
Writing Embedded Event Manager Policies
Using Tcl

Last Updated: November 17, 2011

This module describes how software developers can write and customize Embedded Event Manager (EEM)
policies using Tool command language (Tcl) scripts to handle Cisco IOS software faults and events. EEM
is a policy-driven process by means of which faults in the Cisco IOS software system are reported through
a defined application programing interface (API). The EEM policy engine receives notifications when
faults and other events occur. EEM policies implement recovery on the basis of the current state of the
system and the actions specified in the policy for a given event. Recovery actions are triggered when the
policy is run.

• Finding Feature Information, page 1

• Prerequisites for Writing Embedded Event Manager Policies Using Tcl, page 2

• Information About Writing Embedded Event Manager Policies Using Tcl, page 2

• How to Write Embedded Event Manager Policies Using Tcl, page 9

• Configuration Examples for Writing Embedded Event Manager Policies Using Tcl, page 38

• Where to Go Next, page 59

• Additional References, page 59

• Feature Information for Writing Embedded Event Manager Policies Using Tcl, page 60

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information
about the features documented in this module, and to see a list of the releases in which each feature is
supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Americas Headquarters:
Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

http://www.cisco.com/go/cfn

Prerequisites for Writing Embedded Event Manager Policies
Using Tcl

• Before writing EEM policies, you should be familiar with the “ Embedded Event Manager Overview ”
module.

• If you want to write EEM policies using the command-line interface (CLI) commands, you should be
familiar with the “ Writing Embedded Event Manager Policies Using the Cisco IOS CLI ” module.

Information About Writing Embedded Event Manager Policies
Using Tcl

• EEM Policies, page 2
• EEM Policy Tcl Command Extension Categories, page 3
• General Flow of EEM Event Detection and Recovery, page 4
• Safe-Tcl, page 5
• Bytecode Support for EEM 2.4, page 7
• Registration Substitution, page 7
• Cisco File Naming Convention for EEM, page 7

EEM Policies
EEM offers the ability to monitor events and take informational or corrective action when the monitored
events occur or reach a threshold. An EEM policy is an entity that defines an event and the actions to be
taken when that event occurs. There are two types of EEM policies: an applet or a script. An applet is a
simple form of policy that is defined within the command-line interface (CLI) configuration. A script is a
form of policy that is written in Tool Command Language (Tcl).

EEM Applet

An EEM applet is a concise method for defining event screening criteria and the actions to be taken when
that event occurs. In EEM applet configuration mode, three types of configuration statements are
supported. The event commands are used to specify the event criteria to trigger the applet to run, the action
commands are used to specify an action to perform when the EEM applet is triggered, and the set command
is used to set the value of an EEM applet variable. Currently only the _exit_status variable is supported for
the set command.

Only one event configuration command is allowed within an applet configuration. When applet
configuration submode is exited and no event command is present, a warning is displayed stating that no
event is associated with the applet. If no event is specified, the applet is not considered registered. When no
action is associated with the applet, events are still triggered but no actions are performed. Multiple action
configuration commands are allowed within an applet configuration. Use the show event manager policy
registered command to display a list of registered applets.

Before modifying an EEM applet, be aware that the existing applet is not replaced until you exit applet
configuration mode. While you are in applet configuration mode modifying the applet, the existing applet
may be executing. It is safe to modify the applet without unregistering it, because changes are written to a

EEM Policies
 Prerequisites for Writing Embedded Event Manager Policies Using Tcl

2

temporary file. When you exit applet configuration mode, the old applet is unregistered and the new
version is registered.

Action configuration commands within an applet are uniquely identified using the label argument, which
can be any string value. Actions are sorted within an applet in ascending alphanumeric key sequence using
the label argument as the sort key, and they are run using this sequence. The same label argument can be
used in different applets; the labels must be unique only within one applet.

The Embedded Event Manager schedules and runs policies on the basis of an event specification that is
contained within the policy itself. When applet configuration mode is exited, EEM examines the event and
action commands that are entered and registers the applet to be run when a specified event occurs.

For more details about writing EEM policies using the Cisco IOS CLI, see the “Writing Embedded Event
Manager Policies Using the Cisco IOS CLI” module.

EEM Script

All Embedded Event Manager scripts are written in Tcl. Tcl is a string-based command language that is
interpreted at run time. The version of Tcl supported is Tcl version 8.3.4 plus added script support. Scripts
are defined using an ASCII editor on another device, not on the networking device. The script is then
copied to the networking device and registered with EEM. Tcl scripts are supported by EEM. As an
enforced rule, Embedded Event Manager policies are short-lived run time routines that must be interpreted
and executed in less than 20 seconds of elapsed time. If more than 20 seconds of elapsed time are required,
the maxrun parameter may be specified in the event_register statement to specify any desired value.

EEM policies use the full range of the Tcl language’s capabilities. However, Cisco provides enhancements
to the Tcl language in the form of Tcl command extensions that facilitate the writing of EEM policies. The
main categories of Tcl command extensions identify the detected event, the subsequent action, utility
information, counter values, and system information.

EEM allows you to write and implement your own policies using Tcl. Writing an EEM script involves:

• Selecting the event Tcl command extension that establishes the criteria used to determine when the
policy is run.

• Defining the event detector options associated with detecting the event.
• Choosing the actions to implement recovery or respond to the detected event.

EEM Policy Tcl Command Extension Categories
There are different categories of EEM policy Tcl command extensions.

Note The Tcl command extensions available in each of these categories for use in all EEM policies are described
in later sections in this document.

 EEM Policy Tcl Command Extension Categories
Information About Writing Embedded Event Manager Policies Using Tcl

 3

Table 1 EEM Policy Tcl Command Extension Categories

Category Definition

EEM event Tcl command extensions (three types:
event information, event registration, and event
publish)

This category is represented by the event_register_
xxx family of event-specific commands. There is a
separate event information Tcl command extension
in this category as well: event_reqinfo. This is the
command used in policies to query the EEM for
information about an event. There is also an EEM
event publish Tcl command extension
event_publish> that publishes an application-
specific event.

EEM action Tcl command extensions These Tcl command extensions (for example,
action_syslog) are used by policies to respond to or
recover from an event or fault. In addition to these
extensions, developers can use the Tcl language to
implement any action desired.

EEM utility Tcl command extensions These Tcl command extensions are used to retrieve,
save, set, or modify application information,
counters, or timers.

EEM system information Tcl command extensions This category is represented by the sys_reqinfo _
xxx family of system-specific information
commands. These commands are used by a policy
to gather system information.

EEM context Tcl command extensions These Tcl command extensions are used to store
and retrieve a Tcl context (the visible variables and
their values).

General Flow of EEM Event Detection and Recovery
EEM is a flexible, policy-driven framework that supports in-box monitoring of different components of the
system with the help of software agents known as event detectors. The figure below shows the relationship
between the EEM server, the core event publishers (event detectors), and the event subscribers (policies).
Basically, event publishers screen events and publish them when there is a match on an event specification
that is provided by the event subscriber. Event detectors notify the EEM server when an event of interest
occurs.

When an event or fault is detected, Embedded Event Manager determines from the event publishers--an
example would be the OIR events publisher in the figure below--if a registration for the encountered fault
or event has occurred. EEM matches the event registration information with the event data itself. A policy
registers for the detected event with the Tcl command extension event_register _ xxx. The event

General Flow of EEM Event Detection and Recovery
 Information About Writing Embedded Event Manager Policies Using Tcl

4

information Tcl command extension event_reqinfo is used in the policy to query the Embedded Event
Manager for information about the detected event.

Figure 1 Embedded Event Manager Core Event Detectors

Safe-Tcl
Safe-Tcl is a safety mechanism that allows untrusted Tcl scripts to run in an interpreter that was created in
the safe mode. The safe interpreter has a restricted set of commands that prevent accessing some system
resources and harming the host and other applications. For example, it does not allow commands to access
critical Cisco IOS file system directories.

Cisco-defined scripts run in full Tcl mode, but user-defined scripts run in Safe-Tcl mode. Safe-Tcl allows
Cisco to disable or customize individual Tcl commands. For more details about Tcl commands, go to http://
www.tcl.tk/man/ .

The following list of Tcl commands are restricted with a few exceptions. Restrictions are noted against
each command or command keyword:

• cd --Change directory is not allowed to one of the restricted Cisco directory names.
• encoding --The commands encoding names, encoding convertfrom, and encoding convertto are

permitted. The encoding system command with no arguments is permitted, but the encoding system
command with the ?encoding? keyword is not permitted.

• exec --Not permitted.
• fconfigure --Permitted.
• file --The following are permitted:

 Safe-Tcl
Information About Writing Embedded Event Manager Policies Using Tcl

 5

http://www.tcl.tk/man/
http://www.tcl.tk/man/

◦ file dirname
◦ file exists
◦ file extension
◦ file isdirectory
◦ file join
◦ file pathtype
◦ file rootname
◦ file split
◦ file stat
◦ file tail

• file --The following are not permitted:

◦ file atime
◦ file attributes
◦ file channels
◦ file copy
◦ file delete
◦ file executable
◦ file isfile
◦ file link
◦ file lstat
◦ file mkdir
◦ file mtime
◦ file nativename
◦ file normalize
◦ file owned
◦ file readable
◦ file readlink
◦ file rename
◦ file rootname
◦ file separator
◦ file size
◦ file system
◦ file type
◦ file volumes
◦ file writable

• glob --The glob command is not permitted when searching in one of the restricted Cisco directories.
Otherwise, it is permitted.

• load --Only files that are in the user policy directory or the user library directory are permitted to be
loaded. Static packages (for example, libraries that consist of C code) are not permitted to be loaded
with the load command.

• open --The open command is not allowed for a file that is located in one of the restricted Cisco
directories.

• pwd --The pwd command is not permitted.
• socket --The socket command is permitted.
• source --The source command is permitted for files that are in the user policy directory or the user

library directory.

Safe-Tcl
 Information About Writing Embedded Event Manager Policies Using Tcl

6

Bytecode Support for EEM 2.4
In Cisco IOS Release 12.4(20)T, EEM 2.4 introduces bytecode language (BCL) support by accepting files
with the standard bytecode script extension .tbc. Tcl version 8.3.4 defines a BCL and includes a compiler
that translates Tcl scripts into BCL. Valid EEM policy file extensions in EEM 2.4 for user and system
policies are .tcl (Tcl Text files) and .tbc (Tcl bytecode files).

Storing Tcl scripts in bytecode improves the execution speed of the policy because the code is precompiled,
creates a smaller policy size, and obscures the policy code. Obfuscation makes it a little more difficult to
modify scripts and hides logic to preserve intellectual property rights.

Support for bytecode is being added to provide another option for release of supported and trusted code.
We recommend that you only run well understood, or trusted and supported software on network devices.
To generate Tcl bytecode for IOS EEM support, use TclPro versions 1.4 or 1.5.

To translate a Tcl script to bytecode you can use procomp, part of Free TclPro Compiler, or Active State
Tcl Development Kit. When a Tcl script is compiled using procomp, the code is scrambled and a .tbc file is
generated. The bytecode files are platform-independent and can be generated on any operating system on
which TclPro is available, including Windows, Linux, and UNIX. Procomp is part of TclPro and available
from http://www.tcl.tk/software/tclpro .

Registration Substitution
In addition to regular Tcl substitution, EEM 2.3 permits the substitution of an individual parameter in an
EEM event registration statement line with an environment variable.

EEM 2.4 introduces the ability to replace multiple parameters in event registration statement lines with a
single environment variable.

Note Only the first environment variable supports multiple parameter substitution. Individual parameters can still
be specified with additional environment variables after the initial variable.

To illustrate the substitution, a single environment variable, $_eem_syslog_statement is configured as:

::cisco::eem::event_register_syslog pattern COUNT

Using the registration substitution, the $_eem_syslog_statement environment variable is used in the
following EEM user policy:

$_eem_syslog_statement occurs $_eem_occurs_val
action_syslog “this is test 3”

Environment variables must be defined before a policy using them is registered. To define the
$_eem_syslog_statement environment variable:

Router(config)# event manager environment eem_syslog_statement
::cisco::eem::event_register_syslog pattern COUNT
Router(config)# event manager environment eem_occurs_val 2

Cisco File Naming Convention for EEM
All Embedded Event Manager policy names, policy support files (for example, e-mail template files), and
library filenames are consistent with the Cisco file naming convention. In this regard, Embedded Event
Manager policy filenames adhere to the following specification:

 Bytecode Support for EEM 2.4
Information About Writing Embedded Event Manager Policies Using Tcl

 7

http://www.tcl.tk/software/tclpro

• An optional prefix--Mandatory.--indicating, if present, that this is a system policy that should be
registered automatically at boot time if it is not already registered. For example: Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see the table below) for the first event
specified; an underscore part; and a descriptive field part that further identifies the policy.

• A filename suffix part defined as .tcl.

Embedded Event Manager e-mail template files consist of a filename prefix of email_template, followed by
an abbreviation that identifies the usage of the e-mail template.

Embedded Event Manager library filenames consist of a filename body part containing the descriptive field
that identifies the usage of the library, followed by _lib, and a filename suffix part defined as .tcl.

