The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

Notwithstanding any other warranty herein, all document files and software of these suppliers are provided "as is" with all faults. Cisco and the above-named suppliers disclaim all warranties, expressed or implied, including, without limitation, those of merchantability, fitness for a particular purpose and noninfringement or arising from a course of dealing, usage, or trade practice.

In no event shall Cisco or its suppliers be liable for any indirect, special, consequential, or incidental damages, including, without limitation, lost profits or loss or damage to data arising out of the use or inability to use this manual, even if Cisco or its suppliers have been advised of the possibility of such damages.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2019 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

Read Me First 1

CHAPTER 2

Using Ethernet Operations Administration and Maintenance 3

Finding Feature Information 3

Information About Using Ethernet Operations Administration and Maintenance 4

Ethernet OAM 4

OAM Client 4

OAM Sublayer 4

Benefits of Ethernet OAM 5

Cisco Implementation of Ethernet OAM 5

OAM Features 5

OAM Messages 7

IEEE 802.3ah Link Fault RFI Support 8

Ethernet Connectivity Fault Management 8

High Availability Features Supported by 802.3ah 8

Benefits of 802.3ah HA 9

NSF SSO Support in 802.3ah OAM 9

ISSU Support in 802.3ah OAM 9

How to Set Up and Configure Ethernet Operations Administration and Maintenance 9

Enabling Ethernet OAM on an Interface 9

Disabling and Enabling a Link Monitoring Session 10

Disabling a Link Monitoring Session 10

Enabling a Link Monitoring Session 11

Stopping and Starting Link Monitoring Operations 12

Stopping Link Monitoring Operations 12

Starting Link Monitoring Operations 13
CHAPTER 3 Configuring Ethernet Connectivity Fault Management in a Service Provider Network

Prerequisites for Configuring Ethernet CFM in a Service Provider Network 27
Restrictions for Configuring Ethernet CFM in a Service Provider Network 28
Information About Configuring Ethernet CFM in a Service Provider Network 28

Ethernet CFM 28
 Benefits of Ethernet CFM 28
Customer Service Instance 29
Maintenance Domain 29
Maintenance Point 31
 Maintenance Endpoints 31
 Maintenance Intermediate Points 32
CFM Messages 33
Cross-Check Function 34
SNMP Traps 35
Ethernet CFM and Ethernet OAM Interaction 35
 Ethernet Virtual Circuit 35
 OAM Manager 35
 CFM over Bridge Domains 36
HA Features Supported by CFM 36
 CFM HA in a Metro Ethernet Network 37
NSF SSO Support in CFM 802.1ag 1.0d 37
ISSU Support in CFM 802.1ag 1.0d 37
How to Set Up Ethernet CFM in a Service Provider Network 38
Designing CFM Domains 38
 Examples 40
 What to Do Next 41
Configuring Ethernet CFM 41
CHAPTER 5 Configuring Ethernet Virtual Connections on the Cisco ASR 1000 Series Router 153

Finding Feature Information 153
Restrictions for Configuring EVCs on the Cisco ASR 1000 Series Router 153
Information About Configuring EVCs on the Cisco ASR 1000 Series Router 154

EVCs 154
Service Instances and Associated EFPs 154
Encapsulation (Flexible Service Mapping) 155
Layer 3 and Layer 4 ACL Support 157
Advanced Frame Manipulation 157
EFPs and Layer 2 Protocols 158

Egress Frame Filtering 158
Bridge Domains 158
Ethernet MAC Address Learning 159
Flooding of Layer 2 Frames for Unknown MAC Multicast and Broadcast Addresses 159
Layer 2 Destination MAC Address-Based Forwarding 159
MAC Address Aging 159
MAC Address Move 159
MAC Address Table 159
Split Horizon Group 160
CHAPTER 10
ITU-T Y.1731 Performance Monitoring in a Service Provider Network 211
- Finding Feature Information 211
- Prerequisites for ITU-T Y.1731 Performance Monitoring in a Service Provider Network 211
- Information About ITU-T Y.1731 Performance Monitoring in a Service Provider Network 212
- Frame Delay and Frame-Delay Variation 212
- Benefits of ITU-T Y.1731 Performance Monitoring 213
- How to Configure ITU-T Y.1731 Performance Monitoring in a Service Provider Network 214
- Configuring Performance Monitoring Parameters 214
- Configuration Examples for Configuring ITU-T Y.1731 Performance Monitoring Functions 214
- Example: Configuring Performance Monitoring 214
- Additional References 214
- Feature Information for ITU-T Y.1731 Performance Monitoring in a Service Provider Network 215

CHAPTER 11
Enabling Ethernet Local Management Interface 217
- Finding Feature Information 217
- Prerequisites for Enabling Ethernet Local Management Interface 218
- Restrictions for Enabling Ethernet Local Management Interface 218
- Information About Enabling Ethernet Local Management Interface 218
- EVC 218
Example Configuring a MAC Address Permit List 274
Example Configuring a MAC Address Deny List 274
Example Configuring MAC Address Limiting on a Bridge Domain 274
Example Configuring a MAC Address Limit on a Service Instance 275
Example Configuring a MAC Address Violation Response 275
Example Configuring MAC Address Aging 275
Example Configuring a Sticky MAC Address 275
Example Displaying the MAC Addresses on a Specific Secure Service Instance 276
Example Displaying the Last Violation on a Specific Service Instance 276
Example Displaying the MAC Security Status of a Specific Service Instance 276
Example Displaying the MAC Addresses of All Secured Service Instances 276
Example: Displaying the MAC Addresses on All Service Instances for a Bridge Domain 276
Example Displaying the Secured Service Instances for a Specific Bridge Domain 277
Additional References 277

Feature Information for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels 279

CHAPTER 15

Configuring Ethernet Local Management Interface at a Provider Edge 281
Finding Feature Information 281
Prerequisites for Configuring Ethernet Local Management Interface at a Provider Edge 282
Restrictions for Configuring Ethernet Local Management Interface at a Provider Edge 282
Information About Configuring Ethernet Local Management Interface at a Provider Edge 282
 Ethernet Virtual Circuits Overview 282
 Ethernet LMI Overview 282
 Ethernet CFM Overview 283
 OAM Manager Overview 283
 Benefits of Ethernet LMI at a Provider Edge 283
 HA Features Supported by Ethernet LMI 284
 Benefits of Ethernet LMI HA 284
 NSF SSO Support in Ethernet LMI 284
 ISSU Support in Ethernet LMI 285
 How to Configure Ethernet Local Management Interface at a Provider Edge 285
 Configuring Ethernet LMI Interaction with CFM 285
 Configuring the OAM Manager 285
CHAPTER 16

Using Link Layer Discovery Protocol in Multivendor Networks 297
Finding Feature Information 297
Prerequisites for Using Link Layer Discovery Protocol in Multivendor Networks 298
Restrictions for Using Link Layer Discovery Protocol in Multivendor Networks 298
Information About Using Link Layer Discovery Protocol in Multivendor Networks 298
 IEEE 802.1ab LLDP 298
 LLDP-MED 299
 Classes of Endpoints 299
 Types of Discovery Supported 300
 Benefits of LLDP-MED 300
 TLV Elements 301
 Benefits of LLDP 302
How to Configure Link Layer Discovery Protocol in Multivendor Networks 302
 Enabling and Disabling LLDP Globally 302
 Enabling LLDP Globally 302
 Disabling and Enabling LLDP on a Supported Interface 303
 Disabling LLDP on a Supported Interface 303
 Setting LLDP Packet Hold Time 304
 Setting LLDP Packet Frequency 305
 Monitoring and Maintaining LLDP in Multivendor Networks 306
 Enabling and Disabling LLDP TLVs 306
 Enabling LLDP TLVs 307
 Enabling and Disabling LLDP-MED TLVs 307
 Enabling LLDP-MED TLVs 307
 Configuration Examples for Link Layer Discovery Protocol in Multivendor Networks 308
 Example: Configuring Voice VLAN 308
Example Configuring LLDP on Two Devices 310
Additional References for Using Link Layer Discovery Protocol in Multivendor Networks 312
Feature Information for Link Layer Discovery Protocol in Multivendor Networks 313

CHAPTER 17

Multichassis LACP 315
Finding Feature Information 315
Prerequisites for mLACP 316
Restrictions for mLACP 316
Information About mLACP 317
Overview of Multichassis EtherChannel 317
Interactions with the MPLS Pseudowire Redundancy Mechanism 318
Redundancy Mechanism Processes 319
Dual-Homed Topology Using mLACP 320
LACP and 802.3ad Parameter Exchange 320
Port Identifier 321
Port Number 321
Port Priority 321
Multichassis Considerations 322
System MAC Address 322
System Priority 322
Port Key 322
Failure Protection Scenarios 322
Operational Variants 324
DHD-based Control 324
PoA Control 325
Shared Control (PoA and DHD) 325
mLACP Failover 325
Dynamic Port Priority 325
Revertive and Nonrevertive Modes 326
Brute Force Shutdown 326
Peer Monitoring with Interchassis Redundancy Manager 326
MAC Flushing Mechanisms 328
How to Configure mLACP 330
show etherchannel summary 368
show etherchannel number port-channel 368
show lacp internal 369
Example Verifying VPWS on a Standby PoA 369
show lacp multichassis group 369
show lacp multichassis portchannel 370
show mpls ldp iccp 370
show mpls l2transport 370
show etherchannel summary 371
show lacp internal 371
Example Verifying VPLS on an Active PoA 371
show lacp multichassis group 372
show lacp multichassis port-channel 372
show mpls ldp iccp 373
show mpls l2transport 373
show etherchannel summary 373
show lacp internal 374
Example Verifying VPLS on a Standby PoA 374
show lacp multichassis group 374
show lacp multichassis portchannel 375
show mpls ldp iccp 375
show mpls l2transport 375
show etherchannel summary 376
show lacp internal 376
Additional References 377
Feature Information for mLACP 378
Glossary 378

CHAPTER 18

ICCP Multichassis VLAN Redundancy 381
Finding Feature Information 381
Prerequisites for ICCP Multichassis VLAN Redundancy 382
Restrictions for ICCP Multichassis VLAN Redundancy 382
Information About ICCP Multichassis VLAN Redundancy 382
Pseudo mLACP Multihoming Redundancy 382
Server MEPs 405
Defect Conditions Detected by a MEP 405
ETH-AIS Function 406
ETH-AIS Transmission Reception and Processing 407
AIS and 802.3ah Interworking 407
ETH-RDI Function 408
How to Configure ITU-T Y.1731 Fault Management Functions 409
Disabling the ETH-AIS Function 409
Enabling ETH-AIS for a Single Interface SMEP and Disabling ETH-AIS for All Other Ports 410
Configuration Examples for Configuring ITU-T Y.1731 Fault Management Functions 413
Example: Enabling IEEE CFM on an Interface 413
Example: Enabling AIS 414
Example: Show Commands Output 414
Additional References 416
Feature Information for Configuring ITU-T Y.1731 Fault Management Functions 417

CHAPTER 21

Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations 419
Finding Feature Information 419
Prerequisites for ITU-T Y.1731 Operations 419
Restrictions for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) 420
How to Configure IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations 420
Configuring a Dual-Ended Ethernet Delay or Delay Variation Operation 420
Configuring a Receiver MEP on the Destination Device 421
Configuring the Sender MEP on the Source Router 423
Configuring a Sender MEP for a Single-Ended Ethernet Delay or Delay Variation Operation 425
Configuring a Sender MEP for a Single-Ended Ethernet Frame Loss Ratio Operation 428
Scheduling IP SLAs Operations 431
Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations 433
Example: Dual-Ended Ethernet Delay Operation 433
Example: Frame Delay and Frame Delay Variation Measurement Configuration 434
Example: Sender MEP for a Single-Ended Ethernet Delay Operation 435
Example: Sender MEP for a Single-Ended Ethernet Frame Loss Operation 436
Additional References for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations 437
Feature Information for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations 438
CHAPTER 24 VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 473
Restrictions for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 473
Information About VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 473
 Overview 473
 Feature Information for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 474
How to Configure VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 475
 Configuring VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 475
 Verifying VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 476
Configuration Examples for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 476
 Example: VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 476
Additional References for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel 477

CHAPTER 25 EVPN VxLAN L3 479
Finding Feature Information 479
Restrictions for EVPN VxLAN L3 479
Information About EVPN VxLAN L3 480
 Data Center Interconnect VXLAN Layer 3 Gateway 480
 Route Targets 480
 Local VPNv4 Routes Advertisement 480
 Data Center VXLAN with Support for MP-BGP 480
 EVPN Route Targets 481
 Bridge Domain Interface 481
 Downstream VNI 481
 Router MAC 481
 VRF Lite 482
 EVPN Route Type 2 - MAC Advertisement Route 482
 L3 VRF EVPN Import 482
 EVPN DCI Solution 482
How to Configure EVPN VxLAN L3 482
 Configuring Customer Edge (CE) 1 Using VRF Lite 483
 Configuring Provider Edge 1 484
 Configuring Provider Edge 2 and Branch Router 485
 Configuring Customer Edge 2 485
CHAPTER 1

Read Me First

Important Information about Cisco IOS XE 16

Effective Cisco IOS XE Release 3.7.0E for Catalyst Switching and Cisco IOS XE Release 3.17S (for Access and Edge Routing) the two releases evolve (merge) into a single version of converged release—the Cisco IOS XE 16—providing one release covering the extensive range of access and edge products in the Switching and Routing portfolio.

Feature Information

Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References

- Cisco IOS Command References, All Releases

Obtaining Documentation and Submitting a Service Request

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.
CHAPTER 2

Using Ethernet Operations Administration and Maintenance

Ethernet Operations, Administration, and Maintenance (OAM) is a protocol for installing, monitoring, and troubleshooting Ethernet metropolitan-area networks (MANs) and Ethernet WANs. It relies on a new, optional sublayer in the data link layer of the Open Systems Interconnection (OSI) model. The OAM features covered by this protocol are Discovery, Link Monitoring, Remote Fault Detection, Remote Loopback, and Cisco Proprietary Extensions.

The advent of Ethernet as a MAN and WAN technology has emphasized the necessity for integrated management for larger deployments. For Ethernet to extend into public MANs and WANs, it must be equipped with a new set of requirements on Ethernet’s traditional operations, which had been centered on enterprise networks only. The expansion of Ethernet technology into the domain of service providers, where networks are substantially larger and more complex than enterprise networks and the user-base is wider, makes operational management of link uptime crucial.

- Finding Feature Information, on page 3
- Information About Using Ethernet Operations Administration and Maintenance, on page 4
- How to Set Up and Configure Ethernet Operations Administration and Maintenance, on page 9
- Configuration Examples for Ethernet Operations Administration and Maintenance, on page 21
- Additional References, on page 24
- Feature Information for Using Ethernet Operations Administration and Maintenance, on page 25

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Information About Using Ethernet Operations Administration and Maintenance

Ethernet OAM

Ethernet OAM is a protocol for installing, monitoring, and troubleshooting metro Ethernet networks and Ethernet WANs. It relies on a new, optional sublayer in the data link layer of the OSI model. Ethernet OAM can be implemented on any full-duplex point-to-point or emulated point-to-point Ethernet link. A system-wide implementation is not required; OAM can be deployed for part of a system; that is, on particular interfaces.

Normal link operation does not require Ethernet OAM. OAM frames, called OAM protocol data units (PDUs), use the slow protocol destination MAC address 0180.c200.0002. They are intercepted by the MAC sublayer and cannot propagate beyond a single hop within an Ethernet network.

Ethernet OAM is a relatively slow protocol with modest bandwidth requirements. The frame transmission rate is limited to a maximum of 10 frames per second; therefore, the impact of OAM on normal operations is negligible. However, when link monitoring is enabled, the CPU must poll error counters frequently. In this case, the required CPU cycles will be proportional to the number of interfaces that have to be polled.

Two major components, the OAM client and the OAM sublayer, make up Ethernet OAM. The following two sections describe these components.

OAM Client

The OAM client is responsible for establishing and managing Ethernet OAM on a link. The OAM client also enables and configures the OAM sublayer. During the OAM discovery phase, the OAM client monitors OAM PDUs received from the remote peer and enables OAM functionality on the link based on local and remote state as well as configuration settings. Beyond the discovery phase (at steady state), the OAM client is responsible for managing the rules of response to OAM PDUs and managing the OAM remote loopback mode.

OAM Sublayer

The OAM sublayer presents two standard IEEE 802.3 MAC service interfaces: one facing toward the superior sublayers, which include the MAC client (or link aggregation), and the other interface facing toward the subordinate MAC control sublayer. The OAM sublayer provides a dedicated interface for passing OAM control information and OAM PDUs to and from a client.

The OAM sublayer is made up of three components: control block, multiplexer, and packet parser (p-parser). Each component is described in the following sections.

Control Block

The control block provides the interface between the OAM client and other blocks internal to the OAM sublayer. The control block incorporates the discovery process, which detects the existence and capabilities of remote OAM peers. It also includes the transmit process that governs the transmission of OAM PDUs to the multiplexer and a set of rules that govern the receipt of OAM PDUs from the p-parser.
Multiplexer

The multiplexer manages frames generated (or relayed) from the MAC client, control block, and p-parser. The multiplexer passes through frames generated by the MAC client untouched. It passes OAM PDUs generated by the control block to the subordinate sublayer; for example, the MAC sublayer. Similarly, the multiplexer passes loopback frames from the p-parser to the same subordinate sublayer when the interface is in OAM remote loopback mode.

P-Parser

The p-parser classifies frames as OAM PDUs, MAC client frames, or loopback frames and then dispatches each class to the appropriate entity. OAM PDUs are sent to the control block. MAC client frames are passed to the superior sublayer. Loopback frames are dispatched to the multiplexer.

Benefits of Ethernet OAM

Ethernet OAM provides the following benefits:

- Competitive advantage for service providers
- Standardized mechanism to monitor the health of a link and perform diagnostics

Cisco Implementation of Ethernet OAM

The Cisco implementation of Ethernet OAM consists of the Ethernet OAM shim and the Ethernet OAM module.

The Ethernet OAM shim is a thin layer that connects the Ethernet OAM module and the platform code. It is implemented in the platform code (driver). The shim also communicates port state and error conditions to the Ethernet OAM module via control signals.

The Ethernet OAM module, implemented within the control plane, handles the OAM client as well as control block functionality of the OAM sublayer. This module interacts with the CLI and Simple Network Management Protocol (SNMP)/programmatic interface via control signals. In addition, this module interacts with the Ethernet OAM shim through OAM PDU flows.

OAM Features

The OAM features as defined by IEEE 802.3ah, *Ethernet in the First Mile*, are discovery, Link Monitoring, Remote Fault Detection, Remote Loopback, and Cisco Proprietary Extensions.

Discovery

Discovery is the first phase of Ethernet OAM and it identifies the devices in the network and their OAM capabilities. Discovery uses information OAM PDUs. During the discovery phase, the following information is advertised within periodic information OAM PDUs:

- OAM mode—Conveyed to the remote OAM entity. The mode can be either active or passive and can be used to determine device functionality.
- OAM configuration (capabilities)—Advertises the capabilities of the local OAM entity. With this information a peer can determine what functions are supported and accessible; for example, loopback capability.
• OAM PDU configuration—Includes the maximum OAM PDU size for receipt and delivery. This information along with the rate limiting of 10 frames per second can be used to limit the bandwidth allocated to OAM traffic.

• Platform identity—A combination of an organization unique identifier (OUI) and 32-bits of vendor-specific information. OUI allocation, controlled by the IEEE, is typically the first three bytes of a MAC address.

Discovery includes an optional phase in which the local station can accept or reject the configuration of the peer OAM entity. For example, a node may require that its partner support loopback capability to be accepted into the management network. These policy decisions may be implemented as vendor-specific extensions.

Link Monitoring

Link monitoring in Ethernet OAM detects and indicates link faults under a variety of conditions. Link monitoring uses the event notification OAM PDU and sends events to the remote OAM entity when there are problems detected on the link. The error events include the following:

• Error Symbol Period (error symbols per second)—The number of symbol errors that occurred during a specified period exceeded a threshold. These errors are coding symbol errors.

• Error Frame (error frames per second)—The number of frame errors detected during a specified period exceeded a threshold.

• Error Frame Period (error frames per n frames)—The number of frame errors within the last n frames has exceeded a threshold.

• Error Frame Seconds Summary (error seconds per m seconds)—The number of error seconds (1-second intervals with at least one frame error) within the last m seconds has exceeded a threshold.

Since IEEE 802.3ah OAM does not provide a guaranteed delivery of any OAM PDU, the event notification OAM PDU may be sent multiple times to reduce the probability of a lost notification. A sequence number is used to recognize duplicate events.

Remote Failure Indication

Faults in Ethernet connectivity that are caused by slowly deteriorating quality are difficult to detect. Ethernet OAM provides a mechanism for an OAM entity to convey these failure conditions to its peer via specific flags in the OAM PDU. The following failure conditions can be communicated:

• Link Fault—Loss of signal is detected by the receiver; for instance, the peer’s laser is malfunctioning. A link fault is sent once per second in the information OAM PDU. Link fault applies only when the physical sublayer is capable of independently transmitting and receiving signals.

• Dying Gasp—An unrecoverable condition has occurred; for example, when an interface is shut down. This type of condition is vendor specific. A notification about the condition may be sent immediately and continuously.

For more information on Dying Gasp, see the Dying Gasp Support for Loss of Power Supply Through SNMP, Syslog and Ethernet OAM chapter in the Cisco NCS 520 Series Router Configuration Guide.

• Critical Event—An unspecified critical event has occurred. This type of event is vendor specific. A critical event may be sent immediately and continuously.
Remote Loopback

An OAM entity can put its remote peer into loopback mode using the loopback control OAM PDU. Loopback mode helps an administrator ensure the quality of links during installation or when troubleshooting. In loopback mode, every frame received is transmitted back on the same port except for OAM PDUs and pause frames. The periodic exchange of OAM PDUs must continue during the loopback state to maintain the OAM session.

The loopback command is acknowledged by responding with an information OAM PDU with the loopback state indicated in the state field. This acknowledgement allows an administrator, for example, to estimate if a network segment can satisfy a service-level agreement. Acknowledgement makes it possible to test delay, jitter, and throughput.

When an interface is set to the remote loopback mode the interface no longer participates in any other Layer 2 or Layer 3 protocols; for example, Spanning Tree Protocol (STP) or Open Shortest Path First (OSPF). The reason is that when two connected ports are in a loopback session, no frames other than the OAM PDUs are sent to the CPU for software processing. The non-OAM PDU frames are either looped back at the MAC level or discarded at the MAC level.

From a user’s perspective, an interface in loopback mode is in a link-up state.

Cisco Vendor-Specific Extensions

Ethernet OAM allows vendors to extend the protocol by allowing them to create their own type-length-value (TLV) fields.

OAM Messages

Ethernet OAM messages or OAM PDUs are standard length, untagged Ethernet frames within the normal frame length bounds of 64 to 1518 bytes. The maximum OAM PDU frame size exchanged between two peers is negotiated during the discovery phase.

OAM PDUs always have the destination address of slow protocols (0180.c200.0002) and an Ethertype of 8809. OAM PDUs do not go beyond a single hop and have a hard-set maximum transmission rate of 10 OAM PDUs per second. Some OAM PDU types may be transmitted multiple times to increase the likelihood that they will be successfully received on a deteriorating link.

Four types of OAM messages are supported:

- Information OAM PDU--A variable-length OAM PDU that is used for discovery. This OAM PDU includes local, remote, and organization-specific information.

- Event notification OAM PDU--A variable-length OAM PDU that is used for link monitoring. This type of OAM PDU may be transmitted multiple times to increase the chance of a successful receipt; for example, in the case of high-bit errors. Event notification OAM PDUs also may include a time stamp when generated.

- Loopback control OAM PDU--An OAM PDU fixed at 64 bytes in length that is used to enable or disable the remote loopback command.

- Vendor-specific OAM PDU--A variable-length OAM PDU that allows the addition of vendor-specific extensions to OAM.
IEEE 802.3ah Link Fault RFI Support

The IEEE 802.3ah Link Fault RFI Support feature provides a per-port configurable option that moves a port into a blocking state when an OAM PDU control request packet is received with the Link Fault Status flag set. In the blocking state, the port can continue to receive OAM PDUs, detect remote link status, and automatically recover when the remote link becomes operational. When an OAM PDU is received with the Link Fault Status flag set to zero or FALSE, the port is enabled and all VLANs configured on the port are set to “forwarding.”

Note

If you configure the Ethernet OAM timeout period to be the minimum allowable value of 2 seconds, the Ethernet OAM session may be dropped briefly when the port transitions from blocked to unblocked. This action will not occur by default; the default timeout value is 5 seconds.

Before the release of the IEEE 802.3ah Link Fault RFI Support feature, when an OAM PDU control request packet was received with the Link Fault Status flag set, one of three actions was taken:

- A warning message was displayed or logged, and the port remained operational.
- The Link Fault Status flag was ignored.

A new keyword, error-block-interface, for the CLI command ethernet oam remote-failure action is introduced with the IEEE 802.3ah Link Fault RFI Support feature. For detailed information about this command, see the Cisco IOS Carrier Ethernet Command Reference.

Ethernet Connectivity Fault Management

Ethernet connectivity fault management (CFM) is an end-to-end per-service-instance Ethernet layer OAM protocol that includes proactive connectivity monitoring, fault verification, and fault isolation. End to end can be provider edge (PE) to PE or customer edge (CE) to CE. Per service instance means per VLAN.

For more information about Ethernet CFM, see Ethernet Connectivity Fault Management.

High Availability Features Supported by 802.3ah

In access and service provider networks using Ethernet technology, High Availability (HA) is a requirement, especially on Ethernet OAM components that manage Ethernet virtual circuit (EVC) connectivity. End-to-end connectivity status information is critical and must be maintained on a hot standby Route Switch Processor (RSP) (a standby RSP that has the same software image as the active RSP and supports synchronization of line card, protocol, and application state information between RSPs for supported features and protocols). End-to-end connectivity status is maintained on the CE, PE, and access aggregation PE (uPE) network nodes based on information received by protocols such as CFM and 802.3ah. This status information is used to either stop traffic or switch to backup paths when an EVC is down. Metro Ethernet clients (for example, CFM and 802.3ah) maintain configuration data and dynamic data, which is learned through protocols. Every transaction involves either accessing or updating data among the various databases. If the databases are synchronized across active and standby modules, the RSPs are transparent to clients.

Cisco infrastructure provides various component application program interfaces (APIs) for clients that are helpful in maintaining a hot standby RSP. Metro Ethernet HA clients (such as, HA/ISSU, CFM HA/ISSU, 802.3ah HA/ISSU) interact with these components, update the databases, and trigger necessary events to other components.
Benefits of 802.3ah HA

- Elimination of network downtime for Cisco software image upgrades, resulting in higher availability
- Elimination of resource scheduling challenges associated with planned outages and late night maintenance windows
- Accelerated deployment of new services and applications and faster implementation of new features, hardware, and fixes due to the elimination of network downtime during upgrades
- Reduced operating costs due to outages while delivering higher service levels due to the elimination of network downtime during upgrades

NSF SSO Support in 802.3ah OAM

The redundancy configurations Stateful Switchover (SSO) and Nonstop Forwarding (NSF) are both supported in Ethernet OAM and are automatically enabled. A switchover from an active to a standby Route Switch Processor (RSP) occurs when the active RSP fails, is removed from the networking device, or is manually taken down for maintenance. NSF interoperates with the SSO feature to minimize network downtime following a switchover. The primary function of Cisco NSF is to continue forwarding IP packets following an RSP switchover.

For detailed information about the SSO feature, see the “Configuring Stateful Switchover” module of the High Availability Configuration Guide. For detailed information about the NSF feature, see the “Configuring Cisco Nonstop Forwarding” module of the High Availability Configuration Guide.

ISSU Support in 802.3ah OAM

Cisco In-Service Software Upgrades (ISSUs) allow you to perform a Cisco software upgrade or downgrade without disrupting packet flow. ISSU is automatically enabled in 802.3ah. OAM performs a bulk update and a runtime update of the continuity check database to the standby Route Switch Processor (RSP), including adding, deleting, or updating a row. This checkpoint data requires ISSU capability to transform messages from one release to another. All the components that perform active RSP to standby RSP updates using messages require ISSU support.

ISSU lowers the impact that planned maintenance activities have on network availability by allowing software changes while the system is in service. For detailed information about ISSU, see the “Performing an In Service Software Upgrade” module of the High Availability Configuration Guide.

How to Set Up and Configure Ethernet Operations Administration and Maintenance

Enabling Ethernet OAM on an Interface

Ethernet OAM is by default disabled on an interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. `interface type number`

4. `ethernet oam [max-rate oampdus | min-rate num-seconds] mode {active | passive} | timeout seconds`

5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enable privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>Device(config)# interface gigabitethernet 3/8</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables Ethernet OAM.</td>
</tr>
<tr>
<td>`ethernet oam [max-rate oampdus</td>
<td>min-rate num-seconds] mode {active</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables Ethernet OAM.</td>
</tr>
<tr>
<td><code>Device(config-if)# ethernet oam</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><code>Device(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

Disabling and Enabling a Link Monitoring Session

Link monitoring is enabled by default when you enable Ethernet OAM. Perform these tasks to disable and enable link monitoring sessions:

Disabling a Link Monitoring Session

Perform this task to disable a link monitoring session.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet oam [max-rate oampdus | min-rate num-seconds] mode {active | passive} | timeout seconds]`
5. no ethernet oam link-monitor supported
6. exit

| Step 1 | enable | Enables privileged EXEC mode.
| | Example:
| | Device> enable |

| Step 2 | configure terminal | Enters global configuration mode.
| | Example:
| | Device# configure terminal |

| Step 3 | interface type number | Specifies an interface and enters interface configuration mode.
| | Example:
| | Device(config)# interface gigabitEthernet 3/8 |

| Step 4 | ethernet oam [max-rate oampdu | Enables Ethernet OAM.
| | min-rate num-seconds] | mode {active | passive} | timeout seconds] |

| Step 5 | no ethernet oam link-monitor supported | Disables link monitoring on the interface.
| | Example:
| | Device(config-if)# no ethernet oam link-monitor supported |

| Step 6 | exit | Returns to global configuration mode.
| | Example:
| | Device(config-if)# exit |

Enabling a Link Monitoring Session

Perform this task to reenable a link monitoring session after it was previously disabled.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet oam link-monitor supported
Stopping and Starting Link Monitoring Operations

Link monitoring operations start automatically when Ethernet OAM is enabled on an interface. When link monitoring operations are stopped, the interface does not actively send or receive event notification OAM PDUs. The tasks in this section describe how to stop and start link monitoring operations.

Stopping Link Monitoring Operations

Perform this task to stop link monitoring operations.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet oam [max-rate oampdus | min-rate num-seconds] mode {active | passive} | timeout seconds
5. no ethernet oam link-monitor on
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example: *Enter your password if prompted.*
Device> enable |
| Step 2 | configure terminal | Enters global configuration mode.
Example: |
| Step 3 | interface type number | Specifies an interface and enters interface configuration mode.
Example:
Device(config)# interface gigabitethernet 3/8 |
| Step 4 | ethernet oam max-rate oampdus min-rate num-seconds mode {active | passive} | Enables Ethernet OAM.
Example:
Device(config-if)# ethernet oam link-monitor on
Device(config-if)# no ethernet oam link-monitor on |
| Step 5 | no ethernet oam link-monitor on | Stops link monitoring operations.
Example: |
| Step 6 | exit | Returns to global configuration mode.
Example:
Device(config-if)# exit |

Starting Link Monitoring Operations

Perform this task to start link monitoring operations.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet oam link-monitor on
5. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
* • Enter your password if prompted.
Device> enable |
| Step 2 | configure terminal | Enters global configuration mode.
Device# configure terminal |
| Step 3 | interface type number | Specifies an interface and enters interface configuration mode.
Device(config)# interface gigabitethernet 3/8 |
| Step 4 | ethernet oam link-monitor on | Starts link monitoring operations.
Device(config-if)# ethernet oam link-monitor on |
| Step 5 | exit | Returns to global configuration mode.
Device(config-if)# exit |

Configuring Link Monitoring Options

Perform this optional task to specify link monitoring options. Steps 4 through 10 can be performed in any sequence.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet oam [max-rate oampdu | min-rate num-seconds] mode {active | passive} | timeout seconds
5. ethernet oam link-monitor frame {threshold {high {none | high-frames} | low low-frames} | window milliseconds}
6. ethernet oam link-monitor frame-period {threshold {high {none | high-frames} | low low-frames} | window frames}
7. ethernet oam link-monitor frame-seconds {threshold {high {none | high-frames} | low low-frames} | window milliseconds}
8. ethernet oam link-monitor receive-crc {threshold {high {high-frames | none} | low low-frames} | window milliseconds}
9. `ethernet oam link-monitor transmit-crc {threshold {high [high-frames | none] | low low-frames} | window milliseconds}`

10. `ethernet oam link-monitor symbol-period {threshold {high [none | high-symbols] | low low-symbols} | window symbols}`

11. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Identifies the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface gigabitEthernet 3/8</td>
<td></td>
</tr>
<tr>
<td>Step 4 ethernet oam [max-rate oampdu</td>
<td>min-rate num-seconds] mode {active</td>
</tr>
<tr>
<td>Example: Device(config-if)# ethernet oam</td>
<td></td>
</tr>
<tr>
<td>Step 5 ethernet oam link-monitor frame {threshold {high [none</td>
<td>high-frames]</td>
</tr>
<tr>
<td>Example: Device(config-if)# ethernet oam link-monitor frame window 399</td>
<td></td>
</tr>
<tr>
<td>Step 6 ethernet oam link-monitor frame-period {threshold {high [none</td>
<td>high-frames]</td>
</tr>
<tr>
<td>Example: Device(config-if)# ethernet oam link-monitor frame-period threshold high 599</td>
<td>Frame period is a user-defined parameter.</td>
</tr>
<tr>
<td>Step 7 ethernet oam link-monitor frame-seconds {threshold {high [none</td>
<td>high-frames]</td>
</tr>
</tbody>
</table>
Configuring Link Monitoring Options

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: Device(config-if)# ethernet oam link-monitor frame-segments window 699</td>
<td>Configures an Ethernet OAM interface to monitor ingress frames with cyclic redundancy check (CRC) errors for a period of time.</td>
</tr>
<tr>
<td>Step 8 ethernet oam link-monitor receive-crc {threshold {high {high-frames none}</td>
<td>low low-frames}</td>
</tr>
<tr>
<td>Step 9 ethernet oam link-monitor transmit-crc {threshold {high {high-frames none}</td>
<td>low low-frames}</td>
</tr>
<tr>
<td>Step 10 ethernet oam link-monitor symbol-period {threshold {high none}</td>
<td>high high-symbols}</td>
</tr>
<tr>
<td>Step 11 exit Example: Device(config-if)# exit</td>
<td>Returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Example

Device# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Device(config)# interface gigabitEthernet 3/8 Device(config-if)# ethernet oam

Device(config-if)# ethernet oam link-monitor high-threshold action error-disable-interface
Device(config-if)# ethernet oam link-monitor frame window 399
Device(config-if)# ethernet oam link-monitor frame-period threshold high 599
Device(config-if)# ethernet oam link-monitor frame-seconds window 699
Device(config-if)# ethernet oam link-monitor receive-crc window 99
Device(config-if)# ethernet oam link-monitor transmit-crc threshold low 199
Configuring Global Ethernet OAM Options Using a Template

Perform this task to create a template to use for configuring a common set of options on multiple Ethernet OAM interfaces. Steps 4 through 10 are optional and can be performed in any sequence. These steps may also be repeated to configure different options.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `template template-name`
4. `ethernet oam link-monitor receive-crc {threshold {high {high-frames | none} | low low-frames} | window milliseconds}`
5. `ethernet oam link-monitor transmit-crc {threshold {high {high-frames | none} | low low-frames} | window milliseconds}`
6. `ethernet oam link-monitor symbol-period {threshold {high {none | high-symbols} | low low-symbols} | window symbols}`
7. `ethernet oam link-monitor frame {threshold {high {none | high-frames} | low low-frames} | window milliseconds}`
8. `ethernet oam link-monitor frame-period {threshold {high {none | high-frames} | low low-frames} | window frames}`
9. `ethernet oam link-monitor frame-seconds {threshold {high {none | high-frames} | low low-frames} | window milliseconds}`
10. `exit`
11. `interface type number`
12. `source template template-name`
13. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
enable
Example:
Device> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2
configure terminal
Example:
Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3
template template-name
Example:
Device(config)# template oam-temp</td>
<td>Configures a template and enters template configuration mode.</td>
</tr>
<tr>
<td>Step 4
ethernet oam link-monitor receive-crc {threshold {high {high-frames</td>
<td>none}</td>
</tr>
<tr>
<td>Step 5
ethernet oam link-monitor transmit-crc {threshold {high {high-frames</td>
<td>none}</td>
</tr>
<tr>
<td>Step 6
ethernet oam link-monitor symbol-period {threshold {high {none</td>
<td>high-symbols}</td>
</tr>
<tr>
<td>Step 7
ethernet oam link-monitor frame {threshold {high {none</td>
<td>high-frames}</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-template)# ethernet oam link-monitor frame window 399</td>
<td>Configures a number of frames to be polled. Frame period is a user-defined parameter.</td>
</tr>
</tbody>
</table>
| **Step 8**
ethernet oam link-monitor frame-period {threshold {high {none | high-frames} | low low-frames} | Configures a period of time in which error frames are counted. |
| window frames} | |
| Example:
Device(config-template)# ethernet oam link-monitor frame-period threshold high 599 | |
| **Step 9**
ethernet oam link-monitor frame-seconds {threshold {high {none | high-frames} | low low-frames} | Configures a period of time in which error frames are counted. |
| window milliseconds} | |
| Example:
Device(config-template)# ethernet oam link-monitor frame-seconds window 899 | |
| **Step 10**
exit | Returns to global configuration mode. |
| Example:
Device(config-template)# exit | |
| **Step 11**
interface type number | Identifies the interface on which to use the template and enters interface configuration mode. |
| Example:
Device(config)# interface gigabitEthernet 3/8 | |
| **Step 12**
source template template-name | Applies to the interface the options configured in the template. |
| Example:
Device(config-if)# source template oam-temp | |
| **Step 13**
exit | Returns to global configuration mode. |
| Example:
Device(config-if)# exit | |
| **Step 14**
exit | Returns to privileged EXEC mode. |
| Example:
Device(config)# exit | |
| **Step 15**
show running-config | Displays the updated running configuration. |
| Example:
Device# show running-config | |
Configuring a Port for Link Fault RFI Support

Perform this task to put a port into a blocking state when an OAM PDU control request packet is received with the Link Fault Status flag set.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet oam remote-failure {critical-event | dying-gasp | link-fault} action {error-block-interface }
5. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# interface fastethernet 1/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 ethernet oam remote-failure {critical-event</td>
<td>dying-gasp</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# ethernet oam remote-failure critical-event action error-block-interface</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Ethernet Operations Administration and Maintenance

The following example shows how to configure Ethernet OAM options using a template and overriding that configuration by configuring an interface. In this example, the network supports a Gigabit Ethernet interface between the customer edge device and provider edge device.

! Configure a global OAM template for both PE and CE configuration.
!
Device(config)# template oam
Device(config-template)# ethernet oam link-monitor symbol-period threshold low 10
Device(config-template)# ethernet oam link-monitor symbol-period threshold high 100
Device(config-template)# ethernet oam link-monitor frame window 100
Device(config-template)# ethernet oam link-monitor frame threshold low 10
Device(config-template)# ethernet oam link-monitor frame threshold high 100
Device(config-template)# ethernet oam link-monitor frame-period window 100
Device(config-template)# ethernet oam link-monitor frame-period threshold low 10
Device(config-template)# ethernet oam link-monitor frame-period threshold high 100
Device(config-template)# ethernet oam link-monitor frame-seconds window 1000
Device(config-template)# ethernet oam link-monitor frame-seconds threshold low 10
Device(config-template)# ethernet oam link-monitor frame-seconds threshold high 100
Device(config-template)# ethernet oam link-monitor receive-crc window 100
Device(config-template)# ethernet oam link-monitor receive-crc threshold high 100
Device(config-template)# ethernet oam link-monitor transmit-crc window 100
Device(config-template)# ethernet oam link-monitor transmit-crc threshold high 100

Device(config-template)# exit
!

! Enable Ethernet OAM on the CE interface
!
Device(config)# interface gigabitethernet 4/1/1
Device(config-if)# ethernet oam
!

! Apply the global OAM template named "oam" to the interface.
!
Device(config-if)# source template oam
!

! Configure any interface-specific link monitoring commands to override the template configuration. The following example disables the high threshold link monitoring for receive CRC errors.
!
Device(config-if)# ethernet oam link-monitor receive-crc threshold high none
!

! Enable Ethernet OAM on the PE interface
!
Device(config)# interface gigabitethernet 8/1/1
Device(config-if)# ethernet oam
!

! Apply the global OAM template named "oam" to the interface.
!
Device(config-if)# source template oam

The following examples show how to verify various Ethernet OAM configurations and activities.
Verifying an OAM Session

The following example shows that the local OAM client, Gigabit Ethernet interface Gi6/1/1, is in session with a remote client with MAC address 0012.7fa6.a700 and OUI 00000C, which is the OUI for Cisco. The remote client is in active mode and has established capabilities for link monitoring and remote loopback for the OAM session.

Device# show ethernet oam summary
Symbols: * - Master Loopback State, # - Slave Loopback State
Capability codes: L - Link Monitor, R - Remote Loopback
U - Unidirection, V - Variable Retrieval

<table>
<thead>
<tr>
<th>Interface</th>
<th>MAC Address</th>
<th>OUI</th>
<th>Mode</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi6/1/1</td>
<td>0012.7fa6.a700</td>
<td>00000C</td>
<td>active</td>
<td>L R</td>
</tr>
</tbody>
</table>

Verifying OAM Discovery Status

The following example shows how to verify OAM discovery status of a local client and a remote peer:

Device# show ethernet oam discovery interface gigabitethernet6/1/1

Local client

Administrative configurations:
Mode: active
Unidirection: not supported
Link monitor: supported (on)
Remote loopback: not supported
MIB retrieval: not supported
Mtu size: 1500

Operational status:
Port status: operational
Loopback status: no loopback
PDU permission: any
PDU revision: 1

Remote client

MAC address: 0030.96fd.6bfa
Vendor(oui): 0x00 0x00 0x0C (cisco)
Administrative configurations:
Mode: active
Unidirection: not supported
Link monitor: supported
Remote loopback: not supported
MIB retrieval: not supported
Mtu size: 1500

Verifying Information OAMPDU and Fault Statistics

The following example shows how to verify statistics for information OAM PDUs and local and remote faults:

Device# show ethernet oam statistics interface gigabitethernet6/1/1

Counters:

Information OAMPDU Tx : 588806
Information OAMPDU Rx : 988
Unique Event Notification OAMPDU Tx : 0
Unique Event Notification OAMPDU Rx : 0
Duplicate Event Notification OAMPDU TX : 0
Duplicate Event Notification OAMPDU RX : 0
Loopback Control OAMPDU Tx : 1
Loopback Control OAMPDU Rx : 0
Variable Request OAMPDU Tx : 0
Variable Request OAMPDU Rx : 0
Variable Response OAMPDU Tx : 0
Variable Response OAMPDU Rx : 0
Cisco OAMPDU Tx : 4
Cisco OAMPDU Rx : 0
Unsupported OAMPDU Tx : 0
Unsupported OAMPDU Rx : 0
Frames Lost due to OAM : 0
Local Faults:

0 Link Fault records
2 Dying Gasp records
Total dying gasps : 4
Time stamp : 00:30:39
Total dying gasps : 3
Time stamp : 00:32:39
0 Critical Event records
Remote Faults:

0 Link Fault records
0 Dying Gasp records
0 Critical Event records
Local event logs:

0 Errored Symbol Period records
0 Errored Frame records
0 Errored Frame Period records
0 Errored Frame Second records
Remote event logs:

0 Errored Symbol Period records
0 Errored Frame records
0 Errored Frame Period records
0 Errored Frame Second records

Verifying Link Monitoring Configuration and Status

The following example shows how to verify link monitoring configuration and status on the local client. The highlighted Status field in the example shows that link monitoring status is supported and enabled (on).

Device# show ethernet oam status interface gigabitethernet6/1/1
GigabitEthernet6/1/1
General

Mode: active
PDU max rate: 10 packets per second
PDU min rate: 1 packet per 1 second
Link timeout: 5 seconds
High threshold action: no action
Link Monitoring

Status: supported (on)
Symbol Period Error
Window: 1 million symbols
Low threshold: 1 error symbol(s)
High threshold: none
Frame Error
Window: 10 x 100 milliseconds
Verifying Status of a Remote OAM Client

The following example shows that the local client interface Gi6/1/1 is connected to a remote client. Note the values in the Mode and Capability fields.

```
Device# show ethernet oam summary
Symbols: * - Master Loopback State, # - Slave Loopback State
Capability codes: L - Link Monitor, R - Remote Loopback
                  U - Unidirection, V - Variable Retrieval

Local Interface      MAC Address  OUI     Mode   Capability
Remote                Gi6/1/1  0012.7fa6.a700 00000c active   L R
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet CFM</td>
<td>“Configuring Ethernet Connectivity Fault Management in a Service Provider Network” module in the Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>NSF SSO Support in 802.3ah OAM</td>
<td>“Configuring Stateful Switchover” module in the High Availability Configuration Guide and “Configuring Nonstop Forwarding” in the High Availability Configuration Guide</td>
</tr>
<tr>
<td>ISSU Support in 802.3ah OAM</td>
<td>“Configuring In Service Software Upgrades” module in the High Availability Configuration Guide</td>
</tr>
<tr>
<td>Carrier Ethernet commands: complete command</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>syntax, command mode, command history,</td>
<td></td>
</tr>
<tr>
<td>defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>with complete command syntax, command mode,</td>
<td></td>
</tr>
<tr>
<td>command history, defaults, usage guidelines,</td>
<td></td>
</tr>
<tr>
<td>and examples</td>
<td></td>
</tr>
<tr>
<td>Configuring CFM over an EFP Interface with</td>
<td>Configuring the CFM over EFP Interface with Cross Connect Feature</td>
</tr>
<tr>
<td>the Cross Connect feature on the Cisco ASR</td>
<td></td>
</tr>
<tr>
<td>903 Router</td>
<td></td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Draft P802.3ah/D3.3</td>
<td>Ethernet in the First Mile - Amendment</td>
</tr>
<tr>
<td>IETF VPLS OAM</td>
<td>L2VPN OAM Requirements and Framework</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Using Ethernet Operations Administration and Maintenance

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 1: Feature Information for Using Ethernet Operations, Administration, and Maintenance

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Operations, Administration, and Maintenance</td>
<td>12.4(15)T</td>
<td>Ethernet OAM is a protocol for installing, monitoring, and troubleshooting metro Ethernet networks and Ethernet WANs. It relies on a new, optional sublayer in the data link layer of the OSI model. The OAM features covered by this protocol are Discovery, Link Monitoring, Remote Fault Detection, Remote Loopback, and Cisco Proprietary Extensions. The Ethernet Operations, Administration, and Maintenance feature was integrated into Cisco IOS Release 12.4(15)T. The following commands were introduced or modified: <code>clear ethernet oam statistics</code>, <code>debug ethernet oam ethernet oam link-monitor frame</code>, <code>ethernet oam link-monitor frame-period</code>, <code>ethernet oam link-monitor frame-seCONDS</code>, <code>ethernet oam link-monitor high-threshold action</code>, <code>ethernet oam link-monitor on</code>, <code>ethernet oam link-monitor receive-crc</code>, <code>ethernet oam link-monitor supported</code>, <code>ethernet oam link-monitor symbol-period</code>, <code>ethernet oam link-monitor transmit-crc</code>, <code>ethernet oam remote-loopback</code>, <code>ethernet oam remote-loopback (interface)</code>, <code>show ethernet oam discovery</code>, <code>show ethernet oam statistics</code>, <code>show ethernet oam status</code>, <code>show ethernet oam summary</code>, <code>source template (eoam)</code>, <code>template (eoam)</code>.</td>
</tr>
</tbody>
</table>
CHAPTER 3

Configuring Ethernet Connectivity Fault Management in a Service Provider Network

Ethernet Connectivity Fault Management (CFM) is an end-to-end per-service-instance Ethernet layer operations, administration, and maintenance (OAM) protocol. It includes proactive connectivity monitoring, fault verification, and fault isolation for large Ethernet metropolitan-area networks (MANs) and WANs.

The advent of Ethernet as a MAN and WAN technology imposes a new set of OAM requirements on Ethernet’s traditional operations, which were centered on enterprise networks only. The expansion of Ethernet technology into the domain of service providers, where networks are substantially larger and more complex than enterprise networks and the user base is wider, makes operational management of link uptime crucial. More importantly, the timeliness in isolating and responding to a failure becomes mandatory for normal day-to-day operations, and OAM translates directly to the competitiveness of the service provider.

As an alternative, CFM can be configured over an Ethernet flow point (EFP) interface by using the cross connect functionality. For more information about this alternative, see Configuring the CFM over EFP Interface with Cross Connect Feature.

Prerequisites for Configuring Ethernet CFM in a Service Provider Network

Business Requirements

- Network topology and network administration have been evaluated.
- Business and service policies have been established.
Restrictions for Configuring Ethernet CFM in a Service Provider Network

- CFM loopback messages will not be confined within a maintenance domain according to their maintenance level. The impact of not having CFM loopback messages confined to their maintenance levels occurs at these levels:
 - Architecture—CFM layering is violated for loopback messages.
 - Deployment—A user may potentially misconfigure a network and have loopback messages succeed.
 - Security—A malicious device that recognizes devices’ MAC addresses and levels may potentially explore a network topology that should be transparent.

- CFM is not fully supported on a Multiprotocol Label Switching (MPLS) provider edge (PE) device. There is no interaction between CFM and an Ethernet over MPLS (EoMPLS) pseudowire.

- CFM configuration is not supported on an EtherChannel in FastEthernet Channel (FEC) mode.

- QinQ encapsulation is not supported on the Cisco ASR 1000 Series Aggregation Services Router for CFM for routed subinterfaces.

Information About Configuring Ethernet CFM in a Service Provider Network

Ethernet CFM

Ethernet CFM is an end-to-end per-service-instance Ethernet layer OAM protocol that includes proactive connectivity monitoring, fault verification, and fault isolation. End to end can be PE to PE or CE to CE. A service can be identified as a service provider VLAN (S-VLAN) or an EVC service. Being an end-to-end technology is the distinction between CFM and other metro-Ethernet OAM protocols. For example, MPLS, ATM, and SONET OAM help in debugging Ethernet wires but are not always end-to-end. 802.3ah OAM is a single-hop and per-physical-wire protocol. It is not end to end or service aware.

Troubleshooting carrier networks offering Ethernet Layer 2 services is challenging. Customers contract with service providers for end-to-end Ethernet service and service providers may subcontract with operators to provide equipment and networks. Compared to enterprise networks, where Ethernet traditionally has been implemented, these constituent networks belong to distinct organizations or departments, are substantially larger and more complex, and have a wider user base. Ethernet CFM provides a competitive advantage to service providers for which the operational management of link uptime and timeliness in isolating and responding to failures is crucial to daily operations.

Benefits of Ethernet CFM

- End-to-end service-level OAM technology
- Reduced operating expense for service provider Ethernet networks
• Competitive advantage for service providers
• Supports both distribution and access network environments with the outward facing MEPs enhancement

Customer Service Instance

A customer service instance is an Ethernet virtual connection (EVC), which is identified by an S-VLAN within an Ethernet island, and is identified by a globally unique service ID. A customer service instance can be point-to-point or multipoint-to-multipoint. The figure below shows two customer service instances. Service Instance Green is point to point; Service Instance Blue is multipoint to multipoint.

Maintenance Domain

A maintenance domain is a management space for the purpose of managing and administering a network. A domain is owned and operated by a single entity and defined by the set of ports internal to it and at its boundary. The figure below illustrates a typical maintenance domain.
A unique maintenance level in the range of 0 to 7 is assigned to each domain by a network administrator. Levels and domain names are useful for defining the hierarchical relationship that exists among domains. The hierarchical relationship of domains parallels the structure of customer, service provider, and operator. The larger the domain, the higher the level value. For example, a customer domain would be larger than an operator domain. The customer domain may have a maintenance level of 7 and the operator domain may have a maintenance level of 0. Typically, operators would have the smallest domains and customers the largest domains, with service provider domains between them in size. All levels of the hierarchy must operate together.

Domains should not intersect because intersecting would mean management by more than one entity, which is not allowed. Domains may nest or touch but when two domains nest, the outer domain must have a higher maintenance level than the domain nested within it. Nesting maintenance domains is useful in the business model where a service provider contracts with one or more operators to provide Ethernet service to a customer. Each operator would have its own maintenance domain and the service provider would define its domain—a superset of the operator domains. Furthermore, the customer has its own end-to-end domain which is in turn a superset of the service provider domain. Maintenance levels of various nesting domains should be communicated among the administering organizations. For example, one approach would be to have the service provider assign maintenance levels to operators.

CFM exchanges messages and performs operations on a per-domain basis. For example, running CFM at the operator level does not allow discovery of the network by the higher provider and customer levels.

Network designers decide on domains and configurations. The figure below illustrates a hierarchy of operator, service provider, and customer domains and also illustrates touching, intersecting, and nested domains.
Maintenance Point

A maintenance point is a demarcation point on an interface (port) that participates in CFM within a maintenance domain. Maintenance points on device ports act as filters that confine CFM frames within the bounds of a domain by dropping frames that do not belong to the correct level. Maintenance points must be explicitly configured on Cisco devices. Two classes of maintenance points exist, MEPs and MIPs.

Maintenance Endpoints

Maintenance endpoints (MEPs) have the following characteristics:

- Per maintenance domain (level) and service (S-VLAN or EVC)
- At the edge of a domain, define the boundary
- Within the bounds of a maintenance domain, confine CFM messages
- When configured to do so, proactively transmit Connectivity Fault Management (CFM) continuity check messages (CCMs)
- At the request of an administrator, transmit traceroute and loopback messages

Inward Facing MEPs

Inward facing means the MEP communicates through the Bridge Relay function and uses the Bridge-Brain MAC address. An inward facing MEP performs the following functions:
• Sends and receives CFM frames at its level through the relay function, not via the wire connected to the port on which the MEP is configured.
• Drops all CFM frames at its level (or lower level) that come from the direction of the wire.
• Processes all CFM frames at its level coming from the direction of the relay function.
• Drops all CFM frames at a lower level coming from the direction of the relay function.
• Transparently forwards all CFM frames at its level or a higher level, independent of whether they come in from the relay function side or the wire side.

Note
A MEP of level L (where L is less than 7) requires a MIP of level M > L on the same port; hence, CFM frames at a level higher than the level of the MEP will be catalogued by this MIP.

• If the port on which the inward MEP is configured is blocked by Spanning-Tree Protocol, the MEP can no longer transmit or receive CFM messages.

Outward Facing MEPs for Port Channels
Outward facing means that the MEP communicates through the wire. Outward facing MEPs can be configured on port channels (using cross connect functionality). A MIP configuration at a level higher than the level of the outward facing MEP is not required.

Outward facing MEPs on port channels use the Bridge-Brain MAC address of the first member link. When port channel members change, the identities of outward facing MEPs do not have to change.

An outward facing MEP performs the following functions:
• Sends and receives CFM frames at its level via the wire connected to the port where the MEP is configured.
• Drops all CFM frames at its level (or at a lower level) that come from the direction of the relay function.
• Processes all CFM frames at its level coming from the direction of the wire.
• Drops all CFM frames at a lower level coming from the direction of the wire.
• Transparently forwards all CFM frames at levels higher than the level of the outward facing MEP, independent of whether they come in from the relay function side or the wire side.
• If the port on which the outward MEP is configured is blocked by the Spanning-Tree Protocol, the MEP can still transmit and receive CFM messages via the wire.

Maintenance Intermediate Points
MIPs have the following characteristics:
• Per maintenance domain (level) and for all S-VLANs enabled or allowed on a port.
• Internal to a domain, not at the boundary.
• CFM frames received from MEPs and other MIPs are catalogued and forwarded, using both the wire and the relay function.
• All CFM frames at a lower level are stopped and dropped, independent of whether they originate from the wire or relay function.

• All CFM frames at a higher level are forwarded, independent of whether they arrive from the wire or relay function.

• MIPs respond only when triggered by CFM traceroute and loopback messages.

• Bridge-Brain MAC addresses are used.

If the port on which a MIP is configured is blocked by Spanning-Tree Protocol, the MIP cannot receive CFM messages or relay them toward the relay function side. The MIP can, however, receive and respond to CFM messages from the wire.

A MIP has only one level associated with it and the command-line interface (CLI) does not allow you to configure a MIP for a domain that does not exist.

The figure below illustrates MEPs and MIPs at the operator, service provider, and customer levels.

CFM Messages

CFM uses standard Ethernet frames. CFM frames are distinguishable by EtherType and for multicast messages by MAC address. CFM frames are sourced, terminated, processed, and relayed by bridges. Routers can support only limited CFM functions.

Bridges that cannot interpret CFM messages forward them as normal data frames. All CFM messages are confined to a maintenance domain and to an S-VLAN (PE-VLAN or Provider-VLAN). Three types of messages are supported:

• Continuity Check

• Loopback

• Traceroute

Continuity Check Messages

CFM CCMs are multicast heartbeat messages exchanged periodically among MEPs. They allow MEPs to discover other MEPs within a domain and allow MIPs to discover MEPs. CCMs are confined to a domain and S-VLAN.
CFM CCMs have the following characteristics:

- Transmitted at a configurable periodic interval by MEPs. The interval can be from 10 seconds to 65535 seconds, the default is 30.
- Contain a configurable hold-time value to indicate to the receiver the validity of the message. The default is 2.5 times the transmit interval.
- Catalogued by MIPs at the same maintenance level.
- Terminated by remote MEPs at the same maintenance level.
- Unidirectional and do not solicit a response.
- Carry the status of the port on which the MEP is configured.

Loopback Messages

CFM loopback messages are unicast frames that a MEP transmits, at the request of an administrator, to verify connectivity to a particular maintenance point. A reply to a loopback message indicates whether a destination is reachable but does not allow hop-by-hop discovery of the path. A loopback message is similar in concept to an Internet Control Message Protocol (ICMP) Echo (ping) message.

A CFM loopback message can be generated on demand using the CLI. The source of a loopback message must be a MEP; the destination may be a MEP or a MIP. CFM loopback messages are unicast; replies to loopback messages also are unicast. CFM loopback messages specify the destination MAC address, VLAN, and maintenance domain.

Traceroute Messages

CFM traceroute messages are multicast frames that a MEP transmits, at the request of an administrator, to track the path (hop-by-hop) to a destination MEP. They allow the transmitting node to discover vital connectivity data about the path, and allow the discovery of all MIPs along the path that belong to the same maintenance domain. For each visible MIP, traceroute messages indicate ingress action, relay action, and egress action. Traceroute messages are similar in concept to User Datagram Protocol (UDP) traceroute messages.

Traceroute messages include the destination MAC address, VLAN, and maintenance domain and they have Time To Live (TTL) to limit propagation within the network. They can be generated on demand using the CLI. Traceroute messages are multicast; reply messages are unicast.

Cross-Check Function

The cross-check function is a timer-driven post-provisioning service verification between dynamically discovered MEPs (via CCMs) and expected MEPs (via configuration) for a service. The cross-check function verifies that all endpoints of a multipoint or point-to-point service are operational. The function supports notifications when the service is operational; otherwise it provides alarms and notifications for unexpected endpoints or missing endpoints.

The cross-check function is performed one time. You must initiate the cross-check function from the CLI every time you want a service verification.
SNMP Traps

The support provided by the Cisco software implementation of CFM traps is Cisco proprietary information. MEPs generate two types of Simple Network Management Protocol (SNMP) traps, continuity check (CC) traps and cross-check traps.

CC Traps

- MEP up—Sent when a new MEP is discovered, the status of a remote port changes, or connectivity from a previously discovered MEP is restored after interruption.
- MEP down—Sent when a timeout or last gasp event occurs.
- Cross-connect—Sent when a service ID does not match the VLAN.
- Loop—Sent when a MEP receives its own CCMs.
- Configuration error—Sent when a MEP receives a continuity check with an overlapping MPID.

Cross-Check Traps

- Service up—Sent when all expected remote MEPs are up in time.
- MEP missing—Sent when an expected MEP is down.
- Unknown MEP—Sent when a CCM is received from an unexpected MEP.

Ethernet CFM and Ethernet OAM Interaction

To understand how CFM and OAM interact, you should understand the following concepts:

Ethernet Virtual Circuit

An EVC as defined by the Metro Ethernet Forum is a port-level point-to-point or multipoint-to-multipoint Layer 2 circuit. EVC status can be used by a CE device either to find an alternative path in to the service provider network or in some cases, to fall back to a backup path over Ethernet or over another alternative service such as ATM.

OAM Manager

The OAM manager is an infrastructure element that streamlines interaction between OAM protocols. The OAM manager requires two interworking OAM protocols, in this case Ethernet CFM and Ethernet OAM. Interaction is unidirectional from the OAM manager to the CFM protocol and the only information exchanged is the user network interface (UNI) port status. Additional port status values available include:

- REMOTE_EE—Remote excessive errors
- LOCAL_EE—Local excessive errors
- TEST—Either remote or local loopback

After CFM receives the port status, it communicates that status across the CFM domain.
CFM over Bridge Domains

Connectivity Fault Management (CFM) over bridge domains allows untagged CFM packets to be associated with a maintenance end point (MEP). An incoming untagged customer CFM packet has an EtherType of CFM and is mapped to an Ethernet virtual circuit (EVC) or bridge domain based on the encapsulation configured on the Ethernet flow point (EFP). The EFP is configured specifically to recognize these untagged packets.

An EFP is a logical demarcation point of an EVC on an interface and can be associated with a bridge domain. The VLAN ID is used to match and map traffic to the EFP. VLAN IDs have local significance per port similar to an ATM virtual circuit. CFM is supported on a bridge domain associated with an EFP. The association between the bridge domain and the EFP allows CFM to use the encapsulation on the EFP. All EFPs in the same bridge domain form a broadcast domain. The bridge domain ID determines the broadcast domain.

The distinction between a VLAN port and the EFP is the encapsulation. VLAN ports use a default dot1q encapsulation. For EFPs, untagged, single tagged, and double tagged encapsulation exists with dot1q and IEEE dot1ad EtherTypes. Different EFPs belonging to the same bridge domain can use different encapsulations.

Both up MEP, down MEP and MIP are supported. If an up MEP is configured under an EFP within a bridge domain, CFM messages would be routed into the bridge, and the rest members of the same bridge domain would be able to receive messages from this MEP. If a down MEP is configured, the messages will not go into the bridge domain.

HA Features Supported by CFM

In access and service provider networks using Ethernet technology, High Availability (HA) is a requirement, especially on Ethernet OAM components that manage EVC connectivity. End-to-end connectivity status information is critical and must be maintained on a hot standby Route Switch Processor (RSP).

Note

A hot standby Route Switch Processor (RSP) has the same software image as the active RSP and supports synchronization of protocol and application state information between RSPs for supported features and protocols.

End-to-end connectivity status is maintained on the customer edge (CE), provider edge (PE), and access aggregation PE (uPE) network nodes based on information received by protocols such as Connectivity Fault Management (CFM) and 802.3ah. This status information is used to either stop traffic or switch to backup paths when an EVC is down.

Every transaction involves either accessing or updating data among various databases. If the database is synchronized across active and standby modules, the modules are transparent to clients.

The Cisco infrastructure provides various component application program interfaces (APIs) that help to maintain a hot standby RSP. Metro Ethernet HA clients HA/ISSU, CFM HA/ISSU, and 802.3ah HA/ISSU interact with these components, update the database, and trigger necessary events to other components.

Benefits of CFM HA

- Elimination of network downtime for Cisco software image upgrades, allowing for faster upgrades.
- Elimination of resource scheduling challenges associated with planned outages and late night maintenance windows.
• Accelerated deployment of new services and applications and facilitation of faster implementation of new features.

• Reduced operating costs due to outages while delivering higher service levels.

• CFM updates its databases and controls its own HA messaging and versioning, and this control facilitates maintenance.

CFM HA in a Metro Ethernet Network

A standalone Connectivity Fault Management (CFM) implementation does not have explicit high availability (HA) requirements. When CFM is implemented on a customer edge (CE) or provider edge (PE), CFM must maintain the Ethernet virtual circuit (EVC) state, which requires HA because the EVC state is critical in maintaining end-to-end connectivity. CFM configures the platform with maintenance level, domain, and maintenance point, learns the remote maintenance point information, and maps it to the appropriate EVC. CFM then aggregates data received from all remote ports; consequently HA requirements vary for CE and PE.

The CE receives the EVC ID, associated customer VLANs, UNI information, EVC state, and remote UNI ID and state from the MEN. The CE relies on the EVC state to send or stop traffic to the MEN.

The PE has EVC configuration and associated customer VLAN information and derives the EVC state and remote UNI from CFM.

Note

PEs and CEs running 802.3ah OAM must maintain the port state so peers are not affected by a switchover. This information is also sent to remote nodes in CFM CC messages.

NSF SSO Support in CFM 802.1ag 1.0d

The redundancy configurations Stateful Switchover (SSO) and Nonstop Forwarding (NSF) are both supported in Ethernet Connectivity Fault Management (CFM) and are automatically enabled. A switchover from an active to a standby Route Switch Processor (RSP) occurs when the active RSP fails, is removed from the networking device, or is manually taken down for maintenance. NSF interoperates with the SSO feature to minimize network downtime following a switchover. The primary function of Cisco NSF is to continue forwarding IP packets following an RSP switchover.

For detailed information about SSO, see the “Configuring Stateful Switchover” module of the High Availability Configuration Guide. For detailed information about the NSF feature, see the “Configuring Cisco Nonstop Forwarding” module of the High Availability Configuration Guide.

ISSU Support in CFM 802.1ag 1.0d

In Service Upgrades (ISSUs) allow you to perform a Cisco software upgrade or downgrade without disrupting packet flow. Connectivity Fault Management (CFM) performs a bulk update and a runtime update of the continuity check database to the standby Route Switch Processor (RSP), including adding, deleting, or updating a row. This checkpoint data requires ISSU capability to transform messages from one release to another. All the components that perform active RSP to standby RSP updates using messages require ISSU support.

ISSU is automatically enabled in CFM and lowers the impact that planned maintenance activities have on network availability by allowing software changes while the system is in service. For detailed information
How to Set Up Ethernet CFM in a Service Provider Network

Designing CFM Domains

To have an operator, service provider, or customer domain is optional. A network may have a single domain or multiple domains. The steps listed here show the sequence when all three types of domains will be assigned.

Before you begin

- Knowledge and understanding of the network topology.
- Understanding of organizational entities involved in managing the network; for example, operators, service providers, network operations centers (NOCs), and customer service centers.
- Understanding of the type and scale of services to be offered.
- Agreement by all organizational entities on the responsibilities, roles, and restrictions for each organizational entity.
- Determination of the number of maintenance domains in the network.
- Determination of the nesting and disjoint maintenance domains.
- Assignment of maintenance levels and names to domains based on agreement between the service provider and operator or operators.
- Determination of whether the domain should be inward or outward.

SUMMARY STEPS

1. Determine operator level MIPs.
2. Determine operator level MEPs.
3. Determine service provider MIPs.
4. Determine service provider MEPs.
5. Determine customer MIPs.
6. Determine customer MEPs.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Determine operator level MIPs.</td>
</tr>
<tr>
<td></td>
<td>Follow these steps:</td>
</tr>
<tr>
<td></td>
<td>• Starting at lowest operator level domain, assign a MIP at every interface internal to the operator network to be visible to CFM.</td>
</tr>
</tbody>
</table>
Command or Action

Purpose

- Proceed to next higher operator level and assign MIPs.
- Verify that every port that has a MIP at a lower level does not have maintenance points at a higher level.
- Repeat steps a through d until all operator MIPs are determined.

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Determine operator level MEPs.</th>
<th>Follow these steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Starting at the lowest operator level domain, assign a MEP at every UNI that is part of a service instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Assign a MEP at the network to network interface (NNI) between operators, if there is more than one operator.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proceed to next higher operator level and assign MEPs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should have either a MIP or MEP at a higher level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Determine service provider MIPs.</th>
<th>Follow these steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Starting at the lowest service provider level domain, assign service provider MIPs at the NNI between operators (if more than one).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proceed to next higher service provider level and assign MIPs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should not have either a MIP or a MEP at a higher level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Determine service provider MEPs.</th>
<th>Follow these steps:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Starting at the lowest service provider level domain, assign a MEP at every UNI that is part of a service instance.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Proceed to next higher service provider level and assign MEPs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should have either a MIP or a MEP at a higher level.</td>
</tr>
</tbody>
</table>
Examples

The figure below shows an example of a network with a service provider and two operators, A and B. Three domains are to be established to map to each operator and the service provider. In this example, for simplicity we assume that the network uses Ethernet transport end to end. CFM, however, can be used with other transports.
What to Do Next

After you have defined the Ethernet CFM domains, configure Ethernet CFM functionality by first provisioning the network and then provisioning service.

Configuring Ethernet CFM

Configuring Ethernet CFM consists of the following tasks:

Provisioning the Network

Provisioning the Network on the CE-A

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id`
4. `service short-ma-name evc evc-name vlan vlanid direction down`
5. `continuity-check`
6. `continuity-check [interval ce-interval]`
7. `exit`
8. `mep archive-hold-time minutes`
9. `exit`
10. `ethernet cfm global`
11. `ethernet cfm traceroute cache`
12. `ethernet cfm traceroute cache size entries`
13. `ethernet cfm traceroute cache hold-time minutes`
14. `snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]`
15. `snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]`
16. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 3**
ethernet cfm domain **domain-name** **level** **level-id**
Example:
Device(config)# ethernet cfm domain Customer level 7 |
| Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode. |
| **Step 4**
service **short-ma-name** evc **evc-name** **vlan** **vlanid**
direction **down**
Example:
Device(config-ecfm)# service s41 evc 41 vlan 41 direction down |
| Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode. |
| **Step 5**
continuity-check
Example:
Device(config-ecfm-srv)# continuity-check |
| Configures the transmission of continuity check messages (CCMs). |
| **Step 6**
continuity-check [interval **cc-interval**]
Example:
Device(config-ecfm-srv)# continuity-check interval 10s |
| Configures the per-service parameters and sets the interval at which CCMs are transmitted. |
| **Step 7**
exit
Example:
Device(config-ecfm-srv)# exit |
| Returns to Ethernet connectivity fault management configuration mode. |
| **Step 8**
mep archive-hold-time **minutes**
Example:
Device(config-ecfm)# mep archive-hold-time 60 |
| Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged. |
| **Step 9**
exit
Example:
Device(config-ecfm)# exit |
| Returns to global configuration mode. |
| **Step 10**
ethernet cfm global
Example:
Device(config)# ethernet cfm global |
| Enables CFM processing globally on the device. |
| **Step 11**
ethernet cfm traceroute cache
Example:
Device(config)# ethernet cfm traceroute cache |
| Enables caching of CFM data learned through traceroute messages. |
| **Step 12**
ethernet cfm traceroute cache **size** **entries**
Example:
Device(config)# ethernet cfm traceroute cache |
<p>| Sets the maximum size for the CFM traceroute cache table. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config)# ethernet cfm traceroute cache size 200</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
</tbody>
</table>

Step 13

ethernet cfm traceroute cache hold-time minutes

Example:

Device(config)# ethernet cfm traceroute cache hold-time 60

Step 14

snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]

Example:

Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect

Step 15

snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]

Example:

Device(config)# snmp-server enable traps ethernet cfm crosscheck mep-unknown mep-missing service-up

Step 16

end

Example:

Device(config)# end

Provisioning the Network on the U-PE A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
Example:
Device> enable |
* Enter your password if prompted.
| 2 | `configure terminal` | Enters global configuration mode.
Example:
Device# configure terminal |
| 3 | `ethernet cfm domain domain-name level level-id` | Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.
Example:
Device(config)# ethernet cfm domain Customer level 7 |
| 4 | `service short-ma-name evc evc-name vlan vlanid direction down` | Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.
Example:
Device(config-ecfm)# service s41 evc 41 vlan 41 direction down |
| 5 | `continuity-check` | Configures the transmission of continuity check messages (CCMs).
Example:
Device(config-ecfm-srv)# continuity-check |
| 6 | `continuity-check [interval cc-interval]` | Configures the per-service parameters and sets the interval at which CCMs are transmitted.
Example:
Device(config-ecfm-srv)# continuity-check interval 10s |
| 7 | `exit` | Returns to Ethernet connectivity fault management configuration mode.
Example:
Device(config-ecfm-srv)# exit |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td>ethernet cfm traceroute cache hold-time minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 17</td>
<td>bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>cfm mip level { level }</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# cfm mip level 4</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>exit</td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 21</td>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
<td></td>
</tr>
<tr>
<td>Step 22</td>
<td>snmp-server enable traps ethernet cfm crosscheck [mep-unknown</td>
<td>,mep-missing</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# snmp-server enable traps ethernet cfm crosscheck mep-unknown mep-missing service-up</td>
<td></td>
</tr>
<tr>
<td>Step 23</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Provisioning the Network on the PE-AGG A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain *domain-name* level *level-id*
4. service *short-ma-name* evc *evc-name* vlan *vlanid* direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. interface type number
12. service instance id ethernet [evc-name]
13. encapsulation encapsulation-type
14. bridge-domain bridge-id
15. cfm mip level level
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# mep archive-hold-time 65</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface gigabitethernet3/1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# service instance 333 ethernet evcl</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>cfm mip level level</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)#cfm mip level 4</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Provisioning the Network on the N-PE A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. ethernet cfm global
9. ethernet cfm traceroute cache
10. ethernet cfm traceroute cache size entries
11. ethernet cfm traceroute cache hold-time minutes
12. interface type number
13. service instance id ethernet [evc-name]
14. encapsulation encapsulation-type
15. bridge-domain bridge-id
16. cfm mip level level
17. exit
18. exit
19. snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]
20. snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]
21. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td></td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 4**
 service short-ma-name evc evc-name vlan vlanid direction down
 Example:
 Device(config-ecfm)# service s41 evc 41 vlan 41 direction down | Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode. |
| **Step 5**
 continuity-check
 Example:
 Device(config-ecfm-srv)# continuity-check | Configures the transmission of continuity check messages (CCMs). |
| **Step 6**
 continuity-check [interval cc-interval]
 Example:
 Device(config-ecfm-srv)# continuity-check interval 10s | Configures the per-service parameters and sets the interval at which CCMs are transmitted. |
| **Step 7**
 exit
 Example:
 Device(config-ecfm-srv)# exit | Returns to Ethernet connectivity fault management configuration mode. |
| **Step 8**
 ethernet cfm global
 Example:
 Device(config)# ethernet cfm global | Enables CFM processing globally on the device. |
| **Step 9**
 ethernet cfm traceroute cache
 Example:
 Device(config)# ethernet cfm traceroute cache | Enables caching of CFM data learned through traceroute messages. |
| **Step 10**
 ethernet cfm traceroute cache size entries
 Example:
 Device(config)# ethernet cfm traceroute cache size 200 | Sets the maximum size for the CFM traceroute cache table. |
| **Step 11**
 ethernet cfm traceroute cache hold-time minutes
 Example:
 Device(config)# ethernet cfm traceroute cache hold-time 60 | Sets the amount of time that CFM traceroute cache entries are retained. |
| **Step 12**
 interface type number
 Example:
 Device(config)# interface gigabitethernet3/0 | Specifies an interface and enters interface configuration mode. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# service instance 333 ethernet evc1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>cfm mip level level</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# cfm mip level 4</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>exit</td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>snmp-server enable traps ethernet cfm crosscheck [mep-unknown</td>
<td>mep-missing</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# snmp-server enable traps ethernet cfm crosscheck mep-unknown mep-missing service-up</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>
Provisioning the Network on the CE-B

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id`
4. `service short-ma-name evc evc-name vlan vlanid direction down`
5. `continuity-check`
6. `continuity-check [interval cc-interval]`
7. `exit`
8. `mep archive-hold-time minutes`
9. `exit`
10. `ethernet cfm global`
11. `ethernet cfm traceroute cache`
12. `ethernet cfm traceroute cache size entries`
13. `ethernet cfm traceroute cache hold-time minutes`
14. `snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]`
15. `snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]`
16. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ethernet cfm domain Customer level 7</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>service short-ma-name evc evc-name vlan vlanid direction down</code></td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>continuity-check</code></td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-ecfm-srv)# continuity-check</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6</td>
<td>continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ethernet cfm traceroute cache hold-time minutes minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>snmp-server enable traps ethernet cfm crosscheck [mep-unknown</td>
<td>mep-missing</td>
</tr>
</tbody>
</table>
Provisioning the Network on the U-PE B

SUMMARY STEPS

1. *enable*
2. *configure terminal*
3. *ethernet cfm domain domain-name level level-id*
4. *service short-ma-name evc evc-name vlan vlanid direction down*
5. *continuity-check*
6. *continuity-check [interval cc-interval]*
7. *exit*
8. *mep archive-hold-time minutes*
9. *exit*
10. *ethernet cfm global*
11. *ethernet cfm traceroute cache*
12. *ethernet cfm traceroute cache size entries*
13. *ethernet cfm traceroute cache hold-time minutes*
14. *interface type number*
15. *service instance id ethernet [evc-name]*
16. *encapsulation encapsulation-type*
17. *bridge-domain bridge-id*
18. *cfm mip level level*
19. *exit*
20. *exit*
21. *snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]*
22. *snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]*
23. *end*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
 Example:
 Device> enable |
| 2 | configure terminal | Enters global configuration mode. |
 Example:
 Device(config)# configure terminal |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config)# configure terminal</td>
<td>Device(config)# configure terminal</td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td>Step 4 service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td>Step 5 continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td>Step 6 continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# exit</td>
<td>Example: Device(config-ecfm-srv)# exit</td>
</tr>
<tr>
<td>Step 8 mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# exit</td>
<td>Example: Device(config-ecfm)# exit</td>
</tr>
<tr>
<td>Step 10 ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm global</td>
<td>Example: Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>Step 11 ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
</tr>
<tr>
<td>Step 12 ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache size 200</td>
<td>Example: Device(config)# ethernet cfm traceroute cache size 200</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm traceroute cache hold-time minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm traceroute cache hold-time 60</td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet2/0</td>
</tr>
<tr>
<td>Step 15</td>
<td></td>
</tr>
<tr>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 333 ethernet evc1</td>
</tr>
<tr>
<td>Step 16</td>
<td></td>
</tr>
<tr>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 17</td>
<td></td>
</tr>
<tr>
<td>bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td>Step 18</td>
<td></td>
</tr>
<tr>
<td>cfm mip level level</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# cfm mip level 4</td>
</tr>
<tr>
<td>Step 19</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# exit</td>
</tr>
<tr>
<td>Step 20</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
</tr>
<tr>
<td>Step 21</td>
<td></td>
</tr>
<tr>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
</tr>
<tr>
<td>Step 22</td>
<td></td>
</tr>
<tr>
<td>snmp-server enable traps ethernet cfm crosscheck [mep-unknown</td>
<td>mep-missing</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Device(config)# snmp-server enable traps ethernet cfm crosscheck mep-unknown mep-missing service-up

Purpose

Returns to privileged EXEC mode.

Step 23

Example:

Device(config)# end

Provisioning the Network on the PE-AGG B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. interface type number
12. service instance id ethernet [evc-name]
13. encapsulation encapsulation-type
14. bridge-domain bridge-id
15. cfm mip level level
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down**</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# mep archive-hold-time 65</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet1/1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 333 ethernet evcl</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>14</td>
<td>bridge-domain</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>bridge-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td>15</td>
<td>cfm mip level</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td></td>
<td>level</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-if-srv)# cfm mip level 4</td>
</tr>
<tr>
<td>16</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Device(config-if-srv)# end</td>
</tr>
</tbody>
</table>

Provisioning the Network on the N-PE B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mip level bridge-id
19. exit
20. exit
21. snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]
22. snmp-server enable traps ethernet cfm crosscheck [mep-unknown | mep-missing | service-up]
23. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8 mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10 ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm global</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11 ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>ethernet cfm traceroute cache size entries</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>ethernet cfm traceroute cache hold-time minutes</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet1/2</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>service instance id ethernet [evc-name]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 333 ethernet evc1</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>encapsulation encapsulation-type</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Sets the encapsulation method used by the interface.</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>bridge-domain bridge-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Binds a service instance to a bridge domain instance.</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>cfm mip level level</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# cfm mip level 4</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Creates a MIP and sets the maintenance level number.</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Returns to interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 21</td>
<td>snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
<td></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
<td></td>
</tr>
</tbody>
</table>
Provisioning Service

Provisioning Service on the CE-A

Perform this task to set up service for Ethernet CFM. Optionally, when this task is completed, you may configure and enable the cross-check function. To perform this optional task, see “Configuring and Enabling Cross-Checking for an Inward Facing MEP on the U PE-A”.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mep domain domain-name mpid id
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 12</td>
<td>ethernet cfm traceroute cache size entries
Example: Device(config)# ethernet cfm traceroute cache size 200</td>
</tr>
<tr>
<td>Step 13</td>
<td>ethernet cfm traceroute cache hold-time minutes
Example: Device(config)# ethernet cfm traceroute cache hold-time 60</td>
</tr>
<tr>
<td>Step 14</td>
<td>interface type number
Example: Device(config)# interface ethernet 0/3</td>
</tr>
<tr>
<td>Step 15</td>
<td>service instance id ethernet [evc-name]
Example: Device(config-if)# service instance 333 ethernet evc1</td>
</tr>
<tr>
<td>Step 16</td>
<td>encapsulation encapsulation-type
Example: Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 17</td>
<td>bridge-domain bridge-id
Example: Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td>Step 18</td>
<td>cfm mep domain domain-name mpid id
Example: Device(config-if-srv)# cfm mep domain L4 mpid 4001</td>
</tr>
<tr>
<td>Step 19</td>
<td>end
Example: Device(config-if-srv)# end</td>
</tr>
</tbody>
</table>

Provisioning Service on the U-PE A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mep domain domain-name mpid id
19. exit
20. exit
21. interface type number
22. service instance id ethernet [evc-name]
23. encapsulation encapsulation-type
24. bridge-domain bridge-id
25. cfm mip level level
26. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td></td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td></td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>continuity-check</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td></td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Step 6 continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 11 ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm traceroute cache</td>
<td></td>
</tr>
<tr>
<td>Step 12 ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
</tr>
<tr>
<td>Step 13 ethernet cfm traceroute cache hold-time minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Step 14 interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface gigabitethernet3/2</td>
<td></td>
</tr>
<tr>
<td>Step 15 service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service instance 333 ethernet evcl</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 16</td>
<td>encapsulation encapsulation-type</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td></td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Step 17</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td></td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Step 18</td>
<td>cfm mep domain domain-name mpid id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# cfm mep domain L4 mpid 4001</td>
</tr>
<tr>
<td></td>
<td>Configures the MEP domain and the ID.</td>
</tr>
<tr>
<td>Step 19</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td>Step 20</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 21</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet3/2</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 22</td>
<td>service instance id ethernet [evc-name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 333 ethernet evcl</td>
</tr>
<tr>
<td></td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Step 23</td>
<td>encapsulation encapsulation-type</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td></td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Step 24</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td></td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Step 25</td>
<td>cfm mip level level</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)#cfm mip level 4</td>
</tr>
<tr>
<td></td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td>Step 26</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Provisioning Service on the PE-AGG A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. interface type number
12. service instance id ethernet [evc-name]
13. encapsulation encapsulation-type
14. bridge-domain bridge-id
15. cfm mip level level
16. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td>Step 4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td>Step 5</td>
<td>continuity-check</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Step 6 continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# exit</td>
</tr>
<tr>
<td>Step 8 mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# mep archive-hold-time 65</td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# exit</td>
</tr>
<tr>
<td>Step 10 ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>Step 11 interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet3/1</td>
</tr>
<tr>
<td>Step 12 service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 333 ethernet evc1</td>
</tr>
<tr>
<td>Step 13 encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 14 bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td>Step 15 cfm mip level level</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# cfm mip level 4</td>
</tr>
<tr>
<td>Step 16 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# end</td>
</tr>
</tbody>
</table>
Provisioning Service on the N-PE A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mip level level
19. exit
20. exit
21. interface type number
22. service instance id ethernet [evc-name]
23. encapsulation encapsulation-type
24. bridge-domain bridge-id
25. cfm mep domain domain-name mpid id
26. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level level-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td>service short-name evc evc-name vlan vlanid direction down**</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td>5</td>
<td>continuity-check</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td>6</td>
<td>continuity-check [interval cc-interval]</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm-srv)# exit</td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ecfm)# exit</td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>11</td>
<td>ethernet cfm traceroute cache</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
</tr>
<tr>
<td>12</td>
<td>ethernet cfm traceroute cache size entries</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache size 200</td>
</tr>
<tr>
<td>13</td>
<td>ethernet cfm traceroute cache hold-time minutes</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# ethernet cfm traceroute cache hold-time 60</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 14 | interface *type number*
Example:
Device(config)# interface gigabitethernet3/0 | Specifies an interface and enters interface configuration mode. |
| 15 | service instance *id ethernet* *[evc-name]*
Example:
Device(config-if)# service instance 333 ethernet evc1 | Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode. |
| 16 | encapsulation *encapsulation-type*
Example:
Device(config-if-srv)# encapsulation ppp | Sets the encapsulation method used by the interface. |
| 17 | bridge-domain *bridge-id*
Example:
Device(config-if-srv)# bridge-domain 100 | Binds a service instance to a bridge domain instance. |
| 18 | cfm mip level *level*
Example:
Device(config-if-srv)# cfm mip level 4 | Creates a MIP and sets the maintenance level number. |
| 19 | exit
Example:
Device(config-if-srv)# exit | Returns to interface configuration mode. |
| 20 | exit
Example:
Device(config-if)# exit | Returns to global configuration mode. |
| 21 | interface *type number*
Example:
Device(config-if)# interface gigabitethernet4/0 | Specifies an interface. |
| 22 | service instance *id ethernet* *[evc-name]*
Example:
Device(config-if)# service instance 333 ethernet evc1 | Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode. |
| 23 | encapsulation *encapsulation-type*
Example:
Device(config-if-srv)# encapsulation ppp | Sets the encapsulation method used by the interface. |
| 24 | bridge-domain *bridge-id*
Example: | Binds a service instance to a bridge domain instance. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config-if-srv)# bridge-domain 100</code></td>
<td>Configures the MEP domain and the ID.</td>
</tr>
<tr>
<td>Step 25 <code>cfm mep domain domain-name mpid id</code></td>
<td>Configures the MEP domain and the ID.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# cfm mep domain L4 mpid 4001</code></td>
<td></td>
</tr>
<tr>
<td>Step 26 <code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Provisioning Service on the CE-B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval ce-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mep domain domain-name mpid id
19. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td>4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td>5</td>
<td>continuity-check</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td>6</td>
<td>continuity-check [interval cc-interval]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# exit</td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# mep archive-hold-time 60</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# exit</td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>11</td>
<td>ethernet cfm traceroute cache</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm traceroute cache</td>
</tr>
<tr>
<td>12</td>
<td>ethernet cfm traceroute cache size entries</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm traceroute cache size 200</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 13</th>
<th>ethernet cfm traceroute cache hold-time minutes Example: Device(config)# ethernet cfm traceroute cache hold-time 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>interface type number Example: Device(config)# interface ethernet 0/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>service instance id ethernet [evc-name] Example: Device(config-if)# service instance 333 ethernet evc1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>encapsulation encapsulation-type Example: Device(config-if-srv)# encapsulation ppp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 17</th>
<th>bridge-domain bridge-id Example: Device(config-if-srv)# bridge-domain 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18</th>
<th>cfm mep domain domain-name mpid id Example: Device(config-if-srv)# cfm mep domain L4 mpid 4001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Configures the MEP domain and the ID.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 19</th>
<th>end Example: Device(config-if-srv)# end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Provisioning Service on the U-PE B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm traceroute cache</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>ethernet cfm traceroute cache hold-time minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface gigabitethernet1/0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# service instance 333 ethernet evcl</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# bridge-domain 100</td>
<td>Creates a MIP and sets the maintenance level number.</td>
<td></td>
</tr>
<tr>
<td>Step 18 cfm mip level level</td>
<td>Returns to interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# cfm mip level 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 19 exit</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 20 exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 21 interface type number</td>
<td>Specifies an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# interface gigabitethernet1/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 22 service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# service instance 333 ethernet evc1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 23 encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# encapsulation ppp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 24 bridge-domain bridge-id</td>
<td>Binds a service instance to a bridge domain instance.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# bridge-domain 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 25 cfm mep domain domain-name mpid id</td>
<td>Configures the MEP domain and the ID.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# cfm mep domain L4 mpid 4001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 26 end</td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provisioning Service on the PE-AGG B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain *domain-name* level *level-id*
4. `service short-ma-name evc evc-name vlan vlanid direction down`
5. `continuity-check`
6. `continuity-check [interval cc-interval]`
7. `exit`
8. `mep archive-hold-time minutes`
9. `exit`
10. `ethernet cfm global`
11. `interface type number`
12. `service instance id ethernet [evc-name]`
13. `encapsulation encapsulation-type`
14. `bridge-domain bridge-id`
15. `cfm mip level level`
16. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
</tr>
<tr>
<td>Step 4</td>
<td>service short-ma-name evc evc-name vlan vlanid direction down</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
</tr>
<tr>
<td>Step 5</td>
<td>continuity-check</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
</tr>
<tr>
<td>Step 6</td>
<td>continuity-check [interval cc-interval]</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check interval 10s</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>7</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm-srv)# exit</td>
</tr>
<tr>
<td>8</td>
<td>mep archive-hold-time minutes</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# mep archive-hold-time 65</td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ecfm)# exit</td>
</tr>
<tr>
<td>10</td>
<td>ethernet cfm global</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>11</td>
<td>interface type number</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface gigabitethernet3/1</td>
</tr>
<tr>
<td>12</td>
<td>service instance id ethernet [evc-name]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# service instance 333 ethernet evc1</td>
</tr>
<tr>
<td>13</td>
<td>encapsulation encapsulation-type</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>14</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# bridge-domain 100</td>
</tr>
<tr>
<td>15</td>
<td>cfm mip level level</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# cfm mip level 4</td>
</tr>
<tr>
<td>16</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# end</td>
</tr>
</tbody>
</table>
Provisioning Service on the N-PE B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service short-ma-name evc evc-name vlan vlanid direction down
5. continuity-check
6. continuity-check [interval cc-interval]
7. exit
8. mep archive-hold-time minutes
9. exit
10. ethernet cfm global
11. ethernet cfm traceroute cache
12. ethernet cfm traceroute cache size entries
13. ethernet cfm traceroute cache hold-time minutes
14. interface type number
15. service instance id ethernet [evc-name]
16. encapsulation encapsulation-type
17. bridge-domain bridge-id
18. cfm mip level level
19. exit
20. exit
21. interface type number
22. service instance id ethernet [evc-name]
23. encapsulation encapsulation-type
24. bridge-domain bridge-id
25. cfm mep domain domain-name mpid id
26. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4 service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>Step 5 continuity-check</td>
<td>Configures the transmission of continuity check messages (CCMs).</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>Step 6 continuity-check [interval cc-interval]</td>
<td>Configures the per-service parameters and sets the interval at which CCMs are transmitted.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to Ethernet connectivity fault management configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 mep archive-hold-time minutes</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 11 ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache</td>
<td></td>
</tr>
<tr>
<td>Step 12 ethernet cfm traceroute cache size entries</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
</tr>
<tr>
<td>Step 13 ethernet cfm traceroute cache hold-time minutes</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 14</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config)# interface gigabitethernet3/0</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>service instance id ethernet [evc-name]</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# service instance 333 ethernet evcl</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>encapsulation encapsulation-type</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>bridge-domain bridge-id</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>Creates a MIP and sets the maintenance level number.</td>
</tr>
<tr>
<td>cfm mip level level</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# cfm mip level 4</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 21</td>
<td>Specifies an interface.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
</tbody>
</table>
| **Example:** Device(config-if)# interface gigabitethernet4/0
Device(config-if)# interface gigabitethernet0/0/2 |
| **Step 22** | Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode. |
| service instance id ethernet [evc-name] | |
| **Example:** Device(config-if)# service instance 333 ethernet evcl |
| **Step 23** | Sets the encapsulation method used by the interface. |
| encapsulation encapsulation-type | |
| **Example:** Device(config-if-srv)# encapsulation ppp |
| **Step 24** | Binds a service instance to a bridge domain instance. |
| bridge-domain bridge-id | |
| **Example:** | |
Configuring and Enabling the Cross-Check Function

Configuring and Enabling Cross-Checking for an Inward Facing MEP on the U PE-A

Perform this task to configure and enable cross-checking for an inward facing MEP. This task requires you to configure and enable cross-checking on two devices. This task is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id`
4. `mep crosscheck mpid id vlan vlan-id [mac mac-address]`
5. `exit`
6. `ethernet cfm mep crosscheck start-delay delay`
7. `exit`
8. `ethernet cfm mep crosscheck {enable | disable} level {level-id | level-id-level-id [,level-id-level-id]} vlan {vlan-id | any | vlan-id-vlan-id [,vlan-id-vlan-id]}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a CFM domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config)# ethernet cfm domain ServiceProvider level 4</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>4</td>
<td><code>mep crosscheck mpid id vlan vlan-id [mac mac-address]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ether-cfm)# mep crosscheck mpid 402 vlan 100</td>
</tr>
<tr>
<td>5</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config-ether-cfm)# exit#</td>
</tr>
<tr>
<td>6</td>
<td><code>ethernet cfm mep crosscheck start-delay delay</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# ethernet cfm mep crosscheck start-delay 60</td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# exit</td>
</tr>
<tr>
<td>8</td>
<td>`ethernet cfm mep crosscheck {enable</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device# ethernet cfm mep crosscheck enable level 4 vlan 100</td>
</tr>
</tbody>
</table>

Example

The following example configures cross-checking on an inward facing MEP (U-PE A):

