
Network Configuration Protocol

Last Updated: August 09, 2011

The Network Configuration Protocol (NETCONF) defines a simple mechanism through which a network
device can be managed, configuration data information can be retrieved, and new configuration data can be
uploaded and manipulated. NETCONF uses Extensible Markup Language (XML)-based data encoding for
the configuration data and protocol messages.

You can use the NETCONF over SSHv2 feature to perform network configurations via the Cisco
command-line interface (CLI) over an encrypted transport. The NETCONF Network Manager, which is the
NETCONF client, must use Secure Shell Version 2 (SSHv2) as the network transport to the NETCONF
server. Multiple NETCONF clients can connect to the NETCONF server.

You can use the NETCONF over BEEP feature to send notifications of any configuration change over
NETCONF. A notification is an event indicating that a configuration change has happened. The change can
be a new configuration, deleted configuration, or changed configuration. The notifications are sent at the
end of a successful configuration operation as one message showing the set of changes, rather than
individual messages for each line in the configuration that is changed.

Blocks Extensible Exchange Protocol (BEEP) can use the Simple Authentication and Security Layer
(SASL) profile to provide simple and direct mapping to the existing security model. Alternatively,
NETCONF over BEEP can use the transport layer security (TLS) to provide a strong encryption
mechanism with either server authentication or server and client-side authentication.

• Finding Feature Information, page 2

• Prerequisites for NETCONF, page 2

• Restrictions for NETCONF, page 2

• Information About NETCONF, page 2

• How to Configure NETCONF, page 5

• Configuration Examples for NETCONF, page 24

• Additional References, page 30

• Feature Information for NETCONF, page 31

• Glossary, page 33

 Network Configuration Protocol

 1

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest feature
information and caveats, see the release notes for your platform and software release. To find information
about the features documented in this module, and to see a list of the releases in which each feature is
supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for NETCONF
• NETCONF over SSHv2 requires that a vty line be available for each NETCONF session as specified

in the netconf max-sessioncommand.
• A vty line must be available for each NETCONF session as specified by the netconf max-session

command.
• NETCONF over BEEP listeners require SASL to be configured.

Restrictions for NETCONF
• NETCONF SSHv2 supports a maximum of 16 concurrent sessions.
• Only SSH version 2 is supported.
• You must be running a crypto image in order to configure BEEP using TLS.

Information About NETCONF
To configure NETCONF, you should understand the following concepts:

• NETCONF over SSHv2, page 2

• NETCONF over BEEP, page 3

• NETCONF Notifications, page 5

NETCONF over SSHv2
To run the NETCONF over SSHv2 feature, the client (a Cisco device running Cisco IOS software)
establishes an SSH transport connection with the server (a NETCONF network manager). The following
image shows a basic NETCONF over SSHv2 network configuration. The client and server exchange keys
for security and password encryption. The user ID and password of the SSHv2 session running NETCONF
are used for authorization and authentication purposes. The user privilege level is enforced and the client
session may not have full access to the NETCONF operations if the privilege level is not high enough. If
authentication, authorization, and accounting (AAA) is configured, the AAA service is used as if a user had
established an SSH session directly to the device. Using the existing security configuration makes the
transition to NETCONF almost seamless. Once the client has been successfully authenticated, the client

NETCONF over SSHv2
 Finding Feature Information

2

http://www.cisco.com/go/cfn

invokes the SSH connection protocol and the SSH session is established. After the SSH session is
established, the user or application invokes NETCONF as an SSH subsystem called “netconf.”

Figure 1

Secure Shell Version 2

SSHv2 runs on top of a reliable transport layer and provides strong authentication and encryption
capabilities. SSHv2 provides a means to securely access and securely execute commands on another
computer over a network.

NETCONF does not support SSH version 1. The configuration for the SSH Version 2 server is similar to
the configuration for SSH version 1. Use the ip ssh version command to specify which version of SSH that
you want to configure. If you do not configure this command, SSH by default runs in compatibility mode;
that is, both SSH version 1 and SSH version 2 connections are honored.

Note SSH version 1 is a protocol that has never been defined in a standard. If you do not want your router to fall
back to the undefined protocol (version 1), you should use the ip ssh version command and specify version
2.

Use the ip ssh rsa keypair-name command to enable an SSH connection using Rivest, Shamir, and
Adelman (RSA) keys that you have configured. If you configure the ip ssh rsa keypair-name command
with a key-pair name, SSH is enabled if the key pair exists, or SSH will be enabled if the key pair is
generated later. If you use this command to enable SSH, you do not need to configure a hostname and a
domain name.

NETCONF over BEEP
The NETCONF over BEEP feature allows you to enable BEEP as the transport protocol to use during
NETCONF sessions. Using NETCONF over BEEP, you can configure either the NETCONF server or the
NETCONF client to initiate a connection, thus supporting large networks of intermittently connected
devices, and those devices that must reverse the management connection where there are firewalls and
Network Address Translators (NATs).

BEEP is a generic application protocol framework for connection-oriented, asynchronous interactions. It is
intended to provide the features that traditionally have been duplicated in various protocol
implementations. BEEP typically runs on top of TCP and allows the exchange of messages. Unlike HTTP

 NETCONF over BEEP
Information About NETCONF

 3

and similar protocols, either end of the connection can send a message at any time. BEEP also includes
facilities for encryption and authentication and is highly extensible.

The BEEP protocol contains a framing mechanism that permits simultaneous and independent exchanges of
messages between peers. These messages are usually structured using XML. All exchanges occur in the
context of a binding to a well-defined aspect of the application, such as transport security, user
authentication, or data exchange. This binding forms a channel; each channel has an associated profile that
defines the syntax and semantics of the messages exchanged.

The BEEP session is mapped onto the NETCONF service. When a session is established, each BEEP peer
advertises the profiles it supports. During the creation of a channel, the client (the BEEP initiator) supplies
one or more proposed profiles for that channel. If the server (the BEEP listener) creates the channel, it
selects one of the profiles and sends it in a reply. The server may also indicate that none of the profiles are
acceptable, and decline creation of the channel.

BEEP allows multiple data exchange channels to be simultaneously in use.

Although BEEP is a peer-to-peer protocol, each peer is labelled according to the role it is performing at a
given time. When a BEEP session is established, the peer that awaits new connections is the BEEP listener.
The other peer, which establishes a connection to the listener, is the BEEP initiator. The BEEP peer that
starts an exchange is the client, and the other BEEP peer is the server. Typically, a BEEP peer that acts in
the server role also performs in the listening role. However, because BEEP is a peer-to-peer protocol, the
BEEP peer that acts in the server role is not required to also perform in the listening role.

