

Basic System Management Configuration Guide, Cisco IOS XE Release 2

Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com

Tel: 408 526-4000 800 553-NETS (6387) Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental

© 2011 Cisco Systems, Inc. All rights reserved.

CONTENTS

```
Performing Basic System Management 1
   Finding Feature Information 1
   Information About Performing Basic System Management 1
      System Name 2
      Command Aliases 2
      Minor Services 2
         BOOTP Server 3
         Finger Protocol 3
      Hidden Telnet Addresses 3
      EXEC Startup Delay 3
      Idle Telnet Connections 3
      Interval for Load Data 4
      Number of TCP Transactions 4
      Switching and Scheduling Priorities 4
      System Buffer Size 4
   How to Perform Basic System Management 5
      Setting Basic System Parameters 5
   Configuration Examples for Performing Basic System Management 11
   Additional References 11
   Feature Information for Performing Basic System Management 12
Setting Time and Calendar Services 15
   Finding Feature Information 15
   Information About Setting Time and Calendar Services 15
      Time and Calendar Services 15
      Network Time Protocol 16
         Poll-Based NTP Associations 17
         Broadcast-Based NTP Associations 18
         NTP Access Group 18
         NTP Services on a Specific Interface 19
```

```
Source IP Address for NTP Packets 19
         System as an Authoritative NTP Server 19
      VINES Time Service 20
      Hardware Clock 20
   How to Set Time and Calendar Services 20
      Configuring NTP 21
          Restrictions 21
          Configuring Poll-Based NTP Associations 22
          Configuring Broadcast-Based NTP Associations 23
          Configuring NTP Authentication 25
          Configuring an External Reference Clock 26
      Configuring VINES Time Service 29
      Configuring the Time and Date Manually 30
      Setting the Hardware Clock 32
      Configuring Time Ranges 34
      Verifying Time and Calendar Services 36
   Configuration Examples for Setting Time and Calendar Services 38
      Example Configuring Clock Calendar and NTP 38
   Additional References 38
   Feature Information for Setting Time and Calendar Services 40
Defining Memory Threshold Notifications 43
   Finding Feature Information 43
   Information About Memory Threshold Notifications 43
      Memory Threshold Notifications 43
      Memory Reservation 44
   How to Define Memory Threshold Notifications 44
      Setting a Low Free Memory Threshold 44
      Reserving Memory for Critical Notifications 45
   Configuration Examples for Memory Threshold Notifications 45
      Setting a Low Free Memory Threshold Examples 46
      Reserving Memory for Critical Notifications Example 46
   Additional References 46
   Feature Information for Memory Threshold Notifications 47
```


Performing Basic System Management

This module describes the basic tasks that you can perform to manage the general system features of the Cisco IOS software--those features that are generally not specific to a particular protocol.

- Finding Feature Information, page 1
- Information About Performing Basic System Management, page 1
- How to Perform Basic System Management, page 5
- Configuration Examples for Performing Basic System Management, page 11
- Additional References, page 11
- Feature Information for Performing Basic System Management, page 12

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Performing Basic System Management

- System Name, page 2
- Command Aliases, page 2
- Minor Services, page 2
- Hidden Telnet Addresses, page 3
- EXEC Startup Delay, page 3
- Idle Telnet Connections, page 3
- Interval for Load Data, page 4
- Number of TCP Transactions, page 4
- Switching and Scheduling Priorities, page 4
- System Buffer Size, page 4

System Name

The system name, also called the hostname, is used to uniquely identify the system in your network. The system name is displayed at the CLI prompt. If no name is configured, the system default name is Router.

Command Aliases

Command aliases allow you to configure alternative syntax for commands. You may want to create aliases for commonly used or complex commands. For example, you could assign the alias **save config** to the **copy running-config startup-config** command to reduce the amount of typing you have to perform, or if your users might find the **save config** command easier to remember. Use word substitutions or abbreviations to tailor the command syntax for you and your user community.

Remember that any aliases you configure will be effective only on your system, and that the original command syntax will appear in the configuration file.

Minor Services

Minor services are small servers that run on your routing device and are useful for basic system testing and for providing basic network functions. Minor services are useful for testing connections from another host on the network.

Cisco small servers are conceptually equivalent to daemons.

Small servers provided by Cisco IOS software-based devices include TCP, UDP, HTTP, Bootstrap Protocol (BOOTP), and Finger. For information about the HTTP server, see the "Using the Cisco Web Browser User Interface" chapter in the Cisco IOS Configuration Fundamentals Configuration Guide.

The TCP small server provides the following minor services:

- Chargen--Generates a stream of ASCII data. To test this service, issue the **telnet** *a.b.c.d* **chargen**command from a remote host.
- Daytime--Returns the system date and time if you have configured Network Time Protocol (NTP) or set the date and time manually. To test this service, issue the **telnet** a.b.c.d **daytime**command from a remote host.
- Discard--Discards whatever you type. To test this service, issue the **telnet** *a.b.c.d* **discard**command from a remote host.
- Echo--Echoes back whatever you type. To test this service, issue the **telnet** *a.b.c.d* **echo**command from a remote host.

The UDP small server provides the following minor services:

- Chargen--Discards the datagram that you send and responds with a 72-character string of ASCII characters terminated with a CR+LF (carriage return and line feed).
- Discard--Discards the datagram you send.
- Echo--Echoes the payload of the datagram that you send.

Minor services are disabled by default.

Enabling minor services creates the potential for certain types of denial-of-service (DoS) attacks, such as the UDP diagnostic port attack. Therefore, any network device that has UDP, TCP, BOOTP, or Finger services should be protected by a firewall or have the minor services disabled. For information on preventing UDP diagnostic port attacks, see the white paper titled Defining Strategies to Protect Against UDP Diagnostic Port Denial of Service Attacks a vailable on Cisco.com.

- BOOTP Server, page 3
- Finger Protocol, page 3

BOOTP Server

You can enable or disable an async line Bootstrap Protocol (BOOTP) service on your routing device. This small server is enabled by default. Due to security considerations, this service should be disabled if you are not using it.

Because DHCP is based on the BOOTP, both of these service share the well-known UDP server port 67 (per the Internet standards and RFCs). For more information about DHCP configuration in the Cisco IOS software, see the Cisco IOS IP Addressing Configuration Guide. For more information about BOOTP, see RFC 951. Interoperation between BOOTP and DHCP is defined in RFC 1534. DHCP is defined in RFC 2131.

Finger Protocol

The Finger protocol allows users throughout the network to get a list of the users currently using a particular routing device. The information displayed includes the processes running on the system, the line number, connection name, idle time, and terminal location. This information is provided through the Cisco IOS software **show users** EXEC command.

Hidden Telnet Addresses

You can hide addresses while attempting to establish a Telnet session. The hide feature suppresses the display of the address and continues to display all other messages that normally would be displayed during a connection attempt, such as detailed error messages if the connection fails.

EXEC Startup Delay

To delay the startup of the EXEC process on noisy lines until the line has been idle for 3 seconds, use the **service exec-wait** command in global configuration mode.

This command is useful on noisy modem lines or when a modem attached to the line is configured to ignore Microcom Networking Protocol (MNP) or V.42 negotiations, and when MNP or V.42 modems are dialing in. In these cases, noise or MNP/V.42 packets might be interpreted as usernames and passwords, causing authentication failure before the user can type a username or password. This command is not useful on nonmodem lines or lines without some kind of login configured.

Idle Telnet Connections

Normally, data sent to noncurrent Telnet connections is accepted and discarded. When the **service telnet-zero-idle** command is enabled and a session is suspended (that is, some other connection is made active),

the TCP window is set to zero. This action prevents the remote host from sending any more data until the connection is resumed. Use this command when all messages sent by the host must be seen by the users and the users are likely to use multiple sessions. Do not use this command if your host will eventually time out and log out a TCP user whose window is zero.