```plaintext
U-PE A
ethernet cfm domain ServiceProvider level 4
mep crosscheck mpid 402 vlan 100
!
ethernet cfm mep crosscheck start-delay 60
```

The following example enables cross-checking on an inward facing MEP (U-PE A):

```plaintext
U-PE A
U-PEA# ethernet cfm mep crosscheck enable level 4 vlan 100
```

Configuring and Enabling Cross-Checking for an Inward Facing MEP on the U PE-B

Perform this task to configure and enable cross-checking for an inward facing MEP. This task requires you to configure and enable cross-checking on two devices. This task is optional.

SUMMARY STEPS

1. enable
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Defines a CFM domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>ethernet cfm domain</td>
<td></td>
</tr>
<tr>
<td>domain-name level level-id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain ServiceProvider level 4</td>
</tr>
<tr>
<td>Step 4</td>
<td>Statically defines a remote MEP on a specified VLAN within the domain.</td>
</tr>
<tr>
<td>mep crosscheck mpid id vlan vlan-id [mac mac-address]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ether-cfm)# mep crosscheck mpid 401 vlan 100</td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ether-cfm)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started.</td>
</tr>
<tr>
<td>ethernet cfm mep crosscheck start-delay delay</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm mep crosscheck start-delay 60</td>
</tr>
<tr>
<td>Step 7</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# exit</td>
</tr>
<tr>
<td>Step 8</td>
<td>Enables cross-checking between MEPs.</td>
</tr>
<tr>
<td>ethernet cfm mep crosscheck {enable</td>
<td>disable} level {level-id</td>
</tr>
</tbody>
</table>
Example

The following example configures cross-checking on an inward facing MEP (U-PE B)

U-PE B
ethernet cfm domain ServiceProvider level 4
mep crosscheck mpid 401 vlan 100
!
ethernet cfm mep crosscheck start-delay 60

The following example enables cross-checking on an inward facing MEP (U-PE B)

U-PE B
U-PEB# ethernet cfm mep crosscheck enable level 4 vlan 100

Configuring and Enabling Cross-Checking for an Outward Facing MEP on the CE-A

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id [direction outward]
4. mep crosscheck mpid id vlan vlan-id [mac mac-address]
5. exit
6. ethernet cfm mep crosscheck start-delay delay
7. exit
8. ethernet cfm mep crosscheck {enable | disable} level {level-id | level-id-level-id [,level-id-level-id]} vlan {vlan-id | any | vlan-id-vlan-id [,vlan-id-vlan-id]}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| Example:
Device> enable | • Enter your password if prompted. |
| Step 2 configure terminal | Enters global configuration mode. |
| Example:
Device# configure terminal | |
| Step 3 ethernet cfm domain domain-name level level-id [direction outward] | Defines a CFM domain at a specified level and enters Ethernet CFM configuration mode. |
| Example: | |
Configuring Ethernet Connectivity Fault Management in a Service Provider Network

Configuring and Enabling Cross-Checking for an Outward Facing MEP on the CE-B

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config)# ethernet cfm domain Customer level 7 direction outward</td>
<td></td>
</tr>
<tr>
<td>Step 4 mep crosscheck mpid id vlan vlan-id [mac mac-address]</td>
<td>Statically defines a remote MEP with a specified ID, VLAN, and domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# mep crosscheck mpid 702 vlan 100</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6 ethernet cfm mep crosscheck start-delay delay</td>
<td>Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm mep crosscheck start-delay 60</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 ethernet cfm mep crosscheck {enable</td>
<td>disable} level {level-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# ethernet cfm mep crosscheck enable level 7 vlan 100</td>
<td></td>
</tr>
</tbody>
</table>

Configuring and Enabling Cross-Checking for an Outward Facing MEP on the CE-B

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id [direction outward]
4. mep crosscheck mpid id vlan vlan-id [mac mac-address]
5. exit
6. ethernet cfm mep crosscheck start-delay delay
7. exit
8. ethernet cfm mep crosscheck {enable | disable} level {level-id | level-id-level-id | level-id-level-id} vlan {vlan-id | any | vlan-id-vlan-id | vlan-id-vlan-id}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
| **Step 2** configure terminal
Example: Device# configure terminal | Enters global configuration mode. |
| **Step 3** ethernet cfm domain *domain-name* level *level-id*
[direction outward]
Example: Device(config)# ethernet cfm domain Customer level 7 direction outward | Defines an outward CFM domain at a specified level and enters Ethernet CFM configuration mode. |
| **Step 4** mep crosscheck mpid *id* vlan *vlan-id* [mac *mac-address*]
Example: Device(config-ether-cfm)# mep crosscheck mpid 401 vlan 100 | Statically defines a remote MEP on a VLAN within a specified domain. |
| **Step 5** exit
Example: Device(config-ether-cfm)# exit | Returns to global configuration mode. |
| **Step 6** ethernet cfm mep crosscheck start-delay *delay*
Example: Device(config)# ethernet cfm mep crosscheck start-delay 60 | Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started. |
| **Step 7** exit
Example: Device(config)# exit | Returns to privileged EXEC mode. |
| **Step 8** ethernet cfm mep crosscheck {enable | disable} level {level-id | level-id-level-id [level-id-level-id]} vlan {vlan-id | any | vlan-id-vlan-id [vlan-id-vlan-id]}
Example: Device# ethernet cfm mep crosscheck enable level 7 vlan 100 | Enables cross-checking between MEPs. |

Configuring CFM over Bridge Domains

Perform this task to configure Ethernet CFM over bridge domains. This task is optional.

SUMMARY STEPS

1. enable
2. configure terminal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level level-id direction outward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain CUSTOMER level 7 direction outward</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Sets a universally unique ID for a CSI within a maintenance domain.</td>
<td></td>
</tr>
<tr>
<td>service csi-id evc evc-name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# service customer_100 evc evc_100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level level-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain MIP level 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Returns to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level level-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain PROVIDER level 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Sets a universally unique ID for a CSI within a maintenance domain.</td>
<td></td>
</tr>
<tr>
<td>service csi-id evc evc-name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# service provider_1 evc evc_100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Statically defines a remote MEP within a maintenance domain.</td>
<td></td>
</tr>
<tr>
<td>mep crosscheck mpid id evc evc-name mac mac-address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# mep crosscheck mpid 200 evc evc_100 mac 1010.1010.1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>11</td>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-ether-cfm)# exit</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>ethernet evc evc-name</code></td>
<td>Defines an EVC and enters EVC configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config)# ethernet evc evc_100</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-evc)# exit</code></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>interface type number</code></td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>no ip address</code></td>
<td>Disables IP processing.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# no ip address</code></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><code>service instance id ethernet evc-id</code></td>
<td>Specifies an Ethernet service instance on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# service instance 100 ethernet evc_100</code></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Defines the matching criteria to map 802.1Q frames on an ingress interface to the appropriate service instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# encapsulation dot1q 100</code></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><code>bridge-domain bridge-id</code></td>
<td>Establishes a bridge domain.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# bridge-domain 100</code></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td><code>cfm mep domain domain-name mpid mpid-value</code></td>
<td>Configures a MEP for a domain.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# cfm mep domain CUSTOMER mpid 1001</code></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# end</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if-srv)# end</code></td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 21 <code>configure terminal</code>
Example: <code>Device# configure terminal</code></td>
<td>Specifies an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 22 <code>interface type name</code>
Example: <code>Device(config-if)# interface ethernet 1/1</code></td>
<td>Enables IP processing.</td>
<td></td>
</tr>
<tr>
<td>Step 23 <code>no ip address</code>
Example: <code>Device(config-if)# no ip address</code></td>
<td>Disables IP processing.</td>
<td></td>
</tr>
<tr>
<td>Step 24 <code>ethernet cfm mip level level-id</code>
Example: <code>Device(config-if)# ethernet cfm mip level 7</code></td>
<td>Provisions a MIP at a specified maintenance level on an interface.</td>
<td></td>
</tr>
<tr>
<td>Step 25 <code>service instance id ethernet evc-id</code>
Example: <code>Device(config-if)# service instance 100 ethernet evc_100</code></td>
<td>Configures an Ethernet service instance on an interface and enters service instance configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 26 <code>encapsulation dot1q vlan-id</code>
Example: <code>Device(config-if-srv)# encapsulation dot1q 100</code></td>
<td>Defines the matching criteria to map 802.1Q frames on an ingress interface to the appropriate service instance.</td>
<td></td>
</tr>
<tr>
<td>Step 27 <code>bridge-domain bridge-id</code>
Example: <code>Device(config-if-srv)# bridge-domain 100</code></td>
<td>Establishes a bridge domain.</td>
<td></td>
</tr>
<tr>
<td>Step 28 <code>cfm mep domain domain-name mpid mpid-value</code>
Example: <code>Device(config-if-srv)# cfm mep domain PROVIDER inward mpid 201</code></td>
<td>Configures a MEP for a domain.</td>
<td></td>
</tr>
<tr>
<td>Step 29 <code>end</code>
Example: <code>Device(config-if-srv)# end</code></td>
<td>Returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 30</td>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 31</td>
<td>ethernet cfm cc enable level level-id evc evc-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm cc enable level 0-7 evc evc_100</td>
<td></td>
</tr>
<tr>
<td>Step 32</td>
<td>ethernet cfm cc level any evc evc-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm cc level any evc evc_100 interval 100 loss-threshold 2</td>
<td></td>
</tr>
<tr>
<td>Step 33</td>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Note
When configuring CFM over bridge domains where the bridge-domain ID matches the vlan ID service, you must configure the vlan service and the EVC service with the same service name. The bridge-domain is associated with the EVC service. The vlan and the bridge-domain represent the same broadcast domain.

Configuring CFM Over Port Channels

Configuring UP MEP over Port Channel in L2VPN
Perform this task to configure up Maintenance End Point (MEP) over port channel in Layer 2 VPN (L2VPN). This task shows Provider Edge 1 and 2 configurations.

SUMMARY STEPS

1. **enable**
2. **configure** **terminal**
3. **ethernet cfm ieee**
4. **ethernet cfm global**
5. **ethernet cfm domain** **domain-name** **level** **level-id**
6. **service csi-id evc evc-name**
7. `continuity-check [inteval time]`
8. `exit`
9. `ethernet eve evc-name`
10. `pseudowire-class pw-class-name`
11. `encapsulation mpls`
12. `exit`
13. `interface type number`
14. `service instance id ethernet evc-id`
15. `encapsulation dot1q vlan-id`
16. `rewrite ingress tag pop 1 symmetric`
17. `xconnect peer-ip-address svc-id pw-class pw-class-name`
18. `cfm mep domain domain-name mpid mpid-value`
19. `exit`
20. `ethernet cfm ieee`
21. `ethernet cfm global`
22. `ethernet cfm domain domain-name level level-id`
23. `service csi-id eve evc-name`
24. `continuity-check [inteval ime]`
25. `exit`
26. `ethernet eve evc-name`
27. `pseudowire-class pw-class-name`
28. `encapsulation mpls`
29. `exit`
30. `interface type number`
31. `service instance id ethernet evc-id`
32. `encapsulation dot1q vlan-id`
33. `rewrite ingress tag pop 1 symmetric`
34. `xconnect peer-ip-address svc-id pw-class pw-class-name`
35. `cfm mep domain domain-name mpid mpid-value`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td><code>ethernet cfm ieee</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Device(config)# ethernet cfm ieee</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>Step 4 ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 5 ethernet cfm domain domain-name level level-id</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain CUSTOMER level 7</td>
<td></td>
</tr>
<tr>
<td>Step 6 service csi-id evc evc-name</td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# service customer100 evc evc100</td>
<td></td>
</tr>
<tr>
<td>Step 7 continuity-check [interval time]</td>
<td>Enables the transmission of continuity check messages (CCMs)</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# continuity-check interval 1s</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 ethernet evc evc-name</td>
<td>Enables Ethernet Virtual Circuit (EVC).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet evc evc100</td>
<td></td>
</tr>
<tr>
<td>Step 10 pseudowire-class pw-class-name</td>
<td>Specifies the name of a Layer 2 pseudowire class and enter pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-evc)# pseudowire-class vlan-xconnect</td>
<td></td>
</tr>
<tr>
<td>Step 11 encapsulation mpls</td>
<td>Specifies an encapsulation type for tunneling Layer 2 traffic over a pseudowire</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-pw)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Exits Ethernet CFM configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Device (config-ecfm-srv)# exit</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 13** interface type number | **Example:**
Device(config)# interface port-channel 10 |
| **Step 14** service instance id ethernet evc-id | **Example:**
Device(config-if)# service instance 100 ethernet evc100 |
| **Step 15** encapsulation dot1q vlan-id | **Example:**
Device(config-if-srv)# encapsulation dot1q 100 |
| **Step 16** rewrite ingress tag pop 1 symmetric | **Example:**
Device(config-if-srv)# rewrite ingress tag pop 1 symmetric |
| **Step 17** xconnect peer-ip-address vc-id pw-class pw-class-name | **Example:**
Device(config-if-srv)# xconnect 10.1.1.1 100 pw-class vlan-xconnect |
| **Step 18** cfm mep domain domain-name mpid mpid-value | **Example:**
Device(config-if-srv)# cfm mep domain CUSTOMER mpid 1111 |
| **Step 19** exit | **Example:**
Device(config-if-srv)# exit |
| **Step 20** ethernet cfm ieee | **Example:**
Device(config)# ethernet cfm ieee |

Note

The configuration for Provider Edge Device 1 (PE1) ends here. Perform the next steps for PE2 configuration.
Configuring Ethernet Connectivity Fault Management in a Service Provider Network

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>ethernet cfm global</td>
<td>Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>22</td>
<td>ethernet cfm domain domain-name level level-id</td>
<td>Device(config)# ethernet cfm domain CUSTOMER level 7</td>
</tr>
<tr>
<td>23</td>
<td>service csi-id evc evc-name</td>
<td>Device(config-ether-cfm)# service customer100 evc evc100</td>
</tr>
<tr>
<td>24</td>
<td>continuity-check [interval ime]</td>
<td>Device(config-ether-cfm)# continuity-check interval 1s</td>
</tr>
<tr>
<td>25</td>
<td>exit</td>
<td>Device(config-ether-cfm)# exit</td>
</tr>
<tr>
<td>26</td>
<td>ethernet evc evc-name</td>
<td>Device(config)# ethernet evc evc_100</td>
</tr>
<tr>
<td>27</td>
<td>pseudowire-class pw-class-name</td>
<td>Device(config-evc)# pseudowire-class vlan-xconnect</td>
</tr>
<tr>
<td>28</td>
<td>encapsulation mpls</td>
<td>Device(config-pw)# encapsulation mpls</td>
</tr>
<tr>
<td>29</td>
<td>exit</td>
<td>Device (config-ecfm-srv)# exit</td>
</tr>
</tbody>
</table>

Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>22</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>23</td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td>24</td>
<td>Enables the transmission of continuity check messages (CCMs)</td>
</tr>
<tr>
<td>25</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>26</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>27</td>
<td>Specifies the name of a Layer 2 pseudowire class and enter pseudowire class configuration mode.</td>
</tr>
<tr>
<td>28</td>
<td>Specifies an encapsulation type for tunneling Layer 2 traffic over a pseudowire</td>
</tr>
<tr>
<td>29</td>
<td>Exits Ethernet CFM configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 30</th>
<th>interface</th>
<th>type number</th>
</tr>
</thead>
</table>

Example:

Device(config)# interface GigabitEthernet0/0/1

Step 31

service instance | id ethernet | evc-id |

Example:

Device(config-if)# service instance 100 ethernet evc100

Step 32

encapsulation | dot1q vlan-id |

Example:

Device(config-if-srv)# encapsulation dot1q 100

Step 33

rewrite ingress tag pop 1 symmetric

Example:

Device(config-if-srv)# rewrite ingress tag pop 1 symmetric

Step 34

xconnect | peer-ip-address | svc-id pw-class pw-class-name |

Example:

Device(config-if-srv)# xconnect 10.1.1.2 100 pw-class vlan-xconnect

Step 35

cfm mep domain | domain-name | mpid mpid-value |

Example:

Device(config-if-srv)# cfm mep domain CUSTOMER mpid 2222

Configuring UP MEP over Port Channel in VPLS

Perform this task to configure up Maintenance End Point (MEP) over port channel in VPLS. This task shows configurations for Provider Edge (PE)1 and PE2 devices.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm ieee
4. ethernet cfm global
5. ethernet cfm domain domain-name level level-id
6. service csi-id evc evc-name
7. continuity-check [interval time]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td><code>ethernet cfm ieee</code></td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm ieee</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td><code>ethernet cfm global</code></td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm global</td>
</tr>
<tr>
<td>Step 5</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td><code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain CUSTOMER level 7</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>service csi-id evc evc-name</td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# service customer100 evc evc100</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>continuity-check [interval time]</td>
<td>Enables the transmission of continuity check messages (CCMs)</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# continuity-check interval 1s</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ether-cfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>ethernet evc evc-name</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet evc evc100</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-evc)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>l2vpn vfi context name</td>
<td>Establishes a Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) between two or more separate networks and enters VFI configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn vfi context vpls1</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>vpn id vpn-id</td>
<td>Updates a VPN ID on a Virtual Private LAN Services (VPLS) instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# vpn id 1</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>evc evc-name</td>
<td>Configures an EVC on a VPLS instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# evc evc100</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>member ip-address encapsulation mpls</td>
<td>Specifies the devices that form a point-to-point Layer 2 VPN (L2VPN) virtual forwarding interface (VFI) connection.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-vfi)# member 10.1.1.1 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 15</td>
<td>Exits VFI configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Device (config-vfi)# exit</td>
</tr>
<tr>
<td>Step 16</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface type number</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config)# interface port-channel 10</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Specifies an Ethernet service instance on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>service instance id ethernet evc-id</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config-if)# service instance 100 ethernet evc100</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>Defines the matching criteria to map 802.1Q frames on an ingress interface to the appropriate service instance.</td>
</tr>
<tr>
<td>encapsulation dot1q vlan-id</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>Specifies the encapsulation adjustment to be performed on a frame ingressing a service instance.</td>
</tr>
<tr>
<td>rewrite ingress tag pop 1 symmetric</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
<tr>
<td>Step 20</td>
<td>Configures a MEP for a domain.</td>
</tr>
<tr>
<td>cfm mep domain domain-name mpid mpid-value</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config-if-srv)# cfm mep domain CUSTOMER mpid 1001</td>
<td></td>
</tr>
<tr>
<td>Step 21</td>
<td>Exits service instance configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Example:</td>
</tr>
<tr>
<td>Device (config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 22</td>
<td>Configures the components on a bridge domain and enters bridge-domain configuration mode.</td>
</tr>
<tr>
<td>bridge-domain bridge-id</td>
<td>Example:</td>
</tr>
<tr>
<td>Device(config)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>Step 23</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>member interface-type-number service-instance service-id</td>
<td>Example:</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Device(config-bdomain)# member port-channel 10 service-instance 100</th>
</tr>
</thead>
</table>

Step 24

member *interface-type-number*

Example:

Device(config-bdomain)# member vfi vpls1

Step 25

exit

Example:

Device (config-bdomain)# exit

Configuring Down MEP over Port Channel

Perform this task to configure down MEP over port channel.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ethernet cfm ieee**
4. **ethernet cfm global**
5. **ethernet cfm domain** *domain-name level level-id*
6. **service csi-id evc evc-name's vlan vlan-id direction down**
7. **continuity-check [interval time]**
8. **exit**
9. **ethernet evc evc-name**
10. **exit**
11. **interface type number**
12. **service instance id ethernet evc-id**
13. **encapsulation dot1q vlan-id**
14. **bridge-domain bridge-id**
15. **cfm mep domain** *domain-name mpid mpid-value*

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable **Example:** Device> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
<p>| Step 2 configure terminal Example: | Enters global configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# configure terminal</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>Step 3 ethernet cfm ieee</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm ieee</td>
<td></td>
</tr>
<tr>
<td>Step 4 ethernet cfm global</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm global</td>
<td></td>
</tr>
<tr>
<td>Step 5 ethernet cfm domain domain-name level level-id</td>
<td>Configures a maintenance association within a maintenance domain and enter Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm domain CUSTOMER level 7</td>
<td></td>
</tr>
<tr>
<td>Step 6 service csi-id evc evc-name's vlan vlan-id direction down</td>
<td>Enables the transmission of continuity check messages (CCMs)</td>
</tr>
<tr>
<td>Example: Device(config-ether-cfm)# service customer_100 evc evc_100 vlan 100 direction down</td>
<td></td>
</tr>
<tr>
<td>Step 7 continuity-check [interval time]</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ether-cfm)# continuity-check interval 1s</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>Example: Device(config-ether-cfm)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9 ethernet evc evc-name</td>
<td>Exits Ethernet CFM configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet evc evc_100</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device (config-ecfm-srv)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Device(config)# interface port-channel10

Step 12

service instance id ethernet evc-id

Example:

Device(config-if)# service instance 100 ethernet evc_100

Step 13

encapsulation dot1q vlan-id

Example:

Device(config-if-srv)# encapsulation dot1q 100

Step 14

bridge-domain bridge-id

Example:

Device(config-if-srv)# bridge domain 100

Step 15

cfm mep domain domain-name mpid mpid-value

Example:

Device(config-if-srv)# cfm mep domain CUSTOMER mpid 2222

Configuring CFM Offload

Perform this task to configure Connectivity Fault Management (CFM) offload.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm ieeе
4. ethernet cfm global
5. ethernet cfm domain domain-name level level-id
6. service csi-id evc evc-name
7. continuity-check [interval time]
8. offload sampling sample
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Device> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal Example: Device# configure terminal</td>
<td>Enables the Ethernet Connectivity Fault Management 802.1ag Standard (CFM IEEE) version of CFM.</td>
</tr>
<tr>
<td>Step 3 ethernet cfm ieee Example: Device(config)# ethernet cfm ieee</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>Step 4 ethernet cfm global Example: Device(config)# ethernet cfm global</td>
<td>Enables Ethernet connectivity fault management (CFM) globally on a device.</td>
</tr>
<tr>
<td>Step 5 ethernet cfm domain domain-name level level-id Example: Device(config)# ethernet cfm domain CUSTOMER level 7</td>
<td>Defines a CFM maintenance domain at a particular level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Step 6 service csi-id evc evc-name Example: Device(config-ether-cfm)# service customer100 evc evc100</td>
<td>Sets a universally unique ID for a customer service instance (CSI) within a maintenance domain.</td>
</tr>
<tr>
<td>Step 7 continuity-check [interval time] Example: Device(config-ether-cfm)# continuity-check interval 3.3s</td>
<td>Enables the transmission of continuity check messages (CCMs)</td>
</tr>
<tr>
<td>Step 8 offload sampling sample Example:</td>
<td>Configures offload sampling.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action
Device(config-ether-cfm)# offload sampling 1000

ASR1000 routers can offload sessions with CCM interval of 100 milliseconds, 10 milliseconds, and 3.3 milliseconds. CCM session with 1 second interval does not get offloaded by default. To offload the CCM session with 1 second, configure the sampling rate (offload sampling). The CCM session with 10 minutes, 1 minute, and 10 seconds are not offloaded.

The suggested offload sampling for each CCM interval is as follows:

- 1s - 10
- 100ms - 100
- 10ms - 1000
- 3.3ms - 2000

Note

Step 9
exit

Example:
Device(config-ether-cfm)# exit

Troubleshooting Tips

To verify and isolate a fault, start at the highest level maintenance domain and do the following:

- Check the device error status.
- When an error exists, perform a loopback test to confirm the error.
- Run a traceroute to the destination to isolate the fault.
- If the fault is identified, correct the fault.
- If the fault is not identified, go to the next lower maintenance domain and repeat these four steps at that maintenance domain level.
- Repeat the first four steps, as needed, to identify and correct the fault.

Configuring Ethernet OAM Interaction with CFM

For Ethernet OAM to function with CFM, you must configure an EVC and the OAM manager and associate the EVC with CFM. Additionally, you must use an inward facing MEP when you want interaction with the OAM manager.
Configuring the OAM Manager

Note
If you configure, change, or remove a UNI service type, EVC, Ethernet service instance, or CE-VLAN configuration, all configurations are checked to ensure that UNI service types are matched with EVC configurations and Ethernet service instances are matched with CE-VLAN configurations. Configurations are rejected if the pairings do not match.

Perform this task to configure the OAM manager on a PE device.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id [direction outward]`
4. `service csi-id vlan vlan-id`
5. `exit`
6. `ethernet evc evc-id`
7. `oam protocol {cfm svlan svlan-id domain domain-name | ldp}`
8. `exit`
9. Repeat Steps 3 through 8 to define other CFM domains that you want OAM manager to monitor.
10. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Defines a CFM domain, sets the domain level, and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td><code>ethernet cfm domain domain-name level level-id [direction outward]</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain cstmr1 level 3</td>
</tr>
<tr>
<td>Step 4</td>
<td>Defines a universally unique customer service instance (CSI) and VLAN ID within the maintenance domain.</td>
</tr>
<tr>
<td><code>service csi-id vlan vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ether-cfm)# service csi2 vlan 10</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ether-cfm)# exit</td>
</tr>
</tbody>
</table>

Step 6	Defines an EVC and enters EVC configuration mode.
ethernet evc *evc-id*	
Example:	Device(config)# ethernet evc 50

| **Step 7** | Configures the EVC OAM protocol. |
| oam protocol \{cfm svlan svlan-id domain domain-name \| ldp\} | |
| Example: | Device(config-evc)# oam protocol cfm svlan 10 domain cstmr1 |

Step 8	Returns to global configuration mode.
exit	
Example:	Device(config-evc)# exit

| **Step 9** | Repeat Steps 3 through 8 to define other CFM domains that you want OAM manager to monitor. |
| Repeat Steps 3 through 8 to define other CFM domains that you want OAM manager to monitor. | |

Step 10	Returns to privileged EXEC mode.
end	
Example:	Device(config)# end

Enabling Ethernet OAM

The order in which the global and interface configuration commands are issued determines the configuration. The last command that is issued has precedence.

Perform this task to enable Ethernet OAM on a device or on an interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet oam [max-rate oampdus | min-rate num-seconds] mode {active | passive} | timeout seconds
5. end
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
Example:
Device> enable | |
| | Example:
Device> enable | |
| Step 2 | configure terminal | Enters global configuration mode.
Example:
Device# configure terminal | |
| Step 3 | interface type number | Specifies an interface and enters interface configuration mode.
Example:
Device(config)# interface ethernet 1/3 | |
| Step 4 | ethernet oam [max-rate oamp dus | Enables Ethernet OAM on an interface.
mode {active | passive} | timeout seconds]
Example:
Device(config-if)# ethernet oam max-rate 50 | |
| Step 5 | end | Returns to privileged EXEC mode.
Example:
Device(config-if)# end | |

Configuration Examples for Configuring Ethernet CFM in a Service Provider Network

Example: Provisioning a Network

This configuration example shows only CFM-related commands. All commands that are required to set up the data path and configure the VLANs on the device are not shown. However, it should be noted that CFM traffic will not flow into or out of the device if the VLANs are not properly configured.

```
CE-A
  !
  ethernet cfm domain Customer level 7
  !!
  ethernet cfm global
  ethernet cfm traceroute cache
  ethernet cfm traceroute cache size 200
  ethernet cfm traceroute cache hold-time 60
  !!
```
ethernet cfm cc level any vlan any interval 20 loss-threshold 3
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

U-PE A
!
ethernet cfm domain Customer level 7
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet4/2
ethernet cfm mip level 1
!
ethernet cfm cc level any vlan any interval 20 loss-threshold 3
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

PE-AGG A
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
!
ethernet cfm global
!
interface gigabitethernet3/1
ethernet cfm mip level 1
!
interface gigabitethernet4/1
ethernet cfm mip level 1

N-PE A
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet3/0
ethernet cfm mip level 1
!
ethernet cfm cc level any vlan any interval 20 loss-threshold 3
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

U-PE B
!
ethernet cfm domain Customer level 7
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
! ethernet cfm domain OperatorB level 2
mp archive-hold-time 65
! ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
! interface gigabitethernet2/0
ethernet cfm mip level 2
! ethernet cfm cc level any vlan any interval 20 loss-threshold 3
! snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up
PE-AGG B
ethernet cfm domain OperatorB level 2
mp archive-hold-time 65
! ethernet cfm global
! interface gigabitethernet1/1
ethernet cfm mip level 2
! interface gigabitethernet2/1
ethernet cfm mip level 2
N-PE B
! ethernet cfm cc level any vlan any interval 20 loss-threshold 3
! ethernet cfm domain ServiceProvider level 4
mp archive-hold-time 60
! ethernet cfm domain OperatorB level 2
mp archive-hold-time 65
! ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
! interface gigabitethernet1/2
ethernet cfm mip level 2
! snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up
CE-B
! ethernet cfm domain Customer level 7
!! ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!! ethernet cfm cc level any vlan any interval 20 loss-threshold 3
! snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

Example: Provisioning a Network
Example: Provisioning Service

This configuration example shows only CFM-related commands. All commands that are required to set up the data path and configure the VLANs on the device are not shown. However, it should be noted that CFM traffic will not flow into or out of the device if the VLANs are not properly configured.

CE-A
!
ethernet cfm domain Customer level 7
service Customer1 evc evc1 vlan 100
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet0/0/2 / use an appropriate device-specific interface
ethernet cfm mep level 7 direction outward domain Customer1 mpid 701 vlan 100
!
ethernet cfm cc enable level 7 vlan 100
ethernet cfm cc level any vlan any interval 20 loss-threshold 3

U-PE A
!
ethernet cfm domain Customer level 7
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
service MetroCustomer10pA evc evc1 vlan 100
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
service MetroCustomer10pA evc evc1 vlan 100
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet0/0/2 / use an appropriate device-specific interface
ethernet cfm mip level 7
ethernet cfm mip level 4 mpid 401 vlan 100
ethernet cfm mip level 1 mpid 101 vlan 100
!
interface gigabitethernet0/0/2 / use an appropriate device-specific interface
ethernet cfm mip level 1
!
ethernet cfm cc enable level 4 vlan 100
ethernet cfm cc enable level 1 vlan 100
ethernet cfm cc level any vlan any interval 20 loss-threshold 3

PE-AGG A
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
service MetroCustomer10pA evc evc1 vlan 100
!
ethernet cfm global
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 1
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 1
Example: Provisioning Service

N-PE A
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
service MetroCustomer1 evc evc1 vlan 100
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
service MetroCustomer10pA evc evc1 vlan 100
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 1
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 4
ethernet cfm mep level 1 mpid 102 vlan 100
!
ethernet cfm cc enable level 1 vlan 100
ethernet cfm cc level any vlan any interval 20 loss-threshold 3

U-PE B
!
ethernet cfm domain Customer level 7
!
ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
service MetroCustomer1 evc evc1 vlan 100
!
ethernet cfm domain OperatorB level 2
mep archive-hold-time 65
service MetroCustomer10pB evc evc1 vlan 100
!
ethernet cfm global
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 7
ethernet cfm mep level 4 mpid 402 vlan 100
ethernet cfm mep level 2 mpid 201 vlan 100
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 2
!
ethernet cfm cc enable level 4 vlan 100
ethernet cfm cc enable level 2 vlan 100
ethernet cfm cc level any vlan any interval 20 loss-threshold 3

PE-AGG B
ethernet cfm domain OperatorB level 2
mep archive-hold-time 65
service MetroCustomer10pB evc evc1 vlan 100
!
ethernet cfm global
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 2
!
interface gigabitethernet0/0/2 use an appropriate device-specific interface
ethernet cfm mip level 2
Glossary

CCM—continuity check message. A multicast CFM frame that a MEP transmits periodically to ensure continuity across the maintenance entities to which the transmitting MEP belongs, at the MA level on which the CCM is sent. No reply is sent in response to receiving a CCM.

EVC—Ethernet virtual connection. An association of two or more user-network interfaces.

fault alarm—An out-of-band signal, typically an SNMP notification, that notifies a system administrator of a connectivity failure.

inward-facing MEP—A MEP that resides in a bridge and transmits to and receives CFM messages from the direction of the bridge relay entity.

maintenance domain—The network or part of the network belonging to a single administration for which faults in connectivity are to be managed. The boundary of a maintenance domain is defined by a set of DSAPs, each of which may become a point of connectivity to a service instance.

maintenance domain name—The unique identifier of a domain that CFM is to protect against accidental concatenation of service instances.
MEP—maintenance endpoint. An actively managed CFM entity associated with a specific DSAP of a service instance, which can generate and receive CFM frames and track any responses. It is an endpoint of a single MA, and terminates a separate maintenance entity for each of the other MEPs in the same MA.

MEP CCDB—A database, maintained by every MEP, that maintains received information about other MEPs in the maintenance domain.

MIP—maintenance intermediate point. A CFM entity, associated with a specific pair of ISS SAPs or EISS Service Access Points, which reacts and responds to CFM frames. It is associated with a single maintenance association and is an intermediate point within one or more maintenance entities.

MIP CCDB—A database of information about the MEPs in the maintenance domain. The MIP CCDB can be maintained by a MIP.

MP—maintenance point. Either a MEP or a MIP.

MPID—maintenance endpoint identifier. A small integer, unique over a given MA, that identifies a specific MEP.

OAM—operations, administration, and maintenance. A term used by several standards bodies to describe protocols and procedures for operating, administrating, and maintaining networks. Examples are ATM OAM and IEEE Std. 802.3ah OAM.

operator—Entity that provides a service provider a single network of provider bridges or a single Layer 2 or Layer 3 backbone network. An operator may be identical to or a part of the same organization as the service provider. For purposes of IEEE P802.1ag, Draft Standard for Local and Metropolitan Area Networks, the operator and service provider are presumed to be separate organizations.

Terms such as “customer,” “service provider,” and “operator” reflect common business relationships among organizations and individuals that use equipment implemented in accordance with IEEE P802.1ag.

UNI—user-network interface. A common term for the connection point between an operator's bridge and customer equipment. A UNI often includes a C-VLAN-aware bridge component. The term UNI is used broadly in the IEEE P802.1ag standard when the purpose for various features of CFM are explained. UNI has no normative meaning.
IEEE Connectivity Fault Management (CFM) is an end-to-end per-service Ethernet layer Operations, Administration, and Maintenance (OAM) protocol. CFM includes proactive connectivity monitoring, fault verification, and fault isolation for large Ethernet metropolitan-area networks (MANs) and WANs.

This document describes the implementation of IEEE 802.1ag Standard-Compliant CFM (IEEE CFM) and Y.1731 in Cisco IOS XE software for the Cisco ASR 1000 Series Aggregation Services Router. Y.1731 is an ITU-T recommendation for OAM functions in Ethernet-based networks. IEEE CFM and Y.1731 together will be called “Ethernet CFM” throughout this document.

- Finding Feature Information, on page 117
- Prerequisites for Configuring Ethernet CFM for the Cisco ASR 1000 Router, on page 118
- Restrictions for Configuring Ethernet CFM for the Cisco ASR 1000 Router, on page 118
- Information About Configuring Ethernet CFM for the Cisco ASR 1000 Router, on page 118
- How to Configure Ethernet CFM for the Cisco ASR 1000 Router, on page 127
- Configuration Examples for Configuring Ethernet CFM for the Cisco ASR 1000 Router, on page 143
- Additional References, on page 149
- Feature Information for Configuring Ethernet CFM for the Cisco ASR 1000 Router, on page 151
- Glossary, on page 151

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Configuring Ethernet CFM for the Cisco ASR 1000 Router

- The network topology and network administration have been evaluated.
- Business and service policies have been established.
- EVC associated with CFM domain must be configured with the L2VFI interface command
 - Before configuring CFM over L2VFI ensure EVC and Bridge Domain are configured.
 - Bridge-domain under L2VFI must be configured prior to configuring CFM MEP

Restrictions for Configuring Ethernet CFM for the Cisco ASR 1000 Router

- Ethernet CFM on the Cisco ASR 1000 Series Aggregation Services Router is not compatible with prestandard CFM.
- Locked Signal (ETH-LCK) and Test Signal (ETH-Test) are not supported.
- Link Trace (ETH-LTM/ETH-LTR) over L2VFI is not supported.
- Configuring MIP/MEP under L2VFI is not supported.
- For Connectivity Performance Management functionalities, only single-ended delay (ETH-DM) is supported.
- QinQ encapsulation is not supported on the Cisco ASR 1000 Series Aggregation Services Router for CFM for routed subinterfaces.

Information About Configuring Ethernet CFM for the Cisco ASR 1000 Router

Ethernet CFM

IEEE CFM is an end-to-end per-service Ethernet layer OAM protocol that includes proactive connectivity monitoring, fault verification, and fault isolation. End to end can be provider edge to provider edge (PE to PE) or customer edge to customer edge (CE to CE).

Ethernet CFM is distinct from other metro-Ethernet OAM protocols by being an end-to-end technology. For example, Multiprotocol Label Switching (MPLS), ATM, and SONET OAM help in debugging Ethernet wires but are not always end to end. 802.3ah OAM is a single-hop and per-physical-wire protocol. It is not end to end or service aware. Ethernet Local Management Interface (E-LMI) is confined between the user-end provider edge (uPE) and CE and relies on CFM for reporting status of the metro-Ethernet network to the CE.
The benefits of Ethernet CFM are:

- End-to-end service-level OAM technology
- Reduced operating expense for service provider Ethernet networks
- Competitive advantage for service providers

Benefits of Ethernet CFM

- End-to-end service-level OAM technology
- Reduced operating expense for service provider Ethernet networks
- Competitive advantage for service providers

Maintenance Associations

An MA identifies a service that can be uniquely identified within a maintenance domain. There can be many MAs within a domain. The MA direction is specified when the MA is configured. The short MA name must be configured on a domain before MEPs can be configured.

The CFM protocol runs for a specific MA.

Maintenance Domains

A maintenance domain is a management space for the purpose of managing and administering a network. A domain is owned and operated by a single entity and defined by the set of ports internal to it and at its boundary. The figure below illustrates a typical maintenance domain.

Figure 1: A Typical Maintenance Domain

![Figure 1: A Typical Maintenance Domain](image)

A unique maintenance level in the range of 0 to 7 is assigned to each domain by a network administrator. Levels and domain names are useful for defining the hierarchical relationship among domains. The hierarchical relationship of domains parallels that of customer, service provider, and operator. The larger the domain, the
higher the level value. For example, a customer domain would be larger than an operator domain. The customer domain may have a maintenance level of 7 and the operator domain may have a maintenance level of 0. Typically, operators would have the smallest domains and customers the largest domains, with service provider domains between them in size. All levels of the hierarchy must operate together.

Domains should not intersect because intersecting would mean management by more than one entity, which is not allowed. Domains may nest or touch but when two domains nest, the outer domain must have a higher maintenance level than the domain nested within it. Nesting maintenance domains is useful in the business model where a service provider contracts with one or more operators to provide Ethernet service to a customer. Each operator would have its own maintenance domain and the service provider would define its domain—a superset of the operator domains. Furthermore, the customer has its own end-to-end domain, which is in turn a superset of the service provider domain. Maintenance levels of various nesting domains should be communicated among the administering organizations. For example, one management approach would be to have the service provider assign maintenance levels to operators.

Ethernet CFM exchanges messages and performs operations on a per-domain basis. For example, running CFM at the operator level does not allow discovery of the network by the higher provider and customer levels. Network designers determine domain configurations.

The following characteristics of domains are supported:

- Name is a maximum of 154 characters in length.
- Direction is specified when the MA is configured.
- Down (toward the wire) MEPs.

A domain can be removed when all maintenance points within the domain have been removed and all remote MEP entries in the continuity check database (CCDB) for the domain have been purged.

The figure below illustrates service provider and customer domains and where the Cisco ASR 1000 router is in the network.
Maintenance Points

A maintenance point (MIP) is a demarcation point on an interface or port that participates in Connectivity Fault Management (CFM) within a maintenance domain. Maintenance points on device ports act as filters that confine CFM frames within the bounds of a domain by dropping frames that do not belong to the correct level. Maintenance points must be explicitly configured on Cisco devices. Two classes of maintenance points exist, maintenance end points (MEPs) and MIPs. Support for MIPs varies by Cisco release.

Maintenance Association Endpoints

Maintenance association endpoints (MEPs) reside at the edge of a maintenance domain and confine Ethernet Connectivity Fault Management (CFM) messages within the domain via the maintenance domain level. MEps periodically transmit and receive continuity check messages (CCMs) from other MEPs within the domain. At the request of an administrator, linktrace and loopback messages can also be transmitted. MEPs are either “Up” (toward the bridge) or “Down” (toward the wire). Support for Up MEPs varies by Cisco release.

When the `continuity-check static rmep` command is configured on a port MEP and continuity checking does not detect a removed MEP, the port is set to MAC operation down and the interface protocol is set to down. Normal traffic is stopped because the line protocol is down, but CFM packets still pass.

MEP configurations can be removed after all pending loopback and traceroute replies are removed and the service on the interface is set to transparent mode.
Down MEPs for Routed Ports

Down MEPs communicate through the wire.

Down MEPs use the port MAC address.

A Down MEP performs the following functions:

- Sends and receives Ethernet CFM frames at its level via the wire connected to the port where the MEP is configured.
- Processes all Ethernet CFM frames at its level coming from the direction of the wire.
- Drops all Ethernet CFM frames at a lower level coming from the direction of the wire.
- Transparently drops all Ethernet CFM frames at a higher level, independent of whether they came in from the bridge or wire.

Ethernet CFM Messages

Ethernet CFM uses standard Ethernet frames. Ethernet CFM frames are distinguishable by EtherType and for multicast messages by MAC address. Ethernet CFM frames are sourced, terminated, processed, and relayed by bridges. Routers can support only limited Ethernet CFM functions.

Bridges that cannot interpret Ethernet CFM messages forward them as normal data frames. All Ethernet CFM messages are confined to a maintenance domain and to an MA. Three types of messages are supported:

- Continuity Check
- Linktrace
- Loopback

Continuity Check Messages

Ethernet CFM continuity check messages (CCMs) are multicast heartbeat messages exchanged periodically among MEPs. They allow MEPs to discover other MEPs within a domain. CCMs are confined to a domain.

CFM CCMs have the following characteristics:

- Transmitted at a periodic interval by MEPs. The minimum interval is 100 milliseconds (ms).
- Terminated by remote MEPs at the same maintenance level.
- Unidirectional and do not solicit a response.
- Indicate the status of the interface on which the MEP is configured.

Linktrace Messages

Ethernet CFM linktrace messages (LTMs) are multicast frames that a MEP transmits, at the request of an administrator, to track the path (hop-by-hop) to a destination MEP. They are similar to Layer 3 traceroute messages. LTMs allow the transmitting node to discover vital connectivity data about the path. LTMs are intercepted by maintenance points along the path and processed, transmitted, or dropped. At each hop where there is a maintenance point at the same level, a linktrace message reply (LTR) is transmitted back to the originating MEP. For each visible MIP, linktrace messages indicate ingress action, relay action, and egress action.
Linktrace messages include the destination MAC address, VLAN, and maintenance domain and they have Time To Live (TTL) to limit propagation within the network. They can be generated on demand using the CLI. LTMs are multicast and LTRs are unicast.

Loopback Messages

Ethernet CFM loopback messages (LBMs) are unicast frames that a MEP transmits, at the request of an administrator, to verify connectivity to a particular maintenance point. A reply to a loopback message (LBR) indicates whether a destination is reachable but does not allow hop-by-hop discovery of the path. A loopback message is similar in concept to an Internet Control Message Protocol (ICMP) Echo (ping) message.

Because LBMs are unicast, they are forwarded like normal data frames except with the maintenance level restriction. If the outgoing port is known in the bridge’s forwarding database and allows Ethernet CFM frames at the message’s maintenance level to pass through, the frame is sent out on that port. If the outgoing port is unknown, the message is broadcast on all ports in that domain.

An Ethernet CFM LBM can be generated on demand using the CLI. The source of a loopback message must be a MEP. Both Ethernet CFM LBMs and LBRs are unicast, and LBMs specify the destination MAC address or MEP identifier (MPID), VLAN, and maintenance domain.

Cross-Check Function

The cross-check function is a timer-driven postprovisioning service verification between dynamically discovered MEPs (via continuity check messages CCMs) and expected MEPs (via configuration) for a service. The cross-check function verifies that all endpoints of a multipoint or point-to-point service are operational. The function supports notifications when the service is operational; otherwise it provides alarms and notifications for unexpected or missing endpoints.

The cross-check function is performed one time. You must initiate the cross-check function from the CLI every time you want a service verification.

SNMP Traps

The support provided by the Cisco IOS XE software implementation of Ethernet CFM traps is Cisco proprietary information. MEPs generate two types of Simple Network Management Protocol (SNMP) traps, continuity check (CC) traps and cross-check traps.

CC Traps

- MEP up--Sent when a new MEP is discovered, the status of a remote port changes, or connectivity from a previously discovered MEP is restored after interruption.
- MEP down--Sent when a timeout or last gasp event occurs.
- Cross-connect--Sent when a service ID does not match the VLAN.
- Loop--Sent when a MEP receives its own CCMs.
- Configuration error--Sent when a MEP receives a continuity check with an overlapping MPID.

Cross-Check Traps

- Service up--Sent when all expected remote MEPs are up in time.
SnMP Traps

- MEP missing--Sent when an expected MEP is down.
- Unknown MEP--Sent when a CCM is received from an unexpected MEP.

Steps to Generate SnMP Traps for CFM

To generate SNMP traps, following commands need to be configured on the router.

```
ethernet cfm logging
logging snmp-trap 0 7
logging history debugging
```

If syslog trap is enabled, by default trap is generated for messages of severity level emergency, alert, critical, error and warning (0-4). For other severity levels need to enable `logging snmp-trap 0 7` and `logging history debugging`.

```
Router(config)#ethernet cfm logging
Router(config)#logging snmp-trap 0 7
Router(config)#logging history debugging
Router(config)#
```

Logs for MEP going DOWN

Console-logs:

```
Router(config)#
*Oct 26 21:32:06.663 IST: %E_CFM-3-REMOTE_MEP_DOWN: Remote MEP mpid 10 evc 2 vlan 2 MA name s2 in domain cust2 changed state to down with event code TimeOut.
*Oct 26 21:32:06.664 IST: %E_CFM-6-ENTER_AIS: local mep with mpid 20 level 2 BD/VLAN 2 dir D Interface Te0/3/1 enters AIS defect condition
*Oct 26 21:32:09.147 IST: %E_CFM-3-FAULT_ALARM: A fault has occurred in the network for the local MEP having mpid 20 evc 2 vlan 2 for service MA name s2 with the event code DefRemoteCCM.
```

SNMP Server Side Logs

Received SNMPv2c Trap

Community: public
From: 7.32.22.154
sysUpTimeInstance - 04:00:54.27
snmpTrapOID.0 - clogMessageGenerated
clogHistFacility.76 = E_CFM
clogHistSeverity.76 = error(4)
clogHistMsgName.76 = REMOTE_MEP_DOWN
clogHistMsgText.76 = Remote MEP mpid 10 evc 2 vlan 2 MA name s2 in domain cust2 changed state to down with event code TimeOut.
clogHistTimestamp.76 - 04:00:54.27

Received SNMPv2c Trap
Community: public
From: 7.32.22.154
sysUpTimeInstance = 04:00:54.27
snmpTrapOID.0 = clogMessageGenerated
clogHistFacility.77 = E_CFM
clogHistSeverity.77 = info(7)
clogHistMsgName.77 = ENTER_AIS
clogHistMsgText.77 = local mep with mpid 20 level 2 BD/VLAN 2 dir D Interface Te0/3/1 enters AIS defect condition
clogHistTimestamp.77 = 04:00:54.27

Received SNMPv2c Trap

Community: public
From: 7.32.22.154
sysUpTimeInstance = 04:00:56.75
snmpTrapOID.0 = dot1agCfmFaultAlarm
dot1agCfmMepHighestPrDefect.10.2.20 = defRemoteCCM(3)

Received SNMPv2c Trap

Community: public
From: 7.32.22.154
sysUpTimeInstance = 04:00:56.75
snmpTrapOID.0 = clogMessageGenerated
clogHistFacility.78 = E_CFM
clogHistSeverity.78 = error(4)
clogHistMsgName.78 = FAULT_ALARM
clogHistMsgText.78 = A fault has occurred in the network for the local MEP having mpid 20 evc 2 vlan 2 for service MA name s2 with the event code DefRemoteCCM.
clogHistTimestamp.78 = 04:00:56.75

Logs for MEP Coming Up

Console-logs

__
Router(config)#
*Oct 26 21:35:03.780 IST: %E_CFM-6-REMOTE_MEP_UP: Continuity Check message is received from a remote MEP with mpid 10 evc 2 vlan 2 MA name s2 domain cust2 interface status Up event code Returning.
*Oct 26 21:35:03.781 IST: %E_CFM-6-EXIT_AIS: local mep with mpid 20 level 2 BD/VLAN 2 dir D Interface Te0/3/1 exited AIS defect condition

SNMP Server Side Logs

Received SNMPv2c Trap

__
Community: public
From: 7.32.22.154
sysUpTimeInstance = 04:03:51.39
snmpTrapOID.0 = clogMessageGenerated
HA Feature Support in Ethernet CFM

In access and service provider networks using Ethernet technology, High availability (HA) is a requirement. End-to-end connectivity status information is critical and must be maintained on a hot standby Route Processor (RP).

A hot standby RP has the same software image as the active RP and supports synchronization of line card, protocol, and application state information between RPs for supported features and protocols.

End-to-end connectivity status is maintained on the CE, PE, and access aggregation PE (uPE) network nodes based on information received by protocols such as Ethernet local management interface (LMI) and CFM, and 802.3ah. This status information is used to either stop traffic or switch to backup paths when an interface is down.

Every transaction involves either accessing or updating data among various databases. If the database is synchronized across active and standby modules, the modules are transparent to clients.

The Cisco infrastructure provides various component application program interfaces (APIs) that help to maintain a hot standby RP. Metro Ethernet HA clients CFM HA and in-service software upgrades (ISSU) interact with these components, update the database, and trigger necessary events to other components.

Benefits of CFM HA

- Elimination of network downtime for Cisco software image upgrades, allowing for faster upgrades that result in high availability.
- Elimination of resource scheduling challenges associated with planned outages and late night maintenance windows.
- Accelerated deployment of new services and applications and facilitation of faster implementation of new features, hardware, and fixes than if HA was not supported.
- Reduced operating costs due to outages while delivering high service levels.
CFM updates its databases and controls its own HA messaging and versioning, and this control facilitates maintenance.

NSF SSO Support in Ethernet CFM

The redundancy configurations SSO and NSF are both supported in Ethernet CFM and are automatically enabled. A switchover from an active to a standby RP occurs when the active RP fails, is removed from the networking device, or is manually taken down for maintenance. NSF interoperates with the SSO feature to minimize network downtime following a switchover. The primary function of Cisco NSF is to continue forwarding packets following an RP switchover.

For detailed information about SSO, see the “Stateful Switchover” module of the *Cisco IOS High Availability Configuration Guide*. For detailed information about the NSF feature, see the “Cisco Nonstop Forwarding” module of the *High Availability Configuration Guide*.

ISSU Support in Ethernet CFM

In Service Upgrades (ISSU) allows you to perform a Cisco software upgrade or downgrade without disrupting packet flow. Ethernet Connectivity Fault Management (CFM) performs a bulk update and a runtime update of the continuity check database to the standby route processor (RP), including adding, deleting, or updating a row. This checkpoint data requires ISSU capability to transform messages from one release to another. All the components that perform active RP to standby RP updates using messages require ISSU support.

ISSU is automatically enabled in Ethernet CFM and lowers the impact that planned maintenance activities have on network availability by allowing software changes while the system is in service. For detailed information about ISSU, see the “Cisco IOS In Service Software Upgrade Process” module of the *High Availability Configuration Guide*.

How to Configure Ethernet CFM for the Cisco ASR 1000 Router

Designing CFM Domains

Note

To have an operator, service provider, or customer domain is optional. A network may have a single domain or multiple domains. The steps listed here show the sequence when all three types of domains will be assigned.

Before you begin

- Knowledge and understanding of the network topology.
- Understanding of organizational entities involved in managing the network; for example, operators, service providers, network operations centers (NOCs), and customer service centers.
- Understanding of the type and scale of services to be offered.
- Agreement by all organizational entities on the responsibilities, roles, and restrictions for each organizational entity.
- Determination of the number of maintenance domains in the network.
- Determination of the nesting and disjoint maintenance domains.
- Assignment of maintenance levels and names to domains based on agreement between the service provider and operator or operators.
- Determination of whether the domain should be inward or outward.

SUMMARY STEPS

1. Determine operator level MIPs.
2. Determine operator level MEPs.
3. Determine service provider MIPs.
4. Determine service provider MEPs.
5. Determine customer MIPs.
6. Determine customer MEPs.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | Determine operator level MIPs. | Follow these steps:
| | | • Starting at lowest operator level domain, assign a MIP at every interface internal to the operator network to be visible to CFM.
| | | • Proceed to next higher operator level and assign MIPs.
| | | • Verify that every port that has a MIP at a lower level does not have maintenance points at a higher level.
| | | • Repeat steps a through d until all operator MIPs are determined. |
| 2 | Determine operator level MEPs. | Follow these steps:
| | | • Starting at the lowest operator level domain, assign a MEP at every UNI that is part of a service instance.
| | | • Assign a MEP at the network to network interface (NNI) between operators, if there is more than one operator.
| | | • Proceed to next higher operator level and assign MEPs.
| | | • A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should have either a MIP or MEP at a higher level. |
| 3 | Determine service provider MIPs. | Follow these steps:
<p>| | | • Starting at the lowest service provider level domain, assign service provider MIPs at the NNI between operators (if more than one). |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Proceed to next higher service provider level and assign MIPs.</td>
</tr>
<tr>
<td></td>
<td>• A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should not have either a MIP or a MEP at a higher level.</td>
</tr>
</tbody>
</table>

Step 4 Determine service provider MEPs.

Follow these steps:

• Starting at the lowest service provider level domain, assign a MEP at every UNI that is part of a service instance.

• Proceed to next higher service provider level and assign MEPs.

• A port with a MIP at a lower level cannot have maintenance points at a higher level. A port with a MEP at a lower level should have either a MIP or a MEP at a higher level.

Step 5 Determine customer MIPs.

Customer MIPs are allowed only on the UNIs at the uPEs if the service provider allows the customer to run CFM. Otherwise, the service provider can configure Cisco devices to block CFM frames.

• Configure a MIP on every uPE, at the UNI port, in the customer maintenance domain.

• Ensure the MIPs are at a maintenance level that is at least one higher than the highest level service provider domain.

Step 6 Determine customer MEPs.

Customer MEPs are on customer equipment. Assign an outward facing MEP within an outward domain at the appropriate customer level at the handoff between the service provider and the customer.

Examples

The figure below shows an example of a network with a service provider and two operators, A and B. Three domains are to be established to map to each operator and the service provider. In this example, for simplicity we assume that the network uses Ethernet transport end to end. CFM, however, can be used with other transports.
Configuring Ethernet CFM

Provisioning the Network (CE-A)

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. mep archive-hold-time minutes
5. exit
6. ethernet cfm global
7. ethernet cfm ieee
8. ethernet cfm traceroute cache
9. ethernet cfm traceroute cache size entries
10. ethernet cfm traceroute cache hold-time minutes
11. snmp-server enable traps ethernet cfm cc [mep-up] [mep-down] [config] [loop] [cross-connect]
12. snmp-server enable traps ethernet cfm crosscheck [mep-unknown] [mep-missing] [service-up]
13. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable
Example: Device> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Step 2 | configure terminal
Example: Device# configure terminal | Enters global configuration mode. |
| Step 3 | ethernet cfm domain
domain-name
level
level-id
Example: Device(config)# ethernet cfm domain Customer level 7 | Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode. |
| Step 4 | mep archive-hold-time
minutes
Example: Device(config-ecfm)# mep archive-hold-time 60 | Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged. |
| Step 5 | exit
Example: Device(config-ecfm)# exit | Returns the device to global configuration mode. |
| Step 6 | ethernet cfm global
Example: Device(config)# ethernet cfm global | Enables CFM processing globally on the device. |
| Step 7 | ethernet cfm ieee
Example: Device(config)# ethernet cfm ieee | Enables the CFM IEEE version of CFM.
• This command is automatically issued when the ethernet cfm global command is issued. |
| Step 8 | ethernet cfm traceroute cache
Example: Device(config)# ethernet cfm traceroute cache | Enables caching of CFM data learned through traceroute messages. |
| Step 9 | ethernet cfm traceroute cache
size
entries
Example: Device(config)# ethernet cfm traceroute cache size 200 | Sets the maximum size for the CFM traceroute cache table. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td>Ethernet CFM traceroute cache hold-time minutes</td>
</tr>
<tr>
<td>Example:</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>Device(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Snmp-server enable traps ethernet cf m [mep-up] [mep-down] [config] [loop] [cross-connect]</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables SNMP trap generation for Ethernet CFM continuity check events.</td>
</tr>
<tr>
<td>Device(config)# snmp-server enable traps ethernet cfm cc mep-up mep-down config loop cross-connect</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Snmp-server enable traps ethernet cf m crosscheck [mep-unknown] [mep-missing] [service-up]</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables SNMP trap generation for Ethernet CFM continuity check events in relation to the cross-check operation between statically configured MEPs and those learned via CCMs.</td>
</tr>
<tr>
<td>Device(config)# snmp-server enable traps ethernet cfm crosscheck mep-unknown</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>End</td>
</tr>
<tr>
<td>Example:</td>
<td>Returns the device to privileged EXEC mode.</td>
</tr>
<tr>
<td>Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Provisioning the Network (CE-B)

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cf m domain *domain-name* level *level-id*
4. mep archive-hold-time *minutes*
5. exit
6. ethernet cf m global
7. ethernet cf m iee
8. ethernet cf m traceroute cache
9. ethernet cf m traceroute cache size *entries*
10. ethernet cf m traceroute cache hold-time *minutes*
11. snmp-server enable traps ethernet cf m cc [mep-up] [mep-down] [config] [loop] [cross-connect]
12. snmp-server enable traps ethernet cf m crosscheck [mep-unknown] [mep-missing] [service-up]
13. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Device> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ethernet cfm domain domain-name level level-id
Example:
Device(config)# ethernet cfm domain Customer level 7</td>
<td>Defines an outward CFM maintenance domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>mep archive-hold-time minutes
Example:
Device(config-ecfm)# mep archive-hold-time 60</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
Device(config-ecfm)# exit</td>
<td>Returns the device to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>ethernet cfm global
Example:
Device(config)# ethernet cfm global</td>
<td>Enables CFM processing globally on the device.</td>
</tr>
<tr>
<td>Step 7</td>
<td>ethernet cfm ieee
Example:
Device(config)# ethernet cfm ieee</td>
<td>Enables the CFM IEEE version of CFM.
• This command is automatically issued when the ethernet cfm global command is issued.</td>
</tr>
<tr>
<td>Step 8</td>
<td>ethernet cfm traceroute cache
Example:
Device(config)# ethernet cfm traceroute cache</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
</tr>
<tr>
<td>Step 9</td>
<td>ethernet cfm traceroute cache size entries
Example:</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
</tr>
</tbody>
</table>
Provisioning Service (CE-A)

Perform this task to set up service for Ethernet CFM. Optionally, when this task is completed, you may configure and enable the cross-check function. To perform this optional task, see "Configuring and Enabling the Cross-Check Function (CE-A)".

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service \{ma-name \ ma-num | vlan-id vlan-id | vpn-id vpn-id\} \{port | vlan vlan-id [direction down]\}
5. continuity-check [interval time] [loss-threshold threshold] [static rmep]
6. continuity-check [interval time] [loss-threshold threshold] [static rmep]
7. continuity-check [interval time] [loss-threshold threshold] [static rmep]
8. exit
9. mep archive-hold-time minutes

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethernet cfm traceroute cache size 200</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
</tr>
<tr>
<td>Step 10 ethernet cfm traceroute cache hold-time minutes</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-up, mep-down, config, loop, and cross-connect events.</td>
</tr>
<tr>
<td>Step 12 snmp-server enable traps ethernet cfm crosscheck mep-unknown mep-missing service-up</td>
<td>Enables SNMP trap generation for Ethernet CFM mep-unknown, mep-missing, and service-up continuity check events in relation to the cross-check operation between statically configured MEPs and those learned via CCMs.</td>
</tr>
<tr>
<td>Step 13 end</td>
<td>Returns the device to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td><code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a CFM maintenance domain at a specified maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# ethernet cfm domain Customer level 7</code></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>`service {ma-name</td>
<td>ma-num</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• If a service is already configured and you configure a new MA name and also specify the direction down keyword, a second service is added that maps to the same VLAN. If you configure a new MA name and do not specify the direction down keyword, the service is renamed to the new MA name.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm)# service Customer1 vlan 101 direction down</code></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>`continuity-check [interval time</td>
<td>loss-threshold threshold</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# continuity-check</code></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>`continuity-check [interval time</td>
<td>loss-threshold threshold</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• The values supported are platform dependent.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-ecfm-srv)# continuity-check</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ecfm-srv)# continuity-check interval 10s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Sets the number of CCMs that should be missed before declaring that a remote MEP is down.</td>
<td></td>
</tr>
<tr>
<td>**continuity-check [interval time]</td>
<td>loss-threshold threshold</td>
<td>static rmep]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ecfm-srv)# continuity-check loss-threshold 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Returns the device to Ethernet CFM configuration mode.</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ecfm-srv)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
<td></td>
</tr>
<tr>
<td>mep archive-hold-time minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Returns the device to global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ecfm)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Enables CFM processing globally on the device.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm global</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ethernet cfm global</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Enables the CFM IEEE version of CFM.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm ieee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ethernet cfm ieee</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• This command is automatically issued when the ethernet cfm global command is issued.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Enables caching of CFM data learned through traceroute messages.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm traceroute cache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ethernet cfm traceroute cache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Sets the maximum size for the CFM traceroute cache table.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm traceroute cache size entries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ethernet cfm traceroute cache size 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Sets the amount of time that CFM traceroute cache entries are retained.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm traceroute cache hold-time minutes Example: Router(config)# ethernet cfm traceroute cache hold-time 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Specifies an interface and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>interface type number Example: Router(config)# interface ethernet 0/3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Sets a port as internal to a maintenance domain and defines it as a MEP.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm mep domain domain-name mpid mpid {port</td>
<td>vlan vlan-id} Example: Router(config-if)# ethernet cfm mep domain Customer mpid 701 vlan 100</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>Sets a port as internal to a maintenance domain and defines it as a MEP.</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm mep domain domain-name mpid mpid {port</td>
<td>vlan vlan-id} Example: Router(config-if)# ethernet cfm mep domain Customer mpid 701 vlan 100</td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>Returns the device to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>end Example: Router(config-if)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provisioning Service (CE-B)

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. mep archive-hold-time minutes
5. service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]
6. continuity-check [interval time | loss-threshold threshold | static rmep]
7. continuity-check [interval time | loss-threshold threshold | static rmep]
8. continuity-check [interval time | loss-threshold threshold | static rmep]
9. exit
10. exit
11. ethernet cfm global
12. ethernet cfm icee
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td><code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a CFM maintenance domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>mep archive-hold-time minutes</code></td>
<td>Sets the amount of time that data from a missing MEP is kept in the continuity check database or that entries are held in the error database before they are purged.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# mep archive-hold-time 60</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>`service {ma-name</td>
<td>ma-num</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service Customer1 vlan 101 direction down</td>
<td>- If a service is already configured and you configure a new MA name and also specify the <code>direction down</code> keyword, a second service is added that maps to the same VLAN. If you configure a new MA name and do not specify the <code>direction down</code> keyword, the service is renamed to the new MA name.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>`continuity-check [interval time</td>
<td>loss-threshold threshold</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 7** | Configures the time period between CCM transmissions.
| continuity-check [interval *time* | loss-threshold *threshold* | static rmepl |
| Example: |
| Device(config-ecfm-srv)# continuity-check interval 10s |
| **Step 8** | Sets the number of CCMs that should be missed before declaring that a remote MEP is down.
| continuity-check [interval *time* | loss-threshold *threshold* | static rmepl |
| Example: |
| Device(config-ecfm-srv)# continuity-check loss-threshold 10 |
| **Step 9** | Returns the device to Ethernet CFM configuration mode.
| exit |
| Example: |
| Device(config-ecfm-srv)# exit |
| **Step 10** | Returns the device to global configuration mode.
| exit |
| Example: |
| Device(config-ecfm)# exit |
| **Step 11** | Enables CFM processing globally on the device.
| ethernet cfm global |
| Example: |
| Device(config)# ethernet cfm global |
| **Step 12** | Enables the CFM IEEE version of CFM.
| ethernet cfm ieee |
| Example: |
| Device(config)# ethernet cfm ieee |
| **Step 13** | Enables caching of CFM data learned through traceroute messages.
| ethernet cfm traceroute cache |
| Example: |
| Device(config)# ethernet cfm traceroute cache |
| **Step 14** | Sets the maximum size for the CFM traceroute cache table.
| ethernet cfm traceroute cache size *entries* |
| Example: |
| Device(config)# ethernet cfm traceroute cache size 200 |
| **Step 15** | Sets the amount of time that CFM traceroute cache entries are retained.
| ethernet cfm traceroute cache hold-time *minutes* |
| Example: |
| Device(config)# ethernet cfm traceroute cache hold-time } |
Purpose

Device(config)# ethernet cfm traceroute cache
 hold-time 60

Step 16

`interface slot/subslot/port`

Example:

Device(config)# interface ethernet 0/1

Step 17

`ethernet cfm mep level level-id [inward | outward domain domain-name] mpid id vlan {any | vlan-id |, vlan-id |, vlan-id - vlan-id |, vlan-id - vlan-id}`

Example:

Device(config-if)# ethernet cfm mep level 7
 outward domain Customer mpid 701 vlan 100

Step 18

`end`

Example:

Device(config-if)# end

Configuring and Enabling the Cross-Check Function (CE-A)

Perform this task to configure and enable cross-checking for a down MEP. This task requires you to configure and enable cross-checking on two devices. This task is optional.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id`
4. `service short-ma-name evc evc-name vlan vlanid direction down`
5. `mep mpid mpid`
6. `exit`
7. `ethernet cfm mep crosscheck start-delay delay`
8. `exit`
9. `ethernet cfm mep crosscheck {enable | disable} domain domain-name {port | vlan {vlan-id | vlan-id - vlan-id |, vlan-id - vlan-id}}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code> Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Configuring Ethernet CFM for the Cisco ASR 1000 Router

Configuring and Enabling the Cross-Check Function (CE-A)

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Defines a CFM domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain Customer level 7</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Statically defines the MEPs within a maintenance association.</td>
</tr>
<tr>
<td>Device(config-ecfm)# mep mpid 702</td>
<td>Returns the device to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started.</td>
</tr>
<tr>
<td>Device(config)# ethernet cfm mep crosscheck start-delay 60</td>
<td>Returns the device to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables cross-checking between the list of configured remote MEPs of a domain and MEPs learned through CCMs.</td>
</tr>
<tr>
<td>Device(config)# ethernet cfm mep crosscheck enable domain-name {port</td>
<td>vlan} {vlan-id</td>
</tr>
</tbody>
</table>
Configuring and Enabling the Cross-Check Function (CE-B)

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet cfm domain domain-name level level-id`
4. `service short-ma-name evc evc-name vlan vlanid direction down`
5. `mep mpid mpid`
6. `exit`
7. `ethernet cfm mep crosscheck start-delay delay`
8. `exit`
9. `ethernet cfm mep crosscheck {enable | disable} domain domain-name {port | vlan {vlan-id | vlan-id - vlan-id} | , vlan-id - vlan-id}}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm domain domain-name level level-id</td>
<td>Defines an outward CFM domain at a specified level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain Customer level ?</td>
<td></td>
</tr>
<tr>
<td>Step 4 service short-ma-name evc evc-name vlan vlanid direction down</td>
<td>Configures a maintenance association within a maintenance domain and enters Ethernet connectivity fault management (CFM) service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm)# service s41 evc 41 vlan 41 direction down</td>
<td></td>
</tr>
<tr>
<td>Step 5 mep mpid mpid</td>
<td>Statically defines the MEPs within a maintenance association.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-ecfm)# mep mpid 702</td>
<td>Returns the device to global configuration mode.</td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Returns the device to global configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-ecfm)# exit</td>
<td>Returns the device to global configuration mode.</td>
</tr>
<tr>
<td>Step 7 ethernet cfm mep crosscheck start-delay delay</td>
<td>Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm mep crosscheck start-delay 60</td>
<td>Configures the maximum amount of time that the device waits for remote MEPs to come up before the cross-check operation is started.</td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Returns the device to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config)# exit</td>
<td>Returns the device to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 9 ethernet cfm mep crosscheck {enable</td>
<td>disable} domain domain-name {port</td>
</tr>
<tr>
<td>Example: Device# ethernet cfm mep crosscheck enable domain cust4 vlan 100</td>
<td>Enables cross-checking between the list of configured remote MEPs of a domain and MEPs learned through CCMs.</td>
</tr>
</tbody>
</table>

Configuration Examples for Configuring Ethernet CFM for the Cisco ASR 1000 Router

The following two examples show configurations for a network. Configurations are shown not only for the Carrier Ethernet Cisco ASR 1000 Series Aggregation Services Routers, but also for the devices used at the access and core of the service provider’s network.

Example: Provisioning a Network

This configuration example shows only CFM-related commands. All commands that are required to set up the data path and configure the VLANs on the device are not shown. However, it should be noted that CFM traffic will not flow into or out of the device if the VLANs are not properly configured.

CE-A Configuration