Simple Authentication and Security Layer

The SASL is an Internet standard method for adding authentication support to connection-based protocols.
SASL can be used between a security appliance and an Lightweight Directory Access Protocol (LDAP)
server to secure user authentication.

Transport Layer Security

The TLS is an application-level protocol that provides for secure communication between a client and
server by allowing mutual authentication, the use of hash for integrity, and encryption for privacy. TLS
relies upon certificates, public keys, and private keys.

Certificates are similar to digital ID cards. They prove the identity of the server to clients. Each certificate
includes the name of the authority that issued it, the name of the entity to which the certificate was issued,
the entity’s public key, and time stamps that indicate the certificate’s expiration date.

Public and private keys are the ciphers used to encrypt and decrypt information. Although the public key is
shared, the private key is never given out. Each public-private key pair works together. Data encrypted with
the public key can be decrypted only with the private key.

Access Lists

You can optionally configure access lists for use with NETCONF over SSHv2 sessions. An access list is a
sequential collection of permit and deny conditions that apply to IP addresses. The Cisco IOS software tests
addresses against the conditions in an access list one by one. The first match determines whether the
software accepts or rejects the address. Because the software stops testing conditions after the first match,
the order of the conditions is critical. If no conditions match, the software rejects the address.

The two main tasks involved in using access lists are as follows:

1 Creating an access list by specifying an access list number or name and access conditions.
2 Applying the access list to interfaces or terminal lines.

NETCONF over BEEP
 Information About NETCONF

4

For more information about configuring access lists, see IP Access List Overview and Creating an IP
Access List and Applying It to an Interface modules in the Cisco IOS Security Configuration Guide:
Securing the Data Plane .

NETCONF Notifications
NETCONF sends notifications of any configuration change over NETCONF. A notification is an event
indicating that a configuration change has occurred. The change can be a new configuration, deleted
configuration, or changed configuration. The notifications are sent at the end of a successful configuration
operation as one message that shows the set of changes rather than showing individual messages for each
line that is changed in the configuration.

How to Configure NETCONF
• Enabling SSH Version 2 Using a Hostname and Domain Name, page 5

• Enabling SSH Version 2 Using RSA Key Pairs, page 7

• Starting an Encrypted Session with a Remote Device, page 8

• Verifying the Status of the Secure Shell Connection, page 9

• Enabling NETCONF over SSHv2, page 10

• Configuring an SASL Profile, page 12

• Enabling NETCONF over BEEP, page 13

• Configuring the NETCONF Network Manager Application, page 17

• Delivering NETCONF Payloads, page 18

• Formatting NETCONF Notifications, page 20

• Monitoring and Maintaining NETCONF Sessions, page 23

Enabling SSH Version 2 Using a Hostname and Domain Name
Perform this task to configure your router for SSH version 2 using a hostname and domain name. You may
also configure SSH version 2 by using the RSA key pair configuration (see Enabling SSH Version 2 Using
RSA Key Pairs, page 7).

SUMMARY STEPS

1. enable

2. configure terminal

3. hostname hostname

4. ip domain-name name

5. crypto key generate rsa

6. ip ssh [timeout seconds | authentication-retries integer]

7. ip ssh version 2

 NETCONF Notifications
How to Configure NETCONF

 5

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 hostname hostname

Example:

Router(config)# hostname host1

Configures a hostname for your router.

Step 4 ip domain-name name

Example:

Router(config)# ip domain-name domain1.com

Configures a domain name for your router.

Step 5 crypto key generate rsa

Example:

Router(config)# crypto key generate rsa

Enables the SSH server for local and remote authentication.

Step 6 ip ssh [timeout seconds | authentication-retries integer]

Example:

Router(config)# ip ssh timeout 120

(Optional) Configures SSH control variables on your router.

Step 7 ip ssh version 2

Example:

Router(config)# ip ssh version 2

Specifies the version of SSH to be run on your router.

Enabling SSH Version 2 Using a Hostname and Domain Name
 How to Configure NETCONF

6

Enabling SSH Version 2 Using RSA Key Pairs
Perform this task to enable SSH version 2 without configuring a hostname or domain name. SSH version 2
will be enabled if the key pair that you configure already exists or if it is generated later. You may also
configure SSH version 2 by using the hostname and domain name configuration. (See “Enabling SSH
Version 2 Using a Hostname and Domain Name, page 5.)

SUMMARY STEPS

1. enable

2. configure terminal

3. ip ssh rsa keypair-name keypair-name

4. crypto key generate rsa usage-keys label key-label modulus modulus-size

5. ip ssh [timeout seconds | authentication-retries integer]

6. ip ssh version 2

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 ip ssh rsa keypair-name keypair-name

Example:

Router(config)# ip ssh rsa keypair-name sshkeys

Specifies which RSA keypair to use for SSH usage.

Note A Cisco IOS router can have many RSA key pairs.

Step 4 crypto key generate rsa usage-keys label key-label
modulus modulus-size

Example:

Router(config)# crypto key generate rsa usage-
keys label sshkeys modulus 768

Enables the SSH server for local and remote authentication on
the router.

For SSH version 2, the modulus size must be at least 768 bits.

Note To delete the RSA key pair, use the crypto key zeroize
rsa command. After you have deleted the RSA
command, you automatically disable the SSH server.

 Enabling SSH Version 2 Using RSA Key Pairs
How to Configure NETCONF

 7

Command or Action Purpose

Step 5 ip ssh [timeout seconds | authentication-retries integer]

Example:

Router(config)# ip ssh timeout 120

Configures SSH control variables on your router.

Step 6 ip ssh version 2

Example:

Router(config)# ip ssh version 2

Specifies the version of SSH to be run on a router.

Starting an Encrypted Session with a Remote Device
Perform this task to start an encrypted session with a remote networking device. (You do not have to enable
your router. SSH can be run in disabled mode.)

