Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
CONTENTS

Preparing for Broadband Access Aggregation 1
 Finding Feature Information 1
 Prerequisites for Preparing for Broadband Access Aggregation 2
 Restrictions for Preparing for Broadband Access Aggregation 2
 Information About Preparing for Broadband Access Aggregation 2
 Virtual-Access Interfaces 2
 Autosense for ATM PVCs 3
 Virtual Access Interface Precloning 3
 Configuration Enhancements for Broadband Scalability 3
 Virtual Access Subinterfaces 3
 Virtual Template Compatibility with Subinterfaces 4
 Benefits of Using Broadband Scalability Features 4
 How to Prepare for Broadband Access Aggregation 4
 Configuring PVCs 5
 Benefits of Configuring a PVC Range 5
 Configuring an ATM PVC or PVC Range 5
 Configuring an Individual PVC Within a PVC Range 7
 Configuring a Virtual Template 9
 Precloning Virtual-Access Interfaces 10
 Configuring Enhancements for Broadband Scalability 11
 Verifying Virtual-Template Compatibility with Virtual-Access Subinterfaces 11
 Disabling Virtual-Access Subinterfaces 12
 Configuration Examples for Preparing for Broadband Access Aggregation 13
 ATM PVC Range on a Point-to-Point Subinterface Example 13
 ATM PVC Range on a Multipoint Subinterface Example 14
 Individual PVC Within a PVC Range Configuration Example 14
 Virtual-Access Subinterfaces Configuration Examples 14
 Virtual-Access Subinterface Configuration Example 14
 Testing a Virtual Template for Compatibility with Subinterfaces Example 15
Feature Information for Upstream PPPoX Connection Speed Transfer at LAC 72

Providing Session Limit Support 75
Finding Feature Information 75
Information About Providing Session Limit Support 75
Benefits of Providing Session Limit Support 75
How to Provide Session Limit Support 75
 Specifying the Maximum Number of PPPoE Sessions on the Router 76
 Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface 77
Configuration Examples for Providing Session Limit Support 79
 Specifying the Maximum Number of PPPoE Sessions on a Router Example 79
 Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface
 Example 79
Additional References 79
Feature Information for Providing Session Limit Support 81

Monitoring PPPoE Sessions with SNMP 83
Finding Feature Information 83
Prerequisites for Monitoring PPPoE Sessions with SNMP 83
Restrictions for Monitoring PPPoE Sessions with SNMP 84
Information About Monitoring PPPoE Sessions with SNMP 84
 Network Management Protocol 84
 PPPoE Session Count MIB 84
 Benefits of Monitoring PPPoE Sessions with SNMP 85
How to Configure SNMP Monitoring of PPPoE Sessions 85
 Enabling PPPoE Session Count SNMP Traps 86
 Configuring the PPPoE Session-Count Threshold for the Router Using VPDN Groups 87
 Configuring the PPPoE Session-Count Threshold for the Router Using BBA Groups 88
 Configuring the PPPoE Session-Count Threshold for a PVC 89
 Configuring the PPPoE Session-Count Threshold for a VC Class 91
 Configuring the PPPoE Session-Count Threshold for an ATM PVC Range 92
 Configuring the PPPoE Session-Count Threshold for an Individual PVC Within a Range 93
 Verifying PPPoE Session-Count Thresholds 95
 Monitoring and Maintaining PPPoE Session Counts and SNMP Notifications 96
Configuration Examples for Monitoring PPPoE Sessions with SNMP 97
 Configuring PPPoE Session-Count SNMP Traps Example 98
 PPPoE Session-Count Threshold for the Router Example 98
Benefits of PPPoE Profiles 143
PPPoE Connection Throttling 143
PPPoE Profile Assignment to a VLAN Without Subinterfaces 143
 PPPoE over VLAN Configuration Without Using Subinterfaces 144
 PPPoE over VLAN Support on ATMs 144
 Benefits of PPPoE over VLAN Scaling and ATM Support for PPPoE over VLANs 145
Autosense for ATMs 145
 Benefits of Autosense for ATMs 145
MAC Address for PPPoEoA 146
 Benefits of the Configurable MAC Address for PPPoE Feature 146
How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions 146
 Defining a PPPoE Profile 147
 Assigning a PPPoE Profile to an Ethernet Interface 149
 Assigning a PPPoE Profile to an ATM 150
 Assigning a PPPoE Profile to an ATM Range and Within a Range 152
 Assigning a PPPoE Profile to an ATM VC Class 155
 Assigning a PPPoE Profile to a VLAN Subinterface 157
 Configuring PPPoEoE on a Cisco 7600 SIP-400 159
 Restrictions 159
 Configuration Tasks for PPPoE over Ethernet 159
 Configuring a Virtual Template Interface 160
 Monitoring Virtual Access Interface 161
 Creating an Ethernet Interface and Enabling PPPoE 162
 Configuring a BBA Group to Establish PPPoE Sessions 163
 Tasks for Configuring PPPoE over 802.1Q VLANs on a Cisco 7600 Router with a SIP-400 166
 Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE 166
 Verifying PPPoE over Ethernet 168
 Clearing PPPoE Sessions 169
 Enabling PPPoE over IEEE 802.1Q VLAN 170
 Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN 172
 Enabling Support for PPPoE over IEEE 802.1Q VLAN in a VC Class 173
 Configuring MAC Addresses for PPPoEoA 174
 Configuring PPPoE Session Recovery After Reload 176
 Troubleshooting Tips 178
Monitoring and Maintaining PPPoE Profiles 178
Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of
PPPoE Sessions 179
 PPPoE Profiles Configuration Example 179
 MAC Address of the PPPoEoA Session as the Burned-In MAC Address Example 181
 Address Autoselect Configured and MAC Address Not Configured Example 181
 PPPoE over 802.1Q VLAN Support on an Ethernet Interface Example 182
 PPPoE over 802.1Q VLAN Support on ATMs Example 182
 MAC Address Configured on the ATM Interface Example 182
 MAC Address Configured on the BBA Group Example 183
 PPPoE Session Recovery After Reload Example 183
Where to Go Next 184
Additional References 184
Feature Information for Providing Protocol Support for Broadband Access Aggregation for
PPPoE Sessions 186

PPPoE Client DDR Idle-Timer 191
 Finding Feature Information 191
 Prerequisites for PPPoE Client DDR Idle-Timer 191
 Information About PPPoE Client DDR Idle-Timer 191
 DDR Functionality and the PPPoE Client 192
 How to Configure PPPoE Client DDR Idle-Timer 192
 Configure the PPPoE Client DDR Idle-Timer on an ATM PVC Interface 192
 What to Do Next 194
 Configure the PPPoE Client DDR Idle-Timer on an Ethernet Interface 194
 What to Do Next 195
 Configure the Dialer Interface 195
 Configuration Examples for PPPoE Client DDR Idle-Timer 197
 PPPoEoA Client Configuration Example 197
 PPPoEoE Client Configuration Example 198
 Additional References 198
 Feature Information for PPPoE Client DDR Idle-Timer 200

Enabling PPPoE Relay Discovery and Service Selection Functionality 201
 Finding Feature Information 201
 Prerequisites for Enabling PPPoE Relay Discovery and Service Selection Functionality 201
 Information About Enabling PPPoE Relay Discovery and Service Selection Functionality 202
 L2TP Active Discovery Relay for PPPoE 202
Feature Information for Establishing PPPoE Session Limits per NAS Port 225

Offering PPPoE Clients a Selection of Services During Call Setup 227

Finding Feature Information 227

Prerequisites for Offering PPPoE Clients a Selection of Services During Call Setup 227

Information About Offering PPPoE Clients a Selection of Services During Call Setup 228

- PPPoE Service Selection Through Service Tags 228
- PPPoE Service Names 228
- RADIUS Service Profiles for PPPoE Service Selection 229
- Benefits of PPPoE Service Selection 229
- Attributes Used to Define a RADIUS Service Profile for PPPoE Selection 229
- Attributes Used Configure a Subscriber Profile on the Radius Server for PPPoE Service Selection 230

Prerequisites 230

How to Offer PPPoE Clients a Selection of Services During Call Setup 230

- Configuring the Subscriber Profile for PPPoE Service Selection 230
- Configuring the PPPoE Profile for PPPoE Service Selection 232

Troubleshooting Tips 233

What to Do Next 233

Verifying PPPoE Service Selection 233

Monitoring and Maintaining PPPoE Service Selection 234

Configuration Examples for PPPoE Service Selection 239

- PPPoE Service Selection with ATM QoS and Tunneling Services Example 239
- PPPoE Service Selection with Tunneling Services Example 240

Where to Go Next 241

Additional References 241

Feature Information for Offering PPPoE Clients a Selection of Services During Call Setup 243

Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs 245

Finding Feature Information 245

Prerequisites for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs 246

Restrictions for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs 246

Information About Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs 246

- Overview on Bridged 1483 Encapsulated Traffic over ATM SVCs 246
- ATM RBE Subinterface Grouping by PVC Range 247
- DHCP Option 82 Support for RBE 247
- DHCP Lease Limit per ATM RBE Unnumbered Interface 248
ATM Routed Bridge Encapsulation Support with SSO and ISSU 249
Benefits of Providing Connectivity Using ATM Routed Bridge Encapsulation 249
How to Configure ATM Routed Bridge Encapsulation over PVCs 249
Configuring ATM Routed Bridge Encapsulation Using PVCs 249
Configuring DHCP Option 82 for RBE 252
Configuring the DHCP Lease Limit 253
Troubleshooting the DHCP Lease Limit 254
Configuration Examples for Providing Connectivity Using ATM Routed Bridge Encapsulation 255
Example Configuring ATM RBE on PVCs 255
Example Configuring ATM RBE on an Unnumbered Interface 255
Example Concurrent Bridging and ATM RBE 256
Example DHCP Option 82 for RBE Configuration 256
Example DHCP Lease Limit 257
Additional References 257
Feature Information for Providing Connectivity Using ATM Routed Bridge Encapsulation 258

RBE Client Side Encapsulation with QoS 261
Finding Feature Information 261
Prerequisites for RBE Client Side Encapsulation with QoS 261
Information About RBE Client Side Encapsulation with QoS 261
RBE and QoS 262
Low-Latency Queueing and Class-Based Weighted Fair Queueing 262
Class-Based Marking 263
Class-Based Policing 263
Additional References 264
Feature Information for RBE Client Side Encapsulation with QoS 264

Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 267
Finding Feature Information 267
Restrictions for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 267
Information About Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 268
Benefits of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 268
Memory Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 268
Performance Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 269
How to Configure Routed Bridge Encapsulation with ATM Virtual Circuit Bundles 269
Specifying the Method for Selecting PVC Bundle Members 269
Configuring the QoS Group-Based Method for Selection of PVC Bundle Members 271
Contents

Configuring DBS on a PVC 322
Configuring DBS on a Range of PVCs 323
Configuring DBS on a PVC Within a PVC Range 324
Configuring the RADIUS Attributes for DBS 325
Verifying DBS 326
Monitoring DBS 330
Configuration Examples for Controlling Subscriber Bandwidth 331
Configuring DBS for a VC Example 331
Configuring DBS for a PVC Example 331
Configuring DBS for a Range of PVCs Example 331
Configuring DBS for a PVC Within a PVC Range Example 331
Configuring RADIUS Attributes Examples 332
Additional References 332
Feature Information for Controlling Subscriber Bandwidth 333

Configuring the Physical Subscriber Line for RADIUS Access and Accounting 335
Finding Feature Information 335
Prerequisites for Configuring the Physical Subscriber Line for RADIUS Access and Accounting 335
Information About Configuring the Physical Subscriber Line for RADIUS Access and Accounting 336
 PPP over ATM and PPPoE over ATM NAS-Port Attribute Field Format 336
 PPPoE over IEEE 802.1Q VLANs Format 337
How to Configure the Physical Subscriber Line for RADIUS Access and Accounting 337
 Configuring the LAC for RADIUS Port Identification for PPP 337
 Configuring the LNS for RADIUS Port Identification for PPP 338
Configuration Examples for Identifying the Physical Subscriber Line 339
 RADIUS Port Identification for PPPoE over ATM Example 340
 RADIUS Port Identification for PPPoE over an 802.1Q VLAN Example 340
 LNS Configuration for RADIUS Port Identification for PPP Example 341
Additional References 341
Feature Information for Identifying the Physical Subscriber Line for RADIUS Access and Accounting 343

1-Port ADSL WAN Interface Card 345
Finding Feature Information 345
Restrictions for 1-Port ADSL WAN Interface Card 346
Information About 1-Port ADSL WAN Interface Card 346
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>VoATM over AAL5 on the ATM Interface Example</td>
<td>379</td>
</tr>
<tr>
<td>Additional References</td>
<td>381</td>
</tr>
<tr>
<td>Feature Information for 1-Port ADSL WAN Interface Card</td>
<td>382</td>
</tr>
<tr>
<td>Glossary</td>
<td>383</td>
</tr>
<tr>
<td>ADSL Support in IPv6</td>
<td>385</td>
</tr>
<tr>
<td>Finding Feature Information</td>
<td>385</td>
</tr>
<tr>
<td>Restrictions for ADSL Support in IPv6</td>
<td>385</td>
</tr>
<tr>
<td>ADSL Support in IPv6</td>
<td>385</td>
</tr>
<tr>
<td>Address Assignment for IPv6</td>
<td>385</td>
</tr>
<tr>
<td>Stateless Address Autoconfiguration</td>
<td>386</td>
</tr>
<tr>
<td>How to Configure ADSL Support in IPv6</td>
<td>386</td>
</tr>
<tr>
<td>Configuring the NAS</td>
<td>386</td>
</tr>
<tr>
<td>Configuring the Remote CE Router</td>
<td>390</td>
</tr>
<tr>
<td>Configuration Examples for ADSL Support in IPv6</td>
<td>392</td>
</tr>
<tr>
<td>Example: NAS Configuration</td>
<td>392</td>
</tr>
<tr>
<td>Example: Remote CE Router Configuration</td>
<td>393</td>
</tr>
<tr>
<td>Additional References</td>
<td>393</td>
</tr>
<tr>
<td>Feature Information for ADSL Support in IPv6</td>
<td>394</td>
</tr>
<tr>
<td>ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>397</td>
</tr>
<tr>
<td>Finding Feature Information</td>
<td>397</td>
</tr>
<tr>
<td>Prerequisites for ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>398</td>
</tr>
<tr>
<td>Restrictions for ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>398</td>
</tr>
<tr>
<td>Information About ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>399</td>
</tr>
<tr>
<td>SHDSL Features</td>
<td>399</td>
</tr>
<tr>
<td>ATM Features</td>
<td>399</td>
</tr>
<tr>
<td>Interface and Controller Numbering on the Cisco 1721 Router</td>
<td>400</td>
</tr>
<tr>
<td>Interface Numbering on Cisco 2800 and Cisco 3800 Series Routers</td>
<td>400</td>
</tr>
<tr>
<td>How to Configure ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>401</td>
</tr>
<tr>
<td>Configuring G.SHDSL Service</td>
<td>401</td>
</tr>
<tr>
<td>Examples</td>
<td>408</td>
</tr>
<tr>
<td>What to Do Next</td>
<td>408</td>
</tr>
<tr>
<td>Verifying the ATM Configuration</td>
<td>408</td>
</tr>
<tr>
<td>Examples</td>
<td>410</td>
</tr>
<tr>
<td>What to Do Next</td>
<td>412</td>
</tr>
<tr>
<td>Verifying DSL Configuration</td>
<td>412</td>
</tr>
</tbody>
</table>
Preparing for Broadband Access Aggregation

Before you begin to perform the tasks required to accomplish broadband access aggregation, there are several preparatory tasks that you can perform at your option to enable you to complete the aggregation task with more efficiency. This module presents three of those preparation tasks: configuring permanent virtual circuits (PVCs), configuring a virtual template interface, and configuring enhancements for broadband scalability.

In a digital subscriber line (DSL) environment, many applications require the configuration of a large number of PVCs. Configuring PVCs before you start broadband aggregation can save you time because configuring a range of PVCs is faster than configuring PVCs individually.

A virtual template interface saves time because all PPP parameters are managed within the virtual template configuration. Any configurations made in the virtual template are automatically propagated to the individual virtual access interfaces.

Using the enhancement for broadband scalability reduces the amount of memory that is used per terminated PPP session by creating virtual access subinterfaces. Determining if virtual access subinterfaces are available on your system and preconfiguring these enhancements can speed your aggregation process and improve system performance.

- Finding Feature Information, page 1
- Prerequisites for Preparing for Broadband Access Aggregation, page 2
- Restrictions for Preparing for Broadband Access Aggregation, page 2
- Information About Preparing for Broadband Access Aggregation, page 2
- How to Prepare for Broadband Access Aggregation, page 4
- Configuration Examples for Preparing for Broadband Access Aggregation, page 13
- Where to Go Next, page 16
- Additional References, page 17
- Feature Information for Preparing for Broadband Access Aggregation, page 18

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Preparing for Broadband Access Aggregation

Before configuring broadband access aggregation, you will need to know the information that is presented in the "Understanding Broadband Access Aggregation" module.

Additional information can be found in these documents:

- Configuring a PVC range--For detailed information about configuring individual ATM PVCs, see "Configuring PVCs" in the Cisco IOS Wide-Area Networking Configuration Guide.
- Creating a virtual template--For detailed information see the "Configuring Virtual Template Interfaces" chapter in the Cisco IOS Dial Technologies Configuration Guide.

Restrictions for Preparing for Broadband Access Aggregation

Broadband scalability is not intended to improve the scalability of the following:

- Scaling for dial-out
- Scaling for PPP callback
- Scaling virtual profiles
- Scaling Multilink PPP (MLP)
- Various PPP (PPPoX) applications that terminate PPP on physical interfaces

Information About Preparing for Broadband Access Aggregation

- Virtual-Access Interfaces, page 2
- Autosense for ATM PVCs, page 3
- Virtual Access Interface Precloning, page 3
- Configuration Enhancements for Broadband Scalability, page 3
- Benefits of Using Broadband Scalability Features, page 4

Virtual-Access Interfaces

A virtual-template interface is used to provide the configuration for dynamically created virtual-access interfaces. It is created by users and can be saved in NVRAM.

Once the virtual-template interface is created, it can be configured in the same way as a serial interface.

Virtual-template interfaces can be created and applied by various applications such as virtual profiles, virtual private dialup networks (VPDN), PPP over ATM, protocol translation, and Multichassis Multilink PPP (MMP).

All PPP parameters are managed within the virtual-template configuration. Configuration changes made to the virtual template are automatically propagated to the individual virtual access interfaces. Multiple virtual-access interfaces can originate from a single virtual template; therefore, multiple PVCs can use a single virtual template.
Cisco IOS software supports up to 200 virtual-template configurations. If greater numbers of tailored configurations are required, an authentication, authorization, and accounting (AAA) server may be employed. Refer to the "Configuring Per-User Configuration" chapter in the Cisco IOS Dial Technologies Configuration Guide for additional information on configuring an AAA server.

If the parameters of the virtual template are not explicitly defined before the ATM PVC is configured, the PPP interface is brought up using default values from the virtual template. Some parameters (such as an IP address) take effect only if specified before the PPP interface comes up. Therefore, it is recommended that you explicitly create and configure the virtual template before configuring the ATM PVC to ensure that such parameters take effect. Alternatively, if parameters are specified after the ATM PVC has been configured, use the shutdown command followed by the no shutdown command on the ATM subinterface to restart the interface; this restart will cause the newly configured parameters (such as an IP address) to take effect.

Network addresses for the PPP-over-ATM connections are not configured on the main ATM interface or subinterface. Instead, they are configured on the appropriate virtual template or obtained via AAA.

The virtual templates support all standard PPP configuration commands; however, not all configurations are supported by the PPP-over-ATM virtual access interfaces. These restrictions are enforced at the time the virtual-template configuration is applied (cloned) to the virtual-access interface.

Autosense for ATM PVCs

The PPPoA/PPPoE Autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.

> Note

The PPPoA/PPPoE Autosense for ATM PVCs feature is supported on SNAP-encapsulated ATM PVCs only. It is not supported on MUX-encapsulated PVCs.

Virtual Access Interface Precloning

Precloning virtual-access interfaces for PPPoA at the NAS enables the virtual-access interface to be allocated at system start. This functionality significantly reduces the load on the system during call setup. When precloning is used, the virtual-access interface is attached to the session upon receipt of the first session-initiation packet from the client. The virtual-access interface is detached upon termination of the PPP session.

Configuration Enhancements for Broadband Scalability

The Configuration Enhancements for Broadband Scalability feature reduces the amount of memory that is used per terminated PPP session by creating virtual-access subinterfaces. Depending on the configuration of the source virtual template, virtual-access subinterfaces may be available. This feature also introduces a command to determine if a virtual template is compatible with virtual access subinterfaces.

- Virtual Access Subinterfaces, page 3
- Virtual Template Compatibility with Subinterfaces, page 4

Virtual Access Subinterfaces
The virtual-template command supports existing features, functions, and configurations. By default, the virtual-template subinterface command is enabled.

The virtual template manager will determine if the set of options configured on the virtual template are all supported on a subinterface. Virtual-access subinterfaces will be created for all virtual templates that support subinterfaces. If the user has entered any commands that are not supported on a subinterface, a full virtual access interface will be created and cloned for all PPP sessions using that virtual template. If the virtual-template subinterface command is disabled, full virtual-access interfaces will always be created.

Different applications can use the same virtual template even if one application is subinterface-capable and another is not. The virtual-template manager will be notified whether the application supports virtual-access subinterfaces and creates the appropriate resource.

The ppp multilink and ppp callback accept commands will not necessarily prevent subinterfaces from being created. Often, these commands are present in a virtual-template configuration, but PPP does not negotiate them. If neither of these features is negotiated, virtual-access subinterfaces will be created. If one or both of these features is negotiated, subinterfaces will not be created. The router will automatically determine if subinterfaces will be created depending on how PPP is negotiated on a case-by-case basis.

Virtual Template Compatibility with Subinterfaces

The test virtual-template subinterface privileged EXEC command determines whether a virtual template can support the creation of a virtual-access subinterface. If the virtual template contains commands that prevent the creation of subinterfaces, the test virtual-template subinterface command identifies and displays these commands.

If the creation of virtual-access subinterfaces is disabled by the no virtual-template subinterface command, the test virtual-template subinterface command produces no output.

The debug vtemplate subinterface command displays debug messages that are generated if you enter configuration commands on the virtual template that are not valid on a subinterface. These messages are generated only if the debug vtemplate subinterface command is enabled, the virtual-template subinterface command is enabled, and a virtual template is configured that can support the creation of subinterfaces. If the creation of virtual-access subinterfaces is disabled by the no virtual-template subinterface command, the `debug vtemplate subinterface` command produces no output.

Benefits of Using Broadband Scalability Features

Using broadband scalability reduces the amount of memory that is used per terminated PPP session by creating virtual-access subinterfaces. These virtual-access subinterfaces, along with improvements that are transparent to the user, speed up the cloning process.

How to Prepare for Broadband Access Aggregation

- Configuring PVCs, page 5
- Configuring a Virtual Template, page 9
- Precloning Virtual-Access Interfaces, page 10
- Configuring Enhancements for Broadband Scalability, page 11
Configuring PVCs

In a digital subscriber line (DSL) environment, many applications require the configuration of a large number of ATM PVCs.

Perform the following tasks to configure PVCs:

- **Benefits of Configuring a PVC Range**, page 5
- **Configuring an ATM PVC or PVC Range**, page 5
- **Configuring an Individual PVC Within a PVC Range**, page 7

Benefits of Configuring a PVC Range

A PVC range saves time because configuring a range of PVCs is faster than configuring a number of PVCs individually.

Using a PVC range saves nonvolatile random access memory (NVRAM) because a range of PVCs takes up less NVRAM on network service routers than a large number of individually configured PVCs.

Using a PVC range speeds boot-up time because the command parser is able to parse one configuration command instead of many.

Configuring an ATM PVC or PVC Range

Perform the following task to configure an ATM PVC or PVC range.

SUMMARY STEPS

1. **enable**
2. **configure**
3. Do one of the following:
 - `interface atm slot/port.subinterface-number [point-to-point | multipoint]`
 - or
 - `interface atm number.subinterface-number [point-to-point | multipoint]`
4. Do one of the following:
 - `pvc [name] vpi/vci`
 - `range [range-name] pvc start-vpi/start-vci end-vpi/end-vci`
5. **exit**
6. **show atm pvc [vpi/vci | name | interface atm interface-number]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the <code>interface atm</code> command.¹</td>
</tr>
<tr>
<td>*interface atm slot/port.subinterface-number [point-to-point</td>
<td>or</td>
</tr>
<tr>
<td>multipoint]*</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>*interface atm number.subinterface-number [point-to-point</td>
<td>multipoint]*</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 6/0.200 point-to-point</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 1/0/0.4 multipoint</td>
<td></td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Configures the PVC or a range of PVCs.</td>
</tr>
<tr>
<td>pvc [name] vpi/vci</td>
<td></td>
</tr>
<tr>
<td>range [range-name] pvc start-vpi/start-vci end-vpi/end-vci</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# pvc cisco 0/5</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# range range1 pvc 1/200 1/299</td>
<td></td>
</tr>
</tbody>
</table>
Preparing for Broadband Access Aggregation

Configuring an Individual PVC Within a PVC Range

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>show atm pvc [vpi/vci</td>
</tr>
<tr>
<td></td>
<td>Displays all ATM permanent virtual connections (PVCs) and traffic information.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# show atm pvc 0/5

Example

The following is sample output from the show atm pvc command with the vpi/vci argument specified:

```
Router# show atm pvc 0/41
ATM2/0: VCD: 3, VPI: 0, VCI: 41
UBR, PeakRate: 155000
AAL5-LLC/SNAP, etype:0x0, Flags: 0xC20, VCMode: 0x0
OAM frequency: 0 second(s), OAM retry frequency: 1 second(s), OAM retry frequency: 1 second(s)
OAM up retry count: 3, OAM down retry count: 5
OAM Loopback status: OAM Disabled
OAM VC state: Not Managed
ILMI VC state: Not Managed
InARP frequency: 15 minutes(s)
InProc: 15785, OutProc: 26472, Broadcasts: 0
InFast: 20, OutFast: 20, InAs: 19994, OutAs: 6
OAM cells received: 0
F5 InEndloop: 0, F5 InSegloop: 0, F5 InAIS: 0, F5 InRDI: 0
F4 InEndloop: 0, F4 InSegloop: 0, F4 InAIS: 0, F4 InRDI: 0
OAM cells sent: 0
F5 OutEndloop: 0, F5 OutSegloop: 0, F5 OutRDI: 0
F4 OutEndloop: 0, F4 OutSegloop: 0, F4 OutRDI: 0
OAM cell drops: 0
Status: UP
PPPOE enabled.
```

Configuring an Individual PVC Within a PVC Range

Perform this task to configure an individual PVC within a range.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number [point-to-point | multipoint]
4. range [range-name] pvc start-vpi/start-vci end-vpi/end-vci
5. pvc-in-range [pvc-name] [vpi|vci]
6. end
7. show atm pvc [vpi/vci | name | interface atm interface-number]
8. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | | | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** interface atm number [point-to-point | multipoint] | Specifies an ATM interface or subinterface and enters interface configuration mode. |
| **Example:** | |
| Router(config)# interface atm 5/0.1 multipoint | |
| **Step 4** range [range-name] pvc start-vpi/start-vci end-vpi/end-vci | Defines a range of PVCs and enables PVC range configuration mode. |
| **Example:** | |
| Router(config-if)# range range-one pvc 1/100 4/199 | |
| **Step 5** pvc-in-range [pvc-name] [vpi]/[vci] | Defines an individual PVC within a PVC range and enables PVC-in-range configuration mode. |
| **Example:** | |
| Router(config-if-atm-range)# pvc-in-range pvc1 3/104 | |
| **Step 6** end | Ends the PVC range configuration mode. |
| **Example:** | |
| Router(config-if-atm-range-pvc)# end | |
| **Step 7** show atm pvc [vpi/vci | name | interface atm interface-number] | Displays the PVC information. |
| **Example:** | |
| Router(config-if)# show atm pvc pvc1 3/104 | |
Configuring a Virtual Template

Before configuring the ATM PVC for PPP over ATM, you typically create and configure a virtual template. Use the following commands to create and configure a virtual template.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface virtual-template number`
4. `encapsulation ppp`
5. `ip unnumbered ethernet number`
6. `ppp authentication chap`
7. `no ip route-cache`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface virtual-template number</td>
<td>Creates a virtual template, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface virtual-template 1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action
<table>
<thead>
<tr>
<th>Step 4</th>
<th>encapsulation ppp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td></td>
</tr>
</tbody>
</table>

Purpose: Enables PPP encapsulation on the virtual template.

Step 5
ip unnumbered ethernet number

Example:

Router(config-if)# ip unnumbered ethernet 1

Purpose: (Optional) Enables IP without assigning a specific IP address on the LAN.

Step 6
ppp authentication chap

Example:

Router(config-if)# ppp authentication chap

Purpose: (Optional) Enables CHAP authentication.

Step 7
no ip route-cache

Example:

Router(config-if)# no ip route-cache

Purpose: (Optional) Disables IP route-caching.

Other optional configuration commands can be added to the virtual template configuration. For example, you can enable the PPP authentication on the virtual template using the `ppp authentication chap` command. Refer to the "Configuring Virtual Template Interfaces" chapter in the Cisco IOS Dial Technologies Configuration Guide for additional information about configuring the virtual template.

Precloning Virtual-Access Interfaces

Precloning virtual-access interfaces at the NAS reduces the load on the system during call setup. Use the following procedure to preclone a virtual-access interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. virtual-template template-number pre-clone number
4. show vtemplate
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 virtual-template template-number pre-clone number</td>
<td>Specifies the number of virtual-access interfaces to be created and cloned from a specific virtual access template.</td>
</tr>
<tr>
<td>Example: Router(config)# virtual-template 1 pre-clone 250</td>
<td></td>
</tr>
<tr>
<td>Step 4 show vtemplate</td>
<td>Displays the state of virtual-access interface precloning.</td>
</tr>
<tr>
<td>Example: Router(config-if)# show vtemplate</td>
<td></td>
</tr>
</tbody>
</table>

Example

In the following sample output, precloning is enabled for Virtual-Template 1, 250 virtual-access interfaces have been precloned, and 249 virtual-access interfaces are available for new PPPoA and PPPoE sessions. Only one virtual-access interface is in use, and no virtual-access interfaces were cloned during call setup.

```
Router# show vtemplate
Virtual-Template 1, pre-cloning is on
Pre-clone limit: 250, current number: 249
Active vaccess number: 1
Generic free vaccess number: 0
```

Configuring Enhancements for Broadband Scalability

To configure enhancement for broadband scalability, you will perform the following tasks:

- Verifying Virtual-Template Compatibility with Virtual-Access Subinterfaces, page 11
- Disabling Virtual-Access Subinterfaces, page 12

Verifying Virtual-Template Compatibility with Virtual-Access Subinterfaces

Perform the following task to test a virtual template to determine if it is compatible with the creation of virtual access subinterfaces.
SUMMARY STEPS

1. enable
2. test virtual-template template subinterface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 test virtual-template template subinterface</td>
<td>Tests the specified virtual template to determine if it is compatible with the creation of virtual access subinterfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# test virtual-template virtual-template1 subinterface</td>
<td></td>
</tr>
</tbody>
</table>

Example

The output generated by the `test virtual-template subinterface` command describes the compatibility of the virtual template with the creation of subinterfaces.

This example shows output indicating that the virtual template is not compatible. This output also includes a list of the commands, which are configured on the virtual template, that cause the incompatibility.

```
Router# test virtual-template virtual-template1 subinterface
Subinterfaces cannot be created using
Virtual-Template
Interface commands:
  traffic-shape rate 50000 8000 8000 1000
```

Disabling Virtual-Access Subinterfaces

When a virtual template is not compatible with the creation of subinterfaces, use the following task to configure a router to always create full virtual-access interfaces instead of virtual-access subinterfaces.

Note

The `virtual-template subinterface` command is enabled by default and does not appear in the running configuration.

SUMMARY STEPS

1. enable
2. configure terminal
3. no virtual-template subinterface
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no virtual-template subinterface</td>
<td>Disables the creation of virtual-access subinterfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no virtual-template subinterface</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Preparing for Broadband Access Aggregation

- ATM PVC Range on a Point-to-Point Subinterface Example, page 13
- ATM PVC Range on a Multipoint Subinterface Example, page 14
- Individual PVC Within a PVC Range Configuration Example, page 14
- Virtual-Access Subinterfaces Configuration Examples, page 14

ATM PVC Range on a Point-to-Point Subinterface Example

In the following example, a PVC range called "range1" is created with a total of 100 PVCs in the range. A point-to-point subinterface will be created for each PVC in the range. Routed bridge encapsulation is configured on this range.

```bash
interface atm 6/0.200 point-to-point
ip unnumbered loopback 1

atm route-bridged ip
range range1 pvc 1/200 1/299
end
```
ATM PVC Range on a Multipoint Subinterface Example

In the following example, a PVC range called "range-pppoa-1" is created with a total of 500 PVCs in the range. PVC parameters are configured for the range, including the assignment of a VC class called "classA."

```
interface atm 6/0.110 multipoint
  range range-pppoa-1 pvc 100 4/199
  class-range classA
  ubr 1000
  encapsulation aal5snap
  protocol ppp virtual-template 2
```

Individual PVC Within a PVC Range Configuration Example

In the following example, "pvc1" within the PVC range called "range1" is deactivated.

```
interface atm 6/0.110 multipoint
  range range1 pvc 100 4/199
  class-range classA
  pvc-in-range pvc1 3/104
  shutdown
```

Virtual-Access Subinterfaces Configuration Examples

This section provides the following configuration examples:

- Virtual-Access Subinterface Configuration Example, page 14
- Testing a Virtual Template for Compatibility with Subinterfaces Example, page 15

Virtual-Access Subinterface Configuration Example

The example that follows shows a virtual template that is compatible with virtual-access subinterfaces.

```
interface Virtual-Template1
  ip unnumbered Loopback0
  peer default ip address pool pool-1
  ppp authentication chap
  ppp multilink
```

The virtual-access subinterface command is enabled by default and does not appear in running configurations. Only the no virtual-access subinterface command will appear in running configurations.

```
interface Virtual-Template1
  ip unnumbered Loopback0
  peer default ip address pool pool-1
  ppp authentication chap
  ppp multilink
```

The following example shows a configuration in which the creation of virtual-access subinterfaces has been disabled by the no virtual-access subinterface command. When this command is configured, virtual-access interfaces are not registered with the SNMP code on the router. In network environments that do not use SNMP to manage PPP sessions, this saves the memory and CPU processing that would be used to register the virtual-access interfaces with the SNMP code.

```
Current configuration :6003 bytes
```
Testing a Virtual Template for Compatibility with Subinterfaces Example
This example shows the process for testing a virtual template to determine if it can support virtual-access subinterfaces. The following command displays the configuration for virtual template 1:

```
Router# show running interface virtual-template 1
Building configuration...
!
interface Virtual-Template1
  ip unnumbered Loopback0
   peer default ip address pool pool-1
   ppp authentication chap
   traffic-shape rate 50000 8000 8000 1000
end
```

The `test virtual-template subinterface` command tests virtual template 1 to determine if it can support subinterfaces. The output shows that the `traffic-shape rate` command that is configured on virtual template 1 prevents the virtual template from being able to support subinterfaces.

```
Router# test virtual-template 1 subinterface
Subinterfaces cannot be created using Virtual-Template1
Interface commands:
  traffic-shape rate 50000 8000 8000 1000
```

Where to Go Next

To configure broadband access, first select one of the three main configuration tasks:

1. If you want to provide protocol support for PPPoE sessions, refer to the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module. Then go to 2.

 or

2. If you want to provide protocol support for PPP over ATM sessions, refer to the "Providing Protocol support for Broadband Access Aggregation of PPP over ATM Sessions" module. Then go to 2.

 or

3. If you want to provide connectivity from a remote bridged ethernet network to a routed network using ATM routed bridge encapsulation, refer to the "Providing Connectivity Using ATM Routed Bridge Encapsulation" module.

 1. If you are using a RADIUS server for access and accounting, refer to the "Identifying the Physical Subscriber Line for RADIUS Access and Accounting" module. Then go to 3.

 2. If you are setting up PPPoE services, you can select the following options:

 • If you want to establish PPPoE session limits for sessions on a specific permanent virtual circuit or VLAN configured on an L2TP access concentrator, refer to the "Establishing PPPoE Session Limits per NAS Port" module.

 • If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup, refer to the "Offering PPPoE Clients a Selection of Services During Call Setup" module.

 • If you want to control subscriber bandwidth, refer to the "Controlling Subscriber Bandwidth" module.

 • If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over a L2TP control channel to an LNS or tunnel switch, refer to the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.

 • If you want to configure the transfer upstream of the session speed value, refer to the "Configuring Upstream Connections Speed Transfer" module.
• If you want to use Simple Network Management Protocol (SNMP) to monitor PPPoE sessions, refer to the "Monitoring PPPoE Sessions with SNMP" module.
• If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, refer to the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.
• If you want to configure a Cisco Subscriber Service Switch, refer to the "Configuring Cisco Subscriber Service Switch Policies" module.

Additional References

The following sections provide references related to the "Preparing for Broadband Aggregation" module.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a PVC range</td>
<td>"Configuring PVCs" chapter in the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>Broadband access aggregation concepts</td>
<td>"Understanding Broadband Access Aggregation” module of the Cisco IOS Broadband Access Aggregation and DSL Configuration Guide</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>"Wide-Area Networking Commands" in the Cisco IOS Wide-Area Networking Command Reference, Release 12.3</td>
</tr>
<tr>
<td>Creating a virtual template</td>
<td>"Configuring Virtual Template Interfaces" chapter in the Cisco IOS Dial Technologies Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Feature Information for Preparing for Broadband Access Aggregation

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Enhancements for</td>
<td>12.2(13)T 12.2(15)B</td>
<td>This feature reduces the amount of memory that is used per terminated PPP session by creating virtual-access subinterfaces. Depending on the configuration of the source virtual template, virtual-access subinterface may be available. This feature also introduces a command to determine if a virtual template is compatible with virtual-access subinterfaces.</td>
</tr>
<tr>
<td>Broadband Scalability</td>
<td>12.2(33)SRC</td>
<td></td>
</tr>
</tbody>
</table>

The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.

http://www.cisco.com/techsupport
PPPoA/PPPoE Autosense for ATM PVCs

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoA/PPPoE Autosense for ATM PVCs</td>
<td>12.2(4)T 12.2(4)T3</td>
<td>This feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Understanding Broadband Access Aggregation

Broadband access aggregation is the means by which connections are made among multiple technologies. These technologies include ISDN, DSL, cable, Ethernet, and wireless devices that are connected to corporate virtual private networks (VPNs), third-party applications, and the Internet. Subscriber demand for high-speed services, including multi-player gaming, video-on-demand, home security, digital audio, streaming video, and many other applications, require the delivery of IP services, regardless of the access medium.

Because so many different technologies are involved in broadband access aggregation, it is important that the service provider understand their network both in terms of the hardware that makes up the installation, which determines what type of sessions need to be established, but also in terms of what kinds of services their subscribers expect to receive. The demands placed on large service provider installations can often result in the need to contend with millions of sessions and provide flexible and reliable configurations for widely diverse consumer needs.

This module contains conceptual information about broadband access aggregation.

- Finding Feature Information, page 21
- Information About Broadband Access Aggregation, page 21
- Additional References, page 25
- Glossary, page 26

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Broadband Access Aggregation

- Encapsulation Protocols, page 22
- Layer 2 Tunneling Protocol, page 22
- ATM Services, page 23
- PPPoE, page 23
- PPPoEoE PPPoE0802.1q, page 23
Encapsulation Protocols

Internet access has evolved from dialup modems to high-speed broadband. One of the most important considerations in setting up a broadband network is encapsulation. The key protocols include the tunneling protocol and the transport protocol. The tunneled protocol (the one to be encapsulated) gains one or more headers that can be used to identify different tunnels between a pair of devices and ultimately deliver the payload to a remote peer.

Tunneling protocols can be applied to protocols operating at the same layer of the Open Systems Interconnection (OSI) model or at different layers. A wide range of applications can be derived from various tunneling protocols, such as connecting isolated network segments, nondisruptive network renumber, Layer 2 transport, security, and controlling routing behavior.

Layer 2 Tunneling Protocol

Layer 2 Tunneling Protocol (L2TP) is one of the most used building blocks for broadband networks. It is an International Engineering Task Force (IETF) standard that combines aspects of two existing tunneling protocols: Cisco Layer 2 Forwarding (L2F) and Microsoft Point-to-Point Tunneling Protocol (PPTP).

The main component of L2TP is a reliable control channel that is responsible for session setup, negotiation, and teardown, and a forwarding plane that adds negotiated session IDs and forwards traffic. Layer 2 circuits terminate in a device called an L2TP access concentrator (LAC), and the PPP sessions terminate in an L2TP network server (LNS). The LNS authenticates the user and is the endpoint for PPP negotiation.

The LAC connects to the LNS using a LAN or a wide-area network (WAN) switch as a public or private ATM as shown in the figure below. The LAC directs the subscriber session into L2TP tunnels based on the domain of each session. The LAC acts as one side of an L2TP tunnel endpoint and is a peer to the LNS on the other side of the tunnel. The LAC forwards packets to and from the LNS and a remote system.

The following user encapsulations can go into an L2TP tunnel:
- PPP sessions encapsulated in L2TP tunnels (LNS-side support only)
- PPPoE termination over ATM
- PPPoA termination
- PPPoEoE or PPPoEo802.1Q
Cisco’s broadband aggregation routers function as the service provider’s network access server when configured as the LAC. Subscribers can use a local or PPP connection to initiate a PPPoA or PPPoE session to the LAC. The LAC terminates the physical connection and forwards the PPP session to the provider’s LNS.

ATM Services

ATM networks provide the following ATM services, which provide delivery of the subscriber sessions to the service providers access concentrators:

- Permanent virtual circuits (PVC)
- Switched virtual circuits (SVC)

A PVC allows direct connectivity between sites. In this way a PVC is similar to a leased line. PVCs generally guarantee availability of a connection, and no call setup procedures are required between ATM switches. However, PVCs provide a static connectivity and require manual administration to set up.

An SVC is created and released dynamically and remains in use only as long as data is being transferred. In this way it is similar to a telephone call. Dynamic call control requires a signaling protocol between the ATM endpoint and the ATM switch. SVCs provide connection flexibility and call setup that can be automatically handled by a networking device. Setting up the connection requires extra time and overhead.

ATM supports two types of connections:

- Point-to-point
- Point-to-multipoint

A point-to-point ATM connection connects two ATM end systems and can be unidirectional (one-way communication) or bidirectional (two-way communication).

A point-to-multipoint ATM connection connects a single source end-system (known as the Root node) to multiple destination end-systems (known as leaves). Such connections are unidirectional only. Root nodes can transmit to leaves, but leaves cannot transmit to the root or to each other on the same connection.

PPPoE

PPP over Ethernet (PPPoE) provides the ability to connect hosts on a network over a simple bridging device to a remote aggregation concentrator. PPPoE is the predominant access protocol in broadband networks worldwide. PPPoE typically is deployed with a software stack housed on the end-customer’s (subscriber’s) PC. This software allows the network service provider to "own" the customer as the PPP session runs from the customer PC to the service provider network.

PPPoEoE PPPoEo802.1q

PPPoEoE is a variant of PPPoE where the Layer 2 transport protocol is now Ethernet or 802.1q VLAN instead of ATM. This encapsulation method is generally found in Metro Ethernet or Ethernet digital subscriber line access multiplexer (DSLAM) environments. The common deployment model is that this encapsulation method is typically found in multi-tenant buildings or hotels. By delivering Ethernet to the subscriber, the available bandwidth is much more abundant and the ease of further service delivery is increased.

PPPoA

With PPP over ATM (PPPoA), a customer premises equipment (CPE) device encapsulates the PPP session based on RFC 1483 for transport across the DSLAM. PPPoA is commonly used in SOHO and branch
office type environments although it is not limited to them. It has greater flexibility for the home than the average PPPoE deployment because the customer LAN behind the CPE is under the complete control of the customer and the CPE acts as a router as opposed to a bridge for PPPoE.

When you configure PPP over ATM, a logical interface known as a virtual access interface associates each PPP connection with an ATM VC. You can create this logical interface by configuring an ATM PVC or SVC. This configuration encapsulates each PPP connection in a separate PVC or SVC, allowing each PPP connection to terminate at the router ATM interface as if received from a typical PPP serial interface.

The virtual access interface for each VC obtains its configuration from a virtual interface template (virtual template) when the VC is created. Before you create the ATM VC, it is recommended that you create and configure a virtual template as described in the "Preparing for Broadband Access Aggregation” module.

Once you have configured the router for PPP over ATM, the PPP subsystem starts and the router attempts to send a PPP configure request to the remote peer. If the peer does not respond, the router periodically goes into a "listen" state and waits for a configuration request from the peer. After a timeout (typically 45 seconds), the router again attempts to reach the remote router by sending configuration requests.

The virtual access interface remains associated with a VC as long as the VC is configured. If you remove the configuration of the VC, the virtual access interface is marked as deleted. If you shut down the associated ATM interface, you will also cause the virtual access interface to be marked as down (within 10 seconds), and you will bring the PPP connection down. If you set a keepalive timer of the virtual template on the interface, the virtual access interface uses the PPP echo mechanism to verify the existence of the remote peer.

The following three types of PPP over ATM connections are supported:

- IETF-compliant MUX encapsulated PPP over ATM
- IETF-compliant LLC encapsulated PPP over ATM
- Cisco-proprietary PPP over ATM

Routed Bridge Encapsulation

ATM routed bridge encapsulation (RBE) is used to route IP over bridged RFC 1483 Ethernet traffic from a stub-bridged LAN.

The ATM subinterface on a head-end router is configured to function in ATM routed-bridge encapsulation mode. This configuration is useful when a remote bridged Ethernet network device needs connectivity to a routed network by way of a device bridging from an Ethernet LAN to an ATM RFC 1483 bridged encapsulation.

The bridged ATM interface supports ATM PVCs and ATM SVCs.

Because PVCs are statically configured along the entire path between the end systems, it would not be suitable to route bridged encapsulated traffic over them when the user wants to configure the VCs dynamically and tear down the VCs when there is no traffic.

The Subscriber Service Switch was developed in response to a need by Internet service providers for increased scalability and extensibility for remote access service selection and Layer 2 subscriber policy management. This Layer 2 subscriber policy is needed to manage tunneling of PPP in a policy-based bridging fashion.

Cisco Subscriber Service Switch

The Cisco Subscriber Service Switch provides flexibility on where and how many subscribers are connected to available services and how those services are defined. In the past, remote access service selection was largely determined by the telephone number dialed or the PPP username and password
entered during a PPP authentication cycle. However, emerging broadband, cable, virtual private network (VPN), and wireless access methods have created an environment where PPP sessions may be tunneled over a variety of protocols and media. The multitude of protocols, management domains, network infrastructure, and variety of services has created a complex environment for directing a subscriber to a given service or application. The problem is further complicated by the much greater density of total PPP sessions that can be transported over shared media versus traditional point-to-point links. The Subscriber Service Switch can provide a flexible and extensible decision point linking an incoming subscriber (typically a PPP session over some physical or virtual link) to another tunneled link or local termination for Layer 3 processing.

The Subscriber Service Switch is also scalable in situations where a subscriber’s Layer 2 service is switched across virtual links. Examples include switching between PPPoA, PPPoE, L2TP, Layer 2 Forwarding Protocol (L2F), Point-to-Point Tunneling Protocol (PPTP), generic routing encapsulation (GRE), and General Packet Radio Service (GPRS) Tunneling Protocol (GTP wireless data standard).

As networks grow beyond the campus, network security increases in importance and administration complexity. Customers need to protect networks and network resources from unauthorized access by remote users. Cisco Systems uses a strategy known as authentication, authorization, and accounting (AAA) for verifying the identity of, granting access to, and tracking the actions of remote users. In today’s networks, the TACACS+ and RADIUS protocols are commonly used to provide AAA solutions. Support for RADIUS along with TACACS+ enables Cisco to deliver tremendous flexibility and choice to organizations in AAA functionality.

RADIUS Support in Cisco IOS

Cisco Systems introduced support for RADIUS in Cisco IOS Release 11.1 in its network access server (NAS) devices.

The RADIUS protocol is an access server authentication and accounting protocol. RADIUS has gained support among a wide customer base, including Internet service providers (ISPs).

The RADIUS protocol is based on a client/server model. An NAS operates as a client of RADIUS. The client is responsible for passing user information to a designated RADIUS server and then acting on the response that is returned.

A RADIUS server (or daemon) can provide authentication and accounting services to one or more client NAS devices. RADIUS servers are responsible for receiving user connection requests, authenticating users, and then returning all configuration information necessary for the client to deliver service to the users. A RADIUS access server is generally a dedicated workstation connected to the network.

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a PVC range</td>
<td>"Configuring PVCs" in the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>Creating a virtual template</td>
<td>"Configuring Virtual Template Interfaces" chapter in the Cisco IOS Dial Technologies Configuration Guide</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1483</td>
<td>Multiprotocol Encapsulation over ATM Adaptation Layer 5</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Glossary

ABR --available bit rate. QoS class defined by the ATM Forum for ATM networks. ABR is used for connections that do not require timing relationships between source and destination. ABR provides no guarantees in terms of cell loss or delay, providing only best-effort service. Traffic sources adjust their transmission rate in response to information they receive describing the status of the network and its capability to successfully deliver data.

ACR --allowed cell rate. A parameter defined by the ATM Forum for ATM traffic management. ACR varies between the MCR and the PCR, and is controlled dynamically using congestion control mechanisms.

CBR --constant bit rate. QoS class defined by the ATM Forum for ATM networks. CBR is used for connections that depend on precise clocking to ensure undistorted delivery.

MCR --minimum cell rate. Parameter defined by the ATM Forum for ATM traffic management. MCR is defined only for ABR transmissions, and specifies the minimum value for the ACR.
NAS -- network access server. Cisco platform (or collection of platforms, such as an AccessPath system) that interfaces between the packet world (for example, the Internet) and the circuit world (for example, the PSTN).

PCR -- peak cell rate. Parameter defined by the ATM Forum for ATM traffic management. In Constant Bit Rate (CBR) transmissions, PCR determines how often data samples are sent. In ABR transmissions, PCR determines the maximum value of the ACR.

PCR -- peak cell rate. Parameter defined by the ATM Forum for ATM traffic management. In Constant Bit Rate (CBR) transmissions, PCR determines how often data samples are sent. In ABR transmissions, PCR determines the maximum value of the ACR.

PPPoA -- Point-to-Point Protocol over ATM. The PPPoA feature enables a high-capacity central site router with an Asynchronous Transfer Mode (ATM) interface to terminate multiple remote Point-to-Point Protocol (PPP) connections.