Interval for Load Data

You can change the period of time over which a set of data is used for computing load statistics. Decisions, such as dial backup, depend on these statistics. If you decrease the load interval, the average statistics are computed over a shorter period of time and are more responsive to bursts of traffic.

Number of TCP Transactions

When you are using a standard TCP implementation to send keystrokes between machines, TCP tends to send one packet for each keystroke typed, which can use up the bandwidth and contribute to the congestion on larger networks.

John Nagle's algorithm (RFC 896) helps alleviate the small-packet problem in TCP. The first character typed after the connection establishment is sent in a single packet, but TCP holds any additional characters that are typed until the receiver acknowledges the previous packet. Then the second, larger packet is sent, and the additional typed characters are saved until the acknowledgment comes back. The effect is to accumulate characters into larger chunks, and pace their transmission to the network at a rate matching the round-trip time of the given connection. This method is usually preferable for all TCP-based traffic.

By default, the Nagle algorithm is not enabled.

Switching and Scheduling Priorities

The normal operation of the network server allows the switching operations to use as much of the central processor as required. If the network is running unusually heavy loads that do not allow the processor the time to handle the routing protocols, you may need to give priority to the system process scheduler.

System Buffer Size

You can adjust the initial buffer pool settings and limits at which temporary buffers are created and destroyed.

During normal system operation, there are two sets of buffer pools: public and interface. They behave as follows:

- The buffers in the public pools grow and shrink based upon demand. Some public pools are temporary
 and are created and destroyed as needed. Other public pools are permanently allocated and cannot be
 destroyed. Public buffer pools are labeled as small, middle, big, very big, large, and huge.
- Interface pools are static--that is, they are all permanent. One interface pool exists for each interface.
 For example, a Cisco 4000 1E 4T configuration has one Ethernet buffer pool and four serial buffer pools.

The server has one pool of queueing elements and six public pools of packet buffers of different sizes. For each pool, the server keeps count of the number of outstanding buffers, the number of buffers in the free list, and the maximum number of buffers allowed in the free list.

How to Perform Basic System Management

• Setting Basic System Parameters, page 5

Setting Basic System Parameters

To set basic system parameters perform the following steps. You can perform these steps based on the customization requirements of your system.

SUMMARY STEPS

- 1. hostname name
- 2. prompt string
- **3.** alias mode alias-name alias-command-line
- 4. service tcp-small-servers
- 5. service udp-small-servers
- 6. no ip bootp server
- 7. ip finger
- 8. ip finger rfc-compliant
- 9. service hide-telnet-address
- **10. line** *line-number*
- 11. busy-message
- **12.** exit
- 13. service exec-wait
- 14. service telnet-zero-idle
- 15. load-interval seconds
- 16. service nagle
- 17. scheduler interval milliseconds
- **18. scheduler allocate** [network-microseconds process-microseconds]
- 19. scheduler process-watchdog {hang | normal | reload | terminate}
- **20.** buffers {small | middle | big | verybig | large | huge | type number} {permanent | max-free | min-free | initial} number
- **21**. exit
- **22**. show aliases [mode]
- 23. show buffers

DETAILED STEPS

Step 1 hostname name

Use the **hostname** name command to perform the basic system management task of assigning a name for your device.

Router(config)# hostname host1

Step 2 prompt string

or

no service prompt config

By default, the CLI prompt consists of the system name followed by an angle bracket (>) for user EXEC mode or a pound sign (#) for privileged EXEC mode. Use the the **prompt** *string* or the **no service prompt config** command to customize the CLI prompt for your system.

Example:

```
Router(config)# prompt Router123
Or
```

Example:

Router(config)# no service prompt config

Step 3 alias mode alias-name alias-command-line

Use the **alias** mode alias-name alias-command-line command to create a command alias.

Example:

Router(config)# alias exec save config copy running-config startup-config

Step 4 service tcp-small-servers

Use the **service tcp-small-servers** command to enable minor TCP services such as chargen, daytime, discard, and echo.

Note The **no** form of the **service tcp-small-servers** command will appear in the configuration file when these basic services are disabled.

Example:

Router(config)# service tcp-small-servers

Step 5 service udp-small-servers

Use the service udp-small-servers command to enable minor UDP services such as chargen, daytime, discard, and echo

Note The **no** form of the **service udp-small-servers** command will appear in the configuration file when these basic services are disabled.

Example:

Router(config)# service udp-small-servers

Step 6 no ip bootp server

Use the **no ip bootp server** command to disable the BOOTP server on your platform.

Router(config)# no ip bootp server

Step 7 ip finger

Use the **ip finger** command to enable a Cisco device to respond to Finger (port 79) requests. When the **ip finger** command is configured, the router will respond to a **telnet** *a.b.c.d* **finger** command from a remote host by immediately displaying the output of the **show users** command and then closing the connection.

Example:

Router(config)# ip finger

Step 8 ip finger rfc-compliant

Use the **ip finger rfc-compliant** command to configure the finger protocol to be compliant with RFC 1288. The **ip finger rfc-compliant** command should not be configured for devices with more than 20 simultaneous users. When the **ip finger rfc-compliant**command is configured, the router will wait for input before displaying any information. The remote user can then press the Return key to display the output of the **show users** command, or enter **/W** to display the output of the **show users wide** command. After this information is displayed, the connection is closed.

Example:

Router(config)# ip finger rfc-compliant

Step 9 service hide-telnet-address

Use the **service hide-telnet-address** command to configure the router to suppress Telnet addresses.

Example:

Router(config)# service hide-telnet-address

Step 10 line *line-number*

Use the line command to enter line configuration mode.

Example:

Router(config)# line 1

Step 11 busy-message

Use the **busy-message** command with the **service hide-telnet-address** command to customize the information displayed during Telnet connection attempts. If the connection attempt fails, the router suppresses the address and displays the message specified with the **busy-message** command.

Example:

Router(config-line)# busy-message

Step 12 exi

Use the exit command to exit line configuration mode and return to global configuration mode.

Router(config-line)# exit

Step 13 service exec-wait

Use the **service exec-wait**command to delay the startup of the EXEC process on noisy lines until the line has been idle for 3 seconds.

Example:

Router(config)# service exec-wait

Step 14 service telnet-zero-idle

Use the **service telnet-zero-idle** command to configure the Cisco IOS software to set the TCP window to zero (0) when the Telnet connection is idle.

Example:

Router(config)# service telnet-zero-idle

Step 15 load-interval seconds

Use the **load-interval** seconds command to change the length of time for which a set of data is used to compute load statistics.

Example:

Router(config)# load-interval 100

Step 16 service nagle

Use the **service nagle** command to enable the Nagle algorithm and thereby reduce the number of TCP transactions.

Example:

Router(config)# load-interval 100

Step 17 scheduler interval *milliseconds*

Use the **scheduler interval** *milliseconds* command to define the maximum amount of time that can elapse without running the lowest-priority system processes.

Example:

Router(config)# scheduler interval 100

Step 18 scheduler allocate [network-microseconds process-microseconds]

Use the **scheduler allocate** command to change the amount of time that the CPU spends on fast-switching and process-level operations on the Cisco 7200 series and Cisco 7500 series routers.

Caution Cisco recommends that you do not change the default values of the scheduler allocate command.

Router(config)# scheduler allocate 5000 200

Step 19 scheduler process-watchdog {hang | normal | reload | terminate}

Use the **scheduler process-watchdog** {**hang** | **normal** | **reload** | **terminate**} command to configure the characteristics for a looping process.

Example:

Router(config)# scheduler process-watchdog hang

Use the **buffers** {**small** | **middle** | **big** | **verybig** | **large** | **huge** | *type number*} {**permanent** | **max-free** | **min-free** | **initial**} *number* command to adjust the system buffer size.

Example:

```
Router(config)# buffers small permanent 10
```

Caution Cisco does not recommend that you adjust these parameters. Improper settings can adversely impact the system performance.

Step 21 exit

Use the **exit** command to exit global configuration mode and return to privileged EXEC mode.