From any UNIX or UNIX-like device, the following command is typically used to form an SSH session:

ssh -2 -s user@router.example.com netconf

SUMMARY STEPS

1. Do one of the following:

• ssh [-v {1 | 2}] [-c {3des| aes128-cbc | aes192-cbc| aes256-cbc}] [-m{hmac-md5 | hmac-md5-96
| hmac-sha1 | hmac-sha1-96}] [l userid] [-o numberofpasswordprompts n] [-p port-num] {ip-
addr | hostname} [command]

Starting an Encrypted Session with a Remote Device
 How to Configure NETCONF

8

DETAILED STEPS

Command or Action Purpose

Step 1 Do one of the following:

• ssh [-v {1 | 2}] [-c {3des| aes128-cbc | aes192-cbc| aes256-cbc}] [-
m{hmac-md5 | hmac-md5-96 | hmac-sha1 | hmac-sha1-96}] [l userid]
[-o numberofpasswordprompts n] [-p port-num] {ip-addr | hostname}
[command]

Example:

Router# ssh -v 2 -c aes256-cbc -m hmac-sha1-96 -l user2
10.76.82.24

Example:

Router#
ssh -v 2 -c aes256-cbc -m hmac-sha1-96 user2@10.76.82.24

Starts an encrypted session with a remote
networking device.

The first example adheres to the SSH
version 2 conventions. A more natural and
common way to start a session is by
linking the username with the hostname.
For example, the second configuration
example provides an end result that is
identical to that of the first example.

• Troubleshooting Tips, page 9

• What to Do Next, page 9

Troubleshooting Tips
The ip ssh version command can be used for troubleshooting your SSH configuration. By changing
versions, you can determine which SSH version has a problem.

What to Do Next
For more information about the ssh command, see the Cisco IOS Security Command Reference.

Verifying the Status of the Secure Shell Connection
Perform this task to display the status of the SSH connection on your router.

Note You can use the following show commands in user EXEC or privileged EXEC mode.

SUMMARY STEPS

1. enable

2. show ssh

3. show ip ssh

 Verifying the Status of the Secure Shell Connection
Troubleshooting Tips

 9

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

(Optional) Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 show ssh

Example:

Router# show ssh

Displays the status of SSH server connections.

Step 3 show ip ssh

Example:

Router# show ip ssh

Displays the version and configuration data for SSH.

Examples

The following output from the show ssh command displays status about SSH version 2 connections.

Router# show ssh
Connection Version Mode Encryption Hmac State
Username
1 2.0 IN aes128-cbc hmac-md5 Session started lab
1 2.0 OUT aes128-cbc hmac-md5 Session started lab
%No SSHv1 server connections running.

The following output from the show ip ssh command displays the version of SSH that is enabled, the
authentication timeout values, and the number of authentication retries.

Router# show ip ssh
SSH Enabled - version 2.0
Authentication timeout: 120 secs; Authentication retries: 3

Enabling NETCONF over SSHv2
Perform this task to enable NETCONF over SSHv2.

SSHv2 must be enabled.

Note There must be at least as many vty lines configured as there are concurrent NETCONF sessions.

Enabling NETCONF over SSHv2
 What to Do Next

10

Note
• A minimum of four concurrent NETCONF sessions must be configured.
• A maximum of 16 concurrent NETCONF sessions can be configured.
• NETCONF does not support SSHv1.

SUMMARY STEPS

1. enable

2. configure terminal

3. netconf ssh [acl access-list-number]

4. netconf lock-time seconds

5. netconf max-sessions session

6. netconf max-message size

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 netconf ssh [acl access-list-number]

Example:

Router(config)# netconf ssh acl 1

Enables NETCONF over SSHv2.

• Optionally, you can configure an access control list for this
NETCONF session.

Step 4 netconf lock-time seconds

Example:

Router(config)# netconf lock-time 60

(Optional) Specifies the maximum time, in seconds, a NETCONF
configuration lock is in place without an intermediate operation.

• The valid range is 1 to 300. The default value is 10 seconds.

 Enabling NETCONF over SSHv2
What to Do Next

 11

Command or Action Purpose

Step 5 netconf max-sessions session

Example:

Router(config)# netconf max-sessions 5

(Optional) Specifies the maximum number of concurrent NETCONF
sessions allowed.

• The valid range is 4 to 16. The default value is 4.

Step 6 netconf max-message size

Example:

Router(config)# netconf max-message
37283

(Optional) Specifies the maximum size, in kilobytes (KB), for the
messages received in a NETCONF session.

• The valid range is 1 to 2147483. The default value is infinite.
• To set the maximum size to infinite, use the no netconf max-

message command.

Configuring an SASL Profile
To enable NETCONF over BEEP using SASL, you must first configure an SASL profile, which specifies
which users are allowed access into the router. Perform this task to configure an SASL profile.

SUMMARY STEPS

1. enable

2. configure terminal

3. sasl profile profile-name

4. mechanism di gest-md5

5. server user-name password password

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Configuring an SASL Profile
 What to Do Next

12

Command or Action Purpose

Step 3 sasl profile profile-name

Example:

Router(config)# sasl profile beep

Configures an SASL profile and enters SASL
profile configuration mode.

Step 4 mechanism di gest-md5

Example:

Router(config-SASL-profile)# mechanism digest-md5

Configures the SASL profile mechanism.

Step 5 server user-name password password

Example:

Router(config-SASL-profile)# server user1 password password1

Configures an SASL server.

Enabling NETCONF over BEEP
Perform this task to enable NETCONF over BEEP.

• There must be at least as many vty lines configured as there are concurrent NETCONF sessions.
• If you configure NETCONF over BEEP using SASL, you must first configure an SASL profile.

Note
• A minimum of four concurrent NETCONF sessions must be configured.
• A maximum of 16 concurrent NETCONF sessions can be configured.

>

 Enabling NETCONF over BEEP
What to Do Next

 13

SUMMARY STEPS

1. enable

2. configure terminal

3. crypto key generate rsa general-keys

4. crypto pki trustpoint name

5. enrollment url url

6. subject-name name

7. revocation-check method1 [method2[method3]]

8. exit

9. crypto pki authenticate name

10. crypto pki enroll name

11. netconf lock-time seconds

12. line vty line-number [ending-line-number]

13. netconf max-sessions session

14. netconf beep initiator {hostname | ip-address} port-number user sasl-user password sasl-
password[encrypt trustpoint] [reconnect-time seconds]

15. netconf beep listener [port-number] [acl access-list-number] [sasl sasl-profile] [encrypt trustpoint]

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3 crypto key generate rsa general-keys

Example:

Router(config)# crypto key generate rsa general-
keys

Generates RSA key pairs and specifies that the general-
purpose key pair should be generated.