PPPoE -- Point-to-Point Protocol over Ethernet. PPPoE allows a PPP session to be initiated on a simple bridging Ethernet connected client.

PPPoX -- Point-to-Point Protocol over Protocol. PPPoX indicates that the point-to-point protocol terminates on another protocol which could be ATM or Ethernet.

PVC -- permanent virtual circuit. A virtual circuit that is permanently established. PVCs save bandwidth associated with circuit establishment and tear down in situations where certain virtual circuits must exist all the time. In ATM terminology, called a permanent virtual connection.

QoS -- quality of service. Cisco IOS QoS technology lets complex networks control and predictably service a variety of networked applications and traffic types.

RADIUS -- Remote Authentication Dial-in User Service

SCR -- sustainable cell rate. Parameter defined by the ATM Forum for ATM traffic management. For VBR connections, SCR determines the long-term average cell rate that can be transmitted.

UBR -- unspecified bit rate. QoS class defined by the ATM Forum for ATM networks. UBR allows any amount of data up to a specified maximum to be sent across the network but there are no guarantees in terms of cell loss rate and delay.

VBR -- variable bit rate. QoS class defined by the ATM Forum for ATM networks. VBR is subdivided into a real time (rt) class and non-real time (nrt) class. VBR (rt) is used for connections in which there is a fixed timing relationship between samples. VBR (nrt) is used for connections in which there is no fixed timing relationship between samples but that still need a guaranteed QoS.

VPDN -- virtual private dialup network. A VPDN is a network that extends remote access to a private network using a shared infrastructure. VPDNs use Layer 2 tunnel technologies (L2F, L2TP, and PPTP) to extend the Layer 2 and higher parts of the network connection from a remote user across an ISP network to a private network. VPDNs are a cost effective method of establishing a long distance, point-to-point connection between remote dial users and a private network.

VSA -- vendor-specific attribute. An attribute that has been implemented by a particular vendor. It uses the attribute Vendor-Specific to encapsulate the resulting AV pair: essentially, Vendor-Specific = protocol:attribute = value.

Note

See *Internetworking Terms and Acronyms* for terms not included in this glossary.
Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions

PPP over ATM enables a high-capacity central site router with an ATM interface to terminate multiple remote PPP connections. PPP over ATM provides security validation per user, IP address pooling, and service selection capability.

- Finding Feature Information, page 29
- Prerequisites for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions, page 29
- Restrictions for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions, page 30
- Information About Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions, page 30
- How to Provide Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions, page 32
- Verifying PPPoA Autosense for ATM PVCs, page 51
- Configuration Examples for Configuring PPP over ATM, page 53
- Where to Go Next, page 61
- Additional References, page 61
- Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions, page 62

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions
• You must understand the concepts described in the "Understanding Broadband Access Aggregation" module.
• Optionally you may perform the preparation tasks in the "Preparing for Broadband Access Aggregation" module

Restrictions for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions
PPP over ATM cannot be configured on IETF-compliant Logical Link Control (LLC) encapsulated PPP over ATM.

Information About Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions

• PPP over ATM Configuration Scenario, page 30
• Virtual Access Interface, page 31
• Autosense for ATM PVCs, page 31

PPP over ATM Configuration Scenario
PPP over ATM can be configured on all platforms running Cisco IOS Release 12.1 or later.

Note
All forms of PPP over ATM are supported on the ATM port adapters, except for the PA-A1 ATM port adapter for Cisco IOS Release 12.1. All forms of PPP over ATM are now supported on the enhanced ATM port adapter for Cisco IOS Release 12.1 or later.

The figure below shows a typical scenario for using Cisco-proprietary PPP over ATM.

Figure 2 PPP-over-ATM Network Environment
If you need to configure the Cisco MGX 8220 shelf for frame forwarding at the remote sites, refer to the Cisco MGX 8220 Command Supplement for command line instructions or the Cisco StrataView Plus Operations Guide for StrataView Plus instructions. If you configure the MGX using the command line interface, use the `addport` and `addchan` commands and select frame forwarding for the `port-type` and `chan-type` arguments, respectively.

Virtual Access Interface

When you configure PPP over ATM, a logical interface known as a virtual access interface associates each PPP connection with an ATM VC. You can create this logical interface by configuring an ATM permanent virtual circuit (PVC) or switched virtual circuit (SVC). This configuration encapsulates each PPP connection in a separate PVC or SVC, allowing each PPP connection to terminate at the router ATM interface as if received from a typical PPP serial interface.

The virtual access interface for each virtual circuit (VC) obtains its configuration from a virtual interface template (virtual template) when the VC is created. Before you create the ATM VC, it is recommended that you create and configure a virtual template as described in the "Preparing for Broadband Access Aggregation" module.

Once you have configured the router for PPP over ATM, the PPP subsystem starts and the router attempts to send a PPP configure request to the remote peer. If the peer does not respond, the router periodically goes into a listen state and waits for a configuration request from the peer.

The virtual access interface is associated with the VC after LCP negotiation completes. When the PPP session goes down, the virtual access interface is no longer associated with the VC and is returned to the pool of free virtual-access interfaces.

If you set a keepalive timer of the virtual template on the interface, the virtual access interface uses the PPP echo mechanism to verify the existence of the remote peer.

The following three types of PPP over ATM connections are supported:

- IETF-compliant MUX encapsulated PPP over ATM
- IETF-compliant LLC encapsulated PPP over ATM
- Cisco-proprietary PPP over ATM

Autosense for ATM PVCs

The PPPoA/PPPoE autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.

Note

The PPPoA/PPPoE autosense for ATM PVCs feature is supported on SNAP-encapsulated ATM PVCs only. It is not supported on MUX-encapsulated PVCs.

Benefits of Autosense for ATM PVCs

Autosense for ATM PVCs provides resource allocation on demand. For each permanent virtual circuit (PVC) configured for both PPPoA and PPPoE, certain resources (including one virtual-access interface) are

Virtual Access Interface

When you configure PPP over ATM, a logical interface known as a virtual access interface associates each PPP connection with an ATM VC. You can create this logical interface by configuring an ATM permanent virtual circuit (PVC) or switched virtual circuit (SVC). This configuration encapsulates each PPP connection in a separate PVC or SVC, allowing each PPP connection to terminate at the router ATM interface as if received from a typical PPP serial interface.

The virtual access interface for each virtual circuit (VC) obtains its configuration from a virtual interface template (virtual template) when the VC is created. Before you create the ATM VC, it is recommended that you create and configure a virtual template as described in the "Preparing for Broadband Access Aggregation" module.

Once you have configured the router for PPP over ATM, the PPP subsystem starts and the router attempts to send a PPP configure request to the remote peer. If the peer does not respond, the router periodically goes into a listen state and waits for a configuration request from the peer.

The virtual access interface is associated with the VC after LCP negotiation completes. When the PPP session goes down, the virtual access interface is no longer associated with the VC and is returned to the pool of free virtual-access interfaces.

If you set a keepalive timer of the virtual template on the interface, the virtual access interface uses the PPP echo mechanism to verify the existence of the remote peer.

The following three types of PPP over ATM connections are supported:

- IETF-compliant MUX encapsulated PPP over ATM
- IETF-compliant LLC encapsulated PPP over ATM
- Cisco-proprietary PPP over ATM

Autosense for ATM PVCs

The PPPoA/PPPoE autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.

Note

The PPPoA/PPPoE autosense for ATM PVCs feature is supported on SNAP-encapsulated ATM PVCs only. It is not supported on MUX-encapsulated PVCs.

Benefits of Autosense for ATM PVCs

Autosense for ATM PVCs provides resource allocation on demand. For each permanent virtual circuit (PVC) configured for both PPPoA and PPPoE, certain resources (including one virtual-access interface) are
allocated upon configuration, regardless of the existence of a PPPoA or PPPoE session on that PVC. With the autosense for ATM PVCs, resources are allocated for PPPoA and PPPoE sessions only when a client initiates a session, thus reducing overhead on the network access server (NAS).

How to Provide Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions

• Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32
• Configuring IETF-Compliant LLC Encapsulated PPP over ATM, page 35
• Configuring Cisco-Proprietary PPP over ATM PVCs, page 39
• Configuring SVCs for NAPs and NSPs, page 43
• Configuring PPPoA Autosense for a Single PVC, page 47
• Configuring PPPoA Autosense for a VC Class, page 49

Configuring IETF-Compliant MUX Encapsulated PPP over ATM

Internet Engineering Task Force (IETF)-compliant multiplexer (MUX) encapsulated PPP over ATM, also known as null encapsulation, allows you to configure PPP over ATM using a VC multiplexed encapsulation mode. This feature complies with IETF RFC 2364 entitled PPP over AAL5.

You can configure ATM PVCs for IETF-compliant MUX encapsulated PPP over ATM on either point-to-point or multipoint subinterfaces. Multiple PVCs on multipoint subinterfaces significantly increase the maximum number of PPP-over-ATM sessions running on a router. You can configure IETF-compliant MUX encapsulated PPP over ATM over a single ATM PVC or an ATM PVC range.

IETF-compliant PPP over ATM is not supported on ATM SVCs and can only be applied to PVCs.

The IETF-compliant PPP over ATM feature was designed to support installations with AppleTalk Data Stream Protocol (ADSL) circuits. For an example of using ADSL termination, see the ADSL Termination Example, page 54.

Perform this task to configure IETF-compliant MUX Encapsulated PPP over ATM.
SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
 - interface atm slot/port.subinterface-number point-to-point
 - or
 - interface atm number.subinterface-number point-to-point
 - interface atm slot/port.subinterface-number multipoint
 - interface atm number.subinterface-number multipoint
4. Do one of the following:
 - pvc [name] vpi / vci
 - range [range-name] pvc start-vpi / start-vci end-vpi / end-vci
5. encapsulation aal5mux ppp virtual-template number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Step 3

Do one of the following:

- `interface atm slot/port.subinterface-number point-to-point`
- `or`
- `interface atm number.subinterface-number point-to-point`
-
- `interface atm slot/port.subinterface-number multipoint`
-
- `interface atm number.subinterface-number multipoint`

Example:

```
Router(config)# interface atm 6/0.200 point-to-point
```

Example:

```
Router(config)# interface atm 1/0/0.4 multipoint
```
Step 4 Do one of the following:

- `pvc [name] vpi / vci`
- `range [range-name] pvc start-vpi / start-vci end-vpi / end-vci`

Example:

```
Router(config-subif)# pvc cisco 0/5
```

Example:

```
```

Example:

```
```

Example:

```
Router(config-subif)# range range1 pvc 1/200 1/299
```

Step 5 `encapsulation aal5mux ppp virtual-template number`

Example:

```
Router(config-subif-atm-vc)# encapsulation aal5mux ppp virtual-template 3
```

Example:

```
```

Example:

```
Router(config-subif-atm-range) encapsulation aal5mux ppp virtual-template 3
```

Configuring IETF-Compliant LLC Encapsulated PPP over ATM

IETF-compliant LLC encapsulated PPP over ATM allows you to configure PPP over ATM with LLC encapsulation. It accommodates Frame Relay-to-ATM service interworking (Frame Relay Forum standard FRF.8). There is no equivalent VC multiplexed encapsulation mode for Frame Relay; therefore, LLC encapsulation is required for Frame Relay-to-ATM networking. This version of PPP over ATM also enables you to carry multiprotocol traffic. For example, a VC will carry both PPP and IPX traffic.
The figure below shows Frame Relay-to-ATM interworking.

Figure 3 Frame Relay-to-ATM Interworking

You can configure ATM PVCs for IETF-compliant LLC encapsulated PPP over ATM on either point-to-point or multipoint subinterfaces. Multiple PVCs on multipoint subinterfaces significantly increase the maximum number of PPP-over-ATM sessions running on a router.

You can also configure IETF-compliant LLC encapsulated PPP over ATM in a VC class and apply this VC class to an ATM VC, subinterface, or interface. For information about configuring a VC class, refer to the section "Configuring VC Classes" in the module "Configuring ATM."

Note

Depending on whether you configure IETF-compliant LLC encapsulated PPP over ATM directly on a PVC or interface, your PVC will inherit the configuration that takes highest precedence. For a description of the inheritance hierarchy, see the `protocol` command in the Cisco IOS Wide-Area Networking Command Reference Guide.

Perform this task to configure IETF-compliant LLC encapsulated PPP over ATM on a PVC or range of PVCs.

SUMMARY STEPS

1. *enable*
2. *configure terminal*
3. Do one of the following:
 - `interface atm slot/port.subinterface-number point-to-point`
 - or
 - `interface atm number.subinterface-number point-to-point`
 - `interface atm slot/port.subinterface-number multipoint`
 - or
 - `interface atm number.subinterface-number multipoint`
4. Do one of the following:
 - `pvc [name] vpi/vci`
 - `range [range-name] pvc start-vpi/start-vci end-vpi/end-vci`
5. `encapsulation aal1snap`
6. `protocol ppp virtual-template number`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |

Example:

Router> enable

| **Step 2** configure terminal | Enters global configuration mode. |

Example:

Router# configure terminal

<table>
<thead>
<tr>
<th>Step 3 Do one of the following:</th>
<th>Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the <code>interface atm</code> command.³</th>
</tr>
</thead>
</table>
| • `interface atm slot/port.subinterface-number point-to-point`
• or
• `interface atm number.subinterface-number point-to-point`
• `interface atm slot/port.subinterface-number multipoint`
• or
• `interface atm number.subinterface-number multipoint` |

Example:

Router(config)# interface atm 6/0.200 point-to-point

Example:

Router(config)# interface atm 1/0/0.4 multipoint

³ To determine the correct form of the `interface atm` command, consult your ATM network module, port adapter, or router documentation.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• <code>pvc [name] vpi / vci</code></td>
<td></td>
</tr>
<tr>
<td>• <code>range [range-name] pvc start-vpi / start-vci end-vpi / end-vci</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# pvc cisco 0/5</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>or</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# range range1 pvc 1/200 1/299</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation aal15snap</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif-atm-vc)# encapsulation aal15snap</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>or</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif-atm-range)# encapsulation aal15snap</code></td>
<td></td>
</tr>
</tbody>
</table>

4 “SNAP encapsulation” is a misnomer here, since this encapsulation configures both LLC and SNAP encapsulation on the VC. If SNAP encapsulation is not configured at a lower inheritance level, or another type of encapsulation is configured at a lower inheritance level, you will have to configure both SNAP and the protocol `ppp` command to ensure that PPP over ATM with LLC encapsulation is configured on your VC.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 protocol ppp virtual-template number</td>
<td>Configures IETF PPP over ATM LLC encapsulation on the PVC or range of PVCs.</td>
</tr>
</tbody>
</table>

Example:

Router(config-subif-atm-vc)# protocol ppp virtual-template 2

Example:

or

Example:

Router(config-subif-atm-range)# protocol ppp virtual-template 2

Configuring Cisco-Proprietary PPP over ATM PVCs

You can configure ATM PVCs for Cisco-proprietary PPP over ATM on either point-to-point or multipoint subinterfaces. Configuring multiple PVCs on multiple subinterfaces significantly increases the maximum number of PPP-over-ATM sessions running on a router. Remote branch offices must have Cisco-proprietary PPP over ATM configured on PPP-compatible devices interconnecting directly to Cisco’s ATM Switch Interface Shelf (AXIS) equipment through a leased-line connection. The shelves provide frame forwarding encapsulation and are terminated on BPX cores prior to connecting to a Cisco 7500 series router.

Perform this task to configure Cisco-proprietary PPP over ATM on a PVC or range of PVCs.
SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
 - `interface atm slot/port.subinterface-number point-to-point`
 - or
 - `interface atm number . subinterface-number point-to-point`
 - `interface atm slot/port.subinterface-number multipoint`
 - `interface atm number.subinterface-number multipoint`
4. Do one of the following:
 - `pvc [name] vpi / vci`
 - `range [range-name] pvc start-vpi / start-vci end-vpi / end-vci`
5. `encapsulation aal5ciscoppp virtual-template number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the interface atm command.⁵</td>
</tr>
<tr>
<td>• interface atm slot/port.subinterface-number point-to-point</td>
<td></td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• interface atm number . subinterface-number point-to-point</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
<tr>
<td>• interface atm slot/port.subinterface-number multipoint</td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
<tr>
<td>• interface atm number.subinterface-number multipoint</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config)# interface atm 6/0.200 point-to-point
```

Example:

```
Router(config)# interface atm 1/0/0.4 multipoint
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Configures the PVC or a range of PVCs.</td>
</tr>
<tr>
<td>• <code>pvc [name] vpi / vci</code></td>
<td></td>
</tr>
<tr>
<td>• <code>range [range-name] pvc start-vpi / start-vci end-vpi / end-vci</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:
```
Router(config-subif)# pvc cisco 0/5
```

Example:
```
```

Example:
```
or
```

Example:
```
Router(config-subif)# range range1 pvc 1/200 1/299
```

<table>
<thead>
<tr>
<th>Step 5 <code>encapsulation aal5ciscoppp virtual-template number</code></th>
<th></th>
</tr>
</thead>
</table>

Example:
```
Router(config-subif-atm-vc)# encapsulation aal5ciscoppp virtual-template 4
```

Example:
```
```

Example:
```
or
```

Example:
```
Router(config-subif-atm-range)# encapsulation aal5ciscoppp virtual-template 3
```
Configuring SVCs for NAPs and NSPs

When PPP over ATM is configured over an SVC rather than a PVC, an ATM SVC is established using a configured ATM address each time an end user initiates a connection to a Network Access Provider (NAP) or Network Service Provider (NSP). A PPP session is then established over the SVC. By using PPP, the NAPs and NSPs can authenticate users and provide suitable access to the various services being offered. Whereas PVCs require that services and destination addresses be predetermined, using PPP over ATM SVCs allows users to choose services and the quality of those services dynamically on the basis of the destination address.

The figure below shows a typical network topology for PPP over ATM SVCs terminating at an NAP.

Figure 4
PPP over ATM SVC Terminating at a Network Access Provider

The figure below shows a typical network topology of PPP over ATM SVCs terminating at an NSP.

Figure 5
PPP over ATM SVC Terminating at a Network Service Provider

The PPP over ATM SVCs feature works by associating each PPP session with a virtual-access interface. Each virtual-access interface is associated with an SVC. The SVCs use static maps that hold information about the encapsulation type and virtual template number. A single static map can accept multiple PPP over ATM SVC calls.

Perform this task to configure PPP over an ATM SVC.
SUMMARY STEPS

1. enable
2. configure terminal
3. Do one of the following:
 • `interface atm slot/port.subinterface-number point-to-point`
 • or
 • `interface atm number.subinterface-number point-to-point`
 •
 • `interface atm slot/port.subinterface-number multipoint`
 •
 • `interface atm number.subinterface-number multipoint`
4. `svc [name]`
5. `encapsulation aal5auto`
6. `protocol ppp virtual-template number`
7. `max vc number`
8. `max bandwidth kbps`
9. `exit`
10. `exit`
11. `atm nsap-address nsap-address`
12. `exit`
13. `show atm svc`
14. `show atm svc ppp`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Do one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>•</td>
<td>interface atm slot/port.subinterface-number point-to-point</td>
</tr>
<tr>
<td>•</td>
<td>or</td>
</tr>
<tr>
<td>•</td>
<td>interface atm number.subinterface-number point-to-point</td>
</tr>
<tr>
<td>•</td>
<td>interface atm slot/port.subinterface-number multipoint</td>
</tr>
<tr>
<td>•</td>
<td>interface atm number.subinterface-number multipoint</td>
</tr>
</tbody>
</table>

Example:

```
Router(config)# interface atm 6/0.200 point-to-point
```

Example:

```
Router(config)# interface atm 1/0/0.4 multipoint
```

Purpose

Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the `interface atm` command.

Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>svc [name]</th>
</tr>
</thead>
</table>

Example:

```
Router(config-subif)# svc cisco
```

Purpose

Configures the SVC.

Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>encapsulation aal5auto</th>
</tr>
</thead>
</table>

Example:

```
Router(config-subif-atm-vc)# encapsulation aal5auto
```

Purpose

Specifies encapsulation auto, which allows the SVC to use either aal5snap or aal5mux encapsulation types.

6 To determine the correct form of the interface atm command, consult your ATM network module, port adapter, or router documentation.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 protocol ppp virtual-template number</td>
<td>Specifies that PPP is established over the ATM SVC using the configuration from the specified virtual template.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif-atm-vc)# protocol ppp virtual-template 6</td>
<td></td>
</tr>
<tr>
<td>Step 7 max vc number</td>
<td>Specifies the maximum number of SVCs that can be established using the current configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif-atm-vc)# max vc 5</td>
<td></td>
</tr>
<tr>
<td>Step 8 max bandwidth kbps</td>
<td>Specifies the total amount of bandwidth available to all SVCs in the current configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif-atm-vc)# max bandwidth 564</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits VC configuration mode and returns to subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif-atm-vc)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits subinterface configuration mode and returns to interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11 atm nsap-address nsap-address</td>
<td>Sets the network service access point (NSAP) address for the ATM interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# atm nsap-address AB.CDEF.01.234567.890A.BCDE.F012.3456.7890.1234.12</td>
<td></td>
</tr>
<tr>
<td>Step 12 exit</td>
<td>Exits configuration mode and returns to EXEC command mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPPoA Autosense for a Single PVC

Perform the following task to configure PPPoA/PPPoE autosense on a PVC.

SUMMARY STEPS
1. `enable`
2. `configure terminal`
3. Do one of the following:
 - `interface atm slot/port.subinterface-number point-to-point`
 - or
 - `interface atm number . subinterface-number point-to-point`
 - `interface atm slot/port.subinterface-number multipoint`
 - `interface atm number . subinterface-number multipoint`
4. `pvc [name] vpi/vci`
5. `encapsulation aal5autoppp virtual-template number`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example: |
| `Router> enable` |
| `Router# show atm svc` | Displays all ATM SVCs and traffic information. |

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14 show atm svc ppp</td>
<td>Displays information about each SVC configured for PPP over ATM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# show atm svc ppp</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:
```
Router# show atm svc
```

Example:
```
Router# show atm svc ppp
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the <code>interface atm</code> command.(^7)</td>
</tr>
<tr>
<td>• <code>interface atm slot/port.subinterface-number point-to-point</code></td>
<td></td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• <code>interface atm number . subinterface-number point-to-point</code></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
<tr>
<td>• <code>interface atm slot/port.subinterface-number multipoint</code></td>
<td></td>
</tr>
<tr>
<td>•</td>
<td></td>
</tr>
<tr>
<td>• <code>interface atm number.subinterface-number multipoint</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 6/0.200 point-to-point</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 1/0/0.4 multipoint</td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>pvc [name] vpi/vci</code></td>
<td>Configures the PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# pvc cisco 0/5</td>
<td></td>
</tr>
</tbody>
</table>
Configuring PPPoA Autosense for a VC Class

Use the following procedure to configure PPPoA/PPPoE autosense on a VC class.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm vc-class-name
4. encapsulation aal5autoppp virtual-template number
5. exit
6. Do one of the following:
 - interface atm slot/port.subinterface-number point-to-point
 - or
 - interface atm number.subinterface-number point-to-point
 - interface atm slot/port.subinterface-number multipoint
 - interface atm number.subinterface-number multipoint
7. class-int vc-class-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 5 encapsulation aal5autoppp virtual-template *number*

Example:

Router(config-subif-atm-vc)# encapsulation aal5ciscoppp virtual-template 1

Configures PPPoA/PPPoE autosense. Also specifies the virtual template interface to use to clone the new virtual-access interface for PPP session on this PVC.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm vc-class-name</td>
<td>Creates and names a map class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class3</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation aal5autoppp virtual-template number</td>
<td>Configures PPPoA/PPPoE autosense. Also specifies the virtual template interface to use to clone the new virtual-access interface for PPP session on this PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# encapsulation aal5ciscoppp virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 6** Do one of the following: | Specifies the ATM point-to-point or multipoint subinterface using the appropriate format of the `interface atm` command.

- `interface atm slot/port.subinterface-number point-to-point`
 - or
- `interface atm number . subinterface-number point-to-point`
 -
- `interface atm slot/port.subinterface-number multipoint`
 -
- `interface atm number.subinterface-number multipoint`
 -
| Example: |
| `Router(config)# interface atm 6/0.200 point-to-point` |
| Example: |
| Example: |
| `Router(config)# interface atm 1/0/0.4 multipoint` |

<table>
<thead>
<tr>
<th>Step 7 class-int vc-class-name</th>
<th>Applies the VC class to all VCs on the ATM interface or subinterface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# class-int class3</code></td>
<td></td>
</tr>
</tbody>
</table>

Verifying PPPoA Autosense for ATM PVCs

Use the following procedure to verify PPPoA/PPPoE autosense.

8 To determine the correct form of the `interface atm` command, consult your ATM network module, port adapter, or router documentation.
SUMMARY STEPS

1. show atm pvc [ppp]
2. show caller
3. show interface virtual access number
4. show user
5. show vpdn

DETAILED STEPS

Step 1
show atm pvc [ppp]
After the client at the other end of the PVC has initiated a PPPoA session, use this command to check that the PVC contains the PPPoA session.

Step 2
show caller
Use this command to:

- View individual users and consumed resources on the NAS.
- Inspect active call statistics for large pools of connections. (The `debug` commands produce too much output and tax the CPU too heavily.)
- Display the absolute and idle times for each user. The current values for both of these settings are displayed on the TTY line and the asynchronous interface. Users that have been idle for unacceptably long periods of time can be easily identified. By using this information, you can define time-out policies and multiple grades of services for different users.

Example:

```
Router# show caller

<table>
<thead>
<tr>
<th>Line</th>
<th>User</th>
<th>Service</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>con 0</td>
<td></td>
<td>TTY</td>
<td>00:08:21</td>
</tr>
<tr>
<td>BR0:1</td>
<td>hatteras</td>
<td>PPP</td>
<td>00:00:14</td>
</tr>
<tr>
<td>V11</td>
<td>hatteras</td>
<td>PPP Bundle</td>
<td>00:00:13</td>
</tr>
</tbody>
</table>
```

Step 3
show interface virtual access number
Displays information about the virtual-access interface, link control protocol (LCP), protocol states, and interface statistics:

Example:

```
Router# show interface virtual access Virtual-Access3
Virtual-Access3 is up, line protocol is up
```

Step 4
show user
Displays information about the active lines on the router.

Example:

```
Router# show user

Line User Host(s) Idle Location * 2 vty 0 idle 00:00:00 bru-cse-058.cisco.com tty 2/01 ww Async interface 00:00:01 PPP: 12.12.12.3
```

Step 5
show vpdn
Displays information about active Level 2 Forwarding (L2F) Protocol tunnel and message identifiers in a virtual private dial-up network (VPDN).

Example:

```
Router# show vpdn
Active L2F tunnels
NAS Name   Gateway Name    NAS CLID   Gateway CLID   State
nas        gateway           4            2          open
L2F MIDs
Name                NAS Name    Interface    MID      State
router1@cisco.com       nas          As7          1       open
router2@cisco.com        nas          As8          2       open
```

Configuration Examples for Configuring PPP over ATM

- IETF-Compliant MUX Encapsulated PPP over ATM Configuration Examples, page 53
- IETF-Compliant LLC Encapsulated PPP over ATM Configuration Examples, page 56
- Cisco Proprietary-PPP-over-ATM Example, page 58
- PPP over an ATM SVC Configuration Example, page 58
- PPPoA PPPoE Autosense on an ATM PVC Example, page 58
- PPPoA PPPoE Autosense on a VC Class Example, page 59
- PPPoA PPPoE Autosense on Multiple VC Classes and Virtual Templates Example, page 60

IETF-Compliant MUX Encapsulated PPP over ATM Configuration Examples

This section provides the following examples for configuring IETF-compliant PPP over ATM:

- IETF-Compliant PPP over ATM with Different Traffic-Shaping Parameters Example, page 53
- ADSL Termination Example, page 54
- Two Routers with Back-to-Back PVCs Example, page 55
- Multiplexed Encapsulation Using VC Class Example, page 56

IETF-Compliant PPP over ATM with Different Traffic-Shaping Parameters Example

PVCs with different PPP-over-ATM traffic-shaping parameters can be configured on the same subinterface. In the following example, three PVCs are configured for PPP over ATM on subinterface ATM 2/0.1. PVC 0/60 is configured with IETF-compliant PPP over ATM encapsulation. Its traffic-shaping parameter is an unspecified bit rate with peak cell rate at 500 kbps. PVC 0/70 is also configured with IETF-compliant PPP over ATM encapsulation, but its traffic-shaping parameter is nonreal-time variable bit rate, with peak cell rate at 1 Mbps, sustainable cell rate at 500 kbps, and burst cell size of 64 cells. PVC 0/80 is configured with the Cisco-proprietary PPP over ATM encapsulation. Its traffic-shaping parameter is an unspecified bit rate with peak cell rate at 700 kbps. For further information, refer to the Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32 earlier in this module.

```
interface atm 2/0.1 multipoint
pvc 0/60
```
ADSL Termination Example

The IETF-Compliant PPP over ATM feature was designed to support installations with asymmetric digital subscriber line (ADSL) circuits. The figure below illustrates a topology for ADSL termination. This topology allows you to establish a PPP connection to a Cisco 7200 series router.

The example also illustrates the use of PPP tunneling using L2TP to provide VPDN services, in this case for the domain cisco.com. Thus, a user who logs in as bob2257@cisco.com is automatically tunneled to IP address 10.1.2.3. (See the module "Configuring Virtual Private Networks" in the Cisco IOS VPDN Configuration Guide for details about setting up VPDN services.)

An example of the commands that you might enter for the user_router, dsl7200, and cisco-gateway (as shown in the figure below) are described below. For further information, refer to the Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32 earlier in this module.

Figure 6 ADSL Termination

```
encapsulation aal5mux ppp virtual-template 3
  ubr 500
  exit

pvc 0/70
  encapsulation aal5mux ppp virtual-template 3
  vbr-nrt 1000 500 64
  exit
pvc 0/80
  encapsulation aal5ciscoppp virtual-template 3
  ubr 700
  exit
```

user_router Configuration

```
interface virtual-template 1
  ip address negotiated
  ppp chap hostname user_router@cisco.com
  ppp chap password 0 cisco
  exit

interface atm 0
```
pvc 0/40
encapsulation aal5mux ppp virtual-template 1
exit

dsl7200 Configuration

username user_router@cisco.com password 0 cisco
username dsl7200 password 0 cisco
vpdn enable
vpdn-group 1
request dialin l2tp ip 10.2.1.1 domain cisco.com
interface virtual-template 1
ppp authentication chap
exit
interface atm 2/0
pvc 0/40
encapsulation aal5mux ppp virtual-template 1
exit

username user_router@cisco.com password 0 cisco
username dsl7200 password 0 cisco
vpdn enable
vpdn-group 1
request dialin l2tp ip 10.2.1.1 domain cisco.com
interface virtual-template 1
ppp authentication chap
exit
interface atm 2/0
pvc 0/40
encapsulation aal5mux ppp virtual-template 1
exit

Two Routers with Back-to-Back PVCs Example

The figure below illustrates an ATM interface with two PPP sessions over two PVC session connections. (See the module "PPP Configuration" in the Cisco IOS Dial Technologies Configuration Guide for details on PPP configuration.) The sample commands following the figure below establish the back-to-back router configuration. For further information, refer to the Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32 earlier in this module.

Two Routers with Back-to-Back PVCs Example

The figure below illustrates an ATM interface with two PPP sessions over two PVC session connections. (See the module "PPP Configuration" in the Cisco IOS Dial Technologies Configuration Guide for details on PPP configuration.) The sample commands following the figure below establish the back-to-back router configuration. For further information, refer to the Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32 earlier in this module.

Figure 7 Two Routers with Back-to-Back PVCs

R1 Configuration

interface atm 2/0
atm clock internal
pvc 0/60
encapsulation aal5mux ppp virtual-template 1
ubr 90
exit

R1 Configuration

interface atm 2/0
atm clock internal
pvc 0/60
encapsulation aal5mux ppp virtual-template 1
ubr 90
exit

Two Routers with Back-to-Back PVCs Example

The figure below illustrates an ATM interface with two PPP sessions over two PVC session connections. (See the module "PPP Configuration" in the Cisco IOS Dial Technologies Configuration Guide for details on PPP configuration.) The sample commands following the figure below establish the back-to-back router configuration. For further information, refer to the Configuring IETF-Compliant MUX Encapsulated PPP over ATM, page 32 earlier in this module.
pvc 0/70
encapsulation aal5mux ppp virtual-template 2
vbr-nrt 90 50 1024
exit
interface virtual-template 1
ip address 10.0.1.1 255.255.255.0
interface virtual-template 2
ip address 10.0.2.1 255.255.255.0
exit

R2 Configuration

interface atm 2/0.1 multipoint
pvc 0/60
encapsulation aal5mux ppp virtual-template 1
ubr 90
exit
pvc 0/70
encapsulation aal5mux ppp virtual-template 2
vbr-nrt 90 50 1024
exit
exit
interface virtual-template 1
ip address 10.0.1.2 255.255.255.0
exit
interface virtual-template 2
ip address 10.0.2.2 255.255.255.0

Multiplexed Encapsulation Using VC Class Example

In the following example, PVC 0/60 is configured on subinterface ATM 2/0.1 with a VC class attached to it. For details on creating and applying a VC class, see the section “Configuring VC Classes” in the module “Configuring ATM.” By rule of inheritance, PVC 0/60 runs with IETF-compliant PPP over ATM encapsulation using the configuration from interface virtual-template 1. Its parameter is an unspecified bit rate with peak cell at 90 kbps.

interface atm 2/0.1
pvc 0/60
class-vc pvc-ppp
exit
exit
vc-class atm pvc-ppp
en encapsulation aal5mux ppp virtual-template 1
ubr 90
exit

IETF-Compliant LLC Encapsulated PPP over ATM Configuration Examples

This section provides the following examples for configuring IETF-compliant LLC encapsulated PPP over ATM:

- Configuring IETF-Compliant PPP over ATM LLC Encapsulation Example, page 56
- Overriding a Virtual Template for IETF-Compliant PPP over ATM Example, page 57
- Disabling IETF-Compliant PPP over ATM LLC Encapsulation on a Specific VC Example, page 57

Configuring IETF-Compliant PPP over ATM LLC Encapsulation Example

This example shows how to configure IETF PPP over ATM LLC encapsulation in the VC class called ppp-default. The VC class specifies virtual template 1 from which to spawn PPP interfaces, SNAP encapsulation (the default), and a UBR class traffic type at 256 kbps. When the VC class ppp-default is configured on interface 0.1, PVC 0/70 inherits these properties. PVC 0/80 overrides virtual template 1 in
the VC class and uses virtual template 2 instead. PVC 0/90 also overrides virtual template 1 and uses virtual template 3 instead. In addition, PVC 0/90 uses a VC multiplexed encapsulation and a UBR class traffic type at 500 kbps. For further information, refer to the IETF-Compliant LLC Encapsulated PPP over ATM Configuration Examples, page 56.

interface atm 0.1 multipoint
class-int ppp-default
!
pvc 0/70
exit
!
pvc 0/80
protocol ppp virtual-template 2
exit
!
pvc 0/90
encapsulation aal5mux ppp virtual-template 3
ubr 500
exit
exit
!
vclass atm ppp-default
protocol ppp virtual-template 1
ubr 256
exit

Overriding a Virtual Template for IETF-Compliant PPP over ATM Example

This example illustrates how to use inheritance to override a virtual template configuration for muxppp or ciscoppp encapsulation options. For PVC 5/505, since the encapsulation option at that level is ciscoppp virtual template 1, as specified in the VC class called muxppp, the protocol ppp virtual-template 2 command overrides only the virtual-template configuration. For further information, refer to the IETF-Compliant LLC Encapsulated PPP over ATM Configuration Examples, page 56.

interface atm 2/0
class-int muxppp
!
pvc 5/505
protocol ppp virtual-template 2
exit
!
muxppp
encapsulation aal5ciscoppp virtual-template 1
exit

Disabling IETF-Compliant PPP over ATM LLC Encapsulation on a Specific VC Example

This example shows how to limit the configuration of a particular LLC encapsulated protocol to a particular VC. First, we see that the VC class called "ppp" is configured with IETFPPP over ATM with LLC encapsulation and virtual template 1. This VC class is then applied to ATM interface 1/0/0. By configuring SNAP encapsulation by itself on PVC 0/32, you disable IETF PPP over ATM with LLC encapsulation on this particular PVC; PVC 0/32 will only carry IP. For further information, refer to the IETF-Compliant LLC Encapsulated PPP over ATM Configuration Examples, page 56.

interface atm 1/0/0
class-int ppp
exit
!
interface atm 1/0/0.100 point-to-point
description IP only VC
ip address 10.1.1.1 255.255.255.0
pvc 0/32
encapsulation aal5snap
Cisco Proprietary-PPP-over-ATM Example

The following example shows how to configure Cisco-proprietary PPP over ATM to use PPP unnumbered link and Challenge Handshake Authentication Protocol (CHAP) authentication. For further information, refer to the Configuring Cisco-Proprietary PPP over ATM PVCs, page 39.

configure terminal
!
interface virtual-template 2
encapsulation ppp
ip unnumbered ethernet 0/0
ppp authentication chap
!
interface atm 2/0.2 point-to-point
pvc 0/34
encapsulation aal5ciscopp virtual-template 2
exit

PPP over an ATM SVC Configuration Example

In the following example, ATM interface 2/0/0 is configured to accept ATM SVC calls whose called party address is 47.00918100000000400B0A2501.0060837B4740.00. The same ATM NSAP address can be configured on other physical ATM interfaces as well. When a PPP session is established, a virtual-access interface is created and cloned with the configuration from virtual template 1. All PPP sessions established on this ATM interface will use the IP address of loopback interface 0. A maximum of 100 SVCs can be established using this configuration. SVCs established using this configuration cannot take up more than 50 Mbps in total bandwidth.

interface ATM 2/0/0
svc anna
 encapsulation aal5auto
 protocol ppp virtual-template 1
 max vc 100
 max bandwidth 50000
 atm nsap 47.00918100000000400B0A2501.0060837B4740.00
!
interface virtual-template 1
ip unnumbered loopback 0
!
interface loopback 0
ip address 10.7.1.1 255.255.255.0

PPPoA PPPoE Autosense on an ATM PVC Example

In the following example, the NAS is configured with PPPoA/PPPoE autosense for ATM PVCs on PVC 30/33:

!
! Configure PPP Autosense
!
interface ATM 0/0/0.33 multipoint
 pvc 30/33
 encapsulation aal5autoppp Virtual-Template1
! Configure PPPoE
!
vpdn enable
vpdn-group 1
accept dialin
 protocol pppoe
virtual-template 1
!
ip cef
interface virtual-template 1
 ip unnumbered fastethernet 0/0/0
 ip route-cache cef
!
interface fastethernet 0/0/0
 ip address 10.1.1.1 255.255.255.0
!
! Enable precloning for virtual-template 1
!
virtual-template 1 pre-clone 2000

PPPoA PPPoE Autosense on a VC Class Example

In the following example, the NAS is configured with PPPoA/PPPoE autosense on the VC class called MyClass. MyClass applies PPPoA/PPPoE autosense to all PVCs on the ATM 0/0/0.99 interface.

! Configure PPP Autosense
!
vc-class ATM MyClass
 encapsulation aal5autoppp Virtual-Template1
!
interface ATM 0/0/0.99 multipoint
 class-int MyClass
 no ip directed-broadcast
 pvc 20/40
 pvc 30/33
!
! Configure PPPoE
!
vpdn enable
vpdn-group 1
accept dialin
 protocol pppoe
virtual-template 1
!
ip cef
interface virtual-template 1
 ip unnumbered fastethernet 0/0/0
 ip route-cache cef
!
interface fastethernet 0/0/0
 ip address 10.1.1.1 255.255.255.0
!
! Enable precloning for virtual-template 1
!
virtual-template 1 pre-clone 2000
!
PPPoA PPPoE Autosense on Multiple VC Classes and Virtual Templates Example

In the following example, PPPoA and PPPoE sessions are handled separately by two virtual templates.

```
ip cef
vpdn enable
!
vpdn-group 1
  accept-dialin
  protocol pppoe
virtual-template 1
pppoe limit per-mac 1
pppoe limit per-vc 1
virtual-template 1 pre-clone 1500
virtual-template 2 pre-clone 1000
!
interface ATM0/0/0.3 multipoint
  no ip directed-broadcast
  class-int pppauto
!
interface ATM0/0/0.9 multipoint
  ip address 10.16.40.1 255.255.0.0
  no ip directed-broadcast
!
interface Virtual-Template1
  ip unnumbered ATM0/0/0.9
  ip route-cache cef
  no ip directed-broadcast
  peer default ip address pool pool-1
  ppp authentication pap
!
interface Virtual-Template2
  ip unnumbered ATM0/0/0.9
  ip route-cache cef
  no ip directed-broadcast
  peer default ip address pool pool-2
  ppp authentication chap
!
interface fastethernet 0/0/0
  ip address 10.1.1.1 255.255.255.0
!
vclass atm pppauto
encapsulation aal5autoppp Virtual-Template2
!
```

Whenever possible, it is preferable to configure PPPoA and PPPoE to use the same virtual template. Using separate virtual templates leads to the inefficient use of virtual access because the maximum number of virtual-access interfaces will have to be precloned twice: once for PPPoE and once for PPPoA. If PPPoA and PPPoE use the same virtual template, the maximum number of virtual-access interfaces can be precloned once and used for PPPoA and PPPoE as needed.

Note

Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit per-mac` and `pppoe limit per-vc` commands are replaced by the `sessions per-mac limit` and `sessions per-vc limit` commands, respectively, in bba-group configuration mode. See the `sessions per-mac limit` and `sessions per-vc limit` commands for more information.

In the following example, PPPoA and PPPoE sessions are handled separately by two virtual templates.
Where to Go Next

If you want to identify a physical subscriber line for RADIUS communication with a RADIUS server, refer to the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.

Additional References

The following sections provide references related to providing protocol support for broadband access aggregation of PPP over ATM sessions.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>Understanding Broadband Access Aggregation</td>
</tr>
<tr>
<td>Broadband access aggregation preparation tasks</td>
<td>Preparing for Broadband Access Aggregation</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Relay Forum standard FRF.8</td>
<td>Frame Relay to ATM Internetworking</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2364</td>
<td>PPP over AAL5</td>
</tr>
</tbody>
</table>
Technical Assistance

Description Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content. http://www.cisco.com/techsupport

Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 2 Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP over ATM</td>
<td>12.1(1)</td>
<td>PPP over ATM enables a high-capacity central site router with an ATM interface to terminate multiple remote PPP connections. PPP over ATM provides security validation per user, IP address pooling, and service selection capability.</td>
</tr>
<tr>
<td>PPPoA/PPPoE Autosense for ATM PVCs</td>
<td>12.2(4)T 12.2(4)T3</td>
<td>The PPPoA/PPPoE autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Upstream PPPoX Connection Speed Transfer at LAC

The Upstream PPPoX Connection Speed Transfer at LAC feature allows the transfer of the upstream PPPoX session speed value at the Layer 2 Tunnel Protocol (L2TP) access concentrator (LAC). This transfer is accomplished by configuring the required speed on the ATM virtual circuit (VC) carrying the PPPoX session and then transferring this information into attribute-value (AV) pair 38 for transport from the LAC to the L2TP network server (LNS).

Note
PPPoX is a term used to refer to PPPoE, PPPoA, and PPPoEoA. All are implementations of PPP over various delivery protocols such as Ethernet and ATM.

Finding Feature Information
Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Upstream PPPoX Connection Speed Transfer at LAC
Restrictions for Upstream PPPoX Connection Speed Transfer at LAC

The following restrictions apply to the Upstream PPPoX Connection Speed Transfer at LAC feature:

- For PPPoE, all sessions over the same VC must have the same send and receive speed.
- The upstream speed is informational and does not imply any policing or shaping of the session speed.

Information About Upstream PPPoX Connection Speed Transfer at LAC

- Upstream PPPoX Connection Speed Transfer at LAC, page 66
- Benefits of Upstream PPPoX Connection Speed Transfer at LAC, page 66

Upstream PPPoX Connection Speed Transfer at LAC

The send speed from the LAC to the remote destination is copied into AV pair 38 so that the session is symmetric at the LNS. The LNS does not do any policing of the upstream rate but verifies the session speed against the Service Level Agreement (SLA) before accepting it.

The transfer of the upstream PPPoX session speed at the LAC is done by:

- Configuring the required speed on the ATM virtual circuit carrying the PPPoX session.
- Transferring the information to AV pair 38 for transport from the LAC to the LNS.

The figure below shows how the Upstream PPPoX Connection Speed Transfer at LAC feature works.

Figure 8 Upstream PPPoX Connection Speed Transfer at LAC

Benefits of Upstream PPPoX Connection Speed Transfer at LAC

The Upstream PPPoX Connection Speed Transfer at LAC feature enables the configuration of an upstream PPPoX session speed, which is different from the downstream speed and allows the transfer of the upstream speed value from the LAC to the LNS. The default state (before this feature is enabled) is that the
upstream speed and the downstream speed are the same. This feature implements changes that allows asymmetry in the upstream and downstream speeds.

This feature provides the following benefits:

- Allows support for asymmetric broadband service speeds such as asymmetric digital subscriber line (ADSL).
- Complies with RFC 2661 for L2TP.
- Is required for regulatory compliance in certain European countries; for example, Germany.

How to Configure Upstream Connection Speed Transfer at LAC

- Configuring Upstream PPPoX Connection Speed Transfer at the LAC, page 67

Configuring Upstream PPPoX Connection Speed Transfer at the LAC

The tasks in this section configure upstream PPPoX connection speed transfer at the LAC on a PVC or VC:

- Configuring Upstream PPPoX Connection Speed Transfer at LAC on a PVC, page 67
- Configuring Upstream PPPoX Connection Speed Transfer at LAC on VC, page 68

Configuring Upstream PPPoX Connection Speed Transfer at LAC on a PVC

Perform this task to configure the Upstream PPPoX Connection Speed Transfer feature at the LAC on a PVC.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port subinterface-number [mpls | multipoint | point-to-point]
4. range [range-name] pvc start-vpi [start-vci end-vpi] end-vci
5. rx-speed incoming-cell-rate
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 2 configure terminal | Enters global configuration mode.

Example:

```
Router# configure terminal
```

Step 3 interface atm slot / port . [subinterface-number{mpls | multipoint | point-to-point}]

Enters subinterface configuration mode.

Example:

```
Router(config)# interface atm 2/0.1 multipoint
```

Step 4 range [range-name] pvc start-vpi / start-vci end-vpi / end-vci

Enters PVC-in-range configuration mode.

Example:

```
Router(config-subif)# range pvc 0/100 0/110
```

Step 5 rx-speed incoming-cell-rate

Allows L2TP to send AV pair 38 with the given value to LNS.

- The valid range for *incoming-cell-rate* for L2TP AVP is from 0 to 44209 kb/s.

Example:

```
Router(config-if-atm-range)# rx-speed 128
```

Step 6 exit

Exits PVC-in-range configuration mode.

Example:

```
Router(config-if-atm-range)# exit
```

Configuring Upstream PPPoX Connection Speed Transfer at LAC on VC

Perform this task to configure the Upstream PPPoX Connection Speed Transfer at LAC on a VC.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot / port . [subinterface-number{mpls | multipoint | point-to-point}]
4. pvc [name] {vpi/vci | vci} [ces | ilmi | qsaal | smds | l2transport]
5. rx-speed incoming-cell-rate
6. encapsulation |aal2 | aal5auto | aal5autopp | virtual-template number [group group-name] | aal5iscoppp | virtual-template number | aal5mux | protocol | aal5nlpid | aal5snap
7. exit
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** interface atm slot / port [subinterface-number mpls | multipoint | point-to-point] | Enters subinterface configuration mode. |
| **Example:** Router(config)# interface atm 2/0.1 multipoint |
| **Step 4** pvc [name] [vpi/vci | vci] [ces | ilmi | qsaal | smds | l2transport] | Enters PVC-class configuration mode. |
| **Example:** Router(config-subif)# pvc pvc1 0/100 |
| **Step 5** rx-speed incoming-cell-rate | Allows L2TP to send (AV) pair 38 with the given value to LNS. |
| **Example:** Router(config-if-atm-vc)# rx-speed 128 |
| **Step 6** encapsulation [aal2 | aal5auto | aal5autopp | virtual-template number
 [group group-name] | aal5cisco | virtual-template number | aal5mux
 protocol | aal5nlpid | aal5snap] | Configures Logical Link Control (LLC) Subnetwork Access Protocol (SNAP) encapsulation on the PVC. |
| **Example:** Router(config-if-atm-vc)# encapsulation aal5snap |
| **Step 7** exit | Exits PVC-class configuration mode. |
| **Example:** Router(config-if-atm-vc)# exit |
Configuration Examples for Upstream PPPoX Connection Speed Transfer at LAC

- Configuring Upstream PPPoX Connection Speed Transfer at LAC Example, page 70

Configuring Upstream PPPoX Connection Speed Transfer at LAC Example

The following examples show how to configure the upstream PPPoX connection speed transfer at LAC in PVC, range PVC, and PVC-in-range modes.

PVC Class

```cisco
interface atm 6/0.110 multipoint
pvc 0/600
rx-speed 128
encapsulation aal5snap
exit
```

Range PVC

```cisco
interface atm 6/0.110 multipoint
range range-pppoa-1 pvc 100 4/199
rx-speed 400
exit
```

PVC-in-Range