Example:

Router(config)# exit

Step 22 show aliases [mode]

Use the **show aliases** [mode] command to display a list of command aliases currently configured on your system, and the original command syntax for those aliases.

Example:

Router# show aliases exec

Step 23 show buffers

Use the **show buffers**command to display buffer information. For more information about this command, see the Cisco IOS Configuration Fundamentals Command Reference.

Example:

```
Router# show buffers
Buffer elements:
    1119 in free list (1119 max allowed)
    641606 hits, 0 misses, 619 created
Public buffer pools:
Small buffers, 104 bytes (total 50, permanent 50):
    48 in free list (20 min, 150 max allowed)
    2976557 hits, 0 misses, 0 trims, 0 created
    0 failures (0 no memory)
Middle buffers, 600 bytes (total 25, permanent 25, peak 37 @ 2w0d):
```

```
25 in free list (10 min, 150 max allowed)
     445110 hits, 4 misses, 12 trims, 12 created
     0 failures (0 no memory)
Big buffers, 1536 bytes (total 50, permanent 50):
     50 in free list (5 min, 150 max allowed)
     58004 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
VeryBig buffers, 4520 bytes (total 10, permanent 10):
     10 in free list (0 min, 100 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
Large buffers, 5024 bytes (total 0, permanent 0):
     0 in free list (0 min, 10 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
Huge buffers, 18024 bytes (total 0, permanent 0):
     0 in free list (0 min, 4 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
Interface buffer pools:
Syslog ED Pool buffers, 600 bytes (total 282, permanent 282):
     257 in free list (282 min, 282 max allowed)
     32 hits, 0 misses
IPC buffers, 4096 bytes (total 2, permanent 2):
     1 in free list (1 min, 8 max allowed)
     1 hits, 0 fallbacks, 0 trims, 0 created
     0 failures (0 no memory)
Header pools:
Header buffers, 0 bytes (total 511, permanent 256, peak 511 @ 2w0d):
     255 in free list (256 min, 1024 max allowed)
     171 hits, 85 misses, 0 trims, 255 created
     0 failures (0 no memory)
     256 max cache size, 256 in cache
     O hits in cache, O misses in cache
Particle Clones:
     1024 clones, 0 hits, 0 misses
Public particle pools:
F/S buffers, 128 bytes (total 512, permanent 512):
     0 in free list (0 min, 512 max allowed)
     512 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
     512 max cache size, 512 in cache
     O hits in cache, O misses in cache
Normal buffers, 512 bytes (total 2048, permanent 2048):
     2048 in free list (1024 min, 4096 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
Private particle pools:
HQF buffers, 0 bytes (total 2000, permanent 2000):
     2000 in free list (500 min, 2000 max allowed)
     0 hits, 0 misses, 0 trims, 0 created
     0 failures (0 no memory)
Serial2/0 buffers, 512 bytes (total 256, permanent 256):
     0 in free list (0 min, 256 max allowed)
     256 hits, 0 fallbacks
     256 max cache size, 132 in cache
     124 hits in cache, 0 misses in cache
     10 buffer threshold, 0 threshold transitions
Serial2/1 buffers, 512 bytes (total 256, permanent 256):
     0 in free list (0 min, 256 max allowed)
     256 hits, 0 fallbacks
     256 max cache size, 132 in cache
     124 hits in cache, 0 misses in cache
     10 buffer threshold, 0 threshold transitions
```

Configuration Examples for Performing Basic System Management

There are no configuration examples for the Performing Basic System Management feature.

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
Network Management commands	Cisco IOS Network Management Command Reference
Cisco IOS fundamental configuration commands	Cisco IOS Configuration Fundamentals Command Reference
Cisco IOS fundamental configurations	Cisco IOS Configuration Fundamentals Configuration Guide
Preventing UDP diagnostic port attacks	Defining Strategies to Protect Against UDP Diagnostic Port Denial of Service Attacks
DHCP configuration	Cisco IOS IP Addressing Configuration Guide

Standards

Standard	Title
None	

MIBs

MIB	MIBs Link
None	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 896	Congestion Control in IP/TCP Internetworks
RFC 951	Algorithms for Synchronizing Network Clocks
RFC 1288	The Finger User Information Protocol
RFC 1534	Interoperation Between DHCP and BOOTP
RFC 2131	Dynamic Host Configuration Protocol

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for Performing Basic System Management

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1 Feature Information for Performing Basic System Management

Feature Name	Releases	Feature Information
Performing Basic System Management	Cisco IOS XE Release 2.1	This module describes the basic tasks to manage the general system features of the Cisco IOS software.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Setting Time and Calendar Services

All Cisco routers provide an array of time-of-day services. These services allow the products to accurately keep track of the current time and date, to synchronize multiple devices to the same time, and to provide time services to other systems.

Most Cisco routers have two clocks: a battery-powered hardware clock (referenced in CLI commands as the calendar) and a software clock (referenced in CLI commands as the clock). These two clocks are managed separately.

This module describes how to update the software clock from various sources.

- Finding Feature Information, page 15
- Information About Setting Time and Calendar Services, page 15
- How to Set Time and Calendar Services, page 20
- Configuration Examples for Setting Time and Calendar Services, page 38
- Additional References, page 38
- Feature Information for Setting Time and Calendar Services, page 40

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Setting Time and Calendar Services

- Time and Calendar Services, page 15
- Network Time Protocol, page 16
- VINES Time Service, page 20
- Hardware Clock, page 20

Time and Calendar Services

The primary source for time data on your system is the software clock. This clock runs from the moment the system starts up and keeps track of the current date and time. The software clock can be set from a

number of sources and in turn can be used to distribute the current time through various mechanisms to other systems. When a router with a hardware clock is initialized or rebooted, the software clock is initially set based on the time in the hardware clock. The software clock can then be updated from the following sources:

- Manual configuration (using the hardware clock)
- Network Time Protocol (NTP)
- Simple Network Time Protocol (SNTP)
- VINES Time Service

Because the software clock can be dynamically updated, it has the potential to be more accurate than the hardware clock.

The software clock can provide time to the following services:

- Access lists
- · Logging and debugging messages
- NTP
- The hardware clock
- User **show** commands
- · VINES Time Service

The software clock cannot provide time to the NTP or VINES Time Service if it was set using SNTP.

The software clock keeps track of time internally based on the Coordinated Universal Time (UTC), also known as Greenwich Mean Time (GMT). You can configure information about the local time zone and summer time (daylight saving time) so that time is displayed correctly relative to the local time zone.

The software clock keeps track of whether the time is authoritative (that is, whether it has been set by a time source considered to be authoritative). If it is not authoritative, the time will be available only for display purposes and will not be redistributed.

Network Time Protocol

NTP is a protocol designed to time-synchronize a network of machines. NTP runs on UDP, which in turn runs on IP. NTP Version 3 is documented in RFC 1305.

An NTP network usually gets its time from an authoritative time source such as a radio clock or an atomic clock attached to a time server. NTP then distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two machines to the accuracy of within a millisecond of one another.

NTP uses the concept of a stratum to describe how many NTP hops away a machine is from an authoritative time source. A stratum 1 time server typically has an authoritative time source (such as a radio or atomic clock, or a Global Positioning System (GPS) time source) directly attached, a stratum 2 time server receives its time via NTP from a stratum 1 time server, and so on.

NTP has two ways to avoid synchronizing to a machine whose time may not be accurate. NTP will never synchronize to a machine that is not in turn synchronized. NTP will compare the time reported by several machines, and will not synchronize to a machine whose time is significantly different from others, even if its stratum is lower. This strategy effectively builds a self-organizing tree of NTP servers.

The Cisco implementation of NTP does not support stratum 1 service; in other words, you cannot connect to a radio or atomic clock (for some specific platforms, however, you can connect to a GPS time-source

device). Cisco recommends that the time service for your network be derived from the public NTP servers available in the IP Internet.