Perform this step only once.

Enabling NETCONF over BEEP
 What to Do Next

14

Command or Action Purpose

Step 4 crypto pki trustpoint name

Example:

Router(config)# crypto pki trustpoint
my_trustpoint

Declares the trustpoint that your router should use and
enters ca-trustpoint configuration mode.

Step 5 enrollment url url

Example:

Router(ca-trustpoint)# enrollment url http://
10.2.3.3:80

Specifies the enrollment parameters of a certification
authority (CA).

Step 6 subject-name name

Example:

Router(ca-trustpoint)# subject-name
CN=dns_name_of_host.com

Specifies the subject name in the certificate request.

Note The subject name should be the Domain Name
System (DNS) name of the device.

Step 7 revocation-check method1 [method2[method3]]

Example:

Router(ca-trustpoint)# revocation-check none

Checks the revocation status of a certificate.

Step 8 exit

Example:

Router(ca-trustpoint)# exit

Exits ca-trustpoint configuration mode and returns to
global configuration mode.

Step 9 crypto pki authenticate name

Example:

Router(config)# crypto pki authenticate
my_trustpoint

Authenticates the certification authority (by getting the
certificate of the CA).

Step 10 crypto pki enroll name

Example:

Router(config)# crypto pki enroll my_trustpoint

Obtains the certificate or certificates for your router from
CA.

 Enabling NETCONF over BEEP
What to Do Next

 15

Command or Action Purpose

Step 11 netconf lock-time seconds

Example:

Router(config)# netconf lock-time 60

(Optional) Specifies the maximum time a NETCONF
configuration lock is in place without an intermediate
operation.

The valid value range for the seconds argument is 1 to 300
seconds. The default value is 10 seconds.

Step 12 line vty line-number [ending-line-number]

Example:

Router(config)# line vty 0 15

Identifies a specific virtual terminal line for remote
console access.

You must configure the same number of vty lines as
maximum NETCONF sessions.

Step 13 netconf max-sessions session

Example:

Router(config)# netconf max-sessions 16

(Optional) Specifies the maximum number of concurrent
NETCONF sessions allowed.

Step 14 netconf beep initiator {hostname | ip-address} port-number
user sasl-user password sasl-password[encrypt trustpoint]
[reconnect-time seconds]

Example:

Router(config)# netconf beep initiator host1 23
user user1 password password1 encrypt 23
reconnect-time 60

(Optional) Specifies BEEP as the transport protocol for
NETCONF sessions and configures a peer as the BEEP
initiator.

Note Perform this step to configure a NETCONF BEEP
initiator session. You can also optionally configure
a BEEP listener session.

Step 15 netconf beep listener [port-number] [acl access-list-
number] [sasl sasl-profile] [encrypt trustpoint]

Example:

Router(config)# netconf beep listener 26 acl 101
sasl profile1 encrypt 25

(Optional) Specifies BEEP as the transport protocol for
NETCONF and configures a peer as the BEEP listener.

Note Perform this step to configure a NETCONF BEEP
listener session. You can also optionally configure a
BEEP initiator session.

Enabling NETCONF over BEEP
 What to Do Next

16

Configuring the NETCONF Network Manager Application

SUMMARY STEPS

1. Use the following CLI string to configure the NETCONF Network Manager application to invoke
NETCONF as an SSH subsystem:

2. As soon as the NETCONF session is established, indicate the server capabilities by sending an XML
document containing a <hello>:

3. Use the following XML string to enable the NETCONF network manager application to send and
receive NETCONF notifications:

4. Use the following XML string to stop the NETCONF network manager application from sending or
receiving NETCONF notifications:

DETAILED STEPS

Step 1 Use the following CLI string to configure the NETCONF Network Manager application to invoke NETCONF as an
SSH subsystem:

Example:

Unix Side: ssh-2 -s companyname@10.1.1.1 netconf

Step 2 As soon as the NETCONF session is established, indicate the server capabilities by sending an XML document
containing a <hello>:

Example:

<?xml version="1.0" encoding="UTF-8"?>
 <hello>
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:ns:netconf:capability:startup:1.0
 </capability>
 </capabilities>
 <session-id>4<session-id>
</hello>]]>]]>

The client also responds by sending an XML document containing a <hello>:

Example:

<?xml version="1.0" encoding="UTF-8"?>
 <hello>
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 </capabilities>
</hello>]]>]]>

 Configuring the NETCONF Network Manager Application
What to Do Next

 17

Note Although the example shows the server sending a <hello> message followed by the client’s message, both sides
send the message as soon as the NETCONF subsystem is initialized, perhaps simultaneously.

Tip All NETCONF requests must end with]]>]]> which denotes an end to the request. Until the]]>]]> sequence is
sent, the device will not process the request.

See "Configuring NETCONF over SSHv2 Example" for a specific example.

Step 3 Use the following XML string to enable the NETCONF network manager application to send and receive NETCONF
notifications:

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<rpc message-id="9.0"><notification-on/>
</rpc>]]>]]>

Step 4 Use the following XML string to stop the NETCONF network manager application from sending or receiving
NETCONF notifications:

Example:

<?xml version="1.0" encoding="UTF-8" ?>
<rpc message-id="9.13"><notification-off/>
</rpc>]]>]]>

Delivering NETCONF Payloads
Use the following XML string to deliver the NETCONF payload to the network manager application:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://www.cisco.com/cpi_10/schema"
elementFormDefault="qualified" attributeFormDefault="unqualified" xmlns="http://
www.cisco.com/cpi_10/schema" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <!--The following elements define the cisco extensions for the content of the filter
element in a <get-config> request. They allow the client to specify the format of the
response and to select subsets of the entire configuration to be included.-->
 <xs:element name="config-format-text-block">
 <xs:annotation>
 <xs:documentation>If this element appears in the filter, then the cllient is
requesting that the response data be sent in config command block format.</
xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="text-filter-spec" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="config-format-text-cmd">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="text-filter-spec"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="config-format-xml">
 <xs:annotation>
 <xs:documentation>When this element appears in the filter of a get-config