```cisco
interface atm 6/0.110 multipoint
range range1 pvc 100 4/199
pvc-in-range 0/300
rx-speed 200
shutdown
```

Additional References

The following sections provide references related to the upstream PPPoX connection speed transfer.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring VC classes</td>
<td>"Configuring VC Classes" section in the "Configuring ATM" module in the Cisco IOS Wide-Area Networking Configuration Guide.</td>
</tr>
<tr>
<td>Understanding the Unspecified Bit Rate+ (UBR+) service category for ATM VCs</td>
<td>"Understanding the UBR+ Service Category for ATM VCs" module in ATM (Asynchronous Transfer Mode) Technical Support</td>
</tr>
</tbody>
</table>
Related Topic | Document Title
--- | ---
Broadband access aggregation concepts | Understanding Broadband Access Aggregation module
Preparing for broadband access aggregation task | Preparing for Broadband Access Aggregation module
BBDSL commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples | Cisco IOS Broadband Access Aggregation and DSL Command Reference
Cisco IOS commands | Cisco IOS Master Commands List, All Releases

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2661</td>
<td>Layer 2 Tunneling Protocol "L2TP"</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Upstream PPPoX Connection Speed Transfer at LAC

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 3 | Feature Information for Upstream PPPoX Connection Speed Transfer at LAC

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upstream PPPoX Connection Speed Transfer at LAC</td>
<td>12.2(15)B 12.2(4)T 12.2(33)SRE</td>
<td>The Upstream PPPoX Connection Speed Transfer at LAC feature allows the transfer of the upstream PPPoX session speed value at the LAC. The following command was introduced: rx-speed.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams,
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Providing Session Limit Support

The PPP over Ethernet Session Limit feature enables you to limit the number of PPP over Ethernet (PPPoE) sessions that can be created on a router or on a Gigabit Ethernet interface for configuration.

- Finding Feature Information, page 75
- Information About Providing Session Limit Support, page 75
- How to Provide Session Limit Support, page 75
- Configuration Examples for Providing Session Limit Support, page 79
- Additional References, page 79
- Feature Information for Providing Session Limit Support, page 81

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release.

To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Providing Session Limit Support

- Benefits of Providing Session Limit Support, page 75

Benefits of Providing Session Limit Support

The PPPoE Session Limit feature prevents the router from using too much memory for virtual access by limiting the number of PPPoE sessions that can be created on a router or on all Ethernet interfaces and sub-interfaces as well as ATM interfaces and sub-interfaces.

How to Provide Session Limit Support

- Specifying the Maximum Number of PPPoE Sessions on the Router, page 76
- Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface, page 77
Specifying the Maximum Number of PPPoE Sessions on the Router

Perform this task to specify the maximum number of PPPoE sessions that can be created on a router.

SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe {name | global}
4. virtual-template template-number
5. sessions per-mac limit per-mac-limit
6. sessions per-vlan limit per-vlan-limit [inner vlan-id]
7. sessions per-vc limit per-vc-limit [threshold threshold-value]
8. sessions max limit number-of-sessions [threshold threshold-value]
9. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3 bba-group pppoe {name</td>
<td>Configures a BBA group to be used to establish PPPoE sessions and</td>
</tr>
<tr>
<td>global}</td>
<td>enters BBA group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures a BBA group to be used to establish PPPoE sessions and</td>
</tr>
<tr>
<td>Router(config)# bba-group pppoe</td>
<td>Configures a BBA group to be used to establish PPPoE sessions and</td>
</tr>
<tr>
<td>global</td>
<td>Configures a BBA group to be used to establish PPPoE sessions and</td>
</tr>
<tr>
<td></td>
<td>Configures a BBA group to be used to establish PPPoE sessions and</td>
</tr>
<tr>
<td>Step 4 virtual-template template-number</td>
<td>Specifies which virtual template will be used to clone virtual access</td>
</tr>
<tr>
<td></td>
<td>Specifies which virtual template will be used to clone virtual access</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies which virtual template will be used to clone virtual access</td>
</tr>
<tr>
<td>Router(config-bba-group)# virtual-</td>
<td>Specifies which virtual template will be used to clone virtual access</td>
</tr>
<tr>
<td>template 1</td>
<td>Specifies which virtual template will be used to clone virtual access</td>
</tr>
</tbody>
</table>

How to Provide Session Limit Support

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>sessions per-mac limit per-mac-limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# sessions per-mac limit 1000</td>
</tr>
</tbody>
</table>

(Optional) Sets the maximum number of PPPoE sessions allowed per MAC session limit in a PPPoE profile. The default is 100.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>sessions per-vlan limit per-vlan-limit [inner vlan-id]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# session per-vlan limit 4000 inner 3500</td>
</tr>
</tbody>
</table>

(Optional) Sets the session limit for the inner VLAN on QinQ subinterface. The default is 100.

Note The per-VLAN limit is only applicable to Gigabit Ethernet subinterfaces (802.1q VLANs).

<table>
<thead>
<tr>
<th>Step 7</th>
<th>sessions per-vc limit per-vc-limit [threshold threshold-value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# sessions per-vc limit 2000</td>
</tr>
</tbody>
</table>

(Optional) Sets the maximum number of PPPoE sessions allowed per VC session limit in a PPPoE profile. The default is 100.

Note The per-vc limit is applicable only to ATM interfaces and subinterfaces.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>sessions max limit number-of-sessions [threshold threshold-value]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# sessions max limit 32000</td>
</tr>
</tbody>
</table>

Configures the PPPoE global profile with the maximum number of PPPoE sessions that will be permitted on a router, and sets the PPPoE session-count threshold at which a Simple Network Management Protocol (SNMP) trap will be generated.

Note This command applies only to the global profile.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# exit</td>
</tr>
</tbody>
</table>

Returns to global configuration mode.

Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface

Perform this task to specify the maximum number of PPPoE sessions that can be created on a Gigabit Ethernet interface.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface {GigabitEthernet | tenGigabitEthernet} slot / subslot / port[, subinterface]
4. pppoe enable [group group-name]
5. pppoe max-sessions number
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.

 • Enter your password if prompted. |
| Example: | |
| Router> enable | |

Step 2 configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	

Step 3 interface {GigabitEthernet	tenGigabitEthernet} slot / subslot / port[, subinterface]	Specifies a Gigabit Ethernet interface and enters interface configuration mode.
Example:		
Router(config)# interface GigabitEthernet0/0/1		

| Step 4 pppoe enable [group group-name] | Enables PPPoE sessions on a Gigabit Ethernet interface or subinterface.

 Note If a PPPoE profile is not assigned to the interface through use of the group group-name option, the interface will use the global PPPoE profile. |
| Example: | |
| Router(config-if)# pppoe enable group one | |

Step 5 pppoe max-sessions number	Specifies the maximum number of PPPoE sessions permitted on the interface or subinterface. The default value is 100.
Example:	
Router(config-if)# pppoe max-sessions 10	
### Command or Action	Purpose
Step 6 end | (Optional) Exits the configuration mode and returns to privileged EXEC mode.

Example:

Router(config-if)# end

Configuration Examples for Providing Session Limit Support

- Specifying the Maximum Number of PPPoE Sessions on a Router Example, page 79
- Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface Example, page 79

Specifying the Maximum Number of PPPoE Sessions on a Router Example

The following example shows a limit of 32,000 PPPoE sessions configured for the router:

```conf
bba-group pppoe global
  virtual-template 1
  sessions per-mac limit 1000
  sessions per-vlan limit 4000 inner 3500
  sessions per-vc limit 2000
```

Specifying the Maximum Number of PPPoE Sessions on a Gigabit Ethernet Interface Example

The following example shows a limit of ten PPPoE sessions on the Gigabit Ethernet interface:

```conf
interface GigabitEthernet1/0/0
  pppoe enable
  pppoe max-sessions 10
```

The following example shows a limit of ten PPPoE sessions on the Gigabit Ethernet subinterface using the `encapsulation` command:

```conf
interface GigabitEthernet0/0/0.1
  encapsulation dot1q 2
  pppoe enable
  pppoe max-sessions 10
```

Additional References

The following sections provide references related to supporting session limits.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation of PPPoE sessions</td>
<td>Understanding Broadband Access Aggregation</td>
</tr>
<tr>
<td>Task for preparing for broadband access aggregation</td>
<td>Preparing for broadband access aggregation</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
<tr>
<td>history, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Additional information about commands used in this document</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>Title</td>
</tr>
<tr>
<td>No new or modified standards are supported by this feature, and support for</td>
<td>--</td>
</tr>
<tr>
<td>existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified</td>
<td>To locate and download MIBs for selected</td>
</tr>
<tr>
<td>MIBs are supported by</td>
<td>platforms, Cisco IOS releases, and feature</td>
</tr>
<tr>
<td>this feature, and</td>
<td>sets, use Cisco MIB Locator found at the</td>
</tr>
<tr>
<td>support for existing</td>
<td>following URL:</td>
</tr>
<tr>
<td>MIBs has not been</td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>modified by this</td>
<td></td>
</tr>
<tr>
<td>feature.</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified</td>
<td>--</td>
</tr>
<tr>
<td>RFCs are supported by</td>
<td></td>
</tr>
<tr>
<td>this feature, and</td>
<td></td>
</tr>
<tr>
<td>support for existing</td>
<td></td>
</tr>
<tr>
<td>RFCs has not been</td>
<td></td>
</tr>
<tr>
<td>modified by this</td>
<td></td>
</tr>
<tr>
<td>feature.</td>
<td></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for Providing Session Limit Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<p>| Table 4 Feature Information for Providing Session Limit Support |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP over Ethernet (PPPoE) Session Limit</td>
<td>12.2(1)DX 12.2(2)DD 12.2(4)B 12.2(4)T 15.0(1)M 12.2(33)SRE</td>
<td>The PPP over Ethernet (PPPoE) Session Limit feature enables you to limit the number of PPPoE sessions that can be created on a router or on a Gigabit Ethernet interface for configuration. The following commands were introduced or modified: sessions per-mac limit, sessions per-vlan limit, sessions per-vc limit, sessions max limit, pppoe max-sessions</td>
</tr>
</tbody>
</table>
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Monitoring PPPoE Sessions with SNMP

The PPPoE Session Count Management Information Base feature provides the ability to use Simple Network Management Protocol (SNMP) to monitor in real time the number of PPP over Ethernet (PPPoE) sessions configured on permanent virtual circuits (PVCs) and on a router.

This MIB also supports two SNMP traps that generate notification messages when a PPPoE session-count threshold is reached on any PVC or on the router. The PPPoE session-count thresholds can be configured using the `sessions max limit` and `pppoe max-sessions` commands.

- Finding Feature Information, page 83
- Prerequisites for Monitoring PPPoE Sessions with SNMP, page 83
- Restrictions for Monitoring PPPoE Sessions with SNMP, page 84
- Information About Monitoring PPPoE Sessions with SNMP, page 84
- How to Configure SNMP Monitoring of PPPoE Sessions, page 85
- Configuration Examples for Monitoring PPPoE Sessions with SNMP, page 97
- Where to Go Next, page 99
- Additional References, page 100
- Feature Information for Monitoring PPPoE Sessions with SNMP, page 101
- Glossary, page 102

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Monitoring PPPoE Sessions with SNMP

- You must understand the concepts described in the "Preparing for Broadband Access Aggregation" module.
- PPPoE sessions must be established using the procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module.
Restrictions for Monitoring PPPoE Sessions with SNMP

The `snmp-server enable traps pppoe` command enables SNMP traps only. It does not support inform requests.

Information About Monitoring PPPoE Sessions with SNMP

- Network Management Protocol, page 84
- PPPoE Session Count MIB, page 84
- Benefits of Monitoring PPPoE Sessions with SNMP, page 85

Network Management Protocol

SNMP is a network management protocol used almost exclusively in TCP/IP networks. SNMP provides a means to monitor and control network devices and to manage configurations, statistics collection, performance, and security. SNMP version 2 supports centralized and distributed network management strategies and includes improvements in the Structure of Management Information (SMI), protocol operations, management architecture, and security.

PPPoE Session Count MIB

Note Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit max-sessions` command is replaced by the `sessions max limit` command in BBA group configuration mode. See the `sessions max limit` command for more information.

A MIB is a database of network management information that is used and maintained by a network management protocol, such as SNMP. The value of a MIB object can be changed or retrieved using SNMP commands, usually through a network management system.

The PPPoE Session Count MIB uses two SNMP traps that generate notification messages when a PPPoE session-count threshold is reached on any PVC or on the router. The PPPoE session-count thresholds can be configured using the `pppoe limit max-sessions` and `pppoe max-sessions` commands.

The table below describes the objects and tables supported by the PPPoE Session-Count MIB. For a complete description of the MIB, see the PPPoE Sessions Management MIB file CISCO-PPPOE-MIB.my, available through Cisco.com at the following URL: http://www.cisco.com/go/mibs.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>PPPoE Session Count MIB Objects and Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object or Table</td>
<td>Description</td>
</tr>
<tr>
<td><code>cPppoeSystemCurrSessions</code></td>
<td>Number of PPPoE sessions active on the router.</td>
</tr>
<tr>
<td><code>cPppoeSystemHighWaterSessions</code></td>
<td>Total number of PPPoE sessions configured on the router since the system was initialized.</td>
</tr>
<tr>
<td>Object or Table</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>cPppoeSystemMaxAllowedSessions</td>
<td>Number of PPPoE sessions that can be configured on the router.</td>
</tr>
<tr>
<td>cPppoeSystemThresholdSessions</td>
<td>Threshold value of PPPoE sessions that can be configured on the router.</td>
</tr>
<tr>
<td>cPppoeSystemExceededSessionErrors</td>
<td>Accumulated number of errors on the router that have occurred because the cPppoeSystemCurrSessions value exceeded the cPppoeSystemMaxAllowedSessions value.</td>
</tr>
<tr>
<td>cPppoeVcCfgTable</td>
<td>PPPoE protocol-related configuration information about the virtual channel links (VCLs).</td>
</tr>
<tr>
<td>cPppoeVcSessionsTable</td>
<td>Configuration information and statistics about the number of PPPoE sessions on the VCLs.</td>
</tr>
<tr>
<td>cPppoeSystemSessionThresholdTrap</td>
<td>Generates a notification message when the number of PPPoE sessions on the router reaches the configured threshold value.</td>
</tr>
<tr>
<td>cPppoeVcSessionThresholdTrap</td>
<td>Generates a notification message when the number of PPPoE sessions on the PVC reaches the configured threshold value.</td>
</tr>
</tbody>
</table>

Benefits of Monitoring PPPoE Sessions with SNMP

The monitoring of PPPoE sessions with SNMP provides the following benefits:

- It helps manage the number of PPPoE sessions configured on a router or PVC by sending notification messages when the PPPoE session threshold has been reached.
- It provides a way of tracking PPPoE session information over time.

How to Configure SNMP Monitoring of PPPoE Sessions

- Enabling PPPoE Session Count SNMP Traps, page 86
- Configuring the PPPoE Session-Count Threshold for the Router Using VPDN Groups, page 87
- Configuring the PPPoE Session-Count Threshold for the Router Using BBA Groups, page 88
- Configuring the PPPoE Session-Count Threshold for a PVC, page 89
- Configuring the PPPoE Session-Count Threshold for a VC Class, page 91
- Configuring the PPPoE Session-Count Threshold for an ATM PVC Range, page 92
- Configuring the PPPoE Session-Count Threshold for an Individual PVC Within a Range, page 93
- Verifying PPPoE Session-Count Thresholds, page 95
- Monitoring and Maintaining PPPoE Session Counts and SNMP Notifications, page 96
Enabling PPPoE Session Count SNMP Traps

Perform this task to enable SNMP traps that send notification messages when PPPoE session thresholds have been reached.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **snmp-server enable traps pppoe**
4. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server enable traps pppoe</td>
<td>Enables PPPoE session count SNMP notifications.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# snmp-server enable traps pppoe</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the PPPoE Session-Count Threshold for the Router Using VPDN Groups

Note
Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit max-sessions` command is replaced by the `sessions max limit` command in BBA group configuration mode. See the `sessions max limit` command for more information.

Perform this task to configure the PPPoE session-count threshold for the router using VPDN groups.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vpdn-group name`
4. `accept-dialin`
5. `protocol pppoe`
6. `virtual-template template-number`
7. `pppoe limit max-sessions number-of-sessions [threshold-sessions number-of-sessions]`
8. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>vpdn-group name</code></td>
<td>Associates a virtual private dialup network (VPDN) group with a customer or VPDN profile and enters VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn group dialingroup1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4 accept-dialin</td>
<td>Creates an accept dialin VPDN group and enters VPDN dialin access configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-vpdn)# accept dialin</td>
<td></td>
</tr>
<tr>
<td>Step 5 protocol pppoe</td>
<td>Configures the Layer 2 Tunneling Protocol (L2TP) that the VPDN subgroup will use.</td>
</tr>
<tr>
<td>Example:
Router(config-vpdn-acc-in)# protocol pppoe</td>
<td></td>
</tr>
<tr>
<td>Step 6 virtual-template <code>template-number</code></td>
<td>Specifies which virtual template will be used to clone virtual access interfaces.</td>
</tr>
<tr>
<td>Example:
Router(config-vpdn-acc-in)# virtual template 100</td>
<td></td>
</tr>
<tr>
<td>Step 7 pppoe limit <code>max-sessions number-of-sessions</code> [threshold-sessions <code>number-of-sessions</code>]</td>
<td>Sets the maximum number of PPPoE sessions that will be permitted on a router, and sets the PPPoE session-count threshold at which an SNMP trap will be generated.</td>
</tr>
<tr>
<td>Example:
Router(config-vpdn-acc-in)# pppoe limit max-sessions 4000 threshold-sessions 3000</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits VPDN dialin access configuration mode and returns to VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-vpdn-acc-in)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the PPPoE Session-Count Threshold for the Router Using BBA Groups

Perform this task to configure the PPPoE session-count threshold for the router using BBA groups.

SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe global
4. virtual-template `template-number`
5. sessions max limit `number-of-sessions` [threshold `number-of-sessions`]
6. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** bba-group pppoe global | Defines a PPPoE profile and enters BBA group configuration mode.
• The `global` keyword creates a profile that serves as the default profile for any PPPoE port that is not assigned a specific profile. |
| **Example:** | Router(config)# bba-group pppoe global |
| **Step 4** virtual-template `template-number` | Specifies which virtual template will be used to clone virtual access interfaces. |
| **Example:** | Router(config-bba-group)# virtual template 100 |
| **Step 5** `sessions max limit number-of-sessions [threshold number-of-sessions]` | Sets the maximum number of PPPoE sessions that will be permitted on a router, and sets the PPPoE session-count threshold at which an SNMP trap will be generated. |
| **Example:** | Router(config-bba-group)# sessions max limit 4000 threshold 3000 |
| **Step 6** exit | Exits BBA group configuration mode and returns to global configuration mode. |
| **Example:** | Router(config-bba-group)# exit |

Configuring the PPPoE Session-Count Threshold for a PVC

Perform this task to configure the PPPoE session-count threshold for a PVC.
SUMMARY STEPS

1. enable
2. configure terminal
3. `interface atm interface-number [subinterface-number {mpls | multipoint | point-to-point}]`
4. `pvc [name] vpi vci`
5. `pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]`
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Example: | Router> enable | | |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| **Step 3** `interface atm interface-number [subinterface-number {mpls | multipoint | point-to-point}]` | Configures the ATM interface and enters interface configuration mode. |
| Example: | Router(config)# interface atm 0/0/0.3 point-to-point |
| **Step 4** `pvc [name] vpi vci` | Configures the PVC and enters ATM VC configuration mode. |
| Example: | Router(config-if)# pvc 5/120 |
| **Step 5** `pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]` | Sets the maximum number of PPPoE sessions that will be permitted on an ATM PVC, PVC range, VC class, or VLAN, and sets the PPPoE session-count threshold at which an SNMP trap will be generated. |
| Example: | Router(config-if-atm-vc)# pppoe max-sessions 5 threshold-sessions 3 |
Configuring the PPPoE Session-Count Threshold for a VC Class

Perform this task to configure the PPPoE session-count threshold for a VC class.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Creates a VC class for an ATM PVC, or SVC, or ATM interface and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm main</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the PPPoE Session-Count Threshold for an ATM PVC Range

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm interface-number [. subinterface-number] [mpls | multipoint | point-to-point]]
4. range [range-name] pvc start-vpi/start-vci end-vpi/end-vci
5. pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>`interface atm interface-number [, subinterface-number {mpls</td>
<td>multipoint</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# interface atm 0/0/0.3 point-to-point</code></td>
<td>To determine the correct form of the <code>interface atm</code> command, consult your ATM network module, port adapter, or router documentation.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>range [range-name] pvc start-vpi/start-vci end-vpi/end-vci</code></td>
<td>Defines a range of ATM PVCs and enters ATM PVC range configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-if)# range pvc 3/100 3/105</code></td>
<td>Sets the maximum number of PPPoE sessions that will be permitted on an ATM PVC, PVC range, VC class, or VLAN, and sets the PPPoE session-count threshold at which an SNMP trap will be generated.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]</code></td>
<td>Sets the maximum number of PPPoE sessions that will be permitted on an ATM PVC, PVC range, VC class, or VLAN, and sets the PPPoE session-count threshold at which an SNMP trap will be generated.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-if-atm-range)# pppoe max-sessions 20 threshold-sessions 15</code></td>
<td>Exits ATM PVC range configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>exit</code></td>
<td>Exits ATM PVC range configuration mode and returns to global configuration mode.</td>
</tr>
</tbody>
</table>

Configuring the PPPoE Session-Count Threshold for an Individual PVC Within a Range

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm interface-number [, subinterface-number {mpls | multipoint | point-to-point}]`
4. `range [range-name] pvc start-vpi/start-vci end-vpi/end-vci`
5. `pvc-in-range [pvc-name] [vpi | vci]`
6. `pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions]`
7. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** interface atm interface-number [., subinterface-number
 (mpls | multipoint | point-to-point)] | Configures the ATM interface and enters interface configuration mode.
 Note To determine the correct form of the `interface atm` command, consult your ATM network module, port adapter, or router documentation. |
| **Example:** | | |
| Router(config)# interface atm6/0.110 multipoint | |
| **Step 4** range [range-name] pvc start-vpi / start-vci end-vpi / end-vci | Defines a range of ATM PVCs and enters ATM PVC range configuration mode. |
| **Example:** | |
| Router(config-if)# range range1 pvc 3/100 4/199 | |
| **Step 5** pvc-in-range [pvc-name] [vpi | vci] | Configures an individual PVC within a PVC range and enters ATM PVC-in-range configuration mode. |
| **Example:** | |
| Router(config-if-atm-range)# pvc-in-range pvc1 3/104 | |
| **Step 6** pppoe max-sessions number-of-sessions [threshold-sessions number-of-sessions] | Sets the maximum number of PPPoE sessions that will be permitted on an ATM PVC, PVC range, VC class, or VLAN, and sets the PPPoE session-count threshold at which an SNMP trap will be generated. |
| **Example:** | |
| Router(config-if-atm-range-pvc)# pppoe max-sessions 10 threshold-sessions 3 | |
Command or Action | Purpose
---|---
Step 7 exit | Exits ATM PVC in-range configuration mode and returns to ATM PVC range configuration mode.

Example:

```
Router(config-if-atm-range-pvc)# exit
```

Verifying PPPoE Session-Count Thresholds

Use the following task to verify PPPoE session-count thresholds:

SUMMARY STEPS

1. enable
2. more system:running config

DETAILED STEPS

Step 1 enable

Use this command to enable privileged EXEC mode. Enter your password when prompted.

Example:

```
Router> enable
```

Step 2 more system:running config

Use this command to display the running configuration.

Example:

```
Router# more system:running config
Building configuration...
Current configuration:
!
version 12.3
no service udp-small-servers
no service tcp-small-servers
!
hostname Router2
!
!
!
!
!
end
```
Monitoring and Maintaining PPPoE Session Counts and SNMP Notifications

Perform the following task to monitor PPPoE sessions counts and SNMP notifications:

SUMMARY STEPS

1. enable
2. debug snmp packets
3. debug pppoe errors interface atm interface-number
4. debug pppoe events interface atm interface-number vc vci-value
5. show vpdn [session] [packets] [tunnel] [all]

DETAILED STEPS

Step 1 enable
Use this command to enable privileged EXEC mode. Enter your password when prompted.

Example:

Router> enable

Step 2 debug snmp packets
Use this command to display information about every SNMP packet sent or received by the router:

Example:

Router# debug snmp packets
SNMP: Packet received via UDP from 172.16.63.17 on Ethernet0
SNMP: Get-next request, reqid 23584, errstat 0, erridx 0
sysUpTime = NULL TYPE/VALUE
system.1 = NULL TYPE/VALUE
system.6 = NULL TYPE/VALUE
SNMP: Response, reqid 23584, errstat 0, erridx 0
sysUpTime.0 = 2217027
system.1.0 = Cisco Internetwork Operating System Software
system.6.0 =
SNMP: Packet sent via UDP to 172.16.63.17

Step 3 debug pppoe errors interface atm interface-number
Use this command to display PPPoE protocol errors that prevent a session from being established or errors that cause an established session to be closed:

Example:

Router# debug pppoe errors interface atm 1/0.10
PPPoE protocol errors debugging is on
Router#
00:44:30:PPPoE 0:Max session count(1) on mac(00b0.c2e9.c470) reached.
00:44:30:PPPoE 0:Over limit or Resource low. R:00b0.c2e9.c470 L:ffff.ffff.ffff 0/101 ATM1/0.10

Step 4 debug pppoe events interface atm interface-number vc vci-value
Use this command to display PPPoE protocol messages about events that are part of normal session establishment or shutdown:

Example:

Router# debug pppoe events interface atm 1/0.10 vc 101
Example:

Router# debug pppoe events interface atm 1/0.10 vc 101
PPPoE protocol events debugging is on
Router#
00:41:55:PPPoE 0:I PADI R:00b0.c2e9.c470 L:ffff.ffff.ffff 0/101 ATM1/0.10
00:41:55:PPPoE 0:O PADO, R:00b0.c2e9.c470 L:0001.c9f0.0c1c 0/101 ATM1/0.10
00:41:55:PPPoE 0:I PADD R:00b0.c2e9.c470 L:0001.c9f0.0c1c 0/101 ATM1/0.10
00:41:55:PPPoE 0:I encap string prepared
00:41:55:[3]PPPoE 3:Access IE handle allocated
00:41:55:[3]PPPoE 3:pppoe SSS switch updated
00:41:55:[3]PPPoE 3:AAA unique ID allocated
00:41:55:[3]PPPoE 3:No AAA accounting method list
00:41:55:[3]PPPoE 3:Service request sent to SSS
00:41:55:[3]PPPoE 3:Created R:0001.c9f0.0c1c L:00b0.c2e9.c470 0/101 ATM1/0.10
00:41:55:[3]PPPoE 3:State REQ_NASPORT Event MORE_KEYS
00:41:55:[3]PPPoE 3:O PADS R:00b0.c2e9.c470 L:0001.c9f0.0c1c 0/101 ATM1/0.10
00:41:55:[3]PPPoE 3:State START_PPP Event DYN_BIND
00:41:57:[3]PPPoE 3:data path set to PPP
00:41:57:[3]PPPoE 3:State LCP_NEGO Event PPP_LOCAL
00:41:57:[3]PPPoE 3:SB:Sent vtemplate request on base Vi2
00:41:57:[3]PPPoE 3:State CREATE_VA Event VA_RESP
00:41:57:[3]PPPoE 3:Vi2.1 interface obtained
00:41:57:[3]PPPoE 3:State STAT_BIND
00:41:57:[3]PPPoE 3:data path set to Virtual Access
00:41:57:[3]PPPoE 3:Connected PTA

Step 5 show vpdn [session] [packets] [tunnel] [all]

Use this command to display information about active Level 2 Forwarding (L2F) protocol tunnel and message identifiers on a VPDN:

Example:

Router# show vpdn session
No active L2TP tunnels
No active L2F tunnels
PPPoE Session Information Total tunnels 1 sessions 1
PPPoE Session Information
SID RemMAC LocMAC Intf VAST OIntf VC
1 0010.7b01.2cd9 0090.ab13.bca8 V14 UP AT6/0 0/10

Configuration Examples for Monitoring PPPoE Sessions with SNMP

- Configuring PPPoE Session-Count SNMP Traps Example, page 98
- PPPoE Session-Count Threshold for the Router Example, page 98
- PPPoE Session-Count Threshold for a PVC Example, page 98
- PPPoE Session-Count Threshold for a VC Class Example, page 99
- PPPoE Session-Count Threshold for a PVC Range Example, page 99
- PPPoE Session-Count Threshold for an Individual PVC Within a PVC Range Example, page 99
Configuring PPPoE Session-Count SNMP Traps Example

The following example shows how to enable the router to send PPPoE session-count SNMP notifications to the host at the address 10.64.131.20:

```
snmp-server community public RW
snmp-server enable traps pppoe
snmp-server host 10.64.131.20 version 2c public udp-port 1717
```

PPPoE Session-Count Threshold for the Router Example

Note

Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit max-sessions` command is replaced by the `sessions max limit` command in BBA group configuration mode. See the `sessions max limit` command for more information.

The following example shows a limit of 4000 PPPoE sessions configured for the router through VPDN groups. The PPPoE session-count threshold is set at 3000 sessions, so when the number of PPPoE sessions on the router reaches 3000, an SNMP trap will be generated.

```
vpdn enable
do vpdn logging
#
vpdn-group 1
accept-dialin
protocol pppoe
virtual-template 1
pppoe limit max-sessions 4000 threshold-sessions 3000
```

The following example shows a limit of 4000 PPPoE sessions configured for the router through BBA groups. The PPPoE session-count threshold is set at 3000 sessions, so when the number of PPPoE sessions on the router reaches 3000, an SNMP trap will be generated.

```
bba-group pppoe global
   virtual-template 1
      sessions max limit 4000 threshold 3000
```

PPPoE Session-Count Threshold for a PVC Example

The following example shows a limit of five PPPoE sessions configured for the PVC. The PPPoE session-count threshold is set at three sessions, so when the number of PPPoE sessions on the PVC reaches three, an SNMP trap will be generated.

```
interface ATM 0/0/0
ip address 10.0.0.1 255.255.255.0
no atm ilmi-keepalive
pvc 5/120
   protocol ip 10.0.0.2 broadcast
   pppoe max-sessions 5 threshold-sessions 3
   protocol pppoe
```
PPPoE Session-Count Threshold for a VC Class Example

The following example shows a limit of seven PPPoE sessions configured for a VC class called "main." The PPPoE session-count threshold is set at three sessions, so when the number of PPPoE sessions for the VC class reaches three, an SNMP trap will be generated.

```
vc-class atm main
pppoe max-sessions 7 threshold-sessions 3
```

PPPoE Session-Count Threshold for a PVC Range Example

The following example shows a limit of 20 PPPoE sessions configured for the PVC range. The PPPoE session-count threshold will also be 20 sessions because when the session-count threshold has not been explicitly configured, it defaults to the PPPoE session limit. An SNMP trap will be generated when the number of PPPoE sessions for the range reaches 20.

```
interface ATM 0/0/0.3 point-to-point
range pvc 3/100 3/105
pppoe max-sessions 20
protocol pppoe
```

PPPoE Session-Count Threshold for an Individual PVC Within a PVC Range Example

The following example shows a limit of ten PPPoE sessions configured for pvc1. The PPPoE session-count threshold is set at three sessions, so when the number of PPPoE sessions for the PVC reaches three, an SNMP trap will be generated.

```
interface atm 6/0.110 multipoint
range range1 pvc 100 4/199
pvc-in-range pvc1 3/104
pppoe max-sessions 10 threshold-sessions 3
```

Where to Go Next

- If you want to establish PPPoE session limits for sessions on a specific PVC or VLAN configured on an L2TP access concentrator, refer to the "Establishing PPPoE Session Limits per NAS Port" module.
- If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup, refer to the "Offering PPPoE Clients a Selection of Services During Call Setup" module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to a LNS or tunnel switch, refer to the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.
- If you want to configure the transfer upstream of the PPPoX session speed value, refer to the "Configuring Upstream Connection Speed Transfer" module.
- If you want to identify a physical subscriber line for RADIUS communication with a RADIUS server, refer to the "Identifying the Physical Subscriber Line for RADIUS Access and Accounting" module.
- If you want to configure a Cisco Subscriber Service Switch, refer to the "Configuring Cisco Subscriber Service Switch Policies" module.
Additional References

The following sections provide references related to monitoring PPPoE sessions with SNMP.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>Understanding Broadband Access Aggregation</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>Preparing for Broadband Access Aggregation</td>
</tr>
<tr>
<td>Configuring PPPoE sessions</td>
<td>Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions</td>
</tr>
<tr>
<td>Establishing PPPoE session limits for sessions on a specific PVC or VLAN configured on an L2TP access concentrator</td>
<td>Establishing PPPoE Session Limits per NAS Port</td>
</tr>
<tr>
<td>Using service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup</td>
<td>Offering PPPoE Clients a Selection of Services During Call Setup</td>
</tr>
<tr>
<td>Enabling an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to a LNS or tunnel switch</td>
<td>Enabling PPPoE Relay Discovery and Service Selection Functionality</td>
</tr>
<tr>
<td>Configuring the transfer upstream of the PPPoX session speed value</td>
<td>Configuring Upstream Connection Speed Transfer</td>
</tr>
<tr>
<td>Identifying a physical subscriber line for RADIUS communication with a RADIUS server</td>
<td>Identifying the Physical Subscriber Line for RADIUS Access and Accounting</td>
</tr>
<tr>
<td>Configuring a Cisco Subscriber Service Switch</td>
<td>Configuring Cisco Subscriber Service Switch Policies</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Session Count MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for Monitoring PPPoE Sessions with SNMP

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 6 Feature Information for Monitoring PPPoE Sessions with SNMP

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Session Count MIB</td>
<td>12.2(1)DC 12.2(8)T 12.2(33)SRC</td>
<td>This feature provides the ability to use Simple Network Management Protocol (SNMP) to monitor in real time the number of PPP over Ethernet sessions configured on permanent virtual circuits (PVCs) and on a router. The following commands were introduced or modified: <code>pppoe limit max-sessions</code>, <code>pppoe max-sessions</code>, <code>sessions max limit</code>.</td>
</tr>
</tbody>
</table>

Glossary

ATM--Asynchronous Transfer Mode. The international standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media, such as E3, SONET, and T3.

MIB--Management Information Base. Database of network management information that is used and maintained by a network management protocol such as SNMP. The value of a MIB object can be changed or retrieved using SNMP commands, usually through a network management system (NMS). MIB objects are organized in a tree structure that includes public (standard) and private (proprietary) branches.

PVC--Permanent Virtual Circuit. Virtual circuit that is permanently established. PVCs save bandwidth associated with circuit establishment and teardown in situations where certain virtual circuits must exist all the time. In ATM terminology, PVC also stands for permanent virtual connection.

SNMP--Simple Network Management Protocol. An application-layer protocol that provides a message format for communication between SNMP managers and agents and is exclusively used in TCP/IP networks. SNMP provides a means to monitor and control network devices and to manage configurations, statistics collection, performance, and security.

trap--A message from an SNMP agent alerting the SNMP manager to a condition on the network.

VCI--Virtual Channel Identifier. 16-bit field in the header of an ATM cell. The VCI, together with the VPI, is used to identify the next destination of a cell as it passes through a series of ATM switches on its way to its destination. ATM switches use the VPI/VCI fields to identify the next network VCL that a cell needs to transit on its way to its final destination.

VCL--Virtual Channel Link. Connection between two ATM devices.
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
PPP over Ethernet Client

The PPP over Ethernet Client feature provides PPP over Ethernet (PPPoE) client support on routers. PPPoE is a commonly used application in the deployment of digital subscriber lines (DSLs). The PPP over Ethernet Client feature expands PPPoE functionality by providing support for PPPoE on the client and the server.

- Finding Feature Information, page 105
- Prerequisites for PPP over Ethernet Client, page 105
- Restrictions for PPPoE Client, page 105
- Information About PPP over Ethernet Client, page 106
- How to Configure a PPPoE Client, page 108
- Configuration Examples for PPPoE Client, page 125
- Additional References, page 126
- Feature Information for PPP over Ethernet Client, page 127

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for PPP over Ethernet Client

PPP connections must be established between two endpoints over a serial link.

Restrictions for PPPoE Client

- For PPPoE over ATM, one permanent virtual circuit (PVC) supports multiple PPPoE clients, allowing multiple PPPoE sessions to run concurrently on the same PVC. An ATM PVC is allowed to be a member of several dialer pools as long as the dialer pool number is unique.
- For PPPoE, each PPPoE client must use a separate dialer interface and a separate dialer pool.
• For the PPPoE--Max-Payload Support on Client feature the physical interface should support a maximum transmission unit (MTU) greater than 1500.
• For the PPPoE--Max-Payload Support on Client feature, appropriate configuration is required on the Broadband Remote Access Server (BRAS). For more information, see the "PPP-Max-Payload and IWF PPPoE Tag Support" module.

Information About PPP over Ethernet Client

- PPPoE Client Network Topology, page 106
- PPPoE Client Support on ATM PVCs and Ethernet Interfaces, page 106
- PPP over Ethernet Client Session Initiation, page 107

PPPoE Client Network Topology

The PPP over Ethernet Client feature provides PPPoE client support on routers on customer premises. Before the introduction of this feature, Cisco IOS software supported PPPoE on the access server side only. The figure below shows the typical network topology for configuring a PPPoE client on an Ethernet interface (E1 interface).

![Typical Network Topology for PPPoE Deployment](image)

PPPoE Client Support on ATM PVCs and Ethernet Interfaces

The PPPoE Client feature provides PPPoE client support on ATM PVCs and Ethernet interfaces. A dialer interface must be used for cloning virtual access.

Prior to Cisco IOS Release 12.4(15)T, one ATM PVC supported one PPPoE client. With the introduction of the Multiple PPPoE Client feature in Cisco IOS Release 12.4(15)T, one ATM PVC supports multiple PPPoE clients, allowing second line connection and redundancy. Multiple PPPoE clients can run concurrently on different PVCs, but each PPPoE client must use a separate dialer interface and a separate dialer pool.
Multiple PPPoE client sessions can be configured on an Ethernet interface, but each session must use a separate dialer interface and a separate dialer pool.

- **PPPoE--Max-Payload Support on Client, page 107**

PPPoE--Max-Payload Support on Client

PPPoE, as described in RFC 2516, mandates a maximum negotiated Maximum Receive Unit (MRU) of 1492. This means that a PPPoE data packet cannot accommodate more than 1492 bytes of payload. To overcome this limitation, the client can use the PPP-Max-Payload tag (defined in RFC 4638) and negotiate a higher MRU with the Broadband Remote Access Server (BRAS). Use the `pppoe-client ppp-max-payload` command to send the PPP Max-Payload tag in PPPoE control packets to negotiate a higher MRU. A PPP Max-Payload tag allows a PPPoE client to override the MRU of 1492 by providing a maximum size for the PPP payload in both the sending and receiving directions.

The PPPoE client sends the PPPoE Max-Payload tag in a PPPoE Active Discovery Initiation (PADI) packet and if the PPPoE server can support a Maximum Transmission Unit (MTU)/Maximum Receive Unit (MRU) higher than 1492 octets, it responds with an echo of the clients tag in the PPPoE Active Discovery Offer (PADO) packet. The client sends the same tag in the PPPoE Active Discovery Request (PADR), and the server echoes the client tag in a PPPoE Active Discovery Session-confirmation (PADS) packet.

The `pppoe-client ppp-max-payload` command can only be configured when the PPPoE client dialer configuration is done. When the `pppoe-client ppp-max-payload` command is configured without the dialer configuration, an error message is displayed. If the dialer configuration is removed, the PPP max-payload configuration is also removed.

PPP over Ethernet Client Session Initiation

A PPPoE session is initiated by the PPPoE client. If the session has a timeout or is disconnected, the PPPoE client will immediately attempt to reestablish the session.

The following steps describe the exchange of packets that occurs when a PPPoE client initiates a PPPoE session:

1. The client broadcasts a PPPoE active discovery initiation (PADI) packet.
2. When the access concentrator receives a PADI packet that it can serve, it replies by sending a PPPoE active discovery offer (PADO) packet to the client.
3. Because the PADI packet was broadcast, the host may receive more than one PADO packet. The host looks through the PADO packets it receives and chooses one. The choice can be based on the access concentrator name or on the services offered. The host then sends a single PPPoE active discovery request (PADR) packet to the access concentrator that it has chosen.
4. The access concentrator responds to the PADR packet by sending a PPPoE active discovery session-confirmation (PADS) packet. At this point, a virtual access interface is created that will then negotiate PPP and the PPPoE session will run on this virtual access.

If a client does not receive a PADO packet for a PADI packet already received, the client sends out a PADI packet at predetermined intervals. That interval length is doubled for every successive PADI packet that does not evoke a response, until the interval reaches the configured maximum.

If PPP negotiation fails or the PPP line protocol is brought down for any reason, the PPPoE session and the virtual access will be brought down and the client will wait for a predetermined number of seconds before trying to establish another PPPoE session.
How to Configure a PPPoE Client

- Configuring a PPPoE Client in Releases Prior to Cisco IOS Release 12.2(13)T, page 108
- Configuring a PPPoE Client in Cisco IOS Release 12.2(13)T 12.4T and Later Releases, page 116

Configuring a PPPoE Client in Releases Prior to Cisco IOS Release 12.2(13)T

Perform the following tasks to configure a PPPoE client in releases prior to Cisco IOS release 12.2(13)T:

- Enabling PPPoE in a VPDN Group, page 108
- Configuring a PPPoE Client on an ATM PVC, page 109
- Configuring a PPPoE Client on an Ethernet Interface, page 111
- Configuring the Dialer Interface, page 112
- Clearing PPPoE Client Sessions, page 113
- Verifying the PPPoE Client, page 114
- Troubleshooting PPPoE Client Sessions, page 115

Enabling PPPoE in a VPDN Group

Perform this task to enable PPPoE in a virtual private dial-up network (VPDN) group.

Note

This task applies only to releases prior to Cisco IOS Release 12.2(13)T.

SUMMARY STEPS

1. enable
2. configure terminal
3. vpdn enable
4. vpdn-group name
5. request-dialin
6. protocol pppoe
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vpdn enable</td>
<td>Enables virtual private dialup networking.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn enable</td>
<td></td>
</tr>
<tr>
<td>Step 4 vpdn-group name</td>
<td>Associates a VPDN group with a customer or a VPDN profile and enters VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn-group group1</td>
<td></td>
</tr>
<tr>
<td>Step 5 request-dialin</td>
<td>Creates a request-dialin VPDN subgroup and enters the VPDN request dialin configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn)# request-dialin</td>
<td></td>
</tr>
<tr>
<td>Step 6 protocol pppoe</td>
<td>Enables the VPDN subgroup to establish PPPoE sessions.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-req-in)# protocol pppoe</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits VPDN request dialin configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-req-in)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a PPPoE Client on an ATM PVC

Perform this task to configure a PPPoE client on an ATM PVC.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm *number*
4. `pvc [name] vpi vci`
5. `pppoe-client dial-pool-number number`
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm number</td>
<td>Configures an ATM interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm 0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi vci</td>
<td>Creates an ATM PVC and enters ATM virtual circuit configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# pvc 1/100</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 pppoe-client dial-pool-number number</td>
<td>Configures the PPPoE client and specifies the dialer interface to use for cloning on the PVC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-vc)# pppoe-client dial-pool-number 1</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>end</th>
</tr>
</thead>
</table>

Purpose

Returns to privileged EXEC mode.

Example:

```
Router(config-if-atm-vc)#
end
```

Note

If you make any changes to the PVC configuration after the PPPoE client session is established, the session is automatically terminated and reestablished.

Configuring a PPPoE Client on an Ethernet Interface

Perform this task to configure a PPPoE client on an Ethernet interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface ethernet number`
4. `pppoe-client dial-pool-number number`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

```
Router> enable
```

<table>
<thead>
<tr>
<th>Step 2 <code>configure terminal</code></th>
<th>Enters global configuration mode.</th>
</tr>
</thead>
</table>

Example:

```
Router# configure terminal
```

<table>
<thead>
<tr>
<th>Step 3 <code>interface ethernet number</code></th>
<th>Configures an Ethernet interface and enters interface configuration mode.</th>
</tr>
</thead>
</table>

Example:

```
Router(config)# interface ethernet 0
```
Configuring the Dialer Interface

Perform this task to configure the dialer interface to be used for cloning on the PVC.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface dialer *number*
4. mtu *bytes*
5. encapsulation ppp
6. ip address negotiated
7. dialer pool *number*
8. dialer-group *group-number*
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 3 interface dialer number</td>
<td>Configures a dialer interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface dialer 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 mtu bytes</td>
<td>Adjusts the maximum packet size or maximum transmission unit (MTU) size. The range is from 64 to 17940.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# mtu 1492</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Cisco recommends that you set the MTU to 1492 bytes. This value accommodates a PPPoE header encapsulation of 8 bytes in the Ethernet frame payload.</td>
</tr>
<tr>
<td>Step 5 encapsulation ppp</td>
<td>Sets the encapsulation type of the interface to Point-to-Point Protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Step 6 ip address negotiated</td>
<td>Specifies that the IP address for the interface be obtained via PPP/IP Control Protocol (PPP/IPCP) address negotiation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address negotiated</td>
<td></td>
</tr>
<tr>
<td>Step 7 dialer pool number</td>
<td>Specifies the dialing pool to use to connect to a specific destination subnetwork.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer pool 1</td>
<td></td>
</tr>
<tr>
<td>Step 8 dialer-group group-number</td>
<td>Configures an interface to belong to a specific dialing group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer-group 1</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits interface configuration and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Clearing PPPoE Client Sessions
Perform this task to clear PPPoE client sessions.

Note
This task applies only to releases prior to Cisco IOS Release 12.2(13)T.

SUMMARY STEPS

1. enable
2. clear vpdn tunnel pppoe

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 clear vpdn tunnel pppoe</td>
<td>Terminates the PPPoE client session and causes the PPPoE client to try to reestablish the session immediately.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear vpdn tunnel pppoe</td>
<td></td>
</tr>
</tbody>
</table>

Note
To terminate a PPPoE client session, use the **no pppoe-client dial-pool-number** command in interface configuration mode or interface-ATM-VC configuration mode.

Verifying the PPPoE Client

Perform this task to verify PPPoE client configuration.

This task assumes that the PPPoE client has been configured.

SUMMARY STEPS

1. enable
2. show vpdn
3. show vpdn session packet
4. show vpdn session all
5. show vpdn tunnel
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** show vpdn | Displays information about the active Layer 2 Forwarding (L2F) protocol tunnel and L2F message identifiers in a VPDN. |
| **Example:** | |
| Router# show vpdn| |
| **Step 3** show vpdn session packet | Displays PPPoE session statistics. |
| **Example:** | |
| Router# show vpdn session packet| |
| **Step 4** show vpdn session all | Displays PPPoE session information for each session ID. |
| **Example:** | |
| Router# show vpdn session all| |
| **Step 5** show vpdn tunnel | Displays PPPoE session count for the tunnel. |
| **Example:** | |
| Router# show vpdn tunnel| |

Troubleshooting PPPoE Client Sessions

Perform this task to troubleshoot the PPPoE client.

Note

This task applies only to releases prior to Cisco IOS Release 12.2(13)/T.
SUMMARY STEPS

1. enable
2. debug vpdn pppoe-data
3. debug vpdn pppoe-errors
4. debug vpdn pppoe-events
5. debug vpdn pppoe-packets

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 debug vpdn pppoe-data</td>
<td>Displays PPPoE session data packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug vpdn pppoe-data</td>
<td></td>
</tr>
<tr>
<td>Step 3 debug vpdn pppoe-errors</td>
<td>Displays PPPoE protocol errors that prevent a session from being established or errors that cause an established session to be terminated.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug vpdn pppoe-errors</td>
<td></td>
</tr>
<tr>
<td>Step 4 debug vpdn pppoe-events</td>
<td>Displays PPPoE protocol messages about events that are part of normal session establishment or shutdown.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug vpdn pppoe-events</td>
<td></td>
</tr>
<tr>
<td>Step 5 debug vpdn pppoe-packets</td>
<td>Displays each PPPoE protocol packet exchanged.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# debug vpdn pppoe-packets</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a PPPoE Client in Cisco IOS Release 12.2(13)T 12.4T and Later Releases

- Configuring a PPPoE Client on an ATM PVC, page 117
Configuring a PPPoE Client on an ATM PVC

Perform this task to configure a PPPoE client on an ATM PVC.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number
4. pvc [name] vpi / vci
5. pppoe-client dial-pool-number number
6. pppoe-client ppp-max-payload max-value
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm number</td>
<td>Configures an ATM interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface atm 0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi / vci</td>
<td>Creates an ATM PVC and enters ATM virtual circuit configuration.</td>
</tr>
<tr>
<td>Example: Router(config-if)# pvc 1/100</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a PPPoE Client on an Ethernet Interface

Perform this task to configure a PPPoE client on an Ethernet interface.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface ethernet number`
4. `pppoe-client dial-pool-number number`
5. `pppoe-client ppp-max-payload max-value`
6. `end`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** | |
| Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | |
| Router# configure terminal | |
| **Step 3** interface ethernet *number* | Configures an Ethernet interface. |
| **Example:** | |
| Router(config)# interface ethernet 0 | |
| **Step 4** pppoe-client dial-pool-number *number* | Configures the PPPoE client and specifies the dialer interface to use for cloning. You can configure multiple PPPoE clients on the same PVC. |
| **Example:** | |
| Router(config-if)# pppoe-client dial-pool-number 1 | |
| **Step 5** pppoe-client ppp-max-payload *max-value* | Configures the PPPoE client to send a PPP Max-Payload tag in PPPoE control packets. |
| **Example:** | |
| Router(config-if)# pppoe-client ppp-max-payload 1500 | |
| **Step 6** end | Exits interface configuration mode and returns to privileged EXEC mode. |
| **Example:** | |
| Router(config-if)# end | |

Configuring a PPPoE Client on an Ethernet Subinterface

Perform this task to configure a PPPoE client on an Ethernet subinterface.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface ethernet number`
4. `encap dot1Q vlan-id [native]`
5. `pppoe-client dial-pool-number number`
6. `pppoe-client ppp-max-payload max-value`
7. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface ethernet number</code></td>
<td>Configures an Ethernet subinterface, and enters Ethernet subinterface</td>
</tr>
<tr>
<td>Example:</td>
<td>mode.</td>
</tr>
<tr>
<td><code>Router(config)# interface ethernet 0/0.10</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>encap dot1Q vlan-id [native]</code></td>
<td>Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# encap dot1Q 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>pppoe-client dial-pool-number number</code></td>
<td>Configures the PPPoE client and specifies the dialer interface to use for cloning.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# pppoe-client dial-pool-number 1</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Dialer Interface

Perform this task to configure the dialer interface to be used for cloning on the PVC.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface dialer number`
4. `mtu bytes`
5. `encapsulation ppp`
6. `ip address negotiated`
7. `dialer pool number`
8. `dialer-group group-number`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

```
Router> enable
```
### Command or Action	Purpose
Step 2 configure terminal | Enters global configuration mode.

Example:
```
Router# configure terminal
```

Step 3 interface dialer *number* | Configures a dialer interface.

Example:
```
Router(config)# interface dialer 1
```

Step 4 mtu *bytes* | Adjusts the maximum packet size or MTU size.

Note Cisco recommends that you set the MTU to 1492 bytes. This value accommodates a PPPoE header encapsulation of 8 bytes in the Ethernet frame payload.

Example:
```
Router(config-if)# mtu 1492
```

Step 5 encapsulation ppp | Sets the encapsulation type of the interface to the Point-to-Point protocol.

Example:
```
Router(config-if)# encapsulation ppp
```

Step 6 ip address negotiated | Specifies that the IP address for the interface is obtained via PPP/IPCP address negotiation.

Example:
```
Router(config-if)# ip address negotiated
```

Step 7 dialer pool *number* | Specifies the dialing pool to use to connect to a specific destination subnetwork.

Example:
```
Router(config-if)#
  dialer pool 1
```

Step 8 dialer-group *group-number* | Configures an interface to belong to a specific dialing group.

Example:
```
Router(config-if)#
  dialer-group 1
```
Command or Action	Purpose
Step 9 end | Returns to privileged EXEC mode.

Example:
```
Router(config-if)# end
```

Clearing PPPoE Client Sessions

Perform this task to clear PPPoE client sessions.

Note
This task applies only to Cisco IOS Release 12.2(13)T and later releases.

SUMMARY STEPS
1. `enable`
2. `clear pppoe {interface type number [vc { [vpi|vci | vc-name]}] | rmac mac-address | all]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
| |
| | • Enter your password if prompted. |
| Example: | |
| | Router> enable |

| Step 2 clear pppoe {interface type number [vc { [vpi|vci | vc-name]}] | rmac mac-address | all] | Clears the PPPoE client session and causes the PPPoE client to try immediately to reestablish the session.
| |
	To permanently terminate a PPPoE client session, use the `no pppoe-client dial-pool-number` command in interface configuration mode or interface-ATM-VC configuration mode.
Example:	
	Router# clear pppoe all

Note
To permanently terminate a PPPoE client session, use the `no pppoe-client dial-pool-number` command in interface configuration mode or interface-ATM-VC configuration mode.

Verifying the PPPoE Client

Perform this task to verify PPPoE client configuration.
Troubleshooting PPPoE Client Sessions

Perform this task to troubleshoot the PPPoE client.

Note
This task applies only to Cisco IOS Release 12.2(13)T and later releases.

SUMMARY STEPS

1. enable
2. debug pppoe {data | errors | events | packets}

SUMMARY STEPS

1. enable
2. show pppoe session [all | packets]
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 debug pppoe {data</td>
<td>errors</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug pppoe errors</td>
</tr>
</tbody>
</table>

Configuration Examples for PPPoE Client

- Examples PPPoE Client in Releases Prior to Cisco IOS Release 12.2(13)T, page 125
- Examples PPPoE Client in Cisco IOS Release 12.2(13)T and Later Releases, page 126

Examples PPPoE Client in Releases Prior to Cisco IOS Release 12.2(13)T

In the following example, a PPPoE client is configured on a PVC on the ATM interface 0. The PPPoE client uses the dialer interface 1 as its virtual access interface.