If the network is isolated from the Internet, the Cisco implementation of NTP allows a machine to be configured so that it acts as though it is synchronized via NTP, when in fact it has determined the time using other means. Other machines can then synchronize to that machine via NTP.

A number of manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX. This software also allows UNIX-derivative servers to acquire the time directly from an atomic clock, which would subsequently propagate time information along to Cisco routers.

The communications between machines running NTP (known as associations) are usually statically configured; each machine is given the IP address of all machines with which it should form associations. Accurate timekeeping is made possible by exchanging NTP messages between each pair of machines with an association.

However, in a LAN environment, NTP can be configured to use IP broadcast messages instead. This alternative reduces configuration complexity because each machine can be configured to send or receive broadcast messages. However, the accuracy of timekeeping is marginally reduced because the information flow is one-way only.

The time kept on a machine is a critical resource, so Cisco strongly recommends that you use the security features of NTP to avoid the accidental or malicious setting of incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

When multiple sources of time (VINES, hardware clock, manual configuration) are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

NTP services are disabled on all interfaces by default.

For more information about NTP, see the following sections:

- Poll-Based NTP Associations, page 17
- Broadcast-Based NTP Associations, page 18
- NTP Access Group, page 18
- NTP Services on a Specific Interface, page 19
- Source IP Address for NTP Packets, page 19
- System as an Authoritative NTP Server, page 19

Poll-Based NTP Associations

Networking devices running NTP can be configured to operate in variety of association modes when synchronizing time with reference time sources. A networking device can obtain time information on a network in two ways: by polling host servers and by listening to NTP broadcasts. This section focusses on the poll-based association modes. Broadcast-based NTP associations are discussed in the Broadcast-Based NTP Associations, page 18 section.

The following are the two most commonly used poll-based association modes:

- · Client mode
- Symmetric active mode

The client and the symmetric active modes should be used when NTP is required to provide a high level of time accuracy and reliability.

When a networking device is operating in the client mode, it polls its assigned time-serving hosts for the current time. The networking device will then pick a host from among all the polled time servers to synchronize with. Because the relationship that is established in this case is a client-host relationship, the

host will not capture or use any time information sent by the local client device. This mode is most suited for file-server and workstation clients that are not required to provide any form of time synchronization to other local clients. Use the **ntp server** command to individually specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the client mode.

When a networking device is operating in the symmetric active mode, it polls its assigned time-serving hosts for the current time and it responds to polls by its hosts. Because this is a peer-to-peer relationship, the host will also retain time-related information of the local networking device that it is communicating with. This mode should be used when a number of mutually redundant servers are interconnected via diverse network paths. Most stratum 1 and stratum 2 servers on the Internet adopt this form of network setup. Use the **ntp peer**command to individually specify the time serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the symmetric active mode.

The specific mode that you should set each of your networking devices to depends primarily on the role that you want them to assume as a timekeeping device (server or client) and its proximity to a stratum 1 timekeeping server.

A networking device engages in polling when it is operating as a client or a host in the client mode or when it is acting as a peer in the symmetric active mode. Although polling does not usually exact a toll on memory and CPU resources such as bandwidth, an exceedingly large number of ongoing and simultaneous polls on a system can seriously impact the performance of a system or slow the performance of a given network. To avoid having an excessive number of ongoing polls on a network, you should limit the number of direct, peer-to-peer or client-to-server associations. Instead, you should consider using NTP broadcasts to propagate time information within a localized network.

Broadcast-Based NTP Associations

Broadcast-based NTP associations should be used when time accuracy and reliability requirements are modest and if your network is localized and has more than 20 clients. Broadcast-based NTP associations are also recommended for use on networks that have limited bandwidth, system memory, or CPU resources.

A networking device operating in the broadcast client mode does not engage in any polling. Instead, it listens for NTP broadcast packets that are transmitted by broadcast time servers. Consequently, time accuracy can be marginally reduced because time information flows only one way.

Use the **ntp broadcast client** command to set your networking device to listen for NTP broadcast packets propagated through a network. In order for broadcast client mode to work, the broadcast server and its clients must be located on the same subnet. The time server that is transmitting NTP broadcast packets will also have to be enabled on the interface of the given device using the **ntp broadcast** command.

NTP Access Group

The access list-based restriction scheme allows you to grant or deny certain access privileges to an entire network, a subnet within a network, or a host within a subnet. To define an NTP access group, use the **ntp access-group** {**peer** | **query-only** | **serve** | **serve-only**} {*access-list-number* | *access-list-number-expanded* | *access-list-name*} [**kod**] command in global configuration mode.

The access group options are scanned in the following order, from least restrictive to the most restrictive:

- 1 **peer** --Allows time requests and NTP control queries and allows the system to synchronize itself to a system whose address passes the access list criteria.
- **serve** --Allows time requests and NTP control queries, but does not allow the system to synchronize itself to a system whose address passes the access list criteria.

- 3 serve-only --Allows only time requests from a system whose address passes the access list criteria.
- 4 query-only --Allows only NTP control queries from a system whose address passes the access list criteria.

If the source IP address matches the access lists for more than one access type, the first type is granted access. If no access groups are specified, all access types are granted to all systems. If any access groups are specified, only the specified access types will be granted access.

For details on NTP control queries, see RFC 1305 (NTP version 3).

The encrypted NTP authentication scheme should be used when a reliable form of access control is required. Unlike the access list-based restriction scheme that is based on IP addresses, the encrypted authentication scheme uses authentication keys and an authentication process to determine if NTP synchronization packets sent by designated peers or servers on a local network are deemed as trusted before the time information that they carry along with them is accepted.

The authentication process begins from the moment an NTP packet is created. Cryptographic checksum keys are generated using the message digest algorithm 5 (MD5) and are embedded into the NTP synchronization packet that is sent to a receiving client. Once a packet is received by a client, its cryptographic checksum key is decrypted and checked against a list of trusted keys. If the packet contains a matching authentication key, the time-stamp information that is contained within it is accepted by the receiving client. NTP synchronization packets that do not contain a matching authenticator key are ignored.

It is important to note that the encryption and decryption processes used in NTP authentication can be very CPU-intensive and can seriously degrade the accuracy of the time that is propagated within a network. If your network setup permits a more comprehensive model of access control, you should consider the use of the access list-based form of control instead.

After NTP authentication is properly configured, your networking device will synchronize with and provide synchronization only to trusted time sources.

NTP Services on a Specific Interface

NTP services are disabled on all interfaces by default. NTP is enabled globally when any NTP commands are entered. You can selectively prevent NTP packets from being received through a specific interface by using the **ntp disable** command in interface configuration mode.

Source IP Address for NTP Packets

When the system sends an NTP packet, the source IP address is normally set to the address of the interface through which the NTP packet is sent. Use the **ntp source** *interface* command in global configuration mode if you want to configure a specific interface from which the IP source address will be taken.

This interface will be used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the **source** keyword in the **ntp peer** or **ntp server** command.

System as an Authoritative NTP Server

Use the **ntp master** [*stratum*] command in global configuration mode if you want the system to be an authoritative NTP server, even if the system is not synchronized to an outside time source.

Note

Use the **ntp master**command with caution. It is very easy to override valid time sources using this command, especially if a low stratum number is configured. Configuring multiple machines in the same network with the **ntp master** command can cause instability in timekeeping if the machines do not agree on the time.

VINES Time Service

Time service is available when Banyan VINES is configured. This protocol is a standard part of VINES. The Cisco implementation allows the VINES time service to be used in two ways. First, if the system has learned the time from some other source, it can act as a VINES time server and provide time to other machines running VINES. Second, it can use the VINES time service to set the software clock if no other form of time service is available.

Support for Banyan VINES and XNS is removed from Cisco IOS software in Cisco IOS Release 12.2(13)T and later releases.

Hardware Clock

Some routers contain a battery-powered hardware clock that tracks the date and time across system restarts and power outages. The hardware clock is always used to initialize the software clock when the system is restarted.