Table 2 Two-Character Abbreviation Specification

ap event_register_appl

cl event_register_cli

ct event_register_counter

go event_register_gold

if event_register_interface

io event_register_ioswdsysmon

la event_register_ipsla

nf event_register_nf

no event_register_none

oi event_register_oir

pr event_register_process

rf event_register_rf

rs event_register_resource

rt event_register_routing

rp event_register_rpc

sl event_register_syslog

sn event_register_snmp

st event_register_snmp_notification

so event_register_snmp_object

tm event_register_timer

tr event_register_track

Cisco File Naming Convention for EEM
 Information About Writing Embedded Event Manager Policies Using Tcl

8

ts event_register_timer_subscriber

wd event_register_wdsysmon

How to Write Embedded Event Manager Policies Using Tcl
• Registering and Defining an EEM Tcl Script, page 9

• Displaying EEM Registered Policies, page 11

• Unregistering EEM Policies, page 12

• Suspending EEM Policy Execution, page 14

• Managing EEM Policies, page 16

• Modifying History Table Size and Displaying EEM History Data, page 17

• Displaying Software Modularity Process Reliability Metrics Using EEM, page 18

• Modifying the Sample EEM Policies, page 20

• Programming EEM Policies with Tcl, page 23

• Creating an EEM User Tcl Library Index, page 32

• Creating an EEM User Tcl Package Index, page 36

Registering and Defining an EEM Tcl Script
Perform this task to configure environment variables and register an EEM policy. EEM schedules and runs
policies on the basis of an event specification that is contained within the policy itself. When an EEM
policy is registered, the software examines the policy and registers it to be run when the specified event
occurs.

You must have a policy available that is written in the Tcl scripting language. Sample policies are
provided--see the details in the Sample EEM Policies, page 20 to see which policies are available for the
Cisco IOS release image that you are using--and these sample policies are stored in the system policy
directory.

SUMMARY STEPS

1. enable

2. show event manager environment [all| variable-name]

3. configure terminal

4. event manager environment variable-name string

5. Repeat Registering and Defining an EEM Tcl Script, page 9 to configure all the environment variables
required by the policy to be registered in Registering and Defining an EEM Tcl Script, page 9.

6. event manager policy policy-filename [type {system| user}] [trap]

7. exit

 Registering and Defining an EEM Tcl Script
How to Write Embedded Event Manager Policies Using Tcl

 9

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show event manager environment [all| variable-
name]

Example:

Router# show event manager environment all

(Optional) Displays the name and value of EEM environment
variables.

• The optional all keyword displays all the EEM environment
variables.

• The optional variable-nameargument displays information
about the specified environment variable.

Step 3 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 4 event manager environment variable-name string

Example:

Router(config)# event manager environment
_cron_entry 0-59/2 0-23/1 * * 0-6

Configures the value of the specified EEM environment variable.

• In this example, the software assigns a CRON timer
environment variable to be set to the second minute of every
hour of every day.

Step 5 Repeat Registering and Defining an EEM Tcl
Script, page 9 to configure all the environment
variables required by the policy to be registered in
Registering and Defining an EEM Tcl Script, page
9.

--

Step 6 event manager policy policy-filename [type
{system| user}] [trap]

Example:

Router(config)# event manager policy
tm_cli_cmd.tcl type system

Registers the EEM policy to be run when the specified event
defined within the policy occurs.

• Use the system keyword to register a Cisco-defined system
policy.

• Use the user keyword to register a user-defined system policy.
• Use the trap keyword to generate an SNMP trap when the

policy is triggered.
• In this example, the sample EEM policy named tm_cli_cmd.tcl

is registered as a system policy.

Registering and Defining an EEM Tcl Script
 How to Write Embedded Event Manager Policies Using Tcl

10

Command or Action Purpose

Step 7 exit

Example:

Router(config)# exit

Exits global configuration mode and returns to privileged EXEC
mode.

Examples

In the following example, the show event manager environment privileged EXEC command is used to
display the name and value of all EEM environment variables.

Router# show event manager environment all
No. Name Value
1 _cron_entry 0-59/2 0-23/1 * * 0-6
2 _show_cmd show ver
3 _syslog_pattern .*UPDOWN.*Ethernet1/0.*
4 _config_cmd1 interface Ethernet1/0
5 _config_cmd2 no shut

Displaying EEM Registered Policies
Perform this optional task to display EEM registered policies.

SUMMARY STEPS

1. enable

2. show event manager policy registered [event-type event-name] [time-ordered| name-ordered]
[detailed policy-filename]

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 2 show event manager policy registered [event-type event-name] [time-ordered| name-ordered] [detailed policy-
filename]
Use this command with the time-ordered keyword to display information about currently registered policies sorted
by time, for example:

Example:

Router# show event manager policy registered time-ordered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Wed May11 01:43:18 2005 tm_cli_cmd.tcl
 name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
 nice 0 priority normal maxrun 240

 Displaying EEM Registered Policies
How to Write Embedded Event Manager Policies Using Tcl

 11

2 system syslog Off Wed May11 01:43:28 2005 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90
3 system proc abort Off Wed May11 01:43:38 2005 pr_cdp_abort.tcl
 instance 1 path {cdp2.iosproc}
 nice 0 priority normal maxrun 20

Use this command with the name-ordered keyword to display information about currently registered policies sorted
by name, for example:

Example:

Router# show event manager policy registered name-ordered
No. Type Event Type Trap Time Registered Name
1 system proc abort Off Wed May11 01:43:38 2005 pr_cdp_abort.tcl
 instance 1 path {cdp2.iosproc}
 nice 0 priority normal maxrun 20
2 system syslog Off Wed May11 01:43:28 2005 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90
3 system timer cron Off Wed May11 01:43:18 2005 tm_cli_cmd.tcl
 name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
 nice 0 priority normal maxrun 240

Use this command with the event-typekeyword to display information about currently registered policies for the event
type specified in the event-name argument, for example:

Example:

Router# show event manager policy registered event-type syslog
No. Type Event Type Time Registered Name
1 system syslog Wed May11 01:43:28 2005 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90

Unregistering EEM Policies
Perform this task to remove an EEM policy from the running configuration file. Execution of the policy is
canceled.

SUMMARY STEPS

1. enable

2. show event manager policy registered [event-type event-name][system| user] [time-ordered| name-
ordered] [detailed policy-filename]

3. configure terminal

4. no event manager policy policy-filename

5. exit

6. Repeat Unregistering EEM Policies, page 12 to ensure that the policy has been removed.

Unregistering EEM Policies
 How to Write Embedded Event Manager Policies Using Tcl

12

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show event manager policy registered [event-type event-
name][system| user] [time-ordered| name-ordered]
[detailed policy-filename]

Example:

Router# show event manager policy registered

(Optional) Displays the EEM policies that are currently
registered.

• The optional systemor user keyword displays the
registered system or user policies.

• If no keywords are specified, EEM registered policies
for all event types are displayed in time order.

Step 3 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 4 no event manager policy policy-filename

Example:

Router(config)# no event manager policy
pr_cdp_abort.tcl

Removes the EEM policy from the configuration, causing
the policy to be unregistered.

• In this example, the no form of the command is used to
unregister a specified policy.

Step 5 exit

Example:

Router(config)# exit

Exits global configuration mode and returns to privileged
EXEC mode.

Step 6 Repeat Unregistering EEM Policies, page 12 to ensure that
the policy has been removed.

Example:

Router# show event manager policy registered

--

Examples

In the following example, the show event manager policy registered privileged EXEC command is used
to display the three EEM policies that are currently registered:

Router# show event manager policy registered

 Unregistering EEM Policies
How to Write Embedded Event Manager Policies Using Tcl

 13

No. Type Event Type Trap Time Registered Name
1 system timer cron Off Tue Oct11 01:43:18 2005 tm_cli_cmd.tcl
 name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
 nice 0 priority normal maxrun 240.000
2 system syslog Off Tue Oct11 01:43:28 2005 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90.000
3 system proc abort Off Tue Oct11 01:43:38 2005 pr_cdp_abort.tcl
 instance 1 path {cdp2.iosproc}
 nice 0 priority normal maxrun 20.000

After the current policies are displayed, it is decided to delete the pr_cdp_abort.tcl policy using the no form
of the event manager policy command:

Router# configure terminal
Router(config)# no event manager policy pr_cdp_abort.tcl
Router(config)# exit

The show event manager policy registered privileged EXEC command is entered again to display the
EEM policies that are currently registered. The policy pr_cdp_abort.tcl is no longer registered.

Router# show event manager policy registered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Tue Oct11 01:45:17 2005 tm_cli_cmd.tcl
 name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
 nice 0 priority normal maxrun 240.000
2 system syslog Off Tue Oct11 01:45:27 2005 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90.000

Suspending EEM Policy Execution
Perform this task to immediately suspend the execution of all EEM policies. Suspending policies, instead of
unregistering them, might be necessary for reasons of temporary performance or security.

SUMMARY STEPS

1. enable

2. show event manager policy registered [event-type event-name][system| user] [time-ordered| name-
ordered] [detailed policy-filename]

3. configure terminal

4. event manager scheduler suspend

5. exit

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Suspending EEM Policy Execution
 How to Write Embedded Event Manager Policies Using Tcl

14

Command or Action Purpose

Step 2 show event manager policy registered [event-type event-
name][system| user] [time-ordered| name-ordered]
[detailed policy-filename]

Example:

Router# show event manager policy registered

(Optional) Displays the EEM policies that are currently
registered.

• The optional systemor user keyword displays the
registered system or user policies.

• If no keywords are specified, EEM registered policies
for all event types are displayed in time order.

Step 3 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 4 event manager scheduler suspend

Example:

Router(config)# event manager scheduler suspend

Immediately suspends the execution of all EEM policies.

Step 5 exit

Example:

Router(config)# exit

Exits global configuration mode and returns to privileged
EXEC mode.

Examples

In the following example, the show event manager policy registered privileged EXEC command is used
to display all the EEM registered policies:

Router# show event manager policy registered
No. Type Event Type Trap Time Registered Name
1 system timer cron Off Sat Oct11 01:43:18 2003 tm_cli_cmd.tcl
 name {crontimer2} cron entry {0-59/1 0-23/1 * * 0-7}
 nice 0 priority normal maxrun 240.000
2 system syslog Off Sat Oct11 01:43:28 2003 sl_intf_down.tcl
 occurs 1 pattern {.*UPDOWN.*Ethernet1/0.*}
 nice 0 priority normal maxrun 90.000
3 system proc abort Off Sat Oct11 01:43:38 2003 pr_cdp_abort.tcl
 instance 1 path {cdp2.iosproc}
 nice 0 priority normal maxrun 20.000

The event manager scheduler suspendcommand is entered to immediately suspend the execution of all
EEM policies:

Router# configure terminal
Router(config)# event manager scheduler suspend
*Nov 2 15:34:39.000: %HA_EM-6-FMS_POLICY_EXEC: fh_io_msg: Policy execution has been
suspended

 Suspending EEM Policy Execution
How to Write Embedded Event Manager Policies Using Tcl

 15

Managing EEM Policies
Perform this task to specify a directory to use for storing user library files or user-defined EEM policies.

Note This task applies only to EEM policies that are written using Tcl scripts.

SUMMARY STEPS

1. enable

2. show event manager directory user [library| policy]

3. configure terminal

4. event manager directory user {library path| policy path}

5. exit

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show event manager directory user [library|
policy]

Example:

Router# show event manager directory user
library

(Optional) Displays the directory to use for storing EEM user library
or policy files.

• The optional librarykeyword displays the directory to use for
user library files.

• The optional policykeyword displays the directory to use for
user-defined EEM policies.

Step 3 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 4 event manager directory user {library path|
policy path}

Example:

Router(config)# event manager directory
user library disk0:/usr/lib/tcl

Specifies a directory to use for storing user library files or user-
defined EEM policies.

• Use the pathargument to specify the absolute pathname to the
user directory.

Managing EEM Policies
 How to Write Embedded Event Manager Policies Using Tcl

16

Command or Action Purpose

Step 5 exit

Example:

Router(config)# exit

Exits global configuration mode and returns to privileged EXEC
mode.

Examples

In the following example, the show event manager directory user privileged EXEC command is used to
display the directory, if it exists, to use for storing EEM user library files:

Router# show event manager directory user library
disk0:/usr/lib/tcl

Modifying History Table Size and Displaying EEM History Data
Perform this optional task to change the size of the history tables and to display EEM history data.

SUMMARY STEPS

1. enable

2. configure terminal

3. event manager history size {events | traps} [size]

4. exit

5. show event manager history events [detailed] [maximum number]

6. show event manager history traps [server | policy]

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 2 configure terminal
Enters global configuration mode.

Example:

Router# configure terminal

Step 3 event manager history size {events | traps} [size]
Use this command to change the size of the EEM event history table or the size of the EEM SNMP trap history table.
In the following example, the size of the EEM event history table is changed to 30 entries:

 Modifying History Table Size and Displaying EEM History Data
How to Write Embedded Event Manager Policies Using Tcl

 17

Example:

Router(config)# event manager history size events 30

Step 4 exit
Exits global configuration mode and returns to privileged EXEC mode.

Example:

Router(config)# exit

Step 5 show event manager history events [detailed] [maximum number]
Use this command to display information about each EEM event that has been triggered.

Example:

Router# show event manager history events
No. Time of Event Event Type Name
1 Fri Sep 9 13:48:40 2005 syslog applet: one
2 Fri Sep 9 13:48:40 2005 syslog applet: two
3 Fri Sep 9 13:48:40 2005 syslog applet: three
4 Fri Sep 9 13:50:00 2005 timer cron script: tm_cli_cmd.tcl
5 Fri Sep 9 13:51:00 2005 timer cron script: tm_cli_cmd.tcl

Step 6 show event manager history traps [server | policy]
Use this command to display the EEM SNMP traps that have been sent either from the EEM server or from an EEM
policy.

Example:

Router# show event manager history traps
No. Time Trap Type Name
1 Fri Sep 9 13:48:40 2005 server applet: four
2 Fri Sep 9 13:57:03 2005 policy script: no_snmp_test.tcl

Displaying Software Modularity Process Reliability Metrics Using EEM
Perform this optional task to display reliability metrics for Cisco IOS Software Modularity processes. The
show event manager metric processes command is supported only in Software Modularity images.