```
vpdn enable
vpdn-group 1
    request-dialin
    protocol pppoe
! interface atm0
    pvc 1/100
    pppoe-client dial-pool-number 1
! interface dialer 1
    ip address negotiated
dialer pool 1
dialer-group 1
!
```

In the following example, two PPPoE client sessions are configured on an Ethernet interface. Each PPPoE client uses a separate dialer interface and a separate dialer pool.

```
vpdn enable
vpdn-group 1
    request-dialin
    protocol pppoe
! interface ethernet1/1
    pppoe-client dial-pool-number 1
    pppoe-client dial-pool-number 2
! interface dialer 1
    ip address negotiated
```
dialer pool 1
dialer-group 1
interface dialer 2
ip address negotiated
dialer pool 2
dialer-group 2

Examples PPPoE Client in Cisco IOS Release 12.2(13)T and Later Releases

The following example shows how to configure a PPPoE client on an Ethernet interface. Note that in Releases 12.2(13)T and later it is not necessary to configure a global VPDN group before configuring the PPPoE client.

interface Ethernet 0
 pppoe-client dial-pool-number 1
 pppoe-client ppp-max-payload 1500
interface Dialer 1
 ip address negotiated
 dialer pool 1
 mtu 1492

The following example shows how to configure multiple PPPoE clients on an ATM VC. Note that in Releases 12.4(15)T or a later release, more than one PPPoE session is supported on a single PVC.

interface ATM0
 no ip address
 no ip mroute-cache
 no atm ilmi-keepalive
 pvc 4/20
 pppoe-client dial-pool-number 1
 pppoe-client dial-pool-number 2
 pppoe-client ppp-max-payload 1500
!
end

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Broadband and DSL commands</td>
<td>Cisco IOS Broadband and DSL Command Reference</td>
</tr>
<tr>
<td>VPDN features</td>
<td>Cisco IOS VPDN Configuration Guide</td>
</tr>
<tr>
<td>VPDN and PPPoE commands</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
<tr>
<td>PPP over Frame Relay</td>
<td>Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>No new or modified standards are supported by this feature.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP over Ethernet (PPPoE)</td>
</tr>
<tr>
<td>RFC 4638</td>
<td>Accommodating a Maximum Transit Unit/Maximum Receive Unit (MTU/MRU) Greater Than 1492 in the Point-to-Point Protocol over Ethernet (PPPoE)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for PPP over Ethernet Client

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 7 Feature Information for PPP over Ethernet Client

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE--Max-Payload Support on Client</td>
<td>15.1(4)M</td>
<td>This feature supports the PPPoE client to send a PPP Max-Payload tag in PPPoE control packets. This feature is based on RFC 4638. The following command was introduced or modified: <code>pppoe-client ppp-max-payload</code>.</td>
</tr>
<tr>
<td>PPP over Ethernet Client</td>
<td>12.2(2)T 12.2(13)T 12.4(15)T 15.0(1)M</td>
<td>This feature was introduced. In Cisco IOS Release 12.2(13)T, PPPoE client functionality was separated from VPDN functionality, resulting in changes to PPPoE client configuration. In the Cisco IOS Release 12.4(15)T, support was added for multiple PPPoE sessions per VC. No new commands were introduced or modified.</td>
</tr>
<tr>
<td>PPP over Ethernet Subinterface</td>
<td>12.4(20)T</td>
<td>Support was added for PPPoE clients on Ethernet subinterfaces.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support

The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature provides two enhancements to PPP over Ethernet (PPPoE) over IEEE 802.1Q VLAN functionality:

- It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router to 4000 VLANs per interface.
- It adds ATM permanent virtual circuit (PVC) support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation.

- Finding Feature Information, page 129
- Restrictions for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support, page 129
- Information About PPPoE over VLAN Configuration Limit Removal and ATM Support, page 130
- How to Configure PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support, page 131
- Configuration Examples for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support, page 136
- Additional References, page 137
- Feature Information for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support, page 138

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support
PPPoE over IEEE 802.1Q VLAN support can be configured without using subinterfaces on the PPPoE server only.

ATM PVC support for PPPoE over IEEE 802.1Q VLANs can be configured only on the PPPoE server.

It is not possible to shut down traffic for individual VLANs that are configured on the main interface. Individual VLANs that are configured on subinterfaces can be shut down.

A VLAN range can be configured on a main interface at the same time that VLANs outside the range are configured on subinterfaces of the same main interface. However, you cannot configure a specific VLAN on the main interface and on a subinterface at the same time.

Information About PPPoE over VLAN Configuration Limit Removal and ATM Support

To configure PPPoE over IEEE 802.1Q VLAN support on an interface rather than a subinterface, and to configure ATM support for PPPoE over IEEE 802.1Q VLANs, you should understand the following concepts:

- PPPoE over VLAN Configuration Without Using Subinterfaces, page 130
- PPPoE over VLAN Support on ATM PVCs, page 130
- Benefits of PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support, page 131

PPPoE over VLAN Configuration Without Using Subinterfaces

The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature removes the requirement for each PPPoE VLAN to be created on a subinterface. Allowing more than one PPPoE VLAN to be configured on a main interface increases the number of VLANs that can be configured on a router to 4000 VLANs per interface.

Individual VLANs or a range of VLANs can be configured on an interface. You can configure a VLAN range on a main interface and at the same time configure VLANs outside the range on subinterfaces of the same interface.

PPPoE over VLAN Support on ATM PVCs

The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature enables ATM PVCs to process PPPoE over VLAN packets that use bridged RFC 1483 encapsulation. This capability allows PPPoE traffic from different IEEE 802.1Q VLANs to be multiplexed over the same ATM PVC.

The figure below shows a sample network topology that implements PPPoE over VLAN on ATM PVCs. In this topology, a service provider is using an Ethernet switch to provide Ethernet service to home users and a single PVC to provide the switch with WAN access. The home users use PPPoE to access services on the network access server (NAS). Each port on the switch is assigned a separate VLAN, and the VLANs are trunked over a Fast Ethernet or Gigabit Ethernet interface that is connected to a digital subscriber line (DSL) modem acting as a bridge.

The IEEE 802.1Q VLAN-encapsulated traffic coming in from the Ethernet switch trunk is encapsulated in RFC 1483 bridged encapsulation by the DSL modem and sent across the ATM WAN to the NAS. The NAS, which is configured to support PPPoE over VLANs over ATM PVCs, will extract the PPPoE packet...
from the PPPoE over IEEE 802.1Q VLAN over RFC 1483 bridged encapsulation and provide PPPoE services to the user.

In the downlink, the NAS sends packets in PPPoE over IEEE 802.1Q VLAN over RFC 1483 bridged encapsulation. The DSL modem strips off the RFC 1483 encapsulation and forwards the IEEE 802.1Q VLAN packets across the trunk to the switch. The switch then sends the Ethernet packets to the port associated with the IEEE 802.1 VLAN ID.

Benefits of PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support

The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature has the following benefits:

- Increases the number of VLANs that can be configured on a router to 4000 VLANs per interface by removing the requirement for each PPPoE VLAN to be configured on a subinterface.
- Provides support for PPPoE over VLANs over ATM interfaces using RFC 1483 bridged encapsulation

How to Configure PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support

- Configuring PPPoE over IEEE 802.1Q VLAN Support on an Ethernet Interface, page 131
- Configuring an ATM PVC to Support PPPoE over IEEE 802.1Q VLAN Traffic, page 133
- Configuring a VC Class for PPPoE over IEEE 802.1Q VLAN Support, page 134
- Monitoring and Maintaining PPPoE over IEEE 802.1Q VLAN, page 135

Configuring PPPoE over IEEE 802.1Q VLAN Support on an Ethernet Interface

Perform this task to configure PPPoE over IEEE 802.1Q VLAN support on an Ethernet interface.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. Do one of the following:
 - vlan-id dot1q vlan-id
 - vlan-range dot1q start-vlan-id end-vlan-id
5. pppoe enable [group group-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface to be configured and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface fastethernet 0/2</td>
</tr>
</tbody>
</table>
Command or Action

Step 4 Do one of the following:

- `vlan-id dot1q vlan-id`
- `vlan-range dot1q start-vlan-id end-vlan-id`

Example:

Router(config-if)# vlan-id dot1q 0

Example:

Router(config-if)# vlan-range dot1q 0 60

Step 5 `pppoe enable [group group-name]`

Example:

Router(config-if-vlan-range)# pppoe enable group pppoe1

Configuring an ATM PVC to Support PPPoE over IEEE 802.1Q VLAN Traffic

Perform this task to configure an ATM PVC to support RFC 1483 bridge encapsulated PPPoE over IEEE 802.1Q VLAN traffic.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm number . subinterface-number { multipoint | point-to-point }`
4. `pvc [name] vpi / vci`
5. `protocol pppovlan dot1q { vlan-id | start-vlan-id end-vlan-id } [group group-name]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm number . subinterface-number {multipoint</td>
<td>point-to-point}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 2/0.1 multipoint</td>
<td></td>
</tr>
<tr>
<td>Step 4 pvc [name] vpi / vci</td>
<td>Configures a PVC and enters ATM VC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# pvc 0/60</td>
<td></td>
</tr>
<tr>
<td>Step 5 protocol pppovlan dot1q [vlan-id</td>
<td>start-vlan-id end-vlan-id] [group group-name]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-vc)# protocol pppovlan dot1q 0 50 group pppoe1</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a VC Class for PPPoE over IEEE 802.1Q VLAN Support

Perform this task to configure support for PPPoE over IEEE 802.1Q VLANs in a VC class.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. protocol pppovlan dot1q [vlan-id | start-vlan-id end-vlan-id] [group group-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Configures an ATM VC class and enters VC-class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 protocol pppovlan dot1q {vlan-id</td>
<td>start-vlan-id end-vlan-id} [group group-name]</td>
</tr>
<tr>
<td></td>
<td>Note A VC class can be applied to an ATM interface, subinterface, PVC, or range of PVCs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# protocol pppovlan dot1q 0 50 group pppo1</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring and Maintaining PPPoE over IEEE 802.1Q VLAN

Perform this task to monitor and maintain PPPoE over VLAN connections.

SUMMARY STEPS

1. enable
2. clear pppoe [interface type number [vc {[vpi]/vci | vc-name]}] [vlan vlan-id] | rmac mac-address [sid session-id] | all]
3. debug pppoe [data | errors | events | packets] [rmac remote-mac-address | interface type number[vc {[vpi]/vci | vc-name]}] [vlan vlan-id]]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 clear pppoe { interface type number [vc { [vpi/]vci | vc-name] } [vlan vlan-id] | rmac mac-address [sid session-id] | all} Clears PPPoE sessions.

Example:
Router# clear pppoe interface fastethernet 0/2 vlan 1

Step 3 debug pppoe { data | errors | events | packets | [rmac remote-mac-address | interface type number{vc { [vpi/]vci | vc-name] } [vlan vlan-id]} Displays debugging information for PPPoE sessions.

Example:
Router# debug pppoe events interface atm 0/0 vc 1/16 vlan 10

Configuration Examples for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support

- Configuring PPPoE over IEEE 802.1Q VLAN Support on an Ethernet Interface Example, page 136
- Configuring PPPoE over IEEE 802.1Q VLAN Support on ATM PVCs Example, page 137

Configuring PPPoE over IEEE 802.1Q VLAN Support on an Ethernet Interface Example

The following example shows how to configure PPPoE over a range of IEEE 802.1Q VLANs on Fast Ethernet interface 0/0. The VLAN range is configured on the main interface and therefore each VLAN will not use up a separate subinterface.

bba-group pppoe PPPOE
virtual-template 1
sessions per-mac limit 1
interface virtual-template 1
ip address 10.10.10.10 255.255.255.0
mtu 1492
interface fastethernet 0/0
no ip address
no ip mroute-cache
duplex half
vlan-range dot1q 20 30
Configuring PPPoE over IEEE 802.1Q VLAN Support on ATM PVCs Example

The following example shows how to configure an ATM PVC to support PPPoE over a range of IEEE 802.1Q VLANS:

```
pppoe enable group PPPOE
exit-vlan-config
```

```
bba-group pppoe PPPOEOA
  virtual-template 1
  sessions per-mac limit 1
  interface virtual-template 1
  ip address 10.10.10.10 255.255.255.0
  mtu 1492
  interface atm 4/0.10 multipoint
  pvc 10/100
  protocol pppovlan dot1q range 10 30 group PPPOEOA
```

Additional References

The following sections provide references related to the PPPoE Over VLAN Enhancements: Configuration Limit Removal and ATM Support feature.

- Related Documents, page 137

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM PVC configuration</td>
<td>ATM chapter of the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>PPPoE and PPPoE over IEEE 802.1Q VLAN configuration</td>
<td>Broadband Access: PPP and Routed Bridge Encapsulation chapter of the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td>VLAN range configuration (using subinterfaces)</td>
<td>VLAN Range feature module</td>
</tr>
<tr>
<td>ATM PVC and PPPoE configuration commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Standard 802.1Q, 1998</td>
<td>Virtual Bridged Local Area Networks</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1483</td>
<td>Multiprotocol Encapsulation over ATM Adaptation Layer 5</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for PPPoE over VLAN Enhancements Configuration Limit Removal and ATM Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 8 Feature Information for PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support</td>
<td>12.2 (3)SRC 12.3(2)T</td>
<td>The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature provides two enhancements to PPP over Ethernet (PPPoE) over IEEE 802.1Q VLAN functionality:</td>
</tr>
<tr>
<td></td>
<td>12.2(33)SB</td>
<td>• It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router to 4000 VLANs per interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• It adds ATM permanent virtual circuit (PVC) support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(31)SRC, this feature was introduced.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.3(2)T, this feature was integrated into the T train.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In Cisco IOS Release 12.2(33)SB, support was added for the Cisco IOS 10000 series routers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The following commands were introduced or modified: clear pppoe, debug pppoe, pppoe enable, protocol pppovlan dot1q, vlan-id dot1q, vlan-range dot1q.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

PPP over Ethernet (PPPoE) profiles contain configuration information for a group of PPPoE sessions. Multiple PPPoE profiles can be defined for a device, allowing different virtual templates and other PPPoE configuration parameters to be assigned to different PPP interfaces, VLANs, and ATM permanent virtual circuits (PVCs) that are used in supporting broadband access aggregation of PPPoE sessions.

Note
This module describes the method to configure PPPoE sessions using profiles. If you have configured your PPPoE sessions using a release of Cisco IOS software earlier than Cisco IOS Release 12.4, see the documentation that corresponds to that release. Although the configuration methods used in Cisco IOS software releases prior to Release 12.4 are supported in Release 12.4, it is recommended that you use the configuration methods described in this module for new configurations and when upgrading to Cisco IOS Release 12.4.

- Finding Feature Information, page 141
- Prerequisites for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions, page 142
- Restrictions for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions, page 142
- Information About Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions, page 142
- How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions, page 146
- Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions, page 179
- Where to Go Next, page 184
- Additional References, page 184
- Feature Information for Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions, page 186

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

- You must understand the concepts described in the "Understanding Broadband Access Aggregation" module.
- You must perform the tasks contained in the "Preparing for Broadband Access Aggregation" module.

Restrictions for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

PPPoE profiles separate the configuration of PPPoE from the configuration of virtual private dialup networks (VPDNs). The legacy method of configuring PPPoE in VPDN groups is permitted, but you cannot configure PPPoE profiles and PPPoE in VPDN groups simultaneously.

Note

VPDN is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

If a PPPoE profile is assigned to a PPPoE port (Ethernet, interface, VLAN, or virtual circuit (VC) class), or ATM range and the profile has not yet been defined, the following restrictions are applicable:

- The port, VC class, or range does not have any PPPoE parameters configured.
- The port, VC class, or range does not use parameters from the global group.

Only PPPoE over 802.1Q VLAN support can be configured without using subinterfaces on the PPPoE server.

ATM support for PPPoE over 802.1Q VLANs can be configured only on the PPPoE server. Individual VLANs that are configured on subinterfaces can be shut down. Individual VLANs that are configured on the main interface cannot be shut down.

A VLAN range can be configured on a main interface at the same time that VLANs outside the range are configured on subinterfaces of the same main interface. However, you cannot configure a specific VLAN on the main interface and on a subinterface at the same time.

Note

Cisco IOS Release 12.2(33)SRC does not support VCs or ATMs.

Information About Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions
PPPoE Specification Definition

PPPoE is a specification that defines how a host PC interacts with a common broadband medium (for example, a digital subscriber line (DSL), wireless modem or cable modem) to achieve access to a high-speed data network. Relying on two widely accepted standards, Ethernet and PPP, the PPPoE implementation allows users over the Ethernet to share a connection. The Ethernet principles supporting multiple users in a LAN, combined with the principles of PPP, which apply to serial connections, support this connection.

The base protocol is defined in RFC 2516.

Benefits of PPPoE Profiles

Before the introduction of the use of PPPoE profiles, PPPoE parameters were configured within a VPDN group. Configuring PPPoE in a VPDN group limited PPPoE configuration options because only one PPPoE VPDN group with one virtual template was permitted on a device. The PPPoE Profiles feature provides simplicity and flexibility in PPPoE configuration by separating PPPoE from VPDN configuration. The PPPoE Profiles feature allows multiple PPPoE profiles, each with a different configuration, to be used on a single device.

Note

VPDN is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

Note

This module describes the method for configuring PPPoE sessions using profiles. If you have configured your PPPoE sessions using a release of Cisco IOS software earlier than Cisco IOS Release 12.4, see the documentation that corresponds to that release. Although the configuration methods used in Cisco IOS software releases prior to Release 12.4 are supported in Release 12.4, it is recommended that you use the configuration methods described in the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module for new configurations and when upgrading to Cisco IOS Release 12.4.

PPPoE Connection Throttling

Repeated requests to initiate PPPoE sessions can adversely affect the performance of a router and RADIUS server. The PPPoE Connection Throttling feature limits PPPoE connection requests to help prevent intentional denial-of-service attacks and unintentional PPP authentication loops. This feature implements session throttling on the PPPoE server to limit the number of PPPoE session requests that can be initiated from a MAC address or VC during a specified period of time.

PPPoE Profile Assignment to a VLAN Without Subinterfaces

Use PPPoE profile assignment to a VLAN without subinterfaces to improve PPPoE over IEEE 802.Q VLAN functionality in the following two ways:
- It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.
- It adds ATM support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation.

Note

ATM is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

To configure PPPoE over 802.1Q VLAN support on an interface rather than a subinterface, and to configure ATM support for PPPoE over 802.1Q VLANs, you should understand the concepts described in the following sections:

- PPPoE over VLAN Configuration Without Using Subinterfaces, page 144
- PPPoE over VLAN Support on ATMs, page 144
- Benefits of PPPoE over VLAN Scaling and ATM Support for PPPoE over VLANs, page 145

PPPoE over VLAN Configuration Without Using Subinterfaces

PPPoE profile assignment to a VLAN without subinterfaces removes the requirement for each PPPoE VLAN to be created on a subinterface. Allowing more than one PPPoE VLAN to be configured on a main interface increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.

Individual VLANs or a range of VLANs can be configured on an interface. You can configure a VLAN range on a main interface and at the same time configure VLANs outside the range on subinterfaces of the same interface.

PPPoE over VLAN Support on ATMs

PPPoE profile assignment to a VLAN without subinterfaces enables ATMs to process PPPoE over VLAN packets that use bridged RFC 1483 encapsulation. This capability allows PPPoE traffic from different 802.1Q VLANs to be multiplexed over the same ATM.

The figure below shows a sample network topology that implements PPPoE over VLAN on ATM. In this topology, a service provider is using an Ethernet switch to provide Ethernet service to home users and a single multiplexer to provide the switch with WAN access. The home users use PPPoE to access services on the network access server (NAS). Each port on the switch is assigned a separate VLAN, and the VLANs are trunked over a Fast Ethernet or Gigabit Ethernet interface that is connected to a DSL modem acting as a bridge.

The 802.1Q VLAN-encapsulated traffic coming in from the Ethernet switch trunk is encapsulated in RFC 1483 bridged encapsulation by the DSL modem and sent across the ATM WAN to the NAS. The NAS, which is configured to support PPPoE over VLAN over ATM, will extract the PPPoE packet from the PPPoE over 802.1Q VLAN over RFC 1483 bridged encapsulation and provide PPPoE services to the user.

In the downlink, the NAS sends packets in PPPoE over 802.1Q VLAN over RFC 1483 bridged encapsulation. The DSL modem strips off the RFC 1483 encapsulation and forwards the 802.1Q VLAN
packets across the trunk to the switch. The switch then sends the Ethernet packets to the port associated with the 802.1 VLAN ID.

Figure 11 Sample Network Topology for PPPoE over 802.1Q VLAN over ATM

Benefits of PPPoE over VLAN Scaling and ATM Support for PPPoE over VLANs

PPPoE over VLAN scaling and ATM support for PPPoE over VLANs has the following benefits:

- Increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface by removing the requirement for each PPPoE VLAN to be configured on a subinterface.
- Provides support for PPPoE over VLAN over ATM interfaces using RFC 1483 bridged encapsulation.

Autosense for ATMs

The PPPoA/PPPoE Autosense for ATM PVCs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPPoE and to create virtual access based on demand for both PPP types.

Note

The Preauthentication with ISDN PRI and Channel-Associated Signalling feature is supported on Subnetwork Access Protocol (SNAP)-encapsulated ATMs only. It is not supported on multiplexer (MUX)-encapsulated.

- Benefits of Autosense for ATMs, page 145

Benefits of Autosense for ATMs

Autosense for ATMs provides resource allocation on demand. For each autosense configured for both PPPoA and PPPoE, certain resources (including one virtual-access interface) are allocated upon configuration, regardless of the existence of a PPPoA or PPPoE session on that resource. The autosense for ATMs resources are allocated for PPPoA and PPPoE sessions only when a client initiates a session, thus reducing overhead on the NAS.
MAC Address for PPPoEoA

Any change in the usage of MAC addresses will not happen unless it is explicitly configured. This will prevent you from experiencing unexpected behavior resulting from a system change.

Except for using a different MAC address, this feature does not change the way PPPoE works. This change is limited to ATM interfaces only—specifically, PPPoEoA—and will not be applied to other interfaces where PPPoE is operated such as Ethernet, Ethernet VLAN, and Data-over-Cable Service Interface Specifications (DOCSIS). Changing the PPPoE MAC address on those interfaces, which are broadcast in nature, requires placing the interface in promiscuous mode, thereby affecting the performance of the router because the router software has to receive all Ethernet frames and then discard unneeded frames in the software driver.

This feature is disabled by default and applies to all PPPoE sessions on an ATM interface configured in a BBA group.

When PPPoE and RBE are configured on two separate ATMs on the same DSL, the customer premises equipment (CPE) acts like a pure bridge, bridging from Ethernet to the two ATMs on the DSL. Because the CPE acts as a bridge, and because the aggregation router uses the same MAC address for both PPPoE and RBE, the CPE will not be able to bridge packets to the correct MAC address. The solution is to have a different MAC address for PPPoE only. The MAC address can be either configured or selected automatically.

The MAC address of the PPPoEoA session is either the value configured on the ATM interface using the `mac-address` command or the burned-in MAC address if a MAC address is not already configured on the ATM interface. This functionality is effective only when neither autoselect nor a MAC address is specified on a BBA group.

If the MAC address is specified on a BBA group, all PPPoEoA sessions use the MAC address specified on the BBA group, which is applied on the VC.

If the MAC address is selected automatically, 7 is added to the MAC address of the ATM interface.

- **Benefits of the Configurable MAC Address for PPPoE Feature, page 146**

Benefits of the Configurable MAC Address for PPPoE Feature

Because the Cisco IOS aggregation routers use the interface MAC address as the source MAC address for all broadband aggregation protocols on that interface, this feature solves problems that may occur when both RBE and PPPoE are deployed on the same ATM interface.

How to Provide Protocol Support for Broadband Access Aggregation of PPPoE Sessions

To provide protocol support for broadband access aggregation by assigning a profile, you must define the profile. The profile definition is required as described in the Defining a PPPoE Profile, page 147, and an additional task makes an assignment of the profile to a protocol type.

When assigning a PPPoE profile to a VLAN without a subinterface, choose from the following tasks:
When configuring PPPoE session recovery after a system reload, perform the following task:

- Defining a PPPoE Profile, page 147
- Assigning a PPPoE Profile to an Ethernet Interface, page 149
- Assigning a PPPoE Profile to an ATM, page 150
- Assigning a PPPoE Profile to an ATM Range and Within a Range, page 152
- Assigning a PPPoE Profile to an ATM VC Class, page 155
- Assigning a PPPoE Profile to a VLAN Subinterface, page 157
- Configuring PPPoEoE on a Cisco 7600 SIP-400, page 159
- Enabling PPPoE over IEEE 802.1Q VLAN, page 170
- Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN, page 172
- Enabling Support for PPPoE over IEEE 802.1Q VLAN in a VC Class, page 173
- Configuring MAC Addresses for PPPoEoA, page 174
- Configuring PPPoE Session Recovery After Reload, page 176
- Monitoring and Maintaining PPPoE Profiles, page 178

Defining a PPPoE Profile

Perform this task to define a PPPoE profile.

SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe {group-name | global}
4. virtual-template template-number
5. sessions max limit number-of-sessions [threshold threshold-value]
6. sessions per-mac limit per-mac-limit
7. sessions per-vlan limit per-vlan-limit [inner vlan-id]
8. sessions per-vc limit per-vc-limit [threshold threshold-value]
9. sessions {per-mac|per-vc} throttle session-requests session-request-period blocking-period
10. ac name name
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bba-group pppoe {group-name</td>
<td>global}</td>
</tr>
<tr>
<td>Example: Router(config)# bba-group pppoe global</td>
<td>• The global keyword creates a profile that serves as the default profile for any PPPoE port that is not assigned a specific profile.</td>
</tr>
<tr>
<td>Step 4 virtual-template template-number</td>
<td>Specifies which virtual template will be used to clone virtual access interfaces for all PPPoE ports that use this PPPoE profile.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 sessions max limit number-of-sessions [threshold threshold-value]</td>
<td>Configures the PPPoE global profile with the maximum number of PPPoE sessions that will be permitted on a router and sets the PPPoE session-count threshold at which a Simple Network Management Protocol (SNMP) trap will be generated.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# sessions max limit 8000</td>
<td>Note This command applies only to the global profile.</td>
</tr>
<tr>
<td>Step 6 sessions per-mac limit per-mac-limit</td>
<td>Sets the maximum number of PPPoE sessions permitted per MAC address in a PPPoE profile.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# sessions per-mac limit 2</td>
<td></td>
</tr>
<tr>
<td>Step 7 sessions per-vlan limit per-vlan-limit [inner vlan-id]</td>
<td>Sets the maximum number of PPPoE sessions permitted per VLAN in a PPPoE profile.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# session per-vlan limit 4000 inner 3500</td>
<td></td>
</tr>
<tr>
<td>Step 8 sessions per-vc limit per-vc-limit [threshold threshold-value]</td>
<td>Sets the maximum number of PPPoE sessions permitted on a VC in a PPPoE profile, and sets the PPPoE session-count threshold at which an SNMP trap will be generated.</td>
</tr>
<tr>
<td>Example: Router(config-bba-group)# sessions per-vc limit threshold 8</td>
<td></td>
</tr>
</tbody>
</table>
Assigning a PPPoE Profile to an Ethernet Interface

Perform this task to assign a PPPoE profile to an Ethernet interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface ethernet number
4. pppoe enable [group group-name]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9 sessions {per-mac</td>
<td>per-vc} throttle session-requests session-request-period blocking-period</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# sessions per-vc throttle 100 30 3008</td>
</tr>
<tr>
<td>Step 10 ac name name</td>
<td>(Optional) Specifies the name of the access concentrator to be used in PPPoE active discovery offers (PADOs).</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# ac name acl</td>
</tr>
<tr>
<td>Step 11 end</td>
<td>Exits the configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# end</td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 2 configure terminal | Enters global configuration mode.

Example:
```
Router# configure terminal
```

Step 3 interface ethernet *number* | Specifies an Ethernet interface and enters interface configuration mode.

Example:
```
Router(config)# interface ethernet 2/0
```

Step 4 pppoe enable [group *group-name*] | Enables PPPoE sessions on an Ethernet interface or subinterface.

Note If a PPPoE profile is not assigned to the interface by using the `group *group-name*` option, the interface will use the global PPPoE profile.

Example:
```
Router(config-if)# pppoe enable group one
```

Step 5 end | (Optional) Exits the configuration mode and returns to privileged EXEC mode.

Example:
```
Router(config-if)# end
```

Assigning a PPPoE Profile to an ATM

Perform this task to assign a PPPoE profile to an ATM.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm *number* [.subinterface-number {multipoint | point-to-point}]]
4. pvc [name] svi/vci[iilmi | I2transport | qsaal]
5. Do one of the following:
 - protocol pppoe [group *group-name*]
 - encapsulation aal5autopp virtual-template *number* [group *group-name*]
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:** |
 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** |
 Router# configure terminal |
| **Step 3** interface atm number [.subinterface-number {multipoint | point-to-point}] | Specifies an ATM interface or subinterface and enters subinterface configuration mode. |
| **Example:** |
 Router(config)# interface atm 5/0.1 multipoint |
| **Step 4** pvc [name] vpi/vci[ilmi | l2transport | qsaal] | Creates an ATM PVC and enters ATM virtual circuit configuration mode. |
| **Example:** |
 Router(config-subif)# pvc 2/101 |
| **Step 5** Do one of the following: | Enables PPPoE sessions to be established on the ATMs.
 or
 Configures PPPoA/PPPoE autosense on the MUX- and SNAP-encapsulated ATM PVCs.
 Note If a PPPoE profile is not assigned to the PVC by using the group group-name option, the PVC will use the global PPPoE profile. |
| • protocol pppoe [group group-name] |
 Example:
 Router(config-if-atm-vc)# protocol pppoe group one |
| • encapsulation aal5autoppp virtual-template number [group group-name] |
 Example:
 Router(config-if-atm-vc)# encapsulation aal5autoppp virtual-template 1 group one |
Assigning a PPPoE Profile to an ATM Range and Within a Range

Perform this task to assign a PPPoE profile to an ATM range and within a range.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm *number* [*subinterface-number* {multipoint | point-to-point}]
4. range [*range-name*] pvc [*start-vpi*]/[*start-vci*]
5. protocol pppoe [group *group-name*]
6. pvc-in-range [-name] [[vpi | vci]]
7. Do one of the following:
 - protocol pppoe [group *group-name*]
 - or
 - encapsulation aal5autopp virtual-template *number* [group *group-name*]
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

 * Example:*

 `Router> enable`

| Step 2 configure terminal | Enters global configuration mode. |

 * Example:*

 `Router# configure terminal`
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 `interface atm number [subinterface-number {multipoint</td>
<td>point-to-point}]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm 5/0.1 multipoint</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>range [range-name] pvc [start-vpi][]start-vci</code></td>
<td>Defines a range of ATM profiles and enters ATM PVC range configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>100 4/199</code></td>
<td></td>
</tr>
</tbody>
</table>

Command or Action

Step 3 `interface atm number [subinterface-number {multipoint | point-to-point}]`

Example:

`Router(config)# interface atm 5/0.1 multipoint`

Step 4 `range [range-name] pvc [start-vpi][]start-vci`

Example:

`Router(config-subif)# range range-pppoa-1 pvc 100 4/199`
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 protocol pppoe [group group-name]</td>
<td>Enables PPPoE sessions to be established on a range of ATMs. or Configures PPPoA/PPPoE autosense. Note If a PPPoE profile is not assigned to the range by using the group group-name option, the ATMs in the range will use the global PPPoE profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example: encapsulation aal5autoppp virtual-template number [group group-name]</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if-atm-range)# protocol pppoe group one</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if-atm-range)# encapsulation aal5autoppp virtual-template 1 group one</td>
<td></td>
</tr>
<tr>
<td>Step 6 pvc-in-range [-name] [[vpi /]vci]</td>
<td>Defines an individual ATMs within a range and enters PVC-in-range configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if-atm-range)# pvc-in-range 1 3/104</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Step 7 Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• protocol pppoe [group group-name]</td>
<td>Enables PPPoE sessions to be established on a group within a range.</td>
</tr>
<tr>
<td>• or</td>
<td>or</td>
</tr>
<tr>
<td>• encapsulation aal5autopp virtual-template number [group group-name]</td>
<td>Configures PPPoA/PPPoE autosense.</td>
</tr>
<tr>
<td>Note If a PPPoE profile is not assigned to the range by using the group group-name option, the ATMs in the range will use the global PPPoE profile.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config-if-atm-range-pvc)# protocol pppoe group two

Example:

Example:

Router(config-if-atm-range-pvc)# encapsulation aal5autopp virtual-template 1 group two

<table>
<thead>
<tr>
<th>Step 8 end</th>
<th>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-range-)# end</td>
<td></td>
</tr>
</tbody>
</table>

Assigning a PPPoE Profile to an ATM VC Class

Perform this task to assign a PPPoE profile to an ATM VC class.
SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm vc-class-name
4. Do one of the following:
 • protocol pppoe [group group-name]
 • or
 • encapsulation aal5autopp virtual-template number [group group-name]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm vc-class-name</td>
<td>Creates an ATM VC class and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class1</td>
<td>• A VC class can be applied to an ATM interface, subinterface, or VC.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Purpose Enables PPPoE sessions to be established. or Configures PPPoA/PPPoE autosense.</td>
</tr>
<tr>
<td>• protocol pppoe [group group-name]</td>
<td>Note If a PPPoE profile is not assigned by using the group group-name option, the PPPoE sessions will be established with the global PPPoE profile.</td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• encapsulation aal5autoppp virtual-template number [group group-name]</td>
<td></td>
</tr>
</tbody>
</table>

Example:

Router(config-vc-class)# protocol pppoe group two

Example:

Example:

Router(config-vc-class)# encapsulation aal5autoppp virtual-template 1 group two

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end</th>
<th>(Optional) Exits the configuration mode and returns to privileged EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# end</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assigning a PPPoE Profile to a VLAN Subinterface

Perform this task to assign a PPPoE profile to a VLAN subinterface.

Note This configuration method requires the use of subinterfaces. One subinterface supports one VLAN.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface range \{ fastethernet interface-number - interface-number | gigabitethernet interface-number - interface-number | loopback number | tunnel number | port-channel number | vlan number | macro keyword \}
4. encapsulation dot1q vlan-id second-dot1q \{ any | vlan-id \} \{native\}
5. protocol pppoe \{group group-name\}
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Example: Router> enable | | | | | | | |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** interface range \{ fastethernet interface-number - interface-number | gigabitethernet interface-number - interface-number | loopback number | tunnel number | port-channel number | vlan number | macro keyword \} | Assigns a subinterface to an interface and enters interface range configuration mode. |
| Example: Router(config)# interface range fastethernet 5/1.1 - fastethernet 5/1.4 | |
| **Step 4** encapsulation dot1q vlan-id second-dot1q \{ any | vlan-id \} \{native\} | Sets the encapsulation method used by the interface. |
| Example: Router(config-if-range)# encapsulation dot1q 301 | |
| **Step 5** protocol pppoe \{group group-name\} | Enables PPPoE sessions to be established. |
| Example: Router(config-if-range)# protocol pppoe group two | |
Step 6 end

(Optional) Exits the configuration mode and returns to privileged EXEC mode.

Example:

Router(config-int-if)# end

Configuring PPPoEoE on a Cisco 7600 SIP-400

PPP provides a standard method of communicating to peers over a point-to-point link. An Ethernet link provides multipoint communication between multiple peers. PPPoE allows point-to-point communication across multipoint Ethernet links.

The PPPoE over Ethernet interface (PPPoEoE) enables the Cisco 7600 series router with a Cisco 7600 SIP-400 to tunnel and terminate Ethernet PPP sessions over Ethernet links. The PPPoE over IEEE 802.1Q VLANs feature enables the router to tunnel and terminate Ethernet PPP sessions across VLAN links. IEEE 802.1Q encapsulation is used to interconnect a VLAN-capable router with another VLAN-capable networking device. The packets on the 802.1Q link contain a standard Ethernet frame and the VLAN information associated with that frame.

PPPoEoE on Cisco 7600 SIP-400 supports the following features:

• PPPoE discovery packets (rate-limited), PPPoE PPP control packets, and PPPoE PPP IP data packets provide a per-user session on an Ethernet interface.
• PPPoE is supported on main interfaces, 802.1q and QinQ access interfaces, and VLAN ranges (802.1q ranges and QinQ inner ranges).
• 8000 PPPoE sessions are supported.
• PPPoE and IP sessions can be configured on the same subinterface.

Restrictions

• PPPoA and any PPP feature on ATM interfaces are not supported.
• Ambiguous VLANs and a range of VLANs for IP session interfaces are not supported. However, a range of VLANs is supported for PPPoE-configured interfaces.
• Negotiated maximum transmission unit (MTU) value can only be 1492 or 1500 bytes.
• If the ip tcp adjust-mss command is used, the only value supported is 1468.
• PPPoE can be configured only on subinterfaces.
• Layer 2 Tunnel Protocol (L2TP) tunneling of PPPoE sessions is not supported.

Configuration Tasks for PPPoE over Ethernet

To configure PPPoE over Ethernet, perform the following tasks:

• Configuring a Virtual Template Interface, page 160
• Monitoring Virtual Access Interface, page 161
Configuring a Virtual Template Interface

Configure a virtual template interface before you configure PPPoE on an Ethernet interface. The virtual template interface is a logical entity that is applied dynamically as needed to an incoming PPP session request. Perform this task to create and configure a virtual template interface:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface virtual-template number [type [ethernet | serial | tunnel]]`
4. `ip unnumbered ethernet number`
5. `mtu bytes`
6. `ppp authentication chap`
7. `ppp ipcp ip address required`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface virtual-template number [type [ethernet</td>
<td>serial</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Step 4 ip unnumbered ethernet number</td>
<td>Enables IP without assigning a specific IP address on the LAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ip unnumbered ethernet 3/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 mtu bytes</td>
<td>(Optional) Sets the maximum MTU size for the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# mtu bytes</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 ppp authentication chap</td>
<td>Enables PPP authentication on the virtual template interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp authentication chap</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 ppp ipcp ip address required</td>
<td>Prevents a PPP session from being set up without a valid address being negotiated. This command is required for legacy dialup and DSL networks.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp ipcp ip address required</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows the configuration of a virtual template interface:

```
Router(config)# interface virtual-template 1
Router(config)# ip unnumbered21 Loopback1
Router(config-if)# no peer default ip address
Router(config-if)# ppp authentication chap
Router(config-if)# ppp authorization
Router(config-if)# ppp accounting
```

Monitoring Virtual Access Interface

When a virtual template interface is applied dynamically to an incoming user session, a virtual access interface (VAI) is created. You cannot use the command-line to directly create or configure a VAI. Perform this task to monitor the VAI and free the memory for other dial-in uses.
SUMMARY STEPS

1. enable
2. show interfaces virtual-access number [configuration]
3. clear interface virtual-access number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| Example: | Router> enable |
| **Step 2** show interfaces virtual-access number [configuration] | Displays the status, traffic data, and configuration information about a specified active VAI that was created using a virtual template interface.
 • The **configuration** keyword restricts output to configuration information. |
| Example: | Router# show interfaces virtual-access 3 |
| **Step 3** clear interface virtual-access number | Tears down the live sessions and frees the memory for other client users. |
| Example: | Router# clear interface virtual-access 3 |

Examples

The following example shows how to display the active VAI configuration:

```
Router# show interfaces virtual-access 1.1 configuration
!
interface virtual-access1.1
  if vrf forwarding vrf-1
  ip unnumbered Loopback1
  no ip proxy-arp
  peer default ip address pool vrf-1
  ppp authentication chap
end
```

Note

Virtual-access 1.1 is a PPPoE subinterface.

Creating an Ethernet Interface and Enabling PPPoE

Perform this task to create an Ethernet interface and enable PPPoE on it.
SUMMARY STEPS

1. enable
2. configure terminal
3. interface GigabitEthernet number
4. pppoe enable [group group-name]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface GigabitEthernet number</td>
<td>Creates an Ethernet interface and enters GigabitEthernet interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet 0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 pppoe enable [group group-name]</td>
<td>Enables PPPoE and allows PPPoE sessions to be created through that interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pppoe enable group1</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a BBA Group to Establish PPPoE Sessions
Note

Cisco IOS Release 12.2(33)SRC does not support the configuration of broadband aggregation (BBA) groups using RADIUS. You must configure BBA groups manually.

Perform this task to configure a BBA group to establish PPPoE sessions and link it to the appropriate virtual template interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe name
4. virtual-template template-number
5. sessions per-mac limit per-mac-limit
6. sessions max limit number-of-sessions [threshold threshold-value]
7. sessions per-vc limit per-vc-limit [threshold threshold-value]
8. exit
9. interface type number
10. encapsulation dot1q vlan-id second-dot1q {any | vlan-id | vlan-id-vlan-id[,vlan-id-vlan-id]}
11. protocol pppoe group group-name
12. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 enable | Enables privileged EXEC mode.
 - Enter your password if prompted. |
| Example: | |
| Router> enable | |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: | |
| Router# configure terminal | |
| Step 3 bba-group pppoe name | Configures a BBA group to be used to establish PPPoE sessions and enters BBA group configuration mode.
 The name identifies the BBA group. You can have multiple BBA groups. |
<p>| Example: | |
| Router(config)# bba-group pppoe name | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 virtual-template template-number</td>
<td>Specifies the virtual template interface to use to clone virtual access interfaces (VAIs).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# virtual-template 1</td>
<td></td>
</tr>
<tr>
<td>Step 5 sessions per-mac limit per-mac-limit</td>
<td>(optional) Specifies the maximum number of sessions per MAC address for each PPPoE port that uses the group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# sessions per-mac limit 100</td>
<td></td>
</tr>
<tr>
<td>Step 6 sessions max limit number-of-sessions [threshold threshold-value]</td>
<td>Configures the PPPoE global profile with the maximum number of PPPoE sessions that will be permitted on a router, and sets the PPPoE session-count threshold at which a Simple Network Management Protocol (SNMP) trap will be generated. This command applies only to the global profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# sessions max limit 32000</td>
<td></td>
</tr>
<tr>
<td>Step 7 sessions per-vc limit per-vc-limit [threshold threshold-value]</td>
<td>(Optional) Sets the maximum number of PPPoE sessions allowed per VC session limit in a PPPoE profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# sessions per-vc limit 2000</td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>interface type number</td>
<td>Specifies the interface to which you want to attach the BBA group and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface atm 2/0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)#encapsulation dot1q vlan-id</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>protocol pppoe group group-name</td>
<td>Attaches the BBA group to the VLAN.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)#protocol pppoe group group-name</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>end</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Tasks for Configuring PPPoE over 802.1Q VLANs on a Cisco 7600 Router with a SIP-400

PPPoE over IEEE 802.1Q VLANs enables the Cisco 7600 series router with a SIP-400 to support PPPoE over IEEE802.1Q encapsulated VLAN interfaces. IEEE 802.1Q encapsulation is used to interconnect a VLAN-capable router with another VLAN-capable networking device. The packets on the 802.1Q link contain a standard Ethernet frame and the VLAN information associated with that frame. Perform the following tasks to configure PPPoE on a Cisco 7600 router with a SIP-400:

Note

PPPoE is disabled by default on a VLAN.

Configuring a Virtual Template

Before configuring PPPoE on an IEEE 802.1Q VLAN interface, configure a virtual template. See the Configuring a Virtual Template Interface, page 160.

- Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE, page 166
- Verifying PPPoE over Ethernet, page 168
- Clearing PPPoE Sessions, page 169

Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE

Creating an Ethernet 802.1Q Encapsulated Subinterface and Enabling PPPoE
Perform this task to create an Ethernet 802.1Q interface and enable PPPoE on it.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot / subslot / port`
4. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
5. `exit`
6. `bba-group pppoe {bba-group-name | global}`
7. `pppoe enable pppoe enable [group group-name]`
8. `pppoe max-sessions number`
9. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface gigabitethernet slot / subslot / port</td>
<td>Creates a Gigabit Ethernet subinterface and enters subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet 0/2/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# encapsulation dot1q second-dot1q 20</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 6 bba-group pppoe \{bba-group-name | global\} | Enters BBA group configuration mode.

Example:

```
Router(config)# bba-group pppoe group1
```

Step 7 pppoe enable pppoe enable [group group-name] | Enables PPPoE and allows PPPoE sessions to be created through the specified subinterface.

Example:

```
Router(config-bba)# pppoe enable group1
```

Step 8 pppoe max-sessions number | Specifies the maximum number of PPPoE sessions that can be terminated on this router from all interfaces.

Example:

```
Router(config-bba)# pppoe max-sessions 23
```

Step 9 end | Exits BBA group configuration mode.

Example:

```
Router(config-bba)# end
```

Verifying PPPoE over Ethernet

Perform this task to verify PPPoEoE.

SUMMARY STEPS

1. enable
2. show pppoe session all
3. show pppoe session packets
4. show pppoe summary

DETAILED STEPS

Command or Action	Purpose
Step 1 enable | Enables privileged EXEC mode.

- Enter your password if prompted.

Example:

```
Router> enable
```
## Command or Action	Purpose
Step 2 show pppoe session all | Displays PPPoE session information for each session ID.

Example:

Router# show pppoe session all

Step 3 show pppoe session packets | Displays PPPoE session statistics.

Example:

Router# show pppoe session packets

Step 4 show pppoe summary | Displays a summary of PPPoE session information.

Example:

Router# show pppoe summary

Clearing PPPoE Sessions

Perform this task to clear the PPPoE sessions.

SUMMARY STEPS

1. **enable**
2. clear pppoe all
3. clear pppoe interface type number [vc [vpi|vci | vc-name]]
4. clear pppoe rmac mac-address [sid session-id]
5. clear pppoe interface type number [vlan vlan-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

Router> enable

| **Step 2** clear pppoe all | Clears all PPPoE sessions. |

Example:

Router# clear pppoe all
Clearing PPPoE Sessions

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 clear pppoe {interface type number [vc</td>
<td>vpi/vci</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe interface</td>
<td></td>
</tr>
<tr>
<td>Step 4 clear pppoe rmac mac-address [sid session-id]</td>
<td>Clears PPPoE sessions from a client host MAC address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe rmac sid</td>
<td></td>
</tr>
<tr>
<td>Step 5 clear pppoe interface type number [vlan vlan-number]</td>
<td>Clears sessions from a specific VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# clear pppoe interface ATM 2/0 vlan 200</td>
<td></td>
</tr>
</tbody>
</table>

Enabling PPPoE over IEEE 802.1Q VLAN

Perform this task to enable PPPoE over IEEE 802.1Q VLAN support on a main Ethernet interface.

The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature removes the requirement for each PPPoE VLAN to be created on a subinterface. Allowing more than one PPPoE VLAN to be configured on a main interface increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.

Individual VLANs or a range of VLANs can be configured on an interface. You can configure a VLAN range on a main interface and at the same time configure VLANs outside the range on subinterfaces of the same interface.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface type number**
4. Do one of the following:
 - **vlan-id dot1q vlan-id**
 - **vlan-range dot1q start-vlan-id end-vlan-id**
5. **pppoe enable [group group-name]**
6. **end**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface to be configured and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface fastethernet 0/2</td>
<td></td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Enables IEEE 802.1Q VLAN encapsulation for a specific VLAN on an Ethernet interface and enters VLAN range configuration mode.</td>
</tr>
<tr>
<td>• <code>vlan-id dot1q vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>• <code>vlan-range dot1q start-vlan-id end-vlan-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# vlan-id dot1q 0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# vlan-range dot1q 0 60</td>
<td></td>
</tr>
</tbody>
</table>
Enabling an ATM to Support Encapsulated PPPoE over IEEE 802.1Q VLAN

Perform the following task to enable an ATM to support encapsulated PPPoE over IEEE 802.1Q VLAN traffic. The PPPoE over VLAN Enhancements: Configuration Limit Removal and ATM Support feature enables ATMs to process PPPoE over VLAN packets that use bridged RFC 1483 encapsulation. This capability allows PPPoE traffic from different 802.1Q VLANs to be multiplexed over the same ATM.

For more information, see the PPPoE over VLAN Support on ATMs, page 144.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number.subinterface-number {multipoint | point-to-point}
4. pvc [name] vpi vci
5. protocol pppovlan dot1q {vlan-id | start-vlan-id end-vlan-id} [group group-name]
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| Example: |
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: |
Router# configure terminal |
Command or Action | Purpose
--- | ---
Step 3 interface atm number . subinterface-number {multipoint | point-to-point} | Configures an ATM multipoint subinterface and enters subinterface configuration mode.

Example:
Router(config)# interface atm 2/0.1 multipoint

Step 4 pvc [name] vpi / vci | Configures a VC and enters ATM PVC configuration mode.

Example:
Router(config-subif)# pvc name1 0/60

Step 5 protocol pppovlan dot1q {vlan-id | start-vlan-id end-vlan-id} [group group-name] | Enables PPPoE for a specific IEEE 802.1Q VLAN or a range of VLANs on an ATM.

Example:
Router(config-if-atm-vc)# protocol pppovlan dot1q 0 50 group pppoe1

Step 6 end | Exits ATM PVC configuration mode.

Example:
Router(config-if-atm-vc)# end

Enabling Support for PPPoE over IEEE 802.1Q VLAN in a VC Class

Perform the following task to enable support for PPPoE over IEEE 802.1Q VLANs in a VC class.

SUMMARY STEPS

1. enable
2. configure terminal
3. vc-class atm name
4. protocol pppovlan dot1q {vlan-id | start-vlan-id end-vlan-id} [group group-name]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm name</td>
<td>Configures an ATM VC class and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class1</td>
<td></td>
</tr>
<tr>
<td>Step 4 protocol pppovlan dot1q (vlan-id</td>
<td>start-vlan-id end-vlan-id] [group group-name]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vc-class)# protocol pppovlan dot1q 0 50 group pppoe1</td>
<td></td>
</tr>
</tbody>
</table>

Configuring MAC Addresses for PPPoEoA

You can configure the MAC address on ATMs in a BBA group to use a different MAC address for PPP over Ethernet over ATM (PPPoEoA).

Perform this task to configure different MAC addresses on PPPoEoA and enable the aggregation router to bridge packets from Ethernet to the appropriate MAC addresses.

A BBA group profile should already exist. The BBA group commands are used to configure broadband access on aggregation and client devices that use PPPoA, PPPoE, and Routed Bridge Encapsulation (RBE).
SUMMARY STEPS

1. enable
2. configure terminal
3. bba-group pppoe {bba-group-name | global}
4. mac-address {autoselect | mac-address}
5. exit
6. show pppoe session
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 bba-group pppoe {bba-group-name</td>
<td>global}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# bba-group pppoe group1</td>
<td></td>
</tr>
<tr>
<td>Step 4 mac-address {autoselect</td>
<td>mac-address}</td>
</tr>
<tr>
<td></td>
<td>• autoselect -- Automatically selects the MAC address based on the ATM interface address, plus 7.</td>
</tr>
<tr>
<td></td>
<td>• mac-address -- Standardized data link layer address having a 48-bit MAC address. Also known as a hardware address, MAC layer address, and physical address. All PPPoEoA sessions use the MAC address specified on the BBA group, which are applied on the VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# mac-address autoselect</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits BBA group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-bba-group)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Step 6 show pppoe session | Displays the MAC address as the local MAC (LocMac) address on the last line of the display.

Example:

```
Router# show pppoe session
```

Step 7 end | Exits privileged EXEC mode.

Example:

```
Router# end
```

Examples

The following example shows the display of the MAC address as LocMac:

```
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID  PPPoE  RemMAC            Port      VT  VA
State   SID  LocMAC                  VA-st
       3    000b.fdc9.0001  ATM3/0.1   1  Vi2.1
PTA     0008.7c55.a054  VC:  1/50     UP
LocMAC is burned in mac-address of ATM interface(0008.7c55.a054).
```

Configuring PPPoE Session Recovery After Reload

Perform this task to configure the aggregation device to send PPPoE active discovery terminate (PADT) packets to the CPE device upon receipt of PPPoE packets on "half-active" PPPoE sessions (a PPPoE session that is active on the CPE end only).

If the PPP keepalive mechanism is disabled on a CPE device, a PPPoE session will pause indefinitely after an aggregation device reload. The PPPoE Session Recovery After Reload feature enables the aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures.

The PPPoE protocol relies on the PPP keepalive mechanism to detect link or peer device failures. If PPP detects a failure, it terminates the PPPoE session. If the PPP keepalive mechanism is disabled on a CPE device, the CPE device has no way to detect link or peer device failures over PPPoE connections. When an aggregation router that serves as the PPPoE session endpoint reloads, the CPE device will not detect the connection failure and will continue to send traffic to the aggregation device. The aggregation device will drop the traffic for the failed PPPoE session.

The **sessions auto cleanup** command enables an aggregation device to attempt to recover PPPoE sessions that existed before a reload. When the aggregation device detects a PPPoE packet for a half-active PPPoE session, the device notifies the CPE of the PPPoE session failure by sending a PPPoE PADT packet. The CPE device is expected to respond to the PADT packet by taking failure recovery action.
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bba-group pppoe {group-name | global}`
4. `virtual-template template-number`
5. `sessions auto cleanup`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 `bba-group pppoe {group-name</td>
<td>global}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# bba-group pppoe global</code></td>
<td>• The <code>global</code> keyword creates a profile that will serve as the default profile for any PPPoE port that is not assigned a specific profile.</td>
</tr>
<tr>
<td>Step 4 <code>virtual-template template-number</code></td>
<td>Specifies which virtual template will be used to clone virtual access interfaces for all PPPoE ports that use this PPPoE profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-bba-group)# virtual-template 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>sessions auto cleanup</code></td>
<td>Configures an aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-bba-group)# sessions auto cleanup</code></td>
<td></td>
</tr>
</tbody>
</table>
 EXAMPLE:
Router(config-bba-group)# end

(Optional) Exits the configuration mode and returns to privileged EXEC mode.

Troubleshooting Tips

Use the show pppoe session and debug pppoe commands to troubleshoot PPPoE sessions.

Monitoring and Maintaining PPPoE Profiles

Perform this task to monitor and maintain PPPoE profiles.

SUMMARY STEPS

1. enable
2. show pppoe session [all | packets]
3. clear pppoe {interface type number [vc [vpi|vci | vc-name]] | rmac mac-addr [sid session-id] | all}
4. debug pppoe {data | errors | events | packets} | rmac remote-mac-address | interface type number [vc [vpi|vci | vc-name]]

DETAILED STEPS

Command or Action	Purpose
Step 1 enable | Enables privileged EXEC mode.
Example: Router> enable | Enter your password if prompted.
Step 2 show pppoe session [all | packets] | Displays information about active PPPoE sessions.
Example: Router# show pppoe session all
Command or Action | Purpose
---|---
Step 3 clear pppoe {interface type number [vc \[vpi]vci | vc-name\]] | rmac mac-addr [sid session-id] | all} | Terminates PPPoE sessions.

Example:

Router# clear pppoe interface atm 0/1.0

Step 4 debug pppoe {data | errors | events | packets} [rmac remote-mac-address] [interface type number [vc \[vpi]vci | vc-name\]] | Displays debugging information for PPPoE sessions.

Example:

Router# debug pppoe events

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

- PPPoE Profiles Configuration Example, page 179
- MAC Address of the PPPoEoA Session as the Burned-In MAC Address Example, page 181
- Address Autoselect Configured and MAC Address Not Configured Example, page 181
- PPPoE over 802.1Q VLAN Support on an Ethernet Interface Example, page 182
- PPPoE over 802.1Q VLAN Support on ATMs Example, page 182
- MAC Address Configured on the ATM Interface Example, page 182
- MAC Address Configured on the BBA Group Example, page 183
- PPPoE Session Recovery After Reload Example, page 183

PPPoE Profiles Configuration Example

The following example shows how to configure the three PPPoE profiles: vpn1, vpn2, and a global PPPoE profile. The profiles vpn1 and vpn2 are assigned to VC classes, VLANs, and ranges. Any Ethernet interface, VLAN, range, or VC class that is configured for PPPoE but is not assigned either profile vpn1 or vpn (such as VC class class-pppoe-global) will use the global profile.