Within the CLI command syntax, the hardware clock is referred to as the system calendar.

If no other source is available, the hardware clock can be considered to be an authoritative source of time and be redistributed via NTP or VINES Time Service. If NTP is running, the hardware clock can be updated periodically from NTP, compensating for the inherent drift in the hardware clock.

You can configure a hardware clock (system calendar) on any device to be periodically updated from the software clock. This is advisable for any device using NTP, because the time and date on the software clock (set using NTP) will be more accurate than the hardware clock, because the time setting on the hardware clock has the potential to drift slightly over time.

Use the **ntp update-calendar** command in global configuration mode if a routing device is synchronized to an outside time source via NTP and you want the hardware clock to be synchronized to NTP time.

How to Set Time and Calendar Services

- Configuring NTP, page 21
- Configuring VINES Time Service, page 29
- Configuring the Time and Date Manually, page 30
- Setting the Hardware Clock, page 32
- Configuring Time Ranges, page 34
- Verifying Time and Calendar Services, page 36

Configuring NTP

NTP services are disabled on all interfaces by default. Perform the following tasks to configure NTP service on your networking device.

- Restrictions, page 21
- Configuring Poll-Based NTP Associations, page 22
- Configuring Broadcast-Based NTP Associations, page 23
- Configuring NTP Authentication, page 25
- Configuring an External Reference Clock, page 26

Restrictions

The NTP package contains a vulnerability that could allow an unauthenticated, remote attacker to cause a DoS condition. NTP versions 4.2.4p7 and earlier are vulnerable.

The vulnerability is due to an error in handling certain malformed messages. An unauthenticated, remote attacker could send a malicious NTP packet with a spoofed source IP address to a vulnerable host. The host that processes the packet sends a response packet back to the transmitter. This action could start a loop of messages between the two hosts that could cause both the hosts to consume excessive CPU resources, use up the disk space writing messages to log files, and consume the network bandwidth. These could cause a DoS condition on the affected hosts.

For more information, see the Network Time Protocol Package Remote Message Loop Denial of Service Vulnerability web page.

Cisco IOS software releases that supports NTPv4 are not affected. All other versions of Cisco IOS and Cisco IOS XE software are affected.

To display whether a device is configured with NTP, use the **show running-config** | **include ntp** command. If the output returns any of the following commands, then that device is vulnerable to the attack:

- ntp broadcast client
- ntp master
- ntp multicast client
- ntp peer
- ntp server

For more information on understanding Cisco IOS software releases, see the White Paper: Cisco IOS Reference Guide .

There are no workarounds other than disabling NTP on the device. Only packets destined for any configured IP address on the device can exploit this vulnerability. Transit traffic will not exploit this vulnerability.

Releases later than Cisco IOS Release 12.2(33)SXH7 will not process NTP mode 7 packets, and will display the message "NTP: Receive: dropping message: Received NTP private mode packet .7" if debugs for NTP are enabled. Configure the **ntp allow mode private** command to process NTP mode 7 packets. This command is disabled by default.

Note NTP peer authentication is not a workaround and is a vulnerable configuration.

NTP services are disabled on all interfaces by default.

Networking devices running NTP can be configured to operate in variety of association modes when synchronizing time with reference time sources. A networking device can obtain time information on a network in two ways: by polling host servers and by listening to NTP broadcasts.

This section contains the following tasks:

Configuring Poll-Based NTP Associations

The following are the two most commonly used poll-based association modes:

- · Client mode
- · Symmetric active mode

The client and the symmetric active modes should be used when NTP is required to provide a high level of time accuracy and reliability.

You can specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the client mode or in the symmetric active mode.

The specific mode that you should set each of your networking devices to depends primarily on the role that you want it to assume as a timekeeping device (server or client) and its proximity to a stratum 1 timekeeping server.

Perform the following task to configure the NTP server-peer relationship.

Note that only one end of an association needs to be configured; the other system will automatically establish the association.

The **ntp clock-period** command is automatically generated to display the constantly changing correction factor when the **copy running-configuration startup-configuration**command is entered to save the configuration to NVRAM. Do not attempt to manually use the **ntp clock-period**command. Ensure that you remove this command line when copying configuration files to other devices.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. ntp peer** *ip-address* [**normal-sync**] [**version** *number*] [**key** *key-id*] [**source** *interface-type interface-number*] [**prefer**]
- **4. ntp server** *ip-address* [**version** *number*] [**key** *key-id*] [**source** *interface-type interface-number*] [**prefer**]
- **5**. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		• Enter your password if prompted.
	Example:	
	Router> enable	

	Command or Action	Purpose
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	ntp peer <i>ip-address</i> [normal-sync] [version <i>number</i>] [key <i>key-id</i>] [source <i>interface-type interface-number</i>] [prefer]	Forms a peer association with another system.
	Example:	
	Router(config)# ntp peer 192.168.10.1 normal-sync version 2 prefer	
Step 4	ntp server ip-address [version number] [key key-id] [source interface-type interface-number] [prefer]	Forms a server association with another system.
	Example:	
	Router(config)# ntp server 192.168.10.1 version 2 prefer	
Step 5	end	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config)# end	

Configuring Broadcast-Based NTP Associations

A networking device operating in the broadcast client mode does not engage in any polling. Instead, it listens for NTP broadcast packets that are transmitted by broadcast time servers. Consequently, time accuracy can be marginally reduced because time information flows only one way.

You can set your networking device to listen for NTP broadcast packets propagated through a network. The time server that is transmitting NTP broadcast packets will also have to be enabled on the interface of the given device.

Perform the following task to configure broadcast-based NTP associations.

The **ntp clock-period** command is automatically generated to reflect the constantly changing correction factor when the **copy running-configuration startup-configuration**command is entered to save the configuration to NVRAM. Do not attempt to manually use the **ntp clock-period**command. Ensure that you remove this command line from the configuration when copying configuration files to other devices.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. interface** *type number*
- **4. ntp broadcast version** *number*
- 5. ntp broadcast client
- 6. ntp broadcastdelay microseconds
- **7**. end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface type number	Configures an interface and enters interface configuration mode.
	Example:	
	Router(config)# interface ethernet 0/0	
Step 4	ntp broadcast version number	Configures the specified interface to send NTP broadcast packets.
	Example:	
	Router(config-if)# ntp broadcast version 2	
Step 5	ntp broadcast client	Configures the specified interface to receive NTP broadcast packets.
	Example:	
	Router(config-if)# ntp broadcast client	

	Command or Action	Purpose
Step 6	ntp broadcastdelay microseconds	Adjusts the estimated round-trip delay for NTP broadcasts.
	Example:	
	Router(config-if)# ntp broadcastdelay 100	
Step 7	end	Exits interface configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config-if)# end	

Configuring NTP Authentication

After NTP authentication is properly configured, your networking device will synchronize with and provide synchronization only to trusted time sources. To configure NTP authentication, perform the following task.

In Cisco IOS software earlier than Release 12.0, the cryptotype value is displayed along with the NTP authentication key MD5 value when the **show running-config** command is entered. Copying and pasting the string cryptotype value that is displayed with the authentication key will result in authentication failure.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. ntp authenticate
- 4. ntp authentication-key number md5 key
- 5. ntp trusted-key key-id
- **6. ntp server** *ip-address* **key** *key-id*
- **7.** end

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	

Command or Action	Purpose
Step 2 configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	
Step 3 ntp authenticate	Enables the NTP authentication feature.
Example:	
Router(config)# ntp authenticate	
Step 4 ntp authentication-key number md5 key	Defines the authentication keys.
	Each key has a key number, a type, and a value. As of Cisco IOS Release 10.0 the only key type supported is
Example:	md5.
Router(config)# ntp authentication-key 42 md5 key1	
Step 5 ntp trusted-key key-id	Defines trusted authentication keys.
	If a key is trusted, this system will be ready to synchronize
Example:	to a system that uses this key in its NTP packets.
Router(config)# ntp trusted-key 42	
Step 6 ntp server ip-address key key-id	Allows the software clock to be synchronized by an NTP time server.
Example:	
Router(config)# ntp server 172.16.22.44 key 2	
Step 7 end	Exits global configuration mode and returns to privileged EXEC mode.
Example:	
Router(config)# end	

Configuring an External Reference Clock

Because Cisco's implementation of NTP does not support stratum 1 service, you cannot connect to a radio or atomic clock (for some specific platforms, however, you can connect to a GPS time source device). However, certain Cisco devices allow you to connect to an external GPS-based time source device for the purposes of distributing a time signal to your network using NTP.