SUMMARY STEPS

1. enable

2. show event manager metric process {all| process-name}

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Displaying Software Modularity Process Reliability Metrics Using EEM
 How to Write Embedded Event Manager Policies Using Tcl

18

Example:

Router> enable

Step 2 show event manager metric process {all| process-name}
Use this command to display the reliability metric data for processes. The system keeps a record of when processes
start and end, and this data is used as the basis for reliability analysis. In this partial example, the first and last entries
showing the metric data for the processes on all the cards inserted in the system are displayed.

Example:

Router# show event manager metric process all
=====================================
process name: devc-pty, instance: 1
sub_system id: 0, version: 00.00.0000

last event type: process start
recent start time: Fri Oct10 20:34:40 2005
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Fri Oct10 20:34:40 2005

most recent 10 process end times and types:
cumulative process available time: 6 hours 30 minutes 7 seconds 378 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 0.100000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0
.
.
.
=====================================
process name: cdp2.iosproc, instance: 1
sub_system id: 0, version: 00.00.0000

last event type: process start
recent start time: Fri Oct10 20:35:02 2005
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Fri Oct10 20:35:02 2005

most recent 10 process end times and types:

cumulative process available time: 6 hours 29 minutes 45 seconds 506 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 0.100000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0

• Troubleshooting Tips, page 20

 Displaying Software Modularity Process Reliability Metrics Using EEM
How to Write Embedded Event Manager Policies Using Tcl

 19

Troubleshooting Tips
Use the debug event manager command in privileged EXEC mode to troubleshoot EEM command
operations. Use any debugging command with caution because the volume of output generated can slow or
stop the router operations. We recommend that this command be used only under the supervision of a Cisco
engineer.

Modifying the Sample EEM Policies
Perform this task to modify one of the sample policies. Cisco IOS software contains some sample policies
in the images that contain the Embedded Event Manager. Developers of EEM policies may modify these
policies by customizing the event for which the policy is to be run and the options associated with logging
and responding to the event. In addition, developers may select the actions to be implemented when the
policy runs.

• Sample EEM Policies, page 20

Sample EEM Policies
Cisco includes a set of sample policies shown in the table below. You can copy the sample policies to a
user directory and then modify the policies, or you can write your own policies. Tcl is currently the only
Cisco-supported scripting language for policy creation. Tcl policies can be modified using a text editor
such as Emacs. Policies must execute within a defined number of seconds of elapsed time, and the time
variable can be configured within a policy. The default is currently 20 seconds.

The table below describes the sample EEM policies.

Table 3 Sample EEM Policy Descriptions

Name of Policy Description

pr_cdp_abort.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy monitors
for cdp2.iosproc process abort events. It will log a
message to SYSLOG and send an e-mail with the
details of the abort.

pr_crash_reporter.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy monitors
for all process abort events. When an event occurs,
the policy will send crash information, including
the crashdump file, to the specified URL where a
CGI script processes the data.

pr_iprouting_abort.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy monitors
for iprouting.iosproc process abort events. It will
log a message to SYSLOG and send an e-mail with
the details of the abort.

Modifying the Sample EEM Policies
 Troubleshooting Tips

20

Name of Policy Description

sl_intf_down.tcl This policy runs when a configurable syslog
message is logged. It will execute a configurable
CLI command and e-mail the results.

tm_cli_cmd.tcl This policy runs using a configurable CRON entry.
It will execute a configurable CLI command and e-
mail the results.

tm_crash_history.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy runs at
midnight every day and e-mails a process crash
history report to a specified e-mail address.

tm_crash_reporter.tcl Introduced in Cisco IOS Release 12.4(2)T. This
policy runs 5 seconds after it is registered. If the
policy is saved in the configuration, it will also run
each time that the router is reloaded. The policy
will prompt for the reload reason. If the reload was
due to a crash, the policy will search for the latest
crashinfo file and send this information to a
specified URL location.

tm_fsys_usage.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy runs using
a configurable CRON entry and monitors disk
space usage. A syslog message will be displayed if
disk space usage crosses configurable thresholds.

wd_mem_reporter.tcl Introduced in Cisco IOS Release 12.2(18)SXF4
Software Modularity images. This policy reports on
low system memory conditions when the amount of
memory available falls below 20 percent of the
initial available system memory. A syslog message
will be displayed and, optionally, an e-mail will be
sent.

For more details about the sample policies available and how to run them, see the EEM Event Detector
Demo Examples, page 39.

SUMMARY STEPS

1. enable

2. show event manager policy available detailed policy-filename

3. Cut and paste the contents of the sample policy displayed on the screen to a text editor.

4. Edit the policy and save it with a new filename.

5. Copy the new file back to the router flash memory.

6. configure terminal

7. event manager directory user {library path| policy path}

8. event manager policy policy-filename [type {system| user}] [trap]

 Modifying the Sample EEM Policies
Sample EEM Policies

 21

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 2 show event manager policy available detailed policy-filename
Displays the actual specified sample policy including details about the environment variables used by the policy and
instructions for running the policy. In Cisco IOS 12.2(18)SXF4, the detailed keyword was introduced for the show
event manager policy available and the show event manager policy registered commands. In Cisco IOS releases
prior to 12.2(18)SXF4, you must copy one of the two Tcl scripts from the configuration examples section in this
document (see the Programming Policies with Tcl Sample Scripts Example, page 48). In the following example,
details about the sample policy tm_cli_cmd.tcl are displayed on the screen.

Example:

Router# show event manager policy available detailed tm_cli_cmd.tcl

Step 3 Cut and paste the contents of the sample policy displayed on the screen to a text editor.
Use the edit and copy functions to move the contents from the router to a text editor on another device.

Step 4 Edit the policy and save it with a new filename.
Use the text editor to modify the policy as a Tcl script. For file naming conventions, see the Cisco File Naming
Convention for EEM, page 7.

Step 5 Copy the new file back to the router flash memory.
Copy the file to the flash file system on the router--typically disk0:. For more details about copying files, see the
“Using the Cisco IOS File System” chapter in the Cisco IOS Configuration Fundamentals Configuration Guide .

Step 6 configure terminal
Enters global configuration mode.

Example:

Router# configure terminal

Step 7 event manager directory user {library path| policy path}
Specifies a directory to use for storing user library files or user-defined EEM policies. In the following example, the
user_library directory on disk0 is specified as the directory for storing user library files.

Example:

Router(config)# event manager directory user library disk0:/user_library

Step 8 event manager policy policy-filename [type {system| user}] [trap]
Registers the EEM policy to be run when the specified event defined within the policy occurs. In the following
example, the new EEM policy named test.tcl is registered as a user-defined policy.

Modifying the Sample EEM Policies
 Sample EEM Policies

22

Example:

Router(config)# event manager policy test.tcl type user

Programming EEM Policies with Tcl
Perform this task to help you program a policy using Tcl command extensions. We recommend that you
copy an existing policy and modify it. There are two required parts that must exist in an EEM Tcl policy:
the event_register Tcl command extension and the body. All other sections shown in the Tcl Policy
Structure and Requirements, page 23 concept are optional.

• Tcl Policy Structure and Requirements, page 23

• EEM Entry Status, page 25

• EEM Exit Status, page 25

• EEM Policies and Cisco Error Number, page 25

• Troubleshooting Tips, page 32

Tcl Policy Structure and Requirements
All EEM policies share the same structure, shown in the figure below. There are two parts of an EEM
policy that are required: the event_register Tcl command extension and the body. The remaining parts of
the policy are optional: environment must defines, namespace import, entry status, and exit status.

Figure 2 Tcl Policy Structure and Requirements

The start of every policy must describe and register the event to detect using an event_register Tcl
command extension. This part of the policy schedules the running of the policy . The following example
Tcl code shows how to register the event_register_timer Tcl command extension:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240

 Programming EEM Policies with Tcl
Tcl Policy Structure and Requirements

 23

The environment must defines section is optional and includes the definition of environment variables. The
following example Tcl code shows how to check for, and define, some environment variables.

Check if all the env variables that we need exist.
If any of them does not exist, print out an error msg and quit.
if {![info exists _email_server]} {
 set result \
 "Policy cannot be run: variable _email_server has not been set"
 error $result $errorInfo
}
if {![info exists _email_from]} {
 set result \
 "Policy cannot be run: variable _email_from has not been set"
 error $result $errorInfo
}
if {![info exists _email_to]} {
 set result \
 "Policy cannot be run: variable _email_to has not been set"
 error $result $errorInfo

The namespace import section is optional and defines code libraries. The following example Tcl code
shows how to configure a namespace import section.

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

The body of the policy is a required structure and might contain the following:

• The event_reqinfoevent information Tcl command extension that is used to query the EEM for
information about the detected event.

• The action Tcl command extensions, such as action_syslog, that are used to specify EEM specific
actions.

• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to
obtain general system information.

• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from
a policy.

• The context_save and context_retrieve Tcl command extensions that are used to save Tcl variables
for use by other policies.

The following example Tcl code shows the code to query an event and log a message as part of the body
section.

Query the event info and log a message.
array set arr_einfo [event_reqinfo]

if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

global timer_type timer_time_sec
set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)

Log a message.
set msg [format "timer event: timer type %s, time expired %s" \
 $timer_type [clock format $timer_time_sec]]

action_syslog priority info msg $msg
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

Programming EEM Policies with Tcl
 Tcl Policy Structure and Requirements

24

EEM Entry Status
The entry status part of an EEM policy is used to determine if a prior policy has been run for the same
event, and to determine the exit status of the prior policy. If the _entry_status variable is defined, a prior
policy has already run for this event. The value of the _entry_status variable determines the return code of
the prior policy.

Entry status designations may use one of three possible values: 0 (previous policy was successful), Not=0
(previous policy failed), and Undefined (no previous policy was executed).

EEM Exit Status
When a policy finishes running its code, an exit value is set. The exit value is used by the Embedded Event
Manager to determine whether or not to apply the default action for this event, if any. A value of zero
means do not perform the default action. A value of nonzero means perform the default action. The exit
status will be passed to subsequent policies that are run for the same event.

EEM Policies and Cisco Error Number
Some EEM Tcl command extensions set a Cisco Error Number Tcl global variable _cerrno. Whenever
_cerrno is set, four other Tcl global variables are derived from _cerrno and are set along with it
(_cerr_sub_num, _cerr_sub_err, _cerr_posix_err, and _cerr_str).

For example, the action_syslog command in the example below sets these global variables as a side effect
of the command execution:

action_syslog priority warning msg “A sample message generated by action_syslog”
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

_cerrno: 32-Bit Error Return Values

The _cerrno set by a command can be represented as a 32-bit integer of the following form:

XYSSSSSSSSSSSSSEEEEEEEEPPPPPPPPP

For example, the following error return value might be returned from an EEM Tcl command extension:

862439AE

This number is interpreted as the following 32-bit value:

10000110001001000011100110101110

This 32-bit integer is divided up into the five variables shown in the table below.

 Programming EEM Policies with Tcl
EEM Entry Status

 25

Table 4 _cerrno: 32-Bit Error Return Value Variables

Variable Description

XY The error class (indicates the severity of the error).
This variable corresponds to the first two bits in the
32-bit error return value; 10 in the case above,
which indicates CERR_CLASS_WARNING:

See the table below for the four possible error class
encodings specific to this variable.

SSSSSSSSSSSSSS The subsystem number that generated the most
recent error (13 bits = 8192 values). This is the next
13 bits of the 32-bit sequence, and its integer value
is contained in $_cerr_sub_num.

Variable Description

EEEEEEEE The subsystem specific error number (8 bits = 256
values). This segment is the next 8 bits of the 32-bit
sequence, and the string corresponding to this error
number is contained in $_cerr_sub_err.

PPPPPPPP The pass-through POSIX error code (9 bits = 512
values). This represents the last of the 32-bit
sequence, and the string corresponding to this error
code is contained in $_cerr_posix_err.

Error Class Encodings for XY

The first variable, XY, references the possible error class encodings shown in the table below.

Table 5 Error Class Encodings

00 CERR_CLASS_SUCCESS

01 CERR_CLASS_INFO

10 CERR_CLASS_WARNING

11 CERR_CLASS_FATAL

An error return value of zero means SUCCESS.

Programming EEM Policies with Tcl
 EEM Policies and Cisco Error Number

26

SUMMARY STEPS

1. enable

2. show event manager policy available detailed policy-filename

3. Cut and paste the contents of the sample policy displayed on the screen to a text editor.

4. Define the required event_register Tcl command extension.

5. Add the appropriate namespace under the ::cisco hierarchy.

6. Program the must defines section to check for each environment variable that is used in this policy.

7. Program the body of the script.

8. Check the entry status to determine if a policy has previously run for this event.

9. Check the exit status to determine whether or not to apply the default action for this event, if a default
action exists.

10. Set Cisco Error Number (_cerrno) Tcl global variables.

11. Save the Tcl script with a new filename, and copy the Tcl script to the router.

12. configure terminal

13. event manager directory user {library path| policy path}

14. event manager policy policy-filename [type {system| user}] [trap]

15. Cause the policy to execute, and observe the policy.

16. Use debugging techniques if the policy does not execute correctly.

DETAILED STEPS

Step 1 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 2 show event manager policy available detailed policy-filename
Displays the actual specified sample policy including details about the environment variables used by the policy and
instructions for running the policy. In Cisco IOS 12.2(18)SXF4, the detailed keyword was introduced for the show
event manager policy available and the show event manager policy registered commands. In Cisco IOS releases
prior to 12.2(18)SXF4, you must copy one of the two Tcl scripts from the configuration examples section in this
document (see the Programming Policies with Tcl Sample Scripts Example, page 48). In the following example,
details about the sample policy tm_cli_cmd.tcl are displayed on the screen.