```
vpdn enable
!
vpdn-group 1
request-dialin
protocol l2tp
domain vpn1
initiate-to ip 209.165.200.225 priority 1
local name NAS1-1
```

Note

The order in which the commands are configured can be changed.
vpdn-group 2
 request-dialin
 protocol l2tp
 domain vpn2
 initiate-to ip 209.165.201.1 priority 1
 local name NAS1-2

 virtual-template 1 pre-clone 20
 virtual-template 2 pre-clone 20
!

bba-group pppoe global
 virtual-template 1
 sessions max limit 8000
 sessions per-mac limit 2
 sessions per-vc limit 8
!

bba-group pppoe vpn1
 virtual-template 1
 sessions per-vc limit 2
 sessions per-mac limit 1
!

bba-group pppoe vpn2
 virtual-template 2
 sessions per-mac limit 1
 sessions per-vc limit 2
!

class atm class-pppoe-global
 protocol pppoe
!

class atm class-pppox-auto
 encapsulation aal5autopp virtual-template 1 group vpn1
!

class atm class-pppoe-1
 protocol pppoe group vpn1
!

class atm class-pppoe-2
 protocol pppoe group vpn2
!

interface Loopback 1
 ip address 209.165.201.1 255.255.255.0
!

interface ATM 1/0.10 multipoint
 range range-pppoe-1 100 109
 protocol pppoe group vpn1
!

interface ATM 1/0.20 multipoint
 class-int class-pppox-auto
 0/200
 encapsulation aal5autopp virtual-template 1
 !
 0/201
 !
 0/202
 encapsulation aal5autopp virtual-template 1 group vpn2
 !
 0/203
 class-vc class-pppoe-global
 !

interface Ethernet 2/3.1
 encapsulation dot1Q 1
 pppoe enable group vpn1
!

interface Ethernet 2/3.2
 encapsulation dot1Q 2
 pppoe enable group vpn2
!

interface ATM 6/0.101 point-to-point
 ip address 209.165.202.129 255.255.255.0
 0/101
!

interface ATM 6/0.102 point-to-point
 ip address 209.165.201.1 255.255.255.0
MAC Address of the PPPoEoA Session as the Burned-In MAC Address Example

In the following example, neither address autoselect nor a MAC address is configured on the BBA group, and the MAC address is not configured on the ATM interface (the default condition). The `show pppoe session` command is used to confirm that the MAC address of the PPPoEoA session is the burned-in MAC address of the ATM interface.

```
0/102
!
interface virtual-template 1
   ip unnumbered loopback 1
   no logging event link-status
   no keepalive
   peer default ip address pool pool-1
   ppp authentication chap
!
interface virtual-template 2
   ip unnumbered loopback 1
   no logging event link-status
   no keepalive
   peer default ip address pool pool-2
   ppp authentication chap
!
ip local pool pool-1 10.10.1.1 10.10.1.250
ip local pool pool-2 10.10.2.1 10.10.2.250
```

Address Autoselect Configured and MAC Address Not Configured Example

The following example shows how to configure address autoselect in the BBA group. The MAC address is not configured on the ATM interface. The `show pppoe session` command displays the MAC address of the interface, plus 7.

```
bba-group pppoe one
   virtual-template 1
   interface ATM 3/0
   no ip address
   no ip route-cache
   no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
   no ip route-cache
   1/50
   encapsulation aal5snap
   protocol pppoe group one
!
Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA
State SID LocMAC VA-st
3 3 000b.fdc9.0001 ATM3/0.1
PTA 0008.7c55.a054 VC: 1/50 UP
LocMAC is burned in mac-address of ATM interface(0008.7c55.a054).
```
PPPoe over 802.1Q VLAN Support on an Ethernet Interface Example

The following example shows how to configure PPPoE over a range of 802.1Q VLANs on FastEthernet interface 0/0. The VLAN range is configured on the main interface, and therefore each VLAN will not use up a separate subinterface.

```
bba-group pppoe PPPOE
    virtual-template 1
    sessions per-mac limit 1
interface virtual-template 1
    ip address 209.165.201.1 255.255.255.0
    mtu 1492
interface fastethernet 0/0
    no ip address
    no ip mroute-cache
duplex half
    vlan-range dot1q 20 30
    pppoe enable group PPPOE
    exit-vlan-config
```

PPPoe over 802.1Q VLAN Support on ATMs Example

The following example shows how to configure an ATM to support PPPoE over a range of 802.1Q VLANs:

```
bba-group pppoe PPPOEOA
    virtual-template 1
    sessions per-mac limit 1
interface virtual-template 1
    ip address 209.165.202.129 255.255.255.0
    mtu 1492
interface atm 4/0.10 multipoint
    10/100
    protocol pppovlan dot1q 0-50 group PPPOEOA
```

MAC Address Configured on the ATM Interface Example

In the following example, neither autoselect nor the MAC address is configured on the BBA group, but the MAC address is configured on the ATM interface, as indicated by the report from the `show pppoe session` command:

```
bba-group pppoe one
    virtual-template 1
interface ATM 3/0
    mac-address 0001.0001.0001
    no ip address
```
no ip route-cache
no atm ilmi-keepalive

! interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
7 7 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0001.0001.0001 VC: 1/50 UP

LocMAC = configured mac-address on atm interface(0001.0001.0001).

MAC Address Configured on the BBA Group Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
virtual-template 1
mac-address 0002.0002.0002
interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
8 8 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0002.0002.0002 VC: 1/50 UP

LocMAC (Mac address of PPPoEoA session) is mac-address specified on bba-group one (0002.0002.0002).

PPPoE Session Recovery After Reload Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called "range-pppoe-1":

bba-group pppoe group1
virtual-template 1
sessions auto cleanup
!
interface ATM1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group group1
!
interface virtual-template 1
ip address negotiated

MAC Address Configured on the BBA Group Example

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

MAC Address Configured on the BBA Group Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
virtual-template 1
mac-address 0002.0002.0002
interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
7 7 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0001.0001.0001 VC: 1/50 UP

LocMAC = configured mac-address on atm interface(0001.0001.0001).

PPPoE Session Recovery After Reload Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called "range-pppoe-1":

bba-group pppoe group1
virtual-template 1
sessions auto cleanup
!
interface ATM1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group group1
!
interface virtual-template 1
ip address negotiated

MAC Address Configured on the BBA Group Example

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

MAC Address Configured on the BBA Group Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
virtual-template 1
mac-address 0002.0002.0002
interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
7 7 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0001.0001.0001 VC: 1/50 UP

LocMAC = configured mac-address on atm interface(0001.0001.0001).

PPPoE Session Recovery After Reload Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called "range-pppoe-1":

bba-group pppoe group1
virtual-template 1
sessions auto cleanup
!
interface ATM1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group group1
!
interface virtual-template 1
ip address negotiated

MAC Address Configured on the BBA Group Example

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

MAC Address Configured on the BBA Group Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
virtual-template 1
mac-address 0002.0002.0002
interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
7 7 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0001.0001.0001 VC: 1/50 UP

LocMAC = configured mac-address on atm interface(0001.0001.0001).

PPPoE Session Recovery After Reload Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called "range-pppoe-1":

bba-group pppoe group1
virtual-template 1
sessions auto cleanup
!
interface ATM1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group group1
!
interface virtual-template 1
ip address negotiated

MAC Address Configured on the BBA Group Example

Configuration Examples for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

MAC Address Configured on the BBA Group Example

The following example shows how to configure the MAC address on the BBA group. The display from the show pppoe session command indicates that all PPPoEoA sessions on the ATM interface associated with the BBA group use the same MAC address as specified on the BBA group.

bba-group pppoe one
virtual-template 1
mac-address 0002.0002.0002
interface ATM 3/0
mac-address 0001.0001.0001
no ip address
no ip route-cache
no atm ilmi-keepalive
!
interface ATM 3/0.1 multipoint
no ip route-cache
1/50
encapsulation aal5snap
protocol pppoe group one

Router# show pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total
Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st
7 7 000b.fdc9.0001 ATM3/0.1 1 Vi2.1
PTA 0001.0001.0001 VC: 1/50 UP

LocMAC = configured mac-address on atm interface(0001.0001.0001).

PPPoE Session Recovery After Reload Example

The following example shows how the router attempts to recover failed PPPoE sessions in the ATM range called "range-pppoe-1":

bba-group pppoe group1
virtual-template 1
sessions auto cleanup
!
interface ATM1/0.10 multipoint
range range-pppoe-1 100 109
protocol pppoe group group1
!
interface virtual-template 1
ip address negotiated
Where to Go Next

- If you want to establish PPPoE session limits for sessions on a specific PVC or VLAN configured on an L2TP access concentrator, see the "Establishing PPPoE Session Limits per NAS Port" module.
- If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup, see the "Offering PPPoE Clients a Selection of Services During Call Setup" module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an L2TP network server (LNS) or tunnel switch, see the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.

Note

L2TP is not supported on the Cisco 7600 router in Cisco IOS Release 12.2(33)SRC.

- If you want to configure the transfer upstream of the Point-to-Point Protocol over X (PPPoX, where X designates a family of encapsulating communications protocols such as pppoe, pppoa, pppeoa, pppeovlan implementing PPP), see the "Configuring Upstream Connections Speed Transfer" module.
- If you want to use SNMP to monitor PPPoE sessions, see the "Monitoring PPPoE Sessions with SNMP" module.
- If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, see the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.
- If you want to configure a Cisco Subscriber Service Switch, see the "Configuring Cisco Subscriber Service Switch Policies" module.

Additional References

The following sections provide references related to the Providing Protocol Support for Broadband Access Aggregation of PPPoE Session feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>"Understanding Broadband Access Aggregation" module in Cisco IOS Broadband and DSL Configuration Guide</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>"Preparing for Broadband Access Aggregation" module in Cisco IOS Broadband and DSL Configuration Guide</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Establishing PPPoE session limits for sessions on a specific permanent virtual circuit or VLAN configured on an L2TP access concentrator</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Using service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Enabling an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an L2TP LNS or tunnel switch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuring the transfer upstream of the PPPoX session speed value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Using SNMP to monitor PPPoE sessions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Identifying a physical subscribe line for RADIUS communication with a RADIUS server</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Configuring a Cisco Subscriber Service Switch Policies</th>
</tr>
</thead>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
</tr>
</thead>
</table>

| Title |
| No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. |

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
</tr>
</thead>
</table>

| MIBs Link |
| To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs |
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1483</td>
<td>Multiprotocol Encapsulation over ATM Adaptation Layer 5</td>
</tr>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP over Ethernet (PPPoE)</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Providing Protocol Support for Broadband Access Aggregation for PPPoE Sessions

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 9 Feature Information for Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configurable MAC Address for PPPoE</td>
<td>12.3(11)T</td>
<td>The Configurable MAC Address for PPPoE feature configures the MAC address on ATM PVCs in a broadband access (BBA) group to use a different MAC address for PPP over Ethernet over ATM (PPPoEoA). The following commands were introduced or modified: <code>bba-group pppoe</code>, <code>mac-address</code>.</td>
</tr>
</tbody>
</table>
| Configuration Limit Removal and ATM Support | 12.3(2)T | The Configuration Limit Removal and ATM Support feature provides two enhancements to PPP over Ethernet (PPPoE) over IEEE 802.1Q VLAN functionality:
- It removes the requirement for each PPPoE VLAN to be created on a subinterface. Removal of this requirement increases the number of VLANs that can be configured on a router from 1001 to 4000 VLANs per interface.
- It adds ATM support for PPPoE over VLAN traffic that uses bridged RFC 1483 encapsulation.
The following commands were introduced or modified: `encapsulation dot1q`, `interface atm`, `interface range`, `protocol pppoe`, `pppoe enable`, `protocol pppoe`, `vlan-id dot1q`, `vlan dot1q`. |
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Software Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoA/PPPoE Autosense for ATMs</td>
<td>12.1(1)DC 12.2(4)T 12.2(4)T3</td>
<td>The PPPoA/PPPoE Autosense for ATMs feature enables a router to distinguish between incoming PPP over ATM (PPPoA) and PPP over Ethernet (PPPoE) over ATM sessions and to create virtual access based on demand for both PPP types. The following commands were introduced or modified: <code>encapsulation aal5 auto, interface ATM, ppp virtual-template, protocol pppoe, pvc-in-range, range</code>.</td>
</tr>
<tr>
<td>PPPoE Connection Throttling</td>
<td>12.2(15)T 12.2(33)SRC</td>
<td>The PPPoE Connection Throttling feature limits PPPoE connection requests to help prevent intentional denial-of-service attacks and unintentional PPP authentication loops. This feature implements session throttling on the PPPoE server to limit the number of PPPoE session requests that can be initiated from a MAC address or virtual circuit during a specified period of time.</td>
</tr>
<tr>
<td>PPPoE Profiles</td>
<td>12.2(15)T</td>
<td>The PPPoE Profiles feature configures PPP over Ethernet profiles that contain configuration information for a group of PPPoE sessions.</td>
</tr>
<tr>
<td>PPPoE Session Recovery After Reload</td>
<td>12.3(2)T 12.2(33)SRC</td>
<td>The PPPoE Session Recovery After Reload feature enables the aggregation device to attempt to recover PPPoE sessions that failed because of reload by notifying CPE devices about the PPPoE session failures.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Software Releases</td>
<td>Feature Configuration Information</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>VLAN Range</td>
<td>12.0(7)XE 12.1(5)T 12.2(2)DD 12.2(4)B 12.2(8)T 12.2(13)T</td>
<td>The VLAN Range feature can be used to group VLAN subinterfaces so that any command entered in a group applies to every subinterface within the group. This capability simplifies configurations and reduces command parsing.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
PPPoE Client DDR Idle-Timer

The PPPoE Client DDR Idle-Timer feature supports the dial-on-demand routing (DDR) interesting traffic control list functionality of the dialer interface with a PPP over Ethernet (PPPoE) client, but also keeps original functionality (PPPoE connection up and always on after configuration) for those PPPoE clients that require it.

- Finding Feature Information, page 191
- Prerequisites for PPPoE Client DDR Idle-Timer, page 191
- Information About PPPoE Client DDR Idle-Timer, page 191
- How to Configure PPPoE Client DDR Idle-Timer, page 192
- Configuration Examples for PPPoE Client DDR Idle-Timer, page 197
- Additional References, page 198
- Feature Information for PPPoE Client DDR Idle-Timer, page 200

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for PPPoE Client DDR Idle-Timer

Before configuring the PPPoE Client DDR Idle-Timer feature, you must understand the concept of DDR interesting packets and access control lists and PPPoE Stage Protocols. See the Prerequisites for PPPoE Client DDR Idle-Timer, page 191 for links to the documents describing these concepts.

Information About PPPoE Client DDR Idle-Timer

- DDR Functionality and the PPPoE Client, page 192
DDR Functionality and the PPPoE Client

Before Cisco IOS Release 12.2(13)T, the DDR interesting traffic control list functionality of the dialer interface was not supported for PPPoE. However, the PPPoE Client DDR Idle-Timer feature, available as part of Cisco IOS Release 12.2(13)T, now supports this DDR functionality for a PPPoE client.

Protocol access lists and dialer access lists are central to the operation of DDR. Access lists are used as the screening criteria for determining when to initiate DDR calls. All packets are tested against the dialer access list. Packets that match a permit entry are deemed interesting. Packets that do not match a permit entry or that do match a deny entry are deemed uninteresting. When a packet is found to be interesting, either the dialer idle timer is reset (if the line is active) or a connection is attempted (assuming the line is available but not active). If a tested packet is deemed uninteresting, it will be forwarded if it is intended for a destination known to be on a specific interface and the link is active. However, such a packet will not initiate a DDR call and will not reset the idle timer. If dialer idle timer expires, the dialer interface calls a PPPoE function to tear down the connection.

A new command, `pppoe-client dial-pool-number`, allows configuring a DDR interesting traffic control list for PPPoE connections, but also keeps original connection functionality for those PPPoE clients that require it. If you do not require DDR, the PPPoE connection will be up and always on after configuration. If you do require DDR functionality, the connection will be brought up when interesting traffic comes in from the LAN interface and brought down after the dialer idle timer expires. Interesting traffic that comes from WAN interface will only reset the dialer idle timer.

Protocol access lists and dialer access lists have already been implemented in the dialer interface for the operation of DDR. For a PPPoE client, access lists are used as the screening criteria for determining if PPPoE Discovery initiation or a dialer idle timer reset is needed. But a protocol access list is not required for this feature; it depends on your network needs. An access-list can be configured and associated with dialer-list, or you can configure only the dialer list.

All packets destined to the dialer interface are tested against the dialer access list. Packets that match a permit entry are deemed interesting. Packets that do not match a permit entry or that do match a deny entry are deemed uninteresting. When a packet is found to be interesting, the dialer idle timer will be reset if the PPPoE session has already been set up, or a PPPoE Discovery will be attempted if there is no PPPoE session. If a tested packet is deemed uninteresting, it will not initiate PPPoE Discovery and will not reset the idle timer.

How to Configure PPPoE Client DDR Idle-Timer

- Configure the PPPoE Client DDR Idle-Timer on an ATM PVC Interface, page 192
- Configure the PPPoE Client DDR Idle-Timer on an Ethernet Interface, page 194
- Configure the Dialer Interface, page 195

Configure the PPPoE Client DDR Idle-Timer on an ATM PVC Interface

To configure the PPPoE client DDR idle-timer in interface-ATM-VC configuration mode, use the following commands:
SUMMARY STEPS

1. enable
2. configure {terminal | memory | network}
3. interface atm atm-interface-number
4. pvc vpi/vci
5. pppoe-client dial-pool-number number [dial-on-demand]
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
</tbody>
</table>

Step 2 configure {terminal	memory	network}	Enters global configuration mode.
Example:			
Router# configure terminal			

Step 3 interface atm atm-interface-number	Configures an ATM interface type and enters interface configuration mode.
Example:	
Router# interface atm 2/0	

Step 4 pvc vpi/vci	Creates an ATM permanent virtual circuit (PVC) and enters interface-ATM-VC configuration mode.
Example:	
Router(config-if)# pvc 2/100	

Step 5 pppoe-client dial-pool-number number [dial-on-demand]	Configures DDR interesting traffic control list functionality of the dialer interface with a PPPoE client.
Example:	
Router(config-if-atm-vc)# pppoe-client dial-pool-number 1 dial-on-demand	
Configure the PPPoE Client DDR Idle-Timer on an Ethernet Interface

To configure the PPPoE client DDR idle-timer on an Ethernet interface, use the following commands:

SUMMARY STEPS

1. `enable`
2. `configure {terminal | memory | network}`
3. `interface ethernet ethernet-number`
4. `pppoe enable`
5. `pppoe-client dial-pool-number number [dial-on-demand]`
6. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 configure {terminal	memory	network}	Enters global configuration mode.
Example:			
Router# configure terminal			

What to Do Next

To support DDR functionality for the PPPoE client, DDR functionality must be configured. See the [Configure the Dialer Interface](#) page 195 for the steps to do this.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 interface ethernet ethernet-number</td>
<td>Configures an Ethernet interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# interface ethernet 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 pppoe enable</td>
<td>Enables PPPoE sessions on an Ethernet interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pppoe enable</td>
<td></td>
</tr>
<tr>
<td>Step 5 pppoe-client dial-pool-number number [dial-on-demand]</td>
<td>Configures DDR interesting traffic control list functionality of the dialer interface with a PPPoE client.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# pppoe-client dial-pool-number 1 dial-on-demand</td>
<td></td>
</tr>
<tr>
<td>Step 6 exit</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-vc)# exit</td>
<td></td>
</tr>
</tbody>
</table>

- What to Do Next, page 195

What to Do Next

To support DDR functionality for the PPPoE client, DDR functionality must be configured. See the Configure the Dialer Interface, page 195 section for the steps to do this.

Configure the Dialer Interface

To configure the dialer interface (required when using the *pppoe-client dial-pool-number* command), you must also configure the following commands:
SUMMARY STEPS

1. enable
2. configure { terminal | memory | network }
3. interface dialer dialer-rotary-group-number
4. dialer idle-timeout seconds [inbound | either]
5. dialer hold-queue packets [timeout seconds]
6. dialer-group group-number
7. exit
8. dialer-list dialer-group protocol protocol-name { permit | deny | list access-list-number | access-group }

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables higher privilege levels, such as privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>**Step 2 configure { terminal</td>
<td>memory</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface dialer dialer-rotary-group-number</td>
<td>Defines a dialer rotary group and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# interface dialer 1</td>
<td></td>
</tr>
<tr>
<td>**Step 4 dialer idle-timeout seconds [inbound</td>
<td>either]**</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer idle-timeout 180</td>
<td></td>
</tr>
<tr>
<td>either</td>
<td></td>
</tr>
<tr>
<td>Step 5 dialer hold-queue packets [timeout seconds]</td>
<td>Allows interesting outgoing packets to be queued until a modem connection is established.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer hold-queue 100</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 dialer-group group-number</td>
<td>Controls access by configuring an interface to belong to a specific dialing group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# dialer-group 1</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Leaves interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 8** dialer-list *dialer-group* protocol *protocol-name* {permit | deny | list *access-list-number* | access-group} | Defines a DDR dialer list for dialing by protocol or by a combination of a protocol and a previously defined access list.
 - **permit** and **deny**—Configure access permissions.
 - **list**—Specifies that an access list will be used for defining a granularity finer than an entire protocol. |
| **Example:** | |
| Router(config)# dialer-list 1 protocol ip permit | |

Configuration Examples for PPPoE Client DDR Idle-Timer

This section provides configuration examples to match the identified configuration tasks in the previous sections. The dialer interface configurations for each interface type required by the `pppoe-client dial-pool-number` command are included in the following client configuration examples:

- PPPoEoA Client Configuration Example, page 197
- PPPoEoE Client Configuration Example, page 198

PPPoEoA Client Configuration Example

The following example shows how to configure the PPPoE client DDR idle-timer on an ATM PVC interface:

```plaintext
! vpdn enable  
no vpdn logging  
! vpdn-group 1  
request-dialin  
protocol pppoe  
! interface ATM2/0  
pvc 2/100  
pppoe-client dial-pool-number 1 dial-on-demand  
! interface Dialer1  
ip address negotiated  
ip mtu 1492
```
encapsulation ppp
dialer pool 1
dialer idle-timeout 180 either
dialer hold-queue 100
dialer-group 1
!
dialer-list 1 protocol ip permit
!
ip route 0.0.0.0 0.0.0.0 Dialer1

PPPoE Client Configuration Example

The following example shows how to configure the PPPoE client DDR idle-timer on an Ethernet interface:

```
!
vpdn enable
no vpdn logging
!
vpdn-group 1
request-dialin
protocol pppoe
!
interface Ethernet1
pppoe enable
pppoe-client dial-pool-number 1 dial-on-demand
!
interface Dialer1
ip address negotiated
ip mtu 1492
encapsulation ppp
dialer pool 1
dialer idle-timeout 180 either
dialer hold-queue 100
dialer-group 1
!
dialer-list 1 protocol ip permit
!
ip route 0.0.0.0 0.0.0.0 Dialer1
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
| DDR interesting packets and access control lists | *Cisco IOS Dial Technologies Configuration Guide*, Release 12.2. See the section "Configuring Access Control for Outgoing Calls " in the chapter "Configuring Legacy DDR Hubs."
Related Topic

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE configuration commands: complete command syntax, command mode, defaults, usage guidelines, and example</td>
<td>Cisco IOS Wide-Area Networking Command Reference, Release 12.2. See the chapter "Broadband Access: PPP and Routed Bridge Encapsulation Commands."</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for PPPoE Client DDR Idle-Timer

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Client DDR Idle-Timer</td>
<td>12.2(13)T</td>
<td>The PPPoE Client DDR Idle-Timer feature supports the dial-on-demand routing (DDR) interesting traffic control list functionality of the dialer interface with a PPP over Ethernet (PPPoE) client, but also keeps original functionality (PPPoE connection up and always on after configuration) for those PPPoE clients that require it. This feature is supported on Cisco 806, Cisco 827, Cisco SOHO 70 series routers. The following commands were introduced or modified: <code>pppoe-client dial-pool-number</code>.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Enabling PPPoE Relay Discovery and Service Selection Functionality

The PPPoE Relay feature enables an L2TP access concentrator (LAC) to relay active discovery and service selection functionality for PPP over Ethernet (PPPoE), over a Layer 2 Tunneling Protocol (L2TP) control channel, to an L2TP network server (LNS) or tunnel switch (multihop node). The relay functionality of this feature allows the LNS or tunnel switch to advertise the services it offers to the client, thereby providing end-to-end control of services between the LNS and a PPPoE client.

- Finding Feature Information, page 201
- Prerequisites for Enabling PPPoE Relay Discovery and Service Selection Functionality, page 201
- Information About Enabling PPPoE Relay Discovery and Service Selection Functionality, page 202
- How to Enable PPPoE Relay Discovery and Service Selection Functionality, page 203
- Configuration Examples for Enabling PPPoE Relay Discovery and Service Selection Functionality, page 207
- Additional References, page 212
- Feature Information for Enabling PPPoE Relay Discovery and Service Selection Functionality, page 213

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Enabling PPPoE Relay Discovery and Service Selection Functionality

- You must understand the concepts described in the "Preparing for Broadband Access Aggregation" module.
- PPPoE sessions must be established using the procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module.
This document assumes you understand how to configure a virtual private dialup network (VPDN) tunnel and a tunnel switch. See the Prerequisites for Enabling PPPoE Relay Discovery and Service Selection Functionality, page 201 for more information about these features.

Information About Enabling PPPoE Relay Discovery and Service Selection Functionality

- L2TP Active Discovery Relay for PPPoE, page 202
- RADIUS Subscriber Profile Entry for the LAC, page 202
- RADIUS VPDN Group User Profile Entry for the LNS, page 202

L2TP Active Discovery Relay for PPPoE

The PPPoE protocol described in RFC 2516 defines a method for active discovery and service selection of devices in the network by an LAC. A PPPoE client uses these methods to discover an access concentrator in the network, and the access concentrator uses these methods to advertise the services it offers.

The PPPoE Relay feature introduced in Cisco IOS Release 12.3(4)T allows the active discovery and service selection functionality to be offered by the LNS, rather than just by the LAC. The PPPoE Relay feature implements the Network Working Group Internet-Draft titled L2TP Active Discovery Relay for PPPoE.

The Internet-Draft describes how to relay PPPoE Active Discovery (PAD) and Service Relay Request (SRRQ) messages over an L2TP control channel (the tunnel). (See the L2TP Active Discovery Relay for PPPoE, page 202 for information on how to access Network Working Group Internet-Drafts.)

The key benefit of the PPPoE Relay feature is end-to-end control of services between the LNS and a PPPoE client.

RADIUS Subscriber Profile Entry for the LAC

The following example shows how to enter Subscriber Service Switch subscriber service attributes in a AAA RADIUS server profile.

```
profile-1 = profile-name.
  Cisco:Cisco-Avpair = "sss:sss-service=relay-pppoe"
```

RADIUS VPDN Group User Profile Entry for the LNS

The following example shows how to enter the VPDN group attributes in a AAA RADIUS server profile.

```
profile-1 = profile-name.
  Cisco:Cisco-Avpair = "vpdn:relay-pppoe-bba-group=group-name"
```
How to Enable PPPoE Relay Discovery and Service Selection Functionality

• Configuring the LAC and Tunnel Switch for PPPoE Relay, page 203
• Configuring the LNS (or Multihop Node) to Respond to Relayed PAD Messages, page 204
• Monitoring PPPoE Relay, page 206

Configuring the LAC and Tunnel Switch for PPPoE Relay

Perform this task to configure the LAC and tunnel switch for PPPoE Relay, which configures a subscriber profile that directs PAD messages to be relayed on an L2TP tunnel. The subscriber profile also will contain an authorization key for the outgoing L2TP tunnel.

SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber profile profile-name
4. service relay pppoe vpdn group vpdn-group-name
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 subscriber profile</td>
<td>Configures the subscriber profile name and enters subscriber profile</td>
</tr>
<tr>
<td>profile-name</td>
<td>configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| Router(config)# subscriber profile profile-1 | profile-name --Is referenced from a PPPoE profile configured by the bba-group pppoe global configuration command, so that all the PPPoE sessions using the PPPoE profile defined by the bba-group pppoe command will be treated according to the defined subscriber profile.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4** service relay pppoe vpdn group vpdn-group-name | Provides PPPoE relay service using a VPDN L2TP tunnel for the relay. The VPDN group name specified is used to obtain outgoing L2TP tunnel information.
- See the What to Do Next, page 204 section for the equivalent RADIUS profile entry. |
| Example: | Router(config-sss-profile)# service relay pppoe vpdn group Group-A |
| **Step 5** exit | (Optional) Ends the configuration session and returns to privileged EXEC mode. |
| Example: | Router(config-sss-profile)# exit |

- What to Do Next, page 204

What to Do Next

Configure the LNS side of the configuration by performing the tasks described in the next section.

Configuring the LNS (or Multihop Node) to Respond to Relayed PAD Messages

On the router that responds to relayed PAD messages, perform this task to configure a PPPoE group and attach it to a VPDN group that accepts dial-in calls for L2TP. The relayed PAD messages will be passed from the VPDN L2TP tunnel and session to the PPPoE broadband group for receiving the PAD responses.

SUMMARY STEPS

1. enable
2. configure terminal
3. vpdn-group vpdn-group-name
4. accept-dialin
5. protocol l2tp
6. virtual-template template-number
7. exit
8. terminate-from hostname host-name
9. relay pppoe bba-group pppoe-bba-group-name
10. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vpdn-group vpdn-group-name</td>
<td>Creates a VPDN group and enters VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn-group Group-A</td>
<td></td>
</tr>
<tr>
<td>Step 4 accept-dialin</td>
<td>Configures the LNS to accept tunneled PPP connections from an LAC and creates an accept-dialin VPDN subgroup.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn)# accept-dialin</td>
<td></td>
</tr>
<tr>
<td>Step 5 protocol l2tp</td>
<td>Specifies the L2TP tunneling protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-req-in)# protocol l2tp</td>
<td></td>
</tr>
<tr>
<td>Step 6 virtual-template template-number</td>
<td>Specifies which virtual template will be used to clone virtual access interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-req-in)# virtual-template 2</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits to VPDN group configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-vpdn-req-in)# exit</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 8 terminate-from hostname *host-name*

Purpose Specifies the LAC hostname that will be required when the VPDN tunnel is accepted.

Example:
```
Router(config-vpn)# terminate-from hostname LAC-1
```

Step 9 relay pppoe bba-group *pppoe-bba-group-name*

Purpose Specifies the PPPoE BBA group that will respond to the PAD messages.
- The PPPoE BBA group name is defined with the `bba-group pppoe group-name` global configuration command.
- See the Monitoring PPPoE Relay, page 206 section for the equivalent RADIUS profile entry.

Example:
```
Router(config-vpn)# relay pppoe bba-group group-2
```

Step 10 exit

Purpose Exits to global configuration mode.

Example:
```
Router(config-vpn)# exit
```

Monitoring PPPoE Relay

Perform this task to monitor PPPoE Relay.

SUMMARY STEPS

1. enable
2. show pppoe session
3. show pppoe relay context all
4. clear pppoe relay context

DETAILED STEPS

Step 1 enable

Enables privileged EXEC mode.
- Enter your password if prompted.

Example:
```
Router> enable
```

Step 2 show pppoe session

Displays information about currently active PPPoE sessions.
Enabling PPPoE Relay Discovery and Service Selection Functionality

Troubleshooting Tips

Use the following commands in privileged EXEC mode to help you troubleshoot the PPPoE Relay feature:

- debug ppp forwarding
- debug ppp negotiation
- debug pppoe events
- debug pppoe packets
- debug vpdn l2x-events
- debug vpdn l2x-packets

Configuration Examples for Enabling PPPoE Relay Discovery and Service Selection Functionality

- PPPoE Relay on LAC Configuration Example, page 208
- Basic LNS Configured for PPPoE Relay Example, page 208
- Tunnel Switch (or Multihop Node) Configured to Respond to PAD Messages Example, page 210
- Tunnel Switch Configured to Relay PAD Messages Example, page 211
PPPoE Relay on LAC Configuration Example

The following is an example of a standard LAC configuration with the commands to enable PPPoE relay added:

```
hostname User2
!
username User1 password 0 field
username User2 password 0 field
username user-group password 0 field
username User5 password 0 field
username User2-lac-domain password 0 field
username User1-client-domain@cisco.net password 0 field
username User3-lns-domain password 0 field
!
ip domain-name cisco.com
!
vpdn enable
vpdn source-ip 10.0.195.151
!
vpdn-group User2-vpdn-group-domain
request-dialin
protocol l2tp
domain cisco.net
initiate-to ip 10.0.195.133
local name User2-lac-domain
!
interface Loopback123
ip address 10.22.2.2 255.255.255.0
!
interface Ethernet0/0
ip address 10.0.195.151 255.255.255.0
no keepalive
half-duplex
pppoe enable group group_1
no cdp enable
!
interface Virtual-Template1
mtu 1492
ip unnumbered Loopback123
ppp authentication chap
ppp chap hostname User2-lac-domain
!
ip route 0.0.0.0 0.0.0.0 10.0.195.1
!
subscriber profile Profile1
service relay pppoe vpdn group User2-vpdn-group-domain
!
bba-group pppoe group_1
virtual-template 1
service profile Profile1
!
```

Basic LNS Configured for PPPoE Relay Example

The following example shows the basic configuration for an LNS with commands added for PPPoE relay:

```
hostname User5
!
username User5 password 0 field
username user-group password 0 field
username User1 password 0 field
```

username User2 password 0 field
username User3 password 0 field
username User3-dialout password 0 cisco
username User2-dialout password 0 cisco
username abc password 0 cisco
username dial-7206a password 0 field
username mysgbpgroup password 0 cisco
username User3-1ns-domain password 0 field
username User2-lac-domain password 0 field
username User1-client-domain@cisco.net password 0 field
username User5-mh password 0 field
username User1@domain.net password 0 field
ip subnet-zero
!
ip domain-name cisco.com
!
vpdn enable
vpdn multihop
vpdn source-ip 10.0.195.133
!
vpdn-group 1
 request-dialin
 protocol l2tp
!
vpdn-group 2
 ! Default L2TP VPDN group
 accept-dialin
 protocol l2tp
!
vpdn-group User5-mh
 request-dialin
 protocol l2tp
domain cisco.net
 initiate-to ip 10.0.195.143
 local name User5-mh
!
vpdn-group User3-vpdn-group-domain
 accept-dialin
 protocol l2tp
 virtual-template 2
 terminate-from hostname User2-lac-domain
 local name User3-1ns-domain
 relay pppoe group group_1
!
interface Loopback0
 no ip address
!
interface Loopback123
 ip address 10.23.3.2 255.255.255.0
!
interface FastEthernet0/0
 ip address 10.0.195.133 255.255.255.0
duplex auto
speed auto
no cdp enable
!
interface Virtual-Template2
 mtu 1492
 ip unnumbered Loopback123
 ip access-group virtual-access3#234 in
 ppp mtu adaptive
 ppp authentication chap
 ppp chap hostname User3-1ns-domain
!
ip default-gateway 10.0.195.1
ip classless
ip route 0.0.0.0 0.0.0.0 10.0.195.1
The following is an example of a standard tunnel switch configuration with the commands to enable response to PPPoE relay messages added:

```
hostname User3

username User1 password 0 room1
username User2 password 0 room1
username User3 password 0 room1
username User1@domain.net password 0 cisco
username User3-lns-domain password 0 room1
username User2-lac-domain password 0 room1
username User5 password 0 room1
username User5-mh password 0 room1
username user-group password 0 room1
username User3-dialout password 0 cisco
username User2-dialout password 0 cisco
username abc password 0 cisco
username dial-7206a password 0 room1
username nysgbpgrp password 0 cisco
username User1-client-domain@domain.net password 0 room1
username User4-lns-domain password 0 room1

ip domain-name cisco.com

vpdn enable

vpdn-group User3-mh
  accept-dialin
  protocol 12tp
  virtual-template 1
  terminate-from hostname User5-mh
  relay pppoe bba-group group_1

interface Loopback0
  ip address 10.4.4.2 255.255.255.0

interface Loopback1
  ip address 10.3.2.2 255.255.255.0

interface Ethernet2/0
  ip address 10.0.195.143 255.255.255.0
  half-duplex
  no cdp enable

interface Virtual-Template1
  mtu 1492
  ip unnumbered Loopback0
  no keepalive
  ppp mtu adaptive
  ppp authentication chap
  ppp chap hostname User3-lns-domain

  ip default-gateway 10.0.195.1
  ip route 0.0.0.0 0.0.0.0 10.0.195.1

bba-group pppoe group_1
```
virtual-template 1

Tunnel Switch Configured to Relay PAD Messages Example

The following partial example shows a configuration that allows the tunnel switch to relay PAD messages:

```
subscriber profile profile-1
! Configure profile for PPPoE Relay
 service relay pppoe vpdn group Sample1.net
.
.
vpdn-group Sample2.net
! Configure L2TP tunnel for PPPoE Relay
 accept-dialin
   protocol l2tp
  .
  .
 terminate-from host Host1
 relay pppoe bba-group group-1
  .
  .
vpdn-group Sample1.net
! Configure L2TP tunnel for PPPoE Relay
 request-dialin
   protocol l2tp
  .
  .
   initiate-to ip 10.17.1.3
  .
  .
 ! PPPoE-group configured for relay
 bba-group pppoe group-1
  .
  .
 service profile profile-1
```

RADIUS Subscriber Profile Entry for the LAC Example

The following is an example of a typical RADIUS subscriber profile entry for an LAC:

```
cisco.com Password = "password"
 Cisco:Cisco-Avpair = "ass:ass-service-relay-pppoe",
 Tunnel-Type = L2TP,
 Tunnel-Server-Endpoint = ......,
 Tunnel-Client-Auth-ID = "client-id",
 Tunnel-Server-Auth-ID = "server-id",
 Cisco:Cisco-Avpair = "vpdn:l2tp-tunnel-password=password",
 Cisco:Cisco-Avpair = "vpdn:l2tp-nosession-timeout=never",
 Tunnel-Assignment-Id = assignment-id
```

RADIUS VPDN Group User Profile Entry for the LNS Example

The following is an example of a typical RADIUS subscriber profile entry for an LNS:

```
cisco.com Password = "password"
 Tunnel-Type = L2TP,
 Tunnel-Server-Endpoint = ......,
 Tunnel-Client-Auth-ID = "client-id",
 Tunnel-Server-Auth-ID = "server-id",
```
Cisco: Cisco-Avpair = "vpdn:l2tp-tunnel-password=password",
Cisco: Cisco-Avpair = "vpdn:l2tp-nosession-timeout=never",
Cisco: Cisco-Avpair = "vpdn:relay-pppe-bba-group=group-name"
Tunnel-Assignment-Id = assignment-id

Additional References

The following sections provide referenced related to the PPPoE Relay feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPDN tunnels</td>
<td>Configuring Virtual Private Networks chapter in the Virtual Templates, Profiles, and Networks section of the Cisco IOS Dial Technologies Configuration Guide</td>
</tr>
<tr>
<td>VPDN tunnel commands</td>
<td>Cisco IOS Dial Technologies Command Reference</td>
</tr>
<tr>
<td>Tunnel switching</td>
<td>L2TP Tunnel Switching feature module</td>
</tr>
<tr>
<td>PPPoE broadband groups</td>
<td>Refer to the chapters in the "Broadband Access" part of the Cisco IOS Wide-Area Networking Configuration Guide, Release 12.3.</td>
</tr>
<tr>
<td>PPPoE broadband commands</td>
<td>Cisco IOS Wide-Area Networking Command Reference, Release 12.3</td>
</tr>
<tr>
<td>Broadband access aggregation</td>
<td>Refer to the Understanding Broadband Access Aggregation module.</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>Refer to the Preparing for Broadband Access Aggregation module.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2516</td>
<td>"Method for Transmitting PPP Over Ethernet (PPPoE)"</td>
</tr>
<tr>
<td>RFC 3817</td>
<td>L2TP Active Discovery Relay for PPPoE</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for Enabling PPPoE Relay Discovery and Service Selection Functionality

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Relay</td>
<td>12.3(4)T</td>
<td>The PPPoE Relay feature enables an L2TP access concentrator (LAC) to relay active discovery and service selection functionality for PPP over Ethernet (PPPoE), over a Layer 2 Tunneling Protocol (L2TP) control channel, to an L2TP network server (LNS) or tunnel switch (multihop node).</td>
</tr>
</tbody>
</table>
Establishing PPPoE Session Limits per NAS Port

The PPPoE Session Limits per NAS Port feature enables you to limit the number of PPP over Ethernet (PPPoE) sessions on a specific permanent virtual circuit (PVC) or VLAN configured on an L2TP access concentrator (LAC). The network access server (NAS) port is either an ATM PVC or a configured VLAN ID. PPPoE per-NAS-port session limits are maintained in a RADIUS server customer profile database and are downloaded during Subscriber Service Switch (SSS) preauthorization.

- Finding Feature Information, page 215
- Prerequisites for Establishing PPPoE Session Limits per NAS Port, page 215
- Restrictions for Establishing PPPoE Session Limits per NAS Port, page 216
- Information About Establishing PPPoE Session Limits per NAS Port, page 216
- How to Establish PPPoE Session Limits per NAS Port, page 217
- Configuration Examples for Establishing PPPoE Session Limits per NAS Port, page 220
- Where to Go Next, page 223
- Additional References, page 223
- Feature Information for Establishing PPPoE Session Limits per NAS Port, page 225

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Establishing PPPoE Session Limits per NAS Port

You must understand the concepts described in the "Preparing for Broadband Access Aggregation" module.

Both the LAC and the L2TP Network Server (LNS) must be running a Cisco IOS image that supports the PPPoE Session Limit Per NAS Port feature.
Protocol support for broadband access aggregation must be established using the procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module.

Restrictions for Establishing PPPoE Session Limits per NAS Port

- Do not configure the PPPoE per-NAS-port session limit to zero.
- PPPoE Session Limit per NAS Port does not support TACACS+
- PPPoE Session Limit per NAS Port applies only to PVCs and VLANs.

Information About Establishing PPPoE Session Limits per NAS Port

- How PPPoE per-NAS-Port Session Limits Work, page 216
- Relationship Between the Per-NAS-Port Session Limit and Other Types of Session Limits, page 217
- Benefits of PPPoE Session Limits per NAS Port, page 217

How PPPoE per-NAS-Port Session Limits Work

The PPPoE Session Limits Per NAS Port feature limits the number of PPPoE sessions on a specific PVC or VLAN configured on an LAC. The NAS port is either an ATM PVC or a configured VLAN ID.

The PPPoE per-NAS-port session limit is maintained in a RADIUS server customer profile database. This customer profile database is connected to an LAC and is separate from the RADIUS server that the LAC and LNS use for the authentication and authorization of incoming users. See below for a sample network topology. When the customer profile database receives a preauthorization request from the LAC, it sends the PPPoE per-NAS-port session limit to the LAC.

The LAC sends a preauthorization request to the customer profile database when the LAC is configured for SSS preauthorization. When the LAC receives the PPPoE per-NAS-port session limit from the customer profile database, the LAC compares the PPPoE per-NAS-port session limit with the number of sessions currently on the NAS port. The LAC then decides whether to accept or reject the current call, depending upon the configured PPPoE per NAS port-session-limit and the number of calls currently on the NAS port.

PPPoE Session Limit per NAS Port Sample Topology
The customer profile database consists of a user profile for each user that is connected to the LAC. Each user profile contains the NAS-IP-Address (attribute 4) and the NAS-Port-ID (attribute 5.) When the LAC is configured for SSS preauthorization, it queries the customer profile database using the username. When a match is found in the customer profile database, the customer profile database sends the PPPoE per-NAS-port session limit in the user profile. The PPPoE per-NAS-port session limit is defined in the username as a Cisco attribute-value (AV) pair.