For example, the Trimble Palisade NTP Synchronization Kit can be connected to the auxiliary port of a Cisco 7200 series router. Also, selected platforms support the use of GPS clocks from Symmetricom

(formerly Telecom-Solutions). The refclock (reference clock) drivers on these platforms provide the ability to receive an Request to Send (RTS) time-stamp signal on the auxiliary port of your routing device.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. line aux line-number
- **4. ntp refclock** {trimble | telecom-solutions} **pps** {cts | ri | none} [inverted] [**pps-offset** number] [**stratum** number] [**timestamp-offset** number]
- **5**. **end**
- 6. show ntp associations
- 7. show ntp status
- 8. debug ntp refclock

Command or Action	Purpose
enable	Enables privileged EXEC mode.
	Enter your password if prompted.
Example:	
Router> enable	
configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	
line aux line-number	Enters line configuration mode for the auxiliary port 0.
Example:	
Router(config)# line aux 0	
	Example: Router> enable configure terminal Example: Router# configure terminal line aux line-number Example:

	Command or Action	Purpose
Step 4	ntp refclock {trimble telecom-solutions} pps {cts ri none} [inverted] [pps-offset number] [stratum number] [timestamp-offset number]	Configures an external reference clock.
		To configure a Trimble Palisade GPS product connected to the auxiliary port of a Cisco 7200 series router as the NTP reference clock, use the ntp refclock trimble pps none stratum <i>number</i> form of the command. Use this command to enable the driver that
	Example: Router(config-line)# ntp refclock trimble pps none stratum 1	 form of the command. Use this command to enable the driver that allows the Trimble Palisade NTP Synchronization Kit to be used as the NTP reference clock source (Cisco 7200 series routers only). To configure a Symmetricom GPS product connected to the auxiliary port of a supported router or switch as the NTP reference clock, use the ntp refclock telecom-solutions pps cts stratum number form of the command. Use this command to enable the driver that allows the Symmetricom GPS product to be used as the NTP reference clock source. To configure a pulse per second (PPS) signal as the source for NTP synchronization, use the ntp refclock telecom-solutions pps cts stratum number form of the command. To configure a PPS signal as the source for NTP synchronization, use the ntp refclock{trimble telecom-solutions} pps {cts ri} [inverted] [pps-offset number] [stratum number] [timestamp-offset number].
Step 5	end	Exits line configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config-line)# end	
Step 6	show ntp associations	Displays the status of NTP associations, including the status of the GPS reference clock.
	Example:	
	Router# show ntp associations	
Step 7	show ntp status	Displays the status of NTP.
	Example:	
	Router# show ntp status	
Step 8	debug ntp refclock	Allows advanced monitoring of reference clock activities for the purposes of debugging.
	Example:	
	Router# debug ntp refclock	

Configuring VINES Time Service

Time service is available when Banyan VINES is configured. This protocol is a standard part of VINES. Perform the following task to configure VINES Time Service.

Support for Banyan VINES and XNS was removed from Cisco IOS software beginning in Cisco IOS Release 12.2(13)T. The following VINES commands are not available in releases derived from 12.2(13)T, such as the 12.3 mainline release.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. vines time use-system
- 4. vines time set-system
- 5. exit

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	vines time use-system	Distributes the system software clock time to other VINES systems.
	Example:	
	Router(config)# vines time use-system	
Step 4	vines time set-system	Sets the software clock system time and date as derived from VINES time
		services.
	Example:	
	Router(config)# vines time set-system	

	Command or Action	Purpose
Step 5	exit	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config)# exit	

Configuring the Time and Date Manually

If no other source of time is available, you can manually configure the current time and date after the system is restarted. The time will remain accurate until the next system restart. We recommend that you use manual configuration only as a last resort.

If you have an outside source to which the router can synchronize, you need not manually set the software clock. Perform the following task to configure the time and date manually.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. clock timezone** *zone hours-offset* [*minutes-offset*]
- **4. clock summer-time** *zone* **recurring** [week day month hh: mm week day month hh: mm [offset]]
- **5. clock summer-time** *zone* **date** *date month year hh:mm date month year hh* **:** *mm* [offset]
- 6. exit
- 7. clock set hh: mm: ss date month year

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

	Command or Action	Purpose
Step 3	<pre>clock timezone zone hours-offset [minutes- offset] Example: Router(config)# clock timezone PST 2 30</pre>	Configures the time zone used by the Cisco IOS software. • The <i>zone</i> argument is the name of the time zone (typically a standard acronym). The <i>hours-offset</i> argument is the number of hours the time zone is different from UTC. The <i>minutes-offset</i> argument is the number of minutes the time zone is different from UTC.
		Note The minutes-offset argument of the clock timezone command is available for those cases where a local time zone is a percentage of an hour different from UTC/GMT. For example, the time zone for some sections of Atlantic Canada (AST) is UTC -3.5. In this case, the necessary command would be clock timezone AST -3 30.
Step 4	<pre>clock summer-time zone recurring [week day month hh : mm week day month hh : mm [offset]]</pre>	Configures summer time (daylight saving time) in areas where it starts and ends on a particular day of the week each year . • The <i>offset</i> argument is used to indicate the number of minutes to add to the clock during summer time.
	Example: Router(config)# clock summer-time PST recurring 1 monday january 12:12 4 Tuesday december 12:12 120	
Step 5	clock summer-time zone date date month year hh:mm date month year hh: mm [offset]	Configures a specific summer time start and end date. • The <i>offset</i> argument is used to indicate the number of minutes to add to the clock during summer time.
	Example: Router(config)# clock summer-time PST date 1 january 1999 12:12 4 december 2001 12:12 120	
Step 6		Exits global configuration mode and returns to privileged EXEC mode.
	Example: Router(config)# exit	
Step 7	clock set hh: mm: ss date month year	Sets the software clock.
	Example: Router# clock set 12:12:12 1 january 2011	Use this command if no other time sources are available. The time specified in this command is relative to the configured time zone. Note Generally, if the system is synchronized by a valid outside timing mechanism, such as an NTP or VINES clock source, or if you have a router with a hardware clock, you need not set the software clock.

Setting the Hardware Clock

Most Cisco devices have a separate hardware-based clock in addition to the software-based clock. The hardware clock is a chip with a rechargeable backup battery that can retain the time and date information across reboots of the device.

To maintain the most accurate time update from an authoritative time source on the network, the software clock should receive time updates from an authoritative time on the network. The hardware clock should in turn be updated at regular intervals from the software clock while the system is running.

The hardware clock (system calendar) maintains time separately from the software clock. The hardware clock continues to run when the system is restarted or when the power is turned off. Typically, the hardware clock needs to be manually set only once, when the system is installed.

You should avoid setting the hardware clock manually if you have access to a reliable external time source. Time synchronization should instead be established using NTP.

Perform the following task to set the hardware clock.