```
! ethernet cfm global
ethernet cfm ieee
! ethernet cfm traceroute cache
```
Example: Provisioning a Network

ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm mip auto-create level 7 vlan 1-4094
!
interface gigabitethernet3/2
 ethernet cfm mip level 7 vlan 101 <<< Manual MIP
 ethernet cfm mep domain ServiceProvider-L4 mpid 401 vlan 101
 ethernet cfm mep domain OperatorA-L1 mpid 101 vlan 101
!
interface gigabitethernet4/2
 ethernet cfm mip level 1 vlan 101 <<< Manual MIP
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

U-PE A Configuration

!
ethernet cfm global
ethernet cfm ieee
!
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm mip auto-create level 7 vlan 1-4094
!
interface gigabitethernet3/2
 ethernet cfm mip level 7 vlan 101 <<< Manual MIP
 ethernet cfm mep domain ServiceProvider-L4 mpid 401 vlan 101
 ethernet cfm mep domain OperatorA-L1 mpid 101 vlan 101
!
interface gigabitethernet4/2
 ethernet cfm mip level 1 vlan 101 <<< Manual MIP
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

PE-AGG A Configuration

ethernet cfm global
ethernet cfm ieee
ethernet cfm domain OperatorA-L1 level 1
mep archive-hold-time 65
 mip auto-create
 service MetroCustomer1OpA vlan 101
!
interface gigabitethernet3/1
 ethernet cfm mip level 1 vlan 101 <<< Manual MIP
!
interface gigabitethernet4/1
 ethernet cfm mip level 1 <<< Manual MIP

N-PE A Configuration

!
! ethernet cfm domain ServiceProvider-L4 level 4
 mep archive-hold-time 60
 mip auto-create
 service MetroCustomer1 vlan 101
 continuity-check
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
mip auto-create
service MetroCustomer1OpA vlan 101
continuity-check
!
interface gigabitethernet3/0
 ethernet cfm mip level 1 \<<<< manual MIP
!
interface gigabitethernet4/0
 ethernet cfm mip level 4 \<<<< manual MIP
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

U-PE B Configuration

!
ethernet cfm global
ethernet cfm leee
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm domain Customer-L7 level 7
mip auto-create
service Customer1 vlan 101 direction down
!
ethernet cfm domain ServiceProvider-L4 level 4
mep archive-hold-time 60
service MetroCustomer1 vlan 101
continuity-check
!
ethernet cfm domain OperatorB level 2
mip auto-create
mep archive-hold-time 65
service MetroCustomer1OpB vlan 101
continuity-check
!
interface gigabitethernet1/0
 ethernet cfm mip level 7 \<<<< manual MIP
!
interface gigabitethernet2/0
 ethernet cfm mip level 2 \<<<< manual MIP
!
snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

PE-AGG B Configuration

ethernet cfm global
ethernet cfm leee
!
ethernet cfm domain OperatorB level 2
mep archive-hold-time 65
mip auto-create
Service MetroCustomer1OpB vlan 101

interface gigabitethernet1/1
eternet cfm mip level 2 <<<< manual MIP
interface gigabitethernet2/1
eternet cfm mip level 2 <<<< manual MIP

N-PE B Configuration

!ethernet cfm global
eternet cfm ieee
!ethernet cfm traceroute cache
eternet cfm traceroute cache size 200
eternet cfm traceroute cache hold-time 60
!ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
mip auto-create
service MetroCustomer1 vlan 101
 continuity-check
!ethernet cfm domain OperatorB level 2
mep archive-hold-time 65
mip auto-create
service MetroCustomer1OpB vlan 101
 continuity-check
!interface gigabitethernet1/2 gigabitethernet0/0/2
eternet cfm mip level 2 <<<< manual MIP
!interface gigabitethernet2/2
eternet cfm mip level 4 <<<< manual MIP

snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

CE-B Configuration

!ethernet cfm global
eternet cfm ieee
eternet cfm traceroute cache
eternet cfm traceroute cache size 200
eternet cfm traceroute cache hold-time 60
!ethernet cfm domain Customer-L7 level 7
service Customer1 vlan 101 direction down
 continuity-check
!snmp-server enable traps ethernet cfm cc mep-up mep-down cross-connect loop config
snmp-server enable traps ethernet cfm crosscheck mep-missing mep-unknown service-up

Example: Provisioning Service

CE-A Configuration

!ethernet cfm global
ethernet cfm ieee
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm domain Customer-L7 level 7
 service Customer1 vlan 101 direction down
 continuity-check
!
interface gigabitethernet3/2
 ethernet cfm mep domain Customer-L7 mpid 701 vlan 101

U-PE A Configuration

!
ethernet cfm global
ethernet cfm ieee
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm mip auto-create level 7 vlan 1-4094
!
ethernet cfm domain ServiceProvider-L4 level 4
 mep archive-hold-time 60
 service MetroCustomer1 vlan 101
 continuity-check
!
ethernet cfm domain OperatorA-L1 level 1
 mep archive-hold-time 65
 mip auto-create
 service MetroCustomer1OpA vlan 101
 continuity-check
!
interface gigabitethernet3/2
 ethernet cfm mip level 7 vlan 101 <<< Manual MIP
ethernet cfm mep domain ServiceProvider-L4 mpid 401 vlan 101
ethernet cfm mep domain OperatorA-L1 mpid 101 vlan 101
!
interface gigabitethernet4/2
 ethernet cfm mip level 1 vlan 101 <<< Manual MIP

PE-AGG A Configuration

ethernet cfm global
ethernet cfm ieee
ethernet cfm domain OperatorA-L2 level 1
 mip auto-create
 service MetroCustomer1OpA vlan 101
!
interface gigabitethernet3/1
 ethernet cfm mip level 1 vlan 101 <<< Manual MIP
!
interface gigabitethernet4/1
 ethernet cfm mip level 1 <<< Manual MIP

N-PE A Configuration

!
ethernet cfm global
ethernet cfm ieee
!
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm domain ServiceProvider-L4 level 4
 mep archive-hold-time 60
 mip auto-create
 service MetroCustomer1 vlan 101
 continuity-check
!
ethernet cfm domain OperatorA level 1
 mep archive-hold-time 65
 mip auto-create
 service MetroCustomer1OpA vlan 101
 continuity-check
!
interface gigabitethernet3/0
 ethernet cfm mip level 1 \<<<< manual MIP
!
interface gigabitethernet4/0
 ethernet cfm mip level 4 \<<<< manual MIP
 ethernet cfm mep domain OperatorA mpid 102 vlan 101

U-PE B Configuration

!
ethernet cfm global
ethernet cfm ieee
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
ethernet cfm domain Customer-L7 level 7
 mip auto-create
 service Customer1 vlan 101 direction down
!
ethernet cfm domain ServiceProvider-L4 level 4
 mep archive-hold-time 60
 service MetroCustomer1 vlan 101
 continuity-check
!
ethernet cfm domain OperatorB level 2
 mep archive-hold-time 65
 service MetroCustomer1OpB vlan 101
 continuity-check
!
interface gigabitethernet1/0
 ethernet cfm mip level 7 \<<<< manual MIP
 ethernet cfm mep domain ServiceProvider-L4 mpid 402 vlan 101
 ethernet cfm mep domain OperatorB mpid 201 vlan 101
!
interface gigabitethernet2/0
 ethernet cfm mip level 2 \<<<< manual MIP

N-PE B Configuration

!
Additional References
<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performing an ISSU</td>
<td>"Cisco IOS In Service Software Upgrade Process and Enhanced Fast Software Upgrade Process"</td>
</tr>
<tr>
<td>SSO</td>
<td>“Stateful Switchover” module of the High Availability Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag Standard</td>
<td>802.1ag - Connectivity Fault Management</td>
</tr>
<tr>
<td>IETF VPLS OAM</td>
<td>L2VPN OAM Requirements and Framework</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-ETHER-CFM-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Configuring Ethernet CFM for the Cisco ASR 1000 Router

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag-2007 Compliant CFM for ASR1000</td>
<td>Cisco IOS XE Release 3.2S</td>
<td>IEEE CFM is an end-to-end per-service Ethernet layer OAM protocol. CFM includes proactive connectivity monitoring, fault verification, and fault isolation for large Ethernet metropolitan-area networks (MANs) and WANs. Y.1731 is an ITU-T recommendation for OAM functions in Ethernet-based networks. This feature is the implementation of IEEE 802.1ag Standard-Compliant CFM and Y.1731 in Cisco IOS XE software. The following commands were introduced or modified: <code>continuity-check</code>, <code>ethernet cfm domain level</code>, <code>ethernet cfm global</code>, <code>ethernet cfm iee</code>, <code>ethernet cfm mep crosscheck</code>, <code>ethernet cfm mep crosscheck start-delay</code>, <code>ethernet cfm mep domain mpid</code>, <code>ethernet cfm traceroute cache</code>, <code>ethernet cfm traceroute cache hold-time</code>, <code>ethernet cfm traceroute cache size</code>, <code>mep archive-hold-time</code>, <code>mep mpid</code>, <code>service (cfm-srv)</code>, <code>snmp-server enable traps ethernet cfm cc</code>, and <code>snmp-server enable traps ethernet cfm crosscheck</code>.</td>
</tr>
<tr>
<td>E-OAM : Multiple port MAs under single MD</td>
<td>Cisco IOS XE Release 3.7S</td>
<td>Support for multiple MAs under a single maintenance domain was added. The following commands were introduced or modified: <code>clear ethernet cfm ais</code>, <code>ethernet cfm lck</code>, <code>ethernet cfm mep crosscheck</code>, <code>ethernet cfm mep domain mpid</code>, <code>ping ethernet</code>, <code>show ethernet cfm maintenance-points remote</code>, <code>show ethernet cfm maintenance-points remote crosscheck</code>, <code>show ethernet cfm maintenance-points remote detail</code>, <code>show ethernet cfm traceroute-cache</code>, <code>traceroute ethernet</code>.</td>
</tr>
</tbody>
</table>

Glossary

CCM—continuity check message. A multicast CFM frame that a MEP transmits periodically to ensure continuity across the maintenance entities to which the transmitting MEP belongs, at the MA level on which the CCM is sent. No reply is sent in response to receiving a CCM.

EVC—Ethernet virtual connection. An association of two or more user-network interfaces.
fault alarm—An out-of-band signal, typically an SNMP notification, that notifies a system administrator of a connectivity failure.

inward-facing MEP—A MEP that resides in a bridge and transmits to and receives CFM messages from the direction of the bridge relay entity.

maintenance domain—The network or part of the network belonging to a single administration for which faults in connectivity are to be managed. The boundary of a maintenance domain is defined by a set of DSAPs, each of which may become a point of connectivity to a service instance.

maintenance domain name—The unique identifier of a domain that CFM is to protect against accidental concatenation of service instances.

MEP—maintenance endpoint. An actively managed CFM entity associated with a specific DSAP of a service instance, which can generate and receive CFM frames and track any responses. It is an endpoint of a single MA, and terminates a separate maintenance entity for each of the other MEPs in the same MA.

MEP CCDB—A database, maintained by every MEP, that maintains received information about other MEPs in the maintenance domain.

MIP—maintenance intermediate point. A CFM entity, associated with a specific pair of ISS SAPs or EISS Service Access Points, which reacts and responds to CFM frames. It is associated with a single maintenance association and is an intermediate point within one or more maintenance entities.

MIP CCDB—A database of information about the MEPs in the maintenance domain. The MIP CCDB can be maintained by a MIP.

MP—maintenance point. Either a MEP or a MIP.

MPID—maintenance endpoint identifier. A small integer, unique over a given MA, that identifies a specific MEP.

OAM—operations, administration, and maintenance. A term used by several standards bodies to describe protocols and procedures for operating, administrating, and maintaining networks. Examples are ATM OAM and IEEE Std. 802.3ah OAM.

operator—Entity that provides a service provider a single network of provider bridges or a single Layer 2 or Layer 3 backbone network. An operator may be identical to or a part of the same organization as the service provider. For purposes of IEEE P802.1ag, Draft Standard for Local and Metropolitan Area Networks, the operator and service provider are presumed to be separate organizations.

Terms such as “customer,” “service provider,” and “operator” reflect common business relationships among organizations and individuals that use equipment implemented in accordance with IEEE P802.1ag.

UNI—user-network interface. A common term for the connection point between an operator's bridge and customer equipment. A UNI often includes a C-VLAN-aware bridge component. The term UNI is used broadly in the IEEE P802.1ag standard when the purpose for various features of CFM are explained. UNI has no normative meaning.
CHAPTER 5

Configuring Ethernet Virtual Connections on the Cisco ASR 1000 Series Router

Ethernet virtual circuit (EVC) infrastructure is a Layer 2 platform-independent bridging architecture that supports Ethernet services. This document describes the infrastructure and the features it supports on the Cisco ASR 1000 Series Aggregation Services Router.

• Finding Feature Information, on page 153
• Restrictions for Configuring EVCs on the Cisco ASR 1000 Series Router, on page 153
• Information About Configuring EVCs on the Cisco ASR 1000 Series Router, on page 154
• How to Configure EVCs on the Cisco ASR 1000 Series Router, on page 161
• Configuration Examples for EVCs on the Cisco ASR 1000 Series Router, on page 163
• Additional References, on page 163
• Feature Information for Configuring EVCs on the Cisco ASR 1000 Series Router, on page 164

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Configuring EVCs on the Cisco ASR 1000 Series Router

• Bridge domain configuration is supported only as part of the EVC service instance configuration.

• The following features are not supported:
 • Service instance (Ethernet flow point [EFP]) group support
 • EVC cross-connect and connect forwarding services
Information About Configuring EVCs on the Cisco ASR 1000 Series Router

The following topics are described in this section and provide background information for configuring EVCs on the Cisco ASR 1000 Series Router:

In Cisco IOS XE Release 3.2S and later releases, the following features are supported in the EVC infrastructure:

In Cisco IOS XE Release 3.3S, Layer 3 and Layer 4 protocol support was added. This support is described in the "Layer 3 and Layer 4 ACL Support".

EVCs

An EVC is defined by the Metro-Ethernet Forum (MEF) as an association between two or more user network interfaces that identifies a point-to-point or multipoint-to-multipoint path within the service provider network. An EVC is a conceptual service pipe within the service provider network. A bridge domain is a local broadcast domain that is VLAN-ID-agnostic. An Ethernet flow point (EFP) service instance is a logical interface that connects a bridge domain to a physical port.

An EVC broadcast domain is determined by a bridge domain and the EFPs that are connected to it. You can connect multiple EFPs to the same bridge domain on the same physical interface, and each EFP can have its own matching criteria and rewrite operation. An incoming frame is matched against EFP matching criteria on the interface, learned on the matching EFP, and forwarded to one or more EFPs in the bridge domain. If there are no matching EFPs, the frame is dropped.

You can use EFPs to configure VLAN translation. For example, if there are two EFPs egressing the same interface, each EFP can have a different VLAN rewrite operation, which is more flexible than the traditional switch port VLAN translation model.

Service Instances and Associated EFPs

Configuring a service instance on a Layer 2 port creates a pseudoport or EFP on which you configure EVC features. Each service instance has a unique number per interface, but you can use the same number on different interfaces because service instances on different ports are not related.

An EFP classifies frames from the same physical port to one of the multiple service instances associated with that port, based on user-defined criteria. Each EFP can be associated with different forwarding actions and behavior.

When an EFP is created, the initial state is UP. The state changes to DOWN under the following circumstances:

- The EFP is explicitly shut down by a user.
- The main interface to which the EFP is associated is down or removed.
- If the EFP belongs to a bridge domain, the bridge domain is down.
- The EFP is forced down as an error-prevention measure of certain features.
Use the **service instance ethernet** interface configuration command to create an EFP on a Layer 2 interface and to enter service instance configuration mode. Service instance configuration mode is used to configure all management and control data plane attributes and parameters that apply to the service instance on a per-interface basis. The service instance number is the EFP identifier.

After the device enters service instance configuration mode, you can configure these options:

- **default**—Sets a command to its defaults
- **description**—Adds a service instance-specific description
- **encapsulation**—Configures Ethernet frame match criteria
- **exit**—Exits from service instance configuration mode
- **no**—Negates a command or sets its defaults
- **shutdown**—Takes the service instance out of service

Encapsulation (Flexible Service Mapping)

Encapsulation defines the matching criteria that map a VLAN, a range of VLANs, class of service (CoS) bits, Ethertype, or a combination of these to a service instance. VLAN tags and CoS can be a single value, a range, or a list. Ethertype can be a single type or a list of types.

Different types of encapsulations are default, dot1ad, dot1q, priority-tagged, and untagged. On the Cisco ASR 1000 Series Router, priority-tagged frames are always single-tagged. Valid Ethertypes (type) are ipv4, ipv6, pppoe-all, pppoe-discovery, and pppoe-session.

Encapsulation classification options also include:

- **inner tag CoS**
- **inner tag VLAN**
- **outer tag CoS**
- **outer tag VLAN**
- **outer tag Ethertype (VLAN type)**—VLAN type is always matched. If you do not specify an alternative, the default is 0x8100 for dot1q and 0x88a8 for dot1ad.
- **payload Ethertype**—Any Ethertype tag after the VLAN tag

When you configure an encapsulation method, you enable flexible service mapping, which allows you to map an incoming packet to an EFP based on the configured encapsulation.

The default behavior for flexible service mapping based on outer 802.1q and 802.1ad VLAN tag values is nonexact, meaning that when the EFP encapsulation configuration does not explicitly specify an inner (second) VLAN tag matching criterion, the software maps both single-tagged and double-tagged frames to the EFP as long as the frames fulfill the criteria of outer VLAN tag values. The command-line interface (CLI) does allow you to specify exact mapping with the **exact** keyword. If this keyword is specified, the EFP is designated as single-tagged-frame-only and double-tagged frames are not classified to that EFP.

Using the CLI **encapsulation** command in service-instance configuration mode, you can set encapsulation criteria. You must configure one encapsulation command per EFP (service instance). After you have configured an encapsulation method, these commands are available in service instance configuration mode:
- **bridge-domain** -- Configures a bridge domain.
- **rewrite** -- Configures Ethernet rewrite criteria.

The table below shows the supported encapsulation types.

Table 3: Supported Encapsulation Types

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `encapsulation dot1q vlan-id` | Defines the matching criteria to be used to map 802.1q frames ingressing on an interface to the appropriate EFP. The options are a single VLAN, a range of VLANs, or lists of VLANs or VLAN ranges. VLAN IDs are 1 to 4094.
 - Enter a single VLAN ID for an exact match of the outermost tag.
 - Enter a VLAN range for a ranged outermost match. |
| `encapsulation dot1q second-dot1q vlan-id` | Double-tagged 802.1q encapsulation. Matching criteria to be used to map QinQ frames ingressing on an interface to the appropriate EFP. The outer tag is unique and the inner tag can be a single VLAN, a range of VLANs or lists of VLANs or VLAN ranges.
 - Enter a single VLAN ID in each instance for an exact match of the outermost two tags.
 - Enter a VLAN range for second-dot1q for an exact outermost tag and a range for a second tag. |
| `encapsulation dot1q {any | vlan-id} etype ethertype` | Ethertype encapsulation is the payload encapsulation type after VLAN encapsulation. Ethertype encapsulation matches any or an exact outermost VLAN or VLAN range and a payload ethertype.
 Valid values for `ethertype` are `ipv4`, `ipv6`, `pppoe-discovery`, `pppoe-session`, or `pppoe-all`. |
| `encapsulation dot1q vlan-id cos cos-value second-dot1q vlan-id cos cos-value` | CoS value encapsulation defines match criteria after including the CoS for the S-Tag and the C-Tag. The CoS value is a single digit between 1 and 7 for S-Tag and C-Tag.
 You cannot configure CoS encapsulation with the `encapsulation untagged` command, but you can configure it with the `encapsulation priority-tagged` command. The result is an exact outermost VLAN and CoS match and second tag. You can also use VLAN ranges. |
<p>| <code>encapsulation dot1q any</code> | Matches any packet with one or more VLANs. |
| <code>encapsulation dot1q vlan-type</code> | Specifies the value of the VLAN protocol type, which is the tag protocol identifier (TPID) of an 802.1q VLAN tag. If there is more than one tag, this command refers to the outermost tag. By default the TPID is assumed to be 0x8100. Use this command to set the TPID to other supported alternatives: 0x88A8, 0x9100, 0x9200. |</p>
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation dot1ad</td>
<td>Defines the matching criteria to be used to map 802.1d frames ingressing on an interface to the appropriate EFP.</td>
</tr>
<tr>
<td>encapsulation untagged</td>
<td>Matching criteria to be used to map native Ethernet frames (without a dot1q tag) entering an interface to the appropriate EFP. Only one EFP per port can have untagged encapsulation. However, a port that hosts EFP matching untagged traffic can also host other EFPs that match tagged frames.</td>
</tr>
<tr>
<td>encapsulation default</td>
<td>Configures the default EFP on an interface, acting as a catch-all encapsulation for all packets without a configured encapsulation. All packets are seen as native. If you enter the rewrite command with encapsulation default, the command is rejected. Only one default EFP per interface can be configured. If you try to configure more than one default EFP, the command is rejected.</td>
</tr>
<tr>
<td>encapsulation priority-tagged</td>
<td>Specifies priority-tagged frames. A priority-tagged packet has VLAN ID 0 and a CoS value of 0 to 7.</td>
</tr>
</tbody>
</table>

If a packet entering or leaving a port does not match any of the encapsulations on that port, the packet is dropped, resulting in filtering on both ingress and egress. The encapsulation must match the packet on the wire to determine filtering criteria. On the wire refers to packets ingressing the router before any rewrites and to packets egressing the router after all rewrites.

Layer 3 and Layer 4 ACL Support

Beginning in Cisco IOS XE Release 3.3S, support was added for configuring IPv4 Layer 3 and Layer 4 ACLs on EFPs. Configuring an ACL on an EFP is the same as configuring an ACL on other types of interfaces; for example, Ethernet or asynchronous transfer mode (ATM). One exception is that ACLs are not supported for packets prefixed with a Multiprotocol Label Switching (MPLS) header, including when an MPLS packet contains either Layer 3 or Layer 4 headers of supported protocols.

An ACL configured on a main interface containing EFPs does not affect traffic through the EFPs.

To configure an IPv4 Layer 3 and Layer 4 ACL on an EFP, use the `ip access-group` command. An ACL configuration is shown in the "Configuring an ACL on an EFP".

Advanced Frame Manipulation

The Advanced Frame Manipulation feature allows you to specify the VLAN tag manipulation needed on both the incoming and outgoing frames of an EFP. These manipulations include PUSH, POP, and TRANSLATION of one or both VLAN tags.

The PUSH, POP, and TRANSLATION manipulations are as follows:

- **PUSH Operations**
 - Add one VLAN tag
 - Add two VLAN tags
POP Operations
- Remove the outermost VLAN tag
- Remove the two outermost VLAN tags

TRANSLATION Operations
- 1:1 VLAN Translation
- 1:2 VLAN Translation
- 2:1 VLAN Translation
- 2:2 VLAN Translation

When a VLAN tag exists and a new one is added, the CoS field of the new tag is set to the same value as the CoS field of the existing VLAN tag; otherwise, the CoS field is set to a default of 0. Using QoS marking configuration commands, you can change the CoS marking.

EFPs and Layer 2 Protocols

On the Cisco ASR 1000 Series Router, EFPs treat the protocol data units (PDUs) of Layer 2 protocols as data frames. PDUs are forwarded as data frames.

Layer 2 protocols include Cisco Discovery Protocol, Dynamic Trunking Protocol (DTP), Link Aggregation Control Protocol (LACP), Link Layer Discovery Protocol (LLDP), Multiple Spanning Tree Protocol (MSTP), Port Aggregation Protocol (PAgP), Unidirectional Link Detection (UDLD), and VLAN Trunk Protocol (VTP).

Egress Frame Filtering

Egress frame filtering is performed to ensure that frames exiting an EFP contain a Layer 2 header that matches the encapsulation characteristics associated with the EFP. This filtering is done primarily to prevent unintended frame leaks and is always enabled on EFPs.

Bridge Domains

A bridge domain defines a broadcast domain internal to a platform and allows the decoupling of a broadcast domain from a VLAN. This decoupling enables per-port VLAN significance, thus removing the scalability limitations associated with a single per-device VLAN ID space. You can configure a maximum of 4096 EFPs per bridge domain.

A bridge domain interface (BDI) is used to support frame forwarding in a bridge domain at Layer 3. The BDI is a virtual interface that supports Layer 3 features. Each bridge domain can have only one BDI configuration.

If the destination MAC address in a frame received from one of the EFPs participating in a bridge domain matches the BDI MAC address, the frame is routed; otherwise, the frame is bridged. When the egress interface for a routed packet is the BDI interface, the frame is bridged using the destination MAC address.

Frames with broadcast and well-known multicast MAC addresses are also forwarded to the BDI.

The following sections describe support for bridge domains:

EFP, bridge domain, and BDI support based on the Cisco ASR 1000 Series Router forwarding processors are shown in the table in "EFP Bridge Domain and BDI Support Based on the Cisco ASR 1000 Series Router Forwarding Processors".
Ethernet MAC Address Learning

MAC address learning is always enabled and cannot be disabled.

Flooding of Layer 2 Frames for Unknown MAC Multicast and Broadcast Addresses

A Layer 2 frame with an unknown unicast or broadcast destination MAC address is flooded to all the EFPs in the bridge domain except to the originating EFP. A frame with a multicast MAC address is flooded to all the EFPs in the bridge domain. If the destination MAC address is a multicast MAC address, the frame is treated like a broadcast frame and sent to all the EFPs in the bridge domain.

When a frame with either a multicast or broadcast MAC address is flooded and a BDI is associated with the bridge domain, the frame is also flooded to the BDI.

Replication of frames involves recycling the frame several times. This recycling may have a negative effect on forwarding performance and reduce the packet forwarding rate for all features.

Layer 2 Destination MAC Address-Based Forwarding

When bridging is configured, a unicast frame received from an EFP is forwarded based on the destination Layer 2 MAC address. If the destination address is known, the frame is forwarded only to the EFP associated with the destination address.

Because bridge and EFP configurations are interrelated, bridging is supported only on EFPs. To support multiple bridge domains, MAC address entries are associated with the bridge domain of the EFP. Only unicast MAC addresses need to be dynamically learned.

EVC infrastructure does not modify frame contents. Each bridge domain can learn 1000 MAC addresses per second. The Layer 2 frame forwarding rate is 8 million packets per second (MPPS) if flooding is not involved.

MAC Address Aging

The dynamically learned MAC address entries in the MAC table are periodically aged out and entries that are inactive for longer than the configured time period are removed from the table. The supported range of aging-time values, in seconds, is 30 to 600 with a granularity of 1. The default is 5 minutes.

The **aging-time** parameter can be configured per bridge domain and is a relative value. The value is the aging time relative to the time a frame was received with that MAC address.

MAC Address Move

As stations (systems connected to the Cisco ASR 1000 Series Router through the EFP interface) move from one network to another, the interface associated with a MAC address changes.

MAC Address Table

The MAC address table is used to forward frames based on Layer 2 destination MAC addresses. The table consists of static MAC addresses downloaded from the route processor (RP) and the MAC addresses dynamically learned by the data path.

While the MAC Learning feature is enabled, an entry is added to the MAC table when a new unique MAC address is learned on the data path and an entry is deleted from the table when it is aged out.
Split Horizon Group

The split-horizon feature allows service instances in a bridge domain to join groups. Service instances in the same bridge domain and split-horizon group cannot pass data to each other but can forward data to other service instances that are in the same bridge domain and not in the same split-horizon group.

A service instance cannot join more than one split-horizon group. A service instance does not have to be in a split-horizon group. When a service instance does not belong to a group, it can send and receive data from all ports within the bridge domain.

One or more EFPs in a bridge domain may be configured for the same split horizon group, but when a frame is replicated to EFPs, that frame cannot be replicated to EFPs that are within the same split horizon group as the input interface. This restriction applies to MAC address frames that are either known or unknown unicast, broadcast, and multicast frames.

Two split horizon groups per bridge domain are supported on the Cisco ASR 1000 Series Router. You can configure a split horizon group using the `bridge-domain` CLI command with the `split-horizon` and `group` keywords. The group ID can be either 0 or 1.

All members of the bridge-domain that are configured with the same group ID are part of the same split-horizon group. EFPs that are not configured with an explicit group ID do not belong to any group.

EFP Bridge Domain and BDI Support Based on the Cisco ASR 1000 Series Router Forwarding Processors

The table below shows EFP, bridge domain, and BDI support based on the Cisco ASR 1000 Series Router forwarding processors.

<table>
<thead>
<tr>
<th>Description</th>
<th>ASR1000-ESP5, ASR 1001, ASR 1002-F (ESP2.5)</th>
<th>ASR1000-ESP10, ASR1000-ESP10-N, ASR1000-ESP20, ASR1000-ESP5, ASR 1001, ASR 1002-F (ESP2.5)</th>
<th>ASR1000-ESP40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum EFPs per router</td>
<td>8192</td>
<td>16384</td>
<td>24576</td>
</tr>
<tr>
<td>Maximum EFPs per bridge domain</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum EFPs per interface</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>Maximum bridge domains per router</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Maximum BDIs per router</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Maximum MAC table entries per router</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Maximum MAC table entries per bridge domain</td>
<td>16384</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>Maximum split horizon groups per bridge domain</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
How to Configure EVCs on the Cisco ASR 1000 Series Router

Configuring an EFP and a Bridge Domain on the Cisco ASR 1000 Series Router

Configuring a service instance on a Layer 2 port creates an EFP on which you can configure EVC features. Perform this task to configure an EFP.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation encapsulation-type vlan-id
6. rewrite ingress tag translate 1-to-1 dot1q vlan-id symmetric
7. bridge-domain bridge-id
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The example shows how to configure Gigabit Ethernet interface 0/1/1 and enter interface configuration mode.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet 0/1/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance id ethernet</td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The example shows how to configure Ethernet service instance 1.</td>
</tr>
<tr>
<td>Router(config-if)# service instance 1 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation encapsulation-type vlan-id</td>
<td>Defines the encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The example shows how to define dot1q as the encapsulation type.</td>
</tr>
<tr>
<td>Router(config-if-srv)# encapsulation dot1q 1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring an ACL on an EFP

Perform this task to configure an ACL on an EFP.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ip access-group access-list-number | access-list-name | {in | out}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• The example shows how to configure Gigabit Ethernet interface 0/1/1 and enter interface configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Router(config)# interface gigabitethernet 0/1/1

Purpose

Applies an IP access list or object group access control list (OGACL) to an interface or a service policy map.

{\text{in} | \text{out}}

- The example shows how to configure an ACL named acl55 for inbound packets.

Step 4

Example:

Router(config-if)# ip access-group acl55 in

Step 5

Example:

Router(config-if)# end

Returns to privileged EXEC mode.

Configuration Examples for EVCs on the Cisco ASR 1000 Series Router

Example Configuring EFPs on a Gigabit Ethernet Interface

```plaintext
interface GigabitEthernet0/0/1
  no ip address
  negotiation auto
  service instance 1 ethernet
    encapsulation dot1q 201
    rewrite ingress tag translate 1-to-1 dot1q 300 symmetric
    bridge-domain 1
  !
  service instance 2 ethernet
    encapsulation default
    bridge-domain 1
  !
  service instance 3 ethernet
    encapsulation priority-tagged
    bridge-domain 2
  !
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE CFM</td>
<td>“Configuring IEEE Standard-Compliant Ethernet CFM in a Service Provider Network”</td>
</tr>
</tbody>
</table>
Feature Information for Configuring EVCs on the Cisco ASR 1000 Series Router

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag</td>
<td>802.1ag - Connectivity Fault Management</td>
</tr>
<tr>
<td>IEEE 802.3ah</td>
<td>Ethernet in the First Mile</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>

Technical Assistance

The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using OAM</td>
<td>“Using Ethernet Operations, Administration, and Maintenance”</td>
</tr>
<tr>
<td>IEEE CFM and Y.1731 commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOSCarrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>
Table 5: Feature Information for Configuring EVCs on the Cisco ASR 1000 Series Router

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR1000 EVC Infrastructure</td>
<td>Cisco IOS XE Release 3.2S Cisco IOS XE Release 3.3S</td>
<td>EVC infrastructure is a Layer 2 platform-independent bridging architecture that supports Ethernet services. In Cisco IOS XE Release 3.2S, this feature was introduced on the Cisco ASR 1000 Series Router. The following commands are introduced or modified: <code>rewrite egress tag</code>, <code>rewrite ingress tag</code>, and <code>shutdown (bdomain)</code>.</td>
</tr>
<tr>
<td>ASR1000 BD Infrastructure</td>
<td>Cisco IOS XE Release 3.2S</td>
<td>Bridge domain infrastructure is a Layer 2 platform-independent architecture that enables bridging. In Cisco IOS XE Release 3.2S this feature was introduced on the Cisco ASR 1000 Series Router. The following sections provide information about support for this feature: The following commands are introduced or modified: <code>bridge-domain (service instance)</code>, <code>mac aging-time</code>.</td>
</tr>
<tr>
<td>ACL and QoS Enhancements to EVC Infrastructure in Cisco IOS XE Software</td>
<td>Cisco IOS XE Release 3.3S</td>
<td>Support for configuring Layer 3 and Layer 4 ACLs on EFPs was added in Cisco IOS XE Release 3.3S. The following commands are introduced or modified: <code>ip access-group</code>.</td>
</tr>
</tbody>
</table>
Network Interface Device Support

The Network Interface Device (NID) support feature enables support for the NID functionality on a device without including an NID hardware in the network.

- Information About NID Support, on page 167
- Restrictions for NID Support, on page 167
- How to Configure NID Support, on page 168
- Configuration Examples for NID Support, on page 168
- Troubleshooting the NID Configuration, on page 169
- Additional References for NID Support, on page 170
- Feature Information for NID Support, on page 170

Information About NID Support

Network Interface Device Support on the L3 Interface

The Network Interface Device (NID) support feature enables support for the NID functionality on a device without including an NID hardware in the network. This feature combines the Customer-Premises Equipment (CPE) and the NID functionality into a physical device. The following are the advantages of configuring the NID functionality:

- Eliminates the need for a physical NID device and trunk roll.
- Supports both the managed CPE feature set and the NID requirements.

Supported Platforms

The NID Support feature is supported on the following platforms:

- Cisco ISR 4000 Series Integrated Services Routers

Restrictions for NID Support

- Port-channel and EVC interface are not supported.
How to Configure NID Support

Configuring NID Support

Perform the following task to configure NID support:

```
enable
configure terminal
interface gigabitEthernet 0/0/2
no ip address
port tagging
encapsulation dot1q 10
set cos 6
end
```

Configuration Examples for NID Support

Example: Configuring NID

This configuration example shows how to configure the NID:

```
Device>enable
Device#configure terminal
Device(config)#interface gigabitEthernet 0/2
Device(config-if)#port-tagging
Device(config-if-port-tagging)#encapsulation dot1q 10
Device(config-if-port-tagging)#set cos 6
Device(config-if-port-tagging)#end
```

Example: Verifying NID Configuration

Use the following commands to verify the port tagging sessions:

- show run int
- ping

Use the `show run int` command to display the port tagging sessions:

```
Device#show run interface GigabitEthernet 0/2
Building configuration...
Current configuration : 10585 bytes
!
interface GigabitEthernet0/2
 no ip address
duplex auto
speed auto
port-tagging
 encapsulation dot1q 10
 set cos 6
 exit
end
!```
interface GigabitEthernet0/2.1101
encapsulation dot1Q 100
ip address 10.0.2.4 255.255.255.0
!
interface GigabitEthernet0/2.1102
encapsulation dot1Q 100
ip address 10.0.3.4 255.255.255.0
!

Use the ping command to verify the connectivity with port tagging configured:

Device# ping 10.0.2.3
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.0.2.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/4 ms
router#

Troubleshooting the NID Configuration

⚠️ **Caution**
Because debugging output is assigned high priority in the CPU process, it can diminish the performance of the router or even render it unusable. For this reason, use debug commands only to troubleshoot specific problems or during troubleshooting sessions with Cisco technical support staff.

📝 **Note**
Before you run any of the debug commands listed in the following table, ensure that you run the `logging buffered debugging` command, and then turn off console debug logging using the `no logging console` command.

<table>
<thead>
<tr>
<th>Table 6: debug Commands for NID Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>debug Command</strong></td>
</tr>
<tr>
<td>debug ethernet nid configuration</td>
</tr>
<tr>
<td>debug ethernet nid packet egress</td>
</tr>
<tr>
<td>debug ethernet nid packet ingress</td>
</tr>
</tbody>
</table>
Additional References for NID Support

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Feature Information for NID Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NID Support</td>
<td>Cisco IOS XE Everest 16.6.1.</td>
<td>The Network Interface Device Support features enables support for the NID functionality on the router without including a NID hardware in the network.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No new commands were introduced or modified.</td>
</tr>
</tbody>
</table>

Table 7: Feature Information for NID Support
CHAPTER 7

Ethernet Performance Monitoring on Untagged EFPs

The Ethernet Performance Monitoring on untagged EFPs feature enables sessions to run on untagged Ethernet flow points (EFPs).

• Information about Ethernet Performance Monitoring on Untagged EFPs, on page 171
• How to Configure Ethernet Performance Monitoring on Untagged EFPs, on page 172
• Example for Configuring Ethernet Performance Monitoring on Untagged EFPs, on page 174
• Additional References for Ethernet Performance Monitoring on Untagged EFPs, on page 175
• Feature Information for Ethernet Performance Monitoring on Untagged EFPs, on page 175

Information about Ethernet Performance Monitoring on Untagged EFPs

Untagged EFPs

The Ethernet Performance Monitoring on untagged EFPs feature enables sessions to run on untagged Ethernet flow points (EFPs). If an EFP is configured as untagged, then the EFP handles any frames without a dot1q tag, that it receives. Any frames sent using this EFP do not have a dot1q tag.

The dot1q tag contains class of service (CoS) bits, which are used by EPM to test delay or loss of packets with a specific CoS. This support is unavailable when using EPM over untagged EFPs but all other performance monitoring functionality is supported.
How to Configure Ethernet Performance Monitoring on Untagged EFPs

Summary Steps

1. enable
2. configure terminal
3. interface type/number
4. service instance ID ethernet evc-id
5. encapsulation untagged
6. end
7. configure terminal
8. ip sla operation-number
9. ethernet y1731 {delay|loss} type domain domain-name {evc evc-id|vlan vlan-id} {mpid target-mp-id|mac-address target-address} cos cos-value {source {mpid source-mp-id|mac-address tsouce-address}}
10. exit
11. ip sla schedule operation-number start-time time life life
12. end

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable            | Enables privileged EXEC mode. |
| Example:          | • Enter your password if prompted. |
| Device> enable    |         |
| **Step 2**
| configure terminal| Enters global configuration mode. |
| Example:          |         |
| Device# configure terminal | |
| **Step 3**
| interface type/number | Configures an interface and enters interface configuration mode. |
| Example:          |         |
| Device(config)# interface GigabitEthernet0/0 | |
| **Step 4**
<p>| service instance ID ethernet evc-id | Configures a service instance and enters service instance configuration mode. |
| Example:          |         |
| Device(config-if)# service instance 1 ethernet 50 | |</p>
<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>encapsulation untagged</td>
<td>Sets the encapsulation as untagged.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>encapsulation untagged</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>end</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip sla operation-number</td>
<td>Configures a Cisco IOS IP Service Level Agreements (SLAs) operation and enter IP SLA configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ip sla 501</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ethernet y1731 delay</td>
<td>Begins configuring the receiver on the responder and enters IP SLA Y.1731 delay configuration mode.</td>
</tr>
<tr>
<td></td>
<td>domain domain-name evc</td>
<td>• The source-mp-id or source-address configured by this command corresponds to that of the MEP being configured.</td>
</tr>
<tr>
<td></td>
<td>vlan vlan-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mpid target-mp-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mac-address target-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source mpid source-mp-id</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mac-address source-address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device (config-ip-sla)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ethernet y1731 delay DMM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>domain domain1 evc evcl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mpid 101 cos 0 source</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mpid 100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits IP SLA configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device (config-ip-sla)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ip sla schedule</td>
<td>Begins a probe with a specified operation number starting at the specified timestamp (or ‘now’ for immediately) for the specified lifetime in seconds (or ‘forever’ to run until the configuration is removed).</td>
</tr>
<tr>
<td></td>
<td>operation-number start-time time life</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-sla-y1731-delay)# ip sla schedule</td>
<td></td>
</tr>
<tr>
<td></td>
<td>501 start-time now life forever</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-sla-y1731-delay)# end</td>
<td></td>
</tr>
</tbody>
</table>
Verifying Ethernet Performance Monitoring on Untagged EFPs

Perform the following task to verify the Ethernet Performance Monitoring on Untagged EFPs

**SUMMARY STEPS**

1. Enter the `show ip sla statistics` to display performance monitoring sessions with untagged EFPs.

**DETAILED STEPS**

Enter the `show ip sla statistics` to display performance monitoring sessions with untagged EFPs.

**Example:**

```
Device# show ip sla statistics
IPSLAs Latest Operation Statistics
IPSLA operation id: 5
Loss Statistics for Y1731 Operation 5
Type of operation: Y1731 Loss Measurement
Latest operation start time: *09:08:29.825 PST Wed Jun 11 2014
Latest operation return code: OK
Distribution Statistics:

Interval
Start time: *09:08:29.825 PST Wed Jun 11 2014
Elapsed time: 9 seconds
Number of measurements initiated: 8
Number of measurements completed: 8
Flag: OK
```

**Example for Configuring Ethernet Performance Monitoring on Untagged EFPs**

**Example: Example for Configuring EPM Untagged EFPs**

```
Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet0/0
Device(config-if)# service instance 1 ethernet
Device(config-if-srv)# encapsulation untagged
Device(config-if-srv)# end
Device(config)# ip sla 501
Device(config-ip-sla)# ethernet y1731 delay DMM domain domain1 evc evc1 mpid 101 cos 0 source mpid 100
Device(config-sla-y1731-delay)# exit
Device(config)# ip sla schedule 501 start-time now life forever
```
Additional References for Ethernet Performance Monitoring on Untagged EFPs

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Ethernet Command Reference</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS Master Command List</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Configuring Ethernet connectivity fault management in a service provider network (Cisco pre-Standard CFM Draft 1)</td>
<td>“Configuring Ethernet Connectivity Fault Management in a Service Provider Network” module in the Cisco IOS Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>IP SLAs for Metro Ethernet</td>
<td>“IP SLAs for Metro Ethernet”</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Ethernet Performance Monitoring on Untagged EFPs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.
Table 8: Feature Information for Ethernet Performance Monitoring on Untagged EFPs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Performance Monitoring on Untagged EFPs</td>
<td>Cisco IOS Release 15.5(2)S</td>
<td>The Ethernet Performance Monitoring on untagged EFPs feature enables sessions to run on untagged Ethernet flow points (EFPs). This feature is enabled on Cisco Aggregation Services ASR 903 Series Routers. No commands were introduced or modified.</td>
</tr>
</tbody>
</table>
CHAPTER 8

Using the IEEE 802.3ad Link Aggregation MIB

The IEEE 802.3ad Link Aggregation Control Protocol (LACP) enables the bundling of physical interfaces on a physical device to achieve more bandwidth than is available using a single interface. This feature introduces IEEE 802.3ad Link Aggregation (LAG) MIB support in Cisco IOS XE software. The LAG MIB supports the management of interfaces and ports that are part of an LACP port channel and is accessed by a Simple Network Management Protocol (SNMP) manager application.

- Finding Feature Information, on page 177
- Prerequisites for Using the IEEE 802.3ad Link Aggregation MIB, on page 177
- Information About Using the IEEE 802.3ad Link Aggregation MIB, on page 178
- Additional References, on page 181
- Feature Information for Using the IEEE 802.3ad Link Aggregation MIB, on page 182

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Using the IEEE 802.3ad Link Aggregation MIB

- Link aggregation must be configured using the LACP command-line interface (CLI) commands before the MIB tables can be accessed.
- LACP must be supported in the image.
Information About Using the IEEE 802.3ad Link Aggregation MIB

IEEE 802.3ad LAG MIB

The IEEE 802.3ad LAG MIB supports the management of interfaces and ports that are part of an LACP port channel. No specific commands are used to enable the MIB; access is through an SNMP manager application. For information about using SNMP in Cisco IOS XE software, see the “Configuring SNMP Support” chapter of the Cisco IOS XE Network Management Configuration Guide, Release 2.

Configuration and Management of LACP bundles

To use the LAG MIB, it is important to know how LACP bundles are configured and managed. For more information about LACP bundles, see the "Configuring IEEE 802.3ad Link Bundling" feature guide.

LAG MIB Table Object Definitions

This section lists the MIB objects and tables that are supported as part of this feature.

dot3adTablesLastChanged Object

The dot3adTablesLastChanged object indicates the time of the most recent change to the dot3adAggTable, dot3adAggPortListTable, or dot3adAggPortTable.

dot3adAggTable

The dot3adAggTable (Aggregator Configuration table) contains information about every aggregator that is associated with a system. Each LACP channel in a device occupies an entry in the dot3adAggTable. Some objects in the table have restrictions, which are described with the object. The objects are described in the table below.

Table 9: Aggregator Configuration Table Objects

<table>
<thead>
<tr>
<th>Object</th>
<th>Maximum Access/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot3adAggActorAdminKey</td>
<td>Cannot be changed via the SET operation.</td>
</tr>
<tr>
<td>dot3adAggActorOperKey</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggActorSystemID</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggActorSystemPriority</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggAggregateOrIndividual</td>
<td>Returns a value of TRUE if more than 1 port is configured in the channel; otherwise, returns a value of FALSE.</td>
</tr>
<tr>
<td>dot3adAggCollectorMaxDelay</td>
<td>Cannot be changed via the SET operation.</td>
</tr>
<tr>
<td>dot3adAggIndex</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggMACAddress</td>
<td>Write access not supported.</td>
</tr>
</tbody>
</table>
The dot3adAggPortListTable (Aggregation Port List table) contains a list of all the ports associated with each aggregator. Each LACP channel in a device occupies an entry in the table. The objects are described in the table below.

**Table 10: Aggregation Port List Table Objects**

<table>
<thead>
<tr>
<th>Object</th>
<th>Maximum Access/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot3adAggPartnerOperKey</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPartnerSystemID</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPartnerSystemPriority</td>
<td>Write access not supported.</td>
</tr>
</tbody>
</table>

The dot3adAggPortTable (Aggregation Port table) contains LACP configuration information about every aggregation port associated with a device. Each physical port in a device occupies an entry in the dot3adAggPortTable. The objects are described in the table below.

**Table 11: Aggregation Port Table Objects**

<table>
<thead>
<tr>
<th>Object</th>
<th>Maximum Access/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot3adAggPortActorAdminKey</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorAdminState</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorOperKey</td>
<td>Read-only access supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorOperState</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorPort</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorPortPriority</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorSystemID</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortActorSystemPriority</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortAggregateOrIndividual</td>
<td>Indicates whether a port is attached to an LACP channel. If the port is attached to an LACP channel and the value of the dot3adAggPortAttachedAggID object in the same row is not zero, the value of this object is TRUE. Otherwise, the value is FALSE.</td>
</tr>
<tr>
<td>dot3adAggPortAttachedAggID</td>
<td>Write access not supported.</td>
</tr>
</tbody>
</table>
The dot3adAggPortStatsTable (LACP Statistics table) contains link aggregation information about every port that is associated with a device. Each physical port occupies a row in the table. The objects are described in the table below.

**Table 12: LACP Statistics Table Objects**

<table>
<thead>
<tr>
<th>Object</th>
<th>Maximum Access/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dot3adAggPortStatsIllegalRx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsLACPDUsRx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsLACPDUsTx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsMarkerPDUsRx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsMarkerPDUsTx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsMarkerResponsePDUsRx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsMarkerResponsePDUsTx</td>
<td>Write access not supported.</td>
</tr>
<tr>
<td>dot3adAggPortStatsUnknownRx</td>
<td>Write access not supported.</td>
</tr>
</tbody>
</table>
# Additional References

## Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link aggregation configuration tasks</td>
<td>&quot;Configuring IEEE 802.3ad Link Bundling&quot; feature guide</td>
</tr>
<tr>
<td>Cisco IOS XE LACP commands: complete command syntax, command mode,</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Configuring SNMP</td>
<td>“Configuring SNMP Support” chapter of the Cisco IOS XE Network Management</td>
</tr>
<tr>
<td></td>
<td>Configuration Guide, Release 2</td>
</tr>
<tr>
<td>Cisco IOS XE SNMP commands: complete command syntax, command mode,</td>
<td>Cisco IOS Network Management Command Reference</td>
</tr>
<tr>
<td>command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>syntax, command mode, command history, defaults, usage guidelines, and</td>
<td></td>
</tr>
<tr>
<td>examples</td>
<td></td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ad</td>
<td>IEEE 802.3ad-2000 Link Aggregation</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• IEEE 802.3ad MIB</td>
<td></td>
</tr>
<tr>
<td>• IF MIB</td>
<td></td>
</tr>
</tbody>
</table>

To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs

## RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Using the IEEE 802.3ad Link Aggregation MIB

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 13: Feature Information for Using the IEEE 802.3ad Link Aggregation MIB

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ad MIB</td>
<td>Cisco IOS XE Release 2.5</td>
<td>This feature introduces LAG MIB support in Cisco IOS XE software. The LAG MIB supports the management of interfaces and ports that are part of an LACP port channel and is accessed by an SNMP manager application. This feature uses no commands.</td>
</tr>
</tbody>
</table>
CHAPTER 9

Configuring IEEE 802.3ad Link Bundling

This document describes how the IEEE 802.3ad Link Bundling feature leverages the EtherChannel infrastructure within Cisco IOS XE software to manage the bundling of Ethernet links. The supported Ethernet link types for link bundling are Gigabit Ethernet and Ten Gigabit Ethernet.

• Finding Feature Information, on page 183
• Prerequisites for Configuring IEEE 802.3ad Link Bundling, on page 183
• Restrictions for Configuring IEEE 802.3ad Link Bundling, on page 183
• Information About Configuring IEEE 802.3ad Link Bundling, on page 184
• How to Configure IEEE 802.3ad Link Bundling, on page 189
• Configuration Examples for IEEE 802.3ad Link Bundling, on page 202
• Additional References Configuring IEEE 802.3ad Link Bundling, on page 208
• Feature Information for Configuring IEEE 802.3ad Link Bundling, on page 208

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring IEEE 802.3ad Link Bundling

• Knowledge of how EtherChannels and Link Aggregation Control Protocol (LACP) function in a network
• Verification that both ends of the LACP link have the same baseline software version

Restrictions for Configuring IEEE 802.3ad Link Bundling

• The maximum number of Ethernet links per bundle that can be supported varies by platform. Some platforms support 4 while other platforms support a maximum of 16.
• All links must operate at the same link speed and in full-duplex mode (LACP does not support half-duplex mode).

• All links must be configured as either EtherChannel links or LACP links.

• Only physical interfaces can form aggregations. Aggregations of VLAN interfaces are not possible nor is an aggregation of aggregations.

• If a router is connected to a switch, the bundle terminates on the switch.

• An EtherChannel will not form if one of the LAN ports is a Switched Port Analyzer (SPAN) destination port.

• All ports in an EtherChannel must use the same EtherChannel protocol.

• Maximum of four bundled ports per Ethernet port channel are supported.

• The maximum number of bundled ports per Ethernet port channel that can be supported varies by platform. Some platforms support 4, 8, and 14 while other platforms support a maximum of 16.

• Maximum of 64 Ethernet port channels in a chassis are supported.

• Quality of service (QoS) is supported on individual bundled ports and not on Ethernet port channels.

• Generic Routing Encapsulation (GRE) is not supported.

• Media type should be uniform across 1G and 10G links.

• 16 member links per port channel is supported only for 1G and 10G port-channel bundles.

• For load balancing across 16 member links per port channel, a wide range of addresses (such as Source MAC, Destination MAC, Source IP, Destination IP, and VC) should be used to have the traffic flowing across all the 16 member links.

• Maximum of 64 Ethernet port channels in a chassis are supported.

• Quality of service (QoS) is supported on individual bundled ports and not on Ethernet port channels.

• Generic Routing Encapsulation (GRE) is not supported.

• Media type should be uniform across 1G and 10G links.

• 16 member links per port channel is supported only for 1G and 10G port-channel bundles.

• For load balancing across 16 member links per port channel, a wide range of addresses (such as Source MAC, Destination MAC, Source IP, Destination IP, and VC) should be used to have the traffic flowing across all the 16 member links.

• LACP neighbor comes up on dot1q tagged EFP. This is a known behavior.

Information About Configuring IEEE 802.3ad Link Bundling

Gigabit EtherChannel

Gigabit EtherChannel (GEC) is high-performance Ethernet technology that provides Gigabit per second (Gb/s) transmission rates. A Gigabit EtherChannel bundles individual Ethernet links (Gigabit Ethernet or Ten Gigabit
Ethernet) into a single logical link that provides the aggregate bandwidth of up to four physical links. All LAN ports in each EtherChannel must be the same speed and all must be configured as either Layer 2 or Layer 3 LAN ports. Inbound broadcast and multicast packets on one link in an EtherChannel are blocked from returning on any other link in the EtherChannel.

When a link within an EtherChannel fails, traffic previously carried over the failed link switches to the remaining links within that EtherChannel. Also when a failure occurs, a trap is sent that identifies the device, the EtherChannel, and the failed link.

### Port-Channel and LACP-Enabled Interfaces

Each EtherChannel has a numbered port-channel interface that must be manually created before interfaces can be added to the channel group. The configuration of a port-channel interface affects all LAN ports assigned to that port-channel interface.

To change the parameters of all ports in an EtherChannel, change the configuration of the port-channel interface; for example, if you want to configure Spanning Tree Protocol or configure a Layer 2 EtherChannel as a trunk. Any configuration or attribute changes you make to the port-channel interface are propagated to all interfaces within the same channel group as the port-channel; that is, configuration changes are propagated to the physical interfaces that are not part of the port-channel but are part of the channel group.

The configuration of a LAN port affects only that LAN port.

### IEEE 802.3ad Link Bundling

The IEEE 802.3ad Link Bundling feature provides a method for aggregating multiple Ethernet links into a single logical channel based on the IEEE 802.3ad standard. This feature helps improve the cost effectiveness of a device by increasing cumulative bandwidth without necessarily requiring hardware upgrades. In addition, IEEE 802.3ad Link Bundling provides a capability to dynamically provision, manage, and monitor various aggregated links and enables interoperability between various Cisco devices and devices of third-party vendors.

LACP supports the automatic creation of EtherChannels by exchanging LACP packets between LAN ports. LACP packets are exchanged only between ports in passive and active modes. The protocol “learns” the capabilities of LAN port groups dynamically and informs the other LAN ports. After LACP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. Then the EtherChannel is added to the spanning tree as a single bridge port.

Both the passive and active modes allow LACP to negotiate between LAN ports to determine if they can form an EtherChannel, based on criteria such as port speed and trunking state. (Layer 2 EtherChannels also use VLAN numbers.) LAN ports can form an EtherChannel when they are in compatible LACP modes, as in the following examples:

- A LAN port in active mode can form an EtherChannel with another LAN port that is in active mode.
- A LAN port in active mode can form an EtherChannel with another LAN port in passive mode.
- A LAN port in passive mode cannot form an EtherChannel with another LAN port that is also in passive mode because neither port will initiate negotiation.

LACP uses the following parameters:

- LACP system priority—You must configure an LACP system priority on each device running LACP. The system priority can be configured automatically or through the command-line interface (CLI). LACP
uses the system priority with the device MAC address to form the system ID and also during negotiation with other systems.

- LACP port priority—You must configure an LACP port priority on each port configured to use LACP. The port priority can be configured automatically or through the CLI. LACP uses the port priority to decide which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating. LACP also uses the port priority with the port number to form the port identifier.

- LACP administrative key—LACP automatically configures an administrative key value on each port configured to use LACP. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by the following:
  - Port physical characteristics such as data rate, duplex capability, and point-to-point or shared medium
  - Configuration restrictions that you establish

On ports configured to use LACP, it tries to configure the maximum number of compatible ports in an EtherChannel, up to the maximum allowed by the hardware. To use the hot standby feature in the event a channel port fails, both ends of the LACP bundle must support the `lacp max-bundle` command.

As a control protocol, LACP uses the Slow Protocol Multicast address of 01-80-C2-00-00-02 to transmit LACP protocol data units (PDUs). Aside from LACP, the Slow Protocol linktype is to be utilized by operations, administration, and maintenance (OAM) packets, too. Subsequently, a subtype field is defined per the IEEE 802.3ad standard [1] (Annex 43B, section 4) differentiating LACP PDUs from OAM PDUs.

---

**Note**

LACP and Port Aggregation Control Protocol (PAgP) are not compatible. Ports configured for PAgP cannot form port channels on ports configured for LACP, and ports configured for LACP cannot form port channels on ports configured for PAgP.

---

**Benefits of IEEE 802.3ad Link Bundling**

- Increased network capacity without changing physical connections or upgrading hardware
- Cost savings from the use of existing hardware and software for additional functions
- A standard solution that enables interoperability of network devices
- Port redundancy without user intervention when an operational port fails

**LACP Enhancements**

The following LACP enhancements are supported:

- Four member links per LACP bundle.
- Cisco nonstop forwarding (NSF), and nonstop routing (NSR) on Gigabit EtherChannel bundles.
- Link failover time of 250 milliseconds or less and a maximum link failover time of 2 seconds; port channels remain in the LINK_UP state to eliminate reconvergence by the Spanning-Tree Protocol.
• Shutting down a port channel when the number of active links falls below the minimum threshold. In
the port channel interface, a configurable option is provided to bring down the port channel interface
when the number of active links falls below the minimum threshold. For the port-channel state to be
symmetric on both sides of the channel, the peer must also be running LACP and have the same `lacp
min-bundle` command setting.

• The IEEE Link Aggregation Group (LAG) MIB.

LACP for Gigabit Interfaces

The LACP (802.3ad) for Gigabit Interfaces feature bundles individual Ethernet links (Gigabit Ethernet or Ten
Gigabit Ethernet) into a single logical link that provides the aggregate bandwidth of up to four physical links.

All LAN ports on a port channel must be the same speed and must all be configured as either Layer 2 or Layer
3 LAN ports. If a segment within a port channel fails, traffic previously carried over the failed link switches
to the remaining segments within the port channel. Inbound broadcast and multicast packets on one segment
in a port channel are blocked from returning on any other segment of the port channel.

Note
The network device may impose its own limits on the number of bundled ports per port channel.

Features Supported on Gigabit EtherChannel Bundles

The table below lists the features that are supported on Gigabit EtherChannel (GEC) bundles.
Table 14: Gigabit EtherChannel Bundle Features

<table>
<thead>
<tr>
<th>Cisco IOS XE Release</th>
<th>Feature</th>
<th>Bundle Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>Access control lists (ACLs) per bundle</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>All Ethernet routing protocols</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>Intelligent Service Gateway (ISG) IP sessions</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Interface statistics</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>IP switching</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>IPv4: unicast and multicast</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>IPv6: unicast without load balancing across member links</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>IPv6: multicast</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>Layer 2 Tunneling Protocol Version 3 (L2TPv3), IPinIP, Any Transport</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>Over Multiprotocol Label Switching (MPLS) (AToM) tunnels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2 Tunneling Protocol Version 2 (L2TPv2)</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>MPLS (6PE)</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>Multicast VPN</td>
<td>Not Supported</td>
</tr>
<tr>
<td></td>
<td>VLANs</td>
<td>Supported</td>
</tr>
<tr>
<td>2.6</td>
<td>Virtual Private Network (VPN) Routing and Forwarding (VRF)</td>
<td>Supported</td>
</tr>
<tr>
<td>3.4</td>
<td>IPv6: unicast and multicast</td>
<td>Supported</td>
</tr>
<tr>
<td>3.6</td>
<td>Bidirectional Forwarding Detection (BFD) over GEC</td>
<td>Supported</td>
</tr>
<tr>
<td>3.7</td>
<td>Layer 2 Tunneling Protocol Version 2 (L2TPv2)</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>PPPoX (PPPoEoE, PPPoEoQinQ, PPPoVLAN)</td>
<td>Supported</td>
</tr>
<tr>
<td>3.7.6</td>
<td>Policy-based routing (PBR) over GEC</td>
<td>Supported</td>
</tr>
<tr>
<td>3.11</td>
<td>GEC over L2TPv3</td>
<td>Supported</td>
</tr>
<tr>
<td>Cisco IOS XE Release</td>
<td>Feature</td>
<td>Bundle Interface</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>3.12</td>
<td>MPLS TE (Traffic Engineering) over GEC</td>
<td>Supported</td>
</tr>
</tbody>
</table>

### Guidelines for LACP for Gigabit Interfaces Configuration

Port channel interfaces that are configured improperly with LACP are disabled automatically to avoid network loops and other problems. To avoid configuration problems, observe these guidelines and restrictions:

- Every port added to a port channel must be configured identically. No individual differences in configuration are allowed.
- Bundled ports can be configured on different line cards in a chassis.
- Maximum transmission units (MTUs) must be configured on only port channel interfaces; MTUs are propagated to the bundled ports.
- QoS and committed access rate (CAR) are applied at the port level. Access control lists (ACLs) are applied on port channels.
- MAC configuration is allowed only on port channels.
- MPLS IP should be enabled on bundled ports using the `mpls ip` command.
- Unicast Reverse Path Forwarding (uRPF) should be applied on the port channel interface using the `ip verify unicast reverse-path` command in interface configuration mode.
- Cisco Discovery Protocol should be enabled on the port channel interface using the `cdp enable` command in interface configuration mode.
- All LAN ports in a port channel should be enabled. If you shut down a LAN port in a port channel, the shutdown is treated as a link failure and the traffic is transferred to one of the remaining ports in the port channel.
- Create a port channel interface using the `interface port-channel` command in global configuration mode.
- When an Ethernet interface has an IP address assigned, disable that IP address before adding the interface to the port channel. To disable an existing IP address, use the `no ip address` command in interface configuration mode.
- The `hold queue in` command is valid only on port channel interfaces. The `hold queue out` command is valid only on bundled ports.

### How to Configure IEEE 802.3ad Link Bundling

#### Enabling LACP

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. interface port-channel channel-number
4. channel-group channel-group-number mode {active | passive}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface port-channel channel-number</td>
<td>Identifies the interface port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface port-channel 10</td>
<td></td>
</tr>
<tr>
<td>Step 4 channel-group channel-group-number mode {active</td>
<td>passive}</td>
</tr>
<tr>
<td>Example: Device(config-if)# channel-group 25 mode active</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Port Channel

You must manually create a port channel logical interface. Perform this task to configure a port channel.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface port-channel channel-number
4. lACP max-bundle max-bundles
5. ip address ip-address mask
6. end
7. show running-config interface port-channel group-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Example:</strong> Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface port-channel <em>channel-number</em></td>
<td>Identifies the interface port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# interface port-channel 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> lacp max-bundle <em>max-bundles</em></td>
<td>Configures three active links on the port channel. The remaining links are in standby mode. Traffic is load-balanced among the active links.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# lacp max-bundle 3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ip address <em>ip-address mask</em></td>
<td>Assigns an IP address and subnet mask to the EtherChannel.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# ip address 172.31.52.10 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> show running-config interface port-channel <em>group-number</em></td>
<td>Displays the port channel configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device# show running-config interface port-channel 10</td>
<td></td>
</tr>
</tbody>
</table>

**Example**

This example shows how to verify the configuration:

Device# show running-config interface port-channel 10

Building configuration...
Current configuration: 110 bytes
!
interface Port-channel10
ip address 172.31.52.10 255.255.255.0
no negotiation auto
lacp max-bundle 3
end
Configuring LACP (802.3ad) for Gigabit Interfaces

Perform this task to create a port channel with two bundled ports. You can configure a maximum of four bundled ports per port channel.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface port-channel number
4. ip address ip-address mask
5. interface type slot/subslot/port
6. no ip address
7. channel-group channel-group-number mode {active | passive}
8. exit
9. interface type slot/subslot/port
10. no ip address
11. channel-group channel-group-number mode {active | passive}
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface port-channel number</td>
<td>Specifies the port channel interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface port-channel 1</td>
<td>number — Valid range is from 1 to 64.</td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address ip-address mask</td>
<td>Assigns an IP address and subnet mask to the port channel interface.</td>
</tr>
<tr>
<td>Example: Device(config-if)# ip address 10.1.1.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> interface type slot/subslot/port</td>
<td>Specifies the port to bundle.</td>
</tr>
<tr>
<td>Example: Device(config-if)# interface gigabitethernet 2/0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> no ip address</td>
<td>Disables the IP address on the port channel interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 7</strong> channel-group channel-group-number mode {active</td>
<td>passive}</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# channel-group 1 mode active</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> interface type slot/subslot/ port</td>
<td>Specifies the next port to bundle and places the CLI in interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config)# interface gigabitethernet 4/0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> no ip address</td>
<td>Disables the IP address on the port channel interface.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> channel-group channel-group-number mode {active</td>
<td>passive}</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# channel-group 1 mode active</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Example

```
Device> enable
Device# configure terminal
Device(config)# interface port-channel 1
Device(config-if)# ip address 10.1.1.1 255.255.255.0
Device(config-if)# interface gigabitethernet 2/0/0
Device(config-if)# no ip address
Device(config-if)# channel-group 1 mode active
Device(config-if)# exit
Device(config)# interface gigabitethernet 4/0/0
Device(config-if)# no ip address
Device(config-if)# channel-group 1 mode active
Device(config-if)# end
```

Setting LACP System Priority and Port Priority

Perform this task to set the LACP system priority and port priority. The system ID is the combination of the LACP system priority and the MAC address of a device. The port identifier is the combination of the port priority and port number.

SUMMARY STEPS

1. enable
2. configure terminal
3. `lacp system-priority priority`
4. `interface slot/subslot/port`
5. `lacp port-priority priority`
6. end
7. `show lacp sys-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> lacp system-priority priority</td>
<td>Sets the system priority.</td>
</tr>
<tr>
<td>Example: Device(config)# lacp system-priority 200</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring IEEE 802.3ad Link Bundling

#### Adding and Removing Interfaces from a Link Bundle

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type slot/subslot/port`
4. `channel-group channel-group-number mode {active | passive}`
5. `no channel-group channel-group-number mode {active | passive}`
6. `end`

**Purpose**

- **Step 4**
  - **Command or Action**: `interface slot/subslot/port`
  - **Example**: `Device(config)# interface gigabitethernet 0/1/1`
  - **Purpose**: Specifies the bundled port on which to set the LACP port priority and enters interface configuration mode.

- **Step 5**
  - **Command or Action**: `lacp port-priority priority`
  - **Example**: `Device(config-if)# lacp port-priority 500`
  - **Purpose**: Specifies the priority for the physical interface.
    - `priority` — Valid range is from 1 to 65535. The higher the number, the lower the priority.

- **Step 6**
  - **Command or Action**: `end`
  - **Example**: `Device(config-if)# end`
  - **Purpose**: Returns to privileged EXEC mode.

- **Step 7**
  - **Command or Action**: `show lacp sys-id`
  - **Example**: `Device# show lacp sys-id`
  - **Purpose**: Displays the system ID (a combination of the system priority and the MAC address of the device).

### Examples

- **Device> enable**
- **Device# configure terminal**
- **Device(config)# lacp system-priority 200**
- **Device(config)# interface gigabitethernet 0/1/1**
- **Device(config-if)# lacp port-priority 500**
- **Device(config-if)# end**

This example shows how to verify the LACP configuration:

- **Device# show lacp sys-id**
- **200.abdc.abcd.abcd**
### Removing a Channel Group from a Port

Perform this task to remove a Gigabit Ethernet port channel group from a physical port.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `no interface port-channel number`
4. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>&lt;Device&gt; enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>&lt;Device&gt; configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><code>interface type slot/subslot/port</code></td>
<td>Configures a Gigabit Ethernet interface.</td>
</tr>
<tr>
<td>Example: <code>&lt;Device(config)# interface gigabitethernet 5/0/0</code></td>
<td></td>
</tr>
<tr>
<td>`channel-group channel-group-number mode {active</td>
<td>passive}`</td>
</tr>
<tr>
<td>Example: <code>&lt;Device(config-if)# channel-group 5 mode active</code></td>
<td>- In this instance, the interface from Step 3 is added.</td>
</tr>
<tr>
<td>`no channel-group channel-group-number mode {active</td>
<td>passive}`</td>
</tr>
<tr>
<td>Example: <code>&lt;Device(config-if)# no channel-group 5 mode active</code></td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>&lt;Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
### Setting a Minimum Threshold of Active Links

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `lacp min-bundle min-bundle`
5. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface type number</code></td>
<td>Creates a port-channel virtual interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Device(config)# interface type number</code></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring LACP Status

SUMMARY STEPS

1. enable
2. show lacp {number | counters | internal | neighbor | sys-id}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: enable</td>
<td></td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2**                 |                                              | | | | |
| show lacp {number | counters | internal | neighbor | sys-id} | Displays internal device information. |
| Example:                   |                                              |
| Device# show lacp internal |                                              |

Troubleshooting Tips

To verify and isolate a fault, start at the highest level maintenance domain and do the following:

1. Check the device error status.
2. When a error exists, perform a loopback test to confirm the error.
3. Run a traceroute to the destination to isolate the fault.
4. If the fault is identified, correct the fault.
5. If the fault is not identified, go to the next lower maintenance domain and repeat steps 1 through 4 at that maintenance domain level.
6. Repeat the first four steps, as needed, to identify and correct the fault.

### Displaying Gigabit EtherChannel Information

To display Gigabit Ethernet port channel information, use the `show interfaces port-channel` command in user EXEC mode or privileged EXEC mode. The following example shows information about port channels configured on ports 0/2 and 0/3. The default MTU is set to 1500 bytes.