Relationship Between the Per-NAS-Port Session Limit and Other Types of Session Limits

You can configure types of session limits other than per-NAS-port sessions on the LAC, including session limit per VC, per VLAN, per MAC, and a global session limit for the LAC. When PPPoE session limits for a NAS port are enabled (that is, when you have enabled SSS preauthorization on the LAC), local configurations for session limits per VC and per VLAN are overwritten by the PPPoE per-NAS-port session limit downloaded from the customer profile database. Configured session limits per VC and per VLAN serve as backups in case of a download failure of the PPPoE per-NAS-port session limit. Global session limits and per-MAC session limits, if configured on the router, will take effect as other means of limiting PPPoE sessions.

Benefits of PPPoE Session Limits per NAS Port

PPPoE session limits per NAS port provides flexibility and simplifies router configuration by allowing you to download the per-VC and per-VLAN session limits from a RADIUS server in addition to being able to configure them on the router.

How to Establish PPPoE Session Limits per NAS Port

- Enabling Subscriber Service Switch Preauthorization, page 217
- Configuring the RADIUS User Profile for PPPoE Session Limits per NAS Port, page 218
- Verifying PPPoE Session Limit per NAS Port, page 219

Enabling Subscriber Service Switch Preauthorization

When SSS preauthorization is enabled on an LAC, local configurations for session limit per VC and per VLAN are overwritten by the per-NAS-port session limit downloaded from the server. Perform this task to enable SSS preauthorization:

SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber access pppoe pre-authorize nas-port-id [aaa-method-list]
4. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 subscriber access pppoe pre-authorize nas-port-id [aaa-method-list]</td>
<td>Enables SSS preauthorization.</td>
</tr>
<tr>
<td>Example: Router(config)# subscriber access pppoe pre-authorize nas-port-id mlist-llid</td>
<td>• aaa-method-list --Name of an authentication, authorization and accounting (AAA) list configured on the LAC.</td>
</tr>
<tr>
<td>Note During SSS preauthorization, per-NAS-port session limits are downloaded to the LAC.</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the RADIUS User Profile for PPPoE Session Limits per NAS Port

Perform the following steps to enable per-NAS-port PPPoE session limits in a RADIUS user profile for the customer profile database. Refer to the Cisco IOS Security Configuration Guide for information about creating a RADIUS user profile.

SUMMARY STEPS

1. User-Name = nas-port:ip-address:slot/subslot/port/vpi.vci
2. User-Name = nas-port:ip-address:slot/subslot/port/vlan-id
3. User-Name = nas-port:ip-address:slot/subslot/port/vlan-id
4. Password = "cisco"
5. cisco-avpair = "pppoe:session-limit-session-limit-per-NAS-port"
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** User-Name = nas-port:ip-address:slot/subslot/port/vpi.vci | Configures the NAS port username for a PPPoE over ATM NAS port user.
- *ip-address* --IP address of the LAC interface that connects to the customer profile database.
- *slot/subslot/port*--ATM interface.
- *vpi.vci* --Virtual path identifier (VPI) and virtual channel identifier (VCI) values for the PVC. |
| **Step 2** User-Name = nas-port:ip-address:slot/subslot/port/vlan-id | Configures the NAS port username for a PPPoE over ATM NAS port user.
- *ip-address* --IP address of the LAC interface that connects to the customer profile database.
- *slot/subslot/port*--ATM interface.
- *vpi.vci* --Virtual path identifier (VPI) and virtual channel identifier (VCI) values for the PVC. |
| **Step 3** User-Name = nas-port:ip-address:slot/subslot/port/vlan-id | Configures the NAS port username for a PPPoE over VLAN NAS port user.
- *ip-address* --IP address of the LAC interface that connects to the customer profile database.
- *slot/subslot/port*--ATM interface.
- *vlan-id* --VLAN identifier. |
| **Step 4** Password = "cisco" | Sets the fixed password. |
| **Step 5** cisco-avpair = "pppoe:session-limit-session-limit-per-NAS-port" | Adds the PPPoE session limit per NAS port cisco AVpair to the user profile.
- *session-limit-per-NAS-port* --per-NAS-port PPPoE session limit. |

Verifying PPPoE Session Limit per NAS Port

Perform this task to verify per-NAS-port session limit performance.

SUMMARY STEPS

1. enable
2. debug aaa authorization
3. debug radius [brief | hex]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 debug aaa authorization</td>
<td>Displays information about AAA authorization.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# debug aaa authorization</td>
</tr>
<tr>
<td>Step 3 debug radius [brief</td>
<td>hex]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# debug radius</td>
</tr>
</tbody>
</table>

Configuration Examples for Establishing PPPoE Session Limits per NAS Port

- Configuring the LAC for per-NAS-Port Session Limits for PPPoE over ATM Example, page 220
- Configuring the LAC for per-NAS-Port Session Limits for PPPoE over VLAN Example, page 222
- Configuring the User Profile for PPPoE Session Limits per NAS Port Example, page 223

Configuring the LAC for per-NAS-Port Session Limits for PPPoE over ATM Example

Note

Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit per-mac`, `pppoe limit per-vc`, and `pppoe limit per-vlan` commands are replaced by the `sessions per-mac limit`, `sessions per-vc limit`, and `sessions per-vlan limit` commands, respectively, in bba-group configuration mode. See the `sessions per-mac limit`, `sessions per-vc limit`, and `sessions per-vlan limit` commands for more information.

The following example shows how to configure per-NAS-port session limits for PPPoE over ATM on the LAC:

```
! 
username lac password 0 lab
username ins password 0 lab
aaa new-model
! 
```
aaa authentication ppp default group radius local
aaa authentication ppp mlist-nas-port group radius
aaa authorization network mlist-nas-port group radius
aaa session-id common
ip subnet-zero
! no ip domain lookup
ip host abrick 209.165.200.225
! ip cef
subscriber access pppoe pre-authorize nas-port-id mlist-nasport
vpdn enable

vpdn-group l2tp-initiator
request-dialin
protocol l2tp
 domain example.com
 initiate-to ip 10.1.1.2
 local name lac
! vpdn-group pppoe-terminate
 accept-dialin
 protocol pppoe
 virtual-template 1
 pppoe limit per-mac 10
 pppoe limit per-vc 10
 pppoe limit per-vlan 10
! vc-class atm pppoe
 protocol pppoe
 ubr 155000
 encapsulation aal5snap
! interface ATM2/0
 no ip address
 no ip mroute-cache
 no atm ilmi-keepalive
! interface ATM2/0.1 point-to-point
 class-int pppoe
 pvc 1/100
 encapsulation aal5snap
! interface FastEthernet4/0
 ip address 10.1.1.1 255.255.255.0
 no ip mroute-cache
duplex full
! interface FastEthernet6/0
 ip address 10.1.1.2 255.255.255.0
 no ip mroute-cache
duplex full
! interface Virtual-Template1
 ip unnumbered Loopback0
 no peer default ip address
 ppp authentication chap mlist-nasport
! ip default-gateway 10.3.0.1
 ip classless
 ip route 0.0.0.0 0.0.0.0 10.3.0.1
! ip radius source-interface FastEthernet6/0
! radius-server host 10.1.1.2 auth-port 1645 acct-port 1646
radius-server key cisco
radius-server authorization permit missing Service-Type
Configuring the LAC for per-NAS-Port Session Limits for PPPoE over VLAN Example

Effective with Cisco IOS Release 12.2(28)SB, the `pppoe limit per-mac`, `pppoe limit per-vc`, and `pppoe limit per-vlan` commands are replaced by the `sessions per-mac limit`, `sessions per-vc limit`, and `sessions per-vlan limit` commands, respectively, in bba-group configuration mode. See the `sessions per-mac limit`, `sessions per-vc limit`, and `sessions per-vlan limit` commands for more information.

The following example shows how to configure per-NAS-port session limits for PPPoE over VLAN on the LAC:

```
! username lac password 0 lab
username ins password 0 lab
aaa new-model
!
! aaa authentication ppp default group radius local
aaa authentication ppp mlist-nasport group radius
aaa authorization network mlist-nasport group radius
aaa session-id common
ip subnet-zero
!
! no ip domain lookup
ip host abrick 192.0.2.0
!
! ip cef
subscriber access pppoe pre-authorize nas-port-id mlist-nasport
vpdn enable
!
! vpdn-group l2tp_initiator
request-dialin
protocol l2tp
domain example.com
initiate-to ip 10.1.1.2
local name lac
!
! vpdn-group pppoe-terminate
accept-dialin
protocol pppoe
virtual-template 1
! pppoe limit per-mac 10
pppoe limit per-vc 10
pppoe limit per-vlan 10
!
! vc-class atm pppoe
protocol pppoe
ubr 155000
encapsulation aal5snap
!
interface ATM2/0
no ip address
no ip mroute-cache
shutdown
no atm ilmi-keepalive
!
interface FastEthernet4/0
ip address 10.1.1.1 255.255.255.0
no ip mroute-cache
duplex full
!
interface FastEthernet6/0
ip address 224.0.0.0 255.255.255.0
```
Configuring the User Profile for PPPoE Session Limits per NAS Port Example

The following example shows how to configure the user profile for PPPoE session limits per NAS port. In this example, the user has a PVC with a VPI of 1 and a VCI of 100 on ATM interface 4/0/0 of the LAC with an IP address of 10.10.10.10:

Username=nas_port:10.10.10.10:4/0/0/1.100
Password = "password1"
cisco-avpair= "pppoesession-limit=<session limit per NAS-port>"

Where to Go Next

- If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of services during call setup, refer to the "Offering PPPoE Clients a Selection of Services During Call Setup" module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an LNS or tunnel switch, refer to the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.
- If you want to configure the transfer upstream of the PPPoX session speed value, refer to the "Configuring Upstream Connections Speed Transfer" module.
- If you want to use the Simple Network Management Protocol (SNMP) to monitor PPPoE sessions, refer to the "Monitoring PPPoE Sessions with SNMP" module.
- If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, refer to the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.
- If you want to configure a Cisco Subscriber Service Switch, refer to the "Configuring Cisco Subscriber Service Switch Policies" module.

Additional References
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>"Wide-Area Networking Commands" chapter in the Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>Broadband access aggregation concepts</td>
<td>"Understanding Broadband Access Aggregation"</td>
</tr>
<tr>
<td>Task for preparing for broadband access aggregation</td>
<td>"Preparing for Broadband Access Aggregation"</td>
</tr>
<tr>
<td>Broadband access aggregation support</td>
<td>"Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions"</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature, and support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP over Ethernet (PPPoE)</td>
</tr>
<tr>
<td>RFC 2684</td>
<td>Multiprotocol Encapsulation over ATM Adaptation Layer 5</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Establishing PPPoE Session Limits per NAS Port

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Session Limit per NAS Port</td>
<td>12.2(31)SRC 12.2(15)B 12.3(4)T</td>
<td>The PPPoE Session Limit per NAS Port feature enables you to limit the number of PPP over Ethernet (PPPoE) sessions on a specific permanent virtual circuit (PVC) or VLAN configured on an L2TP access concentrator (LAC). In Cisco IOS Release 12.2(15)B, this feature was introduced. In Cisco IOS Release 12.3(4)T, this feature was integrated into the T train.</td>
</tr>
</tbody>
</table>
Establishing PPPoE Session Limits per NAS Port

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Offering PPPoE Clients a Selection of Services During Call Setup

The PPPoE Service Selection feature uses service tags to enable a PPP over Ethernet (PPPoE) server to offer PPPoE clients a selection of services during call setup. The customer chooses one of the services offered, and the service is provided when the PPPoE session becomes active. This feature enables service providers to offer a variety of services and to charge customers according to the service chosen.

- Finding Feature Information, page 227
- Prerequisites for Offering PPPoE Clients a Selection of Services During Call Setup, page 227
- Information About Offering PPPoE Clients a Selection of Services During Call Setup, page 228
- How to Offer PPPoE Clients a Selection of Services During Call Setup, page 230
- Configuration Examples for PPPoE Service Selection, page 239
- Where to Go Next, page 241
- Additional References, page 241
- Feature Information for Offering PPPoE Clients a Selection of Services During Call Setup, page 243

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Offering PPPoE Clients a Selection of Services During Call Setup

- The PPPoE Service Selection feature requires that PPPoE be configured using PPPoE profile configuration rather than virtual private dial-up network (VPDN) group configuration as described in the "Providing Protocol Support for Broadband Aggregation of PPPoE Sessions" module.
- The PPPoE client must support service tags in the PPPoE discovery phase.
- The procedures in this document assume that RADIUS accounting and authentication and PPPoE are configured and working.
If you are going to use PPPoE service selection to offer tunneling services, the procedures in this document assume that you already have tunneling configured and working.

Information About Offering PPPoE Clients a Selection of Services During Call Setup

- PPPoE Service Selection Through Service Tags, page 228
- PPPoE Service Names, page 228
- RADIUS Service Profiles for PPPoE Service Selection, page 229
- Benefits of PPPoE Service Selection, page 229
- Attributes Used to Define a RADIUS Service Profile for PPPoE Selection, page 229
- Attributes Used Configure a Subscriber Profile on the Radius Server for PPPoE Service Selection, page 230

PPPoE Service Selection Through Service Tags

PPPoE service selection enables a PPPoE server to offer clients a selection of services during call setup. The PPPoE client chooses one of the services offered, and that service is provided when the PPPoE session becomes active.

PPPoE service selection works through the exchange of service tags during the PPPoE discovery phase. When a client initiates a call with a PPPoE Active Discovery Initiation (PADI) packet, the PPPoE server responds with a PPPoE Active Discovery Offer (PADO) packet that advertises a list of available services. The client selects a service and sends a PPPoE Active Discovery Request (PADR) packet that indicates the service name that was selected.

When the PPPoE server receives the PADR packet that indicates the chosen service, the PPPoE server handles the service name as it would a domain name. The service profile for the service name is retrieved from a RADIUS server, and the attributes within that service profile are applied to the call.

PPPoE Service Names

Each PPPoE service has a service name, which can be defined as a set of characteristics that are applied to a PPPoE connection when that service name is selected during call setup.

When you configure PPPoE service selection, you will define a RADIUS service profile for each service name, list in a subscriber profile the service names that you want to advertise, and then assign the subscriber profile to a PPPoE profile. The PPPoE server will advertise the service names that are listed in the subscriber profile to each PPPoE client connection that uses the configured PPPoE profile.

If a subscriber profile is not assigned to a PPPoE profile, the PPPoE connections that use that PPPoE profile will be established without the additional service tags in the discovery packets. If a port is configured with a static service name (using the `vpn service` command), the static service name takes precedence, and no services will be advertised to the client.

The Cisco RADIUS vendor-specific attribute (VSA) "service-name" will be used in RADIUS accounting records to log the service name that was selected by the client. This attribute is also used to download the service names from the subscriber profile when the subscriber profile is defined on the RADIUS server.
RADIUS Service Profiles for PPPoE Service Selection

A service profile must be created on the RADIUS server for each service name. The service profile contains attributes that define how the call will be handled. Currently, two sets of attributes are available for defining service profiles: attributes that define tunneling and attributes that define the quality of service (QoS) that will be applied to the permanent virtual circuit (PVC) on which the PPPoE call is coming in.

The Configuring the Subscriber Profile for PPPoE Service Selection, page 230 lists some of the attributes that are supported in RADIUS service profiles for PPPoE service selection.

Benefits of PPPoE Service Selection

PPPoE service selection enables a service provider to use PPPoE to offer a selection of services to customers and to charge customers according to the service selected. For example, a wholesaler could offer different levels of service by defining multiple service profiles for the same tunnel but with different levels of QoS for the ATM PVC. The wholesaler would be able to charge customers according to the level of service provided.

PPPoE service selection could also be used by access providers to avoid link control protocol (LCP) negotiation at the Layer 2 Tunnel Protocol (L2TP) access concentrator (LAC) for sessions that are to be forwarded to tunnels. Avoiding LCP negotiation at the LAC can improve scalability of the LAC during call setup and help alleviate the load on the LAC while all the sessions on the LAC are reconnecting after an outage.

Attributes Used to Define a RADIUS Service Profile for PPPoE Selection

The table below lists some of the attributes that can be used to define a RADIUS service profile for PPPoE service selection. These attributes are defined when setting up the RADIUS server.

<table>
<thead>
<tr>
<th>RADIUS Entry</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Service-Type = Outbound-User</td>
<td>Configures the service type as outbound.</td>
</tr>
<tr>
<td>Cisco-AVPair = "vpdn:tunnel-id= name"</td>
<td>Specifies the name of the tunnel that must match the LNS’s VPDN terminate-from hostname.</td>
</tr>
<tr>
<td>Cisco-AVPair = "vpdn:tunnel-type=l2tp"</td>
<td>Specifies Layer 2 Tunnel Protocol (L2TP).</td>
</tr>
<tr>
<td>Cisco-AVPair = "vpdn:ip-addresses= ip-address"</td>
<td>Specifies the IP address of L2TP network server (LNS).</td>
</tr>
<tr>
<td>Cisco-AVPair = "atm:peak-cell-rate= kbps"</td>
<td>Specifies the peak cell rate, in kbps, that will be applied to the ATM PVC on which a PPPoE session is being established.</td>
</tr>
<tr>
<td>Cisco-AVPair = "atm:sustainable-cell-rate= kbps"</td>
<td>Specifies the sustainable cell rate, in kbps, that will be applied to the ATM PVC on which a PPPoE session is being established.</td>
</tr>
</tbody>
</table>
Attributes Used Configure a Subscriber Profile on the Radius Server for PPPoE Service Selection

The table below lists the attributes that can be used to configure a RADIUS subscriber profile to support PPPoE service selection.

- Prerequisites, page 230

Prerequisites

The default AAA authorization method list determines where the policy manager looks for the subscriber profile. When the subscriber profile is configured remotely, the `aaa authorization network default group radius` command must be included in the AAA configuration so the policy manager knows to look for the subscriber policy on a AAA server. These attributes are defined while configuring the RADIUS server. Refer to the RADIUS server documentation for information about how to perform this configuration.

Table 14 Attributes for the RADIUS Subscriber Profile for PPPoE Service Selection

<table>
<thead>
<tr>
<th>RADIUS Entry</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-Service-Type = Outbound-User</td>
<td>Configures the service type as outbound.</td>
</tr>
<tr>
<td>Cisco-AVpair = "pppoe:service-name= service-name"</td>
<td>Specifies a PPPoE service name that will be listed in this subscriber profile.</td>
</tr>
</tbody>
</table>

How to Offer PPPoE Clients a Selection of Services During Call Setup

- Configuring the Subscriber Profile for PPPoE Service Selection, page 230
- Configuring the PPPoE Profile for PPPoE Service Selection, page 232
- Verifying PPPoE Service Selection, page 233
- Monitoring and Maintaining PPPoE Service Selection, page 234

Configuring the Subscriber Profile for PPPoE Service Selection

The subscriber profile contains the list of services that will be advertised to PPPoE clients. You can configure the subscriber profile locally on the router or on the RADIUS server. Perform this task to configure a local subscriber profile for PPPoE service selection.

The default AAA authorization method list determines where the policy manager looks for the subscriber profile. When the subscriber profile is configured locally, the `aaa authorization network default local` command must be included in the AAA configuration so the policy manager knows to look for the subscriber policy locally.
SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber profile profile-name
4. pppoe service service-name
5. Repeat Step 4 for each service name that you want to add to the subscriber profile.
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 subscriber profile profile-name</td>
<td>Enters SSS profile configuration mode. Defines the Subscriber Service Switch policy for searches of a subscriber profile database.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# subscriber profile profile-name</td>
<td></td>
</tr>
<tr>
<td>Step 4 pppoe service service-name</td>
<td>Adds a PPPoE service name to a subscriber profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# pppoe service gold-isp-A</td>
<td></td>
</tr>
<tr>
<td>Step 5 Repeat Step 4 for each service name that you want to add to the subscriber profile.</td>
<td>--</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>(Optional) Terminates the configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the PPPoE Profile for PPPoE Service Selection

Perform this task to associate a subscriber profile with a PPPoE profile.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bba-group pppoe {group-name | global}
4. `virtual-template template-number`
5. `service profile subscriber-profile-name [refresh minutes]
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 `bba-group pppoe {group-name</td>
<td>global}`</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# bba-group pppoe group1</td>
</tr>
<tr>
<td>Step 4 <code>virtual-template template-number</code></td>
<td>Specifies which virtual template will be used to clone virtual access interfaces for all PPPoE ports that use this PPPoE profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-bba-group)# virtual-template 1</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>service profile subscriber-profile-name [refresh minutes]</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assigns a subscriber profile to a PPPoE profile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The PPPoE server will advertise the service names that are listed in the subscriber profile to each PPPoE client connection that uses the configured PPPoE profile.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The PPPoE configuration that is derived from the subscriber gold_isp_A under the PPPoE profile. Use the service profile command with the refresh keyword and the minutes argument to cause the cached PPPoE configuration to be timed out after a specified number of minutes.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-bba-group)# service profile subscriber-profile1
```

Step 6

<table>
<thead>
<tr>
<th>end</th>
<th>(Optional) Returns to privileged EXEC mode.</th>
</tr>
</thead>
</table>

Example:

```
Router(config-bba-group)# end
```

- Troubleshooting Tips, page 233
- What to Do Next, page 233

Troubleshooting Tips

Use the `show pppoe session` and `debug pppoe` commands to troubleshoot PPPoE sessions.

What to Do Next

Once a PPPoE profile has been defined, it must be assigned to a PPPoE port (Ethernet interface, virtual LAN [VLAN], or PVC), a virtual circuit (VC) class, or an ATM PVC range. For more information about how to configure PPPoE profiles, refer to the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module.

Verifying PPPoE Service Selection

Perform this task to verify PPPoE service selection configuration and performance. Steps 2 through 3 are optional and do not have to be performed in a particular order.

SUMMARY STEPS

1. `show pppoe derived group group-name`
2. `show vpdn [session [all | packets | sequence | state] | tunnel [all | packets | summary | state | transport]]`
3. `show atm pvc [vpi \ vci | name | interface atm interface-number[, subinterface-number multipoint]] [ppp]`
DETAILED STEPS

Step 1

show pppoe derived group group-name

(Optional) Displays the cached PPPoE configuration that is derived from the subscriber profile for a specified PPPoE profile.

This command is useful for viewing the subscriber profile configuration when the subscriber profile is configured on a remote AAA server.

Example:

Router# show pppoe derived group sp-group-a
Derived configuration from subscriber profile 'abc':
Service names:
isp-xyz, gold-isp-A, silver-isp-A

Step 2

show vpdn [session [all | packets | sequence | state] | tunnel [all | packets | summary | state | transport]]

(Optional) Displays information about active L2TP or Layer 2 Forwarding (L2F) Protocol tunnel and message identifiers in a VPDN.

Use this command to display tunneling parameters for the services configured for tunneling.

Example:

Router# show vpdn
Active L2F tunnels
<table>
<thead>
<tr>
<th>NAS Name</th>
<th>Gateway Name</th>
<th>NAS CLID</th>
<th>Gateway CLID</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>nas</td>
<td>gateway</td>
<td>4</td>
<td>2</td>
<td>open</td>
</tr>
</tbody>
</table>

L2F MIDs
Name NAS Name Interface MID State
router1@cisco.com nas As7 1 open
router2@cisco.com nas As8 2 open

Step 3

show atm pvc [vpi / vci | name | interface atm interface-number[, subinterface-number multipoint]] [ppp]

(Optional) Displays all ATM PVCs and traffic information.

Use this command to display ATM QoS parameters for the services configured for ATM QoS.

Example:

Router# show atm pvc
<table>
<thead>
<tr>
<th>Interface</th>
<th>VCD/</th>
<th>VPI</th>
<th>VCI</th>
<th>Type</th>
<th>Encaps</th>
<th>Peak</th>
<th>Avg/Min</th>
<th>Burst</th>
<th>Cells</th>
<th>Sts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/0</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>PVC</td>
<td>SAAL</td>
<td>155k</td>
<td>155k</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>2/0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>PVC</td>
<td>ILMI</td>
<td>155k</td>
<td>155k</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>2/0.2</td>
<td>101</td>
<td>0</td>
<td>50</td>
<td>PVC</td>
<td>SNAP</td>
<td>155k</td>
<td>155k</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>2/0.2</td>
<td>102</td>
<td>0</td>
<td>60</td>
<td>PVC</td>
<td>SNAP</td>
<td>155k</td>
<td>155k</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>2/0.2</td>
<td>104</td>
<td>0</td>
<td>80</td>
<td>PVC</td>
<td>SNAP</td>
<td>155k</td>
<td>155k</td>
<td></td>
<td></td>
<td>UP</td>
</tr>
<tr>
<td>2/0</td>
<td>hello</td>
<td>0</td>
<td>99</td>
<td>PVC</td>
<td>SNAP</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitoring and Maintaining PPPoE Service Selection

To monitor and maintain PPPoE service selection, perform the following steps.
SUMMARY STEPS

1. `clear pppoe derived group group-name`
2. `debug pppoe events [rmac remote-mac-address | interface type number [vc {[vpi]vci | vc-name}] [vlan vlan-id]]`
3. `debug radius [brief | hex]`

DETAILED STEPS

Step 1
`clear pppoe derived group group-name`
Clears the cached PPPoE configuration of a PPPoE profile and forces the PPPoE profile to reread the configuration from the assigned subscriber profile.

Example:

```
Router# clear pppoe derived group group1
```

Step 2
`debug pppoe events [rmac remote-mac-address | interface type number [vc {[vpi]vci | vc-name}] [vlan vlan-id]]`
(Optional) Displays PPPoE protocol messages about events that are part of normal session establishment or shutdown. Use this command to monitor the exchange of PPPoE service names during call setup.

Example:

```
Router# debug pppoe events interface atm 1/0.10 vc 101
PPPoE protocol events debugging is on
Router#
```

Step 3
`debug radius [brief | hex]`
(Optional) Displays information associated with RADIUS. Use this command to monitor the transactions between the router and the RADIUS server.

Example:

```
Router# debug radius
```
Radius protocol debugging is on
Radius packet hex dump debugging is off

Router#
PST Fri Dec 31 1999
00:03:13: RADIUS: Vendor, Cisco [26] 59 VT=28 TL=53
h323-connect-time=*16:02:48.946 PST Fri Dec 31 1999
00:03:13: RADIUS: Vendor, Cisco [26] 62 VT=29 TL=56 in=0
00:03:13: RADIUS: Vendor, Cisco [26] 23 VT=01 TL=17 pre-bytes-out=0
00:03:13: RADIUS: Vendor, Cisco [26] 21 VT=01 TL=15 pre-paks-in=0
00:03:13: RADIUS: Vendor, Cisco [26] 22 VT=01 TL=16 pre-paks-out=0
00:03:13: RADIUS: Vendor, Cisco [26] 22 VT=01 TL=16 nas-rx-speed=0
00:03:13: RADIUS: Vendor, Cisco [26] 22 VT=01 TL=16 nas-tx-speed=0
00:03:13: RADIUS: Delay-Time [41] 6 0
00:03:13: RADIUS: Received from id 2 1.7.157.1:1824, Accounting-response, len 20
h323-disconnect-time=*16:03:11.306 PST Fri Dec 31 1999
00:03:13: RADIUS: Vendor, Cisco [26] 32 VT=30 TL=26 h323-disconnect-cause=10
00:03:13: RADIUS: Vendor, Cisco [26] 28 VT=31 TL=22 h323-voice-quality=0
00:03:13: RADIUS: Vendor, Cisco [26] 46 VT=24 TL=40 h323-conf-id=8F3A3163B4980003 0 29BD0
00:03:13: RADIUS: Acct-Session-Id [44] 10 "00000002"
00:03:13: RADIUS: Acct-Input-Octets [42] 6 0
00:03:13: RADIUS: Acct-Output-Octets [43] 6 88000
00:03:13: RADIUS: Acct-Input-Packets [47] 6 0
00:03:13: RADIUS: Acct-Output-Packets [48] 6 550
00:03:13: RADIUS: Acct-Session-Time [46] 6 22
00:03:13: RADIUS: Vendor, Cisco [26] 30 VT=01 TL=24 subscriber=RegularLine
00:03:13: RADIUS: Vendor, Cisco [26] 35 VT=01 TL=29 h323-ivr-out=Tariff:Unknown
00:03:13: RADIUS: Vendor, Cisco [26] 22 VT=01 TL=16 pre-bytes-

The following is sample output from the debug radius brief command:

Example:

Router# debug radius brief
Radius protocol debugging is on
Radius packet hex dump debugging is off
Radius protocol in brief format debugging is on
00:05:21: RADIUS: Initial Transmit ISDN 0:D:23 id 6 10.0.0.1:1824, Accounting-Request, len 358
00:05:21: %ISDN-6-CONNECT: Interface Serial0:22 is now connected to 4085274206
00:05:26: RADIUS: Retransmit id 6
00:05:31: RADIUS: Tried all servers.
00:05:31: RADIUS: No valid server found. Trying any viable server
00:05:31: RADIUS: Tried all servers.
00:05:31: RADIUS: No response for id 7
00:05:31: RADIUS: Initial Transmit ISDN 0:D:23 id 8 10.0.0.0:1823, Access-Request, len 171
00:05:36: RADIUS: Retransmit id 8
00:05:36: RADIUS: Received from id 8 1.7.157.1:1823, Access-Accept, len 115
00:05:47: %ISDN-6-DISCONNECT: Interface Serial0:22 disconnected from 4085274206, call lasted 26 seconds
00:05:47: RADIUS: Initial Transmit ISDN 0:D:23 id 9 10.0.0.1:1824, Accounting-Request, len 775
00:05:47: RADIUS: Received from id 9 1.7.157.1:1824, Accounting-response, len 20

The following example shows debug radius hex command output:

Example:

Router# debug radius hex
Radius protocol debugging is on
Radius packet hex dump debugging is on
Router# 17:26:52: RADIUS: ustruct sharecount=3
17:26:52: RADIUS: radius_port_info() success=0 radius_nas_port=1
17:26:52: RADIUS: Initial Transmit ISDN 0:D:23 id 10 10.0.0.1:1824, Accounting-Request, len 361
17:26:52: Attribute 4 6 01081D03
17:26:52: Attribute 26 19 000000009020D4953444E203033AA43A3233
17:26:52: Attribute 61 6 00000000
17:26:52: Attribute 1 12 3430383532734323036
17:26:52: Attribute 30 7 3532393831
17:26:52: Attribute 31 12 34303835323734323036
17:26:52: Attribute 40 6 00000001
17:26:52: Attribute 6 6 00000001
17:26:52: Attribute 26 27 00000009211568333232D67772D69643D3533330305F34332E
17:26:52: Attribute 26 28
000000009103368333232D696E636F6D696E72D636F6E662D662D69643D3846334133313332024343938303046
20302034243537314238
17:26:52: Attribute 26 31 000000092615683332332D73657475702D74696D653D2A30393A32363A35322E3838302050535420536174204A
61E2031203203030
17:26:52: Attribute 26 48 00000009182A683332332D636F6E662D69643D3846334133313332024343938303030462030203424537314238
17:26:52: Attribute 44 10 3030303030303035
17:26:52: Attribute 41 6 00000000
17:26:52: %ISDN-6-CONNECT: Interface Serial0:22 is now connected to 4085274206
17:26:52: RADIUS: Received from id 10 10.0.0.1:1824, Accounting-response, len 20
17:27:01: RADIUS: ustruct sharecount=3
17:27:01: RADIUS: Initial Transmit ISDN 0:D:23 id 11 10.0.0.0:1823, Access-Request, len 173
17:27:01: Attribute 4 6 01081D03
17:27:01: Attribute 26 19 00000009020D4953444E20303A443A3233
17:27:01: Attribute 61 6 00000000
17:27:01: Attribute 26 27 000000096517683332332D7477907653D5656C6570686F6E79
17:27:01: Attribute 26 31
0000000091932683332332D73657475702D74696D653D2A30393A32363A35322E3838302050535420536174204A
61E2031203203030
17:27:01: Attribute 26 48 00000009182A683332332D636F6E662D69643D3846334133313332024343938303030462030203424537314238
17:27:01: Attribute 30 7 3532393831
17:27:01: Attribute 40 6 00000002
17:27:01: Attribute 25 7 6C6F63616C
17:27:01: RADIUS: saved authorization data for user 61AA0698 at 6215087C
17:27:09: %ISDN-6-DISCONNECT: Interface Serial0:22 disconnected from 4085554206, call lasted 17 seconds
17:27:09: RADIUS: ustruct sharecount=2
17:27:09: RADIUS: initial Transmit ISDN 0:D:23 id 12 1.7.157.1:1824, Accounting-Request, len 173
17:27:09: Attribute 4 6 01081D03
17:27:09: Attribute 26 19 00000009020D4953444E20303A443A3233
17:27:09: Attribute 61 6 00000000
17:27:09: Attribute 26 29 000000096517683332332D6372656469742D616D6F756E743D3333
17:27:09: Attribute 26 27 000000096615683332332D6372656469742D74696D653D3333
17:27:09: Attribute 26 26 000000096714683332332D72697475726D636F66653D30
17:27:09: Attribute 25 7 6C6F63616C
17:27:09: RADIUS: Saved authorization data for user 61AA0698 at 6215087C

What to Do Next
Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT

Offering PPPoE Clients a Selection of Services During Call Setup

238
PPPoe Service Selection with ATM QoS and Tunneling Services Example

In the following example, three services are configured: gold-isp-A, silver-isp-A, and isp-xyz. The gold and silver services are forwarded onto the same tunnel, but the ATM PVCs between the LAC and DSLAM will be set up with different QoS parameters depending on the level of service chosen. The isp-xyz service offers users access to the services of the xyz Internet service provider.

In this example, the subscriber profile is configured locally on the PPPoe server.

RADIUS Service Profile Configuration

gold-isp-A Password = "cisco", User-Service-type = Outbound-User
Tunnel-Assignment-Id = nrp1-3,
Cisco-Avpair = "vpdn:tunnel-id=nrp1-3",
Cisco-Avpair = "vpdn:tunnel-type=l2tp",
Cisco-Avpair = "vpdn:ip-addresses=10.1.1.4",
Cisco-Avpair = "atm:peak-cell-rate =2500",
Cisco:Cisco-Avpair = "atm:sustainable-cell-rate =400"
silver-isp-A Password = "cisco", User-Service-type = Outbound-User
Cisco-Avpair = "vpdn:tunnel-id=nrp1-3",
Cisco-Avpair = "vpdn:tunnel-type=l2tp",
Cisco-Avpair = "vpdn:ip-addresses=10.1.1.14",
Cisco-Avpair = "atm:peak-cell-rate =1500",
Cisco:Cisco-Avpair = "atm:sustainable-cell-rate =200"
isp-xyz Password = "cisco", User-Service-type = Outbound-User
Cisco-Avpair = "vpdn:tunnel-id=aol",
Cisco-Avpair = "vpdn:tunnel-type=l2tp",
Cisco-Avpair = "vpdn:ip-addresses=10.1.1.5",
Cisco:Cisco-Avpair = "atm:peak-cell-rate =1000",
Cisco:Cisco-Avpair = "atm:sustainable-cell-rate =150"

PPPoE Server Configuration

!
! Configure the AAA default authorization method
aaa new-model
aaa authorization network default local
!
! Configure the subscriber profile
subscriber profile listA
pppoe service gold-isp-A
pppoe service silver-isp-A
pppoe service isp-xyz
!
! Configure the PPPoE profile
bba-group pppoe group-A
virtual-template 1
sessions per-vc 5
service profile listA
!
! Attach the PPPoE profile to a PVC
interface atm1/0.1
pvc 2/200
 protocol PPPoE group group-A
!

PPPoE Service Selection with Tunneling Services Example

In the following example, PPPoE service selection is used to provide tunneling services only. In this example, the subscriber profile is configured on the RADIUS server.

RADIUS Service Profile Configuration

tunnel-to-cust1 Password = "cisco", User-Service-type = Outbound-User
 Tunnel-Assignment-Id = nrp1-3,
 Cisco-Avpair = "vpdn:tunnel-id=nrp1-3",
 Cisco-Avpair = "vpdn:tunnel-type=l2tp",
 Cisco-Avpair = "vpdn:ip-addresses=10.1.1.4",
tunnel-to-cust2 Password = "cisco", User-Service-type = Outbound-User
 Cisco-Avpair = "vpdn:tunnel-id=xyz",
 Cisco-Avpair = "vpdn:tunnel-type=l2tp",
 Cisco-Avpair = "vpdn:ip-addresses=10.1.1.5",
tunnel-to-cust3 Password = "cisco", User-Service-type = Outbound-User
 Cisco-Avpair = "vpdn:tunnel-id=aol",
 Cisco-Avpair = "vpdn:tunnel-type=l2tp",
 Cisco-Avpair = "vpdn:ip-addresses=10.1.1.6",

RADIUS Subscriber Profile Configuration

customer-tunnels Password = "cisco", User-Service-type = Outbound-User
 Cisco:Cisco-Avpair = "pppoe:service-name=tunnel-to-cust1",
 Cisco:Cisco-Avpair = "pppoe:service-name=tunnel-to-cust2",
 Cisco:Cisco-Avpair = "pppoe:service-name=tunnel-to-cust3"

PPPoE Server Configuration

!
Where to Go Next

- If you want to establish PPPoE sessions limits for sessions on a specific permanent virtual circuit or VLAN configured on an L2TP access concentrator, refer to the "Establishing PPPoE Session Limits per NAS Port" module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over an L2TP control channel to an LNS or tunnel switch, refer to the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.
- If you want to configure the transfer upstream of the PPPoX session speed value, refer to the "Configuring Upstream Connections Speed Transfer" module.
- If you want to use the Simple Network Management Protocol (SNMP) to monitor PPPoE sessions, refer to the "Monitoring PPPoE Sessions with SNMP." module.
- If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, refer to the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.
- If you want to configure a Cisco Subscriber Service Switch, refer to the "Configuring Cisco Subscriber Service Switch Policies" module.

Additional References

The following sections provide references related to PPPoE service selection.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS attributes</td>
<td>"RADIUS Attributes" appendix to the Cisco IOS Security Configuration Guide, Release 12.3</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Broadband access aggregation concepts</th>
<th>Understanding Broadband Access Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task for preparing for broadband access aggregation.</td>
<td>Preparing for Broadband Access Aggregation</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>"Wide-Area Networking Commands" chapter in the Cisco IOS Wide-Area Networking Command Reference, Release 12.3</td>
</tr>
<tr>
<td>Configuring PPPoE sessions</td>
<td>Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature. Support for existing standards has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature. Support for existing MIBs has not been modified by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP over Ethernet (PPPoE), February 1999</td>
</tr>
</tbody>
</table>
Feature Information for Offering PPPoE Clients a Selection of Services During Call Setup

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPoE Service Selection</td>
<td>12.3(4)T 12.2(33)SRC</td>
<td>The PPPoE Service Selection feature uses service tags to enable a PPP over Ethernet (PPPoE) server to offer PPPoE clients a selection of services during call setup. The customer chooses one of the services offered, and the service is provided when the PPPoE session becomes active.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks.
Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs

The Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs feature provides the functionality of bridged ATM interface support to ATM switched virtual circuits (SVCs). Unlike permanent virtual circuits (PVCs), SVCs must be triggered by ongoing traffic and can be brought down when idle for some time. The SVCs are triggered, if down, and the traffic is passed on to the SVCs belonging to bridged ATM interface.

ATM routed bridge encapsulation (RBE) is used to route IP over bridged RFC 1483 Ethernet traffic from a stub-bridged LAN.

- Finding Feature Information, page 245
- Prerequisites for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs, page 246
- Restrictions for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs, page 246
- Information About Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs, page 246
- How to Configure ATM Routed Bridge Encapsulation over PVCs, page 249
- Configuration Examples for Providing Connectivity Using ATM Routed Bridge Encapsulation, page 255
- Additional References, page 257
- Feature Information for Providing Connectivity Using ATM Routed Bridge Encapsulation, page 258

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs

- When ATM SVCs are used, support for a form of bridging, such as integrated routing and bridging, is required.
- Before configuring connectivity from a remote bridged Ethernet network to a routed network using ATM routed bridge encapsulation, you must understand the concepts in the Understanding Broadband Access Aggregation module.

Restrictions for Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs

- Unlike PVCs, SVCs must be triggered by ongoing traffic and might be brought down after they have been idle for some time. The Bridged 1483 Encapsulated Traffic over ATM SVCs feature allows for the SVC to be triggered if down, and to pass the traffic on to the SVCs belonging to the bridged ATM interface.
- ATM RBE does not support MAC-layer access lists; only IP access lists are supported.

Information About Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs

- Overview on Bridged 1483 Encapsulated Traffic over ATM SVCs, page 246
- ATM RBE Subinterface Grouping by PVC Range, page 247
- DHCP Option 82 Support for RBE, page 247
- DHCP Lease Limit per ATM RBE Unnumbered Interface, page 248
- ATM Routed Bridge Encapsulation Support with SSO and ISSU, page 249
- Benefits of Providing Connectivity Using ATM Routed Bridge Encapsulation, page 249

Overview on Bridged 1483 Encapsulated Traffic over ATM SVCs

ATM RBE is used to route IP over bridged RFC 1483 Ethernet traffic from a stub-bridged LAN. The figure below shows an ATM subinterface on a headend router that is configured to function in ATM routed-bridge encapsulation mode. This configuration is useful when a remote bridged Ethernet network device needs connectivity to a routed network via a device bridging from an Ethernet LAN to an ATM RFC 1483 bridged encapsulation.

Figure 12 ATM Routed Bridge Encapsulation

![ATM Routed Bridge Encapsulation Diagram]
Because PVCs are statically configured along the entire path between the end systems, it would not be suitable to route bridged encapsulated traffic over them when the user wants to configure the virtual circuits (VCs) dynamically and tear down the VCs when there is no traffic.

ATM RBE Subinterface Grouping by PVC Range

You can configure ATM routed bridge encapsulation using an ATM PVC range rather than individual PVCs. When you configure a PVC range for routed bridge encapsulation, a point-to-point subinterface is created for each PVC in the range. The number of PVCs in a range can be calculated using the following formula:

\[
\text{number of PVCs} = (\text{end-vpi} - \text{start-vpi} + 1) \times (\text{end-vci} - \text{start-vci} + 1)
\]

Subinterface numbering begins with the subinterface on which the PVC range is configured and increases sequentially through the range.

Note

You cannot explicitly configure the individual point-to-point subinterfaces created by the PVC range on a point-to-point subinterface. All the point-to-point subinterfaces in the range share the same configuration as the subinterface on which the PVC range is configured.

DHCP Option 82 Support for RBE

The DHCP relay agent information option (option 82) enables a Dynamic Host Configuration Protocol (DHCP) relay agent to include information about itself when forwarding client-originated DHCP packets to a DHCP server. The DHCP server can use this information to implement IP address or other parameter-assignment policies.

The DHCP Option 82 Support for RBE feature provides support for the DHCP relay agent information option when ATM RBE is used. The figure below shows a typical network topology in which ATM RBE and DHCP are used. The aggregation router that is using ATM RBE is also serving as the DHCP relay agent.

Figure 13 Network Topology Using ATM RBE and DHCP

This feature communicates information to the DHCP server using a suboption of the DHCP relay agent information option called agent remote ID. The information sent in the agent remote ID includes an IP address identifying the relay agent and information about the ATM interface and the PVC over which the DHCP request came in. The DHCP server can use this information to make IP address assignments and security policy decisions.

The figure below shows the format of the agent remote ID suboption.

Figure 14 Format of the Agent Remote ID Suboption

<table>
<thead>
<tr>
<th>Port type (byte 1)</th>
<th>Version (byte 2)</th>
<th>Reserved (bytes 3-4)</th>
<th>NAS IP address (bytes 5-8)</th>
<th>NAS port (bytes 9-12)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 bytes</td>
<td></td>
</tr>
</tbody>
</table>
The table below describes the agent remote ID suboption fields displayed in the figure above.

Table 16
Agent Remote ID Suboption Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Type</td>
<td>Port type. The value 0x01 indicates RBE. (1 byte)</td>
</tr>
<tr>
<td>Version</td>
<td>Option 82 version. The value 0x01 specifies the RBE version of Option 82 (1 byte).</td>
</tr>
<tr>
<td>Reserved</td>
<td>RBE reserved (2 bytes).</td>
</tr>
<tr>
<td>NAS IP Address</td>
<td>One of the interfaces on the DHCP relay agent. The <code>rbe nasip</code> command can be used to specify which IP address will be used. (4 bytes)</td>
</tr>
<tr>
<td>NAS Port</td>
<td>RBE-enabled virtual circuit on which the DHCP request has come in. See the figure below for the format of this field. (4 bytes)</td>
</tr>
</tbody>
</table>

The figure below shows the format of the network access server (NAS) port field in the agent remote ID suboption.

Figure 15
Format of the NAS Port Field

```
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 = 32 bits
```

<table>
<thead>
<tr>
<th>Interface (8)</th>
<th>VPI (8)</th>
<th>VCI (16)</th>
</tr>
</thead>
</table>

The figure below shows the format of the interface field. If there is no module, the value of the module bit is 0.

Figure 16
Format of the Interface Field

```
0 7 = 8 bits
```

<table>
<thead>
<tr>
<th>Slot (4)</th>
<th>Module (1)</th>
<th>Port (3)</th>
</tr>
</thead>
</table>

DHCP Lease Limit per ATM RBE Unnumbered Interface

The DHCP lease limit per ATM RBE Unnumbered Interface feature is enabled on a Cisco IOS DHCP relay agent connected to clients through unnumbered interfaces. The relay agent keeps information about the DHCP leases offered to the clients per subinterface. When a DHCPACK message is forwarded to the client, the relay agent increments the number of leases offered to clients on that subinterface. If a new DHCP client tries to obtain an IP address and the number of leases has already reached the configured lease limit, DHCP messages from the client will be dropped and will not be forwarded to the DHCP server.

If this feature is enabled on the Cisco IOS DHCP server directly connected to clients through unnumbered interfaces, the server allocates addresses and increments the number of leases per subinterface. If a new
client tries to obtain an IP address, the server will not offer an IP address if the number of leases on the
subinterface has already reached the configured lease limit.

ATM Routed Bridge Encapsulation Support with SSO and ISSU
Cisco IOS High Availability (HA) functionality for broadband protocols and applications allows for
stateful switchover (SSO) and In-Service Software Upgrade (ISSU) that minimize planned and unplanned
downtime and failures. HA uses the cluster control manager (CCM) to synchronize the subscriber sessions
on the standby processor of a redundant processor system. Use the `show ccm clients` command to display
information about the CCM clients. Use the `show ccm sessions` command to display information about
CCM sessions on active and standby processors. Use the `show subscriber policy` command to display
information about subscriber redundancy policies.

In Cisco IOS Release 15.1(1)S and later releases, all ATM RBE features are supported with SSO and ISSU.

Benefits of Providing Connectivity Using ATM Routed Bridge Encapsulation
Bridged IP packets received on an ATM interface configured in routed-bridge mode are routed via the IP
header. Such interfaces take advantage of the characteristics of a stub LAN topology commonly used for
digital subscriber line (DSL) access and offer increased performance and flexibility over integrated routing
and bridging (IRB).

Another benefit of ATM RBE is that it reduces the security risk associated with normal bridging or IRB by
reducing the size of the nonsecured network. By using a single VC allocated to a subnet (which could be as
small as a single IP address), ATM RBE uses an IP address in the subnet to limit the "trust environment" to
the premises of a single customer.

ATM RBE supports Cisco Express Forwarding (CEF), fast switching, and process switching.
The DHCP Option 82 Support for RBE feature enables those service providers to use DHCP to assign IP
addresses and DHCP option 82 to implement security and IP address assignment policies.
The DHCP Lease Limit per ATM RBE Unnumbered Interface feature allows an Internet service provider (ISP)
to globally limit the number of leases available to clients per household or connection.

How to Configure ATM Routed Bridge Encapsulation over PVCs

- Configuring ATM Routed Bridge Encapsulation Using PVCs, page 249
- Configuring DHCP Option 82 for RBE, page 252
- Configuring the DHCP Lease Limit, page 253
- Troubleshooting the DHCP Lease Limit, page 254

Configuring ATM Routed Bridge Encapsulation Using PVCs
Perform the following task to configure ATM RBE using PVCs. Only the specified network layer (IP) is
routed. Any remaining protocols can be passed on to bridging or other protocols. In this manner, ATM
RBE can be used to route IP, while other protocols (such as IPX) are bridged normally.

or

`show ip cache verbose`
SUMMARY STEPS

1. enable
2. configure terminal
3. `interface atm slot /0 . subinterface-number point-to-point`
4. Do one of the following:
 • `pvc vpi /vci`
 • `range [range-name] pvc start-vpi / start-vci end-vpi / end-vci`
5. exit
6. `ip address ip-address mask [secondary]`
7. end
8. Do one of the following:
 • `show arp`
 • `or`
 • `show ip cache verbose`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm <code>slot /0 . subinterface-number point-to-point</code></td>
<td>Specifies an ATM point-to-point subinterface and enters subinterface mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Providing Connectivity Using ATM Routed Bridge Encapsulation over PVCs

How to Configure ATM Routed Bridge Encapsulation over PVCs

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Configures a PVC to carry the routed bridge traffic and enters ATM VC class configuration mode. Configures a range of PVCs to carry the routed bridge traffic and enters ATM PVC range configuration mode.</td>
</tr>
<tr>
<td>• <code>pvc vpi \ vci</code></td>
<td></td>
</tr>
<tr>
<td>• <code>range [range-name] pvc start-vpi / start-vci end-vpi / end-vci</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# <code>pvc 0/32</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# <code>range range1 pvc 1/200 1/299</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>exit</code></td>
<td>Exits to subinterface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-vc)# <code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>ip address ip-address mask [secondary]</code></td>
<td>Provides an IP address on the same subnetwork as the remote network.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# <code>ip address 209.165.200.224 255.255.255.0</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 <code>end</code></td>
<td>Exits to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# <code>end</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 Do one of the following:</td>
<td>(Optional) Displays ATM RBE configuration information.</td>
</tr>
<tr>
<td>• <code>show arp</code></td>
<td></td>
</tr>
<tr>
<td>• or</td>
<td></td>
</tr>
<tr>
<td>• <code>show ip cache verbose</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>show arp</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>show ip cache verbose</code></td>
<td></td>
</tr>
</tbody>
</table>
Examples
To confirm that ATM RBE is enabled, use the `show arp` command and the `show ip cache verbose` command in privileged EXEC mode:

`Router# show arp`
```
Protocol  Address          Age (min)  Hardware Addr   Type   Interface
Internet  209.165.201.51          6   0001.c9f2.a81d  ARPA   Ethernet3/1
Internet  209.165.201.49          -   0060.0939.bb55 ARPA   Ethernet3/1
Internet  209.165.202.128         30   0010.0ba6.2020 ARPA   Ethernet3/0
Internet  209.165.201.52          6   00e0.1e8d.3f90 ARPA   ATM1/0.4
Internet  209.165.201.53          5   0007.144f.5d20 ARPA   ATM1/0.2
Internet  209.165.202.129         -   0060.0939.bb54 ARPA   Ethernet3/0
Internet  209.165.201.125         30   00b0.c2e9.bc55 ARPA   Ethernet3/1#
```

`Router# show ip cache verbose`
```
IP routing cache 3 entries, 572 bytes
  9 adds, 6 invalidates, 0 refcounts
Minimum invalidation interval 2 seconds, maximum interval 5 seconds,
  quiet interval 3 seconds, threshold 0 requests
Invalidation rate 0 in last second, 0 in last 3 seconds
Last full cache invalidation occurred 00:30:34 ago
Prefix/Length       Age       Interface     Next Hop
209.165.201.51/32-24 00:30:10  Ethernet3/1 10.1.0.51 14  0001C9F2A81D00600939 BB550800
209.165.202.129/32-24 00:00:04 ATM1/0.2     10.8.100.50 28 00010000AAAA030080C2000700000007144F5D20000600939 BB1C0800
209.165.201.125/32-24 00:06:09 ATM1/0.4     10.8.101.35 28 00020000AAAA030080C200070000000E01E8D3F9000600939 BB1C0800
```

Configuring DHCP Option 82 for RBE
Perform this task to configure the DHCP Option 82 Support for RBE feature.

DHCP option 82 support must be configured on the DHCP relay agent using the `ip dhcp relay information option` command before you can use the DHCP Option 82 Support for RBE feature.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip dhcp relay information option`
4. `rbe nasip source-interface`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

```
Router> enable
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp relay information option</td>
<td>Enables the DHCP option 82 support on relay agent.</td>
</tr>
<tr>
<td>Example: Router(config)# ip dhcp relay information option</td>
<td>* Enabling the DHCP option 82 support allows the system to insert the DHCP relay agent information option in forwarded BOOT REQUEST messages to a Cisco IOS DHCP server.</td>
</tr>
<tr>
<td>Step 4 rbe nasip source-interface</td>
<td>Specifies the IP address of an interface on the DHCP relay agent that will be sent to the DHCP server via the Agent Remote ID suboption.</td>
</tr>
<tr>
<td>Example: Router(config)# rbe nasip loopback0</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits global configuration mode and enters privileged configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the DHCP Lease Limit

Perform this task to limit the number of DHCP leases allowed on ATM RBE unnumbered or serial unnumbered interfaces.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp limit lease per interface *lease-limit*
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp limit lease per interface lease-limit</td>
<td>Limits the number of leases offered to DHCP clients behind an ATM RBE unnumbered or serial unnumbered interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp limit lease per interface 2</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting the DHCP Lease Limit

Perform this task to troubleshoot the DHCP lease limit.