Delivering NETCONF Payloads
 What to Do Next

18

request, the results are to be returned in E-DI XML format. The content of this element
is treated as a filter.</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="xs:anyType"/>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <!--These elements are used in the filter of a <get> to specify operational data to
return.-->
 <xs:element name="oper-data-format-text-block">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="show" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="oper-data-format-xml">
 <xs:complexType>
 <xs:sequence>
 <xs:any/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!--When confing-format-text format is specified, the following describes the content
of the data element in the response-->
 <xs:element name="cli-config-data">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="cmd" type="xs:string" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>Content is a command. May be multiple lines.</
xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="cli-config-data-block" type="xs:string">
 <xs:annotation>
 <xs:documentation>The content of this element is the device configuration as it
would be sent to a terminal session. It contains embedded newline characters that must be
preserved as they represent the boundaries between the individual command lines</
xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="text-filter-spec">
 <xs:annotation>
 <xs:documentation>If this element is included in the config-format-text element,
then the content is treated as if the string was appended to the "show running-config"
command line.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="cli-oper-data-block">
 <xs:complexType>
 <xs:annotation>
 <xs:documentation> This element is included in the response to get operation.
Content of this element is the operational data in text format.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="item" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="show"/>
 <xs:element name="response"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:schema>

 Delivering NETCONF Payloads
What to Do Next

 19

Formatting NETCONF Notifications
The NETCONF network manager application uses .xsd schema files to describe the format of the XML
NETCONF notification messages being sent between a NETCONF network manager application and a
router running NETCONF over SSHv2 or BEEP. These files can be displayed in a browser or a schema
reading tool. You can use these schema to validate that the XML is correct. These schema describe the
format, not the content, of the data being exchanged.

NETCONF uses the <edit-config> function to load all of a specified configuration to a specified target
configuration. When this new configuration is entered, the target configuration is not replaced. The target
configuration is changed according to the data and requested operations of the requesting source.

The following are schemas for the NETCONF <edit-config> function in CLI, CLI block, and XML format.

NETCONF <edit-config> Request: CLI Format

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <cli-config-data>
<cmd>hostname test</cmd>
 <cmd>interface fastEthernet0/1</cmd>
 <cmd>ip address 192.168.1.1 255.255.255.0</cmd>
</cli-config-data>
 </config>
 </edit-config>
</rpc>]]>]]>

NETCONF <edit-config> Response: CLI Format

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:netconf:base:1.0">
 <ok/>
</rpc-reply>]]>]]>

NETCONF <edit-config> Request: CLI-Block Format

<?xml version="1.0" encoding="UTF-8"?>
<rpc message-id="netconf.mini.edit.3">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <cli-config-data-block>
 hostname bob
 interface fastEthernet0/1
 ip address 192.168.1.1 255.255.255.0
 </cli-config-data-block>
 </config>
 </edit-config>
</rpc>]]>]]>

NETCONF <edit-config> Response: CLI-Block Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc-reply message-id="netconf.mini.edit.3" xmlns="urn:ietf:params:netconf:base:1.0">

Formatting NETCONF Notifications
 What to Do Next

20

 <ok/>
</rpc-reply>]]>]]>

The following are schemas for the NETCONF <get-config> function in CLI and CLI-block format.

NETCONF <get-config> Request: CLI Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <config-format-text-cmd>
 <text-filter-spec> | inc interface </text-filter-spec>
 </config-format-text-cmd>
</filter>
 </get-config>
</rpc>]]>]]>

NETCONF <get-config> Response: CLI Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <cli-config-data>
 <cmd>interface FastEthernet0/1</cmd>
 <cmd>interface FastEthernet0/2</cmd>
 </cli-config-data>
 </data>
</rpc-reply>]]>]]>

NETCONF <get-config> Request: CLI-Block Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <config-format-text-block>
 <text-filter-spec> | inc interface </text-filter-spec>
 </config-format-text-block>
 </filter>
 </get-config>
</rpc>]]>]]>

NETCONF <get-config> Response: CLI-Block Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <cli-config-data-block>
 interface FastEthernet0/1
 interface FastEthernet0/2
 </cli-config-data-block>
 </data>
</rpc-reply>]]>]]>

NETCONF uses the <get> function to retrieve configuration and device-state information. The NETCONF
<get> format is the equivalent of a Cisco IOS show command. The <filter> parameter specifies the portion
of the system configuration and device-state data to retrieve. If the <filter> parameter is empty, nothing is
returned.

 Formatting NETCONF Notifications
What to Do Next

 21

The following are schemas for the <get> function in CLI and CLI-block format.

NETCONF <get> Request: CLI Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <config-format-text-cmd>
 <text-filter-spec> | include interface </text-filter-spec>
 </config-format-text-cmd>
 <oper-data-format-text-block>
 <show>interfaces</show>
 <show>arp</show>
 </oper-data-format-text-block>
 </filter>
 </get>
 </rpc>]]>]]>

NETCONF <get> Response: CLI Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <cli-config-data>
<cmd>interface Loopback0</cmd>
<cmd>interface GigabitEthernet0/1</cmd>
<cmd>interface GigabitEthernet0/2</cmd>
</cli-config-data>
<cli-oper-data-block>
 <item>
 <show>interfaces</show>
 <response>
 <!-- output of "show interfaces" ------>
 </response>
 <show>arp</show>
 <item>
 <show>arp</show>
 <response>
 <!-- output of "show arp" ------>
 </response>
 </item>
 </cli-oper-data-block>
 </data>
</rpc-reply>]]>]]>

NETCONF <get> Request: CLI-Block Format

<?xml version="1.0" encoding=\"UTF-8\"?>
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter>
 <config-format-text-block>
 <text-filter-spec> | include interface </text-filter-spec>
 </config-format-text-block>
 <oper-data-format-text-block>
 <show>interfaces</show>
 <show>arp</show>
 </oper-data-format-text-block>
 </filter>
 </get>
 </rpc>]]>]]>

NETCONF <get> Response: CLI-Block Format

<?xml version="1.0" encoding=\"UTF-8\"?>

Formatting NETCONF Notifications
 What to Do Next

22

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <cli-config-data-block>
interface Loopback0
interface GigabitEthernet0/1
interface GigabitEthernet0/2
 </cli-config-data-block>
 <cli-oper-data-block>
 <item>
 <show>interfaces</show>
 <response>
 <!-- output of "show interfaces" ------>
 </response>
 <show>arp</show>
 <item>
 <show>arp</show>
 <response>
 <!-- output of "show arp" ------>
 </response>
 </item>
 </cli-oper-data-block>
 </data>
</rpc-reply>]]>]]>

Monitoring and Maintaining NETCONF Sessions
Perform this task to monitor and maintain NETCONF sessions.