```
Device# show interfaces port-channel 1
Port-channel1 is up, line protocol is up
Hardware is GEChannel, address is 0013.19b3.7748 (bia 0000.0000.0000)
MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
No. of active members in this channel: 2
Member 0 : GigabitEthernet3/0/0 , Full-duplex, 1000Mb/s Member 1 : GigabitEthernet7/1/0 ,
Full-duplex, 1000Mb/s
Last input 00:00:05, output never, output hang never
Last clearing of "show interface" counters 00:04:40
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Interface Port-channel1 queueing strategy: PXF First-In-First-Out
Output queue 0/8192, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
3 packets output, 180 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
```

The table below describes the significant fields shown in the display.

**Table 15: **show interfaces port-channel Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port-channel1 is up, line protocol is up</td>
<td>Indicates the bundle interface is currently active and can transmit and receive or it has been taken down by an administrator.</td>
</tr>
<tr>
<td>Hardware is</td>
<td>Hardware type (Gigabit EtherChannel).</td>
</tr>
<tr>
<td>address is</td>
<td>Address being used by the interface.</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum transmission unit of the interface.</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth of the interface, in kilobits per second.</td>
</tr>
<tr>
<td>DLY</td>
<td>Delay of the interface, in micro seconds.</td>
</tr>
<tr>
<td>reliability</td>
<td>Reliability of the interface as a fraction of 255 (255/255 is 100 percent reliability), calculated as an exponential average over 5 minutes.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>tx load rxload</td>
<td>Transmit and receive load on the interface as a fraction of 255 (255/255 is completely saturated), calculated as an exponential average over 5 minutes. The calculation uses the value from the bandwidth interface configuration command.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation type assigned to the interface.</td>
</tr>
<tr>
<td>loopback</td>
<td>Indicates if loopbacks are set.</td>
</tr>
<tr>
<td>keepalive</td>
<td>Indicates if keepalives are set.</td>
</tr>
<tr>
<td>ARP type</td>
<td>Address Resolution Protocol (ARP) type on the interface.</td>
</tr>
<tr>
<td>ARP Timeout</td>
<td>Number of hours, minutes, and seconds an ARP cache entry stays in the cache.</td>
</tr>
<tr>
<td>No. of active members in this channel</td>
<td>Number of bundled ports (members) currently active and part of the port channel group.</td>
</tr>
<tr>
<td>Member &lt;no.&gt; Gigabit Ethernet: &lt;no. /no. /no.&gt;</td>
<td>Number of the bundled port and associated Gigabit Ethernet port channel interface.</td>
</tr>
<tr>
<td>Last input</td>
<td>Number of hours, minutes, and seconds since the last packet was successfully received by an interface and processed locally on the Device. Useful for knowing when a dead interface failed. This counter is updated only when packets are process-switched, not when packets are fast-switched.</td>
</tr>
<tr>
<td>output</td>
<td>Number of hours, minutes, and seconds since the last packet was successfully transmitted by an interface. This counter is updated only when packets are process-switched, not when packets are fast-switched.</td>
</tr>
<tr>
<td>output hang</td>
<td>Number of hours, minutes, and seconds since the interface was last reset because of a transmission that took too long. When the number of hours in any of the “last” fields exceeds 24 hours, the number of days and hours is printed. If that field overflows, asterisks are printed.</td>
</tr>
<tr>
<td>last clearing</td>
<td>Time at which the counters that measure cumulative statistics (such as number of bytes transmitted and received) shown in this report were last reset to zero. Variables that might affect routing (for example, load and reliability) are not cleared when the counters are cleared. *** indicates that the elapsed time is too long to be displayed. 0:00:00 indicates that the counters were cleared more than 231 ms and less than 232 ms ago.</td>
</tr>
<tr>
<td>Input queue</td>
<td>Number of packets in the input queue and the maximum size of the queue.</td>
</tr>
<tr>
<td>Queueing strategy</td>
<td>First-in, first-out queueing strategy (other queueing strategies you might see are priority-list, custom-list, and weighted fair).</td>
</tr>
<tr>
<td>Output queue</td>
<td>Number of packets in the output queue and the maximum size of the queue.</td>
</tr>
<tr>
<td>5 minute input rate 5 minute output rate</td>
<td>Average number of bits and packets received or transmitted per second in the last 5 minutes.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>packets input</td>
<td>Total number of error-free packets received by the system.</td>
</tr>
<tr>
<td>bytes (input)</td>
<td>Total number of bytes, including data and MAC encapsulation, in the error-free packets received by the system.</td>
</tr>
<tr>
<td>no buffer</td>
<td>Number of received packets discarded because there was no buffer space in the main system. Broadcast storms on Ethernet lines and bursts of noise on serial lines are often responsible for no input buffer events.</td>
</tr>
<tr>
<td>broadcasts</td>
<td>Total number of broadcast or multicast packets received by the interface.</td>
</tr>
<tr>
<td>runts</td>
<td>Number of packets that are discarded because they are smaller than the minimum packet size for the medium.</td>
</tr>
<tr>
<td>giants</td>
<td>Number of packets that are discarded because they exceed the maximum packet size for the medium.</td>
</tr>
<tr>
<td>input errors</td>
<td>Total number of no buffer, runts, giants, cyclic redundancy checks (CRCs), frame, overrun, ignored, and abort counts. Other input-related errors can also increment the count, so that this sum might not balance with the other counts.</td>
</tr>
<tr>
<td>CRC</td>
<td>CRC generated by the originating LAN station or far-end device does not match the checksum calculated from the data received. On a LAN, this usually indicates noise or transmission problems on the LAN interface or the LAN bus. A high number of CRCs is usually the result of collisions or a station transmitting bad data. On a serial link, CRCs usually indicate noise, gain hits or other transmission problems on the data link.</td>
</tr>
<tr>
<td>frame</td>
<td>Number of packets received incorrectly having a CRC error and a noninteger number of octets. On a serial line, this is usually the result of noise or other transmission problems.</td>
</tr>
<tr>
<td>overrun</td>
<td>Number of times the serial receiver hardware was unable to pass received data to a hardware buffer because the input rate exceeded the receiver’s capacity for handling the data.</td>
</tr>
<tr>
<td>ignored</td>
<td>Number of received packets ignored by the interface because the interface hardware ran low on internal buffers. These buffers are different than the system buffers mentioned previously in the buffer description. Broadcast storms and bursts of noise can cause the ignored count to be incremented.</td>
</tr>
<tr>
<td>watchdog</td>
<td>Number of times the watchdog receive timer expired.</td>
</tr>
<tr>
<td>multicast</td>
<td>Number of multicast packets received.</td>
</tr>
<tr>
<td>packets output</td>
<td>Total number of messages transmitted by the system.</td>
</tr>
<tr>
<td>bytes (output)</td>
<td>Total number of bytes, including data and MAC encapsulation, transmitted by the system.</td>
</tr>
<tr>
<td>underruns</td>
<td>Number of times that the far-end transmitter has been running faster than the near-end Device’s receiver can handle.</td>
</tr>
</tbody>
</table>
### Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>output errors</td>
<td>Sum of all errors that prevented the final transmission of datagrams out of the interface being examined. Note that this might not balance with the sum of the enumerated output errors, as some datagrams can have more than one error, and others can have errors that do not fall into any of the specifically tabulated categories.</td>
</tr>
<tr>
<td>collisions</td>
<td>Number of messages retransmitted because of an Ethernet collision. A packet that collides is counted only once in output packets.</td>
</tr>
<tr>
<td>interface resets</td>
<td>Number of times an interface has been completely reset. This can happen if packets queued for transmission were not sent within a certain interval. If the system notices that the carrier detect line of an interface is up but the line protocol is down, the system periodically resets the interface in an effort to restart that interface. Interface resets can also occur when an unrecoverable interface processor error occurred, or when an interface is looped back or shut down.</td>
</tr>
<tr>
<td>babbles</td>
<td>The transmit jabber timer expired.</td>
</tr>
<tr>
<td>late collision</td>
<td>Number of late collisions. Late collision happens when a collision occurs after transmitting the preamble. The most common cause of late collisions is that your Ethernet cable segments are too long for the speed at which you are transmitting.</td>
</tr>
<tr>
<td>deferred</td>
<td>Indicates that the chip had to defer while ready to transmit a frame because the carrier was asserted.</td>
</tr>
<tr>
<td>lost carrier</td>
<td>Number of times the carrier was lost during transmission.</td>
</tr>
<tr>
<td>no carrier</td>
<td>Number of times the carrier was not present during the transmission.</td>
</tr>
<tr>
<td>PAUSE output</td>
<td>Not supported.</td>
</tr>
<tr>
<td>output buffer failures</td>
<td>Number of times that a packet was not output from the output hold queue because of a shortage of shared memory.</td>
</tr>
<tr>
<td>output buffers swapped out</td>
<td>Number of packets stored in main memory when the output queue is full; swapping buffers to main memory prevents packets from being dropped when output is congested. The number is high when traffic is bursty.</td>
</tr>
</tbody>
</table>

### Configuration Examples for IEEE 802.3ad Link Bundling

#### Example: Configuring LACP for Gigabit Interfaces

The following example shows how to configure Gigabit Ethernet ports 2/0 and 4/0 into port channel 1 with LACP parameters.

```
Device> enable
Device# configure terminal
Device(config)# lacp system-priority 65535
Device(config)# interface port-channel 1
Device(config-if)# lacp max-bundle 1
```
Example Associating a Channel Group with a Port Channel

This example shows how to configure channel group number 5 and include it in the channel group.

Device1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device1(config)# interface port 5
Device1(config-if)#

*Aug 20 17:06:14.417: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel5, changed state to down
*Aug 20 17:06:25.413: %LINK-3-UPDOWN: Interface Port-channel5, changed state to down
Device1(config-if)#
Device1(config-if)# interface gigabitethernet 7/0/0
Device1(config-if)# channel-group 5 mode active
Device1(config-if)#

*Aug 20 17:07:43.713: %LINK-3-UPDOWN: Interface GigabitEthernet7/0/0, changed state to down
*Aug 20 17:07:44.713: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet7/0/0, changed state to up
*Aug 20 17:07:45.093: %C10K_ALARM-6-INFO: ASSERT CRITICAL GigE 7/0/0 Physical Port Link Down
*Aug 20 17:07:45.093: %C10K_ALARM-6-INFO: CLEAR CRITICAL GigE 7/0/0 Physical Port Link Down
*Aug 20 17:07:48.957: GigabitEthernet7/0/0 added as member-1 to port-channel5

*Aug 20 17:07:51.957: %LINEPROTO-5-UPDOWN: Line protocol on Interface Port-channel5, changed state to up
Device1(config-if)# end
Device1#

*Aug 20 17:08:30.933: %SYS-5-CONFIG_I: Configured from console by console
Device1# show etherchannel summary
Flags:  D = down        P/bndl - bundled in port-channel
        I = stand-alone s/susp - suspended
        H = Hot-standby (LACP only)
        R = Layer3   S = Layer2
        U = in use    f = failed to allocate aggregator
        M = not in use, minimum links not met
        u = unsuitable for bundling
        w = waiting to be aggregated
        d = default port

Number of channel-groups in use: 1
Number of aggregators: 1

Group  Port-channel  Protocol  Ports
Example Adding and Removing Interfaces from a Bundle

The following example shows how to add an interface to a bundle:

Device1# show lACP internal
Flags: S - Device is requesting Slow LACPDU
      F - Device is requesting Fast LACPDU
      A - Device is in Active mode
      P - Device is in Passive mode

Channel group 5

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>G17/0/0</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x5</td>
<td>0x5</td>
<td>0x43</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Device1# show interface port 5

Port-channel5 is up, line protocol is up

Hardware is GEChannel, address is 0014.a93d.4aa8 (bia 0000.0000.0000)
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00

No. of active members in this channel: 1
Member 0: GigabitEthernet7/0/0, Full-duplex, 1000Mb/s

Last input 00:00:05, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0

Interface Port-channel5 queuing strategy: PXF First-In-First-Out
Output queue 0/8192, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec

Received 0 broadcasts (0 IP multicasts)
0 runs, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
9 packets output, 924 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
Example Adding and Removing Interfaces from a Bundle

Channel group 5

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi7/0/0</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x5</td>
<td>0x5</td>
<td>0x43</td>
<td>0x3D</td>
<td></td>
</tr>
</tbody>
</table>

Device1# configure terminal

Device1(config)# interface gigabitethernet 5/0/0
Device1(config-if)# channel-group 5 mode active
Device1(config-if)#

*Aug 20 17:10:19.057: %LINK-3-UPDOWN: Interface GigabitEthernet5/0/0, changed state to down
*Aug 20 17:10:19.469: %C10K_ALARM-6-INFO: ASSERT CRITICAL GigE 5/0/0 Physical Port Link Down
*Aug 20 17:10:19.473: %C10K_ALARM-6-INFO: CLEAR CRITICAL GigE 5/0/0 Physical Port Link Down

*Aug 20 17:10:21.473: %LINK-3-UPDOWN: Interface GigabitEthernet5/0/0, changed state to up
*Aug 20 17:10:21.473: GigabitEthernet7/0/0 taken out of port-channel5
*Aug 20 17:10:23.413: GigabitEthernet5/0/0 added as member-1 to port-channel5

*Aug 20 17:10:23.473: %LINK-3-UPDOWN: Interface Port-channel5, changed state to up
Device1(config-if)# end
Device1#

*Aug 20 17:10:27.653: %SYS-5-CONFIG_I: Configured from console by console
*Aug 20 17:11:40.717: GigabitEthernet7/0/0 added as member-2 to port-channel5

Device1# show lacp internal
Flags:  S - Device is requesting Slow LACPDUs
        F - Device is requesting Fast LACPDUs
        A - Device is in Active mode     P - Device is in Passive mode

Channel group 5

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi7/0/0</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x5</td>
<td>0x5</td>
<td>0x43</td>
<td>0x3D</td>
<td></td>
</tr>
<tr>
<td>Gi7/0/0</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x5</td>
<td>0x5</td>
<td>0x42</td>
<td>0x3D</td>
<td></td>
</tr>
</tbody>
</table>

Device1# show interface port 5

Port-channel5 is up, line protocol is up

Hardware is GEChannel, address is 0014.a93d.4aa8 (bia 0000.0000.0000)
MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
    No. of active members in this channel: 2
    Member 0 : GigabitEthernet5/0/0 , Full-duplex, 1000Mb/s <----- added to port channel bundle
    Member 1 : GigabitEthernet7/0/0 , Full-duplex, 1000Mb/s

Last input 00:00:00, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/150/0/0 (size/max/drops/flushes); Total input drops: 0
Interface Port-channel5 queueing strategy: FXF First-In-First-Out
Output queue 0/8192, 0 drops; input queue 0/150, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 0 packets input, 0 bytes, 0 no buffer
 0 received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 0 multicast, 0 pause input
104 packets output, 8544 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
The following example shows how to remove an interface from a bundle:

```
Device1# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device1(config)# interface gigabitethernet 7/0/0
Device1(config-if)# no channel-group 5 mode active
Device1(config-if)#
```

```
*Aug 20 17:15:49.433: GigabitEthernet7/0/0 taken out of port-channel5
*Aug 20 17:15:49.557: %C10K_ALARM-6-INFO: ASSERT CRITICAL GigE 5/0/0 Physical Port Link Down
*Aug 20 17:15:50.161: %C10K_ALARM-6-INFO: CLEAR CRITICAL GigE 5/0/0 Physical Port Link Down
```

```
*Aug 20 17:15:51.433: %LINK-3-UPDOWN: Interface GigabitEthernet7/0/0, changed state to down
*Aug 20 17:15:52.433: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet7/0/0, changed state to down
```

```
Device1(config-if)# end
Device1#
```

```
*Aug 20 17:15:58.209: %SYS-5-CONFIG_I: Configured from console by console
Device1#
```

```
*Aug 20 17:15:59.257: %C10K_ALARM-6-INFO: ASSERT CRITICAL GigE 7/0/0 Physical Port Link Down
*Aug 20 17:15:59.257: %C10K_ALARM-6-INFO: CLEAR CRITICAL GigE 7/0/0 Physical Port Link Down
```

```
Device1#
*Aug 20 17:16:01.257: %LINK-3-UPDOWN: Interface GigabitEthernet7/0/0, changed state to up
*Aug 20 17:16:02.257: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet7/0/0, changed state to up
```

```
Device1# show lACP internal
Flags: S - Device is requesting Slow LACPDU
 F - Device is requesting Fast LACPDU
 A - Device is in Active mode P - Device is in Passive mode
Channel group 5
 LACP port Admin Oper Port Port
 Port Flags State Priority Key Key Number State
 Gi5/0/0 SA bndl 32768 0x5 0x5 0x42 0x3D
```

### Example Monitoring LACP Status

The following example shows LACP activity that you can monitor by using the `show lACP` command.

```
Device1# show lACP internal
Flags: S - Device is requesting Slow LACPDU
 F - Device is requesting Fast LACPDU
 A - Device is in Active mode P - Device is in Passive mode
Channel group 5
 LACP port Admin Oper Port Port
 Port Flags State Priority Key Key Number State
 Gi5/0/0 SA bndl 32768 0x5 0x5 0x42 0x3D
Device1# show lACP 5 counters
LACPDU Marker Marker Response LACPDU
 Sent Recv Sent Recv Sent Recv Pkts Err

Channel group: 5
Gi5/0/0 21 18 0 0 0 0 0 0
Device1# show lACP 5 internal
Flags: S - Device is requesting Slow LACPDU
 F - Device is requesting Fast LACPDU
 A - Device is in Active mode P - Device is in Passive mode
Channel group 5
 LACP port Admin Oper Port Port
 Port Flags State Priority Key Key Number State
 Gi5/0/0 SA bndl 32768 0x5 0x5 0x42 0x3D
Device1# show lACP 5 neighbor
Example: Displaying Port-Channel Interface Information

The following example shows how to display the configuration of port-channel interface 1.

Device# show interface port-channel 1
Port-channel1 is up, line protocol is up
Hardware is GEChannel, address is 0013.19b3.7748 (bia 0000.0000.0000)
MTU 1500 bytes, BW 2000000 Kbit, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
ARP type: ARPA, ARP Timeout 04:00:00
No. of active members in this channel: 2
Member 0 : GigabitEthernet3/0/0 , Full-duplex, 1000Mb/s Member 1 : GigabitEthernet7/1/0 , Full-duplex, 1000Mb/s
Last input 00:00:05, output never, output hang never
Last clearing of "show interface" counters 00:04:40
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Interface Port-channell queuing strategy: FXF First-In-First-Out
Output queue 0/0/0/0, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
0 packets input, 0 bytes, 0 no buffer
Relevant: 0 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
3 packets output, 180 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 PAUSE output
0 output buffer failures, 0 output buffers swapped out
Additional References Configuring IEEE 802.3ad Link Bundling

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring EtherChannels</td>
<td>“Configuring Layer 3 and Layer 2 EtherChannel” chapter of the Catalyst 6500 Release 12.2SXF Software Configuration Guide</td>
</tr>
<tr>
<td>LACP commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>LACP commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Network Management Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ad-2000</td>
<td>IEEE 802.3ad-2000 Link Aggregation</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring IEEE 802.3ad Link Bundling

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 16: Feature Information for Configuring IEEE 802.3ad Link Bundling

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtherChannel Min-Links</td>
<td>Cisco IOS XE</td>
<td>The EtherChannel Min-Links feature allows a port channel to be shut down when the number of active links falls below the minimum threshold. Using the <code>lacp min-bundle</code> command, you can configure the minimum threshold.</td>
</tr>
<tr>
<td></td>
<td>Release 2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE</td>
<td>In Cisco IOS XE Release 3.8S, support was added for the Cisco ASR 903 Router.</td>
</tr>
<tr>
<td></td>
<td>Release 3.8S</td>
<td>The following commands were introduced or modified: <code>lacp min-bundle</code>.</td>
</tr>
<tr>
<td>IEEE 802.3ad Faster Link Switchover Time</td>
<td>Cisco IOS XE</td>
<td>The IEEE 802.3ad Faster Link Switchover Time feature provides a link failover time of 250 milliseconds or less and a maximum link failover time of 2 seconds. Also, port channels remain in the LINK_UP state to eliminate reconvergence by the Spanning-Tree Protocol.</td>
</tr>
<tr>
<td></td>
<td>Release 2.5</td>
<td>The following commands were introduced or modified: <code>lacp fast-switchover</code>.</td>
</tr>
<tr>
<td>IEEE 802.3ad Link Aggregation (LACP)</td>
<td>Cisco IOS XE</td>
<td>The IEEE 802.3ad Link Aggregation feature provides a method for aggregating multiple Ethernet links into a single logical channel based on the IEEE 802.3ad standard. In addition, this feature provides a capability to dynamically provision, manage, and monitor various aggregated links and enables interoperability between various Cisco devices and devices of third-party vendors.</td>
</tr>
<tr>
<td></td>
<td>Release 2.4</td>
<td>In Cisco IOS XE Release 2.4, this feature was implemented on the Cisco ASR1000 Series Router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: <code>channel-group (interface)</code>, <code>debug lacp</code>, <code>lacp max-bundle</code>, <code>lacp port-priority</code>, <code>lacp system-priority</code>, <code>show lacp</code>.</td>
</tr>
<tr>
<td>Link Aggregation Control Protocol (LACP) (802.3ad) for Gigabit Interfaces</td>
<td>Cisco IOS XE</td>
<td>The LACP (802.3ad) for Gigabit Interfaces feature bundles individual Gigabit Ethernet links into a single logical link that provides the aggregate bandwidth of up to four physical links.</td>
</tr>
<tr>
<td></td>
<td>Release 2.5</td>
<td>The following commands were introduced or modified: <code>lacp max-bundle</code>.</td>
</tr>
<tr>
<td>SSO - LACP</td>
<td>Cisco IOS XE</td>
<td>The SSO - LACP feature supports stateful switchover (SSO), in service software upgrade (ISSU), Cisco nonstop forwarding (NSF), and nonstop routing (NSR) on Gigabit EtherChannel bundles.</td>
</tr>
<tr>
<td></td>
<td>Release 2.5</td>
<td>This feature uses no new or modified commands.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Support for 14 Member-links per GEC Bundle</td>
<td>Cisco IOS XE Denali 16.3.1</td>
<td>The Support for 14 Member-links per GEC Bundle feature extends the number of supported member links from 4 to 14 on Cisco ASR 1000 Series Aggregation Services Routers. This feature uses no new or modified commands.</td>
</tr>
</tbody>
</table>
ITU-T Y.1731 Performance Monitoring in a Service Provider Network

ITU-T Y.1731 performance monitoring provides standard-based Ethernet performance monitoring that encompasses the measurement of Ethernet frame delay, frame-delay variation, and throughput as outlined in the ITU-T Y.1731 specification and interpreted by the Metro Ethernet Forum (MEF). Service providers offer service level agreements (SLAs) that describe the level of performance customers can expect for services. This document describes the Ethernet performance management aspect of SLAs.

- Finding Feature Information, on page 211
- Prerequisites for ITU-T Y.1731 Performance Monitoring in a Service Provider Network, on page 211
- Information About ITU-T Y.1731 Performance Monitoring in a Service Provider Network, on page 212
- How to Configure ITU-T Y.1731 Performance Monitoring in a Service Provider Network, on page 214
- Configuration Examples for Configuring ITU-T Y.1731 Performance Monitoring Functions, on page 214
- Additional References, on page 214
- Feature Information for ITU-T Y.1731 Performance Monitoring in a Service Provider Network, on page 215

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for ITU-T Y.1731 Performance Monitoring in a Service Provider Network

- IEEE-compliant connectivity fault management (CFM) must be configured and enabled for Y.1731 performance monitoring to function.
Y1731 is supported over Port Channel interfaces.

Information About ITU-T Y.1731 Performance Monitoring in a Service Provider Network

Frame Delay and Frame-Delay Variation

The Frame Delay parameter can be used for on-demand OAM measurements of frame delay and frame-delay variation. When a maintenance end point (MEP) is enabled to generate frames with frame-delay measurement (ETH-DM) information, it periodically sends frames with ETH-DM information to its peer MEP in the same maintenance entity. Peer MEPs perform frame-delay and frame-delay variation measurements through this periodic exchange during the diagnostic interval.

An MEP requires the following specific configuration information to support ETH-DM:
- MEG level—MEG level at which the MEP exists
- Priority
- Drop eligibility—marked drop ineligible
- Transmission rate
- Total interval of ETH-DM
- MEF10 frame-delay variation algorithm

A MEP transmits frames with ETH-DM information using the TxTimeStampf information element. TxTimeStampf is the time stamp for when the ETH-DM frame was sent. A receiving MEP can compare the TxTimeStampf value with the RxTimef value, which is the time the ETH-DM frame was received, and calculate one-way delay using the formula:

\[\text{frame delay} = \text{RxTimef} - \text{TxTimeStampf} \]

One-way frame-delay measurement (1DM) requires that clocks at both the transmitting MEP and the receiving MEPs are synchronized. Measuring frame-delay variation does not require clock synchronization and the variation can be measured using 1DM or a frame-delay measurement message (DMM) and a frame-delay measurement reply (DMR) frame combination.

If it is not practical to have clocks synchronized, only two-way frame-delay measurements can be made. In this case, the MEP transmits a frame containing ETH-DM request information and the TxTimeStampf element, and the receiving MEP responds with a frame containing ETH-DM reply information and the TxTimeStampf value copied from the ETH-DM request information.

Two-way frame delay is calculated as

\[(\text{RxTimeb} - \text{TxTimeStampf}) - (\text{TxTimeStampb} - \text{RxTimeStampf}) \]

where RxTimeb is the time that the frame with ETH-DM reply information was received. Two-way frame delay and variation can be measured using only DMM and DMR frames.

To allow more precise two-way frame-delay measurement, the MEP replying to a frame with ETH-DM request information can also include two additional time stamps in the ETH-DM reply information:
• RxTimeStamp — Time stamp of the time at which the frame with ETH-DM request information was received.

• TxTimeStamp — Time stamp of the time at which the transmitting frame with ETH-DM reply information was sent.

• The timestamping happens at the hardware level for DMM operations.

Note

The frame-loss, frame-delay, and frame-delay variation measurement processes are aborted when faults related to continuity and availability occur or when known network topology changes occur.

An MIP is transparent to the frames with ETH-DM information; therefore, an MIP does not require information to support the ETH-DM function.

The figure below shows a functional overview of a typical network in which Y.1731 performance monitoring is used.

Figure 3: Y.1731 Performance Monitoring

Benefits of ITU-T Y.1731 Performance Monitoring

Combined with IEEE-compliant connectivity fault management (CFM), Y.1731 performance monitoring provides a comprehensive fault management and performance monitoring solution for service providers. This comprehensive solution in turn lessens service providers’ operating expenses, improves their service-level agreements (SLAs), and simplifies their operations.
How to Configure ITU-T Y.1731 Performance Monitoring in a Service Provider Network

Configuring Performance Monitoring Parameters

The following new commands were introduced that can be used to configure and display performance monitoring parameters: `debug ethernet cfm pm`, `monitor loss counters`, and `show ethernet cfm pm`.

For more information about CFM and Y.1731 performance monitoring commands, see the Cisco IOS Carrier Ethernet Command Reference. For more information about debug commands, see the Cisco IOS Debug Command Reference.

Configuration Examples for Configuring ITU-T Y.1731 Performance Monitoring Functions

Example: Configuring Performance Monitoring

For Y.1731 performance monitoring configuration examples, see Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations. For information on Y.1731 On-Demand and Concurrent Operations see, IPSLA Y1731 On-Demand and Concurrent Operations.

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC-in-MAC commands: complete command syntax, command mode, command history,</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax,</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ah</td>
<td>IEEE 802.1ah - Provider Backbone Bridges</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for ITU-T Y.1731 Performance Monitoring in a Service Provider Network

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 17: Feature Information for ITU-T Y.1731 Performance Monitoring in a Service Provider Network

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y.1731 Performance Monitoring</td>
<td>Cisco IOS XE Release 3.5S</td>
<td>The Y.1731 Performance Monitoring feature describes the Ethernet performance monitoring aspect of SLAs such as frame loss, frame delay, and frame-delay variation. In Cisco IOS XE Release 3.5S, support was added for the Cisco ASR 903 Router. In Cisco IOS XE Release 3.6S, support for port channels and cross connect functionality was provided. The following commands were introduced or modified: <code>debug ethernet cfm pm</code>, <code>ethernet cfm distribution enable</code>, <code>monitor loss counters</code>, <code>show ethernet cfm pm</code>.</td>
</tr>
</tbody>
</table>
Enabling Ethernet Local Management Interface

Ethernet Local Management Interface (LMI) is an Ethernet layer operation, administration, and management (OAM) protocol. It provides information that enables autoconfiguration of customer edge (CE) devices and provides the status of Ethernet virtual connections (EVCs) for large Ethernet metropolitan-area networks (MANs) and WANs. Specifically, Ethernet LMI notifies a CE device of the operating state of an EVC and the time when an EVC is added or deleted. Ethernet LMI also communicates the attributes of an EVC and a user-network interface (UNI) to a CE device.

The advent of Ethernet as a MAN and WAN technology imposes a new set of OAM requirements on Ethernet’s traditional operations, which were centered on enterprise networks only. The expansion of Ethernet technology into the domain of service providers, where networks are substantially larger and more complex than enterprise networks and the user-base is wider, makes operational management of link uptime crucial. More importantly, the timeliness in isolating and responding to a failure becomes mandatory for normal day-to-day operations, and OAM translates directly to the competitiveness of the service provider.

- Finding Feature Information, on page 217
- Prerequisites for Enabling Ethernet Local Management Interface, on page 218
- Restrictions for Enabling Ethernet Local Management Interface, on page 218
- Information About Enabling Ethernet Local Management Interface, on page 218
- How to Enable Ethernet Local Management Interface, on page 219
- Configuration Examples for Ethernet Local Management Interface, on page 221
- Additional References for Enabling Ethernet Local Management Interface, on page 222
- Feature Information for Enabling Ethernet Local Management Interface, on page 223
- Glossary, on page 223

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Enabling Ethernet Local Management Interface

Business Requirements

- Ethernet operation, administration, and management (OAM) such as connectivity fault management (CFM) must be implemented and operational on the service provider’s network.

Restrictions for Enabling Ethernet Local Management Interface

- Ethernet Local Management Interface (LMI) relies on Ethernet connectivity fault management (CFM) for the status of an Ethernet virtual circuit (EVC), the remote user network interface (UNI) identifier associated with an EVC, and remote UNI status.

- Ethernet LMI customer edge (CE) is available only on routing ports on routing platforms. For information about Ethernet LMI provider edge (PE) functionality on switching platforms, see the “Configuring Ethernet CFM and E-LMI” chapter of the Cisco ME 3400 Switch Software Configuration Guide.

- Not all Cisco software releases support autoconfiguration of CE devices.

Information About Enabling Ethernet Local Management Interface

EVC

An Ethernet virtual circuit (EVC) as defined by the Metro Ethernet Forum could be a port level point-to-point or multipoint-to-multipoint Layer 2 circuit. EVC status can be used by the customer edge (CE) device to find an alternative path in to the service provider network or in some cases, fall back to a backup path over Ethernet or another alternative service such as ATM.

Ethernet LMI

Ethernet Local Management Interface (LMI) is an Ethernet layer operation, administration, and management (OAM) protocol between a customer edge (CE) device and the provider edge (PE) device in large Ethernet MANs and WANs. It provides information that enables service providers to autoconfigure CE devices with service parameters and parameter changes from a user provider edge (UPE) device.

The figure below shows where in a network Ethernet LMI functions.
LMI also provides the status of Ethernet virtual circuits (EVCs) in large Ethernet MANs and WANs to the CE. Specifically, Ethernet LMI notifies a CE device of the operating state of an EVC and the time when an EVC is added or deleted. Ethernet LMI also communicates EVC and user network identifier (UNI) attributes to a CE device.

The Ethernet LMI protocol includes the following procedures, as defined by the MEF 16 Technical Specification:

- Notifying the CE when an EVC is added
- Notifying the CE when an EVC is deleted
- Notifying the CE of the availability state of a configured EVC (Active, Not Active, or Partially Active)
- Communicating UNI and EVC attributes to the CE

Benefits of Ethernet LMI

- Communication of end-to-end status of the EVC to the CE device
- Communication of EVC and UNI attributes to a CE device
- Competitive advantage for service providers

How to Enable Ethernet Local Management Interface

Enabling Ethernet LMI on All Supported Interfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet lmi global
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Enabling Ethernet LMI on a Single Supported Interface

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet lmi interface`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th align="right">Purpose bolekey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td align="right">Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td align="right"></td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td align="right"></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td align="right">Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td align="right"></td>
</tr>
<tr>
<td><code>Device# configure terminal</code></td>
<td align="right"></td>
</tr>
<tr>
<td>Step 3 <code>interface type number</code></td>
<td align="right">Specifies an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td align="right"></td>
</tr>
<tr>
<td><code>Device(config)# interface ethernet 0/0</code></td>
<td align="right"></td>
</tr>
<tr>
<td>Step 4</td>
<td align="right">Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td align="right">-------------------</td>
</tr>
<tr>
<td></td>
<td align="right">ethernet lmi interface</td>
</tr>
<tr>
<td></td>
<td align="right">Example: Device(config-if)# ethernet lmi interface</td>
</tr>
<tr>
<td>Step 5</td>
<td align="right">end</td>
</tr>
<tr>
<td></td>
<td align="right">Example: Device# end</td>
</tr>
</tbody>
</table>

Configuration Examples for Ethernet Local Management Interface

The examples in this section show the configurations that enable Ethernet LMI on all interfaces on a CE device (globally) and on a specific interface on a CE device.

Example: Enabling Ethernet LMI on All Supported Interfaces

```bash
enable
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
eternet lmi global
end
00:06:33: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/0, changed p
```

Example: Enabling Ethernet LMI on a Single Supported Interface

```bash
enable
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
interface ethernet 0/0
eternet lmi interface
end
00:05:51: %SYS-5-CONFIG_I: Configured from console by console
```
Additional References for Enabling Ethernet Local Management Interface

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Connectivity Fault Management (CFM)</td>
<td>“Configuring Ethernet Connectivity Fault Management in a Service Provider Network” in the Cisco IOS Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Configuring CFM and Ethernet Local Management Interface (E-LMI) in a service provider network</td>
<td>Cisco ME 3400 Switch Software Configuration Guide, Rel. 12.2(25)SEG</td>
</tr>
<tr>
<td>Commands used for configuring Ethernet LMI in a service provider network</td>
<td>Cisco ME 3400 Switch Command Reference, Rel. 12.2(25)SEG</td>
</tr>
<tr>
<td>Ethernet LMI at a provider edge</td>
<td>“Configuring Ethernet Local Management Interface at a Provider Edge” in the Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Carrier Ethernet commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE P802.1ag/D5.2</td>
<td>Draft Standard for Local and Metropolitan Area Networks</td>
</tr>
<tr>
<td>ITU-T Q.3/13</td>
<td>Liaison statement on Ethernet OAM (Y.17ethoam)</td>
</tr>
<tr>
<td>IETF VPLS OAM</td>
<td>L2VPN OAM Requirements and Framework</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Enabling Ethernet Local Management Interface

Table 18: Feature Information for Enabling Ethernet Local Management Interface

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Local Management Interface</td>
<td>Cisco IOS XE Release 3.9S</td>
<td>Ethernet LMI is an Ethernet layer OAM protocol. It provides information that enables autoconfiguration of CE devices and provides the status of EVCs for large Ethernet MANs and WANs. The following commands were introduced or modified: <code>clear ethernet lmi statistics</code>, <code>debug ethernet lmi</code>, <code>ethernet lmi</code>, <code>ethernet lmi global</code>, <code>ethernet lmi interface</code>, <code>show ethernet lmi</code>.</td>
</tr>
</tbody>
</table>

Glossary

- **CE** --customer edge. Edge equipment on the customer side of a user-network interface (UNI).
- **CE-VLAN ID** --Identifier of a CE-VLAN.
- **E-LMI** --Ethernet Local Management Interface. An Ethernet layer OAM protocol. It provides information that enables autoconfiguration of CE devices and provides the status of Ethernet virtual connections (EVCs) for large Ethernet MANs and WANs.
- **EVC** --Ethernet virtual connection. An association of two or more user-network interfaces.
- **OAM** --operations, administration, and maintenance. A term used by several standards bodies to describe protocols and procedures for operating, administrating, and maintaining networks. Examples are ATM OAM and IEEE Std. 802.3ah OAM.
- **PE** --provider edge. Edge equipment on the service provider side of a user-network interface (UNI).
- **UNI** --user-network interface. A common term for the connection point between an operator’s bridge and customer equipment. A UNI often includes a C-VLAN-aware bridge component. The term UNI is used broadly in the IEEE P802.1ag/D5.2 standard when the purpose for various features of LMI are explained.
Layer 2 Access Control Lists on EVCs

The ability to filter packets in a modular and scalable way is important for both network security and network management. Access Control Lists (ACLs) provide the capability to filter packets at a fine granularity. In Metro Ethernet networks, ACLs are directly applied on Ethernet virtual circuits (EVCs).

Layer 2 Access Control Lists on EVCs is a security feature that allows packet filtering based on MAC addresses. This module describes how to implement ACLs on EVCs.

Finding Feature Information, on page 225
Prerequisites for Layer 2 Access Control Lists on EVCs, on page 225
Restrictions for Layer 2 Access Control Lists on EVCs, on page 226
Information About Layer 2 Access Control Lists on EVCs, on page 226
How to Configure Layer 2 Access Control Lists on EVCs, on page 227
Configuration Examples for Layer 2 Access Control Lists on EVCs, on page 231
Additional References, on page 233
Feature Information for Layer 2 Access Control Lists on EVCs, on page 234

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Layer 2 Access Control Lists on EVCs

• Knowledge of how service instances must be configured.

• Knowledge of extended MAC ACLs and how they must be configured.
Restrictions for Layer 2 Access Control Lists on EVCs

Information About Layer 2 Access Control Lists on EVCs

EVCs

An Ethernet virtual circuit (EVC) as defined by the Metro Ethernet Forum is a port-level point-to-point or multipoint-to-multipoint Layer 2 circuit. It is an end-to-end representation of a single instance of a Layer 2 service being offered by a provider to a customer. An EVC contains the different parameters on which the service is being offered. A service instance is the instantiation of an EVC on a specified port.

Service instances are configured under a port channel. The traffic carried by the service instance is load balanced across member links. Service instances under a port channel are grouped and each group is associated with one member link. Ingress traffic for a single EVC can arrive on any member of the bundle. All egress traffic for a service instance uses only one of the member links. Load balancing is achieved by grouping service instances and assigning them to a member link.

Ethernet virtual connection services (EVCS) use the EVCs and service instances to provide Layer 2 switched Ethernet services. EVC status can be used by a customer edge (CE) device either to find an alternative path to the service provider network or in some cases, to fall back to a backup path over Ethernet or over another alternative service such as ATM.

For information about the Metro Ethernet Forum standards, see the Standards table in the “Additional References” section.

Relationship Between ACLs and Ethernet Infrastructure

The following points capture the relationship between ACLs and Ethernet Infrastructure (EI):

- ACLs can be directly applied on an EVC using the command-line interface (CLI). An ACL is applied to a service instance, which is the instantiation of an EVC on a given port.
- One ACL can be applied to more than one service instance at any time.
- One service instance can have one ACL at most applied to it at any time. If a Layer 2 ACL is applied to a service instance that already has a Layer 2 ACL, the new one replaces the old one.
- Only named ACLs can be applied to service instances. The command syntax ACLs is retained; the `mac access-list extended` command is used to create an ACL.
- The `show ethernet service instance` command can be used to provide details about ACLs on service instances.
How to Configure Layer 2 Access Control Lists on EVCs

Creating a Layer 2 ACL

Perform this task to create a Layer 2 ACL with a single ACE.

SUMMARY STEPS

1. enable
2. configure terminal
3. mac access-list extended name
4. permit {{src-mac mask | any} {dest-mac mask | any} [protocol [vlan vlan] [cos value]]}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
enable
Example:
Device> enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Step 2**
configure terminal
Example:
Device# configure terminal | Enters global configuration mode. |
| **Step 3**
mac access-list extended name
Example:
Device(config)# mac access-list extended test-12-acl | Defines an extended MAC ACL and enters mac access list control configuration mode. |
| **Step 4**
permit {{src-mac mask | any} {dest-mac mask | any} [protocol [vlan vlan] [cos value]]}
Example:
Device(config-ext-macl)# permit 00aa.00bb.00cc 0.0.0.0 any | Allows forwarding of Layer 2 traffic if the conditions are matched. Creates an ACE for the ACL. |

Applying a Layer 2 ACL to a Service Instance

Perform this task to apply a Layer 2 ACL to a service instance. Note that packet filtering takes place only after the ACL has been created and applied to the service instance.
Before you begin

Before applying an ACL to a service instance, you must create it using the `mac access-list extended` command. See the “Creating a Layer 2 ACL” section.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance id ethernet`
5. `encapsulation dot1q vlan-id`
6. `mac access-group access-list-name in`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 Example:
 `Device> enable`
 • Enter your password if prompted. |
| **Step 2** `configure terminal` | Enters global configuration mode.
 Example:
 `Device# configure terminal` |
| **Step 3** `interface type number` | Specifies the type and location of the interface to configure, where:
 Example:
 `Device(config)# interface gigabitethernet 1/0/0`
 • `type` -- Specifies the type of the interface.
 • `number` -- Specifies the location of the interface. |
| **Step 4** `service instance id ethernet` | Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.
 Example:
 `Device(config-if)# service instance 100 ethernet` |
| **Step 5** `encapsulation dot1q vlan-id` | Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.
 Example:
 `Device(config-if-srv)# encapsulation dot1q 100` |
| **Step 6** `mac access-group access-list-name in` | Applies a MAC ACL to control incoming traffic on the interface.
 Example:
 `Device(config-if-srv)# mac access-group test-12-acl in` |
Configuring a Layer 2 ACL with ACEs on a Service Instance

Perform this task to configure the same ACL with three ACEs and stop all other traffic on a service instance.

SUMMARY STEPS

1. enable
2. configure terminal
3. mac access-list extended name
4. permit {src-mac mask | any} {dest-mac mask | any}
5. permit {src-mac mask | any} {dest-mac mask | any}
6. permit {src-mac mask | any} {dest-mac mask | any}
7. deny any any
8. exit
9. interface type number
10. service instance id ethernet
11. encapsulation dot1q vlan-id
12. mac access-group access-list-name in

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 mac access-list extended name</td>
<td>Defines an extended MAC ACL and enters mac access control list configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# mac access list extended test-12-acl</td>
<td></td>
</tr>
<tr>
<td>Step 4 permit {src-mac mask</td>
<td>any} {dest-mac mask</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ext-macl)# permit 00aa.bbcc.ddea 0.0.0 any</td>
<td></td>
</tr>
<tr>
<td>Step 5 permit {src-mac mask</td>
<td>any} {dest-mac mask</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-ext-macl)# permit 00aa.bbcc.ddeb 0.0.0 any</td>
<td>Allows forwarding of Layer 2 traffic if the conditions are matched. This creates an ACE for the ACL.</td>
</tr>
<tr>
<td>Step 6</td>
<td>permit `{src-mac mask</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ext-macl)# permit 00aa.bbcc.ddec 0.0.0 any</td>
</tr>
<tr>
<td>Step 7</td>
<td>deny any any</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ext-macl)# deny any any</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ext-macl)# exit</td>
</tr>
<tr>
<td>Step 9</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet 1/0/0</td>
</tr>
<tr>
<td>Step 10</td>
<td>service instance id ethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 200 ethernet</td>
</tr>
<tr>
<td>Step 11</td>
<td>encapsulation dot1q vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
</tr>
<tr>
<td>Step 12</td>
<td>mac access-group access-list-name in</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# mac access-group test-12-acl in</td>
</tr>
</tbody>
</table>

Verifying the Presence of a Layer 2 ACL on a Service Instance

Perform this task to verify that a Layer 2 ACL is present on an EVC. This verification task can be used after an ACL has been configured to confirm its presence.
SUMMARY STEPS

1. enable
2. configure terminal
3. show ethernet service instance id id interface type number detail

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ethernet service instance id 100 interface gigabitethernet 3/0/1 detail</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>show ethernet service instance id id interface type number detail</td>
<td>Displays detailed information about Ethernet customer service instances.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show ethernet service instance id 100 interface gigabitethernet 3/0/1 detail</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Layer 2 Access Control Lists on EVCs

Example Applying a Layer 2 ACL to a Service Instance

The following example shows how to apply a Layer 2 ACL called mac-20-acl to a service instance. The ACL has five permitted ACEs and all other traffic is not allowed.

```
enable
configure terminal
mac access-list extended mac-20-acl

permit 00aa.bbcc.adec 0.0.0 any
permit 00aa.bbcc.bdec 0.0.0 any
permit 00aa.bbcc.cdec 0.0.0 any
permit 00aa.bbcc.edec 0.0.0 any
```
Example Applying a Layer 2 ACL to Three Service Instances on the Same Interface

The following example shows how to apply a Layer 2 ACL called mac-07-acl to three service instances on the same interface:

```plaintext
enable
configure terminal
mac access-list extended mac-07-acl

permit 00aa.bbcc.a00 0.0.0 any
permit 00aa.bbcc.b00 0.0.0 any
permit 00aa.bbcc.c00 0.0.0 any

deny any any
exit
interface gigabitethernet 10/0/0
service instance 100 ethernet
encapsulation dot1q 100
mac access-group mac-07-acl in
```

Example Creating a Layer 2 ACL with ACEs

The following example shows how to create a Layer 2 ACL called mac-11-acl with two permitted ACEs:

```plaintext
enable
configure terminal
mac access-list extended mac-11-acl

permit 00aa.00bb.00cc 1a11.0101.11c1 any
permit 00aa.00bb.00cc 1a11.0101.11c2 any
```

Example Displaying the Details of a Layer 2 ACL on a Service Instance

The following sample output displays the details of a Layer 2 ACL called test-acl on a service instance.
Device# show ethernet service instance id 100 interface ethernet0/0 detail
Service Instance ID: 100
L2 ACL (inbound): test-acl
Associated Interface: Ethernet0/0
Associated EVC: test
L2 protocol drop
CEvlans:
 Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
L2 ACL permit count: 10255
L2 ACL deny count: 53

The table below describes the significant fields in the output.

Table 19: show ethernet service instance Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Instance ID</td>
<td>Displays the service instance ID.</td>
</tr>
<tr>
<td>L2 ACL (inbound):</td>
<td>Displays the ACL name.</td>
</tr>
<tr>
<td>Associated Interface:</td>
<td>Displays the interface details of the service instance.</td>
</tr>
<tr>
<td>Associated EVC:</td>
<td>Displays the EVC with which the service instance is associated.</td>
</tr>
<tr>
<td>CEvlans:</td>
<td>Displays details of the associated VLAN ID.</td>
</tr>
<tr>
<td>State:</td>
<td>Displays whether the service instance is in an up or down state.</td>
</tr>
<tr>
<td>L2 ACL permit count</td>
<td>Displays the number of packet frames allowed to pass on the service instance by the ACL.</td>
</tr>
<tr>
<td>L2 ACL deny count</td>
<td>Displays the number of packet frames not permitted to pass on the service instance by the ACL.</td>
</tr>
</tbody>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Carrier Ethernet commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Configuring CFM over an EFP Interface with the Cross Connect feature on the Cisco ASR 903 Router.</td>
<td>Configuring the CFM over EFP Interface with Cross Connect Feature</td>
</tr>
</tbody>
</table>
Feature Information for Layer 2 Access Control Lists on EVCs

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 20: Feature Information for Layer 2 Access Control Lists on EVCs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Access Control Lists on EVCs</td>
<td>Cisco IOS XE Release 3.6S</td>
<td>The Layer 2 Access Control Lists on EVCs feature introduces ACLs on EVCs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The following commands were introduced or modified: interface, mac access-group in, mac access-list extended, show ethernet service instance.</td>
</tr>
</tbody>
</table>
Layer 2 Ethernet over GRE

Ethernet over Soft Generic Routing Encapsulation (EoGRE) is an aggregation solution for aggregating WiFi traffic from hotspots. This solution enables customer premises equipment (CPE) devices to bridge the Ethernet traffic from an end host, and encapsulates the traffic in Ethernet packets over an IP GRE tunnel. The IP GRE tunnel terminates on a service provider broadband network gateway, which then terminates the end host traffic and manages the subscriber session for the end host.

- Finding Feature Information, on page 235
- Restrictions for Layer 2 Ethernet over GRE, on page 235
- Information About Layer 2 Ethernet over GRE, on page 236
- Configuration Example: Two-box Deployment Model, on page 237
- Additional References, on page 237
- Feature Information for Layer 2 Ethernet over GRE, on page 238

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Layer 2 Ethernet over GRE

- Transport on IPv6 is not supported.
- Virtual Ethernet interface does not support encapsulation untagged.
- L2 EoGRE is not supported on the Cisco CSR1000V platform.
- Multicast traffic is not supported.
Information About Layer 2 Ethernet over GRE

The ASR 1000 platform services as the SP broadband network gateway which:

- Terminates the IP GRE tunnel, and/or
- Manages the subscriber session for the end-host client.

Figure 4: Ethernet over Soft GRE Deployment

The deployment model that is supported is the two-box model:

- In the two-box model, the ASR 1000 router provides only the functionality to terminate the bridged Ethernet over soft GRE traffic. The ISG subscriber management resides in an external router which is connected with the router using L2 bridge-domain.

The major components involved in L2 EoGRE are:

- Virtual Ethernet interface.
- Ethernet service instance.
- IP GRE tunnel data plane.
- L2 bridge-domain data plane.

Control Plane—After the Virtual Ethernet interface is configured, the Virtual Ethernet interface is downloaded to the ASR 1000 platform as a virtual interface.

Service instances (EVCs) are configured under the virtual ethernet interface and are downloaded to ASR1K platform. The service instances are then propagated in the ASR 1000 platform to fman-rp, fman-fp, cpp-client and cpp dataplane, where the EVC feature invocation arrays (FIAs) are enabled.
Data Plane—When receiving the IP GRE encapsulated Ethernet packet, the data plane tunnel ingress processing checks the protocol field in the GRE header. If the protocol is transparent Ethernet bridging protocol (0x6558), the packet is identified as Ethernet over soft GRE packet and is directed to the Ethernet service instance classification module. The Ethernet service instance classification module classifies the packet into the service instance configured under the Virtual Ethernet interface using the VLAN tag in the packet. After the Ethernet service instance is identified, the packet goes through the programmed processing FIA under the Ethernet service instance such as vlan tag manipulation and is then sent to L2 bridge domain for further processing. At the L2 bridge domain processing module, the client source MAC address is dynamically learned, and so is the IP GRE tunnel end-points. As a result, the MAC address table contains the IP GRE tunnel end-points for the client MAC address.

The packet is then either bridged to the external ISG for subscriber processing in the case of the two-box deployment model. In the direction where the ISG, either external or internal, sends a packet to the mobile client, the L2 bridge domain looks up the destination MAC address using the L2 bridge domain MAC address table. Once the result is found, the IP GRE tunnel end point addresses are also retrieved from the MAC address table. The L2 Ethernet packet is then encapsulated into the IP GRE tunnel using the retrieved tunnel end point address. Once encapsulated into the IP GRE packet, IP lookup is then performed and the packet is sent to the CPE.

Configuration Example: Two-box Deployment Model

```plaintext
service instance 1 ethernet
encap dot1q 100
rewrite ingress tag pop 1 symmetric
bridge-domain 10

Interface Gi1/0/0
service instance 1 ethernet
encap dot1q 100
rewrite ingress tag pop 1 symmetric
bridge-domain 10
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration guide</td>
<td>Cisco IOS Carrier Ethernet Configuration Guide, Release 12.2SR</td>
</tr>
<tr>
<td>Carrier Ethernet commands: complete command syntax, command mode, command</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax,</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Layer 2 Ethernet over GRE

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 21: Feature Information for Layer 2 Ethernet over GRE

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 2 Ethernet over GRE</td>
<td>Cisco IOS XE</td>
<td>Ethernet over Soft Generic Routing Encapsulation (EoGRE) is an aggregation solution for aggregating WiFi traffic from hotspots. This solution enables</td>
</tr>
<tr>
<td></td>
<td>Release 3.9S</td>
<td>customer premises equipment (CPE) devices to bridge the Ethernet traffic from an end host, and encapsulates the traffic in Ethernet packets over an IP GRE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tunnel. The IP GRE tunnel terminates on a service provider broadband network gateway, which then terminates the end host traffic and manages the subscriber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>session for the end host.</td>
</tr>
</tbody>
</table>
CHAPTER 14

Configuring MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

The MAC Address Limiting on Service Instances, Bridge Domains, and EVC Port Channels feature addresses port security with service instances by providing the capability to control and filter MAC address learning behavior at the granularity of a per-service instance. When a violation requires a shutdown, only the customer who is assigned to a given service instance is affected and—not all customers who are using the port.

MAC address limiting is a type of MAC security and is also referred to as a MAC security component or element.

- Finding Feature Information, on page 241
- Prerequisites for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels, on page 242
- Restrictions for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels, on page 242
- Information About MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels, on page 243
- How to Configure MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels, on page 251
- Configuration Examples for MAC Address Limiting on Service Instances and Bridge Domains and EVC Port Channels, on page 273
- Additional References, on page 277
- Feature Information for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels, on page 279

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

- An understanding of service instances and bridge domains.
- An understanding of how port channels and EtherChannels work in a network.

Restrictions for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

- MAC address limiting for service instances and bridge domains is configured under a service instance and is permitted only after the service instance is configured under a bridge domain. If a service instance is removed from a bridge domain, all the MAC address limiting commands under it are also removed. If a bridge domain is removed from a service instance, all the MAC address limiting commands are also removed.
- The MAC Address on RSP1 port channel overlaps with the interface MAC address and the traffic is dropped from ports 1 to 8 when an interface module is placed on slot 4.
- System wide, the following limits apply to the total configured whitelist and learned MAC addresses:
 - Total number of MAC addresses supported under MAC Security is limited to 64K (65536).
 - Total number of secure EFPs in the system is limited to 64K (65536).
 - Total number of MAC addresses supported under MAC Security, per EFP, is limited to 1K (1024).
 - Total number of EFPs per bridge domain 4000.
 - Total number of bridge domains per system 16000.
- You can configure or remove the various MAC security elements irrespective of whether MAC security is enabled on the EFP. However, these configurations become operational only after MAC security is enabled.
- It is recommended that you enable MAC address security feature on all the EFPs in a bridge-domain.
- When you enable the MAC address security for EVC bridge domain feature, existing MAC address table entries on the EFP are removed.
- When you enable the MAC address security, the traffic is forwarded once the device learns the MAC address.
- The MAC address security for EVC bridge domain feature can be configured on an EFP only if the EFP is a member of a bridge domain.
- you can configure non-MAC address security on an EVC and enable MAC address security on a different EVC, which are in the same bridge-domain.
- If you disassociate the EFP from the BD, the MAC security feature is completely removed.
• For port-channel, this configuration is propagated to all member links in the port-channel. Consistent with the already implemented bridge domain EVC port-channel functionality, packets on a secured EFP are received on any member link, but all the egress packets are sent out to one of the selected member links.

• System does not permit addition of multicast/broadcast MAC address as a permit address. However, addition of multicast/broadcast MAC address is allowed in deny address configuration to verify such invalid packets.

• When EVC with the same EFP or service instance is created between ports 1 and 2 and MAC address m1 is configured as permit address (whitelist) on port1, the same MAC address can be configured as deny address (blacklist) on port2 and vice versa.

Information About MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

Ethernet Virtual Circuits, Service Instances, and Bridge Domains

An Ethernet virtual circuit (EVC) as defined by the Metro Ethernet Forum is a port-level point-to-point or multipoint-to-multipoint Layer 2 circuit. It is an end-to-end representation of a single instance of a Layer 2 service being offered by a provider to a customer. An EVC embodies the different parameters on which the service is being offered. A service instance is the instantiation of an EVC on a given port.

Support for Ethernet bridging is an important Layer 2 service that is offered on a router as part of an EVC. Ethernet bridging enables the association of a bridge domain with a service instance.

Service instances are configured under a port channel. The traffic carried by service instances is load-balanced across member links. Service instances under a port channel are grouped and each group is associated with one member link. Ingress traffic for a single service instance can arrive on any member of the bundle. All egress traffic for a service instance uses only one of the member links. Load-balancing is achieved by grouping service instances and assigning them to a member link.

For information about the Metro Ethernet Forum standards, see the “Standards” table in the “Additional References” section.

EVCs on Port Channels

An EtherChannel bundles individual Ethernet links into a single logical link that provides the aggregate bandwidth of up to eight physical links. The Ethernet Virtual Connection Services (EVCS) EtherChannel feature provides support for EtherChannels on service instances.

Note

The MAC Address Security on EVC Port Channel services is supported only on bridge domains over Ethernet and is not supported on xconnect services.

EVCS uses the concepts of EVCs and service instances.
Load balancing is done on an Ethernet flow point (EFP) basis where a number of EFPs exclusively pass traffic through member links.

MAC Security and MAC Addressing

MAC security is enabled on a service instance by configuring the `mac security` command. Various MAC security elements can be configured or removed regardless of whether the `mac security` command is presently configured, but these configurations become operational only when the `mac security` command is applied.

In this document, the term “secured service instance” is used to describe a service instance on which MAC security is configured. The MAC addresses on a service instance on which MAC security is configured are referred to as “secured MAC addresses.” Secured MAC addresses can be either statically configured (as a permit list) or dynamically learned.

MAC Address Permit List

A permit list is a set of MAC addresses that are permitted on a service instance. Permitted addresses permanently configured into the MAC address table of the service instance.

On a service instance that is a member of a bridge domain, the operator is permitted to configure one or more permitted MAC addresses.

For each permitted address, eligibility tests are performed and after the address passes these tests, it is either:

- Programmed into the MAC address table of the bridge domain, if MAC security is enabled on the service instance or,
- Stored in an area of memory referred to as “MAC table cache” if MAC security is not enabled on the service instance. When MAC security is enabled, the addresses from the MAC table cache are added to the MAC address table as secure addresses.

The eligibility tests performed when a user tries to add a MAC address to the permit list on a service instance are as follows:

- If the address is already a denied address on the service instance, the configuration is rejected with an appropriate error message.
- If the acceptance of this address would increase the secure address count on the service instance beyond the maximum number allowed, an attempt is made to make room by removing an existing address from the MAC address table. The only candidate for removal is a dynamically learned address on the service instance. If sufficient room cannot be made, the configuration is rejected. If the acceptance of this address would increase the secure address count on the bridge domain beyond the maximum number allowed, an attempt is made to make room by removing an existing address from the MAC address table. The only candidate for removal is a dynamically learned address on the service instance. If room cannot be made, the configuration is rejected.
- If the address is already permitted on another service instance in the same bridge domain, one of the following actions occur:
 - If the conflicting service instance has MAC security configured, the configuration is rejected with an appropriate error message.
 - If the conflicting service instance does not have MAC security configured, the configuration is accepted silently. (If the operator attempts to enable MAC security on the conflicting service instance, that attempt fails.)
MAC Address Deny List

A deny list is a set of MAC addresses that are not permitted on a service instance. An attempt to learn a denied MAC address will fail. On a service instance that is a member of a bridge domain, the operator is permitted to configure one or more denied MAC addresses. The arrival of a frame with a source MAC address that is part of a deny list will trigger a violation response.

Before a denied address can be configured, the following test is performed:

- If the address is already configured as a permitted address on the specific service instance or if the address has been learned and saved as a sticky address on the service instance, the configuration is rejected with an appropriate error message.

In all other cases, the configuration of the denied address is accepted. Typical cases include:

- The address is configured as a permitted address on another service instance in the same bridge domain, or the address has been learned and saved as a sticky address on another service instance.
- The address is present in the MAC table of the bridge domain as a dynamically learned address on the specific service instance and is deleted from the MAC table before the configuration is accepted.

MAC Address Limiting and Learning

An upper limit for the number of secured MAC addresses allowed on a bridge domain service instance can be configured. This limit includes addresses added as part of a permit list and dynamically learned MAC addresses.

Before an unknown MAC address is learned, a series of checks are run against a set of configured and operational constraints. If any of these checks fails, the address is not learned, and a configured violation response is triggered.

Static and Dynamic MAC Addresses

A static MAC address is specified as permitted on a service instance, by a `mac security permit` command. A dynamic MAC address is a source MAC address encountered by the service instance that is not present in the MAC table but is allowed into and learned by the MAC address table.

Dynamic MAC Address Learning

Dynamic MAC address learning occurs when the bridging data path encounters an ingress frame whose source address is not present in the MAC address table for the ingress secured service instance.

The MAC security component is responsible for permitting or denying the addition of the new source address into the MAC table. The following constraints apply:

- If a MAC address is to be learned, a check is performed to determine whether the number of secured MAC addresses exceed the maximum number that are permitted to be learned on the individual service instance and on the bridge domain.
- A check is performed to determine if the MAC address on another service instance is learned on a secured service instance in the same bridge domain.
- A check is performed to verify if the new dynamic MAC address is in a deny list.
MAC Address Limiting on Service Instances

The user can configure the maximum number of MAC addresses that can exist in the MAC table that is associated with a service instance. This number includes statically configured and dynamically learned (including sticky) addresses.

On a service instance that has MAC security enabled and that does not have the maximum number of MAC addresses configured, the number of addresses allowed is one. This means that if the service instance has an associated permit list, that permit list can have only one address, and no addresses are learned dynamically. If the service instance does not have an associated permit list, one MAC address may be learned dynamically.

MAC Address Limiting for Bridge Domains

An upper limit for the number of MAC addresses that can reside in the MAC address table of a bridge domain can be set. This is set independently of the upper limit of secured MAC addresses on the service instance. An attempted violation of this bridge domain MAC address limit will cause the MAC address learn attempt to fail, and the frame to be dropped.

If the bridge domain MAC address limit is not configured, then by default, the maximum number of MAC addresses allowed on a bridge domain is the maximum number that can be supported by that platform.

Relationship Between the MAC Address Limit on a Bridge Domain and on a Service Instance

You can specify the maximum count of MAC table entries on a bridge domain and on a service instance simultaneously. However, there are no restrictions on the count that is configured on the service instance.

The table below shows an example of an initial configuration where three service instances are configured on a bridge domain:

<table>
<thead>
<tr>
<th>Table 22: Bridge-Domain and Service-Instance MAC Address Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge-Domain / Service-Instance Number</td>
</tr>
<tr>
<td>Bridge Domain 1000</td>
</tr>
<tr>
<td>Service Instance 1001</td>
</tr>
<tr>
<td>Service Instance 1002</td>
</tr>
<tr>
<td>Service Instance 1003</td>
</tr>
</tbody>
</table>

If you wish to configure MAC security on service instance 1003, any value can be configured for the maximum count. For example:

```
service instance 1003 ethernet
bridge-domain 1
mac security
mac security maximum addresses 35
```

```
service instance 1003 ethernet
bridge-domain 1
mac limit maximum addresses 35
```

A MAC address limit of 35 is permitted, even though the total MAC address limit for the three service instances (5 + 10 + 35) would exceed the count (20) configured on the bridge domain. Note that during actual operation,
the bridge domain limit of 20 is in effect. The dynamic secure address count cannot exceed the lowest count applicable, so it is not possible for service instance 1003 to learn 35 addresses.

MAC Move and MAC Locking

If a MAC address is present in the MAC address table for a service instance (for example, service instance 1) on which MAC security is configured, the same MAC address cannot be learned on another service instance (for example, service instance 2) in the same bridge domain.

If service instance 2 attempts to learn the same MAC address, the violation response configured on service instance 2 is triggered. If MAC security is not configured on service instance 2 and a violation response is not configured, the “shutdown” response sequence is triggered on service instance 2.

If MAC security is not enabled on service instance 1, the violation is not triggered. Service instance 2 learns the MAC address and moves it from service instance 1.

For some platforms, MAC address moves are allowed but moves between secured service instances and nonsecured service instances cannot be detected.

For example, if you do not configure MAC security on service instance 2 because of a hardware limitation, a MAC move from secured service instance 1 to service instance 2 is accepted. Therefore, it is recommended that all service instances within the same bridge-domain be configured as secured service instances.

Violation Response Configuration

A violation response is a response to a MAC security violation or a failed attempt to dynamically learn a MAC address due to an address violation. MAC security violations are of two types:

Type 1 Violation -- The address of the ingress frame cannot be dynamically learned due to a deny list, or because doing so would cause the maximum number of secure addresses to be exceeded (see the MAC Address Limiting and Learning, on page 245).

Type 2 Violation -- The address of the ingress frame cannot be dynamically learned because it is already “present” on another secured service instance (see the MAC Move and MAC Locking, on page 247).

There are three possible sets of actions that can be taken in response to a violation:

1. **Shutdown**
 - The ingress frame is dropped.
 - The service instance on which the offending frame arrived is shut down.
 - The violation count is incremented, and the violating address is recorded for later CLI display.
 - The event and the response are logged to SYSLOG.

2. **Restrict**
 - The ingress frame is dropped.
 - The violation count is incremented, and the violating address is recorded for display.
 - The event and the response are logged to SYSLOG.

3. **Protect**
 - The ingress frame is dropped.
The ingress frame is dropped silently, without sending any violation report to the SYSLOG.

If a violation response is not configured, the default response mode is shutdown. The violation response can be configured to protect or restrict mode. A “no” form of a violation response, sets the violation response to the default mode of shutdown.

You are allowed to configure the desired response for a Type 1 and Type 2 violations on a service instance. For a Type 1 violation on a bridge domain (that is, if the learn attempt conforms to the policy configured on the service instance, but violates the policy configured on the bridge domain), the response is always “Protect.” This is not configurable.

To bring a service instance out of the error-disabled state, use `errdisable recovery cause mac-security` command to set the auto recovery timer, or re-enable it using the EXEC command `clear ethernet service instance id id interface type number errdisable`.

In Restrict mode, the violation report is sent to SYSLOG at level LOG WARNING.

Support for the different types of violation responses depends on the capabilities of the platform. The desired violation response can be configured on the service instance. The configured violation response does not take effect unless and until MAC security is enabled using the `mac security` command.

MAC Address Aging Configuration

A specific time scheduler can be set to age out secured MAC addresses that are dynamically learned or statically configured on both service instances and bridge domains, thus freeing up unused addresses from the MAC address table for other active subscribers.

The set of rules applied to age out secured MAC addresses is called secure aging. By default, the entries in the MAC address table of a secured service instance are never aged out. This includes permitted addresses and dynamically learned addresses.

The `mac security aging time aging-time` command sets the aging time of the addresses in the MAC address table to `<n>` minutes. By default, this affects only dynamically learned (not including sticky) addresses--permitted addresses and sticky addresses are not affected by the application of this command.

By default, the aging time `<n>` configured via the `mac security aging time aging-time` command is an absolute time. That is, the age of the MAC address is measured from the instant that it was first encountered on the service instance. This interpretation can be modified by using the `mac security aging time aging-time inactivity` command, which specifies that the age `<n>` be measured from the instant that the MAC address was last encountered on the service instance.

The `mac security aging static` and `mac security aging sticky` commands specify that the `mac security aging time` command must be applicable to permitted and sticky MAC addresses, respectively. In the case of permitted MAC addresses, the absolute aging time is measured from the time the address is entered into the MAC address table (for example, when it is configured or whenever the `mac security` command is entered--whichever is later).

If the `mac security aging time` command is not configured, the `mac security aging static` command has no effect.
Sticky MAC Address Configurations

The ability to make dynamically learned MAC addresses on secured service instances permanent even after interface transitions or device reloads can be set up and configured. A dynamically learned MAC address that is made permanent on a secured service instance is called a “sticky MAC address”. The `mac security sticky` command is used to enable the sticky MAC addressing feature on a service instance.

With the “sticky” feature enabled on a secured service instance, MAC addresses learned dynamically on the service instance are kept persistent across service instance line transitions and device reloads.

The sticky feature has no effect on statically configured MAC addresses. The sticky addresses are saved in the running configuration. Before the device is reloaded, it is the responsibility of the user to save the running configuration to the startup configuration. Doing this will ensure that when the device comes on, all the MAC addresses learned dynamically previously are immediately populated into the MAC address table.

The `mac security sticky address mac-address` command can configure a specific MAC address as a sticky MAC address. The use of this command is not recommended for the user because configuring a MAC address as a static address does the same thing. When sticky MAC addressing is enabled by the `mac security sticky` command, the dynamically learned addresses are marked as sticky and a `mac security sticky address mac-address` command is automatically generated and saved in the running configuration for each learned MAC address on the service instances.

Aging for Sticky Addresses

MAC addresses learned on a service instance that has the sticky behavior enabled are subject to aging as configured by the `mac security aging time` and `mac security aging sticky` commands. In other words, for the purpose of aging functionality, sticky addresses are treated the same as dynamically learned addresses.

Transitions

This section contains a description of the expected behavior of the different MAC security elements when various triggers are applied; for example, configuration changes or link state transitions.

MAC Security Enabled on a Service Instance

When MAC security is enabled on a service instance, all existing MAC table entries for the service instance are purged. Then, permitted MAC address entries and sticky addresses are added to the MAC table, subject to the prevailing MAC address limiting constraints on the bridge domain.

If MAC address limits are exceeded, any MAC address that fails to get added is reported via an error message to the console, the attempt to enable MAC security on the service instance fails, and the already added permitted entries are backed out or removed.

The aging timer for all entries is updated according to the secure aging rules.

MAC Security Disabled on a Service Instance

The existing MAC address table entries for this service instance are purged.

Service Instance Moved to a New Bridge Domain

This transition sequence applies to all service instances, whether or not they have MAC security configured. All the MAC addresses on this service instance in the MAC address table of the old bridge domain are removed.
The count of dynamically learned addresses in the old bridge domain is decremented. Then, all the MAC security commands are permanently erased from the service instance.

Service Instance Removed from a Bridge Domain

All the MAC addresses in the MAC address table that attributable to this service instance are removed, and the count of dynamically learned addresses in the bridge domain is decremented. Since MAC security is applicable only on service instances that are members of a bridge domain, removing a service instance from a bridge domain causes all the MAC security commands to be erased permanently.

Service Instance Shut Down Due to Violation

All dynamically learned MAC addresses in the MAC address table are removed, and all the other MAC security state values are left unchanged. The only change is that no traffic is forwarded, and therefore no learning can take place.

Interface Service Instance Down Linecard OIR Removed

The MAC tables of all the affected bridge domains are cleared of all the entries attributable to the service instances that are down.

Interface Service Instance Re-activated Linecard OIR Inserted

The static and sticky address entries in the MAC tables of the affected bridge domains are re-created to the service instances that are activated.

MAC Address Limit Decreased

When the value of the MAC address limit on the service instance is changed initially, a sanity check is performed to ensure that the new value of <n> is greater than or equal to the number of permitted entries. If not, the command is rejected. The MAC table is scanned for addresses that are attributable to this service instance, and dynamically learned MAC addresses are removed when the new MAC address limit is less than the old MAC address limit.

When the value of <n> on a bridge domain is changed initially, a sanity check is performed to ensure that the new value of <n> is greater than or equal to the sum of the number of permitted entries on all the secured service instances on the bridge domain. If this sanity test fails, the command is rejected. The bridge domain MAC address table (regardless of service instance) is scanned for dynamically learned (or sticky) addresses. All dynamically learned addresses are removed when the new MAC address limit is less than the old MAC address limit.

Sticky Addresses Added or Removed on a Service Instance

Existing dynamically learned MAC addresses remain unchanged. All new addresses learned become “sticky” addresses.

Disabling sticky addresses causes all sticky secure MAC addresses on the service instance to be removed from the MAC address table. All new addresses learned become dynamic addresses on the service instance and are subject to aging.
How to Configure MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

Enabling MAC Security on a Service Instance

Perform this task to enable MAC address security on a service instance.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
7. mac security
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance id ethernet</td>
<td>Creates a service instance on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service instance 100 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation dot1q vlan-id</td>
<td>Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
</tbody>
</table>
Enabling MAC Security on an EVC Port Channel

Before you begin

- Bridge-domain, xconnect, and Ethernet virtual circuits (EVCs) are allowed only over the port channel interface and the main interface.
- If you configure a physical port as part of a channel group, you cannot configure EVCs under that physical port.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface port-channel channel-group
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
7. mac security
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Configuring a MAC Address Permit List

Perform this task to configure permitted MAC addresses on a service instance that is a member of a bridge domain.

SUMMARY STEPS

1. enable
2. configure terminal
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config)# interface gigabitethernet2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>service instance id ethernet</td>
<td>Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if)# service instance 100 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation dot1q vlan-id</td>
<td>Defines the matching criteria to be used for mapping ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>bridge-domain bridge-id</td>
<td>Binds the service instance to a bridge-domain instance where bridge-id is the identifier for the bridge-domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-if-srv)# bridge-domain 200</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>mac security address permit mac-address</td>
<td>Adds the specified MAC address as a permit MAC address for the service instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# mac security address permit a2aa.aaaa.aaaa</td>
<td>Adds the specified MAC address as a permitted MAC address for the service instance.</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 8** | mac security address
Example:
Device(config-if-srv)# mac security address permit a2aa.aaaa.aaab | Adds the specified MAC address as a permitted MAC address for the service instance. |
| **Step 9** | mac security address
Example:
Device(config-if-srv)# mac security address permit a2aa.aaaa.aaac | Adds the specified MAC address as a permitted MAC address for the service instance. |
| **Step 10** | mac security address
Example:
Device(config-if-srv)# mac security address permit a2aa.aaaa.aaad | Adds the specified MAC address as a permitted MAC address for the service instance. |
| **Step 11** | mac security address
Example:
Device(config-if-srv)# mac security address permit a2aa.aaaa.aaae | Adds the specified MAC address as a permitted MAC address for the service instance. |
| **Step 12** | mac security
Example:
Device(config-if-srv)# mac security | Enables MAC security on the service instance. |
| **Step 13** | end
Example:
Device(config-if-srv)# end | Returns to user EXEC mode. |

Configuring a MAC Address Deny List

Perform this task to configure a list of MAC addresses that are not allowed on a service instance that is a member of a bridge domain.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface *type number*
Configuring a MAC Address Deny List

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.
 * Example:
    ```
    Device> enable
    ``` |
| Step 2 | `configure terminal` | Enters global configuration mode.
 * Example:
    ```
    Device# configure terminal
    ``` |
| Step 3 | `interface type number` | Specifies the interface type and number, and enters interface configuration mode.
 * Example:
    ```
    Device(config)# interface gigabitethernet2/0/1
    ``` |
| Step 4 | `service instance id ethernet` | Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.
 * Example:
    ```
    Device(config-if)# service instance 100 ethernet
    ``` |
| Step 5 | `encapsulation dot1q vlan-id` | Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.
 * Example:
    ```
    Device(config-if-srv)# encapsulation dot1q 100
    ``` |
| Step 6 | `bridge-domain bridge-id` | Binds the service instance to a bridge- domain instance where `bridge-id` is the identifier for the bridge- domain instance.
 * Example:
    ```
    Device(config-if-srv)# bridge-domain 200
    ``` |
| Step 7 | `mac security address deny mac-address` | Adds the specified MAC address as a denied MAC address for the service instance.
 * Example:
    ```
    Device(config-if-srv)#
    ``` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config-if-srv)# mac security address deny a2aa.aaaa.aaaa</code></td>
<td>Adds the specified MAC address as a denied MAC address for the service instance.</td>
</tr>
<tr>
<td>Step 8 <code>mac security address deny mac-address</code></td>
<td>Adds the specified MAC address as a denied MAC address for the service instance.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# mac security address deny a2aa.aaaa.aab</code></td>
<td></td>
</tr>
<tr>
<td>Step 9 <code>mac security address deny mac-address</code></td>
<td>Adds the specified MAC address as a denied MAC address for the service instance.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# mac security address deny a2aa.aaaa.aac</code></td>
<td></td>
</tr>
<tr>
<td>Step 10 <code>mac security address deny mac-address</code></td>
<td>Adds the specified MAC address as a denied MAC address for the service instance.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# mac security address deny a2aa.aaaa.aad</code></td>
<td></td>
</tr>
<tr>
<td>Step 11 <code>mac security address deny mac-address</code></td>
<td>Adds the specified MAC address as a denied MAC address for the service instance.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# mac security address deny a2aa.aaaa.aae</code></td>
<td></td>
</tr>
<tr>
<td>Step 12 <code>mac security</code></td>
<td>Enables MAC security on the service instance.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# mac security</code></td>
<td></td>
</tr>
<tr>
<td>Step 13 <code>end</code></td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device(config-if-srv)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring MAC Address Limiting on a Bridge Domain

Perform this task to configure an upper limit for the number of secured MAC addresses that reside in a bridge domain.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bridge-domain bridge-id`
4. **mac limit maximum addresses** maximum-addresses
5. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# bridge-domain 100</td>
<td></td>
</tr>
<tr>
<td>Configures components on a bridge domain and enters bridge-domain configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mac limit maximum addresses maximum-addresses</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# mac limit maximum addresses 200</td>
<td></td>
</tr>
<tr>
<td>Sets the MAC limit maximum addresses.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-bdomain)# end</td>
<td></td>
</tr>
<tr>
<td>Returns to user EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring MAC Address Limiting on a Service Instance

Perform this task to configure an upper limit for the number of secured MAC addresses allowed on a service instance. This number includes addresses added as part of a permit list as well as dynamically learned MAC addresses. If the upper limit is decreased, all learned MAC entries are removed. If the upper limit is decreased, one or more learned MAC entries may be removed. The EFP secure MAC address limitation range is [1-1024], so the maximum is 1024.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface type number</code></td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config)# interface gigabitethernet2/0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>service instance id ethernet</code></td>
<td>Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-if)# service instance 100 ethernet</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>encapsulation dot1q vlan-id</code></td>
<td>Defines the matching criteria to be used to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-if-srv)# encapsulation dot1q 100</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>bridge-domain bridge-id</code></td>
<td>Binds the service instance to a bridge-domain instance where <code>bridge-id</code> is the identifier for the bridge-domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-if-srv)# bridge-domain 200</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>mac security maximum addresses maximum-addresses</code></td>
<td>Sets the maximum number of secure addresses permitted on the service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-if-srv)# mac security maximum addresses 500</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>mac limit maximum addresses maximum-addresses</code></td>
<td>Sets the maximum number of secure addresses permitted on the service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device(config-if-srv)# mac limit maximum address maximum-address</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a MAC Address Violation

Perform this task to specify the expected behavior of a device when an attempt to dynamically learn a MAC address fails because the configured MAC security policy on the service instance was violated.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `service instance id ethernet`
5. `encapsulation dot1q vlan-id`
6. `bridge-domain bridge-id`
7. Do one of the following:
 - `mac security violation restrict`
 - `mac security violation protect`
8. `mac security`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Device# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>service instance (id) ethernet</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# service instance 100 ethernet</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>encapsulation dot1q (vlan-id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Defines the matching criteria to be used to map ingress dot1q frames on an interface to the appropriate service instance.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>bridge-domain (bridge-id)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# bridge-domain 100</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Binds the service instance to a bridge-domain instance where \(bridge-id \) is the identifier for the bridge-domain instance.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Do one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• mac security violation restrict</td>
<td></td>
</tr>
<tr>
<td>• mac security violation protect</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# mac security violation restrict</td>
<td></td>
</tr>
</tbody>
</table>

Example:
Device(config-if-srv)# mac security violation protect

Purpose: Sets the violation mode (for Type 1 and 2 violations) to restrict.
or
Sets the violation mode (for Type 1 and 2 violations) to protect.
• If a MAC security violation response is not specified, by default, the violation mode is shutdown.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>mac security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# mac security</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Enables MAC security on the service instance.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# end</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Returns to user EXEC mode.

Configuring MAC Address Aging

Perform this task to configure the aging of secured MAC addresses under MAC security. Secured MAC addresses are not subject to the normal aging of MAC table entries. If aging is not configured, secured MAC addresses are never aged out.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
7. mac security aging time aging-time inactivity
8. mac security
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# configure terminal</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type number</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>service instance id ethernet</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 100 ethernet</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>encapsulation dot1q vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
</tr>
<tr>
<td>Purpose</td>
<td>Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Step 6</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 200</td>
</tr>
<tr>
<td>Purpose</td>
<td>Binds the service instance to a bridge-domain instance where bridge-id is the identifier for the bridge-domain instance.</td>
</tr>
<tr>
<td>Step 7</td>
<td>mac security aging time aging-time inactivity</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action

Device(config-if-srv)# mac security aging time 200 inactivity

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 mac security</td>
<td>Enables MAC security on the service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# mac security</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if-srv)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Sticky MAC Address

If sticky MAC addressing is configured on a secured service instance, MAC addresses that are learned dynamically on the service instance are retained during a link-down condition. Perform this task to configure sticky MAC addresses on a service instance.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
7. mac security sticky address mac-address
8. mac security
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

| Step 3 | interface type number
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config)# interface gigabitethernet2/0/1</td>
</tr>
<tr>
<td>Purpose</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

| Step 4 | service instance id ethernet
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# service instance 100 ethernet</td>
</tr>
<tr>
<td>Purpose</td>
<td>Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.</td>
</tr>
</tbody>
</table>

| Step 5 | encapsulation dot1q vlan-id
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
</tr>
<tr>
<td>Purpose</td>
<td>Defines the matching criteria to be used to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
</tbody>
</table>

| Step 6 | bridge-domain bridge-id
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 200</td>
</tr>
<tr>
<td>Purpose</td>
<td>Binds the service instance to a bridge-domain instance where bridge-id is the identifier for the bridge-domain instance.</td>
</tr>
</tbody>
</table>

| Step 7 | mac security sticky address mac-address
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# mac security sticky address 1111.2222.3333</td>
</tr>
<tr>
<td>Purpose</td>
<td>Sets up a MAC address to be declared as a sticky MAC address on the service instance.</td>
</tr>
</tbody>
</table>

| Step 8 | mac security
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# mac security</td>
</tr>
<tr>
<td>Purpose</td>
<td>Enables MAC security on the service instance.</td>
</tr>
</tbody>
</table>

| Step 9 | end
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# end</td>
</tr>
<tr>
<td>Purpose</td>
<td>Returns to user EXEC mode.</td>
</tr>
</tbody>
</table>

Displaying the MAC Security Status of a Specific Service Instance

Perform this task to display the MAC security status of a service instance.

SUMMARY STEPS

1. enable
2. show ethernet service instance id id interface type number mac security
3. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Displays the MAC security status of a specific service instance.</td>
</tr>
<tr>
<td><code>show ethernet service instance id id interface type number mac security</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# show ethernet service instance id 100 interface gigabitethernet1/1 mac security</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# end</code></td>
</tr>
</tbody>
</table>

Displaying the Service Instances with MAC Security Enabled

Perform this task to display all the service instances with MAC security enabled.

SUMMARY STEPS

1. `enable`
2. `show ethernet service instance mac security`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device> enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Displays all the service instances with MAC security enabled.</td>
</tr>
<tr>
<td><code>show ethernet service instance mac security</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# show ethernet service instance mac security</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Device# end</code></td>
</tr>
</tbody>
</table>
Displaying the Service Instances with MAC Security Enabled on a Specific Bridge Domain

Perform this task to display the service instances on a specific bridge domain that have MAC security enabled.

SUMMARY STEPS

1. enable
2. show bridge-domain id mac security
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show bridge-domain id mac security</td>
<td>Displays all the service instances with MAC security enabled on a specific bridge domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show bridge-domain 100 mac security</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# end</td>
<td></td>
</tr>
</tbody>
</table>

Showing the MAC Addresses of All Secured Service Instances

SUMMARY STEPS

1. enable
2. show ethernet service instance mac security address
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>
Showing the MAC Addresses of a Specific Service Instance

SUMMARY STEPS

1. `enable`
2. `show ethernet service instance id id interface type number mac security address`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Device> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>show ethernet service instance id id interface type number mac security address</code></td>
<td>Displays the addresses of a specific service instance.</td>
</tr>
<tr>
<td><code>Device# show ethernet service instance id 200 interface GigabitEthernet 1/0 mac security address</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td><code>Device# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Showing the MAC Addresses of All Service Instances on a Specific Bridge Domain

SUMMARY STEPS

1. enable
2. show bridge-domain id mac security address
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show bridge-domain id mac security address</td>
<td>Displays the secured addresses of all the service instances on a specified bridge domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# show bridge-domain 100 mac security address</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# end</td>
<td></td>
</tr>
</tbody>
</table>

Showing the MAC Security Statistics of a Specific Service Instance

This section describes how to display the MAC security statistics of a specific service instance.

SUMMARY STEPS

1. enable
2. show ethernet service instance id id interface type number mac security statistics
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>
Showing the MAC Security Statistics of All Service Instances on a Specific Bridge Domain

Perform this task to display the MAC security statistics of all the service instances on a specific bridge domain.

SUMMARY STEPS

1. `enable`
2. `show bridge-domain bridge-id mac security statistics`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>show bridge-domain bridge-id mac security statistics</code></td>
<td>Displays the MAC security statistics of all service instances that belong to a specific bridge domain.</td>
</tr>
<tr>
<td>Example: Device# show bridge-domain 100 mac security statistics</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>end</code></td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: Device# end</td>
<td></td>
</tr>
</tbody>
</table>
Showing the Last Violation Recorded on Each Service Instance on a Specific Bridge Domain

Perform this task to display the last violation recorded on each service instance on a specific bridge domain. Service instances on which there have been no violations are excluded from the output.

SUMMARY STEPS

1. enable
2. show bridge-domain bridge-id mac security last violation
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
Example:
Device> enable |
| **Step 2** show bridge-domain bridge-id mac security last violation | Displays information about the last violation recorded on each of the service instances that belong to the bridge domain.
Example:
Device# show bridge-domain 100 mac security last violation |
| **Step 3** end | Returns to user EXEC mode.
Example:
Device# end |

Clearing All Dynamically Learned Secure MAC Addresses on a Service Instance

Perform this task to clear all dynamically learned Secure MAC addresses on a service instance.

SUMMARY STEPS

1. enable
2. clear ethernet service instance id id interface type number mac table
3. end
Clearing All Dynamically Learned MAC Addresses on a Bridge Domain

Perform this task to clear all dynamically learned MAC addresses on a bridge domain.

SUMMARY STEPS

1. enable
2. clear bridge-domain bridge-id mac table
3. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

enable

Example:

Device> enable

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
</table>
| Enables privileged EXEC mode.

- Enter your password if prompted. |

| **Step 2**

clear bridge-domain bridge-id mac table

Example:

Device# clear bridge-domain 100 mac table

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clears all dynamically learned MAC addresses on the specified bridge domain.</td>
</tr>
</tbody>
</table>

| **Step 3**

end

Example:

Device# end

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns to user EXEC mode.</td>
</tr>
</tbody>
</table>
Bringing a Specific Service Instance Out of the Error-Disabled State

Perform this task to bring a specific service instance out of the error-disabled state.

Note

The `clear ethernet service instance id id interface type number errdisable` command can also be used to bring a service instance out of an error disabled state. For more information about this command, see the Cisco IOS Carrier Ethernet Command Reference.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id ethernet
5. encapsulation dot1q vlan-id
6. bridge-domain bridge-id
7. mac security
8. errdisable recovery cause mac-security interval
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Device# configure terminal | |

| **Step 3** interface type number | Specifies the interface type and number, and enters interface configuration mode. |
| **Example:** Device(config)# interface gigabitethernet2/0/1 | |

<p>| Step 4 service instance id ethernet | Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode. |
| Example: Device(config-if)# service instance 100 ethernet | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>encapsulation dot1q vlan-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# encapsulation dot1q 100</td>
</tr>
<tr>
<td></td>
<td>Defines the matching criteria to be used to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Step 6</td>
<td>bridge-domain bridge-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# bridge-domain 200</td>
</tr>
<tr>
<td></td>
<td>Binds the service instance to a bridge-domain instance where <code>bridge-id</code> is the identifier for the bridge-domain instance.</td>
</tr>
<tr>
<td>Step 7</td>
<td>mac security</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# mac security</td>
</tr>
<tr>
<td></td>
<td>Enables MAC security on the service instance.</td>
</tr>
<tr>
<td>Step 8</td>
<td>errdisable recovery cause mac-security interval</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# errdisable recovery cause mac-security 50</td>
</tr>
<tr>
<td></td>
<td>Brings a specific service instance out of an error-disabled state and specifies a time interval to recover.</td>
</tr>
<tr>
<td>Step 9</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if-srv)# end</td>
</tr>
<tr>
<td></td>
<td>Returns to user EXEC mode.</td>
</tr>
</tbody>
</table>

Configuration Examples for MAC Address Limiting on Service Instances and Bridge Domains and EVC Port Channels

Example Enabling MAC Security on a Service Instance

The following example shows how to enable MAC security on a service instance:

```
Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security
Device(config-if-srv)# end
```

Example Enabling MAC Security on an EVC Port Channel

The following example shows how to enable MAC Security on an EVC port channel:

...
Example Configuring a MAC Address Permit List

The following example shows how to configure a MAC address permit list:

Device> enable
Device# configure terminal
Device(config)# interface port-channel 2
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1Q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security
Device(config-if-srv)# end

Example Configuring a MAC Address Deny List

The following example shows how to configure a MAC address deny list:

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1Q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security address deny a2aa.aaaa.aaaa
Device(config-if-srv)# mac security address deny a2aa.aaaa.aaab
Device(config-if-srv)# mac security address deny a2aa.aaaa.aaac
Device(config-if-srv)# mac security address deny a2aa.aaaa.aaad
Device(config-if-srv)# mac security address deny a2aa.aaaa.aaee
Device(config-if-srv)# mac security
Device(config-if-srv)# end

Example Configuring MAC Address Limiting on a Bridge Domain

Device> enable
Device# configure terminal
Device(config)# bridge-domain 100
Device(config-bdomain)# mac limit maximum addresses 1000
Device(config-bdomain)# end
Example Configuring a MAC Address Limit on a Service Instance

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security maximum addresses 10
Device(config-if-srv)# end

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac limit maximum addresses 10
Device(config-if-srv)# end

Example Configuring a MAC Address Limit on a Service Instance

Example Configuring a MAC Address Violation Response

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security address permit a2aa.aaaa.aaaa
Device(config-if-srv)# mac security violation protect
Device(config-if-srv)# mac security
Device(config-if-srv)# end

Example Configuring MAC Address Aging

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 4/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security aging time 10
Device(config-if-srv)# mac security
Device(config-if-srv)# end

Example Configuring a Sticky MAC Address

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 3/0/1
Device(config-if)# service instance 100 ethernet
Device(config-if-srv)# encapsulation dot1q 100
Example Displaying the MAC Addresses on a Specific Secure Service Instance

Device(config-if-srv)# bridge-domain 100
Device(config-if-srv)# mac security sticky address 1111.2222.3333
Device(config-if-srv)# mac security

Example Displaying the MAC Addresses on a Specific Secure Service Instance

Device# show ethernet service instance id 1879665131 interface gigabitethernet 0/2 mac security address
MAC Address Type Rem. Age(min)
0001.0001.0001 static 100
0001.0001.0002 static 100
0001.0001.aaaa dynamic 100
0001.0001.aaab dynamic 100

Example Displaying the Last Violation on a Specific Service Instance

Device# show ethernet service instance id 1879665131 interface gigabitethernet 0/2 mac security last violation
At: Apr 4 06:57:25.971
Source address: ae4e.b7b5.79ae
Reason: Denied address

Example Displaying the MAC Security Status of a Specific Service Instance

Device# show ethernet service instance id 1879665131 interface Ethernet0/2 mac security
MAC Security: enabled

Example Displaying the MAC Addresses of All Secured Service Instances

Device# show ethernet service instance mac security address
Port Bridge-domain MAC Address Type Rem. Age(min)
Gi1/0/0 ServInst 1 10 0001.0001.0001 static 82
Gi1/0/0 ServInst 1 10 0001.0001.0002 static 82
Gi1/0/0 ServInst 1 10 0001.0001.aaaa dynamic 82
Gi1/0/0 ServInst 1 10 0001.0001.aaab dynamic 82
Gi1/0/0 ServInst 2 10 0002.0002.0002 static –
Gi1/0/0 ServInst 2 10 0002.0002.0003 static –
Gi1/0/0 ServInst 2 10 0002.0002.aaaa dynamic –
Gi1/0/0 ServInst 2 10 0002.0002.bbbb dynamic –
Gi1/0/0 ServInst 2 10 0002.0002.cccc dynamic –
Gi3/0/5 ServInst 10 30 0003.0003.0001 static 200
Gi3/0/5 ServInst 10 30 0003.0003.0002 static 200

Example: Displaying the MAC Addresses on All Service Instances for a Bridge Domain

Router# show bridge-domain 730 mac security address
Port MAC Address Type Rem. Age(min)
Gi1/0/0 ServInst 1 0001.0001.0001 static 74
Example Displaying the Secured Service Instances for a Specific Bridge Domain

Router# show bridge-domain 730 mac security
Gi1/0/0 ServInst 1
MAC Security enabled: yes
Gi1/0/0 ServInst 2
MAC Security enabled: yes

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFM commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Configuring Ethernet connectivity fault management in a service provider network (Cisco pre-Standard CFM Draft 1)</td>
<td>"Configuring Ethernet Connectivity Fault Management in a Service Provider Network” module in the Cisco IOS Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Ethernet Local Management Interface on a provider edge device</td>
<td>"Configuring Ethernet Local Management Interface on a Provider Edge Device” module in the Cisco IOS Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>IP SLAs for Metro Ethernet</td>
<td>"IP SLAs for Metro Ethernet"</td>
</tr>
<tr>
<td>NSF/SSO and MPLS</td>
<td>"NSF/SSO - MPLS LDP and LDP Graceful Restart"</td>
</tr>
<tr>
<td>ISSU feature and functions</td>
<td>"Cisco IOS Broadband High Availability In Service Software Upgrade"</td>
</tr>
<tr>
<td>Performing an ISSU</td>
<td>"Cisco IOS In Service Software Upgrade Process and Enhanced Fast Software Upgrade Process"</td>
</tr>
</tbody>
</table>
Related Topic
<table>
<thead>
<tr>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Stateful Switchover” chapter of the Cisco IOS High Availability Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag Standard</td>
<td>802.1ag - Connectivity Fault Management</td>
</tr>
<tr>
<td>IEEE 802.3ah</td>
<td>IEEE 802.3ah Ethernet in the First Mile</td>
</tr>
<tr>
<td>IETF VPLS OAM</td>
<td>L2VPN OAM Requirements and Framework</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-ETHER-CFM-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for MAC Address Limiting on Service Instances Bridge Domains and EVC Port Channels

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| MAC Address Limiting on Service Instances and Bridge Domains | Cisco IOS XE 3.7S, Cisco IOS XE Gibraltar 16.11.a | The MAC Address Limiting on Service Instances and Bridge Domains feature addresses port security with service instances by providing the capability to control and filter MAC address learning behavior at the granularity of a per-service instance. When a violation requires a shutdown, only the customer that is assigned to a given service instance is affected. MAC address limiting is a type of MAC security and is also referred to as a MAC security component or element.

The following commands were introduced or modified: `bridge-domain (global), bridge-domain (service instance), clear bridge-domain mac-table, clear ethernet service instance, errdisable recovery cause mac-security, interface, mac limit maximum addresses, security show bridge-domain, show ethernet service instance`.

Support was added in Cisco IOS XE Gibraltar 16.11.a for Cisco ASR 1000 Series Aggregation Services Routers, Cisco Cloud Services Router 1000v, and Cisco 4000 Series Integrated Services Routers.
CHAPTER 15

Configuring Ethernet Local Management Interface at a Provider Edge

The advent of Ethernet as a metropolitan-area network (MAN) and WAN technology imposes a new set of Operation, Administration, and Management (OAM) requirements on Ethernet’s traditional operations, which had centered on enterprise networks only. The expansion of Ethernet technology into the domain of service providers, where networks are substantially larger and more complex than enterprise networks and the user-base is wider, makes operational management of link uptime crucial. More importantly, the timeliness in isolating and responding to a failure becomes mandatory for normal day-to-day operations, and OAM translates directly to the competitiveness of the service provider.

The “Configuring Ethernet Local Management Interface at a Provider Edge” module provides general information about configuring an Ethernet Local Management Interface (LMI), an OAM protocol, on a provider edge (PE) device.

- Finding Feature Information, on page 281
- Prerequisites for Configuring Ethernet Local Management Interface at a Provider Edge, on page 282
- Restrictions for Configuring Ethernet Local Management Interface at a Provider Edge, on page 282
- Information About Configuring Ethernet Local Management Interface at a Provider Edge, on page 282
- How to Configure Ethernet Local Management Interface at a Provider Edge, on page 285
- Configuration Examples for Ethernet Local Management Interface at a Provider Edge, on page 293
- Additional References for Configuring Ethernet Local Management Interface at a Provider Edge, on page 294
- Feature Information for Configuring Ethernet Local Management Interface at a Provider Edge, on page 295

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Configuring Ethernet Local Management Interface at a Provider Edge

- Ethernet Operation, Administration, and Management (OAM) must be operational in the network.
- For Ethernet OAM to operate, the provider edge (PE) side of a connection must be running Ethernet Connectivity Fault Management (CFM) and Ethernet Local Management Interface (LMI).
- All VLANs used on a PE device to connect to a customer edge (CE) device must also be created on that CE device.
- To use nonstop forwarding (NSF) and In Service Software Upgrade (ISSU), stateful switchover (SSO) must be configured and working properly.

Restrictions for Configuring Ethernet Local Management Interface at a Provider Edge

- Ethernet Local Management Interface (LMI) is not supported on routed ports, EtherChannel port channels, ports that belong to an EtherChannel, private VLAN ports, IEEE 802.1Q tunnel ports, Ethernet over Multiprotocol Label Switching (MPLS) ports, or Ethernet Flow Points (EFPs) on trunk ports.
- Ethernet LMI cannot be configured on VLAN interfaces.
- QinQ encapsulation is not supported on the Cisco ASR 1000 Series Aggregation Services Router for CFM for routed subinterfaces.

Information About Configuring Ethernet Local Management Interface at a Provider Edge

Ethernet Virtual Circuits Overview

An Ethernet virtual circuit (EVC) as defined by the Metro Ethernet Forum is a port level point-to-point or multipoint-to-multipoint Layer 2 circuit. EVC status can be used by a customer edge (CE) device to find an alternative path in to the service provider network or in some cases to fall back to a backup path over Ethernet or another alternative service such as ATM.

Ethernet LMI Overview

Ethernet Local Management Interface (LMI) is an Ethernet Operation, Administration, and Management (OAM) protocol between a customer edge (CE) device and a provider edge (PE) device. Ethernet LMI provides CE devices with the status of Ethernet virtual circuits (EVCs) for large Ethernet metropolitan-area networks (MANs) and WANs and provides information that enables CE devices to autoconfigure. Specifically, Ethernet LMI runs on the PE-CE User-Network Interface (UNI) link and notifies a CE device of the operating state of
an EVC and the time when an EVC is added or deleted. Ethernet LMI also communicates the attributes of an EVC.

Ethernet LMI interoperates with Ethernet Connectivity Fault Management (CFM), an OAM protocol that runs within the provider network to collect OAM status. Ethernet CFM runs at the provider maintenance level (user provider edge [UPE] to UPE at the UNI). Ethernet LMI relies on the OAM Ethernet Infrastructure (EI) to interwork with CFM to learn the end-to-end status of EVCs across CFM domains.

Ethernet LMI is disabled globally by default. When Ethernet LMI is enabled globally, all interfaces are automatically enabled. Ethernet LMI can also be enabled or disabled at the interface to override the global configuration. The last Ethernet LMI command issued is the command that has precedence. No EVCs, Ethernet service instances, or UNIs are defined, and the UNI bundling service is bundling with multiplexing.

Ethernet CFM Overview

Ethernet Connectivity Fault Management (CFM) is an end-to-end per-service-instance (per VLAN) Ethernet layer Operation, Administration, and Management (OAM) protocol that includes proactive connectivity monitoring, fault verification, and fault isolation. End-to-end CFM can be from provider edge (PE) device to PE device or from customer edge (CE) device to CE device. For more information about Ethernet CFM, see “Configuring Ethernet Connectivity Fault Management in a Service Provider Network” in the Carrier Ethernet Configuration Guide.

OAM Manager Overview

The OAM manager is an infrastructure element that streamlines interaction between Operation, Administration, and Management (OAM) protocols. The OAM manager requires two interworking OAM protocols, Ethernet Connectivity Fault Management (CFM) and Ethernet Local Management Interface (LMI). No interactions are required between Ethernet LMI and the OAM manager on the customer edge (CE) side. On the User Provider-Edge (UPE) side, the OAM manager defines an abstraction layer that relays data collected from Ethernet CFM to the Ethernet LMI device.

Ethernet LMI and the OAM manager interaction is unidirectional, from the OAM manager to Ethernet LMI on the UPE side of the device. An information exchange results from an Ethernet LMI request or is triggered by the OAM manager when it receives notification from the OAM protocol that the number of UNIs has changed. A change in the number of UNIs may cause a change in Ethernet virtual circuit (EVC) status.

The OAM manager calculates EVC status given the number of active user network interfaces (UNIs) and the total number of associated UNIs. You must configure CFM to notify the OAM manager of all changes to the number of active UNIs or to the remote UNI ID for a given service provider VLAN (S-VLAN) domain.

The information exchanged is as follows:

- EVC name and availability status (active, inactive, partially active, or not defined)
- Remote UNI name and status (up, disconnected, administratively down, excessive frame check sequence [FCS] failures, or not reachable)
- Remote UNI counts (the total number of expected UNIs and the number of active UNIs)

Benefits of Ethernet LMI at a Provider Edge

- Communication of end-to-end status of the Ethernet virtual circuit (EVC) to the customer edge (CE) device
• Communication of EVC and user network interface (UNI) attributes to a CE device

• Competitive advantage for service providers

HA Features Supported by Ethernet LMI

In access and service provider networks using Ethernet technology, high availability (HA) is a requirement, especially on Ethernet operations, administration, and management (OAM) components that manage Ethernet virtual circuit (EVC) connectivity. End-to-end connectivity status information is critical and must be maintained on a hot standby Route Processor (RP) (a standby RP that has the same software image as the active RP and supports synchronization of line card, protocol, and application state information between RPs for supported features and protocols).

End-to-end connectivity status is maintained on the customer edge (CE), provider edge (PE), and access aggregation PE (uPE) network nodes based on information received by protocols such as Ethernet Local Management Interface (LMI), Connectivity Fault Managment (CFM), and 802.3ah. This status information is used to either stop traffic or switch to backup paths when an EVC is down.

Metro Ethernet clients (E-LMI, CFM, 802.3ah) maintain configuration data and dynamic data, which is learned through protocols. Every transaction involves either accessing or updating data in the various databases. If the database is synchronized across active and standby modules, the modules are transparent to clients.

The Cisco infrastructure provides component application programming interfaces (APIs) that are helpful in maintaining a hot standby RP. Metro Ethernet HA clients (E-LMI, HA/ISSU, CFM HA/ISSU, 802.3ah HA/ISSU) interact with these components, update the database, and trigger necessary events to other components.

Benefits of Ethernet LMI HA

• Elimination of network downtime for Cisco software image upgrades, resulting in higher availability.

• Elimination of resource scheduling challenges associated with planned outages and late night maintenance windows

• Accelerated deployment of new services and applications and faster implementation of new features, hardware, and fixes due to the elimination of network downtime during upgrades

• Reduced operating costs due to outages while the system delivers higher service levels due to the elimination of network downtime during upgrades

NSF SSO Support in Ethernet LMI

The redundancy configurations stateful switchover (SSO) and nonstop forwarding (NSF) are supported in Ethernet Local Management Interface (LMI) and are automatically enabled. A switchover from an active to a standby Route Processor (RP) or a standby Route Switch Processor (RSP) occurs when the active RP or RSP fails, is removed from the networking device, or is manually taken down for maintenance. The primary function of Cisco NSF is to continue forwarding IP packets following an RP or RSP switchover. NSF also interoperates with the SSO feature to minimize network downtime following a switchover.

For detailed information about the SSO and NSF features, see the High Availability Configuration Guide.
ISSU Support in Ethernet LMI

In Service Software Upgrade (ISSU) allows you to perform a Cisco software upgrade or downgrade without disrupting packet flow. Ethernet Local Management Interface (LMI) performs updates of the parameters within the Ethernet LMI database to the standby route processor (RP) or standby route switch processor (RSP). This checkpoint data requires ISSU capability to transform messages from one release to another. All the components that perform active processor to standby processor updates using messages require ISSU support. ISSU is automatically enabled in Ethernet LMI.

ISSU lowers the impact that planned maintenance activities have on network availability by allowing software changes while the system is in service. For detailed information about ISSU, see the High Availability Configuration Guide.

How to Configure Ethernet Local Management Interface at a Provider Edge

Configuring Ethernet LMI Interaction with CFM

For Ethernet Local Management Interface (LMI) to function with Connectivity Fault Management (CFM), you must configure Ethernet virtual circuits (EVCs), Ethernet service instances including untagged Ethernet flow points (EFPs), and Ethernet LMI customer VLAN mapping. Most of the configuration occurs on the provider edge (PE) device on the interfaces connected to the customer edge (CE) device. On the CE device, you need only enable Ethernet LMI on the connecting interface. Also, you must configure operations, administration, and management (OAM) parameters; for example, EVC definitions on PE devices on both sides of a metro network.

CFM and OAM interworking requires an inward facing Maintenance Entity Group End Point (MEP).

Configuring the OAM Manager

Note

If you configure, change, or remove a user network interface (UNI) service type, Ethernet virtual circuit (EVC), Ethernet service instance, or customer edge (CE)-VLAN configuration, all configurations are checked to ensure that the configurations match (UNI service type with EVC or Ethernet service instance and CE-VLAN configuration). The configuration is rejected if the configurations do not match.

Perform this task to configure the OAM manager on a provider edge (PE) device.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id
4. service csi-id evc evc-name vlan vlan-id
5. continuity-check
6. continuity-check interval time
7. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>ethernet cfm domain domain-name level level-id</code></td>
<td>Defines a Connectivity Fault Management (CFM) domain, sets the domain level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain cstmr1 level 3</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>service csi-id eve eve-name vlan vlan-id</code></td>
<td>Defines a universally unique customer service instance (CSI) and VLAN ID within the maintenance domain, and enters Ethernet CFM service configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm)# service csi2 evc evc_1 vlan 10</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 5 | **continuity-check**
Example:
Device(config-ecfm-srv)# continuity-check | Enables the transmission of continuity check messages (CCMs). |
| 6 | **continuity-check interval** *time*
Example:
Device(config-ecfm-srv)# continuity-check interval 1s/10s/1m/10m | Enables the transmission of continuity check messages (CCMs) at specific intervals. |
| 7 | **exit**
Example:
Device(config-ecfm-srv)# exit | Returns to Ethernet CFM configuration mode. |
| 8 | **exit**
Example:
Device(config-ecfm)# exit | Returns to global configuration mode. |
| 9 | **ethernet evc** *evc-id*
Example:
Device(config)# ethernet evc 50 | Defines an EVC and enters EVC configuration mode. |
| 10 | **oam protocol** *{cfm domain domain-name | ldp}*
Example:
Device(config-evc)# oam protocol cfm domain cstmr1 | Configures the Ethernet virtual circuit (EVC) operations, administration, and management (OAM) protocol as CFM for the CFM domain maintenance level as configured in Steps 3 and 4.
Note If the CFM domain does not exist, this command is rejected, and an error message is displayed. |
| 11 | **uni count** *value [multipoint]*
Example:
Device(config-evc)# uni count 3 | (Optional) Sets the User Network Interface (UNI) count for the EVC.
- If this command is not issued, the service defaults to a point-to-point service. If a value of 2 is entered, point-to-multipoint service becomes an option. If a value of 3 or greater is entered, the service is point-to-multipoint.
Note If you enter a number greater than the number of endpoints, the UNI status is partially active even if all endpoints are up. If you enter a UNI count less than the number of endpoints, status might be active, even if all endpoints are not up. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-evc)# exit</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Repeat Steps 3 through 12 to define other CFM domains that you want OAM manager to monitor.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>interface type number</td>
<td>Specifies a physical interface connected to the CE device and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface gigabitethernet 1/3/1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>service instance id ethernet [evc-id]</td>
<td>Configures an Ethernet service instance on the interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# service instance 400 ethernet 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The Ethernet service instance identifier is a per-interface service identifier and does not map to a VLAN.</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ethernet lmi ce-vlan map {vlan-id [untagged]</td>
<td>Configures an Ethernet LMI customer VLAN-to-EVC map for a particular UNI.</td>
</tr>
<tr>
<td></td>
<td>any</td>
<td>default</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# ethernet lmi ce-vlan map 30</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>ethernet lmi interface</td>
<td>Enables Ethernet local management interface (LMI) on a UNI.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# ethernet lmi interface</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>encapsulation dot1q vlan-id</td>
<td>Defines the matching criteria to map 802.1Q frames ingress on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# encapsulation dot1q 2</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>bridge-domain domain-number</td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if-srv)# bridge-domain 1</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>20</td>
<td><code>cfm mep domain domain-name mpid mpid-id</code></td>
<td>Configures a maintenance endpoint (MEP) for a domain.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# cfm mep domain provider mpid 10</code></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td><code>exit</code></td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# exit</code></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td><code>service instance service-instance-id ethernet</code></td>
<td>Configures an Ethernet service instance on an interface and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# service instance 22 ethernet</code></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td><code>encapsulation untagged</code></td>
<td>Defines the matching criteria to map untagged ingress Ethernet frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# encapsulation untagged</code></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><code>l2protocol peer</code></td>
<td>Configures transparent Layer 2 protocol peering on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# l2protocol peer</code></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td><code>bridge-domain bridge-domain-number</code></td>
<td>Binds a service instance to a bridge domain instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if-srv)# bridge-domain 1</code></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td><code>exit</code></td>
<td>Returns to interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# exit</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# ethernet uni bundle</code></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td><code>end</code></td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>
Enabling Ethernet LMI

The order in which the global and interface configuration commands are issued determines the configuration. The last command that is issued has precedence.

Perform this task to enable Ethernet Local Management Interface (LMI) on a device or on an interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet lmi interface`
5. `ethernet lmi {n393 value | t392 value}`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Defines an interface to configure as an Ethernet LMI interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface ethernet 1/3</td>
<td></td>
</tr>
<tr>
<td>Step 4 ethernet lmi interface</td>
<td>Configures Ethernet LMI on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>• When Ethernet LMI is enabled globally, it is enabled on all interfaces unless you disable it on specific interfaces. If Ethernet LMI is disabled globally, you can use this command to enable it on specified interfaces.</td>
</tr>
<tr>
<td>Device(config-if)# ethernet lmi interface</td>
<td></td>
</tr>
<tr>
<td>Step 5 ethernet lmi {n393 value</td>
<td>t392 value}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# ethernet lmi n393 10</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Displaying Ethernet LMI and OAM Manager Information

Perform this task to display Ethernet Local Management Interface (LMI) or Operation, Administration, and Management (OAM) manager information. After step 1, all the steps are optional and can be performed in any order.

SUMMARY STEPS

1. **enable**
2. **show ethernet lmi**
   ```
   {{
   evc [detail evc-id [interface type number] | map interface type number] |
   {parameters | statistics} interface type number | uni map [interface type number]}
   }
   ```
3. **show ethernet service evc**
   ```
   {detail | id evc-id [detail] | interface type number [detail]}
   ```
4. **show ethernet service instance**
   ```
   {detail | id id | interface type number | policy-map | stats}
   ```
5. **show ethernet service interface**
   ```
   [type number] [detail]
   ```

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | **show ethernet lmi**
   ```
   {{
   evc [detail evc-id [interface type number] | map interface type number] |
   {parameters | statistics} interface type number | uni map [interface type number]}
   }
   ``` | Displays information that was sent to the customer edge (CE). |
| | Example: | |
| | Device# show ethernet lmi evc | |
| 3 | **show ethernet service evc**
   ```
   {detail | id evc-id [detail] | interface type number [detail]}
   ``` | Displays information about all Ethernet virtual circuits (EVCs) or about a specified EVC. |
| | Example: | |
| | Device# show ethernet service evc | |
| 4 | **show ethernet service instance**
   ```
   {detail | id id | interface type number | policy-map | stats}
   ``` | Displays information about customer service instances. |
| | Example: | |
| | Device# show ethernet service instance detail | |
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>show ethernet service interface [type number] [detail]</th>
</tr>
</thead>
</table>

Purpose

Displays interface-only information about Ethernet customer service instances for all interfaces or for a specified interface.

Examples

The following example shows sample output from the `show ethernet lmi` command using the `evc` keyword:

```
Device# show ethernet lmi evc

St  EVC Id          Port
---  ----------------------------  --------
A  EVC_MP2MP_101         Gi0/1
A  EVC_P2P_110          Gi0/1
```

The following example is sample output from the `show ethernet service evc` command:

```
Device# show ethernet service evc

Identifier   Type  Act-UNI-cnt Status
50            MP-MP  0         NotDefined
```

The following is sample output from the `show ethernet service interface` command using the `detail` keyword:

```
Device# show ethernet service interface gigabitethernet 1/3/1 detail

Interface: Gigabitethernet 1/3/1
ID: uni2
CE-VLANS: 30
EVC Map Type: Bundling
Associated EVCs:
  EVC-ID  CE-VLAN
  50      30
Associated Service Instances:
  Service-Instance-ID CE-VLAN
  400      30
```

The following is sample output from the `show ethernet service instance` command using the `detail` keyword:

```
Device# show ethernet service instance detail

Service Instance ID: 400
Associated Interface: GigabitEthernet1/3/1
Associated EVC: 50
CE-Vlans: 30
State: AdminDown
EFP Statistics:
  Pkts In  Bytes In  Pkts Out  Bytes Out
  0        0         0       0
```

Displaying Ethernet LMI and OAM Manager Information

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Configuration Examples for Ethernet Local Management Interface at a Provider Edge

Example: Ethernet OAM Manager on a PE Device Configuration

This example shows a sample configuration of Operation, Administration, and Management (OAM) manager, Connectivity Fault Management (CFM), and Ethernet Local Management Interface (LMI) on a provider edge (PE) device. In this example, a bridge domain is specified.

```
Device> enable
Device# configure terminal
Device(config)# ethernet cfm global
Device(config)# ethernet cfm domain provider level 4
Device(config-ecfm)# service customer_1 evc test1 vlan 10
Device(config-ecfm-srv)# continuity-check
Device(config-ecfm-srv)# continuity-check interval 1s/10s/1m/10m
Device(config-ecfm-srv)# exit
Device(config-ecfm)# exit
Device(config)# ethernet evc test1
Device(config-evc)# uni count 3
Device(config-evc)# oam protocol cfm domain provider
Device(config-evc)# exit
Device(config)# interface gigabitEthernet 0/1
Device(config-if)# ethernet lmi interface
Device(config-if)# ethernet uni id CISCO
Device(config-if)# service instance 1 ethernet
Device(config-if-srv)# encapsulation untagged
Device(config-if-srv)# l2protocol peer
Device(config-if-srv)# bridge-domain 1
Device(config-if-srv)# exit
Device(config-if)# service instance 2 ethernet
Device(config-if-srv)# ethernet lmi ce-vlan map 101
Device(config-if-srv)# encapsulation dot1q 2
Device(config-if-srv)# bridge-domain 2
Device(config-if-srv)# cfm mep domain provider mpid 10
Device(config-if-srv-ecfm-mep)# end
```

This example shows a configuration of OAM manager, CFM, and Ethernet LMI over an Xconnect configuration:

```
Device> enable
Device# configure terminal
Device(config)# ethernet cfm global
Device(config)# ethernet cfm domain provider level 4
Device(config-ecfm)# service customer_1 evc test1
Device(config-ecfm-srv)# continuity-check
Device(config-ecfm-srv)# continuity-check interval 1s,10s,1m,10m
Device(config-ecfm-srv)# exit
Device(config-ecfm)# exit
Device(config)# ethernet evc test1
Device(config-evc)# oam protocol cfm domain provider
Device(config-evc)# exit
Device(config)# interface gigabitEthernet 0/5/1
Device(config-if)# ethernet lmi interface
Device(config-if)# ethernet uni id CISCO
```

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Example: Ethernet LMI on a CE Device Configuration

This example shows how to configure Ethernet Local Management Interface (LMI) globally on a customer edge (CE) device:

```
Device# configure terminal
Device(config)# ethernet lmi global
Device(config)# ethernet lmi ce
Device(config)# exit
```

Additional References for Configuring Ethernet Local Management Interface at a Provider Edge

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Connectivity Fault Management (CFM)</td>
<td>“Configuring Ethernet Connectivity Fault Management in a Service Provider Network” in the Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Ethernet Local Management Interface (LMI)</td>
<td>“Enabling Ethernet Local Management Interface” in the Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Remote Port Shutdown feature</td>
<td>“Configuring Remote Port Shutdown” in the Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>IEEE 802.3ah</td>
<td>IEEE 802.3ah Ethernet in the First Mile</td>
</tr>
<tr>
<td>Cisco high availability (HA) configuration information</td>
<td>High Availability Configuration Guide</td>
</tr>
<tr>
<td>Ethernet LMI commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Master Command List, All Releases</td>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE P802.1ag/D5.2</td>
<td>Draft Standard for Local and Metropolitan Area Networks</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
<tr>
<td>IETF VPLS OAM</td>
<td>L2VPN OAM Requirements and Framework</td>
</tr>
<tr>
<td>ITU-T Q.3/13</td>
<td>Liaison statement on Ethernet OAM (Y.17ethoam)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Configuring Ethernet Local Management Interface at a Provider Edge

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 24: Feature Information for Configuring Ethernet Local Management Interface at a Provider Edge

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Local Management Interface at a Provider Edge</td>
<td>12.2(33)SRB, 12.2(33)SXI</td>
<td>Ethernet LMI is an Ethernet OAM protocol between a CE device and a PE device. Ethernet LMI provides CE devices with the status of EVCs for large Ethernet MANs and WANs and provides information that enables CE devices to autoconfigure. Specifically, Ethernet LMI runs on the PE-CE UNI link and notifies a CE device of the operating state of an EVC and when an EVC is added or deleted. Ethernet LMI also communicates the attributes of an EVC. In Cisco IOS Release 12.2(33)SRB, this feature was introduced on the Cisco 7600 series router. The following commands were introduced or modified: debug ethernet lmi, debug ethernet service, ethernet evc, ethernet lmi ce-vlan map, ethernet uni, oam protocol, service instance ethernet, show ethernet service evc, show ethernet service instance, show ethernet service interface, uni count.</td>
</tr>
<tr>
<td>ISSU Support in E-LMI</td>
<td>12.2(33)SRD, 15.0(1)S</td>
<td>ISSU allows you to perform a Cisco IOS software upgrade or downgrade without disrupting packet flow. ISSU lowers the impact that planned maintenance activities have on network availability by allowing software changes while the system is in service. In Cisco IOS Release 12.2(33)SRD, this feature was introduced on the Cisco 7600 series router. The following commands were introduced or modified: debug ethernet lmi.</td>
</tr>
<tr>
<td>NSF/SSO Support in E-LMI</td>
<td>12.2(33)SRD, 15.0(1)S</td>
<td>The redundancy configurations SSO and NSF are supported in Ethernet LMI and are automatically enabled. A switchover from an active to a standby RP occurs when the active RP fails, is removed from the networking device, or is manually taken down for maintenance. The primary function of Cisco NSF is to continue forwarding IP packets following an RP switchover. NSF also inter-operates with the SSO feature to minimize network downtime following a switchover. In Cisco IOS Release 12.2(33)SRD, this feature was introduced on the Cisco 7600 series router. The following commands were introduced or modified: debug ethernet lmi.</td>
</tr>
</tbody>
</table>
Using Link Layer Discovery Protocol in Multivendor Networks

Link Layer Discovery Protocol (LLDP), standardized by the IEEE as part of 802.1ab, enables standardized discovery of nodes, which in turn facilitates future applications of standard management tools such as Simple Network Management Protocol (SNMP) in multivendor networks. Using standard management tools makes physical topology information available and helps network administrators detect and correct network malfunctions and inconsistencies in configuration.

Media Endpoint Discovery (MED) is an LLDP enhancement that was formalized by the Telecommunications Industry Association (TIA) for voice over IP (VoIP) applications.

The Cisco implementation of LLDP is based on the IEEE 802.1ab standard. This document describes LLDP and LLDP-MED and how they are supported in Cisco software.

- Finding Feature Information, on page 297
- Prerequisites for Using Link Layer Discovery Protocol in Multivendor Networks, on page 298
- Restrictions for Using Link Layer Discovery Protocol in Multivendor Networks, on page 298
- Information About Using Link Layer Discovery Protocol in Multivendor Networks, on page 298
- How to Configure Link Layer Discovery Protocol in Multivendor Networks, on page 302
- Configuration Examples for Link Layer Discovery Protocol in Multivendor Networks, on page 308
- Additional References for Using Link Layer Discovery Protocol in Multivendor Networks, on page 312
- Feature Information for Link Layer Discovery Protocol in Multivendor Networks, on page 313

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Using Link Layer Discovery Protocol in Multivendor Networks

- Type-Length-Value (TLV) types 0 through 127
- To support LLDP-MED, the following organizationally specific TLVs must be implemented:
 - Extended Power-via-Media Dependent Interface (MDI)
 - Inventory
 - LLDP-MED Capabilities
 - MAC/PHY Configuration Status
 - Network Policy
 - Port VLAN ID

Restrictions for Using Link Layer Discovery Protocol in Multivendor Networks

- Use of LLDP is limited to 802.1 media types such as Ethernet, Token Ring, and Fiber Distributed Data Interface (FDDI) networks.
- The maximum number of neighbor entries per chassis is limited on MED-capable network connectivity devices.

Information About Using Link Layer Discovery Protocol in Multivendor Networks

IEEE 802.1ab LLDP

IEEE 802.1ab Link Layer Discovery Protocol (LLDP) is an optional link layer protocol for network topology discovery in multivendor networks. Discovery information includes device identifiers, port identifiers, versions, and other details. As a protocol that aids network management, LLDP provides accurate network mapping, inventory data, and network troubleshooting information.

LLDP is unidirectional, operating only in an advertising mode. LLDP does not solicit information or monitor state changes between LLDP nodes. LLDP periodically sends advertisements to a constrained multicast address. Devices supporting LLDP can send information about themselves while they receive and record information about their neighbors. Additionally, devices can choose to turn off the send or receive functions independently. Advertisements are sent out and received on every active and enabled interface, allowing any device in a network to learn about all devices to which it is connected. Applications that use this information
include network topology discovery, inventory management, emergency services, VLAN assignment, and inline power supply.

Note

LLDP and Cisco Discovery Protocol can operate on the same interface.

The figure below shows a high-level view of LLDP operating in a network node.

When you configure LLDP or Cisco Discovery Protocol location information on a per-port basis, remote devices can send Cisco medianet location information to the switch. For more information, see the *Using Cisco Discovery Protocol module*.

LLDP-MED

LLDP-MED operates between several classes of network equipment such as IP phones, conference bridges, and network connectivity devices such as routers and switches. By default, a network connectivity device sends out only LLDP packets until it receives LLDP-MED packets from an endpoint device. The network device then sends out LLDP-MED packets until the remote device to which it is connected ceases to be LLDP-MED capable.

Classes of Endpoints

LLDP-MED network connectivity devices provide IEEE 802 network access to LLDP-MED endpoints. LLDP-MED supports the following three classes of endpoints:

- **Generic (class 1)**—Basic participant endpoints; for example, IP communications controllers.
- **Media (class 2)**—Endpoints that support media streams; for example, media gateways and conference bridges.
- **Communication Device (class 3)**—Endpoints that support IP communications end users; for example, IP phones and Softphone.
Types of Discovery Supported

LLDP-MED provides support to discover the following types of information, which are crucial to efficient operation and management of endpoint devices and the network devices supporting them:

- **Capabilities** — Endpoints determine the types of capabilities that a connected device supports and which ones are enabled.

- **Inventory** — LLDP-MED support exchange of hardware, software, and firmware versions, among other inventory details.

- **LAN speed and duplex** — Devices discover mismatches in speed and duplex settings.

- **Location identification** — An endpoint, particularly a telephone, learns its location from a network device. This location information may be used for location-based applications on the telephone and is important when emergency calls are placed.

- **Network policy** — Network connectivity devices notify telephones about the VLANs they should use.

- **Power** — Network connectivity devices and endpoints exchange power information. LLDP-MED provides information about how much power a device needs and how a device is powered. LLDP-MED also determines the priority of the device for receiving power.

Benefits of LLDP-MED

- Follows an open standard
• Supports E-911 emergency service, which is aided by location management
• Provides fast start capability
• Supports interoperability between multivendor devices
• Supports inventory management (location, version, etc.)
• Provides MIB support
• Supports plug and play installation
• Provides several troubleshooting (duplex, speed, network policy) mechanisms

TLV Elements

Link Layer Discovery Protocol (LLDP) and LLDP-Media Endpoint Discovery (MED) use Type-Length-Values (TLVs) to exchange information between network and endpoint devices. TLV elements are embedded in communications protocol advertisements and used for encoding optional information. The size of the type and length fields is fixed at 2 bytes. The size of the value field is variable. The type is a numeric code that indicates the type of field that this part of the message represents, and the length is the size of the value field, in bytes. The value field contains the data for this part of the message.

LLDP-MED supports the following TLVs:

• LLDP-MED capabilities TLV—Allows LLDP-MED endpoints to determine the capabilities that the connected device supports and has enabled.

• Network policy TLV—Allows both network connectivity devices and endpoints to advertise VLAN configurations and associated Layer 2 and Layer 3 attributes for the specific application on that port. For example, the switch can notify a phone of the VLAN number that it should use. The phone can connect to any switch, obtain its VLAN number, and then start communicating with the call control.

By defining a network-policy profile TLV, you can create a profile for voice and voice signalling by specifying the values for VLAN, class of service (CoS), differentiated services code point (DSCP), and tagging mode. These profile attributes are then maintained centrally on the switch and propagated to the phone.

• Power management TLV—Enables advanced power management between LLDP-MED endpoint and network connectivity devices. Allows switches and phones to convey power information, such as how the device is powered, power priority, and how much power the device needs. Supports advertisement of fractional wattage power requirements, endpoint power priority, and endpoint and network connectivity-device power status but does not provide for power negotiation between the endpoint and the network connectivity devices. When LLDP is enabled and power is applied to a port, the power TLV determines the actual power requirement of the endpoint device so that the system power budget can be adjusted accordingly. The switch processes the requests and either grants or denies power based on the current power budget. If the request is granted, the switch updates the power budget. If the request is denied, the switch turns off power to the port, generates a syslog message, and updates the power budget. If LLDP-MED is disabled or if the endpoint does not support the LLDP-MED power TLV, the initial allocation value is used throughout the duration of the connection.
A system power budget is the default power allocated to a device based on its device class. However, the total power that can be sourced from a switch is finite, and there will be some power budgeting done by the power module based on the number of ports already being served, total power that can be served, and how much new ports are requesting.

- Inventory management TLV—Allows an endpoint to send detailed inventory information about itself to the switch, including information such as hardware revision, firmware version, software version, serial number, manufacturer name, model name, and asset ID TLV.
- Location TLV—Provides location information from the switch to the endpoint device. The location TLV can send this information:
 - Civic location information—Provides the civic address information and postal information. Examples of civic location information are street address, road name, and postal community name information.
 - ELIN location information—Provides the location information of a caller. The location is determined by the Emergency location identifier number (ELIN), which is a phone number that routes an emergency call to the local public safety answering point (PSAP) and which the PSAP can use to call back the emergency caller.

Benefits of LLDP

- Follows IEEE 802.1ab standard.
- Enables interoperability among multivendor devices.
- Facilitates troubleshooting of enterprise networks and uses standard network management tools.
- Provides extension for applications such as VoIP.

How to Configure Link Layer Discovery Protocol in Multivendor Networks

Enabling and Disabling LLDP Globally

LLDP is disabled globally by default. This section describes the tasks for enabling and disabling LLDP globally.

Enabling LLDP Globally

Perform this task to enable LLDP globally.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `lldp run`
Disabling and Enabling LLDP on a Supported Interface

LLDP is enabled by default on all supported interfaces. This section describes the tasks for disabling and enabling LLDP on a supported interface.

Disabling LLDP on a Supported Interface

Perform this task to disable LLDP on a supported interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. no lldp {med-tlv-select tlv | receive | transmit}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>lldp run</td>
<td>Enables LLDP globally.</td>
</tr>
<tr>
<td>Example: Device(config)# lldp run</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Note: To disable LLDP globally, use the no lldp run command.
Setting LLDP Packet Hold Time

Hold time is the duration that a receiving device should maintain LLDP neighbor information before aging it. Perform this task to define a hold time for an LLDP-enabled device.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `lldp holdtime seconds`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>lldp holdtime seconds</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
Setting LLDP Packet Frequency

Perform this task to specify an interval at which the Cisco software sends LLDP updates to neighboring devices.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `lldp timer rate`
4. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>lldp timer rate</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the rate at which LLDP packets are sent every second.</td>
</tr>
<tr>
<td></td>
<td>Device(config)# lldp timer 75</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>end</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Device(config)# end</td>
</tr>
</tbody>
</table>
Monitoring and Maintaining LLDP in Multivendor Networks

Perform this task to monitor and maintain LLDP in multivendor networks. This task is optional, and Steps 2 and 3 can be performed in any sequence.

SUMMARY STEPS

1. enable
2. show lldp [entry {* | word} | errors | interface [ethernet number]] neighbors [ethernet number | detail | traffic]
3. clear lldp {counters | table}
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show lldp [entry {*</td>
<td>word}</td>
</tr>
<tr>
<td>Example: Device# show lldp entry *</td>
<td></td>
</tr>
<tr>
<td>Note When the show lldp neighbors command is issued, if the device ID has more than 20 characters, the ID is truncated to 20 characters in command output because of display constraints.</td>
<td></td>
</tr>
<tr>
<td>Step 3 clear lldp {counters</td>
<td>table}</td>
</tr>
<tr>
<td>Example: Device# clear lldp counters</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: Device# end</td>
<td></td>
</tr>
</tbody>
</table>

Enabling and Disabling LLDP TLVs

LLDP TLV support is enabled by default if LLDP is enabled globally and locally on a supported interface. Specific TLVs, however, can be enabled and suppressed.
Enabling LLDP TLVs

Perform this task to enable an LLDP TLV on a supported interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `lldp tlv-select tlv`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Specifies the interface type and number on which to enable LLDP-MED and enters interface configuration mode.</td>
</tr>
<tr>
<td><code>interface type number</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface Gigabitethernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables a specific LLDP TLV on a supported interface.</td>
</tr>
<tr>
<td><code>lldp tlv-select tlv</code></td>
<td>Note To disable LLDP TLVs, use the <code>no lldp tlv-select tlv</code></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# lldp tlv-select power-management</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>end</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Enabling and Disabling LLDP-MED TLVs

LLDP-MED TLV support is enabled by default if LLDP is enabled globally and locally on a supported interface. Specific TLVs, however, can be enabled and suppressed.

Enabling LLDP-MED TLVs

Perform this task to enable a specific LLDP-MED TLV on a supported interface.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. lldp med-tlv-select tlv
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number on which to enable LLDP-MED and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# interface Gigabitethernet 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 lldp med-tlv-select tlv</td>
<td>Enables a specific LLDP-MED TLV on a supported interface.</td>
</tr>
<tr>
<td>Example: Device(config-if)# lldp med-tlv-select inventory-management</td>
<td>Note To disable LLDP-MED TLVs, use the no lldp med-tlv-select tlv command.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Link Layer Discovery Protocol in Multivendor Networks

Example: Configuring Voice VLAN

The following example shows how to configure voice VLAN and verify

Device1> enable
Device1# configure terminal
Device1(config)# interface GigabitEthernet0/1/7
Device1(config-if)# switchport voice vlan 10
Device1(config-if)# no ip address
Device1(config-if)# end

The following example displays the updated running configuration on Device 2. LLDP is enabled with hold time, timer, and TLVs options configured.

Device1# show lldp neighbors detail

Local Intf: Gi0/1/7
Chassis id: 10.10.0.1
Port id: C8F9F9D61BC2:P1
Port Description: SW PORT
System Name: SEPC8F9F9D61BC2
System Description:
Cisco IP Phone 7962G,V12, SCCP42.9-3-1ES27S
Time remaining: 127 seconds
System Capabilities: B,T
Enabled Capabilities: B,T
Management Addresses:
 IP: 10.10.0.1
Auto Negotiation - supported, enabled
Physical media capabilities:
 1000baseT(HD)
 1000baseX(FD)
 Symm, Asym Pause(FD)
 Symm Pause(FD)
Media Attachment Unit type: 16
Vlan ID: - not advertised
MED Information:
 MED Codes:
 (NP) Network Policy, (LI) Location Identification
 (PS) Power Source Entity, (PD) Power Device
 (IN) Inventory
 H/W revision: 12
 F/W revision: tnp62.8-3-1-21a.bin
 S/W revision: SCCP42.9-3-1ES27S
 Serial number: FCH1610A5S5
 Manufacturer: Cisco Systems, Inc.
 Model: CP-7962G
 Capabilities: NP, PD, IN
 Device type: Endpoint Class III
 Network Policy(Voice): VLAN 10, tagged, Layer-2 priority: 5, DSCP: 46
 Location - not advertised

The following example shows how to configure LLDP timer, hold time, and TLVs options on Device 2.

Device> enable
Device# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device(config)# lldp run
Device(config)# lldp holdtime 150
Device(config)# lldp timer 15
Device(config)# lldp tlv-select port-vlan
Device(config)# lldp tlv-select mac-phy-cfg
Device2(config)# interface ethernet 0/0
Example Configuring LLDP on Two Devices

The following example shows how to configure LLDP timer, hold time, and TLVs on two devices in a network. In each case we assume that the Ethernet interfaces being configured are in the UP state.

! Configure LLDP on Device 1 with hold time, timer, and TLV options.

Device1> enable
Device1# configure terminal
Device1(config)# lldp run
Device1(config)# lldp holdtime 150
Device1(config)# lldp timer 15
Device1(config)# lldp tlv-select port-vlan
Device1(config)# lldp tlv-select mac-phy-cfg
Device1(config)# interface ethernet 0/0
Device1(config-if)# end
00:08:32: %SYS-5-CONFIG_I: Configured from console by console
! Show the updated running configuration. LLDP is enabled with hold time, timer, and TLV options configured.

Device1# show running-config

Building configuration...
Current configuration : 1397 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname Device1
!
boot-start-marker
boot-end-marker
!
no aaa new-model

! Configure LLDP on Device 2 with hold time, timer, and TLV options.

Device2> enable
Device2# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Device2(config)# lldp run
Device2(config)# lldp holdtime 150
Device2(config)# lldp timer 15
Device2(config)# lldp tlv-select port-vlan
Device2(config)# lldp tlv-select mac-phy-config
Device2(config)# interface ethernet 0/0
Device2(config-if)# end
00:08:32: %SYS-5-CONFIG_I: Configured from console by console

! Show the updated running configuration on Device 2. LLDP is enabled with hold time, timer, and TLV options configured.

Device2# show running-config
Building configuration...
Current configuration : 1412 bytes
!
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname R2
!
boot-start-marker
boot-end-marker
!
!
no aaa new-model
clock timezone PST -8
ip subnet-zero
!
lldp timer 15
lldp holdtime 150
!

! After both devices are configured for LLDP, issue the show
command from each device to view traffic and device information.

Device1# show lldp traffic
LLDP traffic statistics:
 Total frames out: 20
 Total entries aged: 0
 Total frames in: 15
 Total frames received in error: 0
 Total frames discarded: 0
 Total TLVs unrecognized: 0
Device1# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
Device2 Et0/0 150 R Et0/0
Total entries displayed: 1
Device2# show lldp traffic
LLDP traffic statistics:
 Total frames out: 15
 Total entries aged: 0
 Total frames in: 17
 Total frames received in error: 0
 Total frames discarded: 2
 Total TLVs unrecognized: 0
Device2# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other
Device ID Local Intf Hold-time Capability Port ID
Device1 Et0/0 150 R Et0/0
Total entries displayed: 1

Additional References for Using Link Layer Discovery Protocol in Multivendor Networks

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax,</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Carrier Ethernet commands: complete command syntax, command mode, command</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>LLDP</td>
<td>Link Layer Discovery Protocol</td>
</tr>
<tr>
<td>Per Port Location configurations</td>
<td>Per Port Location Configuration</td>
</tr>
<tr>
<td>Comparison of LLDP Media Endpoint Discovery (MED) and Cisco Discovery</td>
<td>LLDP-MED and Cisco Discovery Protocol</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standards/RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ab</td>
<td>Station and Media Access Control Connectivity Discovery</td>
</tr>
<tr>
<td>RFC 2922</td>
<td>Physical Topology MIB</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTOPO MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Link Layer Discovery Protocol in Multivendor Networks

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ab LLDP (Link Layer Discovery Protocol)</td>
<td></td>
<td>LLDP, standardized by the IEEE as part of 802.1ab, enables standardized discovery of nodes, which in turn facilitates future applications of standard management tools such as SNMP in multivendor networks. The following commands were introduced or modified: clear 1ldp, 1ldp and show 1ldp.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ANSI TIA-1057 LLDP-MED Support</td>
<td></td>
<td>MED is an LLDP enhancement that was formalized by the TIA for VoIP applications. The Cisco implementation of LLDP is based on the IEEE 802.1ab standard. The following commands were introduced or modified: lldp and lldp (interface).</td>
</tr>
</tbody>
</table>
| IEEE 802.1ab LLDP (Link Layer Discovery Protocol) | Cisco IOS XE Release 3.2E, Cisco IOS XE Release 3.6E | IEEE 802.3ad link bundling and load balancing leverages the EtherChannel infrastructure within Cisco software to manage the bundling of various links. The network traffic load-balancing features help minimize network disruption that results when a port is added or deleted from a link bundle. MED is an LLDP enhancement that was formalized by the TIA for VoIP applications. In Cisco IOS XE Release 3.2SE, this feature is supported on the following platforms:
 • Cisco 5700 Series Wireless LAN Controllers
 • Cisco Catalyst 3850 Series Switches
In Cisco IOS XE Release 3.3SE, this feature is supported on the following platforms:
 • Cisco Catalyst 3650 Series Switches |
| LLDP MED Support on ISRG2 | | The LLDP MED feature is supported on Cisco Integrated Services Routers Generation 2 (ISR G2). No commands were introduced or modified. |
CHAPTER 17

Multichassis LACP

In Carrier Ethernet networks, various redundancy mechanisms provide resilient interconnection of nodes and networks. The choice of redundancy mechanisms depends on various factors such as transport technology, topology, single node versus entire network multihoming, capability of devices, autonomous system (AS) boundaries or service provider operations model, and service provider preferences.

Carrier Ethernet network high availability can be achieved by employing both intra- and interchassis redundancy mechanisms. Cisco’s Multichassis EtherChannel (MCEC) solution addresses the need for interchassis redundancy mechanisms, where a carrier wants to “dual home” a device to two upstream points of attachment (PoAs) for redundancy. Some carriers either cannot or will not run loop prevention control protocols in their access networks, making an alternative redundancy scheme necessary. MCEC addresses this issue with enhancements to the 802.3ad Link Aggregation Control Protocol (LACP) implementation. These enhancements are provided in the Multichassis LACP (mLACP) feature described in this document.

• Finding Feature Information, on page 315
• Prerequisites for mLACP, on page 316
• Restrictions for mLACP, on page 316
• Information About mLACP, on page 317
• How to Configure mLACP, on page 330
• Configuration Examples for mLACP, on page 360
• Additional References, on page 377
• Feature Information for mLACP, on page 378
• Glossary, on page 378

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for mLACP

- The command `lacp max-bundle` must be used on all PoAs in order to operate in PoA control and shared control modes.
 - The maximum number of links configured cannot be less than the total number of interfaces in the link aggregation group (LAG) that is connected to the PoA.
 - Each PoA may be connected to a dual-homed device (DHD) with a different number of links for the LAG (configured with a different number of maximum links).
- Each PoA must be configured using the `lacp min-bundle` command with the desired minimum number of links to maintain the LAG in the active state.
- Each PoA must be configured with the `errdisable recovery cause mlacp` command if brute-force failover is being used.
- For DHD control there must be an equal number of links going to each PoA.
- The max-bundle value must equal the number of active links connected locally to the PoA (no local intra-PoA active or standby protection).
- LACP fast switchover must be configured on all devices to speed convergence.

Restrictions for mLACP

- mLACP does not support Fast Ethernet.
- mLACP does not support half-duplex links.
- mLACP does not support multiple neighbors.
- Converting a port channel to mLACP can cause a service disruption.
- The maximum number of member links per LAG per PoA is restricted by the maximum number of ports per port channel, as limited by the platform.
- System priority on a DHD must be a lesser priority than on PoAs.
- MAC Tunneling Protocol (MTP) supports only one member link in a port channel.
- A port-channel or its member links may flap while LACP stabilizes.
- DHD-based control does not function when min-links is not configured.
- DHD-controlled revertive behavior with min-links is not supported.
- Brute-force failover always causes min-link failures.
- Any failure with brute-force failover behaves revertively.

The following restrictions are applicable on the Cisco Aggregation Services ASR 1000 Series Routers:

- The Virtual Private LAN Services (VPLS)-Coupled mode is not supported.
- Hierarchical VPLS (H-VPLS) is not supported.
The following restrictions are applicable on the Cisco 903 Series Aggregation Services Routers:

- The maximum number of member links per Link Access Group (LAG) per points of attachment (PoA) is restricted by the maximum number of ports per port channel, as limited by the platform.

- The `lacp max-bundle max-links` command must be used on all the PoAs in order to operate in PoA control and shared control modes.

 - The value of the max-links variable must not be less than the total number of interfaces in the LAG, which are connected to the PoA.

 - Each PoA may be connected to the dual-homed device (DHD) with a different number of links for the LAG (and hence configured with a different value for the max-links value) variable.

- The `lacp min-bundle min-links` command has local scope only. Each PoA needs to be configured with the required minimum number of links to maintain the LAG in active state.

- When implementing the Virtual Private LAN Services (VPLS), the pseudowire states are decoupled from the attachment circuit (AC) status by default. The mLACP access state is not relayed on the VPLS pseudowires and the pseudowire continues to operate only in the decoupled mode. Coupled mode is not supported.

- mLACP and Pseudo-mLACP (P-mLACP) feature interoperation between the Cisco 7600 Series Routers and the Cisco 903 Series Aggregation Services Routers is not supported when the former is used as one PoA and the Cisco ASR 903 as another PoA in the same redundancy group.

- mLACP for Layer 2 Virtual Private Network (L2VPN) is supported only with the new protocol based CLIs.

- MAC Tunneling Protocol (MTP) is not supported.

- The following commands are not supported:

 - `ethernet mac-flush notification mirp`

 - `show ethernet service instance id mac-tunnel`

 - `errdisable recovery cause mlacp`

Information About mLACP

Overview of Multichassis EtherChannel

In Multichassis EtherChannel (MCEC), the DHD is dual-homed to two upstream PoAs. The DHD is incapable of running any loop prevention control protocol such as Multiple Spanning Tree (MST). Therefore, another mechanism is required to prevent forwarding loops over the redundant setup. One method is to place the DHD’s uplinks in a LAG, commonly referred to as EtherChannel. This method assumes that the DHD is capable of running only IEEE 802.3ad LACP for establishing and maintaining the LAG.

LACP, as defined in IEEE 802.3ad, is a link-level control protocol that allows the dynamic negotiation and establishment of LAGs. An extension of the LACP implementation to PoAs is required to convey to a DHD...
that it is connected to a single virtual LACP peer and not to two disjointed devices. This extension is called Multichassis LACP or mLACP. The figure below shows this setup.

The PoAs forming a virtual LACP peer, from the perspective of the DHD, are defined as members of a redundancy group. For the PoAs in a redundancy group to appear as a single device to the DHD, the states between them must be synchronized through the Interchassis Communication Protocol (ICCP), which provides a control-only interchassis communication channel (ICC).

In Cisco IOS Release 12.2(33)SRE, the system functions in active/standby redundancy mode. In this mode DHD uplinks that connect to only a single PoA can be active at any time. The DHD recognizes one PoA as active and the other as standby but does not preclude a given PoA from being active for one DHD and standby for another. This capability allows two PoAs to perform load sharing for different services.

Interactions with the MPLS Pseudowire Redundancy Mechanism

The network setup shown in the figure above can be used to provide provider edge (PE) node redundancy for Virtual Private LAN Service (VPLS) and Virtual Private Wire Service (VPWS) deployments over Multiprotocol Label Switching (MPLS). In these deployments, the uplinks of the PoAs host the MPLS pseudowires that provide redundant connectivity over the core to remote PE nodes. Proper operation of the network requires interaction between the redundancy mechanisms employed on the attachment circuits (for example, mLACP) and those employed on the MPLS pseudowires. This interaction ensures the state (active or standby) is synchronized between the attachment circuits and pseudowires for a given PoA.

RFC 4447 introduced a mechanism to signal pseudowire status via the Link Distribution Protocol (LDP) and defined a set of status codes to report attachment circuit as well as pseudowire fault information. The Preferential Forwarding Status bit (draft-ietf-pwe3-redundancy-bit) definition proposes to extend these codes to include two bits for pseudowire redundancy applications:

- Preferential forwarding status: active or standby
- Request pseudowire switchover

The draft also proposes two modes of operation:

- Independent mode--The local PE decides on its pseudowire status independent of the remote PE.
- Primary and secondary modes--One of the PEs determines the state of the remote side through a handshake mechanism.
For the mLACP feature, operation is based on the independent mode. By running ICC between the PoAs, only the preferential forwarding status bit is required; the request pseudowire switchover bit is not used.

The local pseudowire status (active or standby) is determined independently by the PoAs in a redundancy group and then relayed to the remote PEs in the form of a notification. Similarly, the remote PEs perform their own selection of their pseudowire status and notify the PoAs on the other side of the core.

After this exchange of local states, the pseudowires used for traffic forwarding are those selected to be active independently on both local and remote ends.

The attachment circuit redundancy mechanism determines and controls the pseudowire redundancy mechanism. mLACP determines the status of the attachment circuit on a given PoA according to the configured LACP system and port priorities, and then the status of the pseudowires on a given PoA is synchronized with that of the local attachment circuits. This synchronization guarantees that the PoA with the active attachment circuits has its pseudowires active. Similarly, the PoA with the standby attachment circuits has its pseudowires in standby mode. By ensuring that the forwarding status of the attachment circuits is synchronized with that of the pseudowires, the need to forward data between PoA nodes within a redundancy group can be avoided. This synchronization saves platform bandwidth that would otherwise be wasted on inter-PoA data forwarding in case of failures.

Redundancy Mechanism Processes

The Carrier Ethernet redundancy solution should include the following processes (and how they apply to the mLACP solution):

- **Attachment circuit active or standby status selection**—This selection can be performed by the access node or network, the aggregation node, or combination of the two. For mLACP, the attachment circuit status selection is determined through collaboration between the DHD and the PoAs.

- **Pseudowire forwarding status notification**—This notification is mandatory for mLACP operation in VPWS and VPLS deployments; that is, when the PoA uplinks employ pseudowire technology. When the PoAs decide on either an active or standby role, they need to signal the status of the associated pseudowires to the PEs on the far end of the network. For MPLS pseudowires, this is done using LDP.

- **MAC flushing indication**—This indication is mandatory for any redundancy mechanism in order to speed convergence time and eliminate potential traffic blackholing. The mLACP redundancy mechanism should be integrated with relevant 802.1Q/802.1ad/802.1ah MAC flushing mechanisms as well as MAC flushing mechanisms for VPLS.

Note

Blackholing occurs when incoming traffic is dropped without informing the source that the data did not reach its intended recipient. A black hole can be detected only when lost traffic is monitored.

- **Active VLAN notification**—For mLACP, this notification is not required as long as the PoAs follow the active/standby redundancy model.

The figure below shows redundancy mechanisms in Carrier Ethernet networks.
Dual-Homed Topology Using mLACP

The mLACP feature allows the LACP state machine and protocol to operate in a dual-homed topology. The mLACP feature decouples the existing LACP implementation from the multichassis specific requirements, allowing LACP to maintain its adherence to the IEEE 802.3ad standard. The mLACP feature exposes a single virtual instance of IEEE 802.3ad to the DHD for each redundancy group. The virtual LACP instance interoperates with the DHD according to the IEEE 802.3ad standard to form LAGs spanning two or more chassis.

LACP and 802.3ad Parameter Exchange

In IEEE 802.3ad, the concatenation of the LACP system MAC address and system priority form an LACP system ID (8 bytes). The system ID is formed by taking the two-byte system priority value as the most significant two octets of the system ID. The system MAC address makes up the remainder of the system ID (octets 3 to 8). System ID priority comparisons are based on the lower numerically valued ID.

To provide the highest LACP priority, the mLACP module communicates the system MAC address and priority values for the given redundancy group to its redundancy group peer(s) and vice versa. The mLACP then chooses the lowest system ID value among the PoAs in the given redundancy group to use as the system ID of the virtual LACP instance of the redundancy group.

Cisco IOS Release 12.2(33)SRE introduces two LACP configuration commands to specify the system MAC address and system priority used for a given redundancy group: `mlacp system-mac mac-address` and `mlacp system-priority priority-value`. These commands provide better settings to determine which side of the attachment circuit will control the selection logic of the LAG. The default value for the system MAC address is the chassis backplane default MAC address. The default value for the priority is 32768.
Port Identifier

IEEE 802.3ad uses a 4-byte port identifier to uniquely identify a port within a system. The port identifier is the concatenation of the port priority and port number (unique per system) and identifies each port in the system. Numerical comparisons between port IDs are performed by unsigned integer comparisons where the 2-byte Port Priority field is placed in the most significant two octets of the port ID. The 2-byte port number makes up the third and fourth octets. The mLACP feature coordinates the port IDs for a given redundancy group to ensure uniqueness.

Port Number

A port number serves as a unique identifier for a port within a device. The LACP port number for a port is equal to the port’s ifIndex value (or is based on the slot and subslot identifiers on the Cisco 7600 router).

LACP relies on port numbers to detect rewiring. For multichassis operation, you must enter the `mlacp node-id node-id` command to coordinate port numbers between the two PoAs in order to prevent overlap.

Port Priority

Port priority is used by the LACP selection logic to determine which ports should be activated and which should be left in standby mode when there are hardware or software limitations on the maximum number of links allowed in a LAG. For multichassis operation in active/standby redundancy mode, the port priorities for all links connecting to the active PoA must be higher than the port priorities for links connecting to the standby PoA. These port priorities can either be guaranteed through explicit configuration or the system can automatically adjust the port priorities depending on selection criteria. For example, select the PoA with the highest port priority to be the active PoA and dynamically adjust the priorities of all other links with the same port key to an equal value.

In Cisco IOS Release 12.2(33)SRE, the mLACP feature supports only the active/standby redundancy model. The LACP port priorities of the individual member links should be the same for each link belonging to the LAG of a given PoA. To support this requirement, the `mlacp lag-priority` command is implemented in interface configuration mode in the command-line interface (CLI). This command sets the LACP port priorities for all the local member links in the LAG. Individual member link LACP priorities (configured by the `lacp port-priority` command) are ignored on links belonging to mLACP port channels.

The `mlacp lag-priority` command may also be used to force a PoA failover during operation in the following two ways:

- Set the active PoA’s LAG priority to a value greater than the LAG priority on the standby PoA. This setting results in the quickest failover because it requires the fewest LACP link state transitions on the standby links before they turn active.

- Set the standby PoA’s LAG priority to a value numerically less than the LAG priority on the active PoA. This setting results in a slightly longer failover time because standby links have to signal OUT_OF_SYNC to the DHD before the links can be brought up and go active.

In some cases, the operational priority and the configured priority may differ when using dynamic port priority management to force failovers. In this case, the configured version will not be changed unless the port channel is operating in nonrevertive mode. Enter the `show lacp multichassis port-channel` command to view the current operational priorities. The configured priority values can be displayed by using the `show running-config` command.
Multichassis Considerations

Because LACP is a link layer protocol, all messages exchanged over a link contain information that is specific and local to that link. The exchanged information includes:

- System attributes—priority and MAC address
- Link attributes—port key, priority, port number, and state

When extending LACP to operate over a multichassis setup, synchronization of the protocol attributes and states between the two chassis is required.

System MAC Address

LACP relies on the system MAC address to determine the identity of the remote device connected over a particular link. Therefore, to mask the DHD from its connection to two disjointed devices, coordination of the system MAC address between the two PoAs is essential. In Cisco IOS software, the LACP system MAC address defaults to the ROM backplane base MAC address and cannot be changed by configuration. For multichassis operation the following two conditions are required:

- System MAC address for each PoA should be communicated to its peer—for example, the PoAs elect the MAC address with the lower numeric value to be the system MAC address. The arbitration scheme must resolve to the same value. Choosing the lower numeric MAC address has the advantage of providing higher system priority.
- System MAC address is configurable—The system priority depends, in part, on the MAC address, and a service provider would want to guarantee that the PoAs have higher priority than the DHD (for example, if both DHD and PoA are configured with the same system priority and the service provider has no control over DHD). A higher priority guarantees that the PoA port priorities take precedence over the DHD’s port priority configuration. If you configure the system MAC address, you must ensure that the addresses are uniform on both PoAs; otherwise, the system will automatically arbitrate the discrepancy, as when a default MAC address is selected.

System Priority

LACP requires that a system priority be associated with every device to determine which peer’s port priorities should be used by the selection logic when establishing a LAG. In Cisco IOS software, this parameter is configurable through the CLI. For multichassis operation, this parameter is coordinated by the PoAs so that the same value is advertised to the DHD.

Port Key

The port key indicates which links can form a LAG on a given system. The key is locally significant to an LACP system and need not match the key on an LACP peer. Two links are candidates to join the same LAG if they have the same key on the DHD and the same key on the PoAs; however, the key on the DHD is not required to be the same as the key on the PoAs. Given that the key is configured according to the need to aggregate ports, there are no special considerations for this parameter for multichassis operation.

Failure Protection Scenarios

The mLACP feature provides network resiliency by protecting against port, link, and node failures. These failures can be categorized into five types. The figure below shows the failure points in a network, denoted by the letters A through E.
• A--Failure of the uplink port on the DHD
• B--Failure of the Ethernet link
• C--Failure of the downlink port on the active PoA
• D--Failure of the active PoA node
• E--Failure of the active PoA uplinks

When any of these faults occur, the system reacts by triggering a switchover from the active PoA to the standby PoA. The switchover involves failing over the PoA's uplinks and downlinks simultaneously.

Failure points A and C are port failures. Failure point B is an Ethernet link failure and failure point D is a node failure. Failure point E can represent one of four different types of uplink failures when the PoAs connect to an MPLS network:

• Pseudowire failure--Monitoring individual pseudowires (for example, using VCCV-BFD) and, upon a pseudowire failure, declare uplink failure for the associated service instances.
• Remote PE IP path failure--Monitoring the IP reachability to the remote PE (for example, using IP Route-Watch) and, upon route failure, declare uplink failure for all associated service instances.
• LSP failure--Monitoring the LSP to a given remote PE (for example, using automated LSP-Ping) and, upon LSP failure, declare uplink failure for all associated service instances.
• PE isolation--Monitoring the physical core-facing interfaces of the PE. When all of these interfaces go down, the PE effectively becomes isolated from the core network, and the uplink failure is declared for all affected service instances.

As long as the IP/MPLS network employs native redundancy and resiliency mechanisms such as MPLS fast reroute (FRR), the mLACP solution is sufficient for providing protection against PE isolation. Pseudowire, LSP, and IP path failures are managed by the native IP/MPLS protection procedures. That is, interchassis failover via mLACP is triggered only when a PE is completely isolated from the core network, because native IP/MPLS protection mechanisms are rendered useless. Therefore, failure point E is used to denote PE isolation from the core network.
The set of core-facing interfaces that should be monitored are identified by explicit configuration. The set of core-facing interfaces must be defined independently per redundancy group. Failure point E (unlike failure point A, B, or C) affects and triggers failover for all the multichassis LAGs configured on a given PoA.

Operational Variants

LACP provides a mechanism by which a set of one or more links within a LAG are placed in standby mode to provide link redundancy between the devices. This redundancy is normally achieved by configuring more ports with the same key than the number of links a device can aggregate in a given LAG (due to hardware or software restrictions, or due to configuration). For example, for active/standby redundancy, two ports are configured with the same port key, and the maximum number of allowed links in a LAG is configured to be 1. If the DHD and PoAs are all capable of restricting the number of links per LAG by configuration, three operational variants are possible.

DHD-based Control

The value of PoAs must be greater than the value of DHD. In DHD-based control, maximum number of links per bundle should be one. The PoAs must be configured to limit the maximum number of links per bundle to be greater than one. Thus, the selection of the active/standby link is the responsibility of the DHD. Which link is designated active and which is marked standby depends on the relative port priority, as configured on the system with the higher system priority. A PoA configured with a higher system priority can still determine the selection outcome. The DHD makes the selection and places the link with lower port priority in standby mode.

To accommodate DHD-controlled failover, the DHD must be configured with the max-bundle value equal to a number of links (L), where L is the fewest number of links connecting the DHD to a PoA. The max-bundle value restricts the DHD from bundling links to both PoAs at the same time (active/active). Although the DHD controls the selection of active/standby links, the PoA can still dictate the individual member link priorities by configuring the PoA’s virtual LACP instance with a lower system priority value than the DHD’s system priority.

The DHD control variant must be used with a PoA minimum link threshold failure policy where the threshold is set to L (same value for L as described above). A minimum link threshold must be configured on each of the PoAs because an A, B, or C link failure that does not trigger a failover (minimum link threshold is still satisfied) causes the DHD to add one of the standby links going to the standby PoA to the bundle. This added link results in the unsupported active/active scenario.

Note

DHD control does not use the mLACP hot-standby state on the standby PoA, which results in higher failover times than the other variants.

DHD control eliminates the split brain problem on the attachment circuit side by limiting the DHD’s attempts to bundle all the links.
PoA Control

In PoA control, the PoA is configured to limit the maximum number of links per bundle to be equal to the number of links (L) going to the PoA. The DHD is configured with that parameter set to some value greater than L. Thus, the selection of the active/standby links becomes the responsibility of the PoA.

Shared Control (PoA and DHD)

In shared control, both the DHD and the PoA are configured to limit the maximum number of links per bundle to L—the number of links going to the PoA. In this configuration, each device independently selects the active/standby link. Shared control is advantageous in that it limits the split-brain problem in the same manner as DHD control, and shared control is not susceptible to the active/active tendencies that are prevalent in DHD control. A disadvantage of shared control is that the failover time is determined by both the DHD and the PoA, each changing the standby links to SELECTED and waiting for each of the WAIT_WHILE_TIMERs to expire before moving the links to IN_SYNC. The independent determination of failover time and change of link states means that both the DHD and PoAs need to support the LACP fast-switchover feature in order to provide a failover time of less than one second.

mLACP Failover

The mLACP forces a PoA failover to the standby PoA when one of the following failures occurs:

- Failure of the DHD uplink port, Ethernet link, or downlink port on the active PoA—A policy failover is triggered via a configured failover policy and is considered a forced failover. In Cisco IOS Release 12.2(33)SRE, the only option is the configured minimum bundle threshold. When the number of active and SELECTED links to the active PoA goes below the configured minimum threshold, mLACP forces a failover to the standby PoA's member links. This minimum threshold is configured using the `lacp min-links` command in interface configuration mode. The PoAs determine the failover independent of the operational control variant in use.

- Failure of the active PoA—This failure is detected by the standby PoA. mLACP automatically fails over to standby because mLACP on the standby PoA is notified of failure via ICRM and brings up its local member links. In the DHD-controlled variant, this failure looks the same as a total member link failure, and the DHD activates the standby links.

- Failure of the active PoA uplinks—mLACP is notified by ICRM of PE isolation and relinquishes its active member links. This failure is a “forced failover” and is determined by the PoAs independent of the operational control variant in use.

Dynamic Port Priority

The default failover mechanism uses dynamic port priority changes on the local member links to force the LACP selection logic to move the required standby link(s) to the SELECTED and Collecting_Distributing state. This state change occurs when the LACP actor port priority values for all affected member links on the currently active PoA are changed to a higher numeric value than the standby PoA's port priority (which gives the standby PoA a higher claim to bundle links). Changing the actor port priority triggers the transmission of an mLACP Port Config Type-Length-Value (TLV) message to all peers in the redundancy group. These messages also serve as notification to the standby PoA(s) that the currently active PoA is attempting to relinquish its role. The LACP then transitions the standby link(s) to the SELECTED state and moves all the currently active links to STANDBY.
Dynamic port priority changes are not automatically written back to the running configuration or to the NVRAM configuration. If you want the current priorities to be used when the system reloads, the `mlacp lag-priority` command must be used and the configuration must be saved.

Revertive and Nonrevertive Modes

Dynamic port priority functionality is used by the mLACP feature to provide both revertive mode and nonrevertive mode. The default operation is revertive, which is the default behavior in single chassis LACP. Nonrevertive mode can be enabled on a per port-channel basis by using the `lacp failover non-revertive` command in interface configuration mode. In Cisco IOS Release 12.2(33)SRE this command is supported only for mLACP.

Nonrevertive mode is used to limit failover and, therefore, possible traffic loss. Dynamic port priority changes are utilized to ensure that the newly activated PoA remains active after the failed PoA recovers.

Revertive mode operation forces the configured primary PoA to return to active state after it recovers from a failure. Dynamic port priority changes are utilized when necessary to allow the recovering PoA to resume its active role.

Brute Force Shutdown

This feature is not applicable for Cisco ASR 903 RSP3 Module.

A brute-force shutdown is a forced failover mechanism to bring down the active physical member link interface(s) for the given LAG on the PoA that is surrendering its active status. The port-channel and any remaining active member link goes to an “err-disabled” state. This mechanism does not depend on the DHD’s ability to manage dynamic port priority changes and compensates for deficiencies in the DHD’s LACP implementation.

The brute-force shutdown changes the status of each member link to ADMIN_DOWN to force the transition of the standby links to the active state. Note that this process eliminates the ability of the local LACP implementation to monitor the link state.

The brute-force shutdown operates in revertive mode, so dynamic port priorities cannot be used to control active selection. The brute-force approach is configured by the `lacp failover brute-force` command in interface configuration mode. This command is not allowed in conjunction with a nonrevertive configuration.

Peer Monitoring with Interchassis Redundancy Manager

There are two ways in which a peer can be monitored with Interchassis Redundancy Manager (ICRM):

- **Routewatch (RW)**—This method is the default.
- **Bidirectional Forwarding Detection (BFD)**—You must configure the redundancy group with the `monitor peer bfd` command.

Note In Cisco IOS XE Everest 16.5.1 release, RSP3 Module only supports single-hop BFD, hence only single-hop BFD is applicable for mLACP peer monitoring.
For stateful switchover (SSO) deployments (with redundant support in the chassis), BFD monitoring and a static route for the ICCP connection are required to prevent “split brain” after an SSO failover.

For each redundancy group, for each peer (member IP), a monitoring adjacency is created. If there are two peers with the same IP address, the adjacency is shared regardless of the monitoring mode. For example, if redundancy groups 1 and 2 are peered with member IP 10.10.10.10, there is only one adjacency to 10.10.10.10, which is shared in both redundancy groups. Furthermore, redundancy group 1 can use BFD monitoring while redundancy group 2 is using RW.

BFD is completely dependent on RW--there must be a route to the peer for ICRM to initiate BFD monitoring. BFD implies RW and sometimes the status of the adjacency may seem misleading but is accurately representing the state. Also, if the route to the peer PoA is not through the directly connected (back-to-back) link between the systems, BFD can give misleading results.

An example of output from the `show redundancy interchassis` command follows:

```
Device# show redundancy interchassis
Redundancy Group 1 (0x1)
  Applications connected: mLACP
  Monitor mode: Route=watch
  member ip: 201.0.0.1 'mlacp-201', CONNECTED
  Route=watch for 201.0.0.1 is UP
  mLACP state: CONNECTED
  ICRM fast-failure detection neighbor table
  IP Address  Status  Type  Next-hop IP  Interface
  =========== ======== ==== =========== =========
  201.0.0.1 UP    RW
```

To interpret the adjacency status displayed by the `show redundancy interchassis` command, refer to the table below.

Table 26: Status Information from the `show redundancy interchassis` command

<table>
<thead>
<tr>
<th>Adjacency Type</th>
<th>Adjacency Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RW</td>
<td>DOWN</td>
<td>RW or BFD is configured, but there is no route for the given IP address.</td>
</tr>
<tr>
<td>RW</td>
<td>UP</td>
<td>RW or BFD is configured. RW is up, meaning there is a valid route to the peer. If BFD is configured and the adjacency status is UP, BFD is probably not configured on the interface of the route’s adjacency.</td>
</tr>
<tr>
<td>BFD</td>
<td>DOWN</td>
<td>BFD is configured. A route exists and the route’s adjacency is to an interface that has BFD enabled. BFD is started but the peer is down. The DOWN status can be because the peer is not present or BFD is not configured on the peer’s interface.</td>
</tr>
<tr>
<td>BFD</td>
<td>UP</td>
<td>BFD is configured and operational.</td>
</tr>
</tbody>
</table>
If the adjacency type is “BFD,” RW is UP regardless of the BFD status.

MAC Flushing Mechanisms

When mLACP is used to provide multichassis redundancy in multipoint bridged services (for example, VPLS), there must be a MAC flushing notification mechanism in order to prevent potential traffic blackholing.

At the failover from a primary PoA to a secondary PoA, a service experiences traffic blackholing when the DHD in question remains inactive and while other remote devices in the network are attempting to send traffic to that DHD. Remote bridges in the network have stale MAC entries pointing to the failed PoA and direct traffic destined to the DHD to the failed PoA, where the traffic is dropped. This blackholing continues until the remote devices age out their stale MAC address table entries (which typically takes five minutes). To prevent this anomaly, the newly active PoA, which has taken control of the service, transmits a MAC flush notification message to the remote devices in the network to flush their stale MAC address entries for the service in question.

The exact format of the MAC flushing message depends on the nature of the network transport: native 802.1Q/802.1ad Ethernet, native 802.1ah Ethernet, VPLS, or provider backbone bridge (PBB) over VPLS. Furthermore, in the context of 802.1ah, it is important to recognize the difference between mechanisms used for customer-MAC (C-MAC) address flushing versus bridge-MAC (B-MAC) address flushing.

The details of the various mechanisms are discussed in the following sections.

Multiple I-SID Registration Protocol

Multiple I-SID Registration Protocol (MIRP) is enabled by default on 802.1ah service instances. The use of MIRP in 802.1ah networks is shown in the figure below.

![Device Diagram](image)

Device DHD1 is dual-homed to two 802.1ah backbone edge bridges (BEB1 and BEB2). Assume that initially the primary path is through BEB1. In this configuration BEB3 learns that the host behind DHD1 (with MAC address CM1) is reachable via the destination B-MAC M1. If the link between DHD1 and BEB1 fails and the host behind DHD1 remains inactive, the MAC cache tables on BEB3 still refer to the BEB1 MAC address.
even though the new path is now via BEB2 with B-MAC address M2. Any bridged traffic destined from the host behind DHD2 to the host behind DHD1 is wrongfully encapsulated with B-MAC M1 and sent over the MAC tunnel to BEB1, where the traffic blackholes.

To circumvent the traffic blackholing problem when the link between DHD1 and BEB1 fails, BEB2 performs two tasks:

- Flushes its own MAC address table for the service or services in question.
- Transmits an MIRP message on its uplink to signal the far end BEB (BEB3) to flush its MAC address table. Note that the MIRP message is transparent to the backbone core bridges (BCBs). The MIRP message is processed on a BEB because only BCBs learn and forward based on B-MAC addresses and they are transparent to C-MAC addresses.

MIRP triggers C-MAC address flushing for both native 802.1ah and PBB over VPLS. This is not applicable for Cisco ASR 903 RSP3 Module.

The figure below shows the operation of the MIRP.

The MIRP has not been defined in IEEE but is expected to be based on the IEEE 802.1ak Multiple Registration Protocol (MRP). MRP maintains a complex finite state machine (FSM) for generic attribute registration. In the case of MIRP, the attribute is an I-SID. As such, MIRP provides a mechanism for BEBs to build and prune a per I-SID multicast tree. The C-MAC flushing notification capability of MIRP is a special case of attribute
registration in which the device indicates that an MIRP declaration is “new,” meaning that this notification is the first time a BEB is declaring interest in a particular I-SID.

LDP MAC Address Withdraw

When the mLACP feature is used for PE redundancy in traditional VPLS (that is, not PBB over VPLS), the MAC flushing mechanism is based on the LDP MAC Address Withdraw message as defined in RFC 4762.

The required functional behavior is as follows: Upon a failover from the primary PoA to the standby PoA, the standby PoA flushes its local MAC address table for the affected services and generates the LDP MAC Address Withdraw messages to notify the remote PEs to flush their own MAC address tables. One message is generated for each pseudowire in the affected virtual forwarding instances (VFIs).

How to Configure mLACP

Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group Configuration)

Perform this task to set up the communication between multiple PoAs and to configure them in the same group.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `redundancy`
4. `interchassis group group-id`
5. `monitor peer bfd`
6. `member ip ip-address`
7. `mlacp node-id node-id`
8. `mlacp system-mac mac-address`
9. `mlacp system-priority priority-value`
10. `backbone interface type number`
11. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Multichassis LACP

Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group Configuration)

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>redundancy</code></td>
<td>Enters redundancy configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# redundancy</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>interchassis group group-id</code></td>
<td>Configures an interchassis group within the redundancy configuration mode and enters interchassis redundancy mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-red)# interchassis group 50</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td><code>monitor peer bfd</code></td>
<td>Configures the BFD option to monitor the state of the peer. The default option is route-watch.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# monitor peer bfd</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td><code>member ip ip-address</code></td>
<td>Configures the IP address of the mLACP peer member group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# member ip 172.3.3.3</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>mlacp node-id node-id</code></td>
<td>Defines the node ID used in the LACP Port ID field by this member of the mLACP redundancy group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# mlacp node-id 5</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>mlacp system-mac mac-address</code></td>
<td>Defines and advertises the system MAC address value to the mLACP members of the redundancy group for arbitration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# mlacp system-mac aa12.be45.d799</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>mlacp system-priority priority-value</code></td>
<td>Defines the system priority advertised to the other mLACP members of the redundancy group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# mlacp system-priority 100</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>backbone interface type number</code></td>
<td>Defines the backbone interface for the mLACP configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# backbone interface GigabitEthernet2/3</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 11 | **end**
Example:
Router(config-r-ic)# end

Purpose
Returns the CLI to privileged EXEC mode.

Configuring the mLACP Interchassis Group and Other Port-Channel Commands

Perform this task to set up mLACP attributes specific to a port channel. The `mlacp interchassis group` command links the port-channel interface to the interchassis group that was created in the previous Configuring Interchassis Group and Basic mLACP Commands (Global Redundancy Group Configuration), on page 330.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface port-channel port-channel-number`
4. `lacp max-bundle max-bundles`
5. `lacp failover {brute-force | non-revertive}`
6. `exit`
7. `redundancy`
8. `interchassis group group-id`
9. `exit`
10. `exit`
11. `errdisable recovery cause mlacp-minlink`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable`
Example:
Router> enable
| Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Step 2** | `configure terminal`
Example:
Router# configure terminal
| Enters global configuration mode. |
| **Step 3** | `interface port-channel port-channel-number`
Example:
Router(config)# interface port-channel1
<p>| Configures the port channel and enters interface configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** | **lACP max-bundle**
max-bundles
Example:
Router(config-if)# lACP max-bundle 4
Purpose:
Configures the max-bundle links that are connected to the PoA. The value of the *max-bundles* argument should not be less than the total number of links in the LAG that are connected to the PoA.
- Determines whether the redundancy group is under DHD control, PoA control, or both.
- Range is 1 to 8. Default value is 8. |
| **Step 5** | **lACP failover**
{brute-force|non-revertive}
Example:
Router(config-if)# lACP failover brute-force
Purpose:
Sets the mLACP switchover to nonrevertive or brute force. This command is optional.
- Default value is revertive (with 180-second delay).
- If you configure brute force, a minimum link failure for every mLACP failure occurs or the dynamic lag priority value is modified. |
| **Step 6** | **exit**
Example:
Router(config-if)# exit
Purpose:
Exits interface configuration mode. |
| **Step 7** | **redundancy**
Example:
Router(config)# redundancy
Purpose:
Enters redundancy configuration mode. |
| **Step 8** | **interchassis group**
group-id
Example:
Router(config-red)# interchassis group 230
Purpose:
Specifies that the port channel is an mLACP port channel. The *group-id* should match the configured redundancy group. |
| **Step 9** | **exit**
Example:
Router(config-r-ic)# exit
Purpose:
Exits interchassis redundancy mode. |
| **Step 10** | **exit**
Example:
Router(config-red)# exit
Purpose:
Exits redundancy configuration mode. |
| **Step 11** | **errdisable recovery cause mlACP-minlink**
Example:
Router(config)# errdisable recovery cause mlACP-minlink
Purpose:
Enables automatic recovery from a failover state of the port channel. |
Purpose

Command or Action	Purpose
Step 12 | end
Example: Router(config)# end

Returns the CLI to privileged EXEC mode.

Configuring Redundancy for VPWS

Perform this task to provide Layer 2 VPN service redundancy for VPWS.

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class pw-class-name
4. encapsulation mpls
5. status peer topology dual-homed
6. exit
7. interface port-channel port-channel-number
8. no ip address
9. lacp fast-switchover
10. lacp max-bundle max-bundles
11. exit
12. redundancy
13. interchassis group group-id
14. exit
15. exit
16. interface port-channel port-channel-number
17. service instance id ethernet [evc-name]
18. encapsulation dot1q vlan-id [, vlan-id[+ vlan-id]] [native]
19. exit
20. xconnect peer-ip-address vc-id [encapsulation mpls | pw-class pw-class-name] [pw-class pw-class-name] [sequencing {transmit | receive | both}]
21. backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]
22. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable
Example: Router> enable |
Enables privileged EXEC mode.
- Enter your password if prompted.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>pseudowire-class pw-class-name</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# pseudowire-class ether-pw</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>encapsulation mpls</td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>status peer topology dual-homed</td>
<td>Enables the reflection of the attachment circuit status onto both the primary and secondary pseudowires. This condition is necessary if the peer PEs are connected to a dual-homed device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# status peer topology dual-homed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
<td>Exits pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# exit</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>interface port-channel port-channel-number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface port-channel1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>no ip address</td>
<td>Specifies that the VLAN interface does not have an IP address assigned to it.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>lacp fast-switchover</td>
<td>Enables LACP 1-to-1 link redundancy.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# lacp fast-switchover</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>lacp max-bundle max-bundles</td>
<td>Configures the max-bundle links that are connected to the PoA. The value of the max-bundles argument should not be less than the total number of links in the LAG that are connected to the PoA.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# lacp max-bundle 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Determines whether the redundancy group is under DHD control, PoA control, or both.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>exit
Example:
Router(config-if)# exit</td>
<td>Purpose
• Range is 1 to 8. Default value is 8. Exits interface configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>redundancy
Example:
Router(config)# redundancy</td>
<td>Purpose
Enters redundancy configuration mode.</td>
</tr>
<tr>
<td>Step 13</td>
<td>interchassis group group-id
Example:
Router(config-red)# interchassis group 230</td>
<td>Purpose
Specifies that the port channel is an mLACP port channel.
• The group-id should match the configured redundancy group.</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit
Example:
Router(config-r-ic)# exit</td>
<td>Purpose
Exits interchassis redundancy mode.</td>
</tr>
<tr>
<td>Step 15</td>
<td>exit
Example:
Router(config-red)# exit</td>
<td>Purpose
Exits redundancy configuration mode.</td>
</tr>
<tr>
<td>Step 16</td>
<td>interface port-channel port-channel-number
Example:
Router(config)# interface port-channel1</td>
<td>Purpose
Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 17</td>
<td>service instance id ethernet [evc-name]
Example:
Router(config-if)# service instance 1 ethernet</td>
<td>Purpose
Configures an Ethernet service instance.</td>
</tr>
<tr>
<td>Step 18</td>
<td>encapsulation dot1q vlan-id [, vlan-id][+ vlan-id]] [native]
Example:
Router(config-if-srv)# encapsulation dot1q 100</td>
<td>Purpose
Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td>Step 19</td>
<td>exit
Example:
Router(config-if-srv)# exit</td>
<td>Purpose
Exits service instance configuration mode.</td>
</tr>
</tbody>
</table>
Command or Action

| Step 20 | xconnect peer-ip-address vc-id {encapsulation mpls | pw-class pw-class-name} [pw-class pw-class-name] [sequencing {transmit | receive | both}] |
|---|---|
| Example: | Router(config-if)# xconnect 10.0.3.201 123 pw-class ether-pw |

<table>
<thead>
<tr>
<th>Step 21</th>
<th>backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# backup peer 10.1.1.1 123 pw-class ether-pw</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 22</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>

Purpose

- **Step 20**: Binds an attachment circuit to a pseudowire.
- **Step 21**: Specifies a redundant peer for a pseudowire virtual circuit.
- **Step 22**: Returns the CLI to privileged EXEC mode.

Configuring Redundancy for VPWS on ME3600 Series Switches

Perform this task to provide Layer 2 VPN service redundancy for VPWS on Cisco ME3600, ME3600X 24CX, ME3800 series switches.

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class pw-class-name
4. encapsulation mpls
5. status peer topology dual-homed
6. exit
7. interface port-channel port-channel-number
8. switchport mode trunk
9. switchport trunk allowed vlan none
10. lacp fast-switchover
11. lacp max-bundle max-bundles
12. exit
13. redundancy
14. interchassis group group-id
15. exit
16. exit
17. interface port-channel port-channel-number
18. service instance id ethernet [evc-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example: Router> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example: Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>pseudowire-class pw-class-name
Example: Router(config)# pseudowire-class ether-pw</td>
</tr>
<tr>
<td></td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation mpls
Example: Router(config-pw-class)# encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td>Step 5</td>
<td>status peer topology dual-homed
Example: Router(config-pw-class)# status peer topology dual-homed</td>
</tr>
<tr>
<td></td>
<td>Enables the reflection of the attachment circuit status onto both the primary and secondary pseudowires. This condition is necessary if the peer PEs are connected to a dual-homed device.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit
Example: Router(config-pw-class)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>interface port-channel port-channel-number
Example: Router(config)# interface port-channel1</td>
</tr>
<tr>
<td></td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>switchport mode trunk
Example:</td>
</tr>
<tr>
<td></td>
<td>Specifies the port channel as trunking VLAN Layer 2 interface.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td>switchport trunk allowed vlan none</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport trunk allowed vlan none</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td>lacp fast-switchover</td>
<td>Enables LACP 1-to-1 link redundancy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# lacp fast-switchover</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td>lacp max-bundle max-bundles</td>
<td>Configures the max-bundle links that are connected to the PoA. The value of the max-bundles argument should not be less than the total number of links in the LAG that are connected to the PoA.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# lacp max-bundle 4</td>
<td></td>
</tr>
<tr>
<td>• Determines whether the redundancy group is under DHD control, PoA control, or both.</td>
<td></td>
</tr>
<tr>
<td>• Range is 1 to 8. Default value is 8.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td></td>
</tr>
<tr>
<td>redundancy</td>
<td>Enters redundancy configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# redundancy</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>interchassis group group-id</td>
<td>Specifies that the port channel is an mLACP port channel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-red)# interchassis group 230</td>
<td>• The group-id should match the configured redundancy group.</td>
</tr>
<tr>
<td>Step 15</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits interchassis redundancy mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-red-ic)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits redundancy configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-red)# exit</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>17</td>
<td><code>interface port-channel port-channel-number</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface port-channel1</code></td>
</tr>
<tr>
<td>18</td>
<td><code>service instance id ethernet [evc-name]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# service instance 1 ethernet</code></td>
</tr>
<tr>
<td>19</td>
<td><code>encapsulation dot1q vlan [vlan-id, vlan-id[- vlan-id]] [native]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-srv)# encapsulation dot1q 100</code></td>
</tr>
<tr>
<td>20</td>
<td><code>exit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if-srv)# exit</code></td>
</tr>
<tr>
<td>21</td>
<td>`xconnect peer-ip-address vc-id [encapsulation mpls</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# xconnect 10.0.3.201 123 pw-class ether-pw</code></td>
</tr>
<tr>
<td>22</td>
<td><code>backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# backup peer 10.1.1.1 123 pw-class ether-pw</code></td>
</tr>
<tr>
<td>23</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# end</code></td>
</tr>
</tbody>
</table>
Configuring Redundancy for VPLS

Coupled and Decoupled Modes for VPLS

VPLS can be configured in either coupled mode or decoupled mode. Coupled mode is when at least one attachment circuit in VFI changes state to active, all pseudowires in VFI advertise active. When all attachment circuits in VFI change state to standby, all pseudowires in VFI advertise standby mode. See the figure below.

VPLS decoupled mode is when all pseudowires in the VFI are always active and the attachment circuit state is independent of the pseudowire state. This mode provides faster switchover time when a platform does not support pseudowire status functionality, but extra flooding and multicast traffic will be dropped on the PE with standby attachment circuits. However, if the attachment circuit is down, all pseudowires also go down. See the figure below.

Steps for Configuring Redundancy for VPLS

Perform the following task to configure redundancy for VPLS.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2 vfi name manual
4. vpn id vpn-id
5. status decoupled
6. neighbor neighbor ip-address vc-id {encapsulation mpls | pw-class pw-class-name}
7. exit
8. interface port-channel port-channel-number
9. no ip address
10. lacp fast-switchover
11. lacp max-bundle max-bundles
12. exit
13. redundancy
14. interchassis group group-id
15. exit
16. exit
17. interface port-channel port-channel-number
18. service instance id ethernet [evc-name]
19. encapsulation dot1q vlan-id [, vlan-id[-vlan-id]] [native]
20. `bridge-domain bridge-id [split-horizon [group group-id]]`
21. `exit`
22. `interface vlan vlanid`
23. `no ip address`
24. `xconnect vfi vfi-name`
25. `end`

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>l2 vfi name manual</code></td>
<td>Establishes a Layer 2 VFI between two separate networks and enters VFI configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# l2 vfi vfi1 manual</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>vpn id vpn-id</code></td>
<td>Sets or updates a Virtual Private Network (VPN) ID on a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vfi)# vpn id 100</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>status decoupled</code></td>
<td>(Optional) Enables decoupled mode. The state of the attachment circuits on the user-facing Provider Edge (uPE) is decoupled from the state of the pseudowires. The mLACP controls the state of the attachment circuits.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vfi)# status decoupled</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>`neighbor neighbor ip-address vc-id [encapsulation mpls</td>
<td>pw-class pw-class-name]`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Repeat this command for each neighbor.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vfi)# neighbor 10.1.1.1 50 encapsulation mpls</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
<td>Exits VFI configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vfi)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 8 | interface port-channel *port-channel-number*
Example:
Router(config)# interface port-channel1 | Configures the port channel and enters interface configuration mode. |
| 9 | no ip address
Example:
Router(config-if)# no ip address | Specifies that the VLAN interface does not have an IP address assigned to it. |
| 10 | lACP fast-switchover
Example:
Router(config-if)# lACP fast-switchover | Enables LACP 1-to-1 link redundancy. |
| 11 | lACP max-bundle *max-bundles*
Example:
Router(config-if)# lACP max-bundle 2 | Configures the max-bundle links that are connected to the PoA. The value of the *max-bundles* argument should not be less than the total number of links in the LAG that are connected to the PoA.
- Determines whether the redundancy group is under DHD control, PoA control, or both.
- Range is 1 to 8. Default value is 8. |
| 12 | exit
Example:
Router(config-if)# exit | Exits interface configuration mode. |
| 13 | redundancy
Example:
Router(config)# redundancy | - Enters redundancy configuration mode. |
| 14 | interchassis group *group-id*
Example:
Router(config-red)# interchassis group 230 | Specifies that the port channel is an mLACP port-channel.
- The *group-id* should match the configured redundancy group. |
| 15 | exit
Example:
Router(config-r-ic)# exit | Exits interchassis redundancy mode. |
| 16 | exit
Example:
Router(config-r-ic)# exit | Exits redundancy configuration mode. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-red)# exit</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 17** interface port-channel *port-channel-number*
Example: Router(config)# interface port-channel1 | Configures an Ethernet service instance and enters Ethernet service configuration mode. |
| **Step 18** service instance *id* ethernet [evc-name]
Example: Router(config-if)# service instance 1 ethernet | Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN. |
| **Step 19** encapsulation dot1q *vlan-id* [vlan-id[+ vlan-id]] [native]
Example: Router(config-if-srv)# encapsulation dot1q 100 | Configures the bridge domain. Binds the service instance to a bridge domain instance where domain-number is the identifier for the bridge domain instance. |
| **Step 20** bridge-domain *bridge-id* [split-horizon [group *group-id*]]
Example: Router(config-if-srv)# bridge-domain 200 | Exits service instance configuration mode. |
| **Step 21** exit
Example: Router(config-if-srv)# exit | Creates a dynamic switch virtual interface (SVI). |
| **Step 22** interface vlan *vlanid*
Example: Router(config-if)# interface vlan 200 | Specifies that the VLAN interface does not have an IP address assigned to it. |
| **Step 23** no ip address
Example: Router(config-if)# no ip address | Specifies the Layer 2 VFI that you are binding to the VLAN port. |
| **Step 24** xconnect vfi *vfi-name*
Example: Router(config-if)# xconnect vfi vfi-16 | Returns the CLI to privileged EXEC mode. |
| **Step 25** end
Example: | |
Steps for Configuring Redundancy for VPLS on ME3600 Series Switches

Perform the following task to configure redundancy for VPLS on Cisco ME3600, ME3600X 24CX, ME3800 series switches.

SUMMARY STEPS

1. enable
2. configure terminal
3. l2 vfi name manual
4. vpn id vpn-id
5. status decoupled
6. neighbor neighbor ip-address vc-id {encapsulation mpls | pw-class pw-class-name}
7. exit
8. interface port-channel port-channel-number
9. switchport mode trunk
10. switchport trunk allowed vlan none
11. lacp fast-switchover
12. lacp max-bundle max-bundles
13. exit
14. redundancy
15. interchassis group group-id
16. exit
17. exit
18. interface port-channel port-channel-number
19. service instance id ethernet [evc-name]
20. encapsulation dot1q vlan-id [, vlan-id[- vlan-id]] [native]
21. bridge-domain bridge-id [split-horizon [group group-id]]
22. exit
23. interface vlan vlanid
24. no ip address
25. xconnect vfi vfi-name
26. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 l2 vfi name manual</td>
<td>Establishes a Layer 2 VFI between two separate networks and enters VFI configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# l2 vfi vfi1 manual</td>
<td></td>
</tr>
<tr>
<td>Step 4 vpn id vpn-id</td>
<td>Sets or updates a Virtual Private Network (VPN) ID on a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# vpn id 100</td>
<td></td>
</tr>
<tr>
<td>Step 5 status decoupled</td>
<td>(Optional) Enables decoupled mode. The state of the attachment circuits on the user-facing Provider Edge (uPE) is decoupled from the state of the pseudowires. The mLACP controls the state of the attachment circuits.</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# status decoupled</td>
<td></td>
</tr>
<tr>
<td>Step 6 neighbor neighbor ip-address vc-id {encapsulation mpls</td>
<td>pw-class pw-class-name}</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# neighbor 10.1.1.1 50 encapsulation mpls</td>
<td>• Repeat this command for each neighbor.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits VFI configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-vfi)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 interface port-channel port-channel-number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface port-channel1</td>
<td></td>
</tr>
<tr>
<td>Step 9 switchport mode trunk</td>
<td>Specifies the port channel as trunking VLAN Layer 2 interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td>Step 10 switchport trunk allowed vlan none</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport trunk allowed vlan none</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 11</td>
<td>lACP fast-switchover</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# lACP fast-switchover</td>
</tr>
<tr>
<td>Step 12</td>
<td>lACP max-bundle max-bundles</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# lACP max-bundle 2</td>
</tr>
<tr>
<td>• Determines whether the redundancy group is under DHD control, PoA control, or both.</td>
<td></td>
</tr>
<tr>
<td>• Range is 1 to 8. Default value is 8.</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td>Step 14</td>
<td>redundancy</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# redundancy</td>
</tr>
<tr>
<td>Step 15</td>
<td>interchassis group group-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-red)# interchassis group 230</td>
</tr>
<tr>
<td>• The group-id should match the configured redundancy group.</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-r-ic)# exit</td>
</tr>
<tr>
<td>Step 17</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-red)# exit</td>
</tr>
<tr>
<td>Step 18</td>
<td>interface port-channel port-channel-number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface port-channel1</td>
</tr>
<tr>
<td>Step 19</td>
<td>service instance id ethernet [evc-name]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config-if)# service instance 1 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 20 encapsulation dot1q vlan-id, vlan-id</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td>[native]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Step 21 bridge-domain bridge-id [split-horizon [group group-id]]</td>
<td>Configures the bridge domain. Binds the service instance to a bridge domain instance where domain-number is the identifier for the bridge domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# bridge-domain 200</td>
<td></td>
</tr>
<tr>
<td>Step 22 exit</td>
<td>Exits service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 23 interface vlan vlanid</td>
<td>Creates a dynamic switch virtual interface (SVI).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# interface vlan 200</td>
<td></td>
</tr>
<tr>
<td>Step 24 no ip address</td>
<td>Specifies that the VLAN interface does not have an IP address assigned to it.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>Step 25 xconnect vfi vfi-name</td>
<td>Specifies the Layer 2 VFI that you are binding to the VLAN port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# xconnect vfi vfi-16</td>
<td></td>
</tr>
<tr>
<td>Step 26 end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Hierarchical VPLS

Perform this task to configure Hierarchical VPLS (H-VPLS).

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class pw-class-name
4. encapsulation mpls
5. status peer topology dual-homed
6. status decoupled
7. exit
8. interface port-channel port-channel-number
9. no ip address
10. lacp fast-switchover
11. lacp max-bundle max-bundles
12. exit
13. redundancy
14. interchassis group group-id
15. exit
16. exit
17. interface port-channel port-channel-number
18. service instance id ethernet [evc-name]
19. encapsulation dot1q vlan-id [, vlan-id[- vlan-id]] [native]
20. exit
21. xconnect peer-ip-address vc-id [encapsulation mpls | pw-class pw-class-name] [pw-class pw-class-name] [sequencing {transmit | receive | both}] [pw-class pw-class-name] [priority value]
22. backup peer peer-router-ip-addr vc-id [pw-class pw-class-name] [priority value]
23. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 pseudowire-class pw-class-name</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# pseudowire-class ether-pw</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables the reflection of the attachment circuit status onto both the primary and secondary pseudowires. This configuration is necessary if the peer PEs are connected to a dual-homed device.</td>
</tr>
<tr>
<td>status peer topology dual-homed</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# status peer topology dual-homed</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Enables decoupled mode. The state of the attachment circuits on the uPE is decoupled from the state of the pseudowires. The mLACP controls the state of the attachment circuits.</td>
</tr>
<tr>
<td>status decoupled</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# status decoupled</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>interface port-channel port-channel-number</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# interface port-channel1</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Specifies that the VLAN interface does not have an IP address assigned to it.</td>
</tr>
<tr>
<td>no ip address</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>Enables LACP 1-to-1 link redundancy.</td>
</tr>
<tr>
<td>lACP fast-switchover</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# lACP fast-switchover</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Configures the max-bundle links that are connected to the PoA. The value of the max-bundles argument should not be less than the total number of links in the LAG that are connected to the PoA.</td>
</tr>
<tr>
<td>lACP max-bundle max-bundles</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# lACP max-bundle 4</td>
<td></td>
</tr>
<tr>
<td>• Determines whether the redundancy group is under DHD control, PoA control, or both.</td>
<td></td>
</tr>
<tr>
<td>• Range is 1 to 8. Default value is 8.</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Enters redundancy configuration mode.</td>
</tr>
<tr>
<td>redundancy</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router(config)# redundancy</td>
<td>Specifies that the port channel is an mLACP port channel.</td>
</tr>
<tr>
<td>Step 14</td>
<td>Example:</td>
</tr>
<tr>
<td>interchassis group group-id</td>
<td>- The group-id should match the configured redundancy group.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Example:</td>
</tr>
<tr>
<td>exit</td>
<td>Exits interchassis redundancy mode.</td>
</tr>
<tr>
<td>Step 16</td>
<td>Example:</td>
</tr>
<tr>
<td>exit</td>
<td>Exits redundancy configuration mode.</td>
</tr>
<tr>
<td>Step 17</td>
<td>Example:</td>
</tr>
<tr>
<td>interface port-channel port-channel-number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 18</td>
<td>Example:</td>
</tr>
<tr>
<td>service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance and enters Ethernet service configuration mode.</td>
</tr>
<tr>
<td>Step 19</td>
<td>Example:</td>
</tr>
<tr>
<td>encapsulation dot1q vlan-id [, vlan-id[, vlan-id]] [native]</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
</tr>
<tr>
<td>Step 20</td>
<td>Example:</td>
</tr>
<tr>
<td>exit</td>
<td>Exits service instance configuration mode.</td>
</tr>
<tr>
<td>Step 21</td>
<td>Example:</td>
</tr>
<tr>
<td>xconnect peer-ip-address vc-id {encapsulation mpls [pw-class pw-class-name] [pw-class pw-class-name] [sequencing {transmit</td>
<td>receive</td>
</tr>
<tr>
<td>Step 22</td>
<td>Example:</td>
</tr>
<tr>
<td>backup peer peer-router-ip-addr vc-id [pw-class pw-class-name] [priority value]</td>
<td>Specifies a redundant peer for a pseudowire virtual circuit.</td>
</tr>
</tbody>
</table>
Configuring Hierarchical VPLS on ME3600 Series Switches

Perform this task to configure Hierarchical VPLS (H-VPLS) on Cisco ME3600, ME3600X 24CX, ME3800 series switches.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `pseudowire-class pw-class-name`
4. `encapsulation mpls`
5. `status peer topology dual-homed`
6. `status decoupled`
7. `exit`
8. `interface port-channel port-channel-number`
9. `switchport mode trunk`
10. `switchport trunk allowed vlan none`
11. `lacp fast-switchover`
12. `lacp max-bundle max-bundles`
13. `exit`
14. `redundancy`
15. `interchassis group group-id`
16. `exit`
17. `exit`
18. `interface port-channel port-channel-number`
19. `service instance id ethernet [eve-name]`
20. `encapsulation dot1q vlan-id [, vlan-id[- vlan-id]] [native]`
21. `exit`
22. `xconnect peer-ip-address ve-id [encapsulation mpls | pw-class pw-class-name] [pw-class pw-class-name] [sequencing {transmit | receive | both}]`
23. `backup peer peer-router-ip-addr vcid [pw-class pw-class-name] [priority value]`
24. `end`
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>pseudowire-class pw-class-name</td>
<td>Specifies the name of a Layer 2 pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# pseudowire-class ether-pw</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation mpls</td>
<td>Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the pseudowire.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>status peer topology dual-homed</td>
<td>Enables the reflection of the attachment circuit status onto both the primary and secondary pseudowires. This configuration is necessary if the peer PEs are connected to a dual-homed device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# status peer topology dual-homed</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>status decoupled</td>
<td>(Optional) Enables decoupled mode. The state of the attachment circuits on the uPE is decoupled from the state of the pseudowires. The mLACP controls the state of the attachment circuits.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# status decoupled</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
<td>Exits pseudowire class configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-pw-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>interface port-channel port-channel-number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface port-channel1</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>switchport mode trunk</td>
<td>Specifies the port channel as trunking VLAN Layer 2 interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 10 switchport trunk allowed vlan none</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport trunk allowed vlan none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11 lacp fast-switchover</td>
<td>Enables LACP 1-to-1 link redundancy.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# lacp fast-switchover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 12 lacp max-bundle max-bundles</td>
<td>Configures the max-bundle links that are connected to the PoA. The value of the max-bundles argument should not be less than the total number of links in the LAG that are connected to the PoA.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# lacp max-bundle 4</td>
<td>• Determines whether the redundancy group is under DHD control, PoA control, or both.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Range is 1 to 8. Default value is 8.</td>
<td></td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 14 redundancy</td>
<td>Enters redundancy configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# redundancy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 15 interchassis group group-id</td>
<td>Specifies that the port channel is an mLACP port channel.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-red)# interchassis group 230</td>
<td>• The group-id should match the configured redundancy group.</td>
<td></td>
</tr>
<tr>
<td>Step 16 exit</td>
<td>Exits interchassis redundancy mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 17 exit</td>
<td>Exits redundancy configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-red)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 18 interface port-channel port-channel-number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface port-channel1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 19 service instance id ethernet [evc-name]</td>
<td>Configures an Ethernet service instance and enters Ethernet service configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 1 ethernet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 20 encapsulation dot1q vlan-id [*, vlan-id[= vlan-id]] [native]</td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 21 exit</td>
<td>Exits service instance configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if-srv)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 22 xconnect peer-ip-address vc-id vcid {encapsulation mpls</td>
<td>pw-class pw-class-name} [pw-class pw-class-name] [sequencing {transmit</td>
<td>receive</td>
</tr>
<tr>
<td>Example: Router(config-if)# xconnect 10.0.3.201 123 pw-class vlan-xconnect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 23 backup peer peer-router-ip-addr vc-id vcid [pw-class pw-class-name] [priority value]</td>
<td>Specifies a redundant peer for a pseudowire virtual circuit.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# backup peer 10.1.1.1 123 pw-class ether-pw</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 24 end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting mLACP

Debugging mLACP

Use these `debug` commands for general mLACP troubleshooting.

SUMMARY STEPS

1. `enable`
2. `debug redundancy interchassis {all | application | error | event | monitor}`
3. `debug mpls ldp iccp`
4. `debug lacp [all | event | fsm | misc | multi-chassis [all | database | lacp-mgr | redundancy-group | user-interface] | packet]`
5. `debug lacp etherchannel`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 `debug redundancy interchassis {all</td>
<td>application</td>
</tr>
<tr>
<td>Example: Router# debug redundancy interchassis all</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>debug mpls ldp iccp</code></td>
<td>• Enables debugging of the InterChassis Control Protocol (ICCP).</td>
</tr>
<tr>
<td>Example: Router# debug mpls ldp iccp</td>
<td></td>
</tr>
<tr>
<td>Step 4 `debug lacp [all</td>
<td>event</td>
</tr>
<tr>
<td>Example: Router# debug lacp multi-chassis all</td>
<td>• This command is run on the switch processor.</td>
</tr>
<tr>
<td>Step 5 <code>debug lacp etherchannel</code></td>
<td>Enables debugging for etherchannel component.</td>
</tr>
<tr>
<td>Example: Router# debug lacp etherchannel</td>
<td></td>
</tr>
</tbody>
</table>

Debugging mLACP on an Attachment Circuit or EVC

Use these `debug` commands for troubleshooting mLACP on an attachment circuit or on an EVC.

SUMMARY STEPS

1. `enable`
2. `debug acircuit {checkpoint | error | event}`
3. `debug ethernet service {all | api | error | evc [evc-id] | ha | instance [id | interface type number | qos] | interface type number | microblock | oam-mgr}`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 debug acircuit {checkpoint	error	event}	Displays checkpoints, errors, and events that occur on the attachment circuits between the PE and CE routers.
Example:			
Router# debug acircuit event			

Step 3 debug ethernet service {all	api	error	evc [evc-id]	ha	instance [id	interface type number	qos	interface type number	microblock	oam-mgr}	Enables debugging of Ethernet customer service instances.
Example:											
Router# debug ethernet service all											

Debugging mLACP on AToM Pseudowires

Use the **debug mpls l2transport vc** command for troubleshooting mLACP on AToM pseudowires.

SUMMARY STEPS

1. enable
2. debug mpls l2transport vc {event | fsm | ldp | sss | status {event | fsm}}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 debug mpls l2transport vc {event	fsm	ldp	sss	status {event	fsm}}	Displays information about the status of AToM virtual circuits (VCs).
Example:						
Router# debug mpls l2transport status event						

Debugging Cross-Connect Redundancy Manager and Session Setup

Use the following **debug** commands to troubleshoot cross-connect, redundancy manager, and session setup.
SUMMARY STEPS

1. `enable`
2. `debug sss error`
3. `debug sss events`
4. `debug xconnect {error | event}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Displays diagnostic information about errors that may occur during a subscriber service switch (SSS) call setup.</td>
</tr>
<tr>
<td><code>debug sss error</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug sss error</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays diagnostic information about SSS call setup events.</td>
</tr>
<tr>
<td><code>debug sss events</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug sss event</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Displays errors or events related to a cross-connect configuration.</td>
</tr>
<tr>
<td>`debug xconnect {error</td>
<td>event}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug xconnect event</td>
<td></td>
</tr>
</tbody>
</table>

Debugging VFI

Use the `debug vfi` command for troubleshooting a VFI.

SUMMARY STEPS

1. `enable`
2. `debug vfi {checkpoint | error | event | fsm {error | event}}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

display checkpoint information about a VFI.

```
debug vfi {checkpoint | error | event | fsm {error | event}}
```

Example:

```
Router# debug vfi checkpoint
```

Step 2

Example:

```
Router# debug vfi checkpoint
```

Purpose

Command or Action

Wraps debugging information about the SSM for switched Layer 2 segments.

```
debug ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```

Purpose

Command or Action

Displays diagnostic information about the SSM for switched Layer 2 segments.

```
display ssm {cm errors | cm events | fhm errors | fhm events | sm errors | sm events | sm counters | xdr}
```

Example:

```
Router# debug ssm cm events
```

Purpose

Command or Action

Enables privileged EXEC mode.

```
enable
```

Example:

```
Router> enable
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router> enable</code></td>
<td>Enables the display of AToM events when AToM is configured for nonstop forwarding/stateful switchover (NSF/SSO) and Graceful Restart.</td>
</tr>
</tbody>
</table>

Step 2

debug mpls l2transport checkpoint

Example:

```
Router# debug mpls l2transport checkpoint
```

Step 3

debug acircuit checkpoint

Example:

```
Router# debug acircuit checkpoint
```

Step 4

debug vfi checkpoint

Example:

```
Router# debug vfi checkpoint
```

Configuration Examples for mLACP

Example Configuring VPWS

Two sample configurations for VPWS follow: one example for an active PoA and the other for a standby PoA.

The figure below shows a sample topology for a VPWS configuration.

Active PoA for VPWS

The following VPWS sample configuration is for an active PoA:
Standby PoA for VPWS

The following VPWS sample configuration is for a standby PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp
!
Redundancy
    mode sso
    interchassis group 1
    member ip 200.0.0.1
    backbone interface Ethernet0/2
    backbone interface Ethernet1/2
    backbone interface Ethernet1/3
    monitor peer bfd
    mlacp node-id 1
!
pseudowire-class mpls-dhd
    encapsulation mpls
    status peer topology dual-homed
!
interface Loopback0
    ip address 200.0.0.1 255.255.255.255
!
interface Port-channel1
    no ip address
    lacp fast-switchover
    lacp max-bundle 1
    mlacp interchassis group 1
    hold-queue 300 in
    service instance 1 ethernet
    encapsulation dot1q 100
    xconnect 210.0.0.1 10 pw-class mpls-dhd
    backup peer 211.0.0.1 10 pw-class mpls-dhd
!
interface Ethernet0/0
    no ip address
    channel-group 1 mode active
!
interface Ethernet1/3
    ip address 10.0.0.200 255.255.255.0
    mpls ip
    bfd interval 50 min_rx 150 multiplier 3
```
Example Configuring VPLS

Two sample configurations for VPLS follow: one example for an active PoA and the other for a standby PoA.

The figure below shows a sample topology for a VPLS configuration.

Active PoA for VPLS

The following VPLS sample configuration is for an active PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp
```
Standby PoA for VPLS

The following VPLS sample configuration is for a standby PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp

redundancy
interchassis group 1
member ip 200.0.0.1
backbone interface Ethernet0/2
monitor peer bfd
mlacp node-id 1

l2 vfi VPLS1 manual
vpn id 10
neighbor 210.0.0.1 encapsulation mpls
neighbor 211.0.0.1 encapsulation mpls
neighbor 200.0.0.1 encapsulation mpls

! interface Loopback0
ip address 201.0.0.1 255.255.255.255

! interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp interchassis group 1
service instance 1 ethernet
encapsulation dot1q 100
bridge-domain 200

! interface Ethernet0/0
no ip address
channel-group 1 mode active

! interface Ethernet1/3
ip address 10.0.0.200 255.255.255.0
mpls ip
bfd interval 50 min_rx 150 multiplier 3

! interface Vlan200
no ip address
xconnect vfi VPLS_200
```

Standby PoA for VPLS

The following VPLS sample configuration is for a standby PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp

redundancy
interchassis group 1
member ip 201.0.0.1
backbone interface Ethernet0/2
monitor peer bfd
mlacp node-id 0

! l2 vfi VPLS_200 manual
vpn id 10
neighbor 210.0.0.1 encapsulation mpls
neighbor 211.0.0.1 encapsulation mpls
neighbor 201.0.0.1 encapsulation mpls

! interface Loopback0
ip address 200.0.0.1 255.255.255.255

! interface Port-channel1
no ip address
lacp fast-switchover
lacp max-bundle 1
mlacp interchassis group 1
service instance 1 ethernet
encapsulation dot1q 100
bridge-domain 200

! interface Ethernet0/0
no ip address
channel-group 1 mode active

! interface Ethernet1/3
ip address 10.0.0.200 255.255.255.0
mpls ip
bfd interval 50 min_rx 150 multiplier 3

! interface Vlan200
no ip address
xconnect vfi VPLS_200
```
Example Configuring H-VPLS

Two sample configurations for H-VPLS follow: one example for an active PoA and the other for a standby PoA.

The figure below shows a sample topology for a H-VPLS configuration.

Active PoA for H-VPLS

The following H-VPLS sample configuration is for an active PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp
!
redundancy
mode sso
```
Standby PoA for H-VPLS

The following H-VPLS sample configuration is for a standby PoA:

```plaintext
mpls ldp graceful-restart
mpls label protocol ldp

Redundancy
mode sso
interchassis group 1
member ip 200.0.0.1
backbone interface Ethernet0/2
backbone interface Ethernet1/2
backbone interface Ethernet1/3
monitor peer bfd
mlacp node-id 1
!
pseudowire-class mpls-dhd
encapsulation mpls
status peer topology dual-homed
!
interface Loopback0
  ip address 200.0.0.1 255.255.255.255
!
interface Port-channel1
  no ip address
  lacp fast-switchover
  lacp max-bundle 1
  mlacp interchassis group 1
  hold-queue 300 in
  service instance 1 ethernet
  encapsulation dot1q 100
  xconnect 210.0.0.1 10 pw-class mpls-dhd
  backup peer 211.0.0.1 10 pw-class mpls-dhd
!
interface Ethernet0/0
  no ip address
  channel-group 1 mode active
!
interface Ethernet1/3
  ip address 10.0.0.200 255.255.255.0
  mpls ip
  bfd interval 50 min_rx 150 multiplier 3
```
mlacp lag-priority 40000
mlacp interchassis group 1
hold-queue 300 in
service instance 1 ethernet
encapsulation dot1q 100
xconnect 210.0.0.1 10 pw-class mpls-dhd
backup peer 211.0.0.1 10 pw-class mpls-dhd

! interface Ethernet1/0
no ip address
channel-group 1 mode active
!
interface Ethernet1/3
ip address 10.0.0.201 255.255.255.0
mpls ip
b fd interval 50 min_rx 150 multiplier 3

Example Verifying VPWS on an Active PoA

The following `show` commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on an active PoA:

show lacp multichassis group

Use the `show lacp multichassis group` command to display the interchassis redundancy group value and the operational LACP parameters.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
RG State:  Synchronized
System-Id:  200.000a.f331.2680
ICCP Version:  0
Backbone Uplink Status: Connected
Local Configuration:
Node-id:  0
System-Id:  200.000a.f331.2680
Peer Information:
State:  Up
Node-id:  7
System-Id:  2000.0014.6a8b.c680
ICCP Version:  0
State Flags: Active - A
            Standby - S
            Down - D
            AdminDown - AD
            Standby Reverting - SR
            Unknown - U

mLACP Channel-groups
Channel  Local/Peer  Local/Peer  Active Links  Inactive Links
Group     Priority       Local/Peer Local/Peer
 1         A/S              28000/32768 4/4          0/0
```

show lacp multichassis port-channel

Use the `show lacp multichassis port-channel` command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.
Router# show lACP multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 000a.f331.2680
Channel Group: 1
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4
 Bundled: 4
 Selected: 4
 Standby: 0
 Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
 Bundled: 0
 Selected: 0
 Standby: 4
 Unselected: 0

show mpls ldp iccp

Use the `show mpls ldp iccp` command to display the LDP session and ICCP state information.

Router# show mpls ldp iccp

ICPM RGID Table
iccp:
ar_id: 100, peer addr: 172.3.3.3
ldp_session 0x3, client_id 0
iccp state: ICPM_ICCP_CONNECTED
app type: MLACP
 app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
iccp:
ar_id: 100, peer addr: 172.3.3.3
ldp_session 0x3, client_id 0
iccp state: ICPM_ICCP_CONNECTED
app type: MLACP
 app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1

show mpls l2transport

Use the `show mpls l2transport` command to display the local interface and session details, destination address, and status.

Router# show mpls l2transport vc 2

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>--------------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
show etherchannel summary

Use the show etherchannel summary command to display the status and identity of the mLACP member links.

Router# show etherchannel summary

Flags: D - down P - bundled in port-channel
 I - stand-alone s - suspended
 H - Hot-standby (LACP only)
 R - Layer3
 S - Layer2
 U - in use f - failed to allocate aggregator
 M - not in use, minimum links not met
 u - unsuitable for bundling
 w - waiting to be aggregated
 d - default port

Number of channel-groups in use: 2
Number of aggregators: 2
Group Port-channel Protocol Ports
---------------+-----------------------------+----------+---
 1 Po1 (RU) LACP Gi2/9(P) Gi2/20(P) Gi2/31(P)

show etherchannel number port-channel

Use the show etherchannel number port-channel command to display the status and identity of the EtherChannel and port channel.

Router# show etherchannel 51 port-c

Port-channels in the group:

Port-channel: Po51 (Primary Aggregator)

Age of the Port-channel = 0d:02h:25m:23s
Logical slot/port = 14/11 Number of ports = 2
HotStandBy port = null
Passive port list = Gi9/15 Gi9/16
Port state = Port-channel L3-Ag Ag-Inuse
Protocol = LACP
Fast-switchover = enabled
Direct Load Swap = disabled

Ports in the Port-channel:

Index Load Port EC state No of bits
--------+--------+------------------------+-------------------
 0 SS Gi9/15 mLACP-stdby 4
 1 AA Gi9/16 mLACP-stdby 4

Time since last port bundled: 0d:01h:03m:39s Gi9/16
Time since last port Un-bundled: 0d:01h:03m:40s Gi9/16

Last applied Hash Distribution Algorithm: Fixed Channel-group Iedge Counts:
Access ref count : 0
Fedge session count : 0
show lacp internal

Use the `show lacp internal` command to display the device, port, and member-link information.

```
Router# show lacp internal
Flags:  S - Device is requesting Slow LACPDUs
        F - Device is requesting Fast LACPDUs
        A - Device is in Active mode
        P - Device is in Passive mode

Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/9</td>
<td>SA</td>
<td>bndl-act</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x820A</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi2/20</td>
<td>SA</td>
<td>bndl-act</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8215</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi2/31</td>
<td>SA</td>
<td>bndl-act</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8220</td>
<td>0x3D</td>
</tr>
<tr>
<td>Gi2/40</td>
<td>SA</td>
<td>bndl-act</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8229</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Peer (MLACP-PE3) mLACP member links
<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi3/11</td>
<td>FA</td>
<td>hot-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF30C</td>
<td>0x5</td>
</tr>
<tr>
<td>Gi3/21</td>
<td>FA</td>
<td>hot-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF316</td>
<td>0x5</td>
</tr>
<tr>
<td>Gi3/32</td>
<td>FA</td>
<td>hot-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF321</td>
<td>0x7</td>
</tr>
<tr>
<td>Gi3/2</td>
<td>FA</td>
<td>hot-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF303</td>
<td>0x7</td>
</tr>
</tbody>
</table>
```

Example Verifying VPWS on a Standby PoA

The following `show` commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on a standby PoA:

show lacp multichassis group

Use the `show lacp multichassis group` command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
  RG State: Synchronized
  System-Id: 200.000a.f331.2680
  ICCP Version: 0
  Backbone Uplink Status: Connected
  Local Configuration:
    Node-id: 7
    System-Id: 200.000a.f331.2680
  Peer Information:
    State: Up
    Node-id: 0
    System-Id: 200.000a.f331.2680
  ICCP Version: 0
  State Flags: Active - A
              Standby - S
              Down - D
              AdminDown - AD
              Standby Reverting - SR
              Unknown - U

mLACP Channel-groups
<table>
<thead>
<tr>
<th>Channel Group</th>
<th>State</th>
<th>Priority</th>
<th>Active Links</th>
<th>Inactive Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S/A</td>
<td>32768/28000</td>
<td>4/4</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```
show lacp multichassis portchannel

Use the `show lacp multichassis portchannel` command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
Address: 0014.6a8b.c680
Channel Group: 1
State: Standby
LAG State: Up
Priority: 32768
Inactive Links: 0
Total Active Links: 4
    Bundled: 0
    Selected: 0
    Standby: 4
    Unselected: 0
Peer Configuration:
Interface: Port-channel1
Address: 000a.f331.2680
Channel Group: 1
State: Active
LAG State: Up
Priority: 28000
Inactive Links: 0
Total Active Links: 4
    Bundled: 4
    Selected: 4
    Standby: 0
    Unselected: 0
```

show mpls ldp iccp

Use the `show mpls ldp iccp` command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
   iccpp:  
     rg_id: 100, peer addr: 172.1.1.1
     ldp_session 0x2, client_id 0
     iccpp state: ICPM_ICCP_CONNECTED
     app type: MLACP
       app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
   iccpp:  
     rg_id: 100, peer addr: 172.1.1.1
     ldp_session 0x2, client_id 0
     iccpp state: ICPM_ICCP_CONNECTED
     app type: MLACP
       app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the `show mpls l2transport` command to display the local interface and session details, destination address, and status.
show etherchannel summary

Use the `show etherchannel summary` command to display the status and identity of the mLACP member links.

Router# show etherchannel summary
Flags: D - down P - bundled in port-channel
 I - stand-alone s - suspended
 H - Hot-standby (LACP only)
 R - Layer3 S - Layer2
 U - in use f - failed to allocate aggregator
 M - not in use, minimum links not met
 u - unsuitable for bundling
 w - waiting to be aggregated
 d - default port
Number of channel-groups in use: 2
Number of aggregators: 2
Group Port-channel Protocol Ports
 +------------------+-+---------+---------+-------------------+
1 Po1(RU) LACP G13/2(P) G13/11(P) G13/21(P) G13/32(P)

show lacp internal

Use the `show lacp internal` command to display the device, port, and member-link information.

Router# show lacp 1 internal
Flags: S - Device is requesting Slow LACPDUs
 F - Device is requesting Fast LACPDUs
 A - Device is in Active mode P - Device is in Passive mode
Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>LACP port</th>
<th>Admin Key</th>
<th>Oper Key</th>
<th>Port State</th>
</tr>
</thead>
<tbody>
<tr>
<td>G13/2</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF303</td>
<td>0x7</td>
</tr>
<tr>
<td>G13/11</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF30C</td>
<td>0x5</td>
</tr>
<tr>
<td>G13/21</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF316</td>
<td>0x5</td>
</tr>
<tr>
<td>G13/32</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF321</td>
<td>0x7</td>
</tr>
</tbody>
</table>

Peer (MLACP-PE1) mLACP member links
<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>LACP port</th>
<th>Admin Key</th>
<th>Oper Key</th>
<th>Port State</th>
</tr>
</thead>
<tbody>
<tr>
<td>G12/20</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8215</td>
<td>0x3D</td>
</tr>
<tr>
<td>G12/31</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8220</td>
<td>0x3D</td>
</tr>
<tr>
<td>G12/40</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8229</td>
<td>0x3D</td>
</tr>
<tr>
<td>G12/9</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x820A</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Example Verifying VPLS on an Active PoA

The following `show` commands can be used to display statistics and configuration parameters to verify the operation of the mLACP feature on an active PoA:
show lacp multichassis group

Use the **show lacp multichassis group** command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
  RG State: Synchronized
  System-Id: 200.000a.f331.2680
  ICCP Version: 0
  Backbone Uplink Status: Connected
Local Configuration:
  Node-id: 0
  System-Id: 200.000a.f331.2680
Peer Information:
  State: Up
  Node-id: 7
  System-Id: 2000.0014.6a8b.c680
  ICCP Version: 0
State Flags: Active - A
            Standby - S
            Down - D
            AdminDown - AD
            Standby Reverting - SR
            Unknown - U
mLACP Channel-groups
  Channel  State  Priority  Active Links  Inactive Links
  Group    Local/Peer Local/Peer    Local/Peer  Local/Peer
  1        A/S     28000/32768     4/4         0/0
```

show lacp multichassis port-channel

Use the **show lacp multichassis port-channel** command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
  Address: 000a.f331.2680
  Channel Group: 1
  State: Active
  LAG State: Up
  Priority: 28000
  Inactive Links: 0
  Total Active Links: 4
    Bundled: 4
    Selected: 4
    Standby: 0
    Unselected: 0
Peer Configuration:
  Interface: Port-channel1
  Address: 0014.6a8b.c680
  Channel Group: 1
  State: Standby
  LAG State: Up
  Priority: 32768
  Inactive Links: 0
  Total Active Links: 4
    Bundled: 0
```
show mpls ldp iccp

Use the `show mpls ldp iccp` command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
  iccp:
    rg_id: 100, peer addr: 172.3.3.3
    ldp_session 0x3, client_id 0
    iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
    app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
  iccp:
    rg_id: 100, peer addr: 172.3.3.3
    ldp_session 0x3, client_id 0
    iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
    app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the `show mpls l2transport` command to display the local interface and session details, destination address, and the status.

```
Router# show mpls l2transport vc 4000
Local intf  Local circuit  Dest address  VC ID  Status
----------  ------------------  ---------------  ------  --------
VFI VPLS    VFI                172.2.2.2      4000   UP       
VFI VPLS    VFI                172.4.4.4      4000   UP       
```

show etherchannel summary

Use the `show etherchannel summary` command to display the status and identity of the mLACP member links.

```
Router# show etherchannel summary
Flags:  D - down        P - bundled in port-channel
       I - stand-alone    S - suspended
       H - Hot-standby (LACP only)
       R - Layer3        S - Layer2
       U - in use        f - failed to allocate aggregator
       M - not in use, minimum links not met
       U - unsuitable for bundling
       W - waiting to be aggregated
       D - default port
Number of channel-groups in use: 2
Number of aggregators:         2
Group Port-channel  Protocol     Ports
-------------------------------+----------------+-----------------------------------------------
1    Po1(RU)    LACP    Gi2/9(P)    Gi2/20(P)    Gi2/31(P)    Gi2/40(P)
```
show lacp internal

Use the `show lacp internal` command to display the device, port, and member-link information.

```
Router# show lacp internal
Flags: S - Device is requesting Slow LACPDU
       F - Device is requesting Fast LACPDU
       A - Device is in Active mode  P - Device is in Passive mode

Channel group 1
  Port  Flags  State  Priority  Admin Key  Oper Key  Number  State
  Gi2/9  SA  bndl-act  28000  0x1  0x1  0x820A  0x3D
  Gi2/20 SA  bndl-act  28000  0x1  0x1  0x8215  0x3D
  Gi2/31 SA  bndl-act  28000  0x1  0x1  0x8220  0x3D
  Gi2/40 SA  bndl-act  28000  0x1  0x1  0x8229  0x3D

Peer (MLACP-PE3) mLACP member links
  Gi3/11  FA  hot-sby  32768  0x1  0x1  0xF30C  0x5
  Gi3/21  FA  hot-sby  32768  0x1  0x1  0xF316  0x5
  Gi3/32  FA  hot-sby  32768  0x1  0x1  0xF321  0x7
  Gi3/2  FA  hot-sby  32768  0x1  0x1  0xF303  0x7
```

Example Verifying VPLS on a Standby PoA

The `show` commands in this section can be used to display statistics and configuration parameters to verify the operation of the mLACP feature:

```
show lacp multichassis group
```

Use the `show lacp multichassis group interchassis group number` command to display the LACP parameters, local configuration, status of the backbone uplink, peer information, node ID, channel, state, priority, active, and inactive links.

```
Router# show lacp multichassis group 100
Interchassis Redundancy Group 100
Operational LACP Parameters:
  RG State:  Synchronized
  System-Id:  200.000a.f331.2680
  ICCP Version:  0
Backbone Uplink Status:  Connected
Local Configuration:
  Node-id:  7
  System-Id:  2000.0014.6a8b.c680
Peer Information:
  State:  Up
  Node-id:  0
  System-Id:  200.000a.f331.2680
ICCP Version:  0
State Flags:  Active - A
  Standby - S
  Down - D
  AdminDown - AD
  Standby Reverting - SR
  Unknown - U

mLACP Channel-groups
  Channel  State  Priority  Active Links  Inactive Links
  Local/Peer Local/Peer Local/Peer
  Group    Local/Peer    Local/Peer    Local/Peer    Local/Peer
  1       S/A  32768/28000  4/4  0/0
```
show lacp multichassis portchannel

Use the `show lacp multichassis portchannel` command to display the interface port-channel value channel group, LAG state, priority, inactive links peer configuration, and standby links.

```
Router# show lacp multichassis port-channel1
Interface Port-channel1
Local Configuration:
  Address: 0014.6a8b.c680
  Channel Group: 1
  State: Standby
  LAG State: Up
  Priority: 32768
  Inactive Links: 0
  Total Active Links: 4
    Bundled: 0
    Selected: 0
    Standby: 4
    Unselected: 0
Peer Configuration:
  Interface: Port-channel1
  Address: 000a.f331.2680
  Channel Group: 1
  State: Active
  LAG State: Up
  Priority: 28000
  Inactive Links: 0
  Total Active Links: 4
    Bundled: 4
    Selected: 4
    Standby: 0
    Unselected: 0
```

show mpls ldp iccp

Use the `show mpls ldp iccp` command to display the LDP session and ICCP state information.

```
Router# show mpls ldp iccp
ICPM RGID Table
  iccp:
    rg_id: 100, peer addr: 172.1.1.1
    ldp_session 0x2, client_id 0
    iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
      app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM RGID Table total ICCP sessions: 1
ICPM LDP Session Table
  iccp:
    rg_id: 100, peer addr: 172.1.1.1
    ldp_session 0x2, client_id 0
    iccp state: ICPM_ICCP_CONNECTED
    app type: MLACP
      app state: ICPM_APP_CONNECTED, ptcl ver: 0
ICPM LDP Session Table total ICCP sessions: 1
```

show mpls l2transport

Use the `show mpls l2transport` command to display the local interface and session details, destination address, and status.
showetherchannelsummary

Use the show etherchannel summary command to display the status and identity of the mLACP member links.

Router# show etherchannel summary

Flags: D - down P - bundled in port-channel
 I - stand-alone s - suspended
 H - Hot-standby (LACP only)
 R - Layer3 S - Layer2
 U - in use f - failed to allocate aggregator
 M - not in use, minimum links not met
 u - unsuitable for bundling
 w - waiting to be aggregated
 d - default port

Number of channel-groups in use: 2
Number of aggregators: 2
Group Port-channel Protocol Ports
----------+-------------+-----------+---
 1 Po1(RU) LACP Gi3/2(P) Gi3/11(P) Gi3/21(P)
 Gi3/32(P)

show lacp internal

Use the show lacp internal command to display the device, port, and member-link information.

Router# show lacp 1 internal

Flags: S - Device is requesting Slow LACPDUs
 F - Device is requesting Fast LACPDUs
 A - Device is in Active mode
 P - Device is in Passive mode

Channel group 1

<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>LACP port</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi3/2</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF303</td>
<td>0x7</td>
<td></td>
</tr>
<tr>
<td>Gi3/11</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF30C</td>
<td>0x5</td>
<td></td>
</tr>
<tr>
<td>Gi3/21</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF316</td>
<td>0x5</td>
<td></td>
</tr>
<tr>
<td>Gi3/32</td>
<td>FA</td>
<td>bndl-sby</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0xF321</td>
<td>0x7</td>
<td></td>
</tr>
</tbody>
</table>

Peer (MLACP-PE1) mLACP member links
<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>LACP port</th>
<th>Admin</th>
<th>Oper</th>
<th>Port</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi2/20</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8215</td>
<td>0x3D</td>
<td></td>
</tr>
<tr>
<td>Gi2/31</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8220</td>
<td>0x3D</td>
<td></td>
</tr>
<tr>
<td>Gi2/40</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x8229</td>
<td>0x3D</td>
<td></td>
</tr>
<tr>
<td>Gi2/9</td>
<td>SA</td>
<td>bndl</td>
<td>28000</td>
<td>0x1</td>
<td>0x1</td>
<td>0x820A</td>
<td>0x3D</td>
<td></td>
</tr>
</tbody>
</table>
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Ethernet configurations</td>
<td>Cisco IOS Carrier Ethernet Configuration Guide, Release 12.2SR</td>
</tr>
<tr>
<td>Carrier Ethernet commands: complete command syntax, command mode, command</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax,</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>command mode, command history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ad</td>
<td>Link Aggregation Control Protocol</td>
</tr>
<tr>
<td>IEEE 802.1ak</td>
<td>Multiple Registration Protocol</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco-LAG-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>IEEE 802.3ad-MIB</td>
<td></td>
</tr>
<tr>
<td>IEEE 8023-LAG-MIB</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 4762</td>
<td>Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling</td>
</tr>
<tr>
<td>RFC 4447</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for mLACP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 27: Feature Information for mLACP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multichassis LACP (mLACP)</td>
<td></td>
<td>Cisco’s mLACP feature addresses the need for interchassis redundancy mechanisms when a carrier wants to dual home a device to two upstream PoAs for redundancy. The mLACP feature enhances the 802.3ad LACP implementation to meet this requirement. The following commands were introduced or modified: <code>backbone interface</code>, <code>debug acircuit checkpoint</code>, <code>debug lacp</code>, <code>ethernet mac-flush mirp notification</code>, <code>interchassis group</code>, <code>lacp failover</code>, <code>lacp max-bundle</code>, <code>lacp min-bundle</code>, <code>member ip</code>, <code>mlacp interchassis group</code>, <code>mlacp lag-priority</code>, <code>mlacp node-id</code>, <code>mlacp system-mac</code>, <code>mlacp system-priority</code>, <code>monitor peer bfd</code>, <code>redundancy</code>, <code>show ethernet service instance interface port-channel</code>, <code>show ethernet service instance id mac-tunnel</code>, <code>show lacp</code>, <code>status decoupled</code>, <code>status peer topology dual-homed</code>.</td>
</tr>
</tbody>
</table>

Glossary

active attachment circuit—The link that is actively forwarding traffic between the DHD and the active PoA.

active PW—The pseudowire that is forwarding traffic on the active PoA.

BD—bridge domain.

BFD—bidirectional forwarding detection.

DHD—dual-homed device. A node that is connected to two switches over a multichassis link aggregation group for the purpose of redundancy.
DHN—dual-homed network. A network that is connected to two switches to provide redundancy.

H-VPLS—Hierarchical Virtual Private LAN Service.

ICC—Interchassis Communication Channel.

ICCP—Interchassis Communication Protocol.

ICPM—Interchassis Protocol Manager.

ICRM—Interchassis Redundancy Manager.

LACP—Link Aggregation Control Protocol.

LAG—link aggregation group.

LDP—Link Distribution Protocol.

MCEC—Multichassis EtherChannel.

mLACP—Multichassis LACP.

PoA—point of attachment. One of a pair of switches running multichassis link aggregation group with a DHD.

PW-RED—pseudowire redundancy.

standby attachment circuit—The link that is in standby mode between the DHD and the standby PoA.

standby PW—The pseudowire that is in standby mode on either an active or a standby PoA.

uPE—user-facing Provider Edge.

VPLS—Virtual Private LAN Service.

VPWS—Virtual Private Wire Service.
ICCP Multichassis VLAN Redundancy

Carrier Ethernet network high availability can be achieved by employing intra- and inter-chassis redundancy mechanisms. The Multichassis Link Aggregation Control Protocol (mLACP) solution addresses the latter, where a carrier wants dual-homed device (DHD) to two upstream points of attachment (PoA) for redundancy. Some carriers do not run loop prevention control protocols in their access networks, so an alternate redundancy scheme is necessary.

The implementation of mLACP supports DHD with an active/standby topology. Interchassis Communication Protocol (ICCP) Multichassis VLAN Redundancy, also known as Pseudo mLACP, provides a flexible dual-homing redundancy mechanism. It uses similar principles as mLACP. The Pseudo mLACP solution extends the mLACP functionality to support active/active PoA deployments. This enables flexibility in network planning and efficient resource utilization.

Pseudo mLACP has the following advantages over mLACP:

- Pseudo mLACP supports per-VLAN active/active redundancy without any load-balancing requirements on the CE.
- Pseudo mLACP is independent of the access redundancy mechanism; therefore, it provides a network-based redundancy solution. It allows maximum flexibility for the Provider Edge (PE)-Customer Edge (CE) interoperability in terms of dual-homing redundancy and recovery.

Finding Feature Information

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To
find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for ICCP Multichassis VLAN Redundancy

- mLACP support is required for Pseudo mLACP.

Restrictions for ICCP Multichassis VLAN Redundancy

- Max bundle should not be configured on a Pseudo mLACP enabled port channel.
- Pseudo mLACP does not work with most of the Layer 2 control protocols or Spanning Tree Protocol (STP) including Multiple Spanning Tree Protocol (MSTP) or VLAN Trunking Protocol (VTP).
- When a service instance is configured under a Pseudo mLACP port channel, all the outer tag VLANs of a service instance must be a part of either a primary VLAN list or a secondary VLAN list.
- Outer VLANs of one service instance cannot be mixed with the primary and secondary VLAN list on a Pseudo mLACP port channel.
- Brute-Force mode configuration is not supported.
- VLAN force-switchover configuration is applicable only for nonrevertive mode.
- The DHD nodes must support the LACP functionality.
- The DHD nodes must support MVRP MAC flush functionality in Pseudo mLACP topology.
- The Virtual Private LAN Services (VPLS)-Coupled mode is not supported.
- Hierarchical VPLS (H-VPLS) is not supported.

Information About ICCP Multichassis VLAN Redundancy

Pseudo mLACP Multihoming Redundancy

The provider edge (PE) ports are configured in such a way that they act as if connected to a virtual device over a Multichassis link aggregation group (MC-LAG) with mLACP. Points of Attachment (PoAs) can be placed in active/active mode with manual VLAN load balancing. DHD ports are configured into two individual port channels that are physically connected to each of the PoAs. Interchassis Communication Protocol (ICCP), with new extensions is used for interchassis communication to control the failover process. Multiple VLAN Registration Protocol (MVRP) lite is used for active VLAN notification and MAC flushing toward the access side. For MAC flushing notification toward the core, MVRP lite, Multiple I-SID Registration Protocol (MIRP) lite, or LDP MAC withdraw can be used.

Pseudo mLACP provides:
• The active/active mode redundancy of two PoAs in a redundancy group. This provides higher bandwidth utilization than mLACP and other active/standby link-level schemes. Pseudo mLACP eliminates the required wasted link bandwidth on the standby PoA.

• Flexible access network topologies, that is, access network dual-homing and access device dual-homing.

• Service provider control over the provisioning, role assignment, failover, and load sharing between PoAs.

• PE node redundancy for Virtual Private Wire Service (VPWS), Virtual Private LAN Service (VPLS), and native Ethernet aggregation.

The DHD is configured with two different port channels that are connected to a single multichassis LAG (mLAG) on the PoA side. The LACP module on the PoAs receives two different port keys from the two different port channels on the DHD. The mLAG on the PoA ignores the port keys from the DHD’s LACP PDUs to form a single bundle on the PoA side.

The mLACP module provides failover and recovery notifications to Pseudo mLACP. Reversion delay is processed by the mLACP module. mLACP provides a CLI interface for Pseudo mLACP VLANs and mode configuration. mLACP supports VLAN-based active/active redundancy, in addition to PoA-level active/standby redundancy. VLAN-based active/active redundancy allows you to bundle links on both the PoAs based on the Pseudo mLACP configuration. Pseudo mLACP and mLACP port-channels can be configured together on the same pair of PoAs, and both can use the same redundancy group.

After failover, the new active PoA activates the standby VLAN list on the port-channel. However, to receive traffic on the newly active VLAN’s DHD, networks must flush their MAC address table and learn the new MAC address of the new PoA port channel interface. The existing MVRP lite support is used for DHD-side MAC flushing.

Pseudo mLACP Active/Active Support

Pseudo mLACP supports active/active redundancy without the restriction of symmetric VLAN-based load sharing in both the Provider Edge (PE) and the Customer Edge (CE).

Figure 5: Active/Active Support

Pseudo mLACP provides VLAN-based redundancy by allowing you to specify one primary interface and one secondary interface or a PoA pair for each member VLAN. The configuration determines the PoA that will be initially active for a VLAN, by using the primary and secondary VLAN lists under the Pseudo mLACP interface. Only the active PoA will forward frames for the respective VLANs. The standby PoA will be in the blocking mode (bidirectional), dropping all the frames received on the standby VLANs. The failover will occur for all the VLANs in the active/standby list and not on a per-VLAN basis. Pseudo mLACP provides
per-port-channel VLAN load balancing. You can statistically configure the primary and secondary VLAN list on each of the PoAs.

The DHD nodes are configured such that each of their uplinks to a PoA operates as an individual port channel. Each interface must be configured to forward all local VLANs on all uplinks belonging to the mLAG.

The data-path forwarding scheme causes the DHD to automatically learn which PoA or interface is active for a given VLAN. This learning occurs at an individual destination MAC address level.

Failure Recovery

Pseudo mLACP uses revertive behavior (which is the default behavior) after the failure recovery to support the active/active model. You can configure a nonrevertive mode.

Reversion occurs the same way that the original failover occurs. The reversion must be initiated by the new active PoA for the given VLANs, by signaling that the PoA is relinquishing its active role for the VLAN. This is done through an ICCP Pseudo mLACP port-state TLV, which indicates that it is no longer in the active mode for the affected VLANs. Upon a TLV receipt, the recovering PoA unblocks the affected VLANs, and triggers MAC flushes toward both the access side and the core side).

mLACP reversion delay applies for Pseudo mLACP operations. However, reversion occurs only for failed-over VLANs. The forced failover mechanism based on dynamic port-priority change cannot be used for Pseudo mLACP because all the member links will remain in the bundle state. Use the `mlacp reversion-delay` command to configure the mLACP reversion timer. Use the `mlacp load-balance force-switchover portchannel` command to configure forced VLAN switchover.

Pseudo mLACP Failover Operations

The Pseudo mLACP forces a PoA failover to the standby PoA when one of the following failures occurs:

- **Note**
 mLACP failover will not be triggered if Pseudo mLACP is not configured correctly. If the mLACP failover occurs before the peer PoA is configured with Pseudo mLACP, the failover will occur as long as the peer PoA meets the mLACP failover requirements.

 - **Access side link or port failure**—This failure is triggered by a min-link failure. On receiving a min-link failure, all the active VLANs on the port-channel failover to the other PoA. This failover is initiated by sending a Pseudo mLACP PORT-STATE TLV message, indicating that the port state is DOWN.

 - **Node failure**—The surviving PoA’s Pseudo mLACP receives notification of node failure and initiates failover of all VLANs that were in standby mode on all shared mLAGs. After recovery, both POAs synchronize again.

 - **PoA uplink failure**—The failing PoA signals the peer about the core isolation using the Pseudo mLACP PORT-STATE TLV, indicating that the PoA is isolated. It places all the VLANs in the blocking mode.
How to Configure ICCP Multichassis VLAN Redundancy

Configuring a Port Channel for Pseudo mLACP

Perform this task to configure a port channel for Pseudo mLACP.

Before you begin

Note
The redundancy group should be configured. Redundancy group configuration for Pseudo mLACP is the same as for mLACP.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface port-channel number
4. mlacp interchassis group group-id
5. mlacp mode active-active
6. mlacp load-balance primary vlan vlan-id
7. mlacp load-balance secondary vlan vlan-id
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Example: Router> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface port-channel number</td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface port-channel 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mlacp interchassis group group-id</td>
<td>Specifies that the port channel is an mLACP port-channel.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# mlacp interchassis group 1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables pseudo mLACP operations on the PoA and allows the PoA to form an LACP bundle even if the partner receives an LACP PDU from two different port channels on a dual-homed network (DHN) or dual-homed device (DHD).</td>
<td></td>
</tr>
<tr>
<td><code>mlacp mode active-active</code></td>
<td>Enables pseudo mLACP operations on the PoA and allows the PoA to form an LACP bundle even if the partner receives an LACP PDU from two different port channels on a dual-homed network (DHN) or dual-homed device (DHD).</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# mlacp mode active-active</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures the list of primary VLANs that will be active and inactive on the given PoA.</td>
<td></td>
</tr>
<tr>
<td><code>mlacp load-balance primary vlan vlan-id</code></td>
<td>Configures the list of primary VLANs that will be active and inactive on the given PoA.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# mlacp load-balance primary vlan 10,20</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Configures the list of secondary VLANs that will be active and inactive on the given PoA.</td>
<td></td>
</tr>
<tr>
<td><code>mlacp load-balance secondary vlan vlan-id</code></td>
<td>Configures the list of secondary VLANs that will be active and inactive on the given PoA.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# mlacp load-balance secondary vlan 30,100</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for ICCP Multichassis VLAN Redundancy

Example: Port Channel Configuration for Pseudo mLACP

The following example shows how to configure the port channel on the active and standby PoA for Pseudo mLACP.