SUMMARY STEPS

- 1. enable
- 2. calendar set hh: mm: ss day month year
- 3. configure terminal
- 4. clock calendar-valid
- 5. exit
- 6. clock read-calendar
- 7. clock update-calendar
- 8. show calendar
- 9. show clock [detail]
- 10. show ntp associations [detail]
- 11. show ntp status
- 12. show sntp

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	calendar set hh: mm: ss day month year	Sets the hardware clock manually.
		Note Use this command when you have no access to an
	Example:	external time source.
	Router# calendar set 10:12:15 monday june 1999	

	Command or Action	Purpose
Step 3	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 4	clock calendar-valid	Enables the router to act as a valid time source to which network peers can synchronize.
	Example:	By default, the time maintained on the software clock is not considered to be reliable and will not be synchronized with
	Router(config)# clock calendar-valid	NTP or VINES time service. To set the hardware clock as a valid time source, use this command.
Step 5	exit	Exits global configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config)# exit	
Step 6	clock read-calendar	Sets the software clock to the new hardware clock setting.
	Example:	
	Router# clock read-calendar	
Step 7	clock update-calendar	Updates the hardware clock with a new software clock setting.
	Fuerrales	
	Example:	
Step 8	Router# clock update-calendar show calendar	Displays the current hardware clock time.
Steh o	snow carendar	Displays the current hardware clock time.
	Example:	
	Router# show calendar	
Step 9	show clock [detail]	Displays the current software clock time.
	Example:	
	Router# show clock detail	

	Command or Action	Purpose
Step 10	show ntp associations [detail]	Displays the status of NTP associations.
	Example:	
	Router# show ntp associations detail	
Step 11	show ntp status	Displays the status of NTP.
	Example:	
	Router# show ntp status	
Step 12	show sntp	Displays information about SNTP (Cisco 1003, Cisco 1004,
		Cisco 1005, Cisco 1600, Cisco 1720, or Cisco 1750 routers only).
	Example:	
	Router# show sntp	

Configuring Time Ranges

Cisco IOS software allows implementation of features based on the time of day. The **time-range** global configuration command defines specific times of the day and week, which then can be referenced by a function, so that those time restrictions are imposed on the function itself.

In Cisco IOS Release 12.2, IP and IPX extended access lists are the only functions that can use time ranges. The time range allows the network administrator to define when the permit or deny statements in the access list are in effect. Prior to the introduction of this feature, access list statements were always in effect once they were applied. Both named and numbered access lists can reference a time range.

The time range relies on the system's software clock. For the time range feature to work the way you intend, you need a reliable clock source. Cisco recommends that you use NTP to synchronize the system's software clock.

Benefits of time ranges include the following:

- The network administrator has more control over permitting or denying a user access to resources.
 These resources could be an application (identified by an IP address/mask pair and a port number), policy routing, or an on-demand link (identified as interesting traffic to the dialer).
- Network administrators can set a time-based security policy, including the following:
 - Perimeter security using the Cisco IOS Firewall feature set or access lists.
 - Data confidentiality with Cisco Encryption Technology or IP security.
- Policy-based routing and queueing functions are enhanced.
- When provider access rates vary by time of day, traffic can be rerouted automatically and costeffectively.

Service providers can dynamically change a committed access rate (CAR) configuration to support the
quality of service (QoS) service level agreements (SLAs) that are negotiated for certain times of the
day.

Network administrators can control logging messages. Access list entries can log traffic at certain times of the day, but not constantly. Therefore, administrators can simply deny access without the need to analyze the many logs generated during peak hours.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- **3. time-range** *time-range-name*
- **4.** Do one of the following:
 - **absolute** [start time date month year] [end time date month year]
 - •
 - •
 - periodic day-of-the-week hh: mm to [day-of-the-week] hh: mm
- 5. end

DETAILED STEPS

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
		Enter your password if prompted.	
	Example:		
	Router> enable		
Step 2	configure terminal	Enters global configuration mode.	
	Example:		
	Router# configure terminal		
Step 3	time-range time-range-name	Assigns a name to the time range to be configured and enters time range configuration mode.	
	Example:		
	Router(config)# time-range range1		

	Command or Action	Purpose
Step 4	Do one of the following:	Specifies when the time range will be in effect.
	 absolute [start time date month year] [end time date month year] . 	Use some combination of these commands; multiple periodic commands are allowed; only one absolute command is allowed.
	• periodic day-of-the-week hh: mm to [day-of-the-week] hh: mm	
	Example:	
	Router(config-time-range)# absolute start 12:12 30 January 1999 end 12:12 30 December 2000	
	Example:	
	or	
	Example:	
	Router(config-time-range)# periodic monday 12:12 to friday 12:12	
Step 5	end	Exits time range configuration mode and returns to privileged EXEC mode.
	Example:	
	Router(config-time-range)# end	

Verifying Time and Calendar Services

To monitor clock, calendar, and NTP EXEC services, use the following commands in privileged EXEC mode, as needed:

SUMMARY STEPS

- 1. show calendar
- 2. show clock [detail]
- 3. show ntp associations detail
- 4. show ntp status
- 5. show sntp

DETAILED STEPS

Step 1 show calendar

This command displays the current hardware clock time. The following is sample output from this command:

Example:

```
Router# show calendar 18:34:29 UTC Tue Jan 4 2011
```

Step 2 show clock [detail]

This command displays the current software clock time. The following is sample output from this command:

Example:

```
Router# show clock detail *18:38:21.655 UTC Tue Jan 4 2011 Time source is hardware calendar
```

Step 3 show ntp associations detail

This command displays the status of NTP associations. The following is sample output from this command:

Example:

```
Router# show ntp associations detail
192.168.10.1 configured, insane, invalid, unsynced, stratum 16
ref ID .INIT., time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
our mode active, peer mode unspec, our poll intvl 64, peer poll intvl 1024
root delay 0.00 msec, root disp 0.00, reach 0, sync dist 15940.56
delay 0.00 msec, offset 0.0000 msec, dispersion 15937.50 precision 2**24, version 4
org time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
rec time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
xmt time DOCDE881.9A6A9005 (18:42:09.603 UTC Tue Jan 4 2011)
                0.00
                        0.00
                                0.00
                                         0.00
                                                 0.00
                                                         0.00
                                                                 0.00
                                                                          0.00
filtdelay =
                0.00
                        0.00
                                 0.00
                                         0.00
                                                 0.00
                                                         0.00
                                                                 0.00
filtoffset =
                                                                          0.00
filterror = 16000.0 16000.0 16000.0 16000.0 16000.0 16000.0 16000.0
minpoll = 6, maxpoll = 10
192.168.45.1 configured, insane, invalid, unsynced, stratum 16
ref ID .INIT., time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
our mode client, peer mode unspec, our poll intvl 64, peer poll intvl 1024
root delay 0.00 msec, root disp 0.00, reach 0, sync dist 16003.08
delay 0.00 msec, offset 0.0000 msec, dispersion 16000.00
precision 2**24, version 4
org time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
rec time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
xmt time 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
                        0.00
                                         0.00
                                                                  0.00
                                                                          0.00
filtdelay =
                0.00
                                 0.00
                                                 0.00
                                                         0.00
filtoffset =
                0.00
                        0.00
                                 0.00
                                         0.00
                                                 0.00
                                                         0.00
                                                                  0.00
                                                                          0.00
filterror = 16000.0 16000.0 16000.0 16000.0 16000.0 16000.0 16000.0
minpoll = 6, maxpoll = 10
```

Step 4 show ntp status

This command displays the status of NTP. The following is sample output from this command:

Example:

```
Router# show ntp status
Clock is unsynchronized, stratum 16, no reference clock
nominal freq is 250.0000 Hz, actual freq is 250.0000 Hz, precision is 2**24
reference time is 00000000.00000000 (00:00:00.000 UTC Mon Jan 1 1900)
clock offset is 0.0000 msec, root delay is 0.00 msec
root dispersion is 0.19 msec, peer dispersion is 0.00 msec
```

```
loopfilter state is 'FSET' (Drift set from file), drift is 0.0000000000~\mathrm{s/s} system poll interval is 64, never updated.
```

Step 5 show sntr

This command displays information about SNTP (Cisco 1003, Cisco 1004, Cisco 1005, Cisco 1600, Cisco 1720, or Cisco 1750 routers only). The following is sample output from this command:

Example:

```
Router# show sntp
SNTP server Stratum Version Last Receive
172.168.10.1 16 1 never
Broadcast client mode is enabled.
Multicast client 224.0.1.1 is enabled.
```

Configuration Examples for Setting Time and Calendar Services

• Example Configuring Clock Calendar and NTP, page 38

Example Configuring Clock Calendar and NTP

In the following example, a router with a hardware clock that has server associations with two other systems sends broadcast NTP packets, periodically updates the hardware clock, and redistributes time into VINES:

```
clock timezone PST -8
clock summer-time PDT recurring
ntp update-calendar
ntp server 192.168.13.57
ntp server 192.168.11.58
interface Ethernet 0/0
ntp broadcast
vines time use-system
```

In the following example, a router with a hardware clock has no outside time source, so it uses the hardware clock as an authoritative time source and distributes the time via NTP broadcast packets:

```
clock timezone MET 2
clock calendar-valid
ntp master
interface fddi 0/0
ntp broadcast
```

Additional References

Related Documents

Related Topic	Document Title
Cisco IOS commands	Cisco IOS Master Commands List, All Releases
Network Management commands	Cisco IOS Network Management Command Reference
IP extended access lists	"Configuring IPv4 Addresses" chapter of the Cisco IOS IP Addressing Configuration Guide
IPX extended access lists	"Configuring Novell IPX" chapter of the Cisco IOS Novell IPX Configuration Guide
NTP package vulnerability	Network Time Protocol Package Remote Message Loop Denial of Service Vulnerability
Cisco IOS software releases	White Paper: Cisco IOS Reference Guide

Standards

Standard	Title
None	

MIBs

MIB	MIBs Link
None	To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL:
	http://www.cisco.com/go/mibs

RFCs

RFC	Title
RFC 1305	Network Time Protocol (Version 3) Specification, Impl

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	http://www.cisco.com/cisco/web/support/index.html

Feature Information for Setting Time and Calendar Services

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2 Feature Information for Setting Time and Calendar Services

Feature Name	Releases	Feature Information
Network Time Protocol	Cisco IOS XE Release 2.1 Cisco IOS XE Release 3.3S	NTP is a protocol designed to time-synchronize a network of machines. NTP runs on UDP, which in turn runs on IP. NTP is documented in RFC 1305.
		The following commands were introduced or modified: ntp access-group, ntp allow mode passive, ntp authenticate, ntp authentication-key, ntp broadcast, ntp broadcast client, ntp broadcastdelay, ntp clear drift, ntp clock-period, ntp disable, ntp logging, ntp master, ntp max-associations, ntp multicast, ntp multicast client, ntp server, ntp source, ntp trusted-key, ntp update-calendar.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Defining Memory Threshold Notifications

The Memory Threshold Notifications feature allows you to reserve memory for critical notifications and to configure a router to issue notifications when available memory falls below a specified threshold.

- Finding Feature Information, page 43
- Information About Memory Threshold Notifications, page 43
- How to Define Memory Threshold Notifications, page 44
- Configuration Examples for Memory Threshold Notifications, page 45
- Additional References, page 46
- Feature Information for Memory Threshold Notifications, page 47

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Memory Threshold Notifications

The Memory Threshold Notifications feature provides two ways to mitigate low-memory conditions on a router: notifications can be sent to indicate that free memory has fallen below a configured threshold, and memory can be reserved to ensure that sufficient memory is available to issue critical notifications. To implement the Memory Threshold Notifications feature, you should understand the following concepts:

- Memory Threshold Notifications, page 43
- Memory Reservation, page 44

Memory Threshold Notifications

Notifications are messages issued by the router. When you specify a memory threshold using the **memory free low-watermark** command, for example, the router issues a notification when available free memory falls below the specified threshold, and again once available free memory rises to 5 percent above the specified threshold. The following are examples of memory threshold notifications:

Available Free Memory Less Than the Specified Threshold

000029: *Aug 12 22:31:19.559: SYS-4-FREEMEMLOW: Free Memory has dropped below 2000k Pool: Processor Free: 66814056 freemem_lwm: 204800000

Available Free Memory Recovered to More Than the Specified Threshold

000032: *Aug 12 22:33:29.411: SSYS-5-FREEMEMRECOVER: Free Memory has recovered 2000k Pool: Processor Free: 66813960 freemem_lwm: 0

Memory Reservation

Memory reservation for critical operations ensures that management processes, such as event logging, continue to function even when router memory is exhausted.

How to Define Memory Threshold Notifications

- Setting a Low Free Memory Threshold, page 44
- Reserving Memory for Critical Notifications, page 45

Setting a Low Free Memory Threshold

Perform this task to set a low free memory threshold.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. memory free low-watermark [processor threshold

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	

Command or Action	Purpose
Step 3 memory free low-watermark [processor threshold	Specifies a threshold in kilobytes of free processor memory. To view acceptable values for the memory threshold, enter the following command:
Example:	memory free low-watermark processor ?
Router(config)# memory free low-watermark processor 20000	

Reserving Memory for Critical Notifications

When a router is overloaded by processes, the amount of available memory might fall to levels insufficient for it to issue critical notifications. Perform this task to reserve a region of memory to be used by the router for the issuing of critical notifications.

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. memory reserve critical kilobytes

DETAILED STEPS

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
		Enter your password if prompted.
	Example:	
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	memory reserve critical kilobytes	Reserves the specified amount of memory in kilobytes so that the router can issue critical notifications.
	Example:	The amount of memory reserved for critical notifications cannot exceed 25 percent of total available memory.
	${\tt Router(config)\#\ memory\ reserve\ critical\ 1000}$	

Configuration Examples for Memory Threshold Notifications

• Setting a Low Free Memory Threshold Examples, page 46

• Reserving Memory for Critical Notifications Example, page 46

Setting a Low Free Memory Threshold Examples

Threshold for Free Processor Memory

The following example shows how to specify a threshold of 20000 KB of free processor memory before the router issues notifications:

Router(config)# memory free low-watermark processor 20000

If available free memory falls below the specified threshold, the router sends a notification message like this one:

000029: *Aug 12 22:31:19.559: SSYS-4-FREEMEMLOW: Free Memory has dropped below 20000k Pool: Processor Free: 66814056 freemem_lwm: 204800000

Once available free memory rises to above 5 percent of the threshold, the router sends a notification message like this one:

000032: *Aug 12 22:33:29.411: SSS-5-FREEMEMRECOVER: Free Memory has recovered 20000k Pool: Processor Free: 66813960 freemem_lwm: 0

Reserving Memory for Critical Notifications Example

The following example shows how to reserve 1000 KB of memory for critical notifications:

Router# memory reserved critical 1000

The amount of memory reserved for critical notifications cannot exceed 25 percent of total available memory.

Additional References

The following sections provide references related to the Memory Threshold Notifications feature.

Related Documents

Related Topic	Document Title	
Cisco IOS XE commands	For information about Cisco IOS XE commands, use the Command Lookup Tool at http://tools.cisco.com/Support/CLILookup or the Cisco IOS Master Command List, All Releases, at http://www.cisco.com/en/US/docs/ios/mcl/allreleasemcl/all_book.html.	

Standards

Standard	Title
No new or modified standards are supported by this feature and support for existing standards has not been modified by this feature.	

MIBs

MIB	MIBs Link	
No new or modified MIBs are supported by this feature and support for existing MIBs has not been modified by this feature.	To locate and download MIBs for selected platforms, Cisco IOS XE releases, and feature sets, use Cisco MIB Locator found at the following URL:	
	http://www.cisco.com/go/mibs	

RFCs

RFC	Title
No new or modified RFCs are supported by this feature and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.	http://www.cisco.com/techsupport
To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.	
Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.	

Feature Information for Memory Threshold Notifications

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3 Feature Information for Memory Threshold Notifications

Feature Name	Releases	Feature Information
Memory Threshold Notifications	Cisco IOS XE Release 2.1	This feature was introduced on Cisco ASR 1000 Series Aggregation Services Routers.

Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.