Note
• A minimum of four concurrent NETCONF sessions must be configured.
• A maximum of 16 concurrent NETCONF sessions can be configured.
• NETCONF does not support SSHv1.

>

SUMMARY STEPS

1. enable

2. show netconf {counters | session| schema}

3. debug netconf {all | error}

4. clear netconf {counters | sessions}

DETAILED STEPS

Command or Action Purpose

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

 Monitoring and Maintaining NETCONF Sessions
What to Do Next

 23

Command or Action Purpose

Step 2 show netconf {counters | session| schema}

Example:

Router# show netconf counters

Displays NETCONF information.

Step 3 debug netconf {all | error}

Example:

Router# debug netconf error

Enables debugging of NETCONF sessions.

Step 4 clear netconf {counters | sessions}

Example:

Router# clear netconf sessions

Clears NETCONF statistics counters and NETCONF sessions, and frees
associated resources and locks.

Configuration Examples for NETCONF
• Enabling SSHv2 Using a Hostname and Domain Name Example, page 24

• Enabling Secure Shell Version 2 Using RSA Keys Example, page 25

• Starting an Encrypted Session with a Remote Device Example, page 25

• Configuring NETCONF over SSHv2 Example, page 25

• Configuring NETCONF over BEEP Example, page 26

• Configuring NETCONF Network Manager Application Example, page 27

• Monitoring NETCONF Sessions Example, page 28

Enabling SSHv2 Using a Hostname and Domain Name Example
The following example shows how to configure SSHv2 using a hostname and a domain name:

Router# configure terminal

Router(config)# hostname host1

Router(config)# ip domain-name domain1.com

Router(config)# crypto key generate rsa

Router(config)# ip ssh timeout 120

Router(config)# ip ssh version 2

Enabling SSHv2 Using a Hostname and Domain Name Example
 Configuration Examples for NETCONF

24

Enabling Secure Shell Version 2 Using RSA Keys Example
The following example shows how to configure SSHv2 using RSA keys:

Router# configure terminal

Router(config)# ip ssh rsa keypair-name sshkeys

Router(config)# crypto key generate rsa usage-keys label sshkeys modulus 768
Router(config)# ip ssh timeout 120
Router(config)# ip ssh version 2

Starting an Encrypted Session with a Remote Device Example
The following example shows how to start an encrypted SSH session with a remote networking device,
from any UNIX or UNIX-like device:

Router(config)# ssh -2 -s user@router.example.com netconf

Configuring NETCONF over SSHv2 Example
The following example shows how to configure NETCONF over SSHv2:

Router# configure terminal
Router(config)# netconf ssh acl 1
Router(config)# netconf lock-time 60
Router(config)# netconf max-sessions 5
Router(config)# netconf max-message 2345
Router# ssh-2 -s username@10.1.1.1 netconf

The following example shows how to get the configuration for loopback interface 113.

SUMMARY STEPS

1. First, send the “hello”:

2. Next, send the get-config request:

 Enabling Secure Shell Version 2 Using RSA Keys Example
Configuration Examples for NETCONF

 25

DETAILED STEPS

Command or Action Purpose

Step 1 First, send the “hello”:

Example:

<?xml version="1.0" encoding=\"UTF-8\"?>
<hello><capabilities>
 <capability>u?rn:ietf:params:netconf:base:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:writeable-running:1.0</capability>
 <capability>urn:ietf:params:netconf:ca?pability:roll?back-on-error:1.0</capability>
 <capability>urn:ietf:params:netconf:capability:startup:1.0</capability>
 <capability>urn:ietf:params:netconf:ca?pability:url:?1.0</capability>
 <capability>urn:cisco:params:netconf:capability:pi-data-model:1.0</capability>
 <capability>urn:cisco:params:netconf:capabili?ty:notificati?on:1.0</capability>
 </capabilities>
</hello>]]>]]>

Step 2 Next, send the get-config request:

Example:

<?xml version="1.0"?>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"xmlns:cpi="http://www.cisco.com/cpi_10/
schema" message-id="101">
 <get-config>
 <source>
 <running/>
 </source>
 <filter>
 <config-format-text-cmd>
 <text-filter-spec>
 interface Loopback113
 </text-filter-spec>
 </config-format-text-cmd>
 </filter>
 </get-config>
</rpc>]]>]]>

The following output is shown on the router:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply message-id="101"xmlns=\"urn:ietf:params:netconf:base:1.0\">
 <data>
 <cli-config-data>
interface Loopback113
description test456
no ip address
load-interval 30
end
 </cli-config-data>
 </data>
</rpc-rep?ly>]]>]]>

Configuring NETCONF over BEEP Example
The following example shows how to configure NETCONF over BEEP:

Router# configure terminal
Router(config)# crypto key generate rsa general-keys

Configuring NETCONF over BEEP Example
 Configuration Examples for NETCONF

26

Router(ca-trustpoint)# crypto pki trustpoint my_trustpoint

Router(ca-trustpoint)# enrollment url http://10.2.3.3:80
Router(ca-trustpoint)# subject-name CN=dns_name_of_host.com
Router(ca-trustpoint)# revocation-check none
Router(ca-trustpoint)# crypto pki authenticate my_trustpoint

Router(ca-trustpoint)# crypto pki enroll my_trustpoint

Router(ca-trustpoint)# line vty 0 15

Router(ca-trustpoint)# exit
Router(config)# netconf lock-time 60

Router(config)# netconf max-sessions 16

Router(config)# netconf beep initiator host1 23 user my_user password my_password encrypt
my_trustpoint reconnect-time 60

Router(config)# netconf beep listener 23 sasl user1 encrypt my_trustpoint

Configuring NETCONF Network Manager Application Example
The following example shows how to configure the NETCONF Network Manager application to invoke
NETCONF as an SSH subsystem:

Unix Side: ssh-2 -s companyname@10.1.1.1 netconf

As soon as the NETCONF session is established, indicate the server capabilities by sending an XML
document containing a <hello>:

<?xml version="1.0" encoding="UTF-8"?>
 <hello>
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 <capability>
 urn:ietf:params:ns:netconf:capability:startup:1.0
 </capability>
 </capabilities>
 <session-id>4<session-id>
</hello>]]>]]>

The client also responds by sending an XML document containing a <hello>:

<?xml version="1.0" encoding="UTF-8"?>
 <hello>
 <capabilities>
 <capability>
 urn:ietf:params:xml:ns:netconf:base:1.0
 </capability>
 </capabilities>
</hello>]]>]]>