Active PoA-POA1

```
Router# configure terminal
Router(config)# interface port-channel1
Router(config-if)# mlacp interchassis group 1
Router(config-if)# mlacp mode active-active
Router(config-if)# mlacp load-balance primary vlan 10,20
Router(config-if)# mlacp load-balance secondary vlan 30,100
Router(config-if)# end
```

Standby PoA-POA2

```
Router# configure terminal
Router(config)# interface port-channel1
Router(config-if)# mlacp interchassis group 1
Router(config-if)# mlacp mode active-active
Router(config-if)# mlacp load-balance primary vlan 30,100
Router(config-if)# mlacp load-balance secondary vlan 10,20
Router(config-if)# end
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Carrier Ethernet commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.3ad</td>
<td>Link Aggregation Control Protocol</td>
</tr>
<tr>
<td>IEEE 802.1ak</td>
<td>Multiple Registration Protocol</td>
</tr>
<tr>
<td>RFC 4447</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td>RFC 4762</td>
<td>Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco-LAG-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td>• IEEE 802.3ad-MIB</td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• IEEE8023-LAGMIB</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for ICCP Multichassis VLAN Redundancy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 28: Feature Information for ICCP Multichassis VLAN Redundancy

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICCP Multichassis VLAN Redundancy</td>
<td></td>
<td>Pseudo mLACP provides a flexible dual-homing redundancy mechanism. It uses similar principles as mLACP, but without the implementation of LACP between the PEs and CEs. The PE ports are configured in such a way that they act as if connected to a virtual device over an MC-LAG with mLACP. Ports can be placed in active/active mode with manual VLAN load balancing. The following commands were introduced or modified: debug lacp, debug mvrp, mlacp load-balance, mlacp load-balance force-switchover, mlacp mode active-active, mlacp reversion-delay, show lacp.</td>
</tr>
</tbody>
</table>

Glossary

active attachment circuit—The link that is actively forwarding traffic between the DHD and the active PoA.

active PW—The pseudowire that is forwarding traffic on the active PoA.

BD—bridge domain.

BFD—bidirectional forwarding detection.

DHD—dual-homed device. A node that is connected to two switches over a multichassis link aggregation group for the purpose of redundancy.

DHN—dual-homed network. A network that is connected to two switches to provide redundancy.

H-VPLS—Hierarchical Virtual Private LAN Service.

ICC—Interchassis Communication Channel.
ICCP—Interchassis Communication Protocol.
ICPM—Interchassis Protocol Manager.
ICRM—Interchassis Redundancy Manager.
LACP—Link Aggregation Control Protocol.
LAG—link aggregation group.
LDP—Link Distribution Protocol.
MCEC—Multichassis EtherChannel.
MLACP—Multichassis LACP.
PoA—point of attachment. One of a pair of switches running multichassis link aggregation group with a DHD.
PW-RED—pseudowire redundancy.
standby attachment circuit—The link that is in standby mode between the DHD and the standby PoA.
standby PW—The pseudowire that is in standby mode on either an active or a standby PoA.
uPE—user-facing Provider Edge.
VPLS—Virtual Private LAN Service.
VPWS—Virtual Private Wire Service.
MC-LAG TCN Interworking

Multiple VLAN Registration Protocol (MVRP) is used for MAC Flushing during the Pseudowire (PW) redundancy process. However, not all Dual Homed Device (DHD) switches support MVRP for MAC flushing. MC-LAG TCN Interworking feature enables using the Multiple Spanning Tree Protocol with Topology Change Notification (MSTP TCN) scheme for MAC flushing towards the access network.

- Prerequisites for MC-LAG TCN Interworking, on page 391
- Restrictions for MC-LAG TCN Interworking, on page 391
- Information About MC-LAG TCN Interworking, on page 392
- How to Configure MC-LAG TCN Interworking, on page 392
- Configuration Examples for MC-LAG TCN Interworking, on page 397
- Additional References for MC-LAG TCN Interworking, on page 400
- Feature Information for MC-LAG TCN Interworking, on page 400

Prerequisites for MC-LAG TCN Interworking

- Ethernet Flow Points (EFPs) towards the core network as well as the access network must support the MSTP instance (creation and deletion) for sending and receiving Bridge Protocol Data Units (BPDUs).
- DHD access node(s) must support MSTP TCN.
- To enable the MAC mode for multichassis LACP (mLACP) or Pseudo mLACP (P- mLACP), mLACP sub-block must be created first.
- MSTP TCN enabled port channel interface must be compliant with High Availability (HA) synchronization (between HA Active and HA Hot Standby).

Restrictions for MC-LAG TCN Interworking

- P-mLACP mode needs to be configured before enabling MSTP TCN.
- The port channel configuration on both Point of Attachments (PoAs) must be same, including EFP IDs.
- Port channel members need not be same on PoAs.
- Each PoA may be connected to the DHD with a different number of links for the Link Aggregation Group (LAG) (and hence configured with a different value for the max-links value) variable.
• Virtual Private Wire Service (VPWS) and Virtual Private LAN Service (VPLS) VC state (Active/Standby) are based on the Active VLAN list configuration on a PoA at any given time.

Information About MC-LAG TCN Interworking

MC-LAG TCN Interworking

Multiple Spanning Tree Protocol (MSTP) is an extension of the original STP specification. It is an IETF standard stack with a completed state machine (SM) for processing root path costs, topology change notification of the port or VLAN, and so on. MSTP uses Bridge Protocol Data Units (BPDU) to exchange information such as bridge IDs or root path costs. There are two types of BPDU in the MST stack.

• Configuration BPDU (CBPDU)
• Topology Change Notification BPDU (TCN BPDU)

Within the MST, BPDUs are exchanged regularly and enable devices to keep track of network changes and to start and stop forwarding at ports as required. MC-LAG TCN Interworking feature uses TCN BPDU to announce the changes in the network topology to access side DHD, requesting for MAC flushing. The DHD processes the MST TCN message and updates the forwarding table with appropriate outgoing interface for each destination MAC address.

MAC flushing is triggered during the following conditions:

• Pseudowire (PW) redundancy has taken place for switchover between VLANs or POAs.
• VLAN configuration has been changed by the administrator.

MSTP Topology Change Notification scheme can be configured per port-channel basis for MAC Flushing. MVRP Lite is used for MAC flushing during redundancy switchover as a default scheme.

How to Configure MC-LAG TCN Interworking

Enabling MSTP TCN Sequence

Before you begin

Note

Enable P-mLACP feature before enabling MSTP TCN sequence.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface port-channel number
4. mlacp interchassis group group-id

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
5. `mlacp mode active-active`
6. `mlacp mac mstp-tcn`
7. `mlacp load-balance primary vlan vlan-id`
8. `mlacp load-balance secondary vlan vlan-id`
9. `end`
10. Perform the same steps on standby POA.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface port-channel number</code></td>
<td>Configures the port channel and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# interface port-channel 1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>mlacp interchassis group group-id</code></td>
<td>Specifies that the port channel is an mLACP port channel.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mlacp interchassis group 1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>mlacp mode active-active</code></td>
<td>Enables P-mLACP operations on a PoA and allows the PoA to form an LACP bundle even if the peer receives an LACP protocol data unit (PDU) from two different port channels on a dual-homed network (DHN) or DHD.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mlacp mode active-active</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>mlacp mac mstp-tcn</code></td>
<td>Enables MAC mode on port channel base.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mlacp mac mstp-tcn</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>mlacp load-balance primary vlan vlan-id</code></td>
<td>Configures a list of primary VLANs that will be active on a given PoA.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mlacp load-balance primary vlan 10,20</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>mlacp load-balance secondary vlan vlan-id</code></td>
<td>Configures a list of secondary VLANs that will be standby on a given PoA.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# mlacp load-balance secondary vlan 30,100</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enabling MST for VLANs

SUMMARY STEPS

1. configure terminal
2. spanning-tree mode mst
3. spanning-tree extend system-id
4. spanning-tree mst configuration
5. name name
6. revision version
7. instance instance-id vlan vlan-range
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>spanning-tree mode mst</td>
<td>Enables MST on the device.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# spanning-tree mode mst</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>spanning-tree extend system-id</td>
<td>Enables the extended-system ID.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# spanning-tree extend system-id</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>spanning-tree mst configuration</td>
<td>Enters MST configuration submode on the system.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# spanning-tree mst configuration</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>name name</td>
<td>Specifies the name of an MST region</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-mst)# name test</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>revision version</td>
<td>Specifies the revision number for the MST configuration</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-mst)# revision 1</td>
<td></td>
</tr>
</tbody>
</table>

PurposeCommand or Action
-----|------------------|
Device(config-if)# end

Step 10 Perform the same steps on standby POA.
Command or Action

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `instance instance-id vlan vlan-range` Example: Device(config-mst)# instance 1 vlan 1-63 Device(config-mst)# instance 1 vlan 20, 40 | Maps VLANs to an MST instance.
- **instance-id**—Range is 0 to 4094.
- **vlan-range**—Range is 1 to 4094.
To specify a VLAN range, use a hyphen; for example, `instance 1 vlan 1-63` maps VLANs 1 through 63 to MST instance 1.
To specify a VLAN series, use a comma; for example, `instance 1 vlan 20, 40` maps VLANs 20 and 40 to MST instance 1. |

Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code> Example: Device(config-mst)# exit</td>
<td>Exits MST configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Verifying MC-LAG TCN Interworking

All steps are optional and can be performed in any order.

SUMMARY STEPS

1. `enable`
2. `show ethernet service interface [type number] [detail]`
3. `show spanning-tree detail`

DETAILED STEPS

Step 1

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code> Example: Device> enable</td>
<td>Enables the privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Example</th>
</tr>
</thead>
</table>
| `show ethernet service interface [type number] [detail]` Example: Device(config)# show ethernet service interface port 1 detail | Interface: Port-channel1, Type: UNI
ID:
EVC Distribution State: Ready
EVC Map Type: Bundling-Multiplexing
Bridge-domains:
Associated Service Instances:
Service-Instance-ID CE-VLAN
20 |
40

L2protocol: pass

mLACP state: Active

Displays the information about mLACP enabled Ethernet interface port.

Step 3 show spanning-tree detail

Example:

Device# show spanning-tree detail

MST0 is executing the mstp compatible Spanning Tree protocol
Bridge Identifier has priority 32768, sysid 0, address f866.f2eb.7ebb
Configured hello time 2, max age 20, forward delay 15, transmit hold-count 6
Current root has priority 32768, address 2834.a252.7380
Root port is 14 (Port-channel1), cost of root path is 0
Topology change flag not set, detected flag not set
Number of topology changes 2 last change occurred 00:15:24 ago
from Port-channel1
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15
Timers: hello 0, topology change 0, notification 0

Port 14 (Port-channel1) of MST0 is root forwarding
Port path cost 20000, Port priority 128, Port Identifier 128.14.
Designated bridge has priority 32768, address 2834.a252.7380
Designated port id is 128.14.14.
Timers: message age 4, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default, Internal
BPDU: sent 8, received 774

MST1 is executing the mstp compatible Spanning Tree protocol
Bridge Identifier has priority 32768, sysid 1, address f866.f2eb.7ebb
Configured hello time 2, max age 20, forward delay 15, transmit hold-count 6
Current root has priority 32769, address 2834.a252.7380
Root port is 14 (Port-channel1), cost of root path is 20000
Topology change flag not set, detected flag not set
Number of topology changes 3 last change occurred 00:12:04 ago
from Port-channel1
Times: hold 1, topology change 35, notification 2
hello 2, max age 20, forward delay 15
Timers: hello 0, topology change 0, notification 0

Port 14 (Port-channel1) of MST1 is root forwarding
Port path cost 20000, Port priority 128, Port Identifier 128.14.
Designated root has priority 32769, address 2834.a252.7380
Designated bridge has priority 32769, address 2834.a252.7380
Designated port id is 128.456, designated path cost 0
Timers: message age 5, forward delay 0, hold 0
Number of transitions to forwarding state: 1
Link type is point-to-point by default, Internal
BPDU: sent 8, received 775

Displays the STP details including TCN information.
Configuration Examples for MC-LAG TCN Interworking

Example: Enabling MSTP TCN Sequence

The following example shows how to enable the MSTP TCN sequence.

Active PoA-POA1

```
Device# configure terminal
Device(config)# interface port-channel1
Device(config-if)# mlacp interchassis group 1
Device(config-if)# mlacp mode active-active
Device(config-if)# mlacp mac mstp-tcn
Device(config-if)# mlacp load-balance primary vlan 10,20
Device(config-if)# mlacp load-balance secondary vlan 30,100
```

```
Device(config-if)# end
```

Standby PoA-POA2

```
Device# configure terminal
Device(config)# interface port-channel1
Device(config-if)# mlacp interchassis group 1
Device(config-if)# mlacp mode active-active
Device(config-if)# mlacp mac mstp-tcn
Device(config-if)# mlacp load-balance primary vlan 30,100
Device(config-if)# mlacp load-balance secondary vlan 10,20
```

```
Device(config-if)# end
```

Example: Enabling MST for VLANs

The following example shows the STP configuration for VLANs 20 and 40.

```
Device# configure terminal
Device(config)# spanning-tree mode mst
Device(config)# spanning-tree extend system-id
Device(config)# spanning-tree mst configuration
Device(config-mst)# name test
Device(config-mst)# revision 1
Device(config-mst)# instance 1 vlan 20, 40
```

Example: Configuring Redundancy and P-mLACP on Active POA

The following example shows how to configure redundancy and P-mLACP on an active POA.

```
redundancy
mode sso
interchassis group 4294967295
```
monitor peer bfd
member ip 88.1.1.2
backbone interface GigabitEthernet0/0/2
backbone interface GigabitEthernet0/0/1
mlacp system-mac 0001.0001.0001
mlacp system-priority 100
mlacp node-id 1
!
interface Port-channel1
no ip address
no negotiation auto
mlacp interchassis group 4294967295
mlacp mode active-active
mlacp mac mstp-tcn
mlacp load-balance primary vlan 40
mlacp load-balance secondary vlan 20
service instance 20 ethernet
 encapsulation dot1q 20
 rewrite ingress tag pop 1 symmetric
 xconnect 88.1.1.3 20 encapsulation mpls pw-class poa
backup peer 88.1.1.4 20 pw-class poa
!
interface Port-channel10
description to-DHD
no ip address
mlacp interchassis group 100
mlacp mode active-active
mlacp mac mstp-tcn
mlacp load-balance primary vlan 100-109
mlacp load-balance secondary vlan 110-120
service instance 10 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric
 xconnect 3.3.3.3 90 encapsulation mpls
!
interface Port-channel11
description to-DHD
no ip address
mlacp interchassis group 100
mlacp mode active-active
mlacp mac mstp-tcn
mlacp load-balance primary vlan 100-109
mlacp load-balance secondary vlan 110-120
service instance 10 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric
 xconnect 3.3.3.3 90 encapsulation mpls
Example: Configuring Redundancy and P-mLACP on Standby POA

The following example shows how to configure redundancy and P-mLACP on a standby POA.

```
redundancy
  mode sso
  interchassis group 100
  monitor peer bfd
  member ip 1.1.1.1
  backbone interface GigabitEthernet8/0/10
  mlacp system-priority 100
  mlacp node-id 2

interface Port-channel1
  no ip address
  no negotiation auto
  mlacp interchassis group 4294967295
  mlacp mode active-active
  mlacp mac mstp-tcn
  mlacp load-balance primary vlan 20
  mlacp load-balance secondary vlan 40
  service instance 40 ethernet
    encapsulation dot1q 40
  rewrite ingress tag pop 1 symmetric
  xconnect 88.1.1.3 20 encapsulation mpls pw-class poa
  backup peer 88.1.1.4 20 pw-class poa

! service instance 20 ethernet
  encapsulation dot1q 20
  rewrite ingress tag pop 1 symmetric
  xconnect 88.1.1.3 20 encapsulation mpls pw-class poa
  backup peer 88.1.1.4 20 pw-class poa

! interface Port-channel10
  description to-DHD
  no ip address
  mlacp interchassis group 100
  mlacp mode active-active
  mlacp mac mstp-tcn
  mlacp load-balance primary vlan 110-120
  mlacp load-balance secondary vlan 100-109
  service instance 10 ethernet
  encapsulation dot1q 100
  rewrite ingress tag pop 1 symmetric
  xconnect 3.3.3.3 90 encapsulation mpls

! service instance 11 ethernet
  encapsulation dot1q 101
  rewrite ingress tag pop 1 symmetric
  bridge-domain 201

! service instance 12 ethernet
  encapsulation dot1q 102
  rewrite ingress tag pop 1 symmetric
```
bridge-domain 202 split-horizon
! service instance 20 ethernet
 encapsulation dot1q 110
 rewrite ingress tag pop 1 symmetric
 xconnect 3.3.3.3 91 encapsulation mpls
!
service instance 21 ethernet
 encapsulation dot1q 111
 rewrite ingress tag pop 1 symmetric
 bridge-domain 211
!
service instance 22 ethernet
 encapsulation dot1q 112
 rewrite ingress tag pop 1 symmetric
 bridge-domain 212 split-horizon
!
End

Additional References for MC-LAG TCN Interworking

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Carrier Ethernet Commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Multichassis LACP</td>
<td>Multichassis LACP</td>
</tr>
<tr>
<td>ICCP Multichassis VLAN Redundancy</td>
<td>ICCP Multichassis VLAN Redundancy</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/c/en/us/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for MC-LAG TCN Interworking

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 29: Feature Information for MC-LAG TCN Interworking

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC-LAG TCN Interworking</td>
<td>Cisco IOS XE</td>
<td>Multiple VLAN Registration Protocol (MVRP) is used for MAC Flushing during the Pseudowire (PW) redundancy process. However, not all Dual Homed Device (DHD) switches support MVRP for MAC flushing. MC-LAG TCN Interworking feature enables using the Multiple Spanning Tree Protocol with Topology Change Notification (MSTP TCN) scheme for MAC Flushing towards the access network. The following commands were introduced or modified: <code>mlacp mac mstp-tcn</code>, <code>show ethernet service</code>, <code>show spanning-tree detail</code></td>
</tr>
<tr>
<td></td>
<td>Release 3.17S</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 20

Configuring ITU-T Y.1731 Fault Management Functions in IEEE CFM

This document describes the implementation of the ITU-Y.1731 fault management functions Ethernet Alarm Indication Signal (ETH-AIS) and Ethernet Remote Defect Indication (ETH-RDI) as part of the IEEE Ethernet Connectivity Fault Management (CFM) protocol.

• Finding Feature Information, on page 403
• Prerequisites for Configuring ITU-T Y.1731 Fault Management Functions, on page 403
• Restrictions for Configuring ITU-T Y.1731 Fault Management Functions, on page 404
• Information About Configuring ITU-T Y.1731 Fault Management Functions, on page 405
• How to Configure ITU-T Y.1731 Fault Management Functions, on page 409
• Configuration Examples for Configuring ITU-T Y.1731 Fault Management Functions, on page 413
• Additional References, on page 416
• Feature Information for Configuring ITU-T Y.1731 Fault Management Functions, on page 417

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring ITU-T Y.1731 Fault Management Functions

Business Requirements

• Business and service policies have been established.
• Network topology and network administration have been evaluated.
Technical Requirements

- CFM must be configured and enabled for Y.1731 fault management features to function.
- A server maintenance endpoint (SMEP) is needed to support the ETH-AIS function.
- Maintenance intermediate points (MIPs) must be configured to support AIS messages; they are generated only on an interface on which a MIP is configured.

Restrictions for Configuring ITU-T Y.1731 Fault Management Functions

- Because of a port-ASIC hardware limitation, IEEE CFM cannot coexist with the Per VLAN Spanning Tree (PVST) protocol, and IEEE CFM cannot operate with the following line cards on the same system:
 - FI_WS_X6196_RJ21
 - FI_WS_X6196_RJ45
 - FI_WS_X6548_RJ21
 - FI_WS_X6548_RJ45

- CFM loopback messages are not confined within a maintenance domain according to their maintenance level. The impact of not having CFM loopback messages confined to their maintenance levels occurs at these levels:
 - Architecture--CFM layering is violated for loopback messages.
 - Deployment--A user may misconfigure a network and have loopback messages succeed.
 - Security--A malicious device that recognizes devices’ MAC addresses and levels may explore a network topology that should be transparent.

- Routed interfaces are supported only in Cisco IOS Release 12.4(11)T.

- IEEE CFM is not fully supported on a Multiprotocol Label Switching (MPLS) provider edge (PE) device. There is no interaction between IEEE CFM and an Ethernet over MPLS (EoMPLS) pseudowire. A CFM packet can be transparently passed like regular data packets only via pseudowire, with the following restriction:
 - For policy feature card (PFC)-based EoMPLS, which uses a Cisco Catalyst LAN card as the MPLS uplink port, a CFM packet can be transparently passed via an EoMPLS pseudowire the same way regular data packets are passed. The EoMPLS endpoint interface, however, cannot be a maintenance endpoint (MEP) or an MIP, although a CFM MEP or MIP can be supported on regular Layer 2 switchport interfaces.

- CFM configuration is not supported on an EtherChannel in FastEthernet Channel (FEC) mode.
Information About Configuring ITU-T Y.1731 Fault Management Functions

Continuity Check Messages

CFM continuity check messages (CCMs) are multicast heartbeat messages exchanged periodically among MEPs. CCMs allow MEPs to discover other MEPs within a domain and allow MIPs to discover MEPs. CCMs are confined to a domain.

For more information about CCMs, see the “Continuity Check Messages” section of the "Configuring IEEE Standard-Compliant Ethernet CFM in a Service Provider Network" configuration module.

Server MEPs

Server MEPs (SMEPs) are virtual MEPs that perform two functions--server layer termination for CFM maintenance associations defined at a link or at the transport layer and server-Ethernet adaptation. When a SMEP detects a defect at the server layer, it issues frames containing ETH-AIS information.

Defect Conditions Detected by a MEP

The defect conditions that a MEP detects and subsequently acts upon are the following:

• AIS condition--A MEP receives an AIS frame.

• Dying gasp--An unrecoverable and vendor-specific condition. Dying gasp is generated in the following conditions:
 • Administratively disabling 802.3ah
 • Link down caused by administration down
 • Power failure
 • Reload

Note

Administratively disabling 802.3ah does not disrupt traffic and should not generate an AIS. If a Reason field is empty, however, disabling always generates an AIS when Cisco routers and non-Cisco routers are interworking.

A notification about the defect condition may be sent immediately and continuously.

• Loss of continuity (LOC) condition--A MEP stops receiving CCMs from a peer MEP. An LOC condition is a MEP down error.

LOC results when a remote MEP lifetime timer expires and causes an AIS condition for the local MEP. The LOC condition is cleared when connectivity is restored.
• Mismerge condition--A CCM with a correct maintenance level but incorrect maintenance ID indicates that frames from a different service instance are merged with the service instance represented by the receiving MEP’s maintenance ID. A mismerge condition is a cross-connect error.

• RDI condition--A MEP receives a CCM with the RDI field set.

• Signal fail condition--Declared by a MEP or the server layer termination function to notify the SMEP about a defect condition in the server layer. Signal fail conditions are as follows:
 • Configuration error
 • Cross-connect error
 • LOC
 • Loop error
 • MEP missing
 • MEP unknown (same as unexpected MEP)

Signal fail conditions cause AIS defect conditions for the MEP, resulting in the MEP receiving an AIS frame. A MEP that detects a signal fail condition sends AIS frames to each of the client layer or sublayer maintenance associations.

• Unexpected MEP condition--A CCM with a correct maintenance level, correct maintenance ID, and an unexpected maintenance point ID (MPID) that is the same as the receiving MEP’s MPID. An unexpected MEP condition is either a cross-check error or a configuration error.

Determination of an unexpected MPID is possible when a MEP maintains a list of its peer MPIDs. Peer MPIDs must be configured on each MEP during provisioning.

ETH-AIS Function

The ETH-AIS function suppresses alarms when a defect condition is detected at either the server layer or the server sublayer (virtual MEP). Transmission of frames carrying ETH-AIS information can be either enabled or disabled on either a MEP or a SMEP and can be sent at the client maintenance level by either a MEP or SMEP when a defect condition is detected.

SMEPs monitor the entire physical link so that an AIS is generated for each VLAN or server on the network. MEPs monitor VLANs, Ethernet virtual circuits (EVCs), and SMEPs where link up or link down and 802.3ah interworking are supported. A MEP that detects a connectivity fault at a specific level multicasts an AIS in the direction opposite the detected failure at the client maintenance association (MA) level.

An AIS causes a receiving MEP to suppress traps to prevent the network management system (NMS) from receiving an excessive number of redundant traps and also so that clients are asynchronously informed about faults.

In a point-to-point topology, a MEP has a single peer MEP and there is no ambiguity regarding the peer MEP for which it should suppress alarms when it receives ETH-AIS information.

In a multipoint Ethernet topology, a MEP that receives a frame with ETH-AIS information cannot determine which remote peer lost connectivity. The MEP also cannot determine the associated subset of peer MEPS for which it should suppress alarms because the ETH-AIS information does not include that MEP information. Because the MEP cannot determine the affected peer MEPS, it suppresses alarms for all peer MEPS whether or not there is connectivity.
Due to independent restoration capabilities within Spanning Tree Protocol (STP) environments, ETH-AIS is not expected to be applied in these environments; however, ETH-AIS transmission is configurable in STP environments by a network administrator.

ETH-AIS Transmission Reception and Processing

Only a MEP or a SMEP can be configured to send frames with ETH-AIS information. When a MEP detects a defect condition, it immediately begins transmitting frames with ETH-AIS information at the configured client maintenance level, which is the level at which the MIP is configured on the interface. Frames are transmitted to peer MEPs in the direction opposite the fault. The first AIS frame must always be transmitted immediately following the detection of a defect condition, but thereafter frames are transmitted at a frequency based on the configured AIS transmission period. The transmitting MEP continues to transmit frames with ETH-AIS information until the defect condition is removed. The period flag in the frame’s header indicates the transmission interval. The default is that a MEP clears a defect condition only if no AIS frames are received within a time period equal to 3.5 times the configured transmission interval.

Note

An AIS transmission period of one second is recommended; however, an AIS transmission period of one minute is supported to enable ETH-AIS across all VLANs supported by IEEE CFM.

When a MEP receives a frame with ETH-AIS information, it examines the frame to ensure that the maintenance association level corresponds to its own maintenance association level. The MEP detects the AIS condition and suppresses loss-of-continuity alarms associated with all its peer MEPs. Peer MEPs can resume generating loss-of-continuity alarms only when the receiving MEP exits the AIS condition.

The client layer or client sublayer may consist of multiple maintenance associations that should also be notified to suppress alarms when either a server layer or server sublayer MEP detects a defect condition. The first AIS frame for all client layer or sublayer maintenance associations must be transmitted within one second after the defect condition is detected.

AIS and 802.3ah Interworking

The following conditions impact SMEP AIS conditions:

- By default, link down events cause the SMEP to enter the AIS condition and generate AIS frames for all services at the immediate client maintenance association level.

- Link up events cause the SMEP to exit the AIS state and stop generating AIS frames.

- Local fault detection results from dying gasp, link fault, or critical 802.3ah Remote Fault Indication (RFI). When 802.3ah is reestablished, the SMEP exits the AIS state and stops generating AIS frames.

- Local fault detection due to crossing of a high threshold with a configurable action of error disabling the interface.

- RFI received from a dying gasp, link fault, or critical event.

If a detected fault is due to dying gasp, the link goes down in both directions, creating AIS and RDI frame flow as shown in the figure below.
ETH-RDI Function

The ETH-RDI function is used by a MEP to communicate to its peer MEPs that a defect condition has been encountered. ETH-RDI is used only when ETH-CC transmission is enabled.

ETH-RDI has the following two applications:

- Single-ended fault management--A receiving MEP detects an RDI defect condition, which is correlated with other defect conditions in the MEP and may become the cause of a fault. If ETH-RDI information is not received by a single MEP, there are no defects in the entire MA.

- Contribution to far-end performance monitoring--A defect condition in the far end is used as an input to the performance monitoring process.

A MEP in a defect condition transmits CCMs with ETH-RDI information. A MEP that receives a CCM examines it to ensure that its maintenance association level corresponds to its configured maintenance association level and detects the RDI condition if the RDI field is set. The receiving MEP sets the RDI field in CCMs for the duration of a defect condition, and if the MEP is enabled for CCM transmission, transmits CCMs based on the configured transmission interval. When the defect condition clears, the MEP clears the RDI field in CCMs for subsequent transmissions.

In a point-to-point Ethernet connection, a MEP can clear an RDI condition when it receives the first CCM with the RDI field cleared from its peer MEP. In a multipoint Ethernet connection, a MEP cannot determine the peer MEP with the default condition and can clear an RDI condition only when it receives a CCM with the RDI field cleared from each of its peer MEPs.

The ETH-RDI function is part of continuity checking and is enabled by default. For more information about continuity checking, see the "Configuring IEEE Standard-Compliant Ethernet CFM in a Service Provider Network" configuration module.
How to Configure ITU-T Y.1731 Fault Management Functions

ETH-AIS and ETH-RDI both are enabled by default when CFM is configured, but each can also be manually enabled by a separate command during CFM configuration. Perform these tasks to either disable or enable the functions.

Disabling the ETH-AIS Function

Perform this task to disable the ETH-AIS function.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **ethernet cfm ais link-status global**
4. **disable**
5. **exit**
6. **ethernet cfm domain domain-name level level-id [direction outward]**
7. **service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]**
8. **no ais [expiry-threshold | level | period | suppress-alarms]**
9. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet cfm ais link-status global</td>
<td>Globally enables AIS generation and enters CFM SMEP AIS configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet cfm ais link-status global</td>
<td></td>
</tr>
<tr>
<td>Step 4 disable</td>
<td>Disables AIS transmission.</td>
</tr>
<tr>
<td>Example: Device(config-ais-link-cfm)# disable</td>
<td></td>
</tr>
</tbody>
</table>
Enabling ETH-AIS for a Single Interface SMEP and Disabling ETH-AIS for All Other Ports

Perform this task to manually enable the ETH-AIS function.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm domain domain-name level level-id [direction outward]
4. service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]
5. continuity-check [interval time | loss-threshold threshold | static rmep]
6. ais [expiry-threshold threshold | level level-id | period seconds | suppress-alarms]
7. ais [expiry-threshold threshold | level level-id | period seconds | suppress-alarms]
8. exit
9. service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>ethernet cfm domain domain-name level-id [direction outward]</td>
<td>Defines a CFM maintenance domain at a particular maintenance level and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# ethernet cfm domain PROVIDERDOMAIN level 4</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>service {ma-name</td>
<td>ma-num</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm)# service customer101provider evc customer101provider@101 vlan 101</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>continuity-check [interval time</td>
<td>loss-threshold threshold</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm-srv)# continuity-check</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>ais [expiry-threshold threshold</td>
<td>level level-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-ecfm-srv)# ais period 1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 7** ais [expiry-threshold threshold | level level-id | period seconds| suppress-alarms]
Example:
Device(config-ecfm-srv)# ais level 7 | Enables the AIS function for a specific maintenance association. |
| **Step 8** exit
Example:
Device(config-ecfm-srv)# exit | Returns the CLI to Ethernet CFM configuration mode. |
| **Step 9** service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]
Example:
Device(config-ecfm)# service customer110provider
evc customer110provider@110 vlan 110 | Configures a maintenance association within a maintenance domain and enters Ethernet CFM service configuration mode. |
| **Step 10** continuity-check [interval time | loss-threshold threshold | static rmep]
Example:
Device(config-ecfm-srv)# continuity-check | Enables the transmission of CCMs. |
| **Step 11** ethernet cfm ais link-status global
Example:
Device(config-ecfm-srv)# ethernet cfm ais link-status global | Globally enables AIS generation and places the CLI in CFM SMEP AIS configuration mode (config-ais-link-cfm) to configure AIS commands for a SMEP. |
| **Step 12** disable
Example:
Device(config-ais-link-cfm)# disable | Disables the generation of AIS frames resulting from a link-status change. |
| **Step 13** interface type number
Example:
Device(config-ais-link-cfm)# interface ethernet 0/1 | Configures an interface type and enters interface configuration mode. |
| **Step 14** ethernet oam remote-loopback {supported | timeout seconds}
Example:
Device(config-if)# ethernet oam remote-loopback supported | Enables the support of Ethernet OAM remote loopback operations on an interface or sets a remote loopback timeout period. |
Command or Action

<table>
<thead>
<tr>
<th>Step 15</th>
<th>ethernet cfm mip level level-id [vlan vlan-id vlan-id vlan-id]</th>
<th>Provisions a MIP at a specified maintenance level on an interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# ethernet cfm mip level 4 vlan 101</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>ethernet cfm ais link-status [level level-id period seconds]</td>
<td>Enables AIS generation from a SMEP.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# ethernet cfm ais link-status</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Configuring ITU-T Y.1731 Fault Management Functions

Example: Enabling IEEE CFM on an Interface

The following example shows how to enable IEEE CFM on an interface:

```
! ethernet cfm domain ServiceProvider level 4
mep archive-hold-time 60
service MetroCustomer1 vlan 100
!
ethernet cfm domain OperatorA level 1
mep archive-hold-time 65
service MetroCustomer1OpA vlan 100
!
ethernet cfm enable
ethernet cfm traceroute cache
ethernet cfm traceroute cache size 200
ethernet cfm traceroute cache hold-time 60
!
interface gigabitethernet3/0
ethernet cfm mip level 1
!
interface gigabitethernet4/0
ethernet cfm mip level 4
ethernet cfm mep level 1 mpid 102 vlan 100
!
ethernet cfm cc enable level 1 vlan 100
ethernet cfm cc level any vlan any interval 20 loss-threshold 3
```
Example: Enabling AIS

The following example shows how to enable AIS:

```plaintext
! ethernet cfm domain PROVIDER_DOMAIN level 4
  service customer101provider evc customer101provider@101 vlan 101
    continuity-check
  ais period 1
  ais level 7
  service customer110provider evc customer110provider@110 vlan 110
    continuity-check
! ethernet cfm ais link-status global
  disable
!
! interface Ethernet 0/1
  no ip address
  ethernet oam remote-loopback supported
  ethernet oam
  ethernet cfm mip level 4 vlan 1,101,110
  ethernet cfm ais link-status
!
```

Example: Show Commands Output

The following sample output from the `show ethernet cfm maintenance-point local detail` command shows the settings for the local MEP:

```
Device# show ethernet cfm maintenance-points local detail

MEP Settings:
--------------
MPID: 2101
DomainName: PROVIDER_DOMAIN
Level: 4
Direction: I
Vlan: 101
Interface: Et0/1
CC-Status: Enabled
MAC: aabb.cc03.8410
Defect Condition: AIS
presentRDI: TRUE
AIS-Status: Enabled
AIS Period: 1000 (ms)
AIS Expiry Threshold: 3.5
Level to transmit AIS: Default
Suppress Alarm configuration: Enabled
Suppressing Alarms: Yes
```

The following sample output from the `show ethernet cfm smep` command shows the settings for a SMEP:

```
Device# show ethernet cfm smep
SMEP Settings:
---------------
Interface: Ethernet0/0
AIS-Status: Enabled
AIS Period: 60000 (ms)
```
Level to transmit AIS: 4
Defect Condition: No Defect

The following sample output from the `show ethernet cfm smep interface` command shows the settings for a specific interface on a SMEP:

```
Device# show ethernet cfm smep interface ethernet 0/1
SMEP Settings:
--------------
Interface: Ethernet0/1
LCK-Status: Enabled
LCK Period: 60000 (ms)
Level to transmit LCK: Default
AIS-Status: Enabled
AIS Period: 60000 (ms)
Level to transmit AIS: Default
Defect Condition: No Defect
Router#
```

The following sample output from the `show ethernet cfm errors` command shows the Ethernet CFM errors on a device:

```
Device# show ethernet cfm errors
Level  Vlan  MPID  Remote MAC  Reason  Service ID
5  102  -   aabb.cc00.ca10  Receive AIS  service test
```

The following sample output from the `show ethernet cfm maintenance-points remote detail` command shows the detailed information about a specific remote MEP:

```
Device# show ethernet cfm maintenance-points remote detail mpid 66
MAC Address: aabb.cc00.ca10
Domain/Level: PROVIDERDOMAIN/4
EVC: test
MPID: 66 (Can ping/traceroute)
Incoming Port(s): Ethernet0/2
CC Lifetime(sec): 75
Age of Last CC Message(sec): 8
Receive RDI: TRUE
Frame Loss: 0%
CC Packet Statistics: 2/0 (Received/Error)
```

```
Router#MAC Address: aabb.cc00.ca10
Domain/Level: PROVIDERDOMAIN/4
EVC: test
MPID: 66 (Can ping/traceroute)
Incoming Port(s): Ethernet0/2
CC Lifetime(sec): 75
Age of Last CC Message(sec): 8
Receive RDI: TRUE
Frame Loss: 0%
CC Packet Statistics: 2/0 (Received/Error)
```
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE CFM</td>
<td>“Configuring IEEE Standard-Compliant Ethernet CFM in a Service Provider Network”</td>
</tr>
<tr>
<td>Using OAM</td>
<td>“Using Ethernet Operations, Administration, and Maintenance”</td>
</tr>
<tr>
<td>IEEE CFM and Y.1731 commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS commands: master list of commands with complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.1ag</td>
<td>802.1ag - Connectivity Fault Management</td>
</tr>
<tr>
<td>IEEE 802.3ah</td>
<td>Ethernet in the First Mile</td>
</tr>
<tr>
<td>ITU-T</td>
<td>ITU-T Y.1731 OAM Mechanisms for Ethernet-Based Networks</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for Configuring ITU-T Y.1731 Fault Management Functions

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 30: Feature Information for Configuring ITU-T Y.1731 Fault Management Functions

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring ITU-T Y.1731 Fault Management Functions</td>
<td>15.0(1)XA, 12.2(33)SRE, 15.1(1)T, Cisco IOS XE Release 3.8S</td>
<td>The ITU-Y.1731 Fault Management Functions feature adds to IEEE CFM the ETH-AIS and ETH-RDI functions for fault detection, fault verification, and fault isolation in large MANs and WANs. The following commands were introduced or modified: ais, clear ethernet cfm ais, disable(CFM-AIS-link), ethernet cfm ais link-status, ethernet cfm ais link-status global, level(cfm-ais-link), period(cfm-ais-link), show ethernet cfm errors, show ethernet cfm maintenance-points local, show ethernet cfm maintenance-points remote detail, show ethernet cfm smep.</td>
</tr>
</tbody>
</table>
CHAPTER 21

Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

This module describes how to configure an IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) operation to gather the following performance measurements for Ethernet service:

- Ethernet Delay
- Ethernet Delay Variation
- Ethernet Frame Loss Ratio

- Finding Feature Information, on page 419
- Prerequisites for ITU-T Y.1731 Operations, on page 419
- Restrictions for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731), on page 420
- How to Configure IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations, on page 420
- Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations, on page 433
- Additional References for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations, on page 437
- Feature Information for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations, on page 438

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for ITU-T Y.1731 Operations

IEEE-compliant Connectivity Fault Management (CFM) must be configured and enabled for Y.1731 performance monitoring to function.
Restrictions for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731)

- SNMP is not supported for reporting threshold events or collecting performance statistics for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) operations.

 SNMP is partially supported; the results for DM/LM can be polled for some attributes. However MIB support for all parameters is not supported.

- Continuity Check Message (CCM)-based dual-ended Ethernet frame loss operations are not supported.

- In a single-ended Ethernet operation, performance measurement statistics can be retrieved only at the device on which the sender Ethernet Connectivity Fault Management (CFM) Maintenance End Point (MEP) is configured.

- To avoid losing the CoS value configured on the frames, do not configure rewrite on the EFPs throughout the Layer2 circuit. The CoS value is preserved, if the Y.1731 frames are marked with specific CoS value.

- CFM over cross-connect on the routers works only if the control-word is configured. To start DM timestamping, switch ON the control-word if the remote end is not switched ON.

- To avoid errors in RX and TX timestamping, ensure to have Y1731 sender as PTP master, and the Y1731 responder as PTP slave.

- Reconfigure IP SLA Y1731 while doing online insertion removal (OIR) of IM or router reload because local MEP is deleted during the course.

- A delay may be observed after issuing the `ip sla schedule` command after a reload of the router is performed, to populate with the Y.1731 PM measurements.

- The dot1q tag contains class of service (CoS) bits, which are used by IPSLA Y.1731 PM session to test delay or loss of packets with a specific CoS. This CoS cannot be a non-zero value when using EPM over untagged EFPs.

How to Configure IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

Configuring a Dual-Ended Ethernet Delay or Delay Variation Operation

Perform the tasks for configuring a dual-ended operation in the order presented.
To remove the MEP configurations in an already-configured dual-ended operation, always remove the MEPs
in the reverse order in which they were configured. That is, remove the scheduler first, then the threshold
monitoring configuration, and then the sender MEP configuration on the source device before removing the
scheduler, proactive threshold monitoring, and receiver MEP configuration on the destination device.

Configuring a Receiver MEP on the Destination Device

Before you begin
Time synchronization is required between the source and destination devices in order to provide accurate
one-way delay (latency) or delay-variation measurements. Configure either Precision Time Protocol (PTP)
or Network Time Protocol (NTP) on both the source and destination devices.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip sla operation-number
4. ethernet y1731 delay receive 1DM domain domain-name {evc evc-id | vlan vlan-id} cos cos {mpid
source-mp-id | mac-address source-address}
5. aggregate interval seconds
6. distribution {delay | delay-variation} one-way number-of-bins boundary[,...,boundary]
7. frame offset offset-value
8. history interval intervals-stored
9. max-delay milliseconds
10. owner owner-id
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip sla operation-number</td>
<td>Begins configuring an IP SLAs operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-term)# ip sla 501</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Receiver MEP on the Destination Device

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4**
ethernet y1731 delay receive 1DM domain domain-name {evc evc-id | vlan vlan-id} cos cos {mpid source-mp-id | mac-address source-address}

Example:

Router(config-ip-sla)# ethernet y1731 delay receive 1DM domain xxx evc yyy cos 3 mpid 101

- Begins configuring the receiver on the responder and enters IP SLA Y.1731 delay configuration mode.
 - The source-mp-id or source-address configured by this command corresponds to that of the MEP being configured.

Note

- The session with mac-address will not be inactivated when there is CFM error.

| **Step 5**
aggregate interval seconds

Example:

Router(config-sla-y1731-delay)# aggregate interval 900

- (Optional) Configures the length of time during which the performance measurements are conducted and the results stored.

| **Step 6**
distribution {delay | delay-variation} one-way number-of-bins boundary[...boundary]

Example:

Router(config-sla-y1731-delay)# distribution delay-variation one-way 5 5000,10000,15000,20000,-1

- (Optional) Specifies measurement type and configures bins for statistics distributions kept.

| **Step 7**
frame offset offset-value

Example:

Router(config-sla-y1731-delay)# frame offset 1

- (Optional) Sets the value for calculating delay variation rates.

| **Step 8**
history interval intervals-stored

Example:

Router(config-sla-y1731-delay)# history interval 2

- (Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation.

| **Step 9**
max-delay milliseconds

Example:

Router(config-sla-y1731-delay)# max-delay 5000

- (Optional) Sets the amount of time an MEP waits for a frame.

| **Step 10**
owner owner-id

Example:

Router(config-sla-y1731-delay)# owner admin

- (Optional) Configures the owner of an IP SLAs operation.

Purpose

Command or Action	Purpose
Step 11 end | Exits to privileged EXEC mode.
Example:
```
Router(config-sla-y1731-delay)# end
```

What to do next

To add proactive threshold conditions and reactive triggering for generating traps, see the "Configuring Proactive Threshold Monitoring" module of the *IP SLAs Configuration Guide*.

When you are finished configuring proactive threshold monitoring for this MEP, see the "Scheduling IP SLAs Operations" section to schedule the operation.

Configuring the Sender MEP on the Source Router

Before you begin

- Time synchronization is required between the source and destination devices in order to provide accurate one-way delay (latency) or delay-variation measurements. Configure either Precision Time Protocol (PTP) or Network Time Protocol (NTP) on both the source and destination devices.
- The receiver MEP must be configured, including proactive threshold monitoring, and scheduled before you configure the sender MEP.

SUMMARY STEPS

1. ```enable```
2. ```configure terminal```
3. ```ip sla operation-number```
4. ```ethernet y1731 delay IDM domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos cos {source {mpid source-mp-id | mac-address source-address}}```
5. ```aggregate interval seconds```
6. ```frame interval milliseconds```
7. ```frame size bytes```
8. ```history interval intervals-stored```
9. ```owner owner-id```
10. ```end```

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
Example:
```
Router> enable
```  
- Enter your password if prompted.
Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

Configuring the Sender MEP on the Source Router

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 2** | `configure terminal`
Example:
`Router# configure terminal` | Enters global configuration mode. |
| **Step 3** | `ip sla operation-number`
Example:
`Router(config)# ip sla 500` | Begins configuring an IP SLAs operation and enters IP SLA configuration mode. |
| **Step 4** | `ethernet y1731 delay 1DM domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos cos {source {mpid source-mp-id | mac-address source-address}}`
Example:
`Router(config-ip-sla)# ethernet y1731 delay 1DM domain xxx evc yyy mpid 101 cos 3 source mpid 100` | Begins configuring a dual-ended Ethernet delay operation and enters IP SLA Y.1731 delay configuration mode.
Note The session with mac-address will not be inactivated when there is CFM error. |
| **Step 5** | `aggregate interval seconds`
Example:
`Router(config-sla-y1731-delay)# aggregate interval 900` | (Optional) Configures the length of time during which the performance measurements are conducted and the results stored. |
| **Step 6** | `frame interval milliseconds`
Example:
`Router(config-sla-y1731-delay)# frame interval 100` | (Optional) Sets the gap between successive frames. |
| **Step 7** | `frame size bytes`
Example:
`Router(config-sla-y1731-delay)# frame size 64` | (Optional) Sets the padding size for frames. |
| **Step 8** | `history interval intervals-stored`
Example:
`Router(config-sla-y1731-delay)# history interval 2` | (Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation. |
Configuring a Sender MEP for a Single-Ended Ethernet Delay or Delay Variation Operation

Perform this task to configure a sender MEP on the source device.

Before you begin

- Time synchronization is required between the source and destination devices in order to provide accurate one-way delay (latency) or delay-variation measurements. Configure either Precision Time Protocol (PTP) or Network Time Protocol (NTP) on both the source and destination devices.

Note

To display information about remote (target) MEPs on destination devices, use the `show ethernet cfm maintenance-points remote` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip sla operation-number`
4. `ethernet y1731 delay {DMM | DMMv1} [burst] domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} cos {source {mpid source-mp-id | mac-address source-address}}`
5. `clock sync`
6. `aggregate interval seconds`
7. `distribution {delay | delay-variation} one-way number-of-bins boundary[,...,boundary]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip sla operation-number</td>
<td>Begins configuring an IP SLAs operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-term)# ip sla 10</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ethernet y1731 delay [DMM</td>
<td>DMMv1] [burst] domain domain-name {evc evc-id</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-ip-sla)# ethernet y1731 delay dmm domain xxx evc yyy mpid 101 cos 4 source mpid 100</td>
<td>• To configure concurrent operations, use the DMMv1 keyword with this command. Repeat the preceding two steps to each concurrent operation, to be added to a single IP SLA operation number. Concurrent operations are supported for a given EVC, CoS, and remote MEP combination, or for multiple MEPs for a given multipoint EVC.</td>
</tr>
<tr>
<td></td>
<td>Note The session with mac-address will not be inactivated when there is CFM error.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>clock sync</td>
<td>(Optional) Indicates that the end points are synchronized and thus allows the operation to calculate one-way delay measurements.</td>
</tr>
<tr>
<td></td>
<td>Example: Device(config-sla-y1731-delay)# clock sync</td>
<td></td>
</tr>
</tbody>
</table>
Configuring IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

Configuring a Sender MEP for a Single-Ended Ethernet Delay or Delay Variation Operation

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 aggregate interval seconds Example: <code>Device(config-sla-y1731-delay)# aggregate interval 900</code></td>
<td>(Optional) Configures the length of time during which the performance measurements are conducted and the results stored.</td>
</tr>
<tr>
<td>Step 7 distribution {delay</td>
<td>delay-variation} one-way number-of-bins boundary[,...,boundary] Example: <code>Device(config-sla-y1731-delay)# distribution delay-variation one-way 5 5000, 10000,15000,20000,-1</code></td>
</tr>
<tr>
<td>Step 8 frame interval milliseconds Example: <code>Device(config-sla-y1731-delay)# frame interval 100</code></td>
<td>(Optional) Sets the gap between successive frames.</td>
</tr>
<tr>
<td>Step 9 frame offset offset-value Example: <code>Device(config-sla-y1731-delay)# frame offset 1</code></td>
<td>(Optional) Sets value for calculating delay variation values.</td>
</tr>
<tr>
<td>Step 10 frame size bytes Example: <code>Device(config-sla-y1731-delay)# frame size 32</code></td>
<td>(Optional) Configures padding size for frames.</td>
</tr>
<tr>
<td>Step 11 history interval intervals-stored Example: <code>Device(config-sla-y1731-delay)# history interval 2</code></td>
<td>(Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation.</td>
</tr>
<tr>
<td>Step 12 max-delay milliseconds Example: <code>Device(config-sla-y1731-delay)# max-delay 5000</code></td>
<td>(Optional) Sets the amount of time an MEP waits for a frame.</td>
</tr>
<tr>
<td>Step 13 owner owner-id Example:</td>
<td>(Optional) Configures the owner of an IP SLAs operation.</td>
</tr>
</tbody>
</table>
Configuring a Sender MEP for a Single-Ended Ethernet Frame Loss Ratio Operation

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-sla-y1731-delay)# owner admin</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 14

Example:

Device(config-sla-y1731-delay)# end

What to do next

To add proactive threshold conditions and reactive triggering for generating traps, see the "Configuring Proactive Threshold Monitoring" module of the IP SLAs Configuration Guide.

When you are finished configuring proactive threshold monitoring for this operation, see the "Scheduling IP SLAs Operations" section to schedule the operation.

Configuring a Sender MEP for a Single-Ended Ethernet Frame Loss Ratio Operation

Note

This task is not supported on Cisco ME 3600X Series and 3800X Series Ethernet Access Switches

Note

To display information about remote (target) MEPs on destination devices, use the `show ethernet cfm maintenance-points remote` command.

Perform this task to configure a sender MEP on the source device.

Before you begin

- Class of Service (CoS)-level monitoring must be enabled on MEPs associated to the Ethernet frame loss operation by using the `monitor loss counter` command on the devices at both ends of the operation. See the Cisco IOS Carrier Ethernet Command Reference for command information. See the "Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations" section for configuration information.

Note

Cisco IOS Y.1731 implementation allows monitoring of frame loss for frames on an EVC regardless of the CoS value (any CoS or Aggregate CoS cases). See the "Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations" section for configuration information.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip sla operation-number`
4. `ethernet y1731 loss {LMM | SLM} [burst] domain domain-name {evc evc-id | vlan vlan-id} {mpid target-mp-id | mac-address target-address} CoS CoS {source {mpid source-mp-id | mac-address source-address}}`
5. `aggregate interval seconds`
6. `availability algorithm {sliding-window | static-window}`
7. `frame consecutive value`
8. `frame interval milliseconds`
9. `history interval intervals-stored`
10. `owner owner-id`
11. `exit`
12. `exit`
13. `ip sla reaction-configuration operation-number {react {unavailableDS | unavailableSD} [threshold-type {average [number-of-measurements] | consecutive [occurrences] | immediate]} [threshold-value upper-threshold lower-threshold]]`
14. `ip sla logging traps`
15. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>ip sla operation-number</code></td>
<td>Begins configuring an IP SLAs operation and enters IP SLA configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-term)# ip sla 11</td>
<td></td>
</tr>
<tr>
<td>Step 4 `ethernet y1731 loss {LMM</td>
<td>SLM} [burst] domain domain-name {evc evc-id</td>
</tr>
<tr>
<td>Example:</td>
<td>• To configure concurrent operations, use the SLM keyword with this command. Repeat the preceding two steps to configure each concurrent operation to be added to a single IP SLA operation number.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-ip-sla)# ethernet y1731 loss IAM domain xxx vlan 12 mpid 34 CoS 4 source mpid 23</td>
<td>Concurrent operations are supported for a given EVC, CoS, and remote-MEP combination, or for multiple MEPs for a given multipoint EVC. Note: The session with mac-address will not be inactivated when there is CFM error.</td>
</tr>
<tr>
<td>Step 5 aggregate interval seconds</td>
<td>(Optional) Configures the length of time during which performance measurements are conducted and the results stored.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-loss)# aggregate interval 900</td>
<td></td>
</tr>
<tr>
<td>Step 6 availability algorithm sliding-window</td>
<td>(Optional) Specifies availability algorithm used.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-loss)# availability algorithm static-window</td>
<td></td>
</tr>
<tr>
<td>Step 7 frame consecutive value</td>
<td>(Optional) Specifies number of consecutive measurements to be used to determine availability or unavailability status.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-loss)# frame consecutive 10</td>
<td></td>
</tr>
<tr>
<td>Step 8 frame interval milliseconds</td>
<td>(Optional) Sets the gap between successive frames.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-loss)# frame interval 100</td>
<td></td>
</tr>
<tr>
<td>Step 9 history interval intervals-stored</td>
<td>(Optional) Sets the number of statistics distributions kept during the lifetime of an IP SLAs Ethernet operation.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-loss)# history interval 2</td>
<td></td>
</tr>
<tr>
<td>Step 10 owner owner-id</td>
<td>(Optional) Configures the owner of an IP SLAs operation.</td>
</tr>
<tr>
<td>Example: Device(config-sla-y1731-delay)# owner admin</td>
<td></td>
</tr>
<tr>
<td>Step 11 exit</td>
<td>Exits to IP SLA configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Device(config-sla-y1731-delay)# exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Device(config-ip-sla)# exit</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td>Step 13 ip sla reaction-configuration operation-number {react unavailableDS</td>
<td>(Optional) Configures proactive threshold monitoring for frame loss measurements.</td>
</tr>
<tr>
<td></td>
<td>unavailableSD</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Device(config)# ip sla reaction-configuration 11 react unavailableDS</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 14 ip sla logging traps</td>
<td>(Optional) Enables IP SLAs syslog messages from CISCO-RTTMON-MIB.</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Device(config)# ip sla logging traps</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 15 exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td>Exits to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

What to do next

When you are finished configuring this MEP, see the "Scheduling IP SLAs Operations" section to schedule the operation.

Scheduling IP SLAs Operations

Before you begin

- All IP Service Level Agreements (SLAs) operations to be scheduled must be already configured.
- The frequency of all operations scheduled in a multioperation group must be the same.
- The list of one or more operation ID numbers to be added to a multioperation group must be limited to a maximum of 125 characters in length, including commas (,).
SUMMARY STEPS

1. enable
2. configure terminal
3. Enter one of the following commands:
 - `ip sla schedule operation-number [life {forever | seconds}] [start-time {hh:mm:ss} [month day | day month] | pending | now | after hh:mm:ss] [ageout seconds] [recurring]`
 - `ip sla group schedule group-operation-number operation-id-numbers {schedule-period schedule-period-range | schedule-together} [ageout seconds] frequency group-operation-frequency [life {forever | seconds}] [start-time {hh:mm:ss} [month day | day month] | pending | now | after hh:mm:ss] [ageout seconds] [recurring]`
4. end
5. show ip sla group schedule
6. show ip sla configuration

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter one of the following commands:</td>
</tr>
<tr>
<td>Example: Device(config)# ip sla schedule 10 life forever start-time now</td>
<td>• Configures the scheduling parameters for an individual IP SLAs operation.</td>
</tr>
<tr>
<td></td>
<td>• Specifies an IP SLAs operation group number and the range of operation numbers for a multioperation scheduler.</td>
</tr>
<tr>
<td>Example: Device(config)# ip sla group schedule 10 schedule-period frequency</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Device(config)# ip sla group schedule 1 3,4,6-9 life forever start-time now</code></td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Device(config)# ip sla schedule 1 3,4,6-9 schedule-period 50 frequency range 80-100</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

Example:

```
Device(config)# end
```

Step 5

Example:

```
Device# show ip sla group schedule
```

Step 6

Example:

```
Device# show ip sla configuration
```

Configuration Examples for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

Example: Dual-Ended Ethernet Delay Operation

The following sample output shows the configuration, including default values, of a receiver MEP on the responder device for a dual-ended Ethernet delay or delay variation operation:

```
Device# show ip sla configuration 501

IP SLAs Infrastructure Engine-III
Entry number: 501
Owner: admin
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y1731 Delay Operation
Frame Type: 1DM
Domain: xxx
ReceiveOnly: TRUE
Evc: yyy
Local Mpid: 101
CoS: 3
  Max Delay: 5000
Threshold (milliseconds): 5000
```

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Example: Frame Delay and Frame Delay Variation Measurement Configuration

The following sample output shows the configuration, including default values, of the sender MEP for a dual-ended IP SLAs Ethernet delay or delay variation operation:

Device# show ip sla configuration 500

IP SLAs Infrastructure Engine-III
Entry number: 500
Owner:
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y1731 Delay Operation
Frame Type: 1DM
Domain: yyy
ReceiveOnly: FALSE
Evc: xxx
Target Mpid: 101
Source Mpid: 100
CoS: 3
 Request size (Padding portion): 64
 Frame Interval: 1000
Threshold (milliseconds): 5000

 Statistics Parameters
 Aggregation Period: 900
 Frame offset: 1
History
 Number of intervals: 2

Example: Frame Delay and Frame Delay Variation Measurement Configuration

The following sample output shows the performance monitoring session summary:

Device# show ethernet cfm pm session summary

Number of Configured Session : 2
Number of Active Session: 2
Number of Inactive Session: 0

The following sample output shows the active performance monitoring session:

Device# show ethernet cfm pm session active

Display of Active Session
--
EPM-ID SLA-ID Lvl/Type/ID/Cos/Dir Src-Mac-address Dst-Mac-address
--
Total number of Active Session: 2

Device# `show ethernet cfm pm session db 0`

<table>
<thead>
<tr>
<th>Session ID: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX Time FWD</td>
</tr>
<tr>
<td>Sec:nSec</td>
</tr>
<tr>
<td>234:526163572</td>
</tr>
<tr>
<td>245:306761904</td>
</tr>
<tr>
<td>235:528900628</td>
</tr>
<tr>
<td>246:309452848</td>
</tr>
<tr>
<td>236:528882716</td>
</tr>
<tr>
<td>247:309450224</td>
</tr>
<tr>
<td>237:526578788</td>
</tr>
<tr>
<td>248:307157936</td>
</tr>
<tr>
<td>238:527052156</td>
</tr>
<tr>
<td>249:307588016</td>
</tr>
<tr>
<td>239:526625044</td>
</tr>
<tr>
<td>250:307909188</td>
</tr>
<tr>
<td>240:528243204</td>
</tr>
<tr>
<td>251:308856880</td>
</tr>
</tbody>
</table>

Example: Sender MEP for a Single-Ended Ethernet Delay Operation

The following sample output shows the configuration, including default values, of the sender MEP for a single-ended IP SLAs Ethernet delay operation:

Router# `show ip sla configuration 10`

IP SLAs Infrastructure Engine-III
Entry number: 10
Owner:
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y.1731 Delay Operation
Frame Type: DMM
Domain: xxx
Vlan: yyy
Target Mpid: 101
Source Mpid: 100
CoS: 4
Max Delay: 5000
Request size (Padding portion): 64
Frame Interval: 1000
Clock: Not In Sync
Threshold (milliseconds): 5000
.
Example: Sender MEP for a Single-Ended Ethernet Frame Loss Operation

The following output shows the configuration, including default values, of the sender MEP in a basic single-ended IP SLAs Ethernet frame loss ratio operation with a start-time of now:

Router# show ip sla configuration 11

IP SLAs Infrastructure Engine-III
Entry number: 11
Owner:
Tag:
Operation timeout (milliseconds): 5000
Ethernet Y1731 Loss Operation
Frame Type: LMM
Domain: xxx
Vlan: 12
Target Mpid: 34
Source Mpid: 23
CoS: 4
Request size (Padding portion): 0
Frame Interval: 1000
Schedule:
Operation frequency (seconds): 60 (not considered if randomly scheduled)
Next Scheduled Start Time: Start Time already passed
Group Scheduled: FALSE
Randomly Scheduled: FALSE
Life (seconds): 3600
Entry Ageout (seconds): never
Recurring (Starting Everyday): FALSE
Status of entry (SNMP RowStatus): ActiveThreshold (milliseconds): 5000
Statistics Parameters
Aggregation Period: 900
Frame offset: 1
Distribution Delay Two-Way:
Number of Bins 10
Bin Boundaries: 5000,10000,15000,20000,25000,30000,35000,40000,45000,-1
Distribution Delay-Variation Two-Way:
Number of Bins 10
Bin Boundaries: 5000,10000,15000,20000,25000,30000,35000,40000,45000,-1
History
Number of intervals: 2
Additional References for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco IOS Carrier Ethernet commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IP SLAs commands</td>
<td>Cisco IOS IP SLAs Command Reference</td>
</tr>
<tr>
<td>Ethernet CFM</td>
<td>“Configuring Ethernet Connectivity Fault Management in a Service Provider Network” module of the Cisco IOS Carrier Ethernet Configuration Guide</td>
</tr>
<tr>
<td>Network Time Protocol (NTP)</td>
<td>“Configuring NTP” module of the Cisco IOS Network Management Configuration Guide</td>
</tr>
<tr>
<td>Proactive threshold monitoring for Cisco IOS IP SLAs</td>
<td>“Configuring Proactive Threshold Monitoring of IP SLAs Operations” module of the Cisco IOS IP SLAs Configuration Guide</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T Y.1731</td>
<td>OAM functions and mechanisms for Ethernet-based networks</td>
</tr>
<tr>
<td>No specific RFCs are supported by the features in this document.</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-IPSLA-ETHERNET-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• CISCO-RTTMON-MIB</td>
<td></td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) Operations

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP SLA Support for ETH-SLM (Ethernet Synthetic Loss Measurement in Y1731)</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>Y.1731 Performance Monitoring (PM) provides a standard Ethernet PM function that includes measurement of Ethernet frame delay, frame delay variation, frame loss, and frame throughput measurements specified by the ITU-T Y-1731 standard and interpreted by the Metro Ethernet Forum (MEF) standards group. In Cisco IOS XE Release 3.8S, support was added for Cisco ASR 900 Series.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Y1731 MIB Support through existing IPSLA MIBs</td>
<td>Cisco IOS XE Release 3.8S</td>
<td>Support was added for reporting threshold events and collecting performance statistics for IP SLAs Metro-Ethernet 3.0 (ITU-T Y.1731) operations using SNMP.</td>
</tr>
</tbody>
</table>
CHAPTER 22

VXLAN-MCLAG Active-Active High Availability Support

The VXLAN-MCLAG Active-Active High Availability Support feature implements dual-home device with pseudo Multichassis Link Aggregation Control Protocol (pMLACP) redundancy mode and layer 2 VxLAN on the Cisco ASR1000 Series Aggregation Services Routers.

• Finding Feature Information, on page 441
• Restrictions for VXLAN-MCLAG Active-Active High Availability Support, on page 441
• Information About VXLAN-MCLAG Active-Active High Availability Support, on page 442
• How to Configure VXLAN-MCLAG Active-Active High Availability Support, on page 442
• Configuration Examples for VXLAN-MCLAG Active-Active High Availability Support, on page 454
• Additional References for VXLAN-MCLAG Active-Active High Availability Support, on page 454
• Feature Information for VXLAN-MCLAG Active-Active High Availability Support, on page 461

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for VXLAN-MCLAG Active-Active High Availability Support

• The loopback interface configured for this feature cannot be used for another feature.
• The loopback interface of NVE interface must be shut down before configuring pMLACP, VxLAN and routing protocol.
• Bridge domain supports one VXLAN Network Identifier (VNI) Ethernet flow point (EFP) member only.
• Shutting the bridge domain affects status of the NVE interface, not the pseudo mLACP status.
Information About VXLAN-MCLAG Active-Active High Availability Support

Virtual Extensible LAN

Virtual Extensible LAN (VXLAN) is a network virtualization overlay technology that provides Layer 2 connectivity for workloads residing at noncontiguous points in the data center network. VXLAN enables flexibility by allowing workloads to be placed anywhere, along with the traffic separation required in a multitenant environment. VXLAN is an industry-standard protocol and uses underlay IP networks. It extends Layer 2 segments over a Layer 3 infrastructure to build Layer 2 overlay logical networks. It encapsulates Ethernet frames into IP User Data Protocol (UDP) headers and transports the encapsulated packets through the underlay network to the remote VXLAN tunnel endpoints (VTEPs) using the normal IP routing and forwarding mechanism.

Multichassis Link Aggregation Group

Multichassis Link Aggregation Group (MC-LAG) and Inter-chassis Communication Protocol (ICCP) enable a switch/router to use standard Ethernet Link Aggregation for device dual-homing, with active/standby redundancy. MC-LAG provides a mean to dual home a device (the dual homed device (DHD)) to two different peer devices (the Point of Attachment), allowing to have the benefits of node redundancy. Point of Attachment (PoA) nodes run Inter-chassis Communication Protocol (ICCP) to synchronize state & form a Redundancy Group (RG).

In VXLAN - MCLAG Active-Active High Availability support, both the PoA ports are placed in active/active mode with manual VLAN load balancing. It provides higher bandwidth utilization than Multichassis Link Aggregation Control Protocol (mLACP). It also allows maximum flexibility for the Provider Edge-Customer Edge (PE-CE) inter-operability for dual-homing redundancy and failover recovery. Active and standby PoA nodes are configured on the identical interfaces, that is, the same loopback IP address and interface as VTEP source interface, VLAN and VNI mapping, and so on.

How to Configure VXLAN-MCLAG Active-Active High Availability Support

Configuring Interchassis Redundancy Groups on PoA

To configure interchassis redundancy groups on PoA, perform the steps below.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `redundancy`
4. `interchassis group group-id`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 redundancy</td>
<td>Configures the redundancy group.</td>
</tr>
<tr>
<td>Example: Device(config)# redundancy</td>
<td></td>
</tr>
<tr>
<td>Step 4 interchassis group group-id</td>
<td>Configures interchassis group.</td>
</tr>
<tr>
<td>Example: Device(config-red)# interchassis group 2</td>
<td></td>
</tr>
<tr>
<td>Step 5 member ip peer ip address</td>
<td>Specifies IP address to be assigned to a remote peer dialing in to the interface.</td>
</tr>
<tr>
<td>Example: Device(config-r-ic)# member ip 172.168.40.24</td>
<td></td>
</tr>
<tr>
<td>Step 6 monitor peer [bfd</td>
<td>track]</td>
</tr>
<tr>
<td>Example: Device(config-r-ic)# monitor peer bfd</td>
<td></td>
</tr>
<tr>
<td>Step 7 mlacp node-id node id</td>
<td>Configures mLACP node ID.</td>
</tr>
<tr>
<td>Example: Device(config-r-ic)# mlacp node-id 2</td>
<td></td>
</tr>
<tr>
<td>Step 8 backbone interface backbone if</td>
<td>Configures a backbone interface for the redundancy group.</td>
</tr>
<tr>
<td>Example: Device(config-r-ic)# backbone interface Gi0/0/2</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Port Channel on PoA

To configure port channel on PoA, perform the steps below.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface Port-channel portchannelnumber`
4. `negotiation`
5. `lacp fast-switchover`
6. `mlacp interchassis group rgid`
7. `mlacp mode active-active`
8. `mlacp load-balance primary vlan vlan-id`
9. `mlacp load-balance secondary vlan vlan-id`
10. `service instance id ethernet`
11. `encapsulation dot1q`
12. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
<p>| | Example: | - Enter your password if prompted. |
| | <code>Device> enable</code> | |
| 2 | <code>configure terminal</code> | Enters global configuration mode. |
| | Example: | <code>Device# configure terminal</code> |
| 3 | <code>interface Port-channel portchannelnumber</code> | Configures the interface for port channel. |
| | Example: | <code>Device(config-if)# interface Port-channel 2</code> |
| 4 | <code>negotiation</code> | Configures auto negotiation mode. |
| | Example: | <code>Device(config-if)# negotiation</code> |
| 5 | <code>lacp fast-switchover</code> | Specifies LACP Port Channel interface. |
| | Example: | <code>Device(config-if)# lacp fast-switchover</code> |
| 6 | <code>mlacp interchassis group rgid</code> | Configures mLACP peer PoA RG ID. |
| | Example: | <code>Device(config-if)# mlacp interchassis group 2</code> |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td><code>mlacp mode active-active</code></td>
<td>Enables mLACP active-active POA redundancy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# mlacp mode active-active</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
</tr>
<tr>
<td><code>mlacp load-balance primary vlan vlan-id</code></td>
<td>Configures the list of primary VLANs that will be active and inactive on the given PoA.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# mlacp load-balance primary vlan 40</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
</tr>
<tr>
<td><code>mlacp load-balance secondary vlan vlan-id</code></td>
<td>Configures the list of secondary VLANs that will be active and inactive on the given PoA.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# mlacp load-balance secondary vlan 20</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td></td>
</tr>
<tr>
<td><code>service instance id ethernet</code></td>
<td>Configures service instance identifier.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if-srv)# service instance 20 ethernet</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td></td>
</tr>
<tr>
<td><code>encapsulation dot1q</code></td>
<td>Configures ethernet frame match criteria.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if-srv)# encapsulation dot1q 20</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td></td>
</tr>
<tr>
<td><code>end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Device(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Vxlan Unicast Core Configuration on POA

To configure Vxlan Unicast Core Configuration on POA, perform the steps below.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **bridge-domain id**
4. **member vni number**
5. **member Port-channel number service-instance id**
6. **exit**
7. **interface Loopback number**
8. **ip address**
9. **exit**
10. **interface nve**
11. **member vni number**
12. **ingress-replication IPV4 address**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
| | Example: | - Enter your password if prompted. |
| | Device> enable | |
| 2 | configure terminal| Enters global configuration mode. |
| | Example: | |
| | Device# configure terminal | |
| 3 | bridge-domain id | Configures the bridge domain ID. |
| | Example: | |
| | Device(config)# bridge-domain 20 | |
| 4 | member vni number | Configures member virtual network identifier (VNI). |
| | Example: | |
| | Device(config-bdomain)# member vni 7777 | |
| 5 | member Port-channel number service-instance id | Configures port channel and service instance. |
| | Example: | |
| | Device(config-bdomain)# member Port-channel1 service-instance 20 | |
| 6 | exit | Exits bridge domain mode and returns to global configuration mode. |
| | Example: | |
| | Device(config-bdomain)# exit | |
| 7 | interface Loopback number | Specifies a loopback interface. |
| | Example: | |
| | Device(config-if)# interface Loopback10 | |
| 8 | ip address | Configures IP address. |
| | Example: | |
| | Device(config-if)# ip address 77.1.1.1 255.255.255.255 | |
| 9 | exit | Exits interface configuration mode and returns to global configuration mode. |
| | Example: | |
| | Device(config-if)# exit | |
Configuring Vxlan Multicast Core Configuration on POA

To configure Vxlan Multicast Core Configuration on POA, perform the steps below.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bridge-domain id`
4. `member vni number`
5. `member Port-channel number service-instance id`
6. `exit`
7. `interface Loopback number`
8. `ip address`
9. `ip pim sparse-dense-mode`
10. `exit`
11. `interface nve`
12. `member vni number mcast-group address`
13. `source-interface Loopback`
14. `no shutdown`
15. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Example:
`Device> enable`
Enables privileged EXEC mode.

 - Enter your password if prompted. |
| **Step 2** | **configure terminal**
Example:
`Device# configure terminal`
Enters global configuration mode. |
| **Step 3** | **bridge-domain id**
Example:
`Device(config)# bridge-domain 20`
Configures the bridge domain ID. |
| **Step 4** | **member vni number**
Example:
`Device(config-bdomain)# member vni 7777`
Configures member virtual network identifier (VNI). |
| **Step 5** | **member Port-channel number service-instance id**
Example:
`Device(config-bdomain)# member Port-channel1 service-instance 20`
Configures port channel and service instance. |
| **Step 6** | **exit**
Example:
`Device(config-bdomain)# exit`
Exits bridge domain mode and returns to global configuration mode. |
| **Step 7** | **interface Loopback number**
Example:
`Device(config-if)# interface Loopback10`
Specifies a loopback interface. |
| **Step 8** | **ip address**
Example:
`Device(config-if)# ip address 77.1.1.1 255.255.255.255`
Configures IP address. |
| **Step 9** | **ip pim sparse-dense-mode**
Example:
Enables PIM to operate in sparse or dense mode. |
Configuring Dual-homed Device

To configure dual-homed device, perform the steps below:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface Port-channel number`
4. `switchport group-id`
5. `switchport trunk encapsulation dot1q`
6. `switchport trunk allowed vlan 20-50`
7. `switchport mode trunk`
8. `exit`
9. `interface GigabitEthernet3/1`
10. `switchport`
11. `switchport trunk encapsulation dot1q`
12. `switchport trunk allowed vlan 20-50`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface Port-channel number</td>
<td>Configures ethernet channel of interfaces.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config)# interface Port-channel1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>switchport group-id</td>
<td>Sets the interface as an Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>switchport trunk encapsulation dot1q</td>
<td>Defines the encapsulation format as IEEE 802.1Q (dot1q) for the specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-r-ic)# switchport trunk encapsulation dot1q</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>switchport trunk allowed vlan 20-50</td>
<td>Specifies that only certain VLANs are allowed on the specified trunk.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-r-ic)# switchport trunk allowed vlan 20-50</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>switchport mode trunk</td>
<td>Sets the interface as an Ethernet trunk port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-r-ic)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits interface mode and returns to global configuration mode</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-r-ic)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>interface GigabitEthernet3/1</td>
<td>Enters the interface configuration mode on the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device(config-if)# interface GigabitEthernet3/1</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>switchport</td>
<td>Configures the interface port.</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-if)# switchport</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>switchport trunk encapsulation dot1q</th>
<th>Defines the encapsulation format as IEEE 802.1Q (dot1q) for the specified interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# switchport trunk encapsulation dot1q</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>switchport trunk allowed vlan 20-50</th>
<th>Specifies that only certain VLANs are allowed on the specified trunk.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# switchport trunk allowed vlan 20-50</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>switchport mode trunk</th>
<th>Sets the interface as an Ethernet trunk port.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# switchport mode trunk</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>channel-group number mode</th>
<th>Configures the port in a channel group and sets the mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# channel-group 1 mode active</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>end</th>
<th>Exits interface configuration mode and returns to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Verifying VXLAN-MCLAG Active-Active High Availability Support

To verify, perform the steps below.

SUMMARY STEPS

1. show lacp internal
2. show nve interface nve1
3. show nve peers
4. show platform software ethernet fp ac bridge-domain binding
5. show bridge-domain 20
6. show lacp multi-chassis load-balance port-channel
7. show nve vni 11111 detail
8. show lacp multi load group

DETAILED STEPS

Step 1 show lacp internal
Verifying VXLAN-MCLAG Active-Active High Availability Support

Example:

Flags: S - Device is requesting Slow LACPDUs
 F - Device is requesting Fast LACPDUs
 A - Device is in Active mode P - Device is in Passive mode

Channel group 1
<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/0</td>
<td>SA</td>
<td>bndl</td>
<td>32768</td>
<td>0x1</td>
<td>0x1</td>
<td>0x1</td>
<td>0x3D</td>
</tr>
</tbody>
</table>

Channel group 2
<table>
<thead>
<tr>
<th>Port</th>
<th>Flags</th>
<th>State</th>
<th>Priority</th>
<th>Key</th>
<th>Key</th>
<th>Number</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/1</td>
<td>SA</td>
<td>susp</td>
<td>32768</td>
<td>0x2</td>
<td>0x2</td>
<td>0x2</td>
<td>0x7D</td>
</tr>
</tbody>
</table>

Step 2 show nve interface nve1

Example:

Interface: nve1, State: Admin Up, Oper Up Encapsulation: Vxlan
source-interface: Loopback10 {primary:77.1.1.1 vrf:0}

Step 3 show nve peers

Example:

Interface Peer-IP VNI Peer state
nve1 99.1.1.1 7777

Step 4 show platform software ethernet fp ac bridge-domain binding

Example:

Forwarding Manager Bridge Domain Bindings

<table>
<thead>
<tr>
<th>BD</th>
<th>Interface</th>
<th>EFP</th>
<th>DPIDB</th>
<th>SHG</th>
<th>STP</th>
<th>AOM id</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Port-channel1.EFP20</td>
<td>16908305</td>
<td>None</td>
<td>FRWD</td>
<td>182</td>
<td>(created)</td>
</tr>
<tr>
<td>20</td>
<td>nve1.VNI7777</td>
<td>16908307</td>
<td>None</td>
<td>FRWD</td>
<td>268</td>
<td>(created)</td>
</tr>
<tr>
<td>40</td>
<td>Port-channel1.EFP40</td>
<td>16908306</td>
<td>None</td>
<td>BLCK</td>
<td>258</td>
<td>(created)</td>
</tr>
<tr>
<td>40</td>
<td>nve2.VNI8888</td>
<td>16908308</td>
<td>None</td>
<td>FRWD</td>
<td>285</td>
<td>(created)</td>
</tr>
</tbody>
</table>

Step 5 show bridge-domain 20

Example:

FBridge-domain 20 (2 ports in all)
State: UP Mac learning: Enabled
Aging-Timer: 300 second(s)
Port-channel1 service instance 20
vni 7777
AED MAC address Policy Tag Age Pseudoport
0 0000.6177.0003 forward dynamic 300 nve1.VNI7777, VxLAN
 src: 77.1.1.1 dst: 99.1.1.1
0 0000.6177.0009 forward dynamic 300 nve1.VNI7777, VxLAN
 src: 77.1.1.1 dst: 99.1.1.1
0 0000.6177.0000 forward dynamic 300 nve1.VNI7777, VxLAN
 src: 77.1.1.1 dst: 99.1.1.1
0 0000.1577.0009 forward dynamic 300 Port-channel1.EFP20

Step 6 show lacp multi-chassis load-balance port-channel

Example:
Interface Port-Channel 1
 Local Configuration:
 P-mLACP Enabled: Yes
 Redundancy Group: 1
 Revertive Mode: Revertive
 Primary VLANs: 20
 Secondary VLANs: 40

 Local Interface State:
 Interface ID: 1
 Port State: Up
 Primary VLAN State: Active
 Secondary VLAN State: Standby

 Peer Interface State:
 Interface ID: 1
 Primary VLAN State: Active
 Secondary VLAN State: Standby

Step 7 show nve vni 11111 detail

Example:

 Interface VNI Multicast-group VNI state
 nve1 11111 N/A Up

 VNI Detailed statistics:
 Pkts In Bytes In Pkts Out Bytes Out
 1682112875 107655224000 1681321674 107604587136

Step 8 show lacp multi load group

Example:

Interchassis Redundancy Group 1

 RG State: Synchronized
 ICCP Version: 0
 Backbone Uplink Status: Connected

Local Configuration:

 Node-id: 0

Peer Information:

 State: Up
 Node-id: 1
 ICCP Version: 0

States: Active - ACT Standby - SBY
 Down - DN AdminDown - ADN
 Unknown - UN Reverting - REV

P-mLACP Interfaces

<table>
<thead>
<tr>
<th>Interface ID</th>
<th>Port State</th>
<th>Local VLAN State</th>
<th>Peer VLAN State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UP</td>
<td>ACT/SBY</td>
<td>ACT/SBY</td>
</tr>
</tbody>
</table>
Configuration Examples for VXLAN-MCLAG Active-Active High Availability Support

Example: Configuring VXLAN HA on Multicast Mode

The following example shows how to configure the VXLAN-MCLAG Active-Active High Availability Support feature on a multicast mode with two points of attachments (POA) connected to branch devices. The following is the configuration on the first POA—POA1.

