping expect and reply separated.

Syntax

cli_run_interactive clist

Arguments
clist (Mandatory) Sublist which has four items and each
item has four subitems;
e command
o expect
o an expected question
o reply

o reply to this question
* acommand to run

o expect

o an expected question

o reply

o reply to this question
e responses

o expect
o an expected question
o reply
o reply to this question
» alist of what to expect and what to reply.

o expect

o an expected question
o reply

o reply to this question

EEM CLI Library Command Extensions

. cli_write

cli_write

Result String
Output of all the commands that are executed or an error message.

Set _cerrno

None.

Sample Usage

The following example shows how to use the cli_ru_ interactive command extension.

set cndl "first command"

set cmdl_expl {[confirny}

set cnmdl_repl {y}

set cndl_response [list [list expect $cndl_expl reply $cnmdl_repl]]

set cnd2 "second comrand”

set cnd2_expl {save confi g}

set cnd2_repl {no}

set cnmd2_exp2 {[confirn]}

set cnd2_rep2 {y}

set cnd2_response [list [list expect $cnd2_expl reply $cnd2_repl] [list expect $cnd2_exp2
reply $cnd2_rep2]]

set cnmd3 "third command"

set cnd3_expl {are you sure}

set cmd3_repl {yes}

set cnd3_exp2 {destination file}

set cnmd3_rep2 {test.txt}

set cnd2_response [list [list expect $cnd3_expl reply $cnd3_repl] [list expect $cnd3_exp2
reply $cnd3_rep2]]

set clist [list " command $cndl responses $cndl_response” " command $cnd2 responses
$cnd2_response” " command $cnd3 responses $cnd3_response”]

cli_run_interactive { clist }

Writes the command that is to be executed to the specified CLI channel handler. The CLI channel handler
executes the command.

Syntax

cli_wite fd cnd

Arguments
fd (Mandatory) The CLI channel handler.
cmd (Mandatory) The CLI command to execute.

Result String
None

Set _cerrno

None

| EEM CLI Library Command Extensions

cli_write .

Sample Usage
As an example, use configuration CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
puts stderr $result

exit 1

} else {

array set clil $result

}

if [catch {cli_exec $clil(fd) "en"} result] {
puts stderr $result

exit 1

}

if [catch {cli_exec $clil(fd) "config t"} result] {
puts stderr $result

exit 1

}

if [catch {cli_exec $clil(fd) "interface Ethernet1/0"} result] {
puts stderr $result

exit 1

}

if [catch {cli_exec $clil(fd) "no shut"} result] {
puts stderr $result

exit 1

}

if [catch {cli_exec $clil(fd) "end"} result] {
puts stderr $result

exit 1

}

if [catch {cli_close $clil(fd) $clil(tty_id)} } result] {
puts stderr $result

exit 1

Using the CLI Library to Run a Noninteractive Command

To run anoninteractive command, use the cli_exec command extension to issue the command, and then
wait for the complete output and the router prompt. For example, the following shows the use of
configuration CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
error $result $errorinfo

} else {

set fd $result

}
if [catch {cli_exec $fd "en"} result] {
error $result $errorinfo

if [catch {cli_exec $fd "config t"} result] {
error $result $errorinfo

if [catch {cli_exec $fd "interface Ethernet1/0"} result] {
error $result $errorinfo

}
if [catch {cli_exec $fd "no shut"} result] {
error $result $errorinfo

if [catch {cli_exec $fd "end"} result] {
error $result $errorinfo

}
if [catch {cli_close $fd} result] {
error $result $errorinfo

}

Using the CLI Library to Run an Interactive Command
To run interactive commands, three phases are needed:

e Phase 1: Issue the command using the cli_write command extension.

EEM CLI Library Command Extensions

cli_write

e Phase2: Q& A Phase. Usethecli_read_pattern command extension to read the question (the regular
pattern that is specified to match the question text) and the cli_write command extension to write back
the answers alternately.

* Phase 3: Noninteractive phase. All questions have been answered, and the command will run to
completion. Usethe cli_read command extension to wait for the complete output of the command and
the router prompt.

For example, use CLI commands to do squeeze bootflash: and save the output of this command in the Tcl
variable cmd_output.

if [catch {cli_open} result] {
error $result $errorinfo

} else {

array set clil $result

}
if [catch {cli_exec $clil(fd) "en"} result] {
error $result $errorinfo

}

Phase 1. issue the commmand
if [catch {cli_wite $clil(fd) "squeeze bootflash:"} result] {
error $result $errorinfo

}

Phase 2: QRA phase

wait for pronpted question

Al deleted files will be renoved. Continue? [confirni

if [catch {cli _read pattern $cli1(fd) "All deleted"} result] {
error $result $errorinfo

wite a newine character
if [catch {cli_wite $clil(fd) "\n"} result] {
error $result $errorinfo

wait for pronpted question

Squeeze operation nmay take a while. Continue? [confirnj

if [catch {cli _read_pattern $cli1(fd) "Squeeze operation"} result] {
error $result $errorinfo

wite a newine character
if [catch {cli_wite $clil(fd) "\n"} result] {
error $result $errorinfo

Phase 3: noninteractive phase

wait for command to conplete and the router pronpt
if [catch {cli_read $clil(fd) } result] {

error $result $errorinfo

} else {

set cnd_out put $result

}
if [catch {cli_close $clil(fd) $clil(tty_ id)} result] {
error $result $errorinfo

}
The following example causes a router to be reloaded using the CLI reload command. Note that the EEM

action_reload command accomplishes the same result in a more efficient manner, but this exampleis
presented to illustrate the flexibility of the CLI library for interactive command execution.

1. execute the reload conmand
if [catch {cli_open} result] {
error $result $errorinfo
} else {
array set clil $result

}

if [catch {cli_exec $clil(fd) "en"} result] {
error $result $errorinfo

}

| EEM CLI Library Command Extensions

cli_write .

if [catch {cli_wite $clil(fd) "reload"} result] {
error $result $errorinfo

} else {
set cnd_out put $result

}

if [catch {cli_read_pattern $cli1(fd) ".*(Systemconfiguration has been nodified. Save\\
\?2 \\\[yes/no\\\]:)"} result] {

error $result $errorinfo
} else {

set cnd_out put $result

}

if [catch {cli_wite $clil(fd) "no"} result] {
error $result $errorinfo

} else {
set cnd_out put $result

}
if [catch {cli_read_pattern $cli1(fd) ".*(Proceed with reload\\\? \\\[confirm\\])"}
result] {
error $result $errorinfo
} else {
set cnd_out put $result

}

if [catch {cli_wite $clil(fd) "y"} result] {
error $result S$errorinfo

} else {
set cnd_out put $result

}

if [catch {cli_close $clil(fd) $clil(tty_id)} result] {
error $result $errorinfo

}

	EEM CLI Library Command Extensions
	cli_close
	cli_exec
	cli_get_ttyname
	cli_open
	cli_read
	cli_read_drain
	cli_read_line
	cli_read_pattern
	cli_run
	cli_run_interactive
	cli_write