Use the following XML string to enable the NETCONF network manager application to send and receive
NETCONF notifications:

<?xml version="1.0" encoding="UTF-8" ?>
<rpc message-id="9.0"><notification-on/>
</rpc>]]>]]>

Use the following XML string to stop the NETCONF network manager application from sending or
receiving NETCONF notifications:

<?xml version="1.0" encoding="UTF-8" ?>

 Configuring NETCONF Network Manager Application Example
Configuration Examples for NETCONF

 27

<rpc message-id="9.13"><notification-off/>
</rpc>]]>]]>

Monitoring NETCONF Sessions Example
The following is sample output from the show netconf counters command:

Router# show netconf counters
NETCONF Counters
Connection Attempts:0: rejected:0 no-hello:0 success:0
Transactions
 total:0, success:0, errors:0
detailed errors:
 in-use 0 invalid-value 0 too-big 0
 missing-attribute 0 bad-attribute 0 unknown-attribute 0
 missing-element 0 bad-element 0 unknown-element 0
 unknown-namespace 0 access-denied 0 lock-denied 0
 resource-denied 0 rollback-failed 0 data-exists 0
 data-missing 0 operation-not-supported 0 operation-failed 0
 partial-operation 0

The following is sample output from the show netconf session command:

Router# show netconf session
(Current | max) sessions: 3 | 4
Operations received: 100 Operation errors: 99
Connection Requests: 5 Authentication errors: 2 Connection Failures: 0
ACL dropped : 30
Notifications Sent: 20

The output of the show netconf schema command describes the element structure for a NETCONF request
and the resulting reply. This schema can be used to construct proper NETCONF requests and parse the
resulting replies. The nodes in the schema are defined in RFC 4741. The following is sample output from
the show netconf schemacommand:

Router# show netconf schema
New Name Space 'urn:ietf:params:xml:ns:netconf:base:1.0'
<VirtualRootTag> [0, 1] required
 <rpc-reply> [0, 1] required
 <ok> [0, 1] required
 <data> [0, 1] required
 <rpc-error> [0, 1] required
 <error-type> [0, 1] required
 <error-tag> [0, 1] required
 <error-severity> [0, 1] required
 <error-app-tag> [0, 1] required
 <error-path> [0, 1] required
 <error-message> [0, 1] required
 <error-info> [0, 1] required
 <bad-attribute> [0, 1] required
 <bad-element> [0, 1] required
 <ok-element> [0, 1] required
 <err-element> [0, 1] required
 <noop-element> [0, 1] required
 <bad-namespace> [0, 1] required
 <session-id> [0, 1] required
 <hello> [0, 1] required
 <capabilities> 1 required
 <capability> 1+ required
 <rpc> [0, 1] required
 <close-session> [0, 1] required
 <commit> [0, 1] required
 <confirmed> [0, 1] required
 <confirm-timeout> [0, 1] required
 <copy-config> [0, 1] required
 <source> 1 required
 <config> [0, 1] required
 <cli-config-data> [0, 1] required
 <cmd> 1+ required

Monitoring NETCONF Sessions Example
 Configuration Examples for NETCONF

28

 <cli-config-data-block> [0, 1] required
 <xml-config-data> [0, 1] required
 <Device-Configuration> [0, 1] required
 <> any subtree is allowed
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <target> 1 required
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <delete-config> [0, 1] required
 <target> 1 required
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <discard-changes> [0, 1] required
 <edit-config> [0, 1] required
 <target> 1 required
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <default-operation> [0, 1] required
 <test-option> [0, 1] required
 <error-option> [0, 1] required
 <config> 1 required
 <cli-config-data> [0, 1] required
 <cmd> 1+ required
 <cli-config-data-block> [0, 1] required
 <xml-config-data> [0, 1] required
 <Device-Configuration> [0, 1] required
 <> any subtree is allowed
 <get> [0, 1] required
 <filter> [0, 1] required
 <config-format-text-cmd> [0, 1] required
 <text-filter-spec> [0, 1] required
 <config-format-text-block> [0, 1] required
 <text-filter-spec> [0, 1] required
 <config-format-xml> [0, 1] required
 <oper-data-format-text-block> [0, 1] required
 <show> 1+ required
 <oper-data-format-xml> [0, 1] required
 <show> 1+ required
 <get-config> [0, 1] required
 <source> 1 required
 <config> [0, 1] required
 <cli-config-data> [0, 1] required
 <cmd> 1+ required
 <cli-config-data-block> [0, 1] required
 <xml-config-data> [0, 1] required
 <Device-Configuration> [0, 1] required
 <> any subtree is allowed
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <filter> [0, 1] required
 <config-format-text-cmd> [0, 1] required
 <text-filter-spec> [0, 1] required
 <config-format-text-block> [0, 1] required
 <text-filter-spec> [0, 1] required
 <config-format-xml> [0, 1] required
 <kill-session> [0, 1] required
 <session-id> [0, 1] required
 <lock> [0, 1] required
 <target> 1 required
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required

 Monitoring NETCONF Sessions Example
Configuration Examples for NETCONF

 29

 <url> [0, 1] required
 <unlock> [0, 1] required
 <target> 1 required
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <validate> [0, 1] required
 <source> 1 required
 <config> [0, 1] required
 <cli-config-data> [0, 1] required
 <cmd> 1+ required
 <cli-config-data-block> [0, 1] required
 <xml-config-data> [0, 1] required
 <Device-Configuration> [0, 1] required
 <> any subtree is allowed
 <candidate> [0, 1] required
 <running> [0, 1] required
 <startup> [0, 1] required
 <url> [0, 1] required
 <notification-on> [0, 1] required
 <notification-off> [0, 1] required

Additional References
The following sections provide references related to the NETCONF feature.

Related Documents

Related Topic Document Title

IP access lists IP Access List Overview and Creating an IP Access
List and Applying It to an Interface modules in the
Cisco IOS Security Configuration Guide: Securing
the Data Plane.

Secure Shell and Secure Shell Version 2 “Configuring Secure Shell” module in the Cisco
IOS Security Configuration Guide: Securing User
Services.