Example:

Router# show event manager policy available detailed tm_cli_cmd.tcl

Step 3 Cut and paste the contents of the sample policy displayed on the screen to a text editor.
Use the edit and copy functions to move the contents from the router to a text editor on another device. Use the text
editor to edit the policy as a Tcl script.

Step 4 Define the required event_register Tcl command extension.
Choose the appropriate event_register Tcl command extension from the table below for the event that you want to
detect, and add it to the policy.

 Programming EEM Policies with Tcl
EEM Policies and Cisco Error Number

 27

Table 6 EEM Event Registration Tcl Command Extensions

Event Registration Tcl Command Extensions

event_register_appl

event_register_cli

event_register_counter

event_register_gold

event_register_interface

event_register_ioswdsysmon

event_register_ipsla

event_register_nf

event_register_none

event_register_oir

event_register_process

event_register_resource

event_register_rf

event_register_routing

event_register_rpc

event_register_snmp

event_register_snmp_notification

event_register_snmp_object

event_register_syslog

event_register_timer

event_register_timer_subscriber

event_register_track

event_register_wdsysmon

Step 5 Add the appropriate namespace under the ::cisco hierarchy.
Policy developers can use the new namespace ::cisco in Tcl policies in order to group all the extensions used by Cisco
IOS EEM. There are two namespaces under the ::cisco hierarchy, and the table below shows which category of EEM
Tcl command extension belongs under each namespace.

Programming EEM Policies with Tcl
 EEM Policies and Cisco Error Number

28

Table 7 Cisco IOS EEM Namespace Groupings

Namespace Category of Tcl Command Extension

::cisco::eem EEM event registration

EEM event information

EEM event publish

EEM action

EEM utility

EEM context library

EEM system information

CLI library

::cisco::lib SMTP library

Note Make sure that you import the appropriate namespaces or use the qualified command names when using the
above commands.

Step 6 Program the must defines section to check for each environment variable that is used in this policy.
This is an optional step. Must defines are a section of the policy that tests whether any EEM environment variables
that are required by the policy are defined before the recovery actions are taken. The must defines section is not
required if the policy does not use any EEM environment variables. EEM environment variables for EEM scripts are
Tcl global variables that are defined external to the policy before the policy is run. To define an EEM environment
variable, use the Embedded Event Manager configuration command event manager environment CLI command.By
convention all Cisco EEM environment variables begin with “ _ ” (an underscore). In order to avoid future conflict,
customers are urged not to define new variables that start with “ _ ”.

Note You can display the Embedded Event Manager environment variables set on your system by using the show
event manager environment privileged EXEC command.

For example, Embedded Event Manager environment variables defined by the sample policies include e-mail
variables. The sample policies that send e-mail must have the variables shown in the table below set in order to
function properly.

The table below describes the e-mail-specific environment variables used in the sample EEM policies.

Table 8 E-mail-Specific Environmental Variables Used by the Sample Policies

Environment Variable Description Example

_email_server A Simple Mail Transfer Protocol
(SMTP) mail server used to send e-
mail.

The e-mail server name can be in any
one of the following template
formats:

• username:password@host
• username@host
• host

 Programming EEM Policies with Tcl
EEM Policies and Cisco Error Number

 29

Environment Variable Description Example

_email_to The address to which e-mail is sent. engineering@example.com

_email_from The address from which e-mail is
sent.

devtest@example.com

_email_cc The address to which the e-mail must
be copied.

manager@example.com

The following example of a must define section shows how to program a check for e-mail-specific environment
variables.

Example of Must Defines

Example:

if {![info exists _email_server]} {
 set result \
 "Policy cannot be run: variable _email_server has not been set"
 error $result $errorInfo
}
if {![info exists _email_from]} {
 set result \
 "Policy cannot be run: variable _email_from has not been set"
 error $result $errorInfo
}
if {![info exists _email_to]} {
 set result \
 "Policy cannot be run: variable _email_to has not been set"
 error $result $errorInfo
}
if {![info exists _email_cc]} {
 set result \
 "Policy cannot be run: variable _email_cc has not been set"
 error $result $errorInfo
}

Step 7 Program the body of the script.
In this section of the script, you can define any of the following:

• The event_reqinfoevent information Tcl command extension that is used to query the EEM for information
about the detected event.

• The action Tcl command extensions, such as action_syslog, that are used to specify EEM specific actions.
• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to obtain

general system information.
• The context_save and context_retrieve Tcl command extensions that are used to save Tcl variables for use by

other policies.
• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from a policy.

Step 8 Check the entry status to determine if a policy has previously run for this event.
If the prior policy is successful, the current policy may or may not require execution. Entry status designations may
use one of three possible values: 0 (previous policy was successful), Not=0 (previous policy failed), and Undefined
(no previous policy was executed).

Step 9 Check the exit status to determine whether or not to apply the default action for this event, if a default action exists.
A value of zero means do not perform the default action. A value of nonzero means perform the default action. The
exit status will be passed to subsequent policies that are run for the same event.

Step 10 Set Cisco Error Number (_cerrno) Tcl global variables.

Programming EEM Policies with Tcl
 EEM Policies and Cisco Error Number

30

Some EEM Tcl command extensions set a Cisco Error Number Tcl global variable _cerrno. Whenever _cerrno is set,
four other Tcl global variables are derived from _cerrno and are set along with it (_cerr_sub_num, _cerr_sub_err,
_cerr_posix_err, and _cerr_str).

For example, the action_syslog command in the example below sets these global variables as a side effect of the
command execution:

Example:

action_syslog priority warning msg “A sample message generated by action_syslog
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

Step 11 Save the Tcl script with a new filename, and copy the Tcl script to the router.
Embedded Event Manager policy filenames adhere to the following specification:

• An optional prefix--Mandatory.--indicating, if present, that this is a system policy that should be registered
automatically at boot time if it is not already registered. For example: Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see EEM Policies and Cisco Error Number, page
25) for the first event specified; an underscore character part; and a descriptive field part further identifying the
policy.

• A filename suffix part defined as .tcl.

For more details, see the Cisco File Naming Convention for EEM, page 7.

Copy the file to the flash file system on the router--typically disk0:. For more details about copying files, see the
“Using the Cisco IOS File System” chapter in the Cisco IOS Configuration Fundamentals Configuration Guide .

Step 12 configure terminal
Enters global configuration mode.

Example:

Router# configure terminal

Step 13 event manager directory user {library path| policy path}
Specifies a directory to use for storing user library files or user-defined EEM policies. In the following example, the
user_library directory on disk0 is specified as the directory for storing user library files.

Example:

Router(config)# event manager directory user library disk0:/user_library

Step 14 event manager policy policy-filename [type {system| user}] [trap]
Registers the EEM policy to be run when the specified event defined within the policy occurs. In the following
example, the new EEM policy named cl_mytest.tcl is registered as a user-defined policy.

Example:

Router(config)# event manager policy cl_mytest.tcl type user

Step 15 Cause the policy to execute, and observe the policy.

 Programming EEM Policies with Tcl
EEM Policies and Cisco Error Number

 31

To test that the policy runs, generate the conditions that will cause the policy to execute and observe that the policy
runs as expected.

Step 16 Use debugging techniques if the policy does not execute correctly.
Use the Cisco IOS debug event manager CLI command with its various keywords to debug issues. Refer to the
Troubleshooting Tips, page 32 for details about using Tcl-specific keywords.

Troubleshooting Tips

• Use the debug event manager tcl commands CLI command to debug issues with Tcl extension
commands. When enabled, this command displays all data that is passed in and read back from the
TTY session that handles the CLI interactions. This data helps ensure users that the commands they
are passing to the CLI are valid.

• The CLI library allows users to run CLI commands and obtain the output of commands in Tcl. Use the
debug event manager tcl cli-library CLI command to debug issues with the CLI library.

• The SMTP library allows users to send e-mail messages to an SMTP e-mail server. Use the debug
event manager tcl smtp_library CLI command to debug issues with the SMTP library. When
enabled, this command displays all data that is passed in and read back from the SMTP library
routines. This data helps ensure users that the commands they are passing to the SMTP library are
valid.

• Tcl is a flexible language that allows you to override commands. For example, you can modify the set
command and create a version of the set command that displays a message when a scalar variable is
set. When the set command is entered in a policy, a message is displayed anytime a scalar variable is
set, and this provides a way to debug scalar variables. To view an example of this debugging
technique, see the Tracing Tcl set Command Operations Example, page 57.

To view examples of the some of these debugging techniques, see the Debugging Embedded Event
Manager Policies Examples, page 56.

Creating an EEM User Tcl Library Index
Perform this task to create an index file that contains a directory of all the procedures contained in a library
of Tcl files. This task allows you to test library support in EEM Tcl. In this task, a library directory is
created to contain the Tcl library files, the files are copied into the directory, and an index tclIndex) is
created that contains a directory of all the procedures in the library files. If the index is not created, the Tcl
procedures will not be found when an EEM policy is run that references a Tcl procedure.

Creating an EEM User Tcl Library Index
 Troubleshooting Tips

32

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl library files
into the directory.

2. tclsh

3. auto_mkindex directory_name *.tcl

4. Copy the Tcl library files from Creating an EEM User Tcl Library Index, page 32 and the tclIndex file
from Creating an EEM User Tcl Library Index, page 32 to the directory used for storing user library
files on the target router.

5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM
policies on the target router. The directory can be the same directory used in Creating an EEM User Tcl
Library Index, page 32.

6. enable

7. configure terminal

8. event manager directory user library path

9. event manager directory user policy path

10. event manager policy policy-name [type {system | user} [trap]

11. event manager run policy-name

DETAILED STEPS

Step 1 On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl library files into the
directory.
The following example files can be used to create a tclIndex on a workstation running the Tcl shell:

lib1.tcl

Example:

proc test1 {} {
 puts "In procedure test1"
}

proc test2 {} {
 puts "In procedure test2"
}

lib2.tcl

Example:

proc test3 {} {
 puts "In procedure test3"
}

Step 2 tclsh
Use this command to enter the Tcl shell.

 Creating an EEM User Tcl Library Index
Troubleshooting Tips

 33

Example:

workstation% tclsh

Step 3 auto_mkindex directory_name *.tcl
Use the auto_mkindex command to create the tclIndex file. The tclIndex file that contains a directory of all the
procedures contained in the Tcl library files. We recommend that you run auto_mkindex inside a directory because
there can only be a single tclIndex file in any directory and you may have other Tcl files to be grouped together.
Running auto_mkindex in a directory determines which tcl source file or files are indexed using a specific tclIndex.

Example:

workstation% auto_mkindex eem_library *.tcl

The following example TclIndex is created when the lib1.tcl and lib2.tcl files are in a library file directory and the
auto_mkindex command is run.

tclIndex

Example:

Tcl autoload index file, version 2.0
This file is generated by the "auto_mkindex" command
and sourced to set up indexing information for one or
more commands. Typically each line is a command that
sets an element in the auto_index array, where the
element name is the name of a command and the value is
a script that loads the command.

set auto_index(test1) [list source [file join $dir lib1.tcl]]
set auto_index(test2) [list source [file join $dir lib1.tcl]]
set auto_index(test3) [list source [file join $dir lib2.tcl]]

Step 4 Copy the Tcl library files from Creating an EEM User Tcl Library Index, page 32 and the tclIndex file from Creating
an EEM User Tcl Library Index, page 32 to the directory used for storing user library files on the target router.

Step 5 Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM policies on the
target router. The directory can be the same directory used in Creating an EEM User Tcl Library Index, page 32.
The directory for storing user-defined EEM policies can be the same directory used in Creating an EEM User Tcl
Library Index, page 32. The following example user-defined EEM policy can be used to test the Tcl library support in
EEM.

libtest.tcl

Example:

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

global auto_index auto_path

puts [array names auto_index]

if { [catch {test1} result]} {
 puts "calling test1 failed result = $result $auto_path"
}

if { [catch {test2} result]} {
 puts "calling test2 failed result = $result $auto_path"

Creating an EEM User Tcl Library Index
 Troubleshooting Tips

34

}
if { [catch {test3} result]} {
 puts "calling test3 failed result = $result $auto_path"
}

Step 6 enable
Enables privileged EXEC mode. Enter your password if prompted.

Example:

Router> enable

Step 7 configure terminal
Enables global configuration mode.

Example:

Router# configure terminal

Step 8 event manager directory user library path
Use this command to specify the EEM user library directory; this is the directory to which the files in Creating an
EEM User Tcl Library Index, page 32 were copied.

Example:

router(config)# event manager directory user library disk2:/eem_library

Step 9 event manager directory user policy path
Use this command to specify the EEM user policy directory; this is the directory to which the file in Creating an EEM
User Tcl Library Index, page 32 was copied.

Example:

router(config)# event manager directory user policy disk2:/eem_policies

Step 10 event manager policy policy-name [type {system | user} [trap]
Use this command to register a user-defined EEM policy. In this example, the policy named libtest.tcl is registered.

Example:

router(config)# event manager policy libtest.tcl

Step 11 event manager run policy-name
Use this command to manually run an EEM policy. In this example, the policy named libtest.tcl is run to test the Tcl
support in EEM. The example output shows that the test for Tcl support in EEM was successful.