```
ip multicast-routing distributed
ip pim bidir-enable
ip pim rp-address 4.4.4.4 bidir

redundancy
mode sso
interchassis group 1
monitor peer bfd
member ip 9.9.9.9
backbone interface GigabitEthernet0/1/0
mlacp system-priority 200
mlacp node-id 0

bridge-domain 20
member vni 7777
member Port-channel1 service-instance 20
!

bridge-domain 40
member vni 8888
member Port-channel1 service-instance 40
!
interface Loopback10
ip address 77.1.1.1 255.255.255.255
ip pim sparse-dense-mode
!
interface Loopback11
ip address 88.1.1.1 255.255.255.255
ip pim sparse-dense-mode
!
interface Port-channel1
no ip address
negotiation auto
lacp fast-switchover
mlacp interchassis group 1
mlacp mode active-active
mlacp load-balance primary vlan 40
mlacp load-balance secondary vlan 20
service instance 20 ethernet
  encapsulation dot1q 20
  !
  service instance 40 ethernet
  encapsulation dot1q 40
  !
interface nve1
no ip address
member vni 7777 mcast-group 225.1.1.1
```
source-interface Loopback10
!
interface nve2
 no ip address
 member vni 8888 mcast-group 226.1.1.1
 source-interface Loopback11
!
interface GigabitEthernet0/1/0
 ip address 192.168.20.1 255.255.255.0
 ip pim sparse-dense-mode
 negotiation auto
!
router ospf 10
 router-id 3.3.3.3
 network 0.0.0.0 255.255.255.255 area 10
!

The following is the configuration on the second POA—POA2.

ip multicast-routing distributed
ip pim bidir-enable
ip pim rp-address 4.4.4.4 bidir

redundancy
 mode sso
 interchassis group 1
 monitor peer bfd
 member ip 3.3.3.3
 backbone interface GigabitEthernet0/0/1
 mlacp system-priority 200
 mlacp node-id 1

bridge-domain 20
 member vni 7777
 member Port-channel1 service-instance 20
!

bridge-domain 40
 member vni 8888
 member Port-channel1 service-instance 40
!

interface Loopback10
 ip address 77.1.1.1 255.255.255.255
 ip pim sparse-dense-mode
!
interface Loopback11
 ip address 88.1.1.1 255.255.255.255
 ip pim sparse-dense-mode
!
interface Port-channel1
 no ip address
 negotiation auto
 no keepalive
 lacp fast-switchover
 mlacp interchassis group 1
 mlacp mode active-active
 mlacp load-balance primary vlan 20
 mlacp load-balance secondary vlan 40
 service instance 20 ethernet
 encapsulation dot1q 20
!
 service instance 40 ethernet
encapsulation dot1q 40

interface nve1
no ip address
member vni 7777 mcast-group 225.1.1.1
source-interface Loopback10

interface nve2
no ip address
member vni 8888 mcast-group 226.1.1.1
source-interface Loopback11

interface GigabitEthernet0/1/0
ip address 192.168.20.1 255.255.255.0
ip pim sparse-dense-mode
negotiation auto

interface GigabitEthernet0/0/1
ip address 192.168.4.1 255.255.255.0
ip pim sparse-dense-mode
negotiation auto
end

router ospf 10
router-id 9.9.9.9
network 0.0.0.0 255.255.255.255 area 10

The following is the configuration on the first branch—Branch1.

ip multicast-routing distributed
ip pim bidir-enable
ip pim rp-address 4.4.4.4 bidir

bridge-domain 20
member vni 7777
member GigabitEthernet0/0/0 service-instance 20

interface Loopback10
ip address 99.1.1.1 255.255.255.255
ip pim sparse-dense-mode

interface nve1
no ip address
member vni 7777 mcast-group 225.1.1.1
source-interface Loopback10

interface GigabitEthernet0/0/0
no ip address
negotiation auto
service instance 20 ethernet
encapsulation dot1q 20

interface GigabitEthernet0/0/0
ip address 192.168.3.1 255.255.255.0
ip pim sparse-dense-mode

router ospf 10
network 0.0.0.0 255.255.255.255 area 10
The following is the configuration on the second branch—Branch2.

```plaintext
ip multicast-routing distributed
ip pim bidir-enable
ip pim rp-address 4.4.4.4 bidir
!
bridge-domain 40
  member vni 8888
  member GigabitEthernet0/0/0 service-instance 40
!
interface Loopback11
  ip address 100.1.1.1 255.255.255.255
  ip pim sparse-dense-mode
!
interface nve1
  no ip address
  member vni 8888 mcast-group 226.1.1.1
  source-interface Loopback11
!
interface GigabitEthernet0/0/0
  no ip address
  negotiation auto
  service instance 40 ethernet
  encapsulation dot1q 40
!
interface GigabitEthernet0/0/1
  ip address 192.168.21.1 255.255.255.0
  ip pim sparse-dense-mode
  negotiation auto
!
router ospf 10
  network 0.0.0.0 255.255.255.255 area 10

Example: Configuring VXLAN HA on Unicast Mode

The following example shows how to configure the VXLAN-MCLAG Active-Active High Availability Support feature on an unicast mode with two points of attachments (POA) connected to branch devices. The following is the configuration on the first POA—POA1.

redundancy
  mode sso
  interchassis group 1
  monitor peer bfd
  member ip 9.9.9.9
  backbone interface GigabitEthernet0/1/0
  mlacp system-priority 200
  mlacp node-id 0
!
bridge-domain 20
  member vni 7777
  member Port-channel1 service-instance 20
!
bridge-domain 40
  member vni 8888
  member Port-channel1 service-instance 40
!
interface Loopback10
  ip address 77.1.1.1 255.255.255.255
```

Example: Configuring VXLAN HA on Unicast Mode

The following example shows how to configure the VXLAN-MCLAG Active-Active High Availability Support feature on an unicast mode with two points of attachments (POA) connected to branch devices. The following is the configuration on the first POA—POA1.
The following is the configuration on the second POA—POA2.

```
! interface Loopback11
 ip address 88.1.1.1 255.255.255.255

! interface Port-channel1
 no ip address
 negotiation auto
 lacp fast-switchover
 mlacp interchassis group 1
 mlacp mode active-active
 mlacp load-balance primary vlan 40
 mlacp load-balance secondary vlan 20
 service instance 20 ethernet
 encapsulation dot1q 20
 !
 service instance 40 ethernet
 encapsulation dot1q 40

! interface nve1
 no ip address
 member vni 7777
  ingress-replication 99.1.1.1
 !
 source-interface Loopback10

! interface nve2
 no ip address
 member vni 8888
  ingress-replication 100.1.1.1
 !
 source-interface Loopback11

router ospf 10
 router-id 3.3.3.3
 network 0.0.0.0 255.255.255.255 area 10

redundancy
 mode sso
 interchassis group 1
 monitor peer bfd
 member ip 3.3.3.3
 backbone interface GigabitEthernet0/0/1
 mlacp system-priority 200
 mlacp node-id 1

bridge-domain 20
 member vni 7777
 member Port-channel service-instance 20

bridge-domain 40
 member vni 8888
 member Port-channel service-instance 40

interface Loopback10
 ip address 77.1.1.1 255.255.255.255

interface Loopback11
 ip address 88.1.1.1 255.255.255.255
```
interface Port-channel1
 no ip address
 negotiation auto
 no keepalive
 lacp fast-switchover
 mlacp interchassis group 1
 mlacp mode active-active
 mlacp load-balance primary vlan 20
 mlacp load-balance secondary vlan 40
 service instance 20 ethernet
 encapsulation dot1q 20
 !
 service instance 40 ethernet
 encapsulation dot1q 40
 !
interface nve1
 no ip address
 member vni 7777
 ingress-replication 99.1.1.1
 !
 source-interface Loopback10
 !
interface nve2
 no ip address
 member vni 8888
 ingress-replication 100.1.1.1
 !
 source-interface Loopback11
 !
router ospf 10
 router-id 9.9.9.9
 network 0.0.0.0 255.255.255.255 area 10
 !

The following is the configuration on the first branch—Branch1.

bridge-domain 20
 member vni 7777
 member GigabitEthernet0/0/0 service-instance 20
 !
interface Loopback10
 ip address 99.1.1.1 255.255.255.255
 !
interface nve1
 no ip address
 member vni 7777
 ingress-replication 77.1.1.1
 source-interface Loopback10
 !
interface GigabitEthernet0/0/0
 no ip address
 negotiation auto
 service instance 20 ethernet
 encapsulation dot1q 20
 !
 router ospf 10
 network 0.0.0.0 255.255.255.255 area 10
 !

The following is the configuration on the second branch—Branch2.
bridge-domain 40
member vni 8888
member GigabitEthernet0/0/0 service-instance 40
!
interface Loopback11
 ip address 100.1.1.1 255.255.255.255
!
interface nve1
 no ip address
 member vni 8888
 ingress-replication 88.1.1.1
 source-interface Loopback11
!
interface GigabitEthernet0/0/0
 no ip address
 negotiation auto
 service instance 40 ethernet
 encapsulation dot1q 40
!
router ospf 10
 network 0.0.0.0 255.255.255.255 area 10

Additional References for VXLAN-MCLAG Active-Active High Availability Support

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Carrier Ethernet commands</td>
<td>Cisco IOS Carrier Ethernet Command Reference</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td></td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Feature Information for VXLAN-MCLAG Active-Active High Availability Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 32: Feature Information for VXLAN-MCLAG Active-Active High Availability Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| VXLAN-MCLAG Active-Active High Availability Support | Cisco IOS XE 3.16S | The VXLAN-MCLAG Active-Active High Availability Support feature implements dual-home device with pseudo Multichassis Link Aggregation Control Protocol (pMLACP) redundancy mode and layer 2 VXLAN on the Cisco ASR 1000 Series Aggregation Services Routers.

The following commands were introduced by this feature: show lacp internal, show nve interface nve1, show nve peers, show platform software ethernet fp ac bridge-domain binding, show bridge-domain 20, show lacp multi-chassis load-balance port-channel, show nve vni 11111 detail, show lacp multi load group |
VxLAN Support

This module contains information about VxLAN (Virtual eXtensible Local Area Network) Layer 2 gateway feature support on the Cisco ASR 1000 Series Routers. VxLAN is a technology that provides a Layer 2 overlay network, allowing for network isolation. The standard 802.1q VLAN implementation limits the number of tags to 4096. However, cloud service providers may want to operate more than 4096 virtual networks. VxLAN uses a 24-bit network ID, which allows for a much larger number of individual virtual networks to be operated.

- Finding Feature Information, on page 463
- Prerequisites for VxLAN Support, on page 463
- Information About VxLAN Support, on page 464
- Limitations of VxLAN Support, on page 465
- New Scale Number after Enhancements, on page 465
- Configuring VxLAN Layer 2 Gateway with Multicast, on page 465
- Configuring VxLAN Layer 2 Gateway with Unicast, on page 470
- Feature Information for VxLAN Support, on page 470
- Technical Assistance, on page 471

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for VxLAN Support

The following are the prerequisites to configuring the Cisco ASR 1000 Routers as a VxLAN Layer 2 gateway:

1. Configure the loopback interface.
2. Configure the IP unicast reachability to remote VTEP's.
For more information, see the IP Multicast: PIM Configuration Guide, Cisco IOS XE Release 3S.

Information About VxLAN Support

This feature enables the Cisco ASR 1000 Series Routers to act as a Layer 2 VxLAN gateway to provide support to bridge traffic across VxLAN segments in a hypervisor and on VLANs on physical servers. The operation of a VxLAN Layer 2 gateway is based on the data plane MAC address learning and flooding of multidestination traffic (such as unknown unicast, multicast, or broadcast frames) using IP multicast.

Acting as a VxLAN Layer 2 gateway, the Cisco ASR 1000 Routers can send and receive packets on multiple VxLAN networks, and provide connectivity between the hosts in a VLAN network and the virtual machines operating on a VxLAN network.

A VXLAN supports different modes for flood traffic:

- Multicast Mode—A VXLAN uses an IP multicast network to send broadcast, multicast, and unknown unicast flood frames. Each multicast mode VXLAN has an assigned multicast group IP address. When a new VM joins a host in a multicast mode VXLAN, the Virtual Tunnel Endpoint (VTEP) joins the assigned multicast group IP address by sending IGMP join messages. Flood traffic, broadcast, multicast and unknown unicast from the VM is encapsulated and sent using the assigned multicast group IP address as the destination IP address. Packets sent to known unicast MAC addresses are encapsulated and sent directly to the destination server Virtual Tunnel Endpoint (VTEP) IP addresses.

- Unicast-Only Mode—A VXLAN uses each VEM's single unicast IP address as the destination IP address to send broadcast, multicast, and unknown unicast flood frames of the designated VTEP on each VEM that has at least one VM in the corresponding VXLAN. When a new VM joins the host in a unicast-mode VXLAN, a designated VTEP is selected for receiving flood traffic on that host. This designated VTEP is communicated to all other hosts through the Virtual Supervisor Module (VSM). Flood traffic (broadcast, multicast, and unknown unicast) is replicated on each VEM's designated VTEP in that VXLAN by encapsulating it with a VXLAN header. Packets are sent only to VEMs with a VM in that VxLAN. Packets that have a unicast MAC address are encapsulated and sent directly to the destination server's VTEP IP address.

- MAC Distribution Mode (supported only in unicast mode)—In this mode, unknown unicast flooding in the network is eliminated. The VSM learns all the MAC addresses from the VEMs in all the VXLANs and distributes those MAC addresses with VTEP IP mappings to other VEMs. Therefore, no unknown unicast MAC address exists in the network when the VMs on the VEMs are communicating and controlled by the same VSM.

The VxLAN Layer 2 gateway performs the following functions:

- Provides support to bridge traffic between a host in a VLAN domain and VMs behind a virtual switch (vSwitch) in a VxLAN domain. The VLAN and the virtual network identifier (VNI) on the VxLAN should be configured as member ports in the same bridge domain.

- Implements the Virtual Tunnel Endpoint (VTEP) function, which encapsulates the Layer 2 packet on the IP/UDP tunnel with the VxLAN header (VNI) information before sending it to a multicast group or particular virtual switch on the VxLAN domain.

- The VTEP function removes the VxLAN header, identifies the bridge domain under which the VNI is configured and then bridges the inner L2 packet to the VLAN side. The bridge function also learns the remote MAC address (the VM's MAC address behind the virtual switch).

- The Layer 2 gateway carries the inner payload of non-IP (Layer 2 traffic), IPv4, and IPv6 traffic over the VxLAN VNI member.

- Multiple ingress replication peers can be configured for every VNI up to 32 nodes.
Limitations of VxLAN Support

1. Platforms that support a new scale number (8192 or 16000) require an 8G RP memory. Scale number for RP memory that is less than 8G is unchanged.
2. Scale number on platform RP+ESP5 and ASR1002F is unchanged.
3. VxLAN is not supported on ISR4000 series platforms before Cisco IOS XE Everest 16.5.1.
4. The maximum NVE interface number is unchanged on all platforms.
5. The NVE source is supported for lookback interface before Cisco IOS XE Denali 16.3. After Cisco IOS XE Denali 16.3, it can support physical interfaces as well.
6. The scale enhancement is applicable only for the VxLAN layer 2 and layer 3 gateway feature. Other bridge-domain related features are not impacted.
7. RP switchover for VxLAN is not supported on these platforms before Cisco IOS XE Denali 16.3.
8. Only one VNI ID on every bridge-domain is supported.

New Scale Number after Enhancements

The following table lists new VxLAN scale numbers on different platforms after enhancements. All platforms that support a new scale number (8192 or 16000) require an 8G RP memory.

<table>
<thead>
<tr>
<th>Platform</th>
<th>MAX BD per system</th>
<th>MAX BDI interface per system</th>
<th>MAX VNI per system</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP+ESP200</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>RP+ESP100</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>RP+ESP40</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>RP+ESP20</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>RP+ESP10</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>ASR1002-X</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>ASR1001-X</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>ASR 1001</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>CSR1000v</td>
<td>8192</td>
<td>8192</td>
<td>8192</td>
</tr>
</tbody>
</table>

Configuring VxLAN Layer 2 Gateway with Multicast

- Configuring the VxLAN UDP Destination Port (Optional), on page 466
- Creating the Network Virtualization Endpoint (NVE) Interface, on page 466
- Creating the Access Ethernet Flow Point (EFP), on page 467
- Mapping the VLAN to the Bridge Domain, on page 468
Configuring the VxLAN UDP Destination Port (Optional)

The default VxLAN UDP destination is 4789. If you want to change the VxLAN UDP destination port value, you must change it before configuring the network virtualization endpoint (NVE) interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vxlan udp port number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>router> enable</td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** | Enters global configuration mode. |
| **Example:** | router# configure terminal |

| **Step 3** | Configures the VxLAN UDP destination port number. The default value is 4789. |
| **Example:** | Router(config)# vxlan udp port 1000 |

Creating the Network Virtualization Endpoint (NVE) Interface

You create the network virtualization endpoint (NVE) interface and then assign member virtual network identifiers (VNIs) to it. The mapping between the VNI range and the multicast group range is either one-to-one or many-to-one.

SUMMARY STEPS

1. `interface nve number`
2. `source-interface loopback number`
3. `member vni {range | startnumber-endnumber} multicast-group startip-address endip-address`
4. `member vni range`
5. `ingress-replication Unicast IP Addresses`
6. `no shutdown`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 interface nve number</td>
<td>Creates a network virtualization endpoint (NVE) interface and enters NVE interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config)# interface nve 1</td>
</tr>
<tr>
<td>Step 2 source-interface loopback number</td>
<td>Assigns the previously-created loopback interface to the NVE interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config-if)# source-interface loopback 0</td>
</tr>
<tr>
<td>Step 3 member vni {range</td>
<td>Creates a VNI member or a range of VNI members. Repeat this step for each VNI to be added to the NVE interface. The valid values for the VNI number are from 4096 to 16777215.</td>
</tr>
<tr>
<td>startnumber-endnumber}</td>
<td>.multicast-group startip-address endip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config-if)# member vni 7115 multicast-group 225.1.1.1</td>
</tr>
<tr>
<td>Step 4 member vni range</td>
<td>Creates a VNI member or a range of VNI members. Repeat this step for each VNI to be added to the NVE interface. The valid values for the VNI number are from 4096 to 16777215.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config-if)# member vni 7115</td>
</tr>
<tr>
<td>Step 5 ingress-replication Unicast IP Addresses</td>
<td>Sets up ingress-replication unicast addresses which enables the headend replication functionality.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config-if-nve-vni)# ingress-replication 225.1.1.1 ingress-replication 225.1.1.2</td>
</tr>
<tr>
<td>Step 6 no shutdown</td>
<td>Enables the NVE interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>.Router(config-if)# no shutdown</td>
</tr>
</tbody>
</table>

Creating the Access Ethernet Flow Point (EFP)

After the member VNI is created, you must create the access Ethernet Flow Point (EFP) for the VLAN interface.

SUMMARY STEPS

1. interface GigabitEthernet number
2. service instance id ethernet
3. encapsulation dot1q vlan-ID
4. rewrite ingress tag pop 1 symmetric

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>interface GigabitEthernet number</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet1</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>service instance id ethernet</code></td>
<td>Configures an Ethernet service instance on the overlay interface being configured and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service instance 20 ethernet</td>
<td>• The service instance identifier range is from 1 to 8000.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>encapsulation dot1q vlan-ID</code></td>
<td>Defines the VLAN encapsulation format as IEEE 802.1Q and specifies the VLAN identifier.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# encapsulation dot1q 100</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>rewrite ingress tag pop 1 symmetric</code></td>
<td>Removes the VLAN tag in the Layer 2 traffic before switching to the outgoing VxLAN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# rewrite ingress tag pop 1 symmetric</td>
<td>Note: This command is required to remove the VLAN tag before sending the VLAN traffic to VxLAN and adding the VLAN tag in the reverse direction.</td>
</tr>
</tbody>
</table>

Mapping the VLAN to the Bridge Domain

You must map the VLAN created in the previous procedure to the bridge domain.

SUMMARY STEPS

1. `bridge-domain bridge-id`
2. `member interface service-instance id`
3. `member vni vni-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>bridge-domain bridge-id</code></td>
<td>Creates a bridge domain and enters bridge domain configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# bridge-domain 10</td>
<td>The valid range for bridge-id is 1-4096.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>member interface service-instance id</code></td>
<td>Binds the bridge domain to the service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-bdomain)# member gigabitEthernet 1 service-instance 1</td>
<td>Maps the VNI to the bridge domain.</td>
</tr>
</tbody>
</table>

Step 3

member vni vni-id

Example:

Router(config-bdomain)# member vni 1010

What to do next

The following example displays the NVE VNIs configured on the router:

```
Router# show nve vni
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>VNI</th>
<th>mcast</th>
<th>VNI state</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>5000</td>
<td>230.1.1.1</td>
<td>UP</td>
</tr>
</tbody>
</table>

The following example displays the NVE VNIs assigned to NVE interface 1:

```
Router(config)# show nve vni interface nve1
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>VNI</th>
<th>mcast</th>
<th>VNI state</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>5000</td>
<td>230.1.1.1</td>
<td>UP</td>
</tr>
</tbody>
</table>

The following example shows the status of NVE interface 1:

```
Router(config)# show nve interface nve1
```

Interface: nve1, State: Admin Up, Oper Up Encapsulation: Vxlan source-interface: Loopback0 (primary:11.11.11.vrf:0)

The following example shows a detailed display for NVE interface 1:

```
Router(config)# show nve interface nve1 detail
```

Interface: nve1, State: Admin Up, Oper Up Encapsulation: Vxlan source-interface: Loopback0 (primary:11.11.11.vrf:0)

Pkts In | Bytes In | Pkts Out | Bytes Out
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

The following example shows the NVE peers configured on the router:

```
Router(config)# show nve peers
```

<table>
<thead>
<tr>
<th>Interface Peer-IP</th>
<th>VNI</th>
<th>Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>nve1</td>
<td>230.1.1.1</td>
<td>5000 UP L2DP 2 N/A</td>
</tr>
<tr>
<td>nve2</td>
<td>1.1.1.1</td>
<td>2030 20h</td>
</tr>
</tbody>
</table>

The following example shows the bridge domain configuration with the entry in bold displaying the VM’s MAC address that was learned on the VxLAN VNI:

```
Router# show bridge-domain 1000
```

Bridge-domain 1000 (3 ports in all)

State: UP
Mac learning: Enabled
Aging-Timer: 300 second(s)
GigabitEthernet1 service instance 1000
GigabitEthernet3 service instance 1000
vni 7639335
MAC address Policy Tag Age Pseudoport
Configuring VxLAN Layer 2 Gateway with Unicast

The following example shows VxLAN with unicast ingress-replication which is a point-to-point (unicast) configuration.

interface Loopback0
ip address 11.11.11.11 255.255.255.255
!
interface nve1
no ip address
member vni 5001
 ingress-replication 22.22.22.22 < Remote L2 GW loopback ip>
!
source-interface Loopback0
!
bridge-domain 1
member vni 5001
member GigabitEthernet0/2/0 service-instance 1
interface GigabitEthernet0/2/0
 service instance 1 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric

The following example shows VxLAN with unicast multiple ingress-replication peers which is a point-to-point (unicast) configuration.

interface Loopback0
ip address 11.11.11.11 255.255.255.255
!
interface nve1
no ip address
member vni 5001
 ingress-replication 22.22.22.22 < Remote L2 GW loopback ip>
 ingress-replication 22.22.22.23 < Remote L2 GW loopback ip>
!
source-interface Loopback0
!
bridge-domain 1
member vni 5001
member GigabitEthernet0/2/0 service-instance 1
interface GigabitEthernet0/2/0
 service instance 1 ethernet
 encapsulation dot1q 100
 rewrite ingress tag pop 1 symmetric

Feature Information for VxLAN Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 33: Feature Information for VxLAN Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VxLAN Support</td>
<td>Cisco IOS XE Release 3.13.1S</td>
<td>This feature was introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS XE Fuji 16.9</td>
<td>This feature was introduced on the following:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco ISR 1000 Series Integrated Services Routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cisco ISR 4000 Series Integrated Services Routers.</td>
</tr>
<tr>
<td>Protocol Independent Multicast-Sparse Mode (PIM-SM) Support</td>
<td>Cisco IOS XE Release 3.17S</td>
<td>This feature was introduced on the Cisco ASR 1000 Series Routers. No commands were introduced or modified for this feature.</td>
</tr>
<tr>
<td>Support for multiple ingress replication peers</td>
<td>Cisco IOS XE Everest 16.5.1b</td>
<td>The VXLAN feature was modified to support multiple ingress replication peers on the Cisco ASR 1000 Series Routers. The \texttt{ingress-replication} command was modified to support multiple replication peers for every VNI up to 32 nodes.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

VxLAN (Virtual eXtensible Local Area Network) GPE (Generic Protocol Extension) is intended to extend the existing VxLAN protocol to provide protocol typing, OAM, and versioning capabilities.

- Restrictions for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel, on page 473
- Information About VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel, on page 473
- How to Configure VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel, on page 475
- Configuration Examples for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel, on page 476
- Additional References for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel, on page 477

Restrictions for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

- VxLAN GPE tunnel and VxLAN dummy-L2 tunnel do not support IS-IS.
- Layer2 traffic is not supported.
- IPv6 for underlay encapsulation is not supported.

Information About VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

Overview

Virtual eXtensible Local Area Network (VxLAN) defines an encapsulation format that encapsulates Ethernet frames in an outer UDP/IP transport. As data centers evolve, the need to carry other protocols encapsulated in an IP packet is required, and the need to provide increased visibility and diagnostic capabilities within the overlay. The VxLAN header does not specify the protocol being encapsulated and therefore is currently limited to encapsulating only Ethernet frame payload, nor does it provide the ability to define Operations, Administration, and Maintenance (OAM) protocols. In addition, new transports need not use transport layer port numbers to identify tunnel payload, rather it encourages encapsulations to use their own identifiers for this purpose. VxLAN GPE (Generic Protocol Extension) is intended to extend the existing VxLAN protocol to provide protocol typing, OAM and versioning capabilities.
The following are the main features of VxLAN GPE Tunnel:

- Encapsulates layer-3 packets directly into a VxLAN tunnel without any layer-2 bridge-domain requirements or dependencies.
- Provides an equal-cost multi-path (ECMP) entropy benefits on the underlay (core) network by calculating the outer-source UDP port based on the inner IP protocol, source or destination IP addresses and L4 port numbers (5-tuple).
- Leverages VxLAN-GPE draft-IETF, which provides direct upper layer protocols options such as, IPv4, IPv6, Ethernet (MAC), Network-Service-Header (NSH) without a layer-2 header.
- Overlay encapsulation is supported for both IPv4 and IPv6, whereas underlay encapsulation is supported only for IPv4.
- 8K Tunnel interfaces with VxLAN GPE or VxLAN dummy-L2 mode are supported.
- Both VxLAN-GPE and VxLAN Dummy-2 are point to point tunnels.
- Provides facility to manually configure source port range for GPE tunnel and a Dummy-L2 tunnel.
- 3-tuple hash is enabled to generate UDP source port for both VxLAN GPE and VxLAN Dummy-L2 tunnels for all the packets.
- UDP source port hash uses 3 tuples for fragments, and 5 tuples for non-fragments.

Feature Information for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 34: Feature Information for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel</td>
<td>Cisco IOS XE Denali 16.3.1</td>
<td>The following commands were introduced by this feature: <code>vxlan gpe-tunnel-udp-port xxx</code>.</td>
</tr>
</tbody>
</table>
| Manually configure the source port range for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel | Cisco IOS XE Everest 16.5.1b | The following commands were introduced by this feature:
- `vxlan source-port-range udp`
- `vxlan source-port-range gpe-tunnel-udp`
- `vxlan source-port-range dummy-l2-tunnel-udp` |
Feature Information

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft - VxLAN GPE Tunnel</td>
<td>Cisco IOS XE</td>
<td>Overlay encapsulation is supported for both IPv4 and IPv6, whereas underlay</td>
</tr>
<tr>
<td>IPv6 Support</td>
<td>Fuji 16.7.1</td>
<td>encapsulation is supported only for IPv4.</td>
</tr>
<tr>
<td>VxLAN 8K GPE Tunnel Support</td>
<td></td>
<td>8K Tunnel interfaces with VxLAN GPE or VxLAN dummy-L2 mode are supported.</td>
</tr>
<tr>
<td>VXLAN Fragment UDP Source Port</td>
<td>Cisco IOS XE</td>
<td>Global tunnel CLIs are added to enable 3-tuple hash to generate UDP source port for</td>
</tr>
<tr>
<td></td>
<td>16.8.1</td>
<td>both VxLAN-GPE and VxLAN Dummy-L2 tunnels.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Support both global and under interface tunnel.</td>
</tr>
</tbody>
</table>

How to Configure VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

Configuring VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

1. Configure Vxlan GPE Tunnel on VTEP1.
   ```
   interface Tunnel1
   ip address 192.168.1.1 255.255.255.0
   tunnel source GigabitEthernet2
   tunnel mode vxlan-gpe ipv4
   tunnel destination 20.1.1.17
   tunnel vxlan vni 123456
   ```

2. Configure Vxlan GPE Tunnel on VTEP2.
   ```
   interface Tunnel1
   ip address 192.168.1.2 255.255.255.0
   tunnel source GigabitEthernet2
   tunnel mode vxlan-gpe ipv4
   tunnel destination 20.1.1.16
   tunnel vxlan vni 123456
   ```

   ```
   interface Tunnel0
   ip address 192.168.2.3 255.255.255.0
   tunnel source GigabitEthernet2
   tunnel mode vxlan ipv4 default-mac
   tunnel destination 20.1.1.17
   tunnel vxlan vni 123456
   ```

   ```
   interface Tunnel1
   ip address 192.168.2.1 255.255.255.0
   tunnel source GigabitEthernet2
   tunnel mode vxlan ipv4 default-mac
   tunnel destination 20.1.1.16
   tunnel vxlan vni 123456
   ```
 (config)#vxlan dummy-l2-tunnel-udp-port 4789

6. (Optional) Change UDP dst port for Vxlan GPE Tunnel. Default UDP port of GPE Tunnel is 4790.
 (config)#vxlan gpe-tunnel-udp-port 4790

Verifying VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

```
##show platform software vxlan fp active udp-port
VXLAN UDP Port: 6000
VXLAN GPE Tunnel UDP Port: 4000
VXLAN Dummy L2 Tunnel UDP Port: 6000
VXLAN UDP Source Port Range: 1025 - 65535
VXLAN GPE Tunnel UDP Source Port Range: 1025 - 65535
VXLAN Dummy L2 Tunnel UDP Source Port Range: 1025 - 65535
VXLAN GPE Tunnel UDP Source Port Hash: 3 tuples
VXLAN Dummy L2 Tunnel UDP Source Port Hash: 3 tuples
```

Perform the following steps to add new tunnel mode:
```
#interface tunnel0
   tunnel mode vxlan ipv4 default-mac | xxxx.xxxx.xxxx xxxx.xxxx.xxxx

#interface tunnel1
   tunnel mode vxlan-gpe ipv4
```

Perform the following steps to add VxLAN VNI in tunnel:
```
#interface tunnel0
   tunnel vxlan vni xxxx
```

Perform the following steps to add VxLAN source port hash in tunnel:
```
#interface tunnel0
   vxlan source-port-hash 3-tuple
   vxlan source-port-hash 3-tuple-for-fragments
```

Configuration Examples for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

Example: VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

Example: VxLAN GPE Tunnel
```
#interface Tunnel0
   ip address 192.168.2.1 255.255.255.0
   ipv6 address 2001::1/64
   tunnel source GigabitEthernet2
   tunnel mode vxlan ipv4 default-mac
```
```plaintext
#interface Tunnel1
ip address 192.168.1.2 255.255.255.0
ipv6 address 2002::2/64
tunnel source GigabitEthernet2
tunnel mode vxlan-gpe ipv4
tunnel destination 20.1.1.16
tunnel vxlan vni 123456

#sh pl soft vxlan f0 udp-port
VXLAN UDP Port: 4789
VXLAN GPE Tunnel UDP Port: 4790
VXLAN Dummy L2 Tunnel UDP Port: 4789
VXLAN UDP Source Port Range: 600 - 6000
VXLAN GPE Tunnel UDP Source Port Range: 400 - 4000
VXLAN Dummy L2 Tunnel UDP Source Port Range: 1025 - 65535
VXLAN GPE Tunnel UDP Source Port Hash: 5 tuples
VXLAN Dummy L2 Tunnel UDP Source Port Hash: 5 tuples
```

Additional References for VxLAN GPE Tunnel and VxLAN Dummy-L2 Tunnel

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-nvo3-vxlan-gpe-02.txt</td>
<td>Generic Protocol Extension for VXLAN</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
This chapter provides information on Layer 3 Data-Center-Interconnect (DCI) VXLAN EVPN Support.

- Finding Feature Information, on page 479
- Restrictions for EVPN VxLAN L3, on page 479
- Information About EVPN VxLAN L3, on page 480
- How to Configure EVPN VxLAN L3, on page 482
- Importing Between EVPN and VRF/VPN, on page 485
- Verifying EVPN VxLAN L3, on page 486
- Configuring EVPN: Basic Configuration, on page 487
- Additional References for EVPN VxLAN L3, on page 496
- Feature Information for EVPN VxLAN L3, on page 497

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for EVPN VxLAN L3

- VNI range CLI for L3VNI is not supported.
- Egress traffic stops, if local VNI is down.
- L3 VNI and L2 VNI co-existence in the same bridge domain as L3 VNI is not supported.
- MAC learning is not done with L3VNI via control plane learning.
- IPV6 overlay and underlay are not supported.
Information About EVPN VxLAN L3

Data Center Interconnect VXLAN Layer 3 Gateway

The Cisco device can serve as a Data Center Interconnect (DCI) L3 Gateway to provide IP connectivity between multi-tenant remote Data Center sites. The multi-tenant Data Centers use VxLAN encapsulation to carry separate tenant IP traffic. The VXLAN-enabled Data Center sites use MP-BGP EVPN control plane for distributing both Layer-2 and Layer-3 forwarding information within the site. RFC 5512 and draft-ietf-bess-evpn-inter-subnet-forwarding-00 define how MP-BGP Network Layer Reachability Information (NLRI) carries VxLAN encapsulation as well as L2/L3 forwarding information details to provide an integrated routing and bridging solution within the Data Center site.

Route Targets

For each VRF on the DCI router, there are two sets of manually configured import and export route-targets. One set of import and export route-targets is associated with the Data Center BGP neighbor that uses EVPN address-family to exchange L3 information; the other set of import and export route-targets is associated with the L3VPN BGP neighbor that use VPNv4 unicast address-family to exchange L3 information. This separation of route targets (RTs) enables the two sets of RTs to be independently configured. The DCI router effectively stitches the two set of RTs. The RTs associated with the EVPN BGP neighbor are labelled as stitching RTs. The RTs associated with the L3VPN BGP neighbor are normal RTs.

A new keyword is added to the existing route-target configuration to specify the route targets to be used when doing EVPN-VXLAN related processing. The base (existing) route target configuration does not affect EVPN-VXLAN related processing. You can have the same RT values for both base and VxLAN routes.

Local VPNv4 Routes Advertisement

On the DCI router, the locally sourced VPNv4 routes can be advertised to the BGP EVPN neighbors with the normal route targets (RTs) configured for the VRF or the stitching RTs associated with the BGP EVPN neighbors. By default, these routes are advertised with the normal route targets.

Note

You cannot configure the advertise command for VPNv4 or VPNv6 neighbors. RTs can be applied only to the sourced routes and routes learned from VRF neighbors.

Data Center VXLAN with Support for MP-BGP

The Data Center VXLAN uses MP-BGP for control-plane learning of end-host Layer 2 and Layer 3 reachability information. The DCI router is configured with a VXLAN Tunnel EndPoint (VTEP). You also need to run the host-reachability protocol BGP command to specify that control-plane learning within Data center site is through BGP routing protocol.

The DCI Gateway router and the EVPN BGP neighbor (Data Center BGP neighbor) exchange BGP EVPN NLRIs of route type 5 that carry L3 routing information and associated VXLAN encapsulation information.
EVPN Route Targets

A new keyword is added to the existing route-target configuration to specify the route targets to be used when doing EVPN-VXLAN related processing. The base (existing) route target configuration does not affect EVPN-VXLAN related processing. You can have the same RT values for both base and vxlan routes.

MAC/IP Advertisement Route and IP Prefix Route is supported. The l2vpn evpn address-family can be configured and neighbors can exchange EVPN NLRI. The l2vpn-evpn-prefix-advertisement is supported fully and for the non-MAC portions only the NLRI is supported. The IP Prefix NLRI can carry IPv4 Prefix or IPv6 Prefix. The NLRI length determines whether it has IPv4 Prefix or IPv6 Prefix.

NLRI Format:

```
[Type][Len][RD][ESI][ETag][IP Addr Mask][IP Addr][GW IP Addr][Label]
```

Key:

```
[Type][ETag][IP Addr Len][IP Addr]
```

When BGP attribute, encapsulation type EXTCOMM value of 0x8 (VxLAN) is present, then Label carries VNI (VXLAN ID).

EVPN RT5 and RT2 that contain a RT matching an import “stitching RT” specified in a vrf configuration is accepted by the router and imported into the corresponding BGP L3VPN vrf. The resulting L3VPN prefix retains the same route target. L3VPN routes that are imported into EVPN via “advertise l2vpn evpn” contains route targets specified by that vrf’s export “stitching RT”. Any original route targets is removed.

Bridge Domain Interface

Bridge Domain Interface (BDI) is used for Inter-VLAN routing for EVC. It supports ping from local BDI interface to peer BDI/BVI/SVI. ARP is not used to resolve adjacency. BGP is asked to advertise the BDI IP address in EVPN route and use RMAC as an adjacency.

Downstream VNI

A downstream VNI is assigned at the downstream BGP peer. The BGP peer sends VNI as part of EVPN route type 2 or 5, so that it can use the VNI to send EVPN traffic to peer. This VNI is called as egress VNI; this egress VNI is used to send EVPN traffic to peer on data path. BGP also sends the local VNI to peer as part of EVPN route type 2 or 5 and it is expected from the peer to send EVPN traffic with the VNI, so that it can route the PKT to right VRF. This VNI is called as ingress VNI.

For the local VNI, VNI number range is 4k to 16m. For the egress VNI, valid VNI number range can be any valid VNI number, from 1-16m.

Router MAC

EVPN introduces a Router’s MAC extended community to exchange Router’s MAC between EVPN peer. BGP send BDI’s MAC address to EVPN Peer as its RMAC. By default, all the BDI interface share the same MAC address, so all EVPN VRF will send the same RMAC to EVPN peer by default. It is flexible to configure MAC address of BDI interface. So, it is possible that different EVPN VRF may send different RMAC to EVPN peer.
VRF Lite

VRF-lite (VPN routing/forwarding) allows a service provider to support two or more VPNs with overlapping IP addresses. VRF-lite is achieved by configuring sub-interfaces (VLANs) on a physical interface and by putting each sub-interface in a VRF.

EVPN Route Type 2 - MAC Advertisement Route

MAC Advertisement Route can be used to carry only MAC Address or MAC Address and IP Address (/32 for IPv4 or /128 for IPv6).

NLRI Format:

```
[Type][Len][RD][ESI][ETag][MAC Addr Mask][MAC Addr][IP Addr Len][IP Addr] [Label1] [Label2]
```

Key:

```
[Type][ETag][MAC Addr Len][MAC Addr][IP Addr Len][IP Addr]
[Type][ETag][MAC Addr Len][MAC Addr][IP Addr Len]
```

Label1 is associated with MAC Address and Label2 is associated with IP Address. When BGP attribute, encapsulation type EXTCOMM value of 0x8 (VxLAN) is present, then Label carries VNI (VXLAN ID).

L3 VRF EVPN Import

To advertise L3 VPN routing and forwarding (VRF) prefixes to EVPN neighbors define a new import type that takes prefixes from VRF neighbors, redistributed VRF routes, and import them into EVPN table. The import of VRF routes is controlled per VRF. The import of VRF is performed only when `advertise l2vpn evpn` is configured under that VRF and local VTEP is up.

EVPN DCI Solution

ASR1000 (IOS-XE Platform) series routers, acting as a Data Centre Interconnect (DCI) device can be deployed at the edge of two Cisco Data Center solutions, that is, Nexus 9000 Standalone-mode Data Centre or Nexus 9000 ACI-mode Data Centre. It provides flexible and safe WAN connections to the Internet or Branch sites with multiple different WAN types. Currently ASR1000 supports multiple WAN connection types, including iWAN, MPLS VPN (PE and ASBR), DMVPN, and VRF Lite. You can also deploy more than one ASR1000 router as multihoming deployment, if you require traffic load balancing, redundancy or customized path selection policy based on special requirements of different applications.

How to Configure EVPN VxLAN L3

The following is the sample topology that is used as an example to explain the configuration of this feature.
1. Define VRF and IPv4 address family. EVPN RT is 65535:1

 vrf definition evpn1
 rd 65535:1
 address-family ipv4
 route-target both 65535:1 stitching
 exit-address-family

2. Define Bridge Domain and associate vxlan vni 3000.

 bridge-domain 200
 member vni 30000
 Interface loopback0
 ip address 33.33.33.33 255.255.255.255

3. Define Bridge Domain Interface (BDI).

 interface BDI200
 vrf forwarding evpn1
 ip address 100.1.1.1 255.255.255.0
 encapsulation dot1Q 200

4. Create Interface NVE1.

 Interface gi0/0/0.2
 enc dot1q 2
 ip address 4.0.0.1 255.255.255.0
 Interface gi0/0/1.2
 enc dot1q 2
 vrf forwarding evpn1
 ip address 3.3.3.1 255.255.255.0
 interface nve1
 no ip address
 source-interface Loopback0
 host-reachability protocol bgp
 member vni 30000 vrf evpn1

5. Define OSPF for underlay reachability.

 Router ospf 100
 router-id 33.33.33.33
 network 33.33.33.33 0.0.0.0 area 0
network 4.0.0.1 0.0.0.0 area 0

6. Define BGP and EVPN address-family.

```
router bgp 65535
bgp router-id 33.33.33.33
neighbor 44.44.44.44 remote-as 65535
neighbor 44.44.44.44 update-source Loopback0

address-family l2vpn evpn
neighbor 44.44.44.44 activate
neighbor 44.44.44.44 send-community both
exit-address-family

address-family ipv4 vrf evpn1
advertise l2vpn evpn
neighbor 3.3.3.254 remote-as 65530
neighbor 3.3.3.254 update-source Gi0/0/1.2
neighbor 3.3.3.254 ebgp-multihop 255
redistribute connected
exit-address-family
```

Configuring Provider Edge 1

Define VRF and RD/RT.

```
vrf definition vrf1
rd 65530:1
address-family ipv4
  route-target both 65530:1
exit-address-family

interface loopback0
  ip address 33.33.33.22 255.255.255.255
Interface GigabitEthernet0/0/0.2
  enc dot1q 2
  vrf forwarding vrf1
ip address 3.3.3.254 255.255.255.0
Interface gigabitEthernet0/0/1
  mpls ip
  ip address 2.2.2.1 255.255.255.0

Router ospf 100
  router-id 33.33.33.22
  network 33.33.33.22 0.0.0.0 area 0
  network 2.2.2.1 0.0.0.0 area 0

router bgp 65530
  bgp router-id 33.33.33.22
  neighbor 22.22.22.22 remote-as 65530
  neighbor 22.22.22.22 update-source Loopback0
  address-family vpnv4
    neighbor 22.22.22.22 activate
    neighbor 22.22.22.22 send-community both
  exit-address-family
  address-family ipv4 vrf vrf1
    neighbor 3.3.3.253 remote-as 65535
    neighbor 3.3.3.253 update-source Gi0/0/0.2
    neighbor 3.3.3.253 ebgp-multihop 255
```
redistribute connected
exit-address-family

Configuring Provider Edge 2 and Branch Router

vrf definition vrf1
 rd 65530:1
 address-family ipv4
 route-target both 65530:1
exit-address-family
!
interface loopback0
 ip address 22.22.22.22 255.255.255.255
!
Interface GigabitEthernet0/0/0.200
 enc dot1q 200
 vrf forwarding vrf1
 ip address 1.1.1.254 255.255.255.0
!
Interface gigabitEthernet0/0/1
 mpls ip
 ip address 2.2.2.254 255.255.255.0
!
Router ospf 100
 router-id 22.22.22.22
 network 22.22.22.22 0.0.0.0 area 0
 network 2.2.2.254 0.0.0.0 area 0
!
router bgp 65530
 bgp router-id 22.22.22.22
 neighbor 33.33.33.22 remote-as 65530
 neighbor 33.33.33.22 update-source Loopback0
!
 address-family vpnv4
 neighbor 33.33.33.22 activate
 neighbor 33.33.33.22 send-community both
 exit-address-family
!
 address-family ipv4 vrf vrf1
 redistribute connected
 exit-address-family

Configuring Customer Edge 2

Interface GigabitEthernet0/0/0.200
 enc dot1q 200
 ip address 1.1.1.1 255.255.255.0
 ip route 0.0.0.0 0.0.0.0 1.1.1.254

Importing Between EVPN and VRF/VPN

router bgp 100
 address-family ipv4 vrf example-vrf
 advertise l2vpn evpn
 neighbor 7.7.7.7 remote-as 400
 neighbor 7.7.7.7 activate
 exit-address-family
Verifying EVPN VxLAN L3

Use the following commands to verify the configuration:

- **show ip bgp l2vpn evpn**: Displays Layer 2 Virtual Private Network (L2VPN) address family information from the Border Gateway Protocol (BGP) table.

- **show mlrib evpn mac**: Displays the MLRIB information pertaining to an EVPN network.

- **show nve peers**: Displays information that determine if the VNI is configured for peer.

Show Command-BGP

```
# show ip bgp l2vpn evpn summary
BGP router identifier 19.0.0.1, local AS number 1
BGP table version is 2, main routing table version 2
1 network entries using 376 bytes of memory
1 path entries using 196 bytes of memory
1 L/BGP path/bestpath attribute entries using 272 bytes of memory
10 BGP extended community entries using 40 bytes of memory
0 BGP route-map cache entries using 0 bytes of memory
0 BGP filter-list cache entries using 0 bytes of memory
BGP using 884 total bytes of memory
BGP activity 1/0 prefixes, 1/0 paths, scan interval 60 secs
```

Show Command-MLRIB

```
# show mlrib evpn mac
EVI MAC Address Owner Next-Hop iVNI eVNI
----------------------------------------------------
100 aaa.bbb.cc1 NVE 1.2.3.4 10000 1000
```

```
# show mlrib evpn mac detailed
EVI MAC Address Owner Next-Hop iVNI eVNI lVTEP port
-------------------------------------------------------------
100 aaa.bbb.cc1 NVE 1.2.3.4 1000 1000 1.2.3.2 2000
```

```
# show mlrib evpn vtep local
BD RMAC Address VTEP-IP VRF VNI BDI
----------------------------------------------------------
100 aaa.bbb.cc2 101.2.3.4 vrf1 10000 BDI100
```

Show NVE Peers

```
#sh nve peers vni 10135
Interface VNI Type Peer-IP Router-RMAC eVNI state flags UP time
nve1 10135 L3CP 66.66.66.66 5c83.8f5f.5c97 10135 UP A/M 00:08:53
```
Configuring EVPN: Basic Configuration

Perform the following tasks to configure EVPN:

1. Create a VRF.

```conf
vrf definition EVPN
rd 100:1
!
address-family ipv4
route-target export 100:1 stitching
route-target import 100:1 stitching
exit-address-family
```

2. Create a bridge domain and assign a VNI.

```conf
bridge-domain 1234
member vni 101234
```

3. Create a BDI interface and assign it to the EVPN VRF.

```conf
interface BDI1234
vrf forwarding EVPN
ip address 10.20.30.40 255.255.255.0
encapsulation dot1Q 1234
```

4. Create an NVE interface.

```conf
interface nve1
no ip address
source-interface Loopback1
host-reachability protocol bgp
member vni 101234 vrf EVPN

router bgp 100
bgp router-id 10.10.10.10
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 10.10.10.111 remote-as 100
neighbor 10.10.10.111 ebgp-multihop 255
neighbor 10.10.10.111 update-source Loopback1
neighbor 10.10.10.222 remote-as 100
neighbor 10.10.10.222 ebgp-multihop 255
neighbor 10.10.10.222 update-source Loopback1

address-family l2vpn evpn
  neighbor 10.10.10.111 activate
  neighbor 10.10.10.111 send-community both
  neighbor 10.10.10.222 activate
  neighbor 10.10.10.222 send-community both
  exit-address-family
```

5. Configure a EVPN sessions to two spines.

```conf
address-family l2vpn evpn
neighbor 10.10.10.111 activate
neighbor 10.10.10.111 send-community both
neighbor 10.10.10.222 activate
neighbor 10.10.10.222 send-community both
exit-address-family
```

EVPN Interconnect With MPLS VPN as ASBR

In the scenario explained in the below figure shows, EVPN routes from the DC side get imported into VRFs at the ASR1k. These routes are in turn re-originated to the WAN side MPLS core network via VPN routes to
ASBR using a variation of MPLS-VPN Inter-AS option AB. There is only 1 BGP peering between the ASR1k and the ASBR, but the forwarding happens on multiple VRF sub-interfaces.

Figure 6: EVPN Interconnect With MPLS VPN as ASBR

Configuring Inter-AS Option AB

The following sections describe how to configure the Inter-AS Option AB feature on an ASBR for either an MPLS VPN or an MPLS VPN that supports CSC:

Note

If Inter-AS Option AB is already deployed in your network and you want to do Option B style peering for some prefixes (that is, implement Inter-AS Option AB+), configure the `inter-as-hybrid global` command as described in the “Configuring the Routing Policy for VPNs that Need Inter-AS Connections” section.

Configuring the VRFs on the ASBR Interface for Each VPN Customer

Use the following steps to configure the VRFs on the ASBR interface for each VPN customer so that these VPNs have connectivity over the MPLS VPN--Inter-AS Option AB network.

Note

The `mpls bgp forwarding` command is used only on the ASBR interface for VRFs that support CSC.

Use all of the steps in the following procedure to configure additional VRFs that need to be configured on the ASBR interface and the VRFs that need to be configured on the peer ASBR interface.

1. Enable privileged EXEC mode. Enter your password if prompted.
   ```
   enable
   Example:
   Router> enable
   ```

2. Enter global configuration mode.
   ```
   configure terminal
   Example:
   Router# configure terminal
   ```

3. Specify the interface to configure and enter the interface configuration mode.
Configuring MP-BGP Session Between ASBR Peers

BGP propagates reachability information for VPN-IPv4 prefixes among PE routers by means of the BGP multiprotocol extensions (see RFC 2283, *Multiprotocol Extensions for BGP-4*), which define support for address families other than IPv4. Using the extensions ensures that the routes for a given VPN are learned only by other members of that VPN, enabling members of the VPN to communicate with each other.

Follow the steps in this section to configure the MP-BGP session on the ASBR.

Use all of the steps in the following procedure to configure the MP BGP session on the peer ASBR.

1. Enable privileged EXEC mode. Enter your password if prompted.

   ```
   enable
   Example:
   Router> enable
   ```

2. Enter global configuration mode.

   ```
   configure terminal
   Example:
   Router# configure terminal
   ```

3. Configures a BGP routing process and places the router in router configuration mode.

   ```
   • The *as-number* argument indicates the number of an autonomous system that identifies the router to other BGP routers and tags the routing information passed along. Valid numbers are from 0 to 65535. Private autonomous system numbers that can be used in internal networks range from 64512 to 65535.
   ```
router bgp as-number
Example:
 Router(config)# router bgp 100

4. Adds an entry to the BGP or multiprotocol BGP neighbor table.
 • The *ip-address* argument specifies the IP address of the neighbor.
 • The *peer-group-name* argument specifies the name of a BGP peer group.
 • The *as-number* argument specifies the autonomous system to which the neighbor belongs.

neighbor {ip-address | peer-group-name} remote-as as-number
Example:
 Router(config-router)# neighbor 192.168.0.1 remote-as 200

5. Enters address family configuration mode for configuring routing sessions, such as BGP, that use standard VPNv4 address prefixes.
 • The *unicast* keyword specifies IPv4 unicast address prefixes.

address-family vpnv4 [unicast]
Example:
 Router(config-router)# address-family vpnv4

6. Enables the exchange of information with a neighboring router.
 • The *ip-address* argument specifies the IP address of the neighbor.
 • The *peer-group-name* argument specifies the name of a BGP peer group.

neighbor {ip-address | peer-group-name} activate
Example:
 Router(config-router-af)# neighbor 192.168.0.1 activate

7. Configures eBGP peer router (ASBR) as an Inter-AS Option AB peer.
 • The *ip-address* argument specifies the IP address of the neighbor.
 • The *peer-group-name* argument specifies the name of a BGP peer group.
 • If any prefixes are imported into Option AB VRFs, then the imported paths are advertised to this peer.
 • If any prefixes are received from this peer and are imported into Option AB VRFs, then the imported paths are advertised to iBGP peers.

 Note
 Advertised routes have RTs that are configured on the VRF. Advertised routes do not have their original RTs.

neighbor {ip-address | peer-group-name} inter-as-hybrid
Example:
 Router(config-router-af)# neighbor 192.168.0.1 inter-as-hybrid

8. Exits from address family configuration mode.
exit-address-family
Example:
Router(config-router-af)# exit-address-family

9. (Optional) Exits to privileged EXEC mode.
 end
 Example:
 Router(config-af)# end

Configuring the Routing Policy for VPNs that Need Inter-AS Connections

Use the steps in this section to configure VRFs for the VPNs that need Inter-AS connections between ASBR peers, by configuring the appropriate routing policy and Option AB configuration.

Use all of the steps in the following procedure to configure additional VPNs that need Inter-AS Option AB connectivity on this ASBR and the peer ASBR.

1. Enable privileged EXEC mode. Enter your password if prompted.
 enable
 Example:
 Router> enable

2. Enter global configuration mode.
 configure terminal
 Example:
 Router# configure terminal

3. Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.
 • The vrf-name argument is the name assigned to a VRF.
 vrf definition vrf-name
 Example:
 Router(config)# vrf definition vpn1

 • The route-distinguisher argument adds an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD in either of these formats:
 • 16-bit autonomous system number: your 32-bit number, for example, 101:3
 • 32-bit IP address: your 16-bit number, for example, 192.168.122.15:1
 rd route-distinguisher
 Example:
 Router(config-vrf)# rd 100:1

5. Enters VRF address family configuration mode to specify an address family for a VRF.
 • The ipv4 keyword specifies an IPv4 address family for a VRF.
 address-family ipv4
 Example:
 Router(config-vrf)# address-family ipv4

6. Creates a route-target extended community for a VRF.
 • The import keyword imports routing information from the target VPN extended community.
 • The export keyword exports routing information to the target VPN extended community.
• The **both** keyword imports routing information from and exports routing information to the target VPN extended community.

• The **route-target-ext-community** argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities.

route-target {import | export | both}
route-target-ext-community
Example:
 Router(config-vrf-af)# route-target import 100:1

7. For Inter-AS Option AB+, go to Step 10; otherwise, go to Step 8.

8. Specifies the VRF as an Option AB VRF, which has the following effects:
 • Routes imported to this VRF can be advertised to Option AB peers and VPNv4 iBGP peers.
 • When routes received from Option AB peers and are imported into the VRF, the next hop table ID of the route is set to the table ID of the VRF.
 • If the **csc** keyword is not used, a per-VRF label is allocated for imported routes.
 • When routes are received from Option AB peers and are imported next into the VRF, the learned out label can be installed only in forwarding when the **csc** keyword is used.

The **csc** keyword implies the following:
 • A per-prefix label is allocated for imported routes.
 • For routes received from Option AB peers that are imported into the VRF, the learned out label is installed in forwarding.

inter-as-hybrid [csc]
Example:
 Router(config-vrf-af)# inter-as-hybrid

9. (Optional) Specifies the next hop IP address to be set on paths that are imported into the VRF and that are received from an Option AB peer.
 • The next hop context is also set to the VRF, which imports these paths.
 • The **csc** keyword implies the following:
 • A per-prefix label is allocated for imported routes.
 • For routes received from Option AB peers that are imported into the VRF, the learned out label is installed in forwarding.

inter-as-hybrid next-hop global
Example:
 Router(config-vrf-af)# inter-as-hybrid next-hop global

10. (For Option AB+) Enables Inter-AS Option AB+.
 • Specifies that the next-hop address for BGP updates to be set on paths that are imported to the VRF and that are received from an Option AB+ peer are placed in the global routing table.
• The address used is the address of the interface that is at the remote end of the external BGP (eBGP) global shared link. The next-hop context is retained as global and not modified to that of the importing VRF.

```
inter-as-hybrid next-hop global
Example:
Router(config-vrf-af)# inter-as-hybrid next-hop global
```

11. (Optional) Exits to privileged EXEC mode.

```
end
Example:
Router(config-vrf-af)# end
```

Example: EVPN Interconnect With MPLS VPN as ASBR

```
router bgp 100
bgp router-id 10.10.10.10
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 9.9.8.8 remote-as 200
Neighbor 9.9.8.8 ebgp-multihop 255
neighbor 9.9.8.8 update-source Loopback0
! address-family vpnv4
  import l2vpn evpn
  neighbor 9.9.8.8 activate
  neighbor 9.9.8.8 send-community extended
  neighbor 9.9.8.8 next-hop-self all
  Neighbor 9.9.8.8 inter-as-hybrid
```

Configuring EVPN Interconnect With MPLS VPN as PE

ASR1000 supports direct prefix redistribution between BGP VPNv4 and BGP L2VPN EVPN address families. ASR1000 can act as gateway of Data Centre network and PE of MPLS VPN network both. It receives MPLS VPN prefixes from P/PE routers and these prefixes can be imported into BGP EVPN rib and then forwarded to DC’s spine via BGP EVPN session. It can also import BGP EVPN prefixes sent by spine into BGP VPNv4 rib and send to P/PE in MPLS VPN network. During the prefixes redistribution, ASR1k set itself as the next-hop of the prefix before sending update to its neighbors.

In this release (16.4.1), ASR1000 only supports only bi-directional redistribution between EVPN and VPNv4. Redistribution between EVPN and VPNv6 is not supported.

In the scenario explained in the below figure shows, ASR1k acting as a PE in the MPLS-VPN network. Firstly, VRF is needed for the EVPN RT-5 routes to be imported, and then re-originate as VPN route into the MPLS-VPN side. VPN route that is learnt from the MPLS-VPN side will then first be imported into VRF, and the re-originated into EVPN as RT-5 routes.
Figure 7: EVPN Interconnect With MPLS VPN as PE

1. Define VRF and IPv4 address family.

```plaintext
vrf definition EVPN
   rd 100:1
   !
   address-family ipv4
   route-target import 100:1
   route-target import 100:1 stitching
   route-target export 100:1 stitching
   exit-address-family
```

2. Configure interface Loopback0.

```plaintext
interface Loopback0
   MPLS VPN
   ip address 9.9.10.10 255.255.255.255
   ip router isis vpn
   ip ospf 100 area 0
```


```plaintext
interface GigabitEthernet0/0/0
   facing MPLS VPN P/PE
   ip address 9.9.108.10 255.255.255.0
   ip router isis vpn
   negotiation auto
   mpls ip
cdp enable
!
Interface gi0/0/1.4
   Description facing to ACI spine
   Encapsulation dot1q 4
   Ip address 10.10.10.1 255.255.255.0
   Ip ospf 100 area 0
```

4. Create Interface NVE1.

```plaintext
interface nve1
   no ip address
   source-interface Loopback0
   host-reachability protocol bgp
   member vni 101234 vrf EVPN
```

1. Define VRF and IPv4 address family.

```
vrf definition EVPN
   rd 100:1
   !
   address-family ipv4
   route-target import 100:1
   route-target import 100:1 stitching
   route-target export 100:1 stitching
   exit-address-family
```

2. Configure interface Loopback0.

```
interface Loopback0
   MPLS VPN
   ip address 9.9.10.10 255.255.255.255
   ip router isis vpn
   ip ospf 100 area 0
```


```
interface GigabitEthernet0/0/0
   facing MPLS VPN P/PE
   ip address 9.9.108.10 255.255.255.0
   ip router isis vpn
   negotiation auto
   mpls ip
cdp enable
!
Interface gi0/0/1.4
   Description facing to ACI spine
   Encapsulation dot1q 4
   Ip address 10.10.10.1 255.255.255.0
   Ip ospf 100 area 0
```

4. Create Interface NVE1.

```
interface nve1
   no ip address
   source-interface Loopback0
   host-reachability protocol bgp
   member vni 101234 vrf EVPN
```
5. Configure bridge domain.

Bridge-domain 100
 Member vni 101234
Interface bd100
 Vrf forwarding EVPN
 Encapsulation dot1q 100
Ip address 9.10.0.1 255.255.255.0

Router ospf 100
 Router-id 9.9.10.10
 Area 0.0.0.100 nssa

router isis vpn
 net 49.0001.1010.1010.1010.00
 is-type level-2-only
 metric-style wide

6. Define BGP and EVPN address-family.

router bgp 200
 bgp router-id 10.10.10.10
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 9.9.8.8 remote-as 200
 neighbor 9.9.8.8 update-source Loopback0
 neighbor 10.10.10.111 remote-as 100
 neighbor 10.10.10.111 ebgp-multihop 255
 neighbor 10.10.10.111 update-source Loopback0
 neighbor 10.10.10.222 remote-as 100
 neighbor 10.10.10.222 ebgp-multihop 255
 neighbor 10.10.10.222 update-source Loopback0

 address-family vpnv4
 import l2vpn evpn
 neighbor 9.9.8.8 activate
 neighbor 9.9.8.8 send-community extended
 neighbor 9.9.8.8 next-hop-self all
 exit-address-family

 address-family l2vpn evpn
 import vpnv4 unicast
 neighbor 10.10.10.111 activate
 neighbor 10.10.10.111 send-community both
 neighbor 10.10.10.222 activate
 neighbor 10.10.10.222 send-community both
 exit-address-family

7. Define VXLAN UDP port.

 vxlan udp port 0xBEEF
Configuring DCI EVPN Peer to ACI Spine

1. Configure interface.

 Interface gi0/0/1.4
 Description facing to ACI spine
 Encapsulation dot1q 4
 Ip address 10.10.10.1 255.255.255.0
 Ip ospf 100 area 0

2. Configure bridge domain.

 Bridge-domain 100
 Member vni 101234
 Interface bdi100
 Vrf forwarding EVPN
 Encapsulation dot1q 100
 Ip address 9.10.0.1 255.255.255.0

 Router ospf 100
 Router-id 9.9.10.10
 Area 0.0.0.100 nssa
 vxlan udp port 0xBEEF

Additional References for EVPN VxLAN L3

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCOMB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for EVPN VxLAN L3

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 35: Feature Information for EVPN VxLAN L3

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVPN VxLAN L3</td>
<td>Cisco IOS XE Denali 16.3.1</td>
<td>The EVPN VxLAN L3 is a new feature.</td>
</tr>
<tr>
<td>VXLAN EVPN Fabric DCI - MPLS L3VPN</td>
<td>Cisco IOS XE Everest 16.4.1</td>
<td>The VXLAN EVPN Fabric DCI - MPLS L3VPN is a new feature.</td>
</tr>
</tbody>
</table>
VxLAN Static Routing

VxLAN static routing provides a method for connecting multiple servers in a data center to an enterprise edge router. The method:

• Creates one-to-many static routes between the servers and enterprise edge router
• Automatically generates point-to-multipoint (P2MP) VxLAN tunnels on the static routes on demand

• Feature Information for VxLAN Static Routing, on page 499
• Prerequisites for VxLAN Static Routing, on page 500
• Notes and Limitations for VxLAN Static Routing, on page 500
• Information About VxLAN Static Routing, on page 501
• How to Configure VxLAN Static Routing, on page 503

Feature Information for VxLAN Static Routing

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 36: Feature Information for VxLAN Static Routing

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VxLAN Static Routing</td>
<td>Cisco IOS XE Gibraltar 16.10.1</td>
<td>VxLAN static routing configures P2MP underlay tunnels between the router and multiple servers, and overlay routing within those tunnels. VxLAN static routing supports GPE and dummy-L2 P2MP tunnels. The prefix supports only IPv4. The next hop supports IPv4 and IPv6. The following commands were modified or added by this feature: <code>vxlan route-profile</code>, <code>show vxlan route-profile all</code>, <code>show vxlan static-route</code>, <code>show vxlan static-route next-hop bind-label</code>.</td>
</tr>
<tr>
<td>VxLAN Static Routing</td>
<td>Cisco IOS XE Gibraltar 16.11.1</td>
<td>Added point-to-many point “ingress” tunnels from multiple servers to the router. Added ability to specify a range of numbers for naming the tunnels, such as beginning with Tunnel100 and ending with Tunnel1000. The number is incremented by 1 for each new tunnel. Added <code>show</code> commands that provide packet/byte statistics.</td>
</tr>
</tbody>
</table>

Prerequisites for VxLAN Static Routing

- Underlay protocol, such as OSPF or ISIS

Notes and Limitations for VxLAN Static Routing

- Tunnels initiating using this method can encapsulate, but not decapsulate packets. The tunnel carries packets from the customer side to the cloud service side. Packets sent from the cloud service to the customer side are carried by a static tunnel.

- A route profile cannot be modified if it is in use. It is considered to be in use if a tunnel that was created using the method described here is currently open.
Information About VxLAN Static Routing

Overview of VxLAN Static Routing

VxLAN static routing configures P2MP underlay tunnels between the router and multiple servers, and overlay routing within those tunnels. This connects multiple servers in a data center to the enterprise edge router. VxLAN static routing supports GPE and dummy-L2 P2MP tunnels.

VxLAN static routing provides a method for connecting multiple servers in a data center to an enterprise edge router. VxLAN static routing supports GPE and dummy-L2 P2MP tunnels.

This method:

• Creates one-to-many static routes between the servers and enterprise edge router
• Automatically generates VxLAN tunnels on the static routes on demand

A use case is connecting the servers that provide cloud services to customers, and the enterprise edge routers, such as a Cisco ASR1000 Series router, that communicate with customers.

Advantages:

• High throughput dedicated VPN connectivity between servers and enterprise edge router
• Low latency
• Predictable performance (helps to meet service level agreements)
• High availability

Method

An earlier method of connecting multiple servers to a single enterprise edge router was numerous P2P connections.

Figure 9: One-to-One VxLAN Tunnels

VxLAN P2MP Tunnels provide one-to-many VxLAN tunnels in the router-to-server direction (egress), or in both the router-to-server and server-to-router (ingress) directions. The VxLAN tunnels operate at more than 10 Gbps, and can provide different types of encapsulation, including IPv4-over-IPv4 and IPv4-over-IPv6.
Typically, a network controller is used to manage the enterprise edge router and initiate the tunnel connections. The overall architecture for the cloud services use case is as follows:

Figure 12: Complete Architecture, Egress Only Configuration

Cloud Services Provider

Data Center

Controller manages router and initiates tunnels

Servers

VXLAN tunnels: one-to-many

Internet

Enterprise edge router: Connects to customers

Customers
How to Configure VxLAN Static Routing

Configuring VxLAN Static Routing

Perform this procedure on a router. A remote controller can initiate the tunnels.

1. Use `vxlan route-profile` to define a profile to use when creating new tunnels.
2. Use `vxlan static-route` to define multiple end-points (servers).

Before you begin

Prerequisites: Underlay protocol, such as OSPF or ISIS

SUMMARY STEPS

1. `vxlan route-profile route-profile-name tunnel source interface interface [default-mac-source mac-address] [dscp dscp] [dst-port port] [tunnel mode mode] [tunnel mtu mtu] [tunnel source-port-hash hash] [tunnel source-port range port-range] [vxlan-reserved-word-1 0x0000] [vxlan-reserved-word-2 0x0000] [persistent]`
2. `vxlan static-route`
3. `vxlan static-route auto-tunnel range start end`
4. `vrf vrf-name IPv4-address {mask-format-X.X.X.X | mask-format/-XX} vni 1-16777215 next-hop-IPv4/IPv6 dst-mac MAC-Address route-profile route-profile-name [symmetric] [persistent]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>vxlan route-profile route-profile-name tunnel source interface interface [default-mac-source mac-address]</code></td>
<td>Creates a route-profile.</td>
</tr>
<tr>
<td>Step 2 <code>vxlan static-route</code></td>
<td>For tunnel mode, there are two options:</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>{dscp dscp} {dst-port port} {tunnel mode mode} {tunnel mtu mtu} {tunnel source-port-hash hash} {tunnel source-port range port-range} {vxlan-reserved-word-1 0x0000} {vxlan-reserved-word-2 0x0000} [persistent]</code></td>
<td>• vxlan-gpe</td>
</tr>
<tr>
<td></td>
<td>• vxlan-default-mac</td>
</tr>
<tr>
<td></td>
<td>Note: A route profile cannot be modified if it is in use. It is considered to be in use if a tunnel that was created using the method described here is currently open.</td>
</tr>
</tbody>
</table>

Example:

```
vxlan route-profile af11
dscp 10
vxlan-reserved-word=1 1111
vxlan-reserved-word=2 17
```

Step 2

vxlan static-route

Example:

```
vxlan static-route
```

Creates a static route for one or more end-points (servers). In the following step, add a separate vrf line for each end-point.

Step 3

vxlan static-route auto-tunnel range start end

Example:

```
vxlan static-route auto-tunnel range 100 100000
```

(Optional)

Step 4

vrf vrf-name IPv4-address {mask-format-X.X.X | mask-format/-XX} vni 1-16777215 next-hop-IPv4/IPv6 dst-mac MAC-Address route-profile route-profile-name [symmetric] [persistent]

Example:

```
vxlan static-route
vrf host1_1_1 100.0.10.0 255.255.255.0 vni 1
11.11.11.11 dst-mac 0011.0000.0010 route-profile af11 persistent
vrf host1_1_1 100.0.20.0 255.255.255.0 vni 1
1111::111 dst-mac 0011.0000.001a route-profile af21 persistent
```

Use the `route-profile-name` defined in an earlier step. persistent: Save the configuration line in the device NVRAM, persists even if device reboots.

symmetric: Use the configured point-to-many-point tunnel for ingress also. Applies only to the specified vni.

The prefix used for overlay supports only IPv4 addresses.

The next hop used for underlay supports IPv4 and IPv6.

Examples

Example: Point-to-many-point Tunnel for Egress

The `vxlan route-profile` defines a profile to use when creating new tunnels.

The `vrf` lines following `vxlan static-route` define multiple end-points (servers).

```
vxlan route-profile af11
dscp 10
```

Carrier Ethernet Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
vxlans-reserved-word-1 1111
vxlans-reserved-word-2 17
tunnel mode vxlan-default-mac
tunnel source interface Loopback0
default-mac-source 0011.0011.0011
persistent

vxlans static-route
vrf host1_1_1 100.0.10.0 255.255.255.0 vni 1 11.11.11.11 dst-mac 0011.0000.0010 route-profile
af11 persistent
vrf host1_1_1 100.0.10.0 255.255.255.0 vni 1 1111::1111 dst-mac 0011.0000.0010 route-profile
af11 persistent
vrf host1_1_1 100.0.20.0 255.255.255.0 vni 1 11.11.11.11 dst-mac 0011.0000.001a route-profile
af21 persistent
vrf host1_1_1 100.0.20.0 255.255.255.0 vni 1 1111::1111 dst-mac 0011.0000.001a route-profile
af21 persistent

Example: Symmetric Point-to-many-point Tunnels for Egress and Ingress

The **vxlans route-profile** line defines a profile to use when creating new tunnels.
The **vxlans static-route auto-tunnel range** line sets the range for numbering of tunnel names.
The **vrf** lines following **vxlans static-route** define multiple end-points (servers), creating symmetric
point-to-many-point tunnels in both directions between the servers and the router.

vxlans route-profile af11
dscp 10
vxlans-reserved-word-1 1111
vxlans-reserved-word-2 17
vrf host1_1_1 100.0.10.0 255.255.255.0 vni 1 1111::1111 dst-mac 0011.0000.0010 route-profile
af11 persistent
vrf host1_1_1 100.0.20.0 255.255.255.0 vni 1 1111::1111 dst-mac 0011.0000.001a route-profile
af21 persistent

Viewing VxLAN Static Routing Status

SUMMARY STEPS

1. **show vxlans route-profile all**
2. **show vxlans static-route (all | summary | vrf vrf-name)**
3. **show vxlans route-profile name profile-name auto-tunnel**
4. **show vxlans static-route next-hop bind-label tunnel-id**
5. **show vxlans static-route statistics vrf test all detail**
6. **show vxlans static-route statistics vni vni detail**
DETAILED STEPS

Step 1 `show vxlan route-profile all`
Displays all route-profile configurations.

Example:
In the following example, the command shows the configuration of two profiles: profile1 and profile2 (bold added to show where each begins).

```
Device# show vxlan route-profile all
Vxlan route profile
name: profile1
dscp: 0 (default)
vxlan-reserved-word-1: 0x0 (default)
vxlan-reserved-word-2: 0x0 (default)
tunnel source-port-range: [49152, 65535] (default)
tunnel source-port-hash: 5-tuple (default)
tunnel mode: vxlan-gpe (default)
tunnel mtu: 1450 (default)
tunnel source interface: Loopback0
dst-port: 4790 (default)
persistent: yes
Vxlan route profile
name: profile2
dscp: 0 (default)
vxlan-reserved-word-1: 0x0 (default)
vxlan-reserved-word-2: 0x0 (default)
tunnel source-port-range: [49152, 65535] (default)
tunnel source-port-hash: 5-tuple (default)
tunnel mode: vxlan-dummy-mac
tunnel mtu: 1450 (default)
tunnel source interface: Loopback0
dummy-mac-source: 0000.5e00.5213 (default)
dst-port: 4789 (default)
persistent: yes
```

Step 2 `show vxlan static-route {all | summary | vrf vrf-name}`
Displays VxLAN static route configurations.

Example:
The output indicates the route profile associated with each prefix. In the following example, the 2.2.2.2/32 prefix is using the route profile called “test”.

```
Device# show vxlan static-route all
vrf test, topoid 2, IPv4
-----------------------------------------
vrf test 2.2.2.2/32 vni 2 20.1.1.1 route-profile test persistent
vrf test 2.2.3.3/32 vni 5 20::1 route-profile test persistent
vrf test2, topoid 3, IPv4
-----------------------------------------
vrf test2 2.2.2.5/32 vni 6 20::1 route-profile test2 persistent
vrf test2 2.2.2.6/32 vni 7 20::1 route-profile test2 persistent
vrf test2 2.2.2.8/32 vni 8 3.3.3.2 route-profile test2
vrf test2 2.2.2.8/32 vni 8 3.3.3.3 route-profile test2
vrf test2 2.2.2.8/32 vni 8 3.3.3.3 dst-mac 1212.1212.1212 route-profile test2
```

Example:
Example of summary output:
Device# show vxlan static-route summary
vxlan static-route summary:
 prefix count: 6
 persistent prefix count: 5
 route-profile count: 2
 vxlan next-hop count: 8
 vxlan auto-tunnel count: 4
 vxlan auto-tunnel range: [200000, 300000]
 default dst mac: 0000.5e00.5214

Example:

Example of detailed output for a specific VRF:

Device# show vxlan static-route vrf test 2.2.2.8/32 detailed
vrf test 2 2.2.2.8/32 vni 8 3.3.3.2 route-profile test2, binding_label: 0x2000008, connection_id: 8
vrf test 2 2.2.2.8/32 vni 8 3.3.3.3 route-profile test2, binding_label: 0x2000006, connection_id: 6
vrf test 2 2.2.2.8/32 vni 8 3.3.3.3 dst-mac 1212.1212.1212route-profiletest2, binding_label:0x2000007,
connection_id: 7

Step 3

show vxlan route-profile name profile-name auto-tunnel

Displays any active tunnels that have been generated automatically using the specified route profile. Tunnel IDs are
generated automatically, numbered consecutively within a preset range.

Note: If there are active tunnels using a route profile, the route profile cannot be altered.

Example:

Device# show vxlan route-profile name test auto-tunnel
Vxlan Route Profile test:
 IPv4 auto tunnel: Tunnel200000
 IPv6 auto tunnel: Tunnel200001

Step 4

show vxlan static-route next-hop bind-label tunnel-id

Displays the details of the next-hop (server address) for a specific IP static route, identified by a hexadecimal bind-label.
Use show ip route to display the routes that have been configured, and the bind-labels for each route.

Example:

This example uses show ip route to display the routes on the route_symmetric VRF, and then displays details for the
route with a bind-label of 0x2000002 (bold added in the output to highlight the binding label 0x2000002).

Device# show ip route vrf route_symmetric
Routing Table: scale_route_symmetric
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, M - OMP
 n - NAT, N1 - NAT inside, N2 - NAT outside, Nd - NAT DIA
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 H - NHRP, G - NHRP registered, g - NHRP registration summary
 o - ODR, P - periodic downloaded static route, l - LISP
 a - application route
 + - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
 111.0.0.0/32 is subnetted, 91355 subnets
 S 111.0.33.198 [1/0] via binding label: 0x2000002

Device# show vxlan static-route next-hop bind-label 0x2000002
vxlan static route next hop:
 vni: 2
 address: 20.1.1.1
Step 5 show vxlan static-route statistics vrf test all detail

Displays the packets and bytes sent over each VRF. This info is useful for accounting purposes.

Note Enter the `ip cef accounting per-prefix` command before using this `show` command.

Example:

```
Device# ip cef accounting per-prefix
Device# show vxlan static-route statistics vrf test all detail
Vrf   Prefix          Tx-Pkts  Tx-Bytes
---   ----------------  -------   -------
  test 100.0.30.0/24   0         0
  test 100.0.30.2/32   3317      4630532
  test 100.0.30.3/32   3317      4630532
```

Step 6 show vxlan static-route statistics vni vni detail

Displays the packets and bytes for a specific VNI. This info is useful for accounting purposes.

Example:

```
Device# show vxlan static-route statistics vni 100 detail
Vni Next-hop   Intf     Route-profile Pkts  Bytes
---- --------   ------   -------------- --   ----
 100  11.11.11.11 Tunnel200002 p1    111  15096
 100  33:33:33::33 Tunnel200003 p1     50   7800
```