NETCONF commands: complete command syntax,
command mode, command history, defaults, usage
guidelines, and examples

Cisco IOS Network Management Command
Reference

IP access lists commands: complete command
syntax, command mode, command history,
defaults, usage guidelines, and examples

Security commands: complete command syntax,
command mode, command history, defaults, usage
guidelines, and examples

Cisco IOS Security Command Reference

Standards

Standard Title

None --

Monitoring NETCONF Sessions Example
 Additional References

30

MIBs

MIB MIBs Link

None To locate and download MIBs for selected
platforms, Cisco IOS releases, and feature sets, use
Cisco MIB Locator found at the following URL:

http://www.cisco.com/go/mibs

RFCs

RFC Title

RFC 2222 Simple Authentication and Security Layer (SASL)

RFC 2246 The TLS Protocol Version 1.0

RFC 3080 The Blocks Extensible Exchange Protocol Core

RFC 4251 The Secure Shell (SSH) Protocol Architecture

RFC 4252 The Secure Shell (SSH) Authentication Protocol

RFC 4741 NETCONF Configuration Protocol

RFC 4742 Using the NETCONF Configuration Protocol over
Secure SHell (SSH)

RFC 4744 Using the NETCONF Protocol over the Blocks
Extensible Exchange Protocol (BEEP)

Technical Assistance

Description Link

The Cisco Support website provides extensive
online resources, including documentation and
tools for troubleshooting and resolving technical
issues with Cisco products and technologies.

To receive security and technical information about
your products, you can subscribe to various
services, such as the Product Alert Tool (accessed
from Field Notices), the Cisco Technical Services
Newsletter, and Really Simple Syndication (RSS)
Feeds.

Access to most tools on the Cisco Support website
requires a Cisco.com user ID and password.

http://www.cisco.com/techsupport

Feature Information for NETCONF
The following table provides release information about the feature or features described in this module.
This table lists only the software release that introduced support for a given feature in a given software

 Monitoring NETCONF Sessions Example
Feature Information for NETCONF

 31

http://www.cisco.com/go/mibs
http://www.cisco.com/public/support/tac/home.shtml

release train. Unless noted otherwise, subsequent releases of that software release train also support that
feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for NETCONF

Feature Name Releases Feature Information

NETCONF over SSHv2 12.2(33)SRA 12.4(9)T
12.2(33)SB 12.2(33)SXI

The NETCONF over SSHv2
feature enables you to perform
network configurations via the
Cisco command-line interface
(CLI) over an encrypted
transport.

The NETCONF protocol defines
a simple mechanism through
which a network device can be
managed, configuration data
information can be retrieved, and
new configuration data can be
uploaded and manipulated.
NETCONF uses an Extensible
Markup Language (XML)-based
data encoding for the
configuration data and protocol
messages.

• In 12.4(9)T, this feature was
introduced.

The following commands were
introduced or modified by this
feature: clear netconf, debug
netconf, netconf lock-time,
netconf max-sessions, netconf
ssh, show netconf.

Monitoring NETCONF Sessions Example
 Feature Information for NETCONF

32

http://www.cisco.com/go/cfn

Feature Name Releases Feature Information

NETCONF Access for
Configuration over BEEP

12.4(9)T 12.2(33)SRB
12.2(33)SB 12.2(33)SXI

The NETCONF over BEEP
feature allows you to enable
either the NETCONF server or
the NETCONF client to initiate a
connection, thus supporting large
networks of intermittently
connected devices and those
devices that must reverse the
management connection where
there are firewalls and network
address translators (NATs).

• In 12.4(9)T, this feature was
introduced.

The following commands were
introduced or modified by this
feature: netconf beep initiator,
netconf beep listener.

Glossary
BEEP --Blocks Extensible Exchange Protocol. A generic application protocol framework for connection-
oriented, asynchronous interactions.

NETCONF --Network Configuration Protocol. A protocol that defines a simple mechanism through which
a network device can be managed, configuration data information can be retrieved, and new configuration
data can be uploaded and manipulated.

SASL --Simple Authentication and Security Layer. An Internet standard method for adding authentication
support to connection-based protocols. SASL can be used between a security appliance and an Lightweight
Directory Access Protocol (LDAP) server to secure user authentication.

SSHv2 --Secure Shell Version 2. SSH runs on top of a reliable transport layer and provides strong
authentication and encryption capabilities. SSHv2 provides a means to securely access and securely
execute commands on another computer over a network.

TLS --Transport Layer Security. An application-level protocol that provides for secure communication
between a client and server by allowing mutual authentication, the use of hash for integrity, and encryption
for privacy. TLS relies upon certificates, public keys, and private keys.

XML --Extensible Markup Language. A standard maintained by the World Wide Web Consortium (W3C)
that defines a syntax that lets you create markup languages to specify information structures. Information
structures define the type of information (for example, subscriber name or address), not how the
information looks (bold, italic, and so on). External processes can manipulate these information structures
and publish them in a variety of formats. XML allows you to define your own customized markup
language.

 Monitoring NETCONF Sessions Example
Glossary

 33

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other
countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party
trademarks mentioned are the property of their respective owners. The use of the word partner does not
imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be
actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP
addresses or phone numbers in illustrative content is unintentional and coincidental.

Monitoring NETCONF Sessions Example

34

http://www.cisco.com/go/trademarks

	Network Configuration Protocol
	Finding Feature Information
	Prerequisites for NETCONF
	Restrictions for NETCONF
	Information About NETCONF
	NETCONF over SSHv2
	NETCONF over BEEP
	NETCONF Notifications

	How to Configure NETCONF
	Enabling SSH Version 2 Using a Hostname and Domain Name
	Enabling SSH Version 2 Using RSA Key Pairs
	Starting an Encrypted Session with a Remote Device
	Troubleshooting Tips
	What to Do Next

	Verifying the Status of the Secure Shell Connection
	Enabling NETCONF over SSHv2
	Configuring an SASL Profile
	Enabling NETCONF over BEEP
	Configuring the NETCONF Network Manager Application
	Delivering NETCONF Payloads
	Formatting NETCONF Notifications
	Monitoring and Maintaining NETCONF Sessions

	Configuration Examples for NETCONF
	Enabling SSHv2 Using a Hostname and Domain Name Example
	Enabling Secure Shell Version 2 Using RSA Keys Example
	Starting an Encrypted Session with a Remote Device Example
	Configuring NETCONF over SSHv2 Example
	Configuring NETCONF over BEEP Example
	Configuring NETCONF Network Manager Application Example
	Monitoring NETCONF Sessions Example

	Additional References
	Feature Information for NETCONF
	Glossary