Example:

router(config)# event manager run libtest.tcl
The following output is displayed:
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test1
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test2
01:24:37: %HA_EM-6-LOG: libtest.tcl: In procedure test3

 Creating an EEM User Tcl Library Index
Troubleshooting Tips

 35

Creating an EEM User Tcl Package Index
Perform this task to create a Tcl package index file that contains a directory of all the Tcl packages and
version information contained in a library of Tcl package files. Tcl packages are supported using the Tcl
package keyword, and this support was introduced in Cisco IOS Release 12.4(11)T.

Tcl packages are located in either the EEM system library directory or the EEM user library directory.
When a package require Tcl command is executed, the user library directory is searched first for a
pkgIndex.tcl file. If the pkgIndex.tcl file is not found in the user directory, the system library directory is
searched. In this task, a Tcl package directory--the pkgIndex.tcl file--is created in the appropriate library
directory using the pkg_mkIndex command to contain information about all of the Tcl packages contained
in the directory along with version information. If the index is not created, the Tcl packages will not be
found when an EEM policy is run that contains a package require Tcl command.

Using the Tcl package support in EEM, users can gain access to packages such as XML_RPC for Tcl.
When the Tcl package index is created, a Tcl script can easily make an XML-RPC call to an external entity.

Note Packages implemented in C programming code are not supported in EEM.

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl package
files into the directory.

2. tclsh

3. pkg_mkindex directory_name *.tcl

4. Copy the Tcl library files from Creating an EEM User Tcl Package Index, page 36 and the pkgIndex
file from Creating an EEM User Tcl Package Index, page 36 to the directory used for storing user
library files on the target router.

5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM
policies on the target router. The directory can be the same directory used in Creating an EEM User Tcl
Package Index, page 36.

6. enable

7. configure terminal

8. event manager directory user library path

9. event manager directory user policy path

10. event manager policy policy-name [type {system | user} [trap]

11. event manager run policy-name

DETAILED STEPS

Step 1 On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl package files into the
directory.

Step 2 tclsh
Use this command to enter the Tcl shell.

Creating an EEM User Tcl Package Index
 Troubleshooting Tips

36

Example:

workstation% tclsh

Step 3 pkg_mkindex directory_name *.tcl
Use the pkg_mkindex command to create the pkgIndex file. The pkgIndex file contains a directory of all the
packages contained in the Tcl library files. We recommend that you run pkg_mkindex inside a directory because there
can only be a single pkgIndex file in any directory and you may have other Tcl files to be grouped together. Running
pkg_mkindex in a directory determines which Tcl package file or files are indexed using a specific pkgIndex.

Example:

workstation% pkg_mkindex eem_library *.tcl

The following example pkgIndex is created when some Tcl package files are in a library file directory and the
pkg_mkindex command is run.

pkgIndex

Example:

Tcl package index file, version 1.1
This file is generated by the "pkg_mkIndex" command
and sourced either when an application starts up or
by a "package unknown" script. It invokes the
"package ifneeded" command to set up package-related
information so that packages will be loaded automatically
in response to "package require" commands. When this
script is sourced, the variable $dir must contain the
full path name of this file's directory.
package ifneeded xmlrpc 0.3 [list source [file join $dir xmlrpc.tcl]]

Step 4 Copy the Tcl library files from Creating an EEM User Tcl Package Index, page 36 and the pkgIndex file from
Creating an EEM User Tcl Package Index, page 36 to the directory used for storing user library files on the target
router.

Step 5 Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM policies on the
target router. The directory can be the same directory used in Creating an EEM User Tcl Package Index, page 36.
The directory for storing user-defined EEM policies can be the same directory used in Creating an EEM User Tcl
Package Index, page 36. The following example user-defined EEM policy can be used to test the Tcl package support
in EEM.

packagetest.tcl

Example:

::cisco::eem::event_register_none maxrun 1000000.000
#
test if xmlrpc available
#
#
Namespace imports
#
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
#
package require xmlrpc
puts "Did you get an error?"

Step 6 enable
Enables privileged EXEC mode. Enter your password if prompted.

 Creating an EEM User Tcl Package Index
Troubleshooting Tips

 37

Example:

Router> enable

Step 7 configure terminal
Enables global configuration mode.

Example:

Router# configure terminal

Step 8 event manager directory user library path
Use this command to specify the EEM user library directory; this is the directory to which the files in Creating an
EEM User Tcl Package Index, page 36 were copied.

Example:

router(config)# event manager directory user library disk2:/eem_library

Step 9 event manager directory user policy path
Use this command to specify the EEM user policy directory; this is the directory to which the file in Creating an EEM
User Tcl Package Index, page 36 was copied.

Example:

router(config)# event manager directory user policy disk2:/eem_policies

Step 10 event manager policy policy-name [type {system | user} [trap]
Use this command to register a user-defined EEM policy. In this example, the policy named packagetest.tcl is
registered.

Example:

router(config)# event manager policy packagetest.tcl

Step 11 event manager run policy-name
Use this command to manually run an EEM policy. In this example, the policy named packagetest.tcl is run to test the
Tcl package support in EEM.

Example:

router(config)# event manager run packagetest.tcl

Configuration Examples for Writing Embedded Event
Manager Policies Using Tcl

• Assigning a Username for a Tcl Session Examples, page 39

Creating an EEM User Tcl Package Index
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

38

• EEM Event Detector Demo Examples, page 39

• Programming Policies with Tcl Sample Scripts Example, page 48

• Debugging Embedded Event Manager Policies Examples, page 56

• Tracing Tcl set Command Operations Example, page 57

• RPC Event Detector Example, page 58

Assigning a Username for a Tcl Session Examples
The following example shows how to set a username to be associated with a Tcl session. If you are using
authentication, authorization, and accounting (AAA) security and implement authorization on a command
basis, you should use the event manager session cli username command to set a username to be
associated with a Tcl session. The username is used when a Tcl policy executes a CLI command. TACACS
+ verifies each CLI command using the username associated with the Tcl session that is running the policy.
Commands from Tcl policies are not usually verified because the router must be in privileged EXEC mode
to register the policy. In the example, the username is yourname, and this is the username that is used
whenever a CLI command session is initiated from within an EEM policy.

configure terminal
 event manager session cli username yourname
 end

EEM Event Detector Demo Examples
This example uses the sample policies to demonstrate how to use Embedded Event Manager policies.
Proceed through the following sections to see how to use the sample policies:

• EEM Event Detector Demo Examples, page 39
• EEM Event Detector Demo Examples, page 39
• EEM Event Detector Demo Examples, page 39
• EEM Event Detector Demo Examples, page 39
• EEM Event Detector Demo Examples, page 39

EEM Sample Policy Descriptions

This configuration example features some of the sample EEM policies:

• ap_perf_test_base_cpu.tcl--Is run to measure the the CPU performance of EEM policies.
• no_perf_test_init.tcl--Is run to measure the CPU performance of EEM policies.
• sl_intf_down.tcl--Is run when a configurable syslog message is logged. It executes up to two

configurable CLI commands and e-mails the results.
• tm_cli_cmd.tcl--Is run using a configurable CRON entry. It executes a configurable CLI command

and e-mails the results.
• tm_crash_reporter.tcl--Introduced in Cisco IOS Release 12.4(2)T, 12.2(31)SB3, and 12.2(33)SRB. Is

run 5 seconds after it is registered and 5 seconds after the router boots up. When triggered, the script
attempts to find the reload reason. If the reload reason was due to a crash, the policy searches for the
related crashinfo file and sends this information to a URL location specified by the user in the
environment variable _crash_reporter_url.

• tm_fsys_usage.tcl--Introduced in Cisco IOS Release 12.2(18)SXF4 Cisco IOS Software Modularity
images. This policy runs using a configurable CRON entry and monitors disk space usage. A syslog
message is displayed if disk space usage crosses configurable thresholds.

 Assigning a Username for a Tcl Session Examples
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 39

Event Manager Environment Variables for the Sample Policies

Event manager environment variables are Tcl global variables that are defined external to the EEM policy
before the policy is registered and run. The sample policies require three of the e-mail environment
variables to be set (see EEM Event Detector Demo Examples, page 39 for a list of the e-mail variables);
only _email_cc is optional. Other required and optional variable settings are outlined in the following
tables.

The table below describes the EEM environment variables that must be set before the
ap_perf_test_base_cpu.tcl sample policy is run.

Table 9 Environment Variables Used in the ap_perf_test_base_cpu.tcl Policy

Environment Variable Description Example

_perf_iterations The number of iterations over
which to run the measurement.

100

_perf_cmd1 The first non interactive CLI
command that is executed as part
of the measurement test. This
variable is optional and need not
be specified.

enable

_perf_cmd2 The second non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd2, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

show version

_perf_cmd3 The third non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd3, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

show interface counters
protocol status

The table below describes the EEM environment variables that must be set before the no_perf_test_init.tcl
sample policy is run.

Table 10 Environment Variables Used in the no_perf_test_init.tcl Policy

Environment Variable Description Example

_perf_iterations The number of iterations over
which to run the measurement.

100

_perf_cmd1 The first non interactive CLI
command that is executed as part
of the measurement test. This
variable is optional and need not
be specified.

enable

EEM Event Detector Demo Examples
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

40

Environment Variable Description Example

_perf_cmd2 The second non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd2, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

show version

_perf_cmd3 The third non interactive CLI
command that is as part of the
measurement test. To use
_perf_cmd3, _perf_cmd1 must be
defined. This variable is optional
and need not be specified.

show interface counters
protocol status

The table below describes the EEM environment variables that must be set before the sl_intf_down.tcl
sample policy is run.

Table 11 Environment Variables Used in the sl_intf_down.tcl Policy

Environment Variable Description Example

_config_cmd1 The first configuration command
that is executed.

interface Ethernet1/0

_config_cmd2 The second configuration
command that is executed. This
variable is optional and need not
be specified.

no shutdown

_syslog_pattern A regular expression pattern
match string that is used to
compare syslog messages to
determine when the policy runs.

.*UPDOWN.*FastEthernet0/0.*

The table below describes the EEM environment variables that must be set before the tm_cli_cmd.tcl
sample policy is run.

Table 12 Environment Variables Used in the tm_cli_cmd.tcl Policy

Environment Variable Description Example

_cron_entry A CRON specification that
determines when the policy will
run.

0-59/1 0-23/1 * * 0-7

_show_cmd The CLI command to be executed
when the policy is run.

show version

The table below describes the EEM environment variables that must be set before the tm_crash_reporter.tcl
sample policy is run.

 EEM Event Detector Demo Examples
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 41

Table 13 Environment Variables Used in the tm_crash_reporter.tcl Policy

Environment Variable Description Example

_crash_reporter_debug A value that identifies whether
debug information for
tm_crash_reporter.tcl will be
enabled. This variable is optional
and need not be specified.

1

_crash_reporter_url The URL location to which the
crash report is sent.

http://www.example.com/fm/
interface_tm.cgi

The table below describes the EEM environment variables that must be set before the tm_fsys_usage.tcl
sample policy is run.

Table 14 Environment Variables Used in the tm_fsys_usage.tcl Policy

Environment Variable Description Example

_tm_fsys_usage_cron A CRON specification that is
used in the event_register Tcl
command extension. If
unspecified, the
tm_fsys_usage.tcl policy is
triggered once per minute. This
variable is optional and need not
be specified.

0-59/1 0-23/1 * * 0-7

_tm_fsys_usage_debug When this variable is set to a
value of 1, disk usage information
is displayed for all entries in the
system. This variable is optional
and need not be specified.

1

_tm_fsys_usage_ freebytes Free byte threshold for systems or
specific prefixes. If free space
falls below a given value, a
warning is displayed. This
variable is optional and need not
be specified.

disk2:98000000

_tm_fsys_usage_percent Disk usage percentage thresholds
for systems or specific prefixes. If
the disk usage percentage exceeds
a given percentage, a warning is
displayed. If unspecified, the
default disk usage percentage is
80 percent for all systems. This
variable is optional and need not
be specified.

nvram:25 disk2:5

EEM Event Detector Demo Examples
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

42

Registration of Some EEM Policies

Some EEM policies must be unregistered and then reregistered if an EEM environment variable is modified
after the policy is registered. The event_register_xxx statement that appears at the start of the policy
contains some of the EEM environment variables, and this statement is used to establish the conditions
under which the policy is run. If the environment variables are modified after the policy has been
registered, the conditions may become invalid. To avoid any errors, the policy must be unregistered and
then reregistered. The following variables are affected:

• _cron_entry in the tm_cli_cmd.tcl policy
• _syslog_pattern in the sl_intf_down.tcl policy

Basic Configuration Details for All Sample Policies

To allow e-mail to be sent from the Embedded Event Manager, the hostname and ip domain-name
commands must be configured. The EEM environment variables must also be set. After a Cisco IOS image
has been booted, use the following initial configuration, substituting appropriate values for your network.
The environment variables for the tm_fsys_usage sample policy (see the table above) are all optional and
are not listed here:

hostname cpu
ip domain-name example.com
event manager environment _email_server ms.example.net
event manager environment _email_to username@example.net
event manager environment _email_from engineer@example.net
event manager environment _email_cc projectgroup@example.net
event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
event manager environment _show_cmd show event manager policy registered
event manager environment _syslog_pattern .*UPDOWN.*FastEthernet0/0
event manager environment _config_cmd1 interface Ethernet1/0
event manager environment _config_cmd2 no shutdown
event manager environment _crash_reporter_debug 1
event manager environment _crash_reporter_url
http://www.example.com/fm/interface_tm.cgi
end

Using the Sample Policies

This section contains the following configuration scenarios to demonstrate how to use the some sample Tcl
policies:

Running the Mandatory.go_*.tcl Sample Policy

There are GOLD TCL scripts for each test which runs as a part of GOLD EEM Policy. You can modify the
TCL script for the test, specify the consecutive failure count, and also change the default corrective action.
For example, one could chose to power down a linecard card, instead of reset or other CLI based actions.