SUMMARY STEPS

1. enable
2. debug ip dhcp server packet
3. debug ip dhcp server events

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>debug ip dhcp server packet</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router# debug ip dhcp server packet</td>
<td>(Optional) Decodes DHCP receptions and transmissions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>debug ip dhcp server events</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config)# debug ip dhcp server events</td>
<td>(Optional) Displays server events.</td>
</tr>
</tbody>
</table>

Configuration Examples for Providing Connectivity Using ATM Routed Bridge Encapsulation

The following examples show various ways to provide connectivity from a remote bridged network to a routed network using ATM RBE.

- Example Configuring ATM RBE on PVCs, page 255
- Example Configuring ATM RBE on an Unnumbered Interface, page 255
- Example Concurrent Bridging and ATM RBE, page 256
- Example DHCP Option 82 for RBE Configuration, page 256
- Example DHCP Lease Limit, page 257

Example Configuring ATM RBE on PVCs

The following example shows a typical ATM routed bridge encapsulation configuration:

```
enable
configure terminal
interface atm 4/0.100 point-to-point
ip address 209.165.200.225 255.255.255.224
pvc 0/32
end
```

Example Configuring ATM RBE on an Unnumbered Interface

The following example uses a static route to point to an unnumbered interface:

```
enable
configure terminal
interface loopback 0
ip address 209.165.200.226 255.255.255.224
interface atm 4/0.100 point-to-point
ip unnumbered loopback 0
pvc 0/32
atm route-bridge ip
exit
```
Example Concurrent Bridging and ATM RBE

The following example shows concurrent use of ATM RBE with normal bridging. IP datagrams are route-bridged, and other protocols (such as IPX or AppleTalk) are bridged.

bridge 1 protocol ieee
interface atm 4/0.100 point-to-point
ip address 209.165.200.225 255.255.255.224
pvc 0/32
bridge-group 1
atm route-bridge ip

Example DHCP Option 82 for RBE Configuration

In the following example, DHCP option 82 support is enabled on the DHCP relay agent using the ip dhcp relay information option command. The rbe nasip command configures the router to forward the IP address for Loopback0 to the DHCP server.

ip dhcp-server 209.165.200.225
ip dhcp relay information option
interface Loopback0
ip address 209.165.201.0 255.255.255.248
interface atm 4/0
no ip address
interface atm 4/0.1 point-to-point
ip unnumbered Loopback0
ip helper-address 209.165.201.3
atm route-bridged ip
pvc 88/800
encapsulation aal5snap
interface Ethernet5/1
ip address 209.165.201.4 255.255.255.248
router eigrp 100
network 209.165.201.0
network 209.165.200.0
rbe nasip Loopback0

For the configuration example, the value (in hexadecimal) of the agent remote ID suboption would be 010100000B01018140580320. The table below shows the value of each field within the agent remote ID suboption.

<table>
<thead>
<tr>
<th>Agent Remote ID Suboption Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Type</td>
<td>0x01</td>
</tr>
<tr>
<td>Version</td>
<td>0x01</td>
</tr>
<tr>
<td>Reserved</td>
<td>undefined</td>
</tr>
</tbody>
</table>
Example DHCP Lease Limit

In the following example, if more than three clients try to obtain an IP address from interface ATM4/0.1, the DHCPDISCOVER packets will not be forwarded to the DHCP server. If the DHCP server resides on the same router, DHCP will not reply to more than three clients.

```plaintext
ip dhcp limit lease per interface 3
!
interface loopback0
  ip address 209.165.201.3 255.255.255.248
!
interface atm 4/0.1
  no ip address
!
interface atm 4/0.1 point-to-point
  ip helper-address 172.16.1.2
  ip unnumbered loopback0
  atm route-bridged ip
  pvc 88/800
  encapsulation aal5snap
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Broadband Access Aggregation and DSL commands</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
<tr>
<td>Broadband access aggregation concepts</td>
<td>Understanding Broadband Access Aggregation</td>
</tr>
<tr>
<td>Preparing for broadband access aggregation task</td>
<td>Preparing for Broadband Access Aggregation</td>
</tr>
<tr>
<td>DHCP commands</td>
<td>Cisco IOS IP Addressing Services Command Reference</td>
</tr>
<tr>
<td>DHCP configuration tasks</td>
<td>"Configuring the Cisco IOS DHCP Server" module in the Cisco IOS IP Addressing Services Configuration Guide</td>
</tr>
</tbody>
</table>

Agent Remote ID Suboption Field

<table>
<thead>
<tr>
<th>Agent Remote ID Suboption Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS IP Address</td>
<td>0x0B010181 (hexadecimal value of 11.1.1.129)</td>
</tr>
<tr>
<td>NAS Port</td>
<td>• 0x40 (The slot/module/port values are 01 00/0/000.)</td>
</tr>
<tr>
<td></td>
<td>• 0x58 (hexadecimal value of 88)</td>
</tr>
<tr>
<td></td>
<td>• 0x320 (hexadecimal value of 800)</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for Providing Connectivity Using ATM Routed Bridge Encapsulation

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBE-SSO</td>
<td>15.1(1)S</td>
<td>ATM RBE features are supported with SSO.</td>
</tr>
<tr>
<td>RBE-ISSU</td>
<td>15.1(1)S</td>
<td>ATM RBE features are supported with ISSU.</td>
</tr>
<tr>
<td>Bridged 1483 Encapsulated Traffic over ATM SVCs</td>
<td>12.4(15)T 12.2(33)SRE</td>
<td>The Bridged 1483 Encapsulated Traffic over ATM SVCs feature provides support for bridged 1483 encapsulated packets to trigger ATM SVC and also support for sending this traffic on triggered ATM SVCs.</td>
</tr>
<tr>
<td>DHCP Option 82 Support for Routed Bridge Encapsulation</td>
<td>15.1(1)S 12.2(2)T</td>
<td>This feature provides support for the DHCP relay agent information option when ATM RBE is used. The following command was introduced: <code>rbe nasip</code></td>
</tr>
<tr>
<td>DHCP Lease Limit per ATM RBE Unnumbered Interface</td>
<td>12.3(2)T</td>
<td>This feature limits the number of DHCP leases per subinterface offered to DHCP clients connected from an ATM RBE unnumbered interface or serial unnumbered interface of the DHCP server or DHCP relay agent. The following command was introduced: <code>ip dhcp limit lease per interface</code></td>
</tr>
</tbody>
</table>
RBE Client Side Encapsulation with QoS

The RBE Client Side Encapsulation with QoS feature integrates routed bridged encapsulation (RBE) with quality of service (QoS) features on the Cisco 800 and 1700 series routers.

- Finding Feature Information, page 261
- Prerequisites for RBE Client Side Encapsulation with QoS, page 261
- Information About RBE Client Side Encapsulation with QoS, page 261
- Additional References, page 264
- Feature Information for RBE Client Side Encapsulation with QoS, page 264

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for RBE Client Side Encapsulation with QoS

To understand the RBE Client Side Encapsulation with QoS feature, you must be familiar with routed bridge encapsulation as described in the ATM Routed Bridge Encapsulation feature module introduced in Cisco IOS Release 12.1(2)T, and with QoS class-based weighted fair queueing (CBWFQ), low latency queueing (LLQ), and class-based marking and policing as described in the Cisco IOS Quality of Service Solutions Configuration Guide.

Information About RBE Client Side Encapsulation with QoS

- RBE and QoS, page 262
- Low-Latency Queueing and Class-Based Weighted Fair Queueing, page 262
- Class-Based Marking, page 263
- Class-Based Policing, page 263
RBE and QoS

The RBE Client Side Encapsulation with QoS feature provides secure connectivity to an ATM bridged network in which previously a broadband access server would not forward Address Resolution Protocol (ARP) requests or perform proxy ARP, and would respond to ARPs for its own IP address only. This feature combines RBE with QoS policy-based routing to provide security to the entire network. RBE was developed to address known issues with RFC1483 bridging such as broadcast storms and security.

From the network point of view, the ATM connection looks like a routed connection. Data traffic is received as RFC1483 packets, but are actually RFC1483 Ethernet or IEEE 802.3 frames. Instead of bridging the Ethernet or IEEE 802.3 frame, as in the case of regular RFC1483 bridging, the router routes on the Layer 3 header. With the exception of some cursory checks, the bridge header is ignored.

From an operational point of view, the router operates as if the routed-bridge interface were connected to an Ethernet LAN. RBE functions in the same way as half-bridging, except that it operates only over ATM. The operation is described in two ways: packets originating from the customer premises and packets destined for the customer premises.

For packets originating from the customer premises, the Ethernet header is skipped and the destination IP address is examined. If the destination IP address is in the route cache, the packet is fast switched to the outbound interface. If the destination IP address is not in the route cache, the packet is queued for process switching. In the process switch mode, the outbound interface through which the packet must be routed is found when software routines identifies it in the routing table. After the outbound interface is identified, the packet is routed on that interface. This routing occurs without the requirement for a bridge group or bridge group virtual interface (BVI).

For packets destined for the customer premises, the destination IP address of the packet is examined first. The destination interface is determined from the IP routing table. Next, the router checks the ARP table associated with that interface for a destination MAC address to place in the Ethernet header. If none is found, the router generates an ARP request for the destination IP address. The ARP request is forwarded to the destination interface only. This is in contrast to bridging, in which the ARP request is sent to all interfaces in the bridge group.

The RBE Client Side Encapsulation with QoS feature provides the ability, as an example, to pass packets to the network with a destination MAC address of 0.0.0.0 to populate the ARP on return traffic.

Low-Latency Queueing and Class-Based Weighted Fair Queueing

Low-latency queueing (LLQ) brings strict priority queueing to CBWFQ. Strict priority queueing allows delay-sensitive data such as voice to be dequeued and sent before packets in other queues are dequeued, thereby giving delay-sensitive data preferential treatment over other traffic.

Without LLQ, CBWFQ provides weighted fair queueing based on defined classes with no strict priority queue available for real-time traffic. CBWFQ allows you to define traffic classes and then assign characteristics to that class. For example, you can designate the minimum bandwidth delivered to the class during congestion.

For CBWFQ, the weight for a packet belonging to a specific class is derived from the bandwidth you assigned to the class when you configured it. Therefore, the bandwidth assigned to the packets of a class determines the order in which packets are sent. All packets are serviced fairly based on weight; no class of packets may be granted strict priority. This scheme poses problems for voice traffic that is largely intolerant of delay, especially variation in delay. For voice traffic, variations in delay introduce irregularities of transmission manifesting as jitter in the heard conversation.

The LLQ feature provides strict priority queueing for CBWFQ, reducing jitter in voice conversations. Configured by the priority command, LLQ enables use of a single, strict priority queue within CBWFQ at
the class level, allowing you to direct traffic belonging to a class to the CBWFQ strict priority queue. To enqueue class traffic to the strict priority queue, you configure the `priority` command for the class after you specify the named class within a policy map. (Classes to which the `priority` command is applied are considered priority classes.) Within a policy map, you can give one or more classes priority status. When multiple classes within a single policy map are configured as priority classes, all traffic from these classes is enqueued to the same, single, strict priority queue.

One of the ways in which the strict priority queueing used within CBWFQ differs from its use outside CBWFQ is in the parameters it takes. Outside CBWFQ, by using the `ip rtp priority` command, you specify the range of User Datagram Protocol (UDP) ports whose voice traffic flows are to be given priority service. Using the `priority` command, because you can configure the priority status for a class within CBWFQ, you are no longer limited to a UDP port number to stipulate priority flows. Instead, all of the valid match criteria used to specify traffic for a class now apply to priority traffic. These methods of specifying traffic for a class include matching on access lists, protocols, and input interfaces. Moreover, within an access list you can specify that traffic matches are allowed based on the IP Differentiated Services Code Point (DSCP) value that is set using the first six bits of the Type of Service (ToS) byte in the IP header.

Class-Based Marking

In a traffic stream, a packet is classified based on the content of some portion of the packet header. The Behavior Aggregate (BA) classifier classifies packets based on the DSCP only. The Multi-field (MF) classifier selects packets based on the the value of the combination of one or more header fields, such as source address, destination address. Differentiated Services (DS) field (a replacement header field that supersedes the existing definitions of the IPv4 ToS octet and the IPv6 traffic class octet), protocol ID, source port and destination port numbers, and other information such as incoming interface and outgoing interface. The packet can be marked by a packet marker to set the DS field of a packet to a particular code point, adding the marked packet to a particular DS behavior aggregate.

Class-Based Policing

Class-based policing is applied when you attach a traffic policy containing a class-based policing configuration to an interface. A traffic policy is configured using the Modular Quality of Service Command-Line Interface (Modular QoS CLI).

Class-based policing allows you to control the maximum rate of traffic transmitted or received on an interface. Class-based policing is often configured on interfaces at the edge of a network to limit traffic into or out of the network. In most class-based policing configurations, traffic that falls within the rate parameters is transmitted, whereas traffic that exceeds the parameters is dropped or transmitted with a different priority.

Packet marking allows you to partition your network into multiple priority levels or classes of service (CoS). A packet is marked and these markings can be used to identify and classify traffic for downstream devices. In some cases, such as ATM Cell Loss Priority (CLP) marking or Frame Relay Discard Eligibility (DE) marking, the marking is used to classify traffic.

Use class-based policing to set the IP precedence or DSCP values for packets entering the network. Networking devices within your network can then use the adjusted IP precedence values to determine how the traffic should be treated. For example, the Weighted Random Early Detection (WRED) feature uses the IP precedence values to determine the probability that a packet will be dropped.

Use class-based policing to assign packets to a QoS group. The router uses the QoS group to determine how to prioritize packets within the router.

The Single Rate Three Color Marker (srTCM) meters an IP packet stream and marks its packets either conform, exceed, or violate. Marking is based on a Committed Information Rate (CIR) and two associated
burst sizes, a Committed Burst Size (CBS) and an Excess Burst Size (EBS). A packet is marked "conform" if it does not exceed the CBS, marked "exceed" if it does exceed the CBS but not the EBS, and marked "violate" otherwise.

Additional References

The following sections provide references related to the RBE Client Side Encapsulation with QoS feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed bridge encapsulation</td>
<td>• Configuring Broadband Access: PPP and Routed Bridge Encapsulation Configuring PPP over ATM chapter in the Cisco IOS Wide-Area Networking Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• ATM Routed Bridge Encapsulation feature module</td>
</tr>
<tr>
<td>Policy-based routing with QoS</td>
<td>• Class-Based Weighted Fair Queueing and Low Latency Queueing sections in the Cisco IOS Quality of Service Solutions Configuration Guide</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for RBE Client Side Encapsulation with QoS

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 19 Feature Information for RBE Client Side Encapsulation with QoS

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBE Client Side Encapsulation with QoS</td>
<td>12.4(2)T</td>
<td>The RBE Client Side Encapsulation with QoS feature integrates routed bridged encapsulation (RBE) with quality of service (QoS) features on the Cisco 800 and 1700 series routers. The following commands were introduced or modified: atm route-bridged.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
The Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature enables routed bridge encapsulation (RBE) over ATM permanent virtual circuit (PVC) bundles. This feature supports PVC bundle member selection based on the quality of service (QoS) group or on the type of service (ToS) or Multiprotocol Label Switching (MPLS) Experimental (EXP) bit in each packet over RBE interfaces. The PVC bundles carry RBE traffic configured on ATM point-to-point subinterfaces.

This feature also supports PVC bundle functionality for ATM adaptation layer 5 (AAL5) multiplexer (MUX) or Logical Link Control (LLC)/Subnetwork Access Protocol (SNAP) encapsulations and ATM PVC bundle scalability.

- Finding Feature Information, page 267
- Restrictions for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 267
- Information About Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 268
- How to Configure Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 269
- Configuration Examples for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 275
- Additional References, page 276
- Technical Assistance, page 277
- Feature Information for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 277
- Glossary, page 278

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles
The following restrictions apply to the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature:

• RBE over switched virtual circuit (SVC) bundles is not supported.
• SVC bundle member selection based on QoS groups is not supported.
• Fast switching is not supported (only Cisco Express Forwarding switching and process switching are supported).
• PVC bundle member selection based on QoS groups does not support distributed platforms.
• PVC bundle member selection based on QoS groups does not support bumping, protection, or PVC bundle incompleteness detection.

PVC bundles are supported under the following conditions (numbers are maximum per interface and per router):

• 1000 PVC bundles with AAL5 LLC/SNAP encapsulation, and each PVC bundle with four PVC bundle members
• 800 PVC bundles with two members each and with AAL5 LLC/SNAP encapsulation, and interfaces with 4000 PVCs overall (including PVC bundle members)

Information About Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

• Benefits of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 268
• Memory Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 268
• Performance Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 269

Benefits of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

If the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature is not configured, you can make the PVC bundle member selection based on ToS bit settings (for IP packets) or EXP bit settings (for MPLS packets). With the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature configured, you can make the PVC bundle member selection based on the QoS group value associated with the packet on the ingress before route selection, or on the egress after selecting the adjacency. The packet’s pak_type header is marked with the QoS group to use, based on the generic match criterion provided by the modular QoS (MQC) command-line interface (CLI).

The Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature gives you the flexibility to choose PVC bundle members based on various criteria. You can define any classification criterion for the traffic, mark the packets matching that criterion with the QoS group, and send them over a specific PVC bundle member to assign the appropriate quality of service to the corresponding class of traffic.

Memory Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

The additional memory required for configuring the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature does not exceed 50 bytes per PVC bundle.
Performance Impact of Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

The Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature impacts forwarding path performance when PVC bundles are configured with QoS groups. This impact results because, during forwarding, QoS groups must be mapped to the appropriate PVC bundle member index in the array of adjacencies associated with the PVC bundle adjacency.

This feature does not significantly increase CPU usage when traffic at line rates is sent over the PVC bundle (regardless of the selection criterion used for PVC bundle member selection).

How to Configure Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

- Specifying the Method for Selecting PVC Bundle Members, page 269
- Configuring the QoS Group-Based Method for Selection of PVC Bundle Members, page 271
- Configuring Explicit Inverse ARP PVC Selection for QoS Group-Based PVC Bundle Member Selection, page 272
- Verifying Routed Bridge Encapsulation with ATM Virtual Circuit Bundles, page 274

Specifying the Method for Selecting PVC Bundle Members

Perform this task to specify the method of selection of PVC bundle members. You can specify one of two selection methods:

- QoS group--Use the QoS group value associated with each packet for selection of PVC bundle members.
- ToS or EXP--Use ToS bit settings of each packet (for IP packets) or EXP bit settings of each packet (for MPLS packets) for selection of PVC bundle members.

The selection methods are mutually exclusive. This means that when the selection method based on QoS groups is specified on any PVC bundle member, no other selection method is allowed on the same PVC bundle. Similarly, if the selection method based on ToS or EXP is specified on any PVC bundle member, no other selection method is allowed on the same PVC bundle.

Note

- You can change the selection method from QoS groups to ToS or EXP only if no PVC bundle member has QoS groups or Inverse Address Resolution Protocol (InverseARP) configured.
- You can change the selection method from ToS or EXP to QoS groups only if no PVC bundle member has precedence, protection, or bumping configured.
SUMMARY STEPS

1. enable
2. configure terminal
3. `interface atm slot / port`
4. `bundle bundle-name`
5. `selection-method {qos-group | tos-exp}`
6. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
• Enter your password if prompted. |
| **Example:** | Router> enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** interface atm `slot / port` | Specifies the ATM interface type and enters interface configuration mode. To determine the correct form of the `interface atm` command, see your ATM network module, port adapter, or router documentation. |
| **Example:** | Router(config)# interface atm 2/0 |
| **Step 4** bundle `bundle-name` | Creates a PVC bundle or modifies an existing PVC bundle and enters ATM bundle configuration mode. |
| **Example:** | Router(config-if)# bundle bundle-test |
| **Step 5** selection-method `{qos-group | tos-exp}` | Specifies the method for selection of PVC bundle members. |
| **Example:** | Router(config-if-atm-bundle)# selection-method qos-group |
Configuring the QoS Group-Based Method for Selection of PVC Bundle Members

Perform this task to configure the method for selection of PVC bundle members that is based on QoS groups. You must associate a QoS group or groups with a PVC bundle member. You can specify a QoS group, a range of QoS groups, or any combination of QoS groups and ranges of QoS groups.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm slot/port`
4. `bundle bundle-name`
5. `selection-method qos-group`
6. `pvc vpi/vci`
7. `qos-group qos-groups`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Step 3 <code>interface atm slot / port</code></td>
<td>Specifies the ATM interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm 2/0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>bundle bundle-name</code></td>
<td>Creates a PVC bundle or modifies an existing PVC bundle and enters ATM bundle configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-subif)# bundle bundle-test</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>selection-method qos-group</code></td>
<td>Specifies the method for selection of PVC bundle members based on QoS group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-bundle)# selection-method qos-group</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>pvc vpi / vci</code></td>
<td>Creates an ATM PVC and enters ATM bundle-member configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-bundle)# pvc 1/32</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 <code>qos-group qos-groups</code></td>
<td>Associates a QoS group or groups with the PVC bundle member.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-member)# qos-group 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 <code>end</code></td>
<td>Ends the configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if-atm-member)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Explicit Inverse ARP PVC Selection for QoS Group-Based PVC Bundle Member Selection

Perform this task to configure explicit Inverse ARP for a PVC bundle member.

This procedure is optional and provides backward compatibility with existing PVC bundles, in which an Inverse ARP request is sent or expected to be received on the PVC bundle member with precedence 6. If a PVC bundle with selection based on QoS group is connected to an existing PVC bundle, you must follow...
this procedure to allow Inverse ARP to function. If you do not follow this procedure, Inverse ARP is sent over any of the available PVC bundle members.

Note
You can enable Inverse ARP for a PVC bundle member only when using the QoS groups method for selecting PVC bundle members.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot / port
4. bundle bundle-name
5. selection-method qos-group
6. pvc vpi / vci
7. qos-group qos-groups
8. inarp-vc
9. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>En ters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm slot / port</td>
<td>Specifies the ATM interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 2/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 bundle bundle-name</td>
<td>Creates a bundle or modifies an existing bundle and enters ATM bundle configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# bundle bundle-test</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 5 selection-method qos-group
Specifies the method for selection of PVC bundle members based on QoS group.

Example:

```
Router(config-if-atm-bundle)# selection-method qos-group
```

Step 6 pvc vpi / vci
Creates an ATM PVC and enters ATM bundle member configuration mode.

Example:

```
Router(config-if-atm-bundle)# pvc 1/32
```

Step 7 qos-group qos-groups
Associates a QoS group or groups with the PVC bundle member.

Example:

```
Router(config-if-atm-member)# qos-group 1
```

Step 8 inarp-vc
Enables Inverse ARP for the PVC bundle member.

Example:

```
Router(config-if-atm-member)# inarp-vc
```

Step 9 end
Ends the configuration session and returns to privileged EXEC mode.

Example:

```
Router(config-if-atm-member)# end
```

Verifying Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

Perform this task to verify configuration of the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature:

SUMMARY STEPS

1. enable
2. show atm vc
3. show interfaces
4. show interfaces virtual-access
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 show atm vc</td>
<td>Displays all ATM PVCs and SVCs and their traffic information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show atm vc</td>
<td></td>
</tr>
<tr>
<td>Step 3 show interfaces</td>
<td>Displays interleaving statistics.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show interfaces</td>
<td></td>
</tr>
<tr>
<td>Step 4 show interfaces virtual-access</td>
<td>Displays multilink bundle information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show interfaces virtual-access</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

- Specifying the Method for Selecting PVC Bundle Members Example, page 275
- Configuring the QoS Group-Based Method for Selection of PVC Bundle Members Example, page 276
- Configuring Explicit Inverse ARP PVC Selection for QoS Group-Based PVC Bundle Member Selection Example, page 276

Specifying the Method for Selecting PVC Bundle Members Example

The following example shows how to specify the method for selecting PVC bundle members:

```
interface atm 2/0
bundle cisco
  selection-method qos-group
end
```
Configuring the QoS Group-Based Method for Selection of PVC Bundle Members Example

The following example shows how to configure the QoS group-based method for selection of PVC bundle members:

```
interface atm 2/0
bundle cisco
  selection-method qos-group
  pvc 35/56
  qos-group 1
end
```

Configuring Explicit Inverse ARP PVC Selection for QoS Group-Based PVC Bundle Member Selection Example

The following example shows how to configure explicit Inverse ARP PVC selection for QoS group-based PVC bundle member selection:

```
interface atm 2/0
bundle cisco
  selection-method qos-group
  pvc 1/32
  qos-group 1
  inarp-vc
end
```

Additional References

The following sections provide references related to the Routed Bridge Encapsulation with ATM Virtual Circuit Bundles feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>Understanding Broadband Access Aggregation</td>
</tr>
<tr>
<td>Preparing for broadband access aggregation tasks</td>
<td>Preparing for Broadband Access Aggregation</td>
</tr>
<tr>
<td>Broadband access aggregation and DSL commands: complete command syntax,</td>
<td>Cisco IOS Broadband Access Aggregation and DSL Command Reference</td>
</tr>
<tr>
<td>command mode, defaults, usage guidelines, and examples</td>
<td></td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

Description
The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.

To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.

[Link](http://www.cisco.com/cisco/web/support/index.html)

Feature Information for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfm. An account on Cisco.com is not required.
Table 20 Feature Information for Routed Bridge Encapsulation with ATM Virtual Circuit Bundles

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routed Bridge Encapsulation with ATM Virtual Circuit Bundles</td>
<td>12.2(31)SB2 12.2(33)SRE 12.4(4)T</td>
<td>This feature enables RBE over ATM PVC bundles. This feature supports PVC bundle member selection based on the QoS group or on the ToS or MPLS EXP bit in each packet over RBE interfaces. The following command was introduced: <code>selection-method</code>.</td>
</tr>
</tbody>
</table>

Glossary

ARP -- Address Resolution Protocol. Internet protocol used to map an IP address to a MAC address. Defined in RFC 826.

ATM -- Asynchronous Transfer Mode. The international standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media, such as E3, SONET, and T3.

bundle -- A logical grouping of one or more physical interfaces using the formats and procedures of multilink Frame Relay. A bundle emulates a physical interface to the Frame Relay data link layer. The bundle is also referred to as the MFR interface.

Cisco Express Forwarding -- Layer 3 IP switching technology that optimizes network performance and scalability for networks with large and dynamic traffic patterns.

fast switching -- Cisco feature in which a route cache expedites packet switching through a router.

Inverse ARP -- Inverse Address Resolution Protocol (ARP). Method of building dynamic routes in a network. Allows an access server to discover the network address of a device associated with a virtual circuit.

MPLS -- Multiprotocol Label Switching. Switching method that forwards IP traffic using a label. This label instructs the routers and the switches in the network where to forward the packets based on preestablished IP routing information.

MQC -- modular QoS command-line interface (CLI). A CLI structure that lets you create traffic polices and attach them to interfaces. A traffic policy contains a traffic class and one or more QoS features. A traffic class is used to classify traffic, and the QoS features in the traffic policy determine how to treat the classified traffic.

PVC -- permanent virtual circuit (or connection). Virtual circuit that is permanently established. PVCs save bandwidth associated with circuit establishment and teardown in situations where certain virtual circuits must exist all the time. In ATM terminology, this is called a permanent virtual connection.

QoS -- quality of service. Measure of performance for a transmission system that reflects its transmission quality and service availability.

RBE -- routed bridge encapsulation. Process by which a stub-bridged segment is terminated on a point-to-point routed interface. Specifically, the router is routing on an IEEE 802.3 or Ethernet header carried over a point-to-point protocol, such as PPP, RFC 1483 ATM, or RFC 1490 Frame Relay.
SVC -- switched virtual circuit. Virtual circuit that is dynamically established on demand and is torn down when transmission is complete. SVCs are used in situations where data transmission is sporadic. Called a switched virtual connection in ATM terminology.

ToS -- type of service byte. Second byte in the IP header that indicates the desired quality of service for a specific datagram.

VC -- virtual circuit. Logical circuit created to ensure reliable communication between two network devices. A VC is defined by a VPI/VCI pair and can be either permanent or switched.
Configuring Explicit Inverse ARP PVC Selection for QoS Group-Based PVC Bundle Member Selection Example
Configuring Cisco Subscriber Service Switch Policies

The Subscriber Service Switch provides the framework for the management and scalability of PPP sessions that are switched from one virtual PPP link to another. It gives Internet service providers (ISPs) the flexibility to determining which services to provide to subscribers, the number of subscribers, and how to define the services. The primary focus of the Subscriber Service Switch is to direct PPP from one point to another using a Layer 2 subscriber policy. The policy manages tunneling of PPP in a policy-based bridging fashion.

- Finding Feature Information, page 281
- Prerequisites for Configuring a Subscriber Service Switch Policy, page 281
- Restrictions for Configuring a Subscriber Service Switch Policy, page 282
- Information About the Subscriber Service Switch, page 282
- How to Configure a Subscriber Service Switch Policy, page 286
- Configuration Examples for Configuring a Subscriber Service Switch Policy, page 291
- Where to Go Next, page 305
- Additional References, page 305
- Feature Information for Configuring a Subscriber Service Switch Policy, page 307

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring a Subscriber Service Switch Policy

- Before configuring a Subscriber Service Switch policy, you must understand the concepts presented in the "Understanding Broadband Access Aggregation" module.
- Before configuring a Subscriber Service Switch policy, you must perform the PPP over Ethernet (PPPoE) configuration procedures in the "Providing Protocol Support for Broadband Access
Aggregation of PPPoE Sessions" module or perform the PPP over ATM (PPPoA) configuration procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions" module.

Restrictions for Configuring a Subscriber Service Switch Policy

The Subscriber Service Switch provides the framework for the management and scalability of PPP sessions that are switched from one virtual PPP link to another. The Subscriber Server Switch provides the infrastructure for any protocol to plug into; however, the initial implementation provides switching PPP over Ethernet and PPP over ATM session to a Layer 2 Tunneling Protocol (L2TP) device such as an L2TP access concentrator (LAC) switch, and switching L2TP sessions to an L2TP tunnel switch only.

Information About the Subscriber Service Switch

The Subscriber Service Switch was developed in response to a need by Internet service providers (ISPs) for increased scalability and extensibility for remote access service selection and Layer 2 subscriber policy management. This Layer 2 subscriber policy is needed to manage tunneling of PPP in a policy-based bridging fashion.

- Benefits of the Subscriber Service Switch, page 282
- Backward Compatibility of Subscriber Service Switch Policies, page 283
- Debug Commands Available for Subscriber Service Switch, page 285

Benefits of the Subscriber Service Switch

The Subscriber Service Switch provides the framework for the management and scalability of PPP sessions that are switched from one virtual PPP link to another. It gives Internet service providers (ISPs) the flexibility to determining which services to provide to subscribers, the number of subscribers, and how to define the services. In the past, remote access service selection was largely determined by the telephone number dialed or the PPP username and password entered during a PPP authentication cycle. However, broadband, cable, Virtual Private Network (VPN), and wireless access methods have created an environment where PPP sessions may be tunneled over a variety of protocols and media. The multitude of protocols, management domains, network infrastructure, and variety of services has created a complex environment for directing a subscriber to a given service or application. The problem is further complicated by the much greater density of total PPP sessions that can be transported over shared media versus traditional point-to-point links. The Subscriber Service Switch can provide a flexible and extensible decision point linking an incoming subscriber (typically a PPP session over some physical or virtual link) to another tunneled link or local termination for Layer 3 processing.

The Subscriber Service Switch is also scalable in situations where a subscriber’s Layer 2 service is switched across virtual links. Examples include switching among PPPoA, PPPoE, L2TP, Layer 2 Forwarding Protocol (L2F), Point-to-Point Tunneling Protocol (PPTP), generic routing encapsulation (GRE), and General Packet Radio Service (GPRS) Tunneling Protocol (GTP wireless data standard).

The figure below shows how the Subscriber Service Switch provides its own centralized switching path that bypasses the virtual-access-based switching available in previous releases. In the figure below, the
Subscriber Service Switch is switching data traffic from personal computers in a home and corporate office and from a wireless user.

Figure 17
Basic Subscriber Service Switch Operation

Protocols that register with the Subscriber Service Switch application programming interface (API) can take advantage of this switching path. Bypassing the virtual access interface in this manner helps the Cisco IOS software to scale to the increased number of sessions that the market demands. The Subscriber Service Switch also improves network performance. For example, benchmark testing indicates that performance of L2TP multihop tasks occurs twice as fast in networks with the Subscriber Service Switch as in networks without it.

Backward Compatibility of Subscriber Service Switch Policies

All of the existing virtual private dialup network (VPDN), Multichassis Multilink PPP (MMLP), and local termination policies and configurations are maintained in the implementation of the Subscriber Service Switch; however, default policies may be overridden by the following configurations or events:

- Resource Manager (RM) VPDN authorization is attempted before VPDN authorization.
- VPDN authorization is attempted before Stack Group Forwarding (SGF) MMLP.
- VPDN service authorization is attempted only when the `vpdn enable` command is configured.
- RM VPDN service authorization is attempted only if RM is enabled.
- SGF authorization is attempted only when the `sgbp member` command is configured and one or both of the following service keys are available from the subscriber: unauthenticated PPP name and endpoint discriminator.
- The `dnis` and `domain` service keys, in that order, are used to authorize VPDN service, provided that VPDN service is enabled.
- An unauthenticated PPP name is always reduced to a domain name by taking all characters from the right of the PPP name up to a configurable delimiter character (default is the `@` character). Only the domain portion is used to locate a service.
If the `vpdn authen-before-forward` command is configured as a global configuration command, the authenticated PPP name is used to authorize VPDN service.

- The `vpdn-group` command can define four configurations:
 - Authorization for VPDN call termination (using the `accept-dialin` and `accept-dialout` keywords).
 - Authorization for VPDN subscriber service (using the `request-dialin` and `request-dialout` keywords).
 - A directive to collect further service keys and reauthorize (using the `authen-before-forward` keyword).
 - A tunnel configuration.

The Subscriber Service Switch adds a general configuration framework to replace the first three aspects of a VPDN group.

- If VPDN and SGF services either are not configured or cannot be authorized, local PPP termination service is selected. Further PPP authorization is still required to complete local termination.

- A two-phase authorization scheme is enabled by the `vpn domain authorization` command. An NAS-Port-ID (NAS port identifier) key is used to locate the first service record, which contains a restricted set of values for the domain substring of the unauthenticated PPP name. This filtered service key then locates the final service. Cisco refers to this scheme as domain preauthorization.

 - Domain preauthorization will occur only when the `NAS-Port-ID` key is available.
 - When domain preauthorization is enabled, both authenticated and unauthenticated domain names are checked for restrictions.

 - It is possible to associate a fixed service with an ATM permanent virtual circuit (PVC), thus affecting any subscribers carried by the PVC. The `vpn service` command, in ATM VC or VC class configuration mode, and the associated key make up the generic service key.

 - When the generic service key is available, it will be used for authorization instead of the unauthenticated domain name.

- If either the `vpdn authen-before-forward` or `per vpdn-group authen-before-forward` command is configured, the authenticated username is required and will be used to authorize VPDN service.

 - To determine whether the `authen-before-forward` command is configured in a VPDN group (using the `vpdn-group` command), an unauthenticated username or the generic service key is required as the initial-want key set.

 - When the global `vpdn authen-before-forward` command is not configured, the generic service key, if one is available, is used to determine whether the `authen-before-forward` function is configured in the VPDN group (using the `vpdn-group` command). If the generic service key is not available, the unauthenticated username will be used.

- If an accounting-enabled key is available, the unauthenticated username is required.

- VPDN multihop is allowed only when VPDN multihop is enabled.

- SGF on the L2TP network server (LNS) is allowed only when VPDN multihop is enabled on the LNS.

- Forwarding of SGF calls on the LAC is allowed only if VPDN multihop is enabled on the LAC.

- SGF-to-SGF multihop is not allowed.

- When PPP forwarding is configured, both Multilink PPP (MLP) and non-MLP calls are forwarded to the winner of the Stack Group Bidding Protocol (SGBP) bid.

- Authentication is always required for forwarded Packet Data Serving Node (PDSN) calls.

- When the `directed-request` function is enabled and activated using the `ip host` command, VPDN service authorization occurs only when the `vpdn authorize directed-request` command is used.

- Fixed legacy policy is still maintained for RM.
Debug Commands Available for Subscriber Service Switch

The Subscriber Service Switch feature introduces five new EXEC mode **debug** commands to enable diagnostic output about Subscriber Service Switch call operation, as follows:

- **debug sss aaa authorization event** -- Displays messages about AAA authorization events that are part of normal call establishment.
- **debug sss aaa authorization fsm** -- Displays messages about AAA authorization state changes.
- **debug sss error** -- Displays diagnostic information about errors that may occur during Subscriber Service Switch call setup.
- **debug sss event** -- Displays diagnostic information about Subscriber Service Switch call setup events.
- **debug sss fsm** -- Displays diagnostic information about the Subscriber Service Switch call setup state.

The following EXEC mode debug commands already exist:

- **debug redundancy** - This command is available on platforms that support redundancy.
- **debug sss elog** -- Collects SSS performance event data.
- **debug sss feature** -- Enables debug for SSS feature events.
- **debug sss packet** -- Enables packet level event and information debugging for the Subscriber Service Switch.
- **debug sss policy** -- Enables debug for SSS policy module events.
- **debug sss service** -- Enables debug for service manager event.

These commands were designed to be used with Cisco IOS **debug** commands that exist for troubleshooting PPP and other Layer 2 call operations. The table below lists some of these **debug** commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ppp negotiation</td>
<td>Allows you to check that a client is passing PPP negotiation information.</td>
</tr>
<tr>
<td>debug pppoe errors</td>
<td>Displays PPPoE error messages.</td>
</tr>
<tr>
<td>debug pppoe events</td>
<td>Displays protocol event information.</td>
</tr>
<tr>
<td>debug vpdn call events</td>
<td>Enables VPDN call event debugging.</td>
</tr>
<tr>
<td>debug vpdn call fsm</td>
<td>Enables VPDN call setup state debugging.</td>
</tr>
<tr>
<td>debug vpdn e log</td>
<td>Enables VPDN performance event data collection.</td>
</tr>
<tr>
<td>debug vpdn events</td>
<td>Displays PPTP tunnel event change information.</td>
</tr>
<tr>
<td>debug vpdn 12x-data</td>
<td>Enables L2F and L2TP event and data debugging.</td>
</tr>
<tr>
<td>debug vpdn 12x-errors</td>
<td>Displays L2F and L2TP protocol errors that prevent tunnel establishment or normal operation.</td>
</tr>
<tr>
<td>debug vpdn 12x-events</td>
<td>Displays L2F and L2TP events that are part of tunnel establishment or shutdown.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug vpdn 12x-packets</td>
<td>Enables L2F and L2TP packet level debugging.</td>
</tr>
<tr>
<td>debug vpdn errors</td>
<td>Displays PPTP protocol error messages.</td>
</tr>
<tr>
<td>debug vpdn message</td>
<td>Enables VPDN inter processing message debugging.</td>
</tr>
<tr>
<td>debug vpdn packet</td>
<td>Enables VPDN packet level debugging.</td>
</tr>
<tr>
<td>debug vpdn scalability</td>
<td>Enables VPDN scalability debugging.</td>
</tr>
<tr>
<td>debug vpdn sss errors</td>
<td>Displays diagnostic information about errors that may occur during VPDN Subscriber Service Switch call setup.</td>
</tr>
<tr>
<td>debug vpdn sss events</td>
<td>Displays diagnostic information about VPDN Subscriber Service Switch call setup events.</td>
</tr>
</tbody>
</table>

Note

The `debug` commands are intended only for troubleshooting purposes, because the volume of output generated by the software can result in severe performance degradation on the router.

How to Configure a Subscriber Service Switch Policy

The Subscriber Service Switch architecture is transparent, and existing PPP, VPDN, PPPoE, PPPoA, and authentication, authorization, and accounting (AAA) call configurations will continue to work in this environment. You can, however, enable Subscriber Service Switch preauthorization and Subscriber Service Switch type authorization. You may also find it helpful to verify Subscriber Service Switch call operation.

- Enabling Domain Preauthorization on a NAS, page 286
- Creating a RADIUS User Profile for Domain Preauthorization, page 287
- Enabling a Subscriber Service Switch Preauthorization, page 288
- Troubleshooting the Subscriber Service Switch, page 289

Enabling Domain Preauthorization on a NAS

Perform the following task to enable the NAS to perform domain authorization before tunneling.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vpdn authorize domain`
4. `exit`
5. `Router# show running-config`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vpdn authorize domain</td>
<td>Enables domain preauthorization on an Network Access Server (NAS).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vpdn authorize domain</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 Router# show running-config</td>
<td>Displays the configuration so you can check that you successfully enabled domain preauthorization.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show running-config</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next, page 287

What to Do Next

Create a RADIUS user profile for domain preauthorization. See the next section for more information.

Creating a RADIUS User Profile for Domain Preauthorization

The table below contains the attributes needed to enable domain preauthorization in a RADIUS user file. Refer to the Cisco IOS Security Configuration Guide for information about creating a RADIUS user profile.
Table 22 Attributes for the RADIUS User Profile for Domain Preauthorization

<table>
<thead>
<tr>
<th>RADIUS Entry</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>nas-port: ip-address:slot/subslot/port/vpi.vci</td>
<td>Configures the NAS port username for domain preauthorization.</td>
</tr>
<tr>
<td></td>
<td>• ip-address -- Management IP address of the node switch processor (NSP).</td>
</tr>
<tr>
<td></td>
<td>• slot/subslot/port -- Specifies the ATM interface.</td>
</tr>
<tr>
<td></td>
<td>• vpi,vci -- Virtual path identifier (VPI) and virtual channel identifier (VCI) values for the PVC.</td>
</tr>
<tr>
<td>Password= "cisco"</td>
<td>Sets the fixed password.</td>
</tr>
<tr>
<td>User-Service-Type = Outbound-User</td>
<td>Configures the service type as outbound.</td>
</tr>
<tr>
<td>Cisco-AVpair= "vpdn:vpn-domain-list= domain1, domain2,..."</td>
<td>Specifies the domains accessible to the user.</td>
</tr>
<tr>
<td></td>
<td>• domain -- Domain to configure as accessible to the user.</td>
</tr>
</tbody>
</table>

Enabling a Subscriber Service Switch Preauthorization

When Subscriber Service Switch preauthorization is enabled on an LAC, local configurations for session limit per VC and per VLAN are overwritten by the per-NAS-port session limit downloaded from the server. Perform this task to enable preauthorization.

SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber access { pppoe | pppoa} pre-authorize nas-port-id[aaa-method-list]
4. show sss session [all]
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

| Step 3 | subscriber access {pppoe | pppoa} pre-authorize nas-port-id[aaa-method-list] |
|--------|---|
| **Example:** | |
| **Example:** | Router(config)# subscriber access pppoe pre-authorize nas-port-id mlist-llid |

Purpose

Enables Subscriber Service Switch preauthorization.

Note

The LACs maintain a current session number per NAS port. As a new session request comes in, the LAC makes a preauthorization request to AAA to get the session limit, and compares it with the number of sessions currently on that NAS port. This command ensures that session limit querying is only enabled for PPPoE-type calls, not for any other call types.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>show sss session [all]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# show sss session all</td>
</tr>
</tbody>
</table>

Displays the Subscriber Service Switch session status.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# exit</td>
</tr>
</tbody>
</table>

(Optional) Exits global configuration mode.

What to Do Next

Information about troubleshooting a network running the Subscriber Service Switch can be found in the next section.

Troubleshooting the Subscriber Service Switch

Perform this task to troubleshoot the Subscriber Service Switch. Examples of normal and failure operations can be found in the Troubleshooting the Subscriber Service Switch Examples, page 294. Reports from debug commands should be sent to technical personnel at Cisco Systems for evaluation.

Perform the following task to troubleshoot a network running the Subscriber Service Switch.
SUMMARY STEPS
1. enable
2. configure terminal
3. no logging console
4. Use Telnet to access a router port and repeat Steps 2 and 3.
5. terminal monitor
6. exit
7. debug sss command-option
8. configure terminal
9. no terminal monitor
10. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no logging console</td>
<td>Disables all logging to the console terminal. To reenable logging to the</td>
</tr>
<tr>
<td></td>
<td>console, use the logging console command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no logging console</td>
<td></td>
</tr>
<tr>
<td>Step 4 Use Telnet to access a router port and repeat Steps 2 and 3.</td>
<td>Enters global configuration mode in a recursive Telnet session, which</td>
</tr>
<tr>
<td></td>
<td>allows the output to be redirected away from the console port.</td>
</tr>
<tr>
<td>Step 5 terminal monitor</td>
<td>Enables logging output on the virtual terminal.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# terminal monitor</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
Step 6 | exit | Exits to privileged EXEC mode.

Example:
Router(config)# exit

Step 7 | debug sss command-option | Enables the **debug** command.

Note You can enter more than one **debug** command.

Example:
Router# debug sss error

Step 8 | configure terminal | Enters global configuration mode.

Example:
Router# configure terminal

Step 9 | no terminal monitor | Disables logging on the virtual terminal.

Example:
Router(config)# no terminal monitor

Step 10 | exit | Exits to privileged EXEC mode.

Example:
Router(config)# exit

Configuration Examples for Configuring a Subscriber Service Switch Policy

- LAC Domain Authorization Example, page 292
- Domain Preauthorization RADIUS User Profile Example, page 292
- Subscriber Service Switch Preauthorization Example, page 292
- Verify Subscriber Service Switch Call Operation Example, page 292
- Troubleshooting the Subscriber Service Switch Examples, page 294
- Troubleshooting the Subscriber Service Switch Operation Example, page 294
- Troubleshooting the Subscriber Service Switch on the LAC--Normal Operation Example, page 295
- Troubleshooting the Subscriber Service Switch on the LAC--Authorization Failure Example, page 298
LAC Domain Authorization Example

The following example shows the configuration necessary for the LAC to participate in domain preauthorization:

```
! aaa new-model
aaa authorization network default local group radius
!
vpdn authorize domain
!
radius-server host 10.9.9.9 auth-port 1645 acct-port 1646
radius-server attribute nas-port format d
radius-server key MyKey
radius-server vsa send authentication
!
```

Domain Preauthorization RADIUS User Profile Example

The following example shows a typical domain preauthorization RADIUS user profile:

```
user = nas-port:10.9.9.9:0/0/0/30.33
profile_id = 826
profile_cycle = 1
radius=Cisco {
  check_items= {
    2=cisco
  }
  reply_attributes= {
    9,1="vpdn:vpn-domain-list=net1.com,net2.com"
    6=5
  }
}
```

Subscriber Service Switch Preauthorization Example

The following partial example signals the Subscriber Service Switch to preauthorize the NAS-Port-ID string before authorizing the domain name. This policy applies only to all sessions with a PPPoE access type.

```
vpdn-group 3
  accept dialin
  protocol pppoe
  virtual-template 1
!
! Signals Subscriber Service Switch to preauthorize the NAS-Port-ID string before
! authorizing the domain name.
subscriber access pppoe pre-authorize nas-port-id mlist-llid
!
```

Verify Subscriber Service Switch Call Operation Example

The following example command output from the `show sss session all` command provides an extensive report of Subscriber Service Switch session activity. Each section shows the unique identifier for each session, which can be used to correlate that particular session with the session information retrieved from
other `show` commands or `debug` command traces. See the following `show vpdn session` command output for an example of this unique ID correlation.