For each registered test, a default TCL script is available, which can be registered with the system, and
matches with the default action. This can be then overridden by modifying these scripts.

The following table shows a list of the mandatory polices that GOLD installed into EEM. Each of the
policies performs some sort of action such as resetting the card or disabling the port.

GOLD Tcl Scripts Test

Mandatory.go_asicsync.tcl TestAsicSync

Mandatory.go_bootup.tcl Common for all bootup tests.

 EEM Event Detector Demo Examples
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 43

GOLD Tcl Scripts Test

Mandatory.go_fabric.tcl TestFabricHealth

Mandatory.go_fabrich0.tcl TestFabricCh0Health

Mandatory.go_fabrich1.tcl TestFabricCh1Health

Mandatory.go_ipsec.tcl TestIPSecEncrypDecrypPkt

Mandatory.go_mac.tcl TestMacNotification

Mandatory.go_nondislp.tcl TestNonDisruptiveLoopback

Mandatory.go_scratchreg.tcl TestScratchRegister

Mandatory.go_sprping.tcl TestSPRPInbandPing

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode, where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the mandatory.go_*.tcl policy with EEM using the event manager
policy command. Exit from global configuration mode and enter the show event manager policy
registered command again to verify that the policy has been registered.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy Mandatory.go_spuriousisr.tcl
 end
show event manager policy registered
show event manager environment

Running the ap_perf_test_base_cpu.tcl and no_perf_test_init.tcl Sample Policies

These sample policies measures the CPU performance of EEM policies. The policies help find the average
execution time of each EEM policy and uses the CLI library to execute the configuration commands
specified in the EEM environment variables _perf_cmd1 and, optionally, _perf_cmd2 and _perf_cmd3.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode, where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, enter the service timestamps debug datetime msec command and then you can
register the ap_perf_test_base_cpu.tcl and no_perf_test_init.tcl policies with EEM using the event
manager policy command. Exit from global configuration mode and enter the show event manager policy
registered command again to verify that the policy has been registered.

The policies ap_perf_test_base_cpu.tcl and no_perf_test_init.tcl need to be registered together, as they run
as a test suite. You can run the no_perf_test_init.tcl policy to start the tests. Analyze the results using the
syslog messages from each iteration. The total number of iteration is specified by the variable

EEM Event Detector Demo Examples
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

44

_perf_iterations. Take the time difference and divide it by the total number of iterations to get the average
execution time of each EEM policy.

enable
show event manager policy registered
show event manager policy available
show event manager environment
configure terminal
 service timestamps debug datetime msec
 event manager environment _perf_iterations 100
 event manager policy ap_perf_test_base_cpu.tcl
 event manager policy no_perf_test_init.tcl
 end
show event manager policy registered
show event manager policy available
show event manager environment
event manager run no_perf_test_init.tcl

Running the no_perf_test_init.tcl Sample Policy

This sample policy measures the the cpu performance of EEM policies. The policy helps to find the
average execution time of each EEM policy and uses the CLI library to execute the configuration
commands specified in the EEM environment variables _perf_cmd1 and, optionally, _perf_cmd2 and
_perf_cmd3.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode, where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the no_perf_test_init.tcl policy with EEM using the event manager
policy command. Exit from global configuration mode and enter the show event manager policy
registered command again to verify that the policy has been registered.

Analyze the results using the syslog messages from each iteration. The total number of iteration is specified
by the variable _perf_iterations. Take the time difference and divide it by the total number of iterations to
get the average execution time of each EEM policy.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy no_perf_test_init.tcl
 end
show event manager policy registered
show event manager environment

Running the sl_intf_down.tcl Sample Policy

This sample policy demonstrates the ability to modify the configuration when a syslog message with a
specific pattern is logged. The policy gathers detailed information about the event and uses the CLI library
to execute the configuration commands specified in the EEM environment variables _config_cmd1 and,
optionally, _config_cmd2. An e-mail message is sent with the results of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode, where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the sl_intf_down.tcl policy with EEM using the event manager

 EEM Event Detector Demo Examples
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 45

policy command. Exit from global configuration mode and enter the show event manager policy
registered command again to verify that the policy has been registered.

The policy runs when an interface goes down. Enter the show event manager environment command to
display the current environment variable values. Unplug the cable (or configure a shutdown) for the
interface specified in the _syslog_pattern EEM environment variable. The interface goes down, prompting
the syslog daemon to log a syslog message about the interface being down, and the syslog event detector is
called.

The syslog event detector reviews the outstanding event specifications and finds a match for interface status
change. The EEM server is notified, and the server runs the policy that is registered to handle this event--
sl_intf_down.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy sl_intf_down.tcl
 end
show event manager policy registered
show event manager environment

Running the tm_cli_cmd.tcl Sample Policy

This sample policy demonstrates the ability to periodically execute a CLI command and to e-mail the
results. The CRON specification “0-59/2 0-23/1 * * 0-7” causes this policy to be run on the second minute
of each hour. The policy gathers detailed information about the event and uses the CLI library to execute
the configuration commands specified in the EEM environment variable _show_cmd. An e-mail message is
sent with the results of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the tm_cli_cmd.tcl policy with EEM using the event manager policy
command. Exit from global configuration mode and enter the show event manager policy registered
command to verify that the policy has been registered.

The timer event detector triggers an event for this case periodically according to the CRON string set in the
EEM environment variable _cron_entry. The EEM server is notified, and the server runs the policy that is
registered to handle this event--tm_cli_cmd.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy tm_cli_cmd.tcl
 end
show event manager policy registered

Running the tm_crash_reporter.tcl Sample Policy

This sample policy demonstrates the ability to send an HTTP-formatted crash report to a URL location. If
the policy registration is saved in the startup configuration file, the policy is triggered 5 seconds after
bootup. When triggered, the script attempts to find the reload reason. If the reload reason was due to a
crash, the policy searches for the related crashinfo file and sends this information to a URL location
specified by the user in the environment variable _crash_reporter_url. A CGI script, interface_tm.cgi, has

EEM Event Detector Demo Examples
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

46

been created to receive the URL from the tm_crash_reporter.tcl policy and save the crash information in a
local database on the target URL machine.

A Perl CGI script, interface_tm.cgi, has been created and is designed to run on a machine that contains an
HTTP server and is accessible by the router that runs the tm_crash_reporter.tcl policy. The interface_tm.cgi
script parses the data passed into it from tm_crash_reporter.tcl and appends the crash information to a text
file, creating a history of all crashes in the system. Additionally, detailed information on each crash is
stored in three files in a crash database directory that is specified by the user. Another Perl CGI script,
crash_report_display.cgi, has been created to display the information stored in the database created by the
interface_tm.cgi script. The crash_report_display.cgi script should be placed on the same machine that
contains interface_tm.cgi. The machine should be running a web browser such as Internet Explorer or
Netscape. When the crash_report_display.cgi script is run, it displays the crash information in a readable
format.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the tm_crash_reporter.tcl policy with EEM using the event manager
policy command. Exit from global configuration mode and enter the show event manager policy
registered command to verify that the policy has been registered.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy tm_crash_reporter.tcl
 end
show event manager policy registered

Running the tm_fsys_usage.tcl Sample Policy

This sample policy demonstrates the ability to periodically monitor disk space usage and report through
syslog when configurable thresholds have been crossed.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode,
enter the enable command at the router prompt. The router enters privileged EXEC mode, where you can
enter the show event manager policy registered command to verify that no policies are currently
registered. The next command is the show event manager policy available command to display which
policies are available to be installed. After you enter the configure terminal command to reach global
configuration mode, you can register the tm_fsys_usage.tcl policy with EEM using the event manager
policy command. Exit from global configuration mode and enter the show event manager policy
registered command again to verify that the policy has been registered. If you had configured any of the
optional environment variables that are used in the tm_fsys_usage.tcl policy, the show event manager
environment command displays the configured variables.

enable
show event manager policy registered
show event manager policy available
configure terminal
 event manager policy tm_fsys_usage.tcl
 end
show event manager policy registered
show event manager environment

 EEM Event Detector Demo Examples
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 47

Programming Policies with Tcl Sample Scripts Example
This section contains some of the sample policies that are included as EEM system policies. For more
details about these policies, see the EEM Event Detector Demo Examples, page 39.

Mandatory.go_ipsec.tcl Sample Policy

The following sample policy for the TestIPSecEncrypDecrypPkt Test.

::cisco::eem::event_register_gold card all testing_type monitoring test_name Tes
tIPSecEncrypDecrypPkt consecutive_failure 6 platform_action 0 queue_priority las
t
#
GOLD TestIPSecEncrypDecrypPkt Test TCL script
#
March 2005, Hai Qiu
#
Copyright (c) 2005-2007 by cisco Systems, Inc.
All rights reserved.
#
#
Register for TestIPSecEncrypDecrypPkt test even
the elements for register the event
card [all | card #]
sub_card [all | sub_card #]
severity_major | severity_minor | severity_normal default : severity_normal
new_failure [true | false] default: dont_care
testing_type [bootup | ondemand | schedule | monitoring]
test_name [test name]
test_id [test #]
consecutive_failure [consecutive_failure #]
platform_action [action_flag]
action_flag [0 | 1 | 2]
queue_priority [normal | low | high | last] default: normal
#
Note:
1: "card" element is required. If other elements are not specified,
treat them as dont care, or default.
#
2: action_flag is platform specific. It is up to platform to
determine what action need to be taken based on the value
For Cat6k platform
action_flag 0 : TCL script take action to reset card
action_flag 1 : TCL script doesn't take action to reset card
action_flag 2 : TCL script takes action to reset card for bootup diag
when there is major error
action_flag 3 : TCL script doesn't take action to reset card for
bootup diag when there is major error
#
3: "queue_priority last" would guarantee this policy will be executed last
if there are other EEM events in queue with queue priority other
than "last"
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
1. query the information of latest triggered eem event
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
puts "GOLD EEM TCL policy for TestIPSecEncrypDecrypPkt"
#set msg [format "array=%s", array names arr_einfo]
#puts "msg $msg"
#set msg $arr_einfo(msg)
set card $arr_einfo(card)
set sub_card $arr_einfo(sub_card)
#set overall_result $arr_einfo(overall_result)
#puts "GOLD event msg recieved: $card/$sub_card overall_result= $overall_result"

Programming Policies with Tcl Sample Scripts Example
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

48

2. execute the user-defined config commands
if [catch {cli_open} result] {
 error $result $errorInfo
} else {
 array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {
 error $result $errorInfo
}
Use "diagn action mod mod# test testname default" command
for default platform action
if [catch {cli_exec $cli1(fd) "diagnostic action mod $card test TestIPSecEncrypD
ecrypPkt default"} result] {
 error $result $errorInfo
} else {
 set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
 error $result $errorInfo
}

ap_perf_test_base_cpu.tcl Sample Policy

The following sample policy measures the CPU performance of EEM policies.

::cisco::eem::event_register_appl sub_system 798 type 9999
#----------------------------------
EEM policy used for measuring the cpu performance of EEM policies.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005, 2006 by cisco Systems, Inc.
All rights reserved.
#------------------
###
Input arguments:
###
arg1 $iter - current iteration count
###
The following EEM environment variables are used:
###
_perf_iterations (mandatory) - number of iterations over which we
will run our measurement.
Example:
event manager environment _perf_iterations 100
###
_perf_cmd1 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
Example:
event manager environment _perf_cmd1 enable
###
_perf_cmd2 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
To use _perf_cmd2, _perf_cmd1 MUST
be defined.
Example:
event manager environment _perf_cmd2 show ver
###
_perf_cmd3 (optional) - optional non interactive cli command
to be executed as part of the
measurement test.
To use _perf_cmd3, _perf_cmd1 MUST
be defined.
Example:
event manager environment _perf_cmd3 show int counters protocol status
###
Description:
Iterate through _perf_iterations of this policy.
It is up to the user to calculate the average
execution time based on the system timestamps.

 Programming Policies with Tcl Sample Scripts Example
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 49

Optional commands _perf_cmd1,
_perf_cmd2 and _perf_cmd3 are executed if defined.
###
A value of 100 is a good starting point.
###
Outputs:
Console output.
###
Usage example:
>conf t
>service timestamps debug datetime msec
>event manager environment _perf_iterations 100
>event manager policy ap_perf_base_cpu.tcl
>event manager policy no_perf_test_init.tcl
>end
2d19h: %SYS-5-CONFIG_I: Configured from console by console
>event manager run no_perf_test_init.tcl
###
Oct 16 14:57:17.284: %SYS-5-CONFIG_I: Configured from console by console
>event manager run no_perf_test_init.tcl
###
Oct 16 19:32:02.772: %HA_EM-6-LOG:
eem_policy/no_perf_test_init.tcl: EEM performance test start
Oct 16 19:32:03.115: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 1
Oct 16 19:32:03.467: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 2
...
Oct 16 19:32:36.936: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test iteration 100
Oct 16 19:32:36.936: %HA_EM-6-LOG:
eem_policy/ap_perf_test_base_cpu.tcl: EEM performance test end
###
The user must calculate execution time and average time of execution.
In this example, total time = 19:32:36.936 - 19:32:02.772 = 34.164
Average script execution time = 341.64 milliseconds
###
check if all the env variables we need exist
If any of them doesn't exist, print out an error msg and quit
if {![info exists _perf_iterations]} {
 set result \
 "Policy cannot be run: variable _perf_iterations has not been set"
 error $result $errorInfo
}
ensure our target iteration count > 0
if {$_perf_iterations <= 0} {
 set result \
 "Policy cannot be run: variable _perf_iterations <= 0"
 error $result $errorInfo
}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
query the event info
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
set iter $arr_einfo(data1)
set iter [expr $iter + 1]
if _perf_cmd1 is defined
if {[info exists _perf_cmd1]} {
 # open the cli library
 if [catch {cli_open} result] {
 error $result $errorInfo
 } else {
 array set cli1 $result
 }
 # execute the comamnd defined in _perf_cmd1
 if [catch {cli_exec $cli1(fd) $_perf_cmd1} result] {
 error $result $errorInfo
 }

Programming Policies with Tcl Sample Scripts Example
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

50

 # if _perf_cmd2 is defined
 if {[info exists _perf_cmd2]} {
 # execute the comamnd defined in _perf_cmd2
 if [catch {cli_exec $cli1(fd) $_perf_cmd2} result] {
 error $result $errorInfo
 } else {
 set cmd_output $result
 }
 }
 # if _perf_cmd3 is defined
 if {[info exists _perf_cmd3]} {
 # execute the comamnd defined in _perf_cmd3
 if [catch {cli_exec $cli1(fd) $_perf_cmd3} result] {
 error $result $errorInfo
 } else {
 set cmd_output $result
 }
 }
 # close the cli library
 if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
 error $result $errorInfo
 }
}

log a message
set msg [format "EEM performance test iteration %s" $iter]
action_syslog priority info msg $msg
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
use the context info from the previous run to determine when to end
if {$iter >= $_perf_iterations} {
 #log the final messages
 action_syslog priority info msg "EEM performance test end"
 if {$_cerrno != 0} {
 set result [format \
 "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
 }
 exit 0
}
cause the next iteration to run
event_publish sub_system 798 type 9999 arg1 $iter
if {$_cerrno != 0} {
 set result [format \
 "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

tm_cli_cmd.tcl Sample Policy

The following sample policy runs a configurable CRON entry. The policy executes a configurable Cisco
IOS CLI command and e-mails the results. An optional log file can be defined to which the output is
appended with a timestamp.

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240
#--
EEM policy that will periodically execute a cli command and email the
results to a user.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--
The following EEM environment variables are used:
###

 Programming Policies with Tcl Sample Scripts Example
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 51

_cron_entry (mandatory) - A CRON specification that determines
when the policy will run. See the
IOS Embedded Event Manager
documentation for more information
on how to specify a cron entry.
Example: _cron_entry 0-59/1 0-23/1 * * 0-7
###
_log_file (mandatory without _email_....)
- A filename to append the output to.
If this variable is defined, the
output is appended to the specified
file with a timestamp added.
Example: _log_file disk0:/my_file.log
###
_email_server (mandatory without _log_file)
- A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###
_email_from (mandatory without _log_file)
- The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory without _log_file)
- The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com
###
_show_cmd (mandatory) - The CLI command to be executed when
the policy is run.
Example: _show_cmd show version
###
check if all required environment variables exist
If any required environment variable does not exist, print out an error msg and quit
if {![info exists _log_file]} {
 if {![info exists _email_server]} {
 set result \
 "Policy cannot be run: variable _log_file or _email_server has not been set"
 error $result $errorInfo
 }
 if {![info exists _email_from]} {
 set result \
 "Policy cannot be run: variable _log_file or _email_from has not been set"
 error $result $errorInfo
 }
 if {![info exists _email_to]} {
 set result \
 "Policy cannot be run: variable _log_file ore _email_to has not been set"
 error $result $errorInfo
 }
 if {![info exists _email_cc]} {
 #_email_cc is an option, must set to empty string if not set.
 set _email_cc ""
 }
}
if {![info exists _show_cmd]} {
 set result \
 "Policy cannot be run: variable _show_cmd has not been set"
 error $result $errorInfo
}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
query the event info and log a message
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
global timer_type timer_time_sec

Programming Policies with Tcl Sample Scripts Example
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

52

set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)
log a message
set msg [format "timer event: timer type %s, time expired %s" \
 $timer_type [clock format $timer_time_sec]]
action_syslog priority info msg $msg
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
1. execute the command
if [catch {cli_open} result] {
 error $result $errorInfo
} else {
 array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {
 error $result $errorInfo
}
save exact execution time for command
set time_now [clock seconds]
execute command
if [catch {cli_exec $cli1(fd) $_show_cmd} result] {
 error $result $errorInfo
} else {
 set cmd_output $result
 # format output: remove trailing router prompt
 regexp {\n*(.*\n)([^\n]*)$} $result dummy cmd_output
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
 error $result $errorInfo
}

2. log the success of the CLI command
set msg [format "Command \"%s\" executed successfully" $_show_cmd]
action_syslog priority info msg $msg
if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}
3. if _log_file is defined, then attach it to the file
if {[info exists _log_file]} {
 # attach output to file
 if [catch {open $_log_file a+} result] {
 error $result
 }
 set fileD $result
 # save timestamp of command execution
 # (Format = 00:53:44 PDT Mon May 02 2005)
 set time_now [clock format $time_now -format "%T %Z %a %b %d %Y"]
 puts $fileD "%%% Timestamp = $time_now"
 puts $fileD $cmd_output
 close $fileD
}
4. if _email_server is defined send the email out
if {[info exists _email_server]} {
 set routername [info hostname]
 if {[string match "" $routername]} {
 error "Host name is not configured"
 }
 if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]} \
 result] {
 error $result $errorInfo
 }
 if [catch {smtp_send_email $result} result] {
 error $result $errorInfo
 }
}

 Programming Policies with Tcl Sample Scripts Example
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 53

sl_intf_down.tcl Sample Policy

The following sample policy runs when a configurable syslog message is logged. The policy executes a
configurable CLI command and e-mails the results.

::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90

#--
EEM policy to monitor for a specified syslog message.
Designed to be used for syslog interface-down messages.
When event is triggered, the given config commands will be run.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--

The following EEM environment variables are used:
###
_syslog_pattern (mandatory) - A regular expression pattern match string
that is used to compare syslog messages
to determine when policy runs
Example: _syslog_pattern .*UPDOWN.*FastEthernet0/0.*
###
_email_server (mandatory) - A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###
_email_from (mandatory) - The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory) - The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com
###
_config_cmd1 (optional) - The first configuration command that
is executed.
Example: _config_cmd1 interface Ethernet1/0
###
_config_cmd2 (optional) - The second configuration command that
is executed.
Example: _config_cmd2 no shutdown
###

check if all the env variables we need exist
If any of them doesn't exist, print out an error msg and quit
if {![info exists _email_server]} {
 set result \
 "Policy cannot be run: variable _email_server has not been set"
 error $result $errorInfo
}
if {![info exists _email_from]} {
 set result \
 "Policy cannot be run: variable _email_from has not been set"
 error $result $errorInfo
}
if {![info exists _email_to]} {
 set result \
 "Policy cannot be run: variable _email_to has not been set"
 error $result $errorInfo
}
if {![info exists _email_cc]} {
 #_email_cc is an option, must set to empty string if not set.
 set _email_cc ""
}

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

Programming Policies with Tcl Sample Scripts Example
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

54

1. query the information of latest triggered eem event
array set arr_einfo [event_reqinfo]

if {$_cerrno != 0} {
 set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
 $_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
 error $result
}

set msg $arr_einfo(msg)
set config_cmds ""

2. execute the user-defined config commands
if [catch {cli_open} result] {
 error $result $errorInfo
} else {
 array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "en"} result] {
 error $result $errorInfo
}
if [catch {cli_exec $cli1(fd) "config t"} result] {
 error $result $errorInfo
}

if {[info exists _config_cmd1]} {
 if [catch {cli_exec $cli1(fd) $_config_cmd1} result] {
 error $result $errorInfo
 }
 append config_cmds $_config_cmd1
}

if {[info exists _config_cmd2]} {
 if [catch {cli_exec $cli1(fd) $_config_cmd2} result] {
 error $result $errorInfo
 }
 append config_cmds "\n"
 append config_cmds $_config_cmd2
}

if [catch {cli_exec $cli1(fd) "end"} result] {
 error $result $errorInfo
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
 error $result $errorInfo
}

after 60000
3. send the notification email
set routername [info hostname]
if {[string match "" $routername]} {
 error "Host name is not configured"
}

if [catch {smtp_subst [file join $tcl_library email_template_cfg.tm]} result] {
 error $result $errorInfo
}
if [catch {smtp_send_email $result} result] {
 error $result $errorInfo
}

The following e-mail template file is used with the EEM sample policy above:

email_template_cfg.tm
Mailservername: $_email_server
From: $_email_from
To: $_email_to
Cc: $_email_cc
Subject: From router $routername: Periodic $_show_cmd Output
$cmd_output

 Programming Policies with Tcl Sample Scripts Example
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 55

Debugging Embedded Event Manager Policies Examples
The following examples show how to debug the CLI library and the SMTP library.

Debugging the CLI Library

The CLI library allows users to run CLI commands and obtain the output of commands in Tcl. An
Embedded Event Manager debug command has been provided for users of this library. The command to
enable CLI library debugging is debug event manager tcl cli_library. When enabled, this command
displays all data that is passed in and read back from the TTY session that handles the CLI interactions.
This data helps ensure users that the commands that they are passing to the CLI are valid.

Example of the debug event manager tcl cli_library Command

This example uses the sample policy sl_intf_down.tcl. When triggered, sl_intf_down.tcl passes a
configuration command to the CLI through the CLI library. The command passed in below is show event
manager environment. This command is not a valid command in configuration mode. Without the debug
command enabled, the output is shown below:

00:00:57:sl_intf_down.tcl[0]:config_cmds are show eve man env
00:00:57:%SYS-5-CONFIG_I:Configured from console by vty0

Notice that with the output above the user would not know whether or not the command succeeded in the
CLI. With the debug event manager tcl cli_library command enabled, the user sees the following:

01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : CTL : cli_open called.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson>
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson>enable
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson#configure terminal
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : Enter configuration commands, one
per line. End with CNTL/Z.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson(config)#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson(config)#show event manager
environment
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : ^
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : % Invalid input detected at '^'
marker.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson(config)#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson(config)#end
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : OUT : nelson#
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : CTL : cli_close called.
01:17:07: sl_intf_down.tcl[0]: DEBUG(cli_lib) : IN : nelson#exit
01:17:07: sl_intf_down.tcl[0]: config_cmds are show event manager environment
01:17:07: %SYS-5-CONFIG_I: Configured from console by vty0

The output above shows that show event manager environment is an invalid command in configuration
mode. The IN keyword signifies all data passed in to the TTY through the CLI library. The OUT keyword
signifies all data read back from the TTY through the CLI library. The CTL keyword signifies helper
functions used in the CLI library. These helper functions are used to set up and remove connections to the
CLI.

Debugging the SMTP Library

The SMTP library allows users to send e-mail messages to an SMTP e-mail server. An Embedded Event
Manager debug command has been provided for users of this library. The command to enable SMTP
library debugging is debug event manager tcl smtp_library. When enabled, this command displays all
data that is passed in and read back from the SMTP library routines. This data helps ensure users that the
commands that they are passing to the SMTP library are valid.

Debugging Embedded Event Manager Policies Examples
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

56

Example of the debug event manager tcl smtp_library Command

This example uses the sample policy tm_cli_cmd.tcl. When triggered, tm_cli_cmd.tcl runs the command
show event manager policy available system through the CLI library. The result is then mailed to a user
through the SMTP library. The output will help debug any issues related to using the SMTP library.

With the debug event manager tcl smtp_library command enabled, the users see the following on the
console:

00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 220 XXXX.example.com ESMTP
XXXX 1.1.0; Tue, 25 Jun 2002 14:20:39 -0700 (PDT)
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : HELO XXXX.example.com
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 XXXX.example.com Hello
XXXX.example.com [XXXX], pleased to meet you
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : MAIL FROM:<XX@example.com>
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>...
Sender ok
00:39:46: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : RCPT TO:<XX@example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>...
Recipient ok
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : RCPT TO:<XX@example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 <XX@example.com>...
Recipient ok
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : DATA
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 354 Enter mail, end with "."
on a line by itself
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Date: 25 Jun 2002 14:35:00
UTC
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Message-ID:
<20020625143500.2387058729877@XXXX.example.com>
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : From: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : To: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Cc: XX@example.com
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : Subject: From router nelson:
Periodic show eve man po ava system Output
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : No. Type Time
Created Name
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 1 system Fri May3
20:42:34 2002 pr_cdp_abort.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 2 system Fri May3
20:42:54 2002 pr_iprouting_abort.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 3 system Wed Apr3
02:16:33 2002 sl_intf_down.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 4 system Mon Jun24
23:34:16 2002 tm_cli_cmd.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : 5 system Wed Mar27
05:53:15 2002 tm_crash_hist.tcl
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : nelson#
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write :
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : .
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 250 ADE90179 Message accepted
for delivery
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_write : QUIT
00:39:47: tm_cli_cmd.tcl[0]: DEBUG(smtp_lib) : smtp_read : 221 XXXX.example.com closing
connection

Tracing Tcl set Command Operations Example
Tcl is a flexible language. One of the flexible aspects of Tcl is that you can override commands. In this
example, the Tcl set command is renamed as _set and a new version of the set command is created that
displays a message containing the text “setting” and appends the scalar variable that is being set. This
example can be used to trace all instances of scalar variables being set.

rename set _set
proc set {var args} {
 puts [list setting $var $args]
 uplevel _set $var $args
};

 Tracing Tcl set Command Operations Example
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

 57

When this is placed in a policy, a message is displayed anytime a scalar variable is set, for example:

02:17:58: sl_intf_down.tcl[0]: setting test_var 1

RPC Event Detector Example
TCL script (rpccli.tcl):
::cisco::eem::event_register_rpc
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
proc run_cli { clist } {
 set rbuf ""
 if {[llength $clist] < 1} {
 return -code ok $rbuf
 }
 if {[catch {cli_open} result]} {
 return -code error $result
 } else {
 array set cliarr $result
 }
 if {[catch {cli_exec $cliarr(fd) "enable"} result]} {
 return -code error $result
 }
 if {[catch {cli_exec $cliarr(fd) "term length 0"} result]} {
 return -code error $result
 }
 foreach cmd $clist {
 if {[catch {cli_exec $cliarr(fd) $cmd} result]} {
 return -code error $result
 }
 append rbuf $result
 }
 if {[catch {cli_close $cliarr(fd) $cliarr(tty_id)} result]} {
 puts "WARNING: $result"
 }
 return -code ok $rbuf
}
proc run_cli_interactive { clist } {
 set rbuf ""
 if {[llength $clist] < 1} {
 return -code ok $rbuf
 }
 if {[catch {cli_open} result]} {
 return -code error $result
 } else {
 array set cliarr $result
 }
 if {[catch {cli_exec $cliarr(fd) "enable"} result]} {
 return -code error $result
 }
 if {[catch {cli_exec $cliarr(fd) "term length 0"} result]} {
 return -code error $result
 }
 foreach cmd $clist {
 array set sendexp $cmd
 if {[catch {cli_write $cliarr(fd) $sendexp(send)} result]} {
 return -code error $result
 }
 foreach response $sendexp(responses) {
 array set resp $response
 if {[catch {cli_read_pattern $cliarr(fd) $resp(expect)} result]} {
 return -code error $result
 }
 if {[catch {cli_write $cliarr(fd) $resp(reply)} result]} {
 return -code error $result
 }
 }
 if {[catch {cli_read $cliarr(fd)} result]} {
 return -code error $result
 }

RPC Event Detector Example
 Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

58

 append rbuf $result
 }
 if {[catch {cli_close $cliarr(fd) $cliarr(tty_id)} result]} {
 puts "WARNING: $result"
 }
 return -code ok $rbuf
}
array set arr_einfo [event_reqinfo]
set args $arr_einfo(argc)
set cmds [list]
for { set i 0 } { $i < $args } { incr i } {
 set arg "arg${i}"
 # Split each argument on the '^' character. The first element is
 # the command, and each subsequent element is a prompt followed by
 # a response to that prompt.
 set cmdlist [split $arr_einfo($arg) "^"]
 set cmdarr(send) [lindex $cmdlist 0]
 set cmdarr(responses) [list]
 if { [expr ([llength $cmdlist] - 1) % 2] != 0 } {
 return -code 88
 }
 set cmdarr(responses) [list]
 for { set j 1 } { $j < [llength $cmdlist] } { incr j 2 } {
 set resps(expect) [lindex $cmdlist $j]
 set resps(reply) [lindex $cmdlist [expr $j + 1]]
 lappend cmdarr(responses) [array get resps]
 }
 lappend cmds [array get cmdarr]
}
set rc [catch {run_cli_interactive $cmds} output]
if { $rc != 0 } {
 error $output $errorInfo
 return -code 88
}
puts $output

Where to Go Next
• For information about EEM overview, go to “ Embedded Event Manager Overview ” module.
• For information about writing EEM policies using the Cisco IOS CLI, go to the “Writing Embedded

Event Manager Policies Using the Cisco IOS CLI” module.

Additional References
The following sections provide references related to writing Embedded Event Manager policies using Tcl.

Related Documents

Related Topic Document Title

Cisco IOS commands Cisco IOS Master Commands List, All Releases

EEM commands: complete command syntax,
defaults, command mode, command history, usage
guidelines, and examples

Cisco IOS Embedded Event Manager Command
Reference

Embedded Event Manager overview Embedded Event Manager Overview module.

 RPC Event Detector Example
Where to Go Next

 59

http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/eem/command/eem-cr-book.html
http://www.cisco.com/en/US/docs/ios-xml/ios/eem/command/eem-cr-book.html

Related Topic Document Title

Embedded Event Manager policy writing using the
CLI

Writing Embedded Event Manager Policies Using
the Cisco IOS CLI module

Embedded Resource Manager Embedded Resource Manager module

MIBs

MIB MIBs Link

CISCO-EMBEDDED-EVENT-MGR-MIB To locate and download MIBs for selected
platforms, Cisco IOS releases, and feature sets, use
Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFC Title

No new or modified RFCs are supported by this
feature, and support for existing RFCs has not been
modified by this feature.

--

Technical Assistance

Description Link

The Cisco Support and Documentation website
provides online resources to download
documentation, software, and tools. Use these
resources to install and configure the software and
to troubleshoot and resolve technical issues with
Cisco products and technologies. Access to most
tools on the Cisco Support and Documentation
website requires a Cisco.com user ID and
password.

http://www.cisco.com/cisco/web/support/
index.html

Feature Information for Writing Embedded Event Manager
Policies Using Tcl

The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software
release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

RPC Event Detector Example
 Feature Information for Writing Embedded Event Manager Policies Using Tcl

60

http://www.cisco.com/go/mibs
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/cisco/web/support/index.html
http://www.cisco.com/go/cfn

Table 15 Feature Information for Writing Embedded Event Manager Policies Using Tcl

Feature Name Releases Feature Information

Embedded Event Manager 1.0 12.0(26)S 12.3(4)T EEM 1.0 introduced Embedded
Event Manager applet creation
with the SNMP and syslog event
detectors. EEM 1.0 also
introduced the following actions:
generating prioritized syslog
messages, generating a CNS
event for upstream processing by
Cisco CNS devices, reloading the
Cisco IOS software, and
switching to a secondary
processor in a fully redundant
hardware configuration.

The following commands were
introduced by this feature: action
cns-event, action force-
switchover, action reload,
action syslog, debug event
manager, event manager
applet, event snmp, event
syslog, show event manager
policy registered.

 RPC Event Detector Example
Feature Information for Writing Embedded Event Manager Policies Using Tcl

 61

Feature Name Releases Feature Information

Embedded Event Manager 2.0 12.2(25)S EEM 2.0 introduced the
application-specific event
detector, the counter event
detector, the interface counter
event detector, the timer event
detector, and the watchdog event
detector. New actions included
modifying a named counter,
publishing an application-specific
event, and generating an SNMP
trap. The ability to define
environment variables and to run
EEM policies written using Tcl
was introduced, and two sample
policies were included with the
software.

The following commands were
introduced by this feature: action
counter, action publish-event,
action snmp-trap, event
application, event counter,
event interface, event
ioswdsysmon, event manager
environment, event manager
history size, event manager
policy, event manager
scheduler suspend, event timer,
show event manager
environment, show event
manager history events, show
event manager history traps,
show event manager policy
available, show event manager
policy pending.

RPC Event Detector Example
 Feature Information for Writing Embedded Event Manager Policies Using Tcl

62

Feature Name Releases Feature Information

Embedded Event Manager 2.1 12.3(14)T 12.2(18)SXF5
12.2(28)SB 12.2(33)SRA

EEM 2.1 introduced some new
event detectors and actions with
new functionality to allow EEM
policies to be run manually and
the ability to run multiple
concurrent policies. Support for
Simple Network Management
Protocol (SNMP) event detector
rate-based events was provided as
was the ability to create policies
using Tool Command Language
(Tcl).

The following commands were
introduced or modified by this
feature: action cli, action
counter, action info, action
mail, action policy, debug event
manager, event cli, event
manager directory user, event
manager policy, event manager
run, event manager scheduler
script, event manager session cli
username, event none, event
oir, event snmp, event syslog,
set(EEM), show event manager
directory user, show event
manager policy registered,
show event manager session cli
username.

 RPC Event Detector Example
Feature Information for Writing Embedded Event Manager Policies Using Tcl

 63

Feature Name Releases Feature Information

Embedded Event Manager 2.1
(Software Modularity)

12.2(18)SXF4Cisco IOS
Software Modularity images

EEM 2.1 for Software Modularity
images introduced the GOLD,
system manager, and WDSysMon
(Cisco IOS Software Modularity
watchdog) event detectors, and
the ability to display Cisco IOS
Software Modularity processes
and process metrics.

The following commands were
introduced by this feature: event
gold, event process, show event
manager metric process.

Note EEM 2.1 for Software
Modularity images also
supports the resource and
RF event detectors
introduced in EEM 2.2,
but it does not support the
enhanced object tracking
event detector or the
actions to read and set
tracked objects.

Embedded Event Manager 2.2 12.4(2)T 12.2(31)SB3
12.2(33)SRB

EEM 2.2 introduced the enhanced
object tracking, resource, and RF
event detectors. The actions of
reading and setting the state of a
tracked object were also
introduced.

The following commands were
introduced or modified by this
feature: action track read,
action track set, default-state,
event resource, event rf, event
track, show track, track stub-
object.

SNMP event detector delta
environment variable

12.4(11)T A new SNMP event detector
environment variable,
_snmp_oid_delta_val, was
introduced.

This is a minor enhancement.
Minor enhancements are not
typically listed in Feature
Navigator.

RPC Event Detector Example
 Feature Information for Writing Embedded Event Manager Policies Using Tcl

64

Feature Name Releases Feature Information

Embedded Event Manager 2.3 12.2(33)SXH 12.2(33)SB EEM 2.3 introduced some new
features relative to the Generic
Online Diagnostics (GOLD)
Event Detector on the Cisco
Catalyst 6500 Series switches.

The event gold command was
enhanced in addition to the Tcl
keywords--action-notify, testing-
type, test-name, test-id,
consecutive-failure, platform-
action, and maxrun--for
improved reaction to GOLD test
failures and conditions

Read-only variables were added
under the GOLD Event Detector
category to provide access to
platform-wide and test-specific
GOLD event detector information
for a detected event.

Embedded Event Manager 2.4 12.4(20)T 12.2(33)SXI
12.2(33)SRE

EEM 2.4 is supported in Cisco
IOS Release 12.4(20)T and later
releases, and introduced several
new features.

The following commands were
introduced by this feature:

attribute (EEM) , correlate,
event manager detector rpc,
event manager directory user
repository, event manager
update user policy, event
manager scheduler clear, event
manager update user policy,
event owner, event rpc, event
snmp-notification, show event
manager detector, show event
manager version, trigger
(EEM).

 RPC Event Detector Example
Feature Information for Writing Embedded Event Manager Policies Using Tcl

 65

Feature Name Releases Feature Information

Embedded Event Manger 3.0 12.4(22)T 12.2(33)SRE
12.2(50)SY

EEM 3.0 is supported in Cisco
IOS Release 12.4(22)T and later
releases, and introduced several
new features.

The following commands were
introduced or modified by this
feature:

action add , action append,
action break, action comment,
action context retrieve, action
context save, action continue,
action decrement, action divide,
action else, action elseif, action
end, action exit, action foreach,
action gets, action if, action if
goto, action increment, action
info type interface-names,
action info type snmp getid,
action info type snmp inform,
action info type snmp oid,
action info type snmp trap,
action info type snmp var,
action multiply, action puts,
action regexp, action set
(EEM), action string compare,
action string equal, action
string first, action string index,
action string last, action string
length, action string match,
action string range, action
string replace, action string
tolower, action string toupper,
action string trim, action string
trimleft, action string trimright,
action subtract, action while,
event cli, event ipsla, event
manager detector routing,
event manager scheduler, event
manager scheduler clear, event
manager scheduler hold, event
manager scheduler modify,
event manager scheduler
release, event nf, event routing,
show event manager policy
active, show event manager
policy pending, and show event
manager scheduler.

RPC Event Detector Example
 Feature Information for Writing Embedded Event Manager Policies Using Tcl

66

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S.
and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner
does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

© 2011 Cisco Systems, Inc. All rights reserved.

 RPC Event Detector Example

 67

http://www.cisco.com/go/trademarks

	Writing Embedded Event Manager Policies Using Tcl
	Finding Feature Information
	Prerequisites for Writing Embedded Event Manager Policies Using Tcl
	Information About Writing Embedded Event Manager Policies Using Tcl
	EEM Policies
	EEM Policy Tcl Command Extension Categories
	General Flow of EEM Event Detection and Recovery
	Safe-Tcl
	Bytecode Support for EEM 2.4
	Registration Substitution
	Cisco File Naming Convention for EEM

	How to Write Embedded Event Manager Policies Using Tcl
	Registering and Defining an EEM Tcl Script
	Displaying EEM Registered Policies
	Unregistering EEM Policies
	Suspending EEM Policy Execution
	Managing EEM Policies
	Modifying History Table Size and Displaying EEM History Data
	Displaying Software Modularity Process Reliability Metrics Using EEM
	Troubleshooting Tips

	Modifying the Sample EEM Policies
	Sample EEM Policies

	Programming EEM Policies with Tcl
	Tcl Policy Structure and Requirements
	EEM Entry Status
	EEM Exit Status
	EEM Policies and Cisco Error Number
	Troubleshooting Tips

	Creating an EEM User Tcl Library Index
	Creating an EEM User Tcl Package Index

	Configuration Examples for Writing Embedded Event Manager Policies Using Tcl
	Assigning a Username for a Tcl Session Examples
	EEM Event Detector Demo Examples
	Programming Policies with Tcl Sample Scripts Example
	Debugging Embedded Event Manager Policies Examples
	Tracing Tcl set Command Operations Example
	RPC Event Detector Example

	Where to Go Next
	Additional References
	Feature Information for Writing Embedded Event Manager Policies Using Tcl