```
Router# show sss session all
Current SSS Information: Total sessions 9
SSS session handle is 40000013, state is connected, service is VPDN
Unique ID is 9
SIP subscriber access type(s) are PPPoE/PPP
Identifier is nobody3@example.com
Last Changed 00:02:49
Root SIP Handle is DF000010, PID is 49
AAA unique ID is 10
Current SIP options are Req Fwding/Req Fwde
SSS session handle is B0000017, state is connected, service is VPDN
Unique ID is 10
SIP subscriber access type(s) are PPPoE/PPP
Identifier is nobody3@example.com
Last Changed 00:02:05
Root SIP Handle is B9000015, PID is 49
AAA unique ID is 11
Current SIP options are Req Fwding/Req Fwded
SSS session handle is D6000019, state is connected, service is VPDN
Unique ID is 11
SIP subscriber access type(s) are PPPoE/PPP
Identifier is nobody3@example.com
Last Changed 00:02:13
Root SIP Handle is D0000016, PID is 49
AAA unique ID is 12
Current SIP options are Req Fwding/Req Fwded
SSS session handle is B0000013, state is connected, service is VPDN
Unique ID is 13
SIP subscriber access type(s) are PPPoE/PPP
Identifier is user3@example.com
Last Changed 2d21h
Root SIP Handle is D3000002, PID is 49
AAA unique ID is 3
Current SIP options are Req Fwding/Req Fwded
SSS session handle is BE00000B, state is connected, service is Local Term
Unique ID is 6
SIP subscriber access type(s) are PPPoE/PPP
Identifier is user1
Last Changed 00:03:56
Root SIP Handle is A9000009, PID is 49
AAA unique ID is 7
Current SIP options are Req Fwding/Req Fwded
SSS session handle is DC00000D, state is connected, service is Local Term
Unique ID is 7
SIP subscriber access type(s) are PPPoE/PPP
Identifier is user2
Last Changed 00:03:57
Root SIP Handle is 2C00000A, PID is 49
AAA unique ID is 8
Current SIP options are Req Fwding/Req Fwded
SSS session handle is DB000011, state is connected, service is VPDN
Unique ID is 8
SIP subscriber access type(s) are PPPoE/PPP
Identifier is nobody3@example.com
Last Changed 00:02:58
Root SIP Handle is 1000000F, PID is 49
AAA unique ID is 9
Current SIP options are Req Fwding/Req Fwded
SSS session handle is 3F000007, state is connected, service is Local Term
Unique ID is 2
SIP subscriber access type(s) are PPP
Identifier is user1
Last Changed 00:05:30
Root SIP Handle is 8A000009, PID is 92
AAA unique ID is 1
Current SIP options are Req Fwding/Req Fwded
SSS session handle is 97000005, state is connected, service is VPDN
Unique ID is 4
SIP subscriber access type(s) are PPP
```
Identifier is nobody2@example.com
Last Changed 00:07:16
Root SIP Handle is 32000000, PID is 92
AAA unique ID is 5
Current SIP options are Req Fwding/Req Fwded

Correlating the Unique ID in show vpdn session Command Output

The following partial sample output from the `show vpdn session` command provides extensive reports on call activity for all L2TP, L2F, and PPPoE sessions, and identifies the unique ID for each session.

```
Router# show vpdn session all
L2TP Session Information Total tunnels 1 sessions 4
Session id 5 is up, tunnel id 13695
Call serial number is 3355500002
Remote tunnel name is User03
Internet address is 10.0.0.63
  Session state is established, time since change 00:03:53
    52 Packets sent, 52 received
    2080 Bytes sent, 1316 received
    Last clearing of "show vpdn" counters never
Session MTU is 1464 bytes
Session username is nobody3@example.com
  Interface
    Remote session id is 692, remote tunnel id 58582
    UDP checksums are disabled
    SSS switching enabled
    No FS cached header information available
    Sequencing is off
    Unique ID is 8
Session id 6 is up, tunnel id 13695
Call serial number is 3355500003
Remote tunnel name is User03
Internet address is 10.0.0.63
  Session state is established, time since change 00:04:22
    52 Packets sent, 52 received
    2080 Bytes sent, 1316 received
    Last clearing of "show vpdn" counters never
Session MTU is 1464 bytes
Session username is nobody3@example.com
  Interface
    Remote session id is 693, remote tunnel id 58582
    UDP checksums are disabled
    SSS switching enabled
    No FS cached header information available
    Sequencing is off
    Unique ID is 9
```

Troubleshooting the Subscriber Service Switch Examples

This section provides the following debugging session examples for a network running the Subscriber Service Switch:

Reports from `debug` commands should be sent to technical personnel at Cisco Systems for evaluation.

Troubleshooting the Subscriber Service Switch Operation Example

The following example shows the `debug` commands used and sample output for debugging Subscriber Service Switch operation:

```
Router# debug sss event
Router# debug sss error
Router# debug sss state
Router# debug sss aaa authorization event
Router# debug sss aaa authorization fsm
```
SSS events debugging is on
SSS error debugging is on
SSS fsm debugging is on
SSS AAA authorization event debugging is on
SSS AAA authorization FSM debugging is on

*Mar 4 21:33:18.248: SSS INFO: Element type is Access-Type, long value is 3
*Mar 4 21:33:18.248: SSS INFO: Element type is Switch-Id, long value is -1509949436
*Mar 4 21:33:18.248: SSS INFO: Element type is NasPort, ptr value is 6396882C
*Mar 4 21:33:18.248: SSS INFO: Element type is AAA-ACCT_ENBL, long value is 7
*Mar 4 21:33:18.248: SSS INFO: Element type is AccIe-Hdl, ptr value is 78000006
*Mar 4 21:33:18.248: SSS MGR [uid:7]: Event service-request, state changed from
wait-for-auth to wait-for-req
*Mar 4 21:33:18.248: SSS PM [uid:7]: Need the following key: Unauth-User
*Mar 4 21:33:18.248: SSS PM [uid:7]: Received Service Request
need-init-keys
*Mar 4 21:33:18.248: SSS PM [uid:7]: Event policy-or-mgr-more-keys, state changed from
wait-for-req to wait-for-auth
*Mar 4 21:33:20.256: SSS INFO: Element type is Unauth-User, string value is
nobody@example.com
*Mar 4 21:33:20.256: SSS INFO: Element type is AccIe-Hdl, ptr value is 78000006
*Mar 4 21:33:20.256: SSS INFO: Element type is Access-Type, long value is 0
*Mar 4 21:33:20.256: SSS MGR [uid:7]: Event service-request, state changed from
wait-for-auth to wait-for-req
*Mar 4 21:33:20.256: SSS PM [uid:7]: Received More Initial Keys
check-auth-needed
authorizing
*Mar 4 21:33:20.256: SSS PM [uid:7]: Sending authorization request for 'example.com'
*Mar 4 21:33:20.256: SSS AAA AUTHOR [uid:7]:Event <make request>, state changed from
idle to authorizing
*Mar 4 21:33:20.256: SSS AAA AUTHOR [uid:7]:Authorizing key example.com
*Mar 4 21:33:20.256: SSS AAA AUTHOR [uid:7]:AAA request sent for key example.com
*Mar 4 21:33:20.256: SSS AAA AUTHOR [uid:7]:Received an AAA pass
*Mar 4 21:33:20.256: SSS AAA AUTHOR [uid:7]:Event <found service>, state changed from
authorizing to complete
*Mar 4 21:33:20.260: SSS AAA AUTHOR [uid:7]:Found service info for key example.com
*Mar 4 21:33:20.260: SSS AAA AUTHOR [uid:7]:Event <free request>, state changed from
complete to terminal
*Mar 4 21:33:20.264: SSS PM [uid:7]: Event <found>, State: authorizing to end
*Mar 4 21:33:20.264: SSS MGR [uid:7]: Got reply Forwarding from PM
*Mar 4 21:33:20.264: SSS MGR [uid:7]: Event policy-start-service-fsp, state changed from
wait-for-auth to wait-for-service
*Mar 4 21:33:20.264: SSS MGR [uid:7]: Handling Connect-Forwarding-Service event
wait-for-service to connected

Troubleshooting the Subscriber Service Switch on the LAC--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LAC:

Router# debug sss event

Troubleshooting the Subscriber Service Switch on the LAC--Normal Operation Example
Router# debug sss error
Router# debug sss aaa authorization event
Router# debug sss aaa authorization fsm
Router# debug pppoe events
Router# debug pppoe errors
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn call events
Router# debug vpdn call fsm
Router# debug vpdn events
Router# debug vpdn errors

SSS:
SSS events debugging is on
SSS error debugging is on
SSS AAA authorization event debugging is on
SSS AAA authorization FSM debugging is on
PPPoE:
PPPoE protocol events debugging is on
PPPoE protocol errors debugging is on
PPP:
PPP protocol negotiation debugging is on
VPN:
L2X protocol events debugging is on
L2X protocol errors debugging is on
VPDN SSS events debugging is on
VPDN SSS errors debugging is on
VPDN call event debugging is on
VPDN call FSM debugging is on
VPDN events debugging is on
VPDN errors debugging is on

*Nov 15 12:23:52.523: PPPoE 0: I PADI R:0000.0c14.71d0 L:ffff.ffff.ffff 1/32 ATM4/0.132
*Nov 15 12:23:52.523: PPPoE 0: O PADO R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132
*Nov 15 12:23:52.527: PPPoE 0: I PADR R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132
*Nov 15 12:23:52.527: PPPoE : encap string prepared
*Nov 15 12:23:52.527: [13]PPPoE 10: Created R:00b0.c2e9.c870 L:0000.0c14.71d0 1/32 ATM4/0.132
*Nov 15 12:23:52.527: SSS INFO: Element type is Access-Type, long value is 3
*Nov 15 12:23:52.527: SSS INFO: Element type is Switch-Id, long value is 2130706444
*Nov 15 12:23:52.527: SSS INFO: Element type is Nasport, ptr value is 63C07288
*Nov 15 12:23:52.527: SSS INFO: Element type is AAA-Id, ptr value is B200000C
*Nov 15 12:23:52.527: SSS MGR [uid:13]: Handling Policy Authorize (1 pending sessions)
*Nov 15 12:23:52.527: SSS PM [uid:13]: Received Service Request
*Nov 15 12:23:52.527: SSS PM [uid:13]: Handling Authorization Check
*Nov 15 12:23:52.527: SSS PM [uid:13]: Policy reply - Need more keys
*Nov 15 12:23:52.527: [13]PPPoE 10: O PADS R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132
*Nov 15 12:23:52.527: ppp13 PPP: Using default call direction
*Nov 15 12:23:52.527: ppp13 PPP: Treating connection as a dedicated line
*Nov 15 12:23:52.527: ppp13 PPP: Phase is ESTABLISHING, Active Open
*Nov 15 12:23:52.527: ppp13 LCP: O CONFRREQ [Closed] id 1 len 19
*Nov 15 12:23:52.527: ppp13 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:23:52.527: ppp13 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:23:52.527: ppp13 LCP: MagicNumber 0xB0EC4557 (0x0506B0EC4557)
*Nov 15 12:23:52.527: ppp13 LCP: MRU 1492 (0x010405D4)
Nov 15 12:23:52.571: ppp13 LCP: MagicNumber 0x0017455D (0x05060017455D)
Nov 15 12:23:52.571: ppp13 LCP: O CONFACK [REQsent] id 1 len 14
Nov 15 12:23:52.571: ppp13 LCP: MRU 1492 (0x010405D4)
Nov 15 12:23:52.571: ppp13 LCP: MagicNumber 0x0017455D (0x05060017455D)
Nov 15 12:23:54.543: ppp13 LCP: MRU 1492 (0x010405D4)
Nov 15 12:23:54.543: ppp13 LCP: AuthProto CHAP (0x0305C22305)
Nov 15 12:23:54.543: ppp13 LCP: MagicNumber 0xB0EC4557 (0x0506B0EC4557)
Nov 15 12:23:54.543: ppp13 LCP: MRU 1492 (0x010405D4)
Nov 15 12:23:54.543: ppp13 LCP: AuthProto CHAP (0x0305C22305)
Nov 15 12:23:54.543: ppp13 LCP: MagicNumber 0xB0EC4557 (0x0506B0EC4557)
Nov 15 12:23:54.543: ppp13 LCP: State is Open
Nov 15 12:23:54.543: ppp13 LCP: Phase is AUTHENTICATING, by this end
Nov 15 12:23:54.543: ppp13 CHAP: O CHALLENGE id 1 len 25 from "7200"
Nov 15 12:23:54.547: ppp13 CHAP: I RESPONSE id 1 len 38 from "nobody@example.com"
Nov 15 12:23:54.547: ppp13 PPP: Phase is FORWARDING, Attempting Forward
Nov 15 12:23:54.547: SSS INFO: Element type is Unauth-User, string value is nobody@example.com
Nov 15 12:23:54.547: SSS INFO: Element type is AccIe-Hdl, ptr value is B200000C
Nov 15 12:23:54.547: SSS INFO: Element type is AAA-Id, long value is 14
Nov 15 12:23:54.547: SSS MGR [uid:13]: Handling Policy Authorize (1 pending sessions)
Nov 15 12:23:54.547: SSS PM [uid:13]: Received More Keys
Nov 15 12:23:54.547: SSS PM [uid:13]: Handling Authorization Check
Nov 15 12:23:54.547: SSS PM [uid:13]: Sending authorization request for 'example.com'
Nov 15 12:23:54.547: SSS AAA AUTHOR [uid:13]:Event <make request>, state changed from idle to authorizing
Nov 15 12:23:54.547: SSS AAA AUTHOR [uid:13]:Authorizing key example.com
Nov 15 12:23:54.551: SSS AAA AUTHOR [uid:13]:AAA request sent for key example.com
Nov 15 12:23:54.551: SSS AAA AUTHOR [uid:13]:Event <found service>, state changed from authorizing to complete
Nov 15 12:23:54.551: SSS AAA AUTHOR [uid:13]:Found service info for key example.com
Nov 15 12:23:54.551: SSS AAA AUTHOR [uid:13]:Event <free request>, state changed from complete to terminal
Nov 15 12:23:54.551: SSS AAA AUTHOR [uid:13]:Free request
Nov 15 12:23:54.551: SSS PM [uid:13]: Handling Service Direction
Nov 15 12:23:54.551: SSS MGR [uid:13]: Got reply Forwarding from PM
Nov 15 12:23:54.551: SSS MGR [uid:13]: Handling Connect-Service event
Nov 15 12:23:54.551: VPDN CALL [uid:13]: Event client connect, state changed from idle to connecting
Nov 15 12:23:54.551: VPDN CALL [uid:13]: Requesting connection
Nov 15 12:23:54.551: VPDN CALL [uid:13]: Call request sent
Nov 15 12:23:54.551: VPDN MGR [uid:13]: Session state change from idle to wait-for-connection
Nov 15 12:23:54.551: Tnl/Sn61510/7 L2TP: Session FS enabled
Nov 15 12:23:54.551: Tnl/Sn61510/7 L2TP: Session state change from idle to wait-for-tunnel
Nov 15 12:23:54.551: uid:13 Tnl/Sn61510/7 L2TP: Create session
Nov 15 12:23:54.551: uid:13 Tnl/Sn61510/7 L2TP: 0 ICRQ to rpl 9264/0
Nov 15 12:23:54.555: Tnl61510 L2TP: Control channel retransmit delay set to 1 seconds
Nov 15 12:23:54.555: uid:13 Tnl/Sn61510/7 L2TP: Session state change from wait-for-tunnel to wait-reply
Nov 15 12:23:54.555: uid:13 Tnl/Sn61510/7 L2TP: 0 ICCN to rpl 9264/13586
Nov 15 12:23:54.559: Tnl61510 L2TP: Control channel retransmit delay set to 1 seconds
Nov 15 12:23:54.559: uid:13 Tnl/Sn61510/7 L2TP: Session state change from wait-reply to established
Nov 15 12:23:54.559: uid:13 Tnl/Sn61510/7 L2TP: VPDN session up
Nov 15 12:23:54.559: VPDN MGR [uid:13]: Event peer connected, state changed from connecting to connected
Nov 15 12:23:54.559: VPDN MGR [uid:13]: Succeed to forward nobody@example.com
Nov 15 12:23:54.559: VPDN MGR [uid:13]: accounting start sent
Troubleshooting the Subscriber Service Switch on the LAC--Authorization Failure Example

The following is sample output indicating call failure due to authorization failure:

*Nov 15 12:37:24.535: PPPoE 0: I PADI R:0000.0c14.71d0 L:ffff.ffff.ffff 1/32
ATM4/0.132
*Nov 15 12:37:24.535: PPPoE 0: O PADO R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.539: PPPoE 0: I PADR R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.539: PPPoE : encap string prepared
*Nov 15 12:37:26.527: [18]PPPoE 15: Service request sent to SSS
*Nov 15 12:37:24.539: [18]PPPoE 15: Created R:00b0.c2e9.c870 L:0000.0c14.71d0 1/32
ATM4/0.132
*Nov 15 12:37:24.559: SSS INFO: Element type is Access-Type, long value is 3
*Nov 15 12:37:24.559: SSS INFO: Element type is Switch-Id, long value is -738197487
*Nov 15 12:37:24.559: SSS INFO: Element type is Nasport, ptr value is 63C0E590
*Nov 15 12:37:24.559: SSS INFO: Element type is AAA-Id, long value is 19
*Nov 15 12:37:24.559: SSS INFO: Element type is AccIe-Hdl, ptr value is 5B000011
*Nov 15 12:37:24.559: SSS MGR [uid:18]: Handling Policy Authorize (1 pending sessions)
*Nov 15 12:37:24.559: SSS PM [uid:18]: Received Service Request
*Nov 15 12:37:24.559: SSS PM [uid:18]: Handling Authorization Check
*Nov 15 12:37:24.559: SSS PM [uid:18]: Policy requires 'Unauth-User' key
*Nov 15 12:37:24.559: SSS PM [uid:18]: Policy reply - Need more keys
*Nov 15 12:37:24.559: [18]PPPoE 15: O PADS R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.559: [18]PPPoE 15: created R:00b0.c2e9.c870 L:0000.0c14.71d0 1/32
ATM4/0.132
*Nov 15 12:37:24.559: PPPoE 0: I PADD R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.559: PPPoE 0: I PADD R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.559: PPPoE 0: I PADD R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
*Nov 15 12:37:24.559: PPPoE 0: I PADD R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32
ATM4/0.132
Troubleshooting the Subscriber Service Switch on the LAC--Authentication Failure Example

The following is sample output indicating call failure due to authentication failure at the LNS:

Nov 15 12:45:02.067: PPPoE 0: I PADI R:0000.0c14.71d0 L:ffff.ffff.ffff 1/32 ATM4/0.132
Nov 15 12:45:02.071: PPPoE 0: O PADT: R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132
Nov 15 12:45:02.071: [18]PPPoE 15: State LCP_NEGO Event PPP_DISCNCT
Nov 15 12:45:02.071: [18]PPPoE 15: O PADT R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132
Nov 15 12:45:02.071: [18]PPPoE 15: Destroying R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32 ATM4/0.132

Troubleshooting the Subscriber Service Switch on the LAC--Authentication Failure Example

Configuration Examples for Configuring a Subscriber Service Switch Policy

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT 299
*Nov 15 12:45:02.071: PPPoE : encap string prepared
*Nov 15 12:45:02.071: [21]PPPoE 18: Access IE handle allocated
*Nov 15 12:45:02.071: [21]PPPoE 18: pppoe_sss switch updated
*Nov 15 12:45:02.071: [21]PPPoE 18: AAA pppoe_aaa_acct_get_retrieved_attrs
*Nov 15 12:45:02.071: [21]PPPoE 18: AAA pppoe_aaa_acct_get_dynamic_attrs
*Nov 15 12:45:02.071: [21]PPPoE 18: AAA unique ID allocated
*Nov 15 12:45:02.071: [21]PPPoE 18: No AAA accounting method list
*Nov 15 12:45:02.071: [21]PPPoE 18: Service request sent to SSS
*Nov 15 12:45:02.071: [21]PPPoE 18: Created R:00b0.c2e9.c870 L:0000.0c14.71d0 1/32

*Nov 15 12:45:02.091: SSS INFO: Element type is Access-Type, long value is 3
*Nov 15 12:45:02.091: SSS INFO: Element type is Switch-Id, long value is 1946157076
*Nov 15 12:45:02.091: SSS INFO: Element type is Nasport, ptr value is 63B34170
*Nov 15 12:45:02.091: SSS INFO: Element type is AAA-Id, long value is 22
*Nov 15 12:45:02.091: SSS INFO: Element type is AccIe-Hdl, ptr value is 71000014

*Nov 15 12:45:02.091: SSS MGR [uid:21]: Handling Policy Authorize (1 pending sessions)
*Nov 15 12:45:02.091: SSS PM [uid:21]: RM/VPDN disabled: RM/VPDN author not needed
*Nov 15 12:45:02.091: SSS PM [uid:21]: Received Service Request
*Nov 15 12:45:02.091: SSS PM [uid:21]: Handling Authorization Check
*Nov 15 12:45:02.091: SSS PM [uid:21]: Policy requires 'Unauth-User' key
*Nov 15 12:45:02.091: SSS PM [uid:21]: Policy reply - Need more keys
*Nov 15 12:45:02.091: SSS MGR [uid:21]: Got reply Need-More-Keys from PM
*Nov 15 12:45:02.091: SSS MGR [uid:21]: Handling More-Keys event

*Nov 15 12:45:02.091: [21]PPPoE 18: State REQ_NASPORT Event MORE_KEYS
*Nov 15 12:45:02.091: [21]PPPoE 18: O PADS R:0000.0c14.71d0 L:00b0.c2e9.c870 1/32

*Nov 15 12:45:02.091: ppp21 PPP: Using default call direction
*Nov 15 12:45:02.091: ppp21 PPP: Treating connection as a dedicated line
*Nov 15 12:45:02.091: ppp21 PPP: Phase is ESTABLISHING, Active Open
*Nov 15 12:45:02.091: ppp21 LCP: O CONFREQ [Closed] id 1 len 19
*Nov 15 12:45:02.091: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.091: ppp21 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:45:02.091: ppp21 LCP: MagicNumber 0xB0FFA4D8 (0x0506B0FFA4D8)

*Nov 15 12:45:02.091: [21]PPPoE 18: State START_PPP Event DYN_BIND
*Nov 15 12:45:02.095: ppp21 LCP: I CONFREQ [REQsent] id 1 len 14
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x002AA481 (0x0506002AA481)
*Nov 15 12:45:02.095: ppp21 LCP: O CONFACK [REQsent] id 1 len 14
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x002AA481 (0x0506002AA481)

*Nov 15 12:45:02.095: ppp21 LCP: TIMEout: State ACKsent
*Nov 15 12:45:02.095: ppp21 LCP: I CONFREQ [ACKsent] id 2 len 19
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x80FFA4D8 (0x0506B0FFA4D8)
*Nov 15 12:45:02.095: ppp21 LCP: I CONFACK [ACKsent] id 2 len 19
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x80FFA4D8 (0x0506B0FFA4D8)

*Nov 15 12:45:02.095: ppp21 LCP: I CONFREQ [ACKsent] id 2 len 14
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: O CONFACK [ACKsent] id 2 len 14
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x80FFA4D8 (0x0506B0FFA4D8)

*Nov 15 12:45:02.095: ppp21 LCP: Timeout: State ACKsent
*Nov 15 12:45:02.095: ppp21 LCP: O CONFREQ [ACKsent] id 2 len 19
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x80FFA4D8 (0x0506B0FFA4D8)

*Nov 15 12:45:02.095: ppp21 LCP: I CONFACK [ACKsent] id 2 len 19
*Nov 15 12:45:02.095: ppp21 LCP: MRU 1492 (0x010405D4)
*Nov 15 12:45:02.095: ppp21 LCP: AuthProto CHAP (0x0305C22305)
*Nov 15 12:45:02.095: ppp21 LCP: MagicNumber 0x80FFA4D8 (0x0506B0FFA4D8)

*Nov 15 12:45:02.083: ppp21 CHAP: I CHALLENGE id 1 len 25 from "7200"
*Nov 15 12:45:02.083: ppp21 PPP: Phase is FORWARDING, Attempting Forward

*Nov 15 12:45:02.083: SSS INFO: Element type is Unauth-User, string value is nobody@example.com
*Nov 15 12:45:02.083: SSS INFO: Element type is AAA-Id, long value is 4

*Nov 15 12:45:02.083: SSS INFO: Element type is AccIe-Hdl, ptr value is 71000014
*Nov 15 12:45:02.083: SSS INFO: Element type is AAA-Id, long value is 22
Nov 15 12:45:04.083: SSS INFO: Element type is Access-Type, long value is 0
Nov 15 12:45:04.083: SSS MGR [uid:21]: Handling Policy Authorize (1 pending sessions)
Nov 15 12:45:04.083: SSS PM [uid:21]: Handling Authorization Check
Nov 15 12:45:04.083: SSS PM [uid:21]: Handling AAA service Authorization
Nov 15 12:45:04.083: SSS PM [uid:21]: Sending authorization request for 'example.com'
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: Event <make request>, state changed from idle to authorizing
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: Authorizing key example.com
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: AAA request sent for key example.com
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Event <found service>, state changed from authorizing to complete
Nov 15 12:45:04.095: SSS AAA AUTHR [uid:21]: Found service info for key example.com
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Event <free request>, state changed from complete to terminal
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Free request
Nov 15 12:45:04.095: SSS PM [uid:21]: Handling Service Direction
Nov 15 12:45:04.095: SSS PM [uid:21]: Policy reply - Forwarding
Nov 15 12:45:04.095: SSS MGR [uid:21]: Got reply forwarding from PM
Nov 15 12:45:04.099: SSS AAA AUTHOR [uid:21]: Event client connect, state changed from idle to connecting
Nov 15 12:45:04.099: VPDN CALL [uid:21]: Event connect req, state changed from idle to connecting
Nov 15 12:45:04.099: VPDN CALL [uid:21]: Call request sent
Nov 15 12:45:04.099: VPDN MGR [uid:21]: Event peer connected, state changed from connecting to connected
Nov 15 12:45:04.115: VPDN CALL [uid:21]: Connection succeeded
Nov 15 12:45:04.115: PPPoE 18: Phase is FORWARDED, Session Forwarded

Configuring Cisco Subscriber Service Switch Policies

Configuration Examples for Configuring a Subscriber Service Switch Policy

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT

Nov 15 12:45:04.083: SSS INFO: Element type is Access-Type, long value is 0
Nov 15 12:45:04.083: SSS MGR [uid:21]: Handling Policy Authorize (1 pending sessions)
Nov 15 12:45:04.083: SSS PM [uid:21]: Handling Authorization Check
Nov 15 12:45:04.083: SSS PM [uid:21]: Handling AAA service Authorization
Nov 15 12:45:04.083: SSS PM [uid:21]: Sending authorization request for 'example.com'
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: Event <make request>, state changed from idle to authorizing
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: Authorizing key example.com
Nov 15 12:45:04.083: SSS AAA AUTHOR [uid:21]: AAA request sent for key example.com
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Event <found service>, state changed from authorizing to complete
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Found service info for key example.com
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Event <free request>, state changed from complete to terminal
Nov 15 12:45:04.095: SSS AAA AUTHOR [uid:21]: Free request
Nov 15 12:45:04.095: SSS PM [uid:21]: Handling Service Direction
Nov 15 12:45:04.095: SSS PM [uid:21]: Policy reply - Forwarding
Nov 15 12:45:04.095: SSS MGR [uid:21]: Got reply forwarding from PM
Nov 15 12:45:04.099: SSS AAA AUTHOR [uid:21]: Event client connect, state changed from idle to connecting
Nov 15 12:45:04.099: VPDN CALL [uid:21]: Event connect req, state changed from idle to connecting
Nov 15 12:45:04.099: VPDN CALL [uid:21]: Call request sent
Nov 15 12:45:04.099: VPDN MGR [uid:21]: Event peer connected, state changed from connecting to connected
Nov 15 12:45:04.115: VPDN CALL [uid:21]: Connection succeeded
Nov 15 12:45:04.115: PPPoE 18: Phase is FORWARDED, Session Forwarded
Troubleshooting the Subscriber Service Switch on the LNS--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LNS:

```
Router# debug sss event
Router# debug sss error
Router# debug sss fsm
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn sss fsm

SSS:
- SSS events debugging is on
- SSS error debugging is on
- SSS fsm debugging is on
- PPP: PPP protocol negotiation debugging is on
```

Troubleshooting the Subscriber Service Switch on the LNS--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LNS:

```
Router# debug sss event
Router# debug sss error
Router# debug sss fsm
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn sss fsm

SSS:
- SSS events debugging is on
- SSS error debugging is on
- SSS fsm debugging is on
- PPP: PPP protocol negotiation debugging is on
```

Troubleshooting the Subscriber Service Switch on the LNS--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LNS:

```
Router# debug sss event
Router# debug sss error
Router# debug sss fsm
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn sss fsm

SSS:
- SSS events debugging is on
- SSS error debugging is on
- SSS fsm debugging is on
- PPP: PPP protocol negotiation debugging is on
```

Troubleshooting the Subscriber Service Switch on the LNS--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LNS:

```
Router# debug sss event
Router# debug sss error
Router# debug sss fsm
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn sss fsm

SSS:
- SSS events debugging is on
- SSS error debugging is on
- SSS fsm debugging is on
- PPP: PPP protocol negotiation debugging is on
```

Troubleshooting the Subscriber Service Switch on the LNS--Normal Operation Example

The following example shows the debug commands used and sample output indicating normal operation of the Subscriber Service Switch on the LNS:

```
Router# debug sss event
Router# debug sss error
Router# debug sss fsm
Router# debug ppp negotiation
Router# debug vpdn 12x-events
Router# debug vpdn 12x-errors
Router# debug vpdn sss events
Router# debug vpdn sss errors
Router# debug vpdn sss fsm

SSS:
- SSS events debugging is on
- SSS error debugging is on
- SSS fsm debugging is on
- PPP: PPP protocol negotiation debugging is on
```
VPN:
L2X protocol events debugging is on
L2X protocol errors debugging is on
VPDN SSS events debugging is on
VPDN SSS errors debugging is on
VPDN SSS FSM debugging is on

3d17h: Tnl9264 L2TP: I ICRQ from server1 tnl 61510
3d17h: Tnl/Sn9264/13586 L2TP: Session state change from idle to wait-connect
3d17h: Tnl/Sn9264/13586 L2TP: New session created
3d17h: Tnl/Sn9264/13586 L2TP: I ICCN from server1 tnl 61510, cl 7
3d17h: nobody@example.com Tnl/Sn9264/13586 L2TP: Session state change from wait-connect to wait-for-service-selection
3d17h: VPDN SSS []: Event start sss, state changed from IDLE to SSS
3d17h: VPDN SSS [uid:707]: Service request sent to SSS
3d17h: SSS MGR [uid:707]: Event service-request, state changed from wait-for-req to wait-for-auth
3d17h: SSS MGR [uid:707]: Handling Policy Authorize (1 pending sessions)
3d17h: SSS PM [uid:707]: RM/VPDN disabled: RM/VPDN author not needed
3d17h: SSS PM [uid:707]: Multihop disabled: AAA author not needed
3d17h: SSS PM [uid:707]: No more authorization methods left to try, providing default service
3d17h: SSS PM [uid:707]: Received Service Request
3d17h: SSS PM [uid:707]: Event <found>, State: initial-req to end
3d17h: SSS PM [uid:707]: Handling Service Direction
3d17h: SSS PM [uid:707]: Policy reply - Local terminate
3d17h: SSS MGR [uid:707]: Got reply Local-Term from PM
3d17h: SSS MGR [uid:707]: Event policy-connect local, state changed from wait-for-auth to connected
3d17h: SSS MGR [uid:707]: Handling Send-Client-Local-Term event
3d17h: VPDN SSS [uid:707]: Event connect local, state changed from SSS to PPP
3d17h: ppp707 PPP: Phase is ESTABLISHING
3d17h: ppp707 LCP: I FORCED rcvd CONFACK len 15
3d17h: ppp707 LCP: MRU 1492 (0x010405D4)
3d17h: ppp707 LCP: AuthProto CHAP (0x0305C22305)
3d17h: ppp707 LCP: MagicNumber 0xB0EC4557 (0x0506B0EC4557)
3d17h: ppp707 LCP: I FORCED sent CONFACK len 10
3d17h: ppp707 LCP: MRU 1492 (0x010405D4)
3d17h: ppp707 LCP: MagicNumber 0x0017455D (0x05060017455D)
3d17h: ppp707 PPP: Phase is FORWARDING, Attempting Forward
3d17h: VPDN SSS [uid:707]: Event dyn bind resp, state changed from PPP to VPDN
3d17h: ppp707 PPP: Phase is AUTHENTICATING, Unauthenticated User
3d17h: ppp707 PPP: Phase is FORWARDING, Attempting Forward
3d17h: VPDN SSS [uid:707]: Event connect local, state changed from PPP to VPDN
3d17h: VPDN SSS [V14.2]: Event vaccess resp, state changed from PPP to CNCT
3d17h: VPDN SSS [V14.2]: Tnl/Sn9264/13586 L2TP: Session state change from wait-for-service-selection to established
3d17h: V14.2 PPP: Phase is AUTHENTICATING, Authenticated User
3d17h: V14.2 CHAP: O SUCCESS id 1 len 4
3d17h: V14.2 PPP: Phase is UP
3d17h: V14.2 IPCP: O CONFREQ [Closed] id 1 len 10
3d17h: V14.2 IPCP: Address 172.16.0.0 (0x030681010000)
3d17h: V14.2 PPP: Process pending packets
3d17h: V14.2 IPCP: I CONFREQ [Reqsent] id 1 len 10
3d17h: V14.2 IPCP: Address 10.0.0.0 (0x030600000000)
3d17h: V14.2 AAA/AUTHOR/IPCP: Start. Her address 10.0.0.0, we want 10.0.0.0
3d17h: V14.2 AAA/AUTHOR/IPCP: Done. Her address 10.0.0.0, we want 10.0.0.0
3d17h: V14.2 IPCP: Pool returned 10.1.1.3
3d17h: V14.2 IPCP: O CONFNAK [Reqsent] id 1 len 10
3d17h: V14.2 IPCP: Address 10.1.1.3 (0x03065B010103)
3d17h: V14.2 IPCP: I CONFACK [Reqsent] id 1 len 10
3d17h: V14.2 IPCP: Address 172.16.0.0 (0x030681010000)
3d17h: V14.2 IPCP: I CONFREQ [ACKrcvd] id 2 len 10
Troubleshooting the Subscriber Service Switch on the LNS--Tunnel Failure Example

The following is sample output indicating tunnel failure on the LNS:

```
3d17h: L2TP: I SCCRQ from server1 tnl 31399
3d17h: Tnl9349 L2TP: Got a challenge in SCCRQ, server1
3d17h: Tnl9349 L2TP: New tunnel created for remote server1, address 192.168.8.1
3d17h: Tnl9349 L2TP: Tunnel state change from idle to wait-ctl-reply
3d17h: Tnl9349 L2TP: I SCCCN from server1 tnl 31399
3d17h: Tnl9349 L2TP: Tunnel Authentication success
3d17h: Tnl9349 L2TP: Tunnel state change from wait-ctl-reply to established
3d17h: Tnl9349 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: Tnl9349 L2TP: SM State established
3d17h: Tnl9349 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: Tnl9349 L2TP: I ICRQ from server1 tnl 31399
3d17h: Tnl9349 L2TP: Session FS enabled
3d17h: Tnl9349 L2TP: Session state change from idle to wait-connect
3d17h: Tnl9349 L2TP: New session created
3d17h: Tnl9349 L2TP: O ICRP to server1 tnlid 31399/10
3d17h: Tnl9349 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: Tnl/Sn9349/13589 L2TP: Session FS enabled
3d17h: Tnl/Sn9349/13589 L2TP: Session state change from idle to wait-connect
3d17h: Tnl/Sn9349/13589 L2TP: New session created
3d17h: Tnl/Sn9349/13589 L2TP: O ICRP to server1 31399/10
3d17h: Tnl/Sn9349/13589 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: SSS INFO: Element type is Access-Type, long value is 4
3d17h: SSS INFO: Element type is Switch-Id, long value is -1912602284
3d17h: SSS INFO: Element type is Tunnel-Name, string value is server1
3d17h: SSS INFO: Element type is Can-SIP-Redirect, long value is 1
3d17h: SSS INFO: Element type is AAA-Id, long value is 16729
3d17h: SSS INFO: Element type is Acct-Id, ptr value is 8D00016A
3d17h: SSS MGR [uid:709]: Event service-request, state changed from wait-for-req to
3d17h: SSS MGR [uid:709]: Handling Policy Authorize (1 pending sessions)
3d17h: SSS PM [uid:709]: RM/VPDN disabled: RM/VPDN author not needed
3d17h: SSS PM [uid:709]: Multihop disabled: AAA author not needed
3d17h: SSS PM [uid:709]: Multihop disabled: SGF author not needed
3d17h: SSS PM [uid:709]: No more authorization methods left to try, providing default
3d17h: SSS PM [uid:709]: Received Service Request
3d17h: SSS PM [uid:709]: Event <found>, State: initial-req to end
3d17h: SSS PM [uid:709]: Handling Service Direction
3d17h: SSS PM [uid:709]: Policy reply - Local terminate
3d17h: SSS MGR [uid:709]: Got reply Local-Term from PM
3d17h: SSS MGR [uid:709]: Event policy-connect local, state changed from
wait-for-auth to connected
3d17h: SSS MGR [uid:709]: Handling Send-Client-Local-Term event
3d17h: VPDN SSS [uid:709]: Event connect local, state changed from SSS to PPP
3d17h: ppp709 PPP: Phase is ESTABLISHING
3d17h: ppp709 LCP: I FORCED rcvd CONPACK len 15
3d17h: ppp709 LCP: MRU 1492 (0x010405D4)
3d17h: ppp709 LCP: AuthProto CHAP (0x0305C22305)
3d17h: ppp709 LCP: MagicNumber 0xB0FFA4D8 (0x0506B0FFA4D8)
3d17h: ppp709 LCP: I FORCED sent CONPACK len 10
3d17h: ppp709 LCP: MRU 1492 (0x010405D4)
3d17h: ppp709 LCP: MagicNumber 0x0022AA481 (0x05060022AA481)
3d17h: ppp709 PPP: Phase is FORWARDING, Attempting Forward
3d17h: VPDN SSS [uid:709]: Event dyn bind resp, state changed from PPP to PPP
3d17h: ppp709 PPP: Phase is AUTHENTICATION, Unauthenticated User
3d17h: ppp709 CHAP: O FAILURE id 1 len 25 msg is "Authentication failed"
3d17h: ppp709 PPP: Sending Acct Event[Down] id[4159]
3d17h: ppp709 PPP: Phase is TERMINATING
```
3d17h: ppp709 LCP: O TERMREQ [Open] id 1 len 4
3d17h: ppp709 LCP: State is Closed
3d17h: ppp709 PPP: Phase is DOWN
3d17h: ppp709 PPP: Phase is TERMINATING
3d17h: VPDN SSS [uid:709]: Event peer disc, state changed from PPP to DSC
3d17h: nobody@example.com Tnl/Sn9349/13589 L2TP: disconnect (AAA) IETF: 17/user-error Ascend: 26/PPP CHAP Fail
3d17h: nobody@example.com Tnl/Sn9349/13589 L2TP: O CDN to server1 31399/10
3d17h: Tnl9349 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: nobody@example.com Tnl/Sn9349/13589 L2TP: Destroying session
3d17h: nobody@example.com Tnl/Sn9349/13589 L2TP: Session state change from wait-for-service-seleciton to idle
3d17h: VPDN SSS [uid:709]: Event vpdn disc, state changed from DSC to END
3d17h: Tnl9349 L2TP: Tunnel state change from established to no-sessions-left
3d17h: Tnl9349 L2TP: No more sessions in tunnel, shutdown (likely) in 10 seconds
3d17h: SSS MGR [uid:709]: Processing a client disconnect
3d17h: SSS MGR [uid:709]: Event client-disconnect, state changed from connected to end
3d17h: SSS MGR [uid:709]: Handling Send-Service-Disconnect event
3d17h: Tnl9349 L2TP: O StopCCN to server1 tnlid 31399
3d17h: Tnl9349 L2TP: Control channel retransmit delay set to 1 seconds
3d17h: Tnl9349 L2TP: Tunnel state change from no-sessions-left to shutting-down
3d17h: Tnl9349 L2TP: Shutdown tunnel

Where to Go Next

- If you want to establish PPPoE session limits for sessions on a specific permanent virtual circuit or VLAN configured on an L2TP access concentrator, refer to the "Establishing PPPoE Session Limits per NAS Port" module.
- If you want to use service tags to enable a PPPoE server to offer PPPoE clients a selection of service during call setup, refer to the "Offering PPPoE Clients a Selection of Services During Call Setup" module.
- If you want to enable an L2TP access concentrator to relay active discovery and service selection functionality for PPPoE over a L2TP control channel to an LNS or tunnel switch, refer to the "Enabling PPPoE Relay Discovery and Service Selection Functionality" module.
- If you want to configure a transfer upstream of the PPPoX session speed value, refer to the "Configuring Upstream Connections Speed Transfer" module.
- If you want to use the Simple Network Management Protocol (SNMP) to monitor PPPoE sessions, refer to the "Monitoring PPPoE Sessions with SNMP" module.
- If you want to identify a physical subscribe line for RADIUS communication with a RADIUS server, refer to the "Identifying a Physical Subscriber Line for RADIUS Access and Accounting" module.
- If you want to configure a Cisco Subscriber Service Switch, see the "Configuring Cisco Subscriber Service Switch Policies" module.

Additional References

The following sections provide references related to configuring Cisco Subscriber Service Switch policies.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadband access aggregation concepts</td>
<td>"Understanding Broadband Access Aggregation" module</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation.</td>
<td>"Preparing for Broadband Access Aggregation" module</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command</td>
<td>"Wide-Area Networking Commands" chapter in the Cisco IOS Wide-Area Networking</td>
</tr>
<tr>
<td>history, defaults, usage guidelines, and examples</td>
<td>Command Reference</td>
</tr>
<tr>
<td>Configuration procedure for PPPoE.</td>
<td>"Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions"</td>
</tr>
<tr>
<td>Configuration procedures for PPPoA.</td>
<td>"Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions"</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases,</td>
</tr>
<tr>
<td></td>
<td>and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2661</td>
<td>Layer Two Tunneling Protocol L2TP</td>
</tr>
<tr>
<td>RFC 2341</td>
<td>Cisco Layer Two Forwarding (Protocol) L2F</td>
</tr>
<tr>
<td>RFC 2516</td>
<td>A Method for Transmitting PPP Over Ethernet (PPPoE) (PPPoE Discovery)</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>

Feature Information for Configuring a Subscriber Service Switch Policy

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Feature Information for Configuring a Cisco Subscriber Service Switch Policy

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Service Switch</td>
<td>12.2(13)T 12.2(33)SRC</td>
<td>The Subscriber Service Switch provides the framework for the management and scalability of PPP sessions that are switched from one virtual PPP link to another. It gives Internet service providers (ISPs) the flexibility to determine which services to provide to subscribers, the number of subscribers, and how to define the services. The primary purpose of the Subscriber Service Switch is to direct PPP from one point to another using a Layer 2 subscriber policy. In Release 12.2(13)T, this feature was introduced. In Release 12.2(33)SRC, this feature was added to the SR release.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Subscriber Profile Support

The Subscriber Profile Support feature introduces new functionality for the Subscriber Service Switch architecture, a Cisco IOS subsystem that connects subscribers to network access services at Layer 2. This new functionality affects how the Subscriber Service Switch Manager determines a service for each subscriber with a combination of a policy and a service lookup model.

- Finding Feature Information, page 309
- Prerequisites for Configuring Subscriber Profile Support, page 309
- Information About Subscriber Profile Support, page 309
- How to Configure Subscriber Profile Support, page 310
- Configuration Examples for Subscriber Profile Support, page 314
- Additional References, page 315
- Feature Information for Subscriber Profile Support, page 317

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring Subscriber Profile Support

Before configuring the Subscriber Profile Support feature, you need to be familiar with concepts introduced in the Cisco Release 12.2(13)T feature module Subscriber Service Switch, and with the authentication, authorization, and accounting (AAA) and PPP access processes.

Information About Subscriber Profile Support

- New Call Management Support for Subscriber Service Switch Architecture, page 309

New Call Management Support for Subscriber Service Switch Architecture

The Subscriber Service Switch architecture in Cisco IOS Release 12.3(4)T offers a significant improvement in scalability by providing the ability to bypass PPP when forwarding a call. Instead, call
service selection is decided entirely by a Subscriber Service Switch Manager. Client call processes that
terminate subscriber lines or receive subscriber calls send their requests for service direction to the
Subscriber Service Switch Manager, which determines service based on service keys collected by the
Subscriber Service Switch client and a preestablished call service policy. Examples of service keys are a
NAS Port ID (network access server port identifier) and an unauthenticated PPP name. Refer to the
Subscriber Service Switch feature module for more information about service keys.

The Subscriber Profile Support feature introduces the **subscriber profile** command and its **service**
subcommands, which support the Subscriber Service Switch policy for searching a subscriber profile
database for authorization data and determining the services that will be granted to the requesting customer.

How to Configure Subscriber Profile Support

The tasks described in this section assume that an operational network running the Subscriber Service
Switch architecture has been configured.

- Configuring VPDN Service for the Subscriber Service Switch Policy, page 310
- Configuring Local Termination Service for the Subscriber Service Switch Policy, page 311
- Configuring Denial of Service for the Subscriber Service Switch Policy, page 312
- RADIUS Subscriber Service Switch Services Configuration, page 314

Configuring VPDN Service for the Subscriber Service Switch Policy

In this task, you configure virtual private dial-up network (VPDN) service by directing the software to
obtain the configuration from a predefined VPDN group.

SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber profile *profile-name*
4. service vpdn group *vpdn-group-name*
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Local Termination Service for the Subscriber Service Switch Policy

In this task, you define local termination service for the Subscriber Service Switch policy.

SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber profile *profile-name*
4. service local
5. exit

### Command or Action	Purpose
Step 3 subscriber profile *profile-name* | Names a Subscriber Service Switch policy for local searches of a subscriber profile database for authorization data when a AAA network authorization method list is configured, and enters subscriber profile configuration mode.

Example:

```
Router(config)# subscriber profile Domain1
```

Note Make sure that the **aaa authorization network default local** global configuration command is included in the configuration.
(Do not use the **aaa authorization network default** command without the **local** keyword.)

Step 4 service vpdn group *vpdn-group-name* | Provides VPDN service by obtaining the configuration from a VPDN group defined by the **vpdn-group** VPDN profile configuration command.

Example:

```
Router(config-sss-profile)# service vpdn group 1
```

Step 5 exit | Exits subscriber profile configuration mode.

Example:

```
Router(config-sss-profile)# exit
```

- What to Do Next, page 311

What to Do Next

See the [RADIUS Subscriber Service Switch Services Configuration](#), page 314 section for information about creating the script for the corresponding RADIUS AV pair Subscriber Service Switch attribute.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 subscriber profile profile-name</td>
<td>Names a Subscriber Service Switch policy for local searches of a subscriber profile database for authorization data when a AAA network authorization method list is configured, and enters subscriber profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# subscriber profile Domain1</td>
<td>Note Make sure that the <code>aaa authorization network default local</code> global configuration command is included in the configuration. (Do not use the <code>aaa authorization network default local</code> command without the <code>local</code> keyword.)</td>
</tr>
<tr>
<td>Step 4 service local</td>
<td>Configures local termination, and is the default Subscriber Service Switch policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# service local</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits subscriber profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# exit</td>
<td></td>
</tr>
</tbody>
</table>

- **What to Do Next, page 312**

What to Do Next

See the RADIUS Subscriber Service Switch Services Configuration, page 314 section for information about creating the script for the corresponding RADIUS AV pair Subscriber Service Switch attribute.

Configuring Denial of Service for the Subscriber Service Switch Policy

In this task, you configure a Subscriber Service Switch policy that denies service to a subscriber.
SUMMARY STEPS

1. enable
2. configure terminal
3. subscriber profile *profile-name*
4. service deny
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 subscriber profile profile-name</td>
<td>Names a Subscriber Service Switch policy for local searches of a subscriber profile database for authorization data when a AAA network authorization method list is configured, and enters subscriber profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# subscriber profile Domain1</td>
<td></td>
</tr>
<tr>
<td>Step 4 service deny</td>
<td>Denies service to the subscriber.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# service deny</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits subscriber profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sss-profile)# exit</td>
<td></td>
</tr>
</tbody>
</table>

- What to Do Next, page 314
What to Do Next

See the RADIUS Subscriber Service Switch Services Configuration, page 314 section for information about creating the script for the corresponding RADIUS AV pair Subscriber Service Switch attribute.

RADIUS Subscriber Service Switch Services Configuration

The Cisco AV pairs have been extended to include Subscriber Service Switch service configuration. Subscriber Service Switch values are prefixed with "sss:“, as follows:

cisco-avpair = "sss:sss-service=vpdn" cisco-avpair = "sss:sss-service=local" cisco-avpair = "sss:sss-service=deny"

Configuration Examples for Subscriber Profile Support

- VPDN Service for the Subscriber Service Switch Policy Examples, page 314
- Local Termination for the Subscriber Service Switch Policy Example, page 314
- Denial of Service for the Subscriber Service Switch Policy Example, page 315
- RADIUS Subscriber Service Support Profiles Examples, page 315

VPDN Service for the Subscriber Service Switch Policy Examples

The following example provides VPDN service to users in the domain cisco.com, and uses VPDN group 1 to obtain VPDN configuration information:

```
! subscriber profile cisco.com
  service vpdn group 1
```

The following example provides VPDN service to DNIS 1234567, and uses VPDN group 1 to obtain VPDN configuration information:

```
! subscriber profile dnis:1234567
  service vpdn group 1
```

The following example provides VPDN service using a remote tunnel (used on the multihop node), and uses VPDN group 1 to obtain VPDN configuration information:

```
! subscriber profile host:1ac
  service vpdn group 1
```

Local Termination for the Subscriber Service Switch Policy Example

The following example provides local termination service to users in the domain cisco.com:

```
! subscriber profile cisco.com
  service local
```
Denial of Service for the Subscriber Service Switch Policy Example

The following example denies service to users in the domain cisco.com:

```
! subscriber profile cisco.com
   service deny
```

RADIUS Subscriber Service Support Profiles Examples

The following examples show typical RADIUS AV pair scripts to enable VPDN service and to define the service keys that are collected:

```
# Domain "cisco.com" users get VPDN service with the enclosed configuration.

cisco.com Password = "cisco"
User-Service-Type = Outbound-User,
cisco-avpair = "sss:sss-service=vpdn",
cisco-avpair = "vpdn:tunnel-id=nas-provider",
cisco-avpair = "vpdn:ip-addresses=10.0.3.96",
cisco-avpair = "vpdn:nas-password=secret1",
cisco-avpair = "vpdn:gw-password=secret2"

# Users with DNIS 1234567 get VPDN service with the enclosed configuration.

dnis:1234567 Password = "cisco"
User-Service-Type = Outbound-User,
cisco-avpair = "sss:sss-service=vpdn",
cisco-avpair = "vpdn:tunnel-id=nas-provider",
cisco-avpair = "vpdn:ip-addresses=10.0.3.96",
cisco-avpair = "vpdn:nas-password=secret1",
cisco-avpair = "vpdn:gw-password=secret2"

# Users on the remote tunnel (LAC) get VPDN service with the enclosed configuration.

host:1ac Password = "cisco"
User-Service-Type = Outbound-User,
cisco-avpair = "sss:sss-service=vpdn",
cisco-avpair = "vpdn:tunnel-id=nas-provider",
cisco-avpair = "vpdn:ip-addresses=10.0.3.96",
cisco-avpair = "vpdn:nas-password=secret1",
cisco-avpair = "vpdn:gw-password=secret2"
```

Additional References

<table>
<thead>
<tr>
<th>Related Documents</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Topic</td>
<td></td>
</tr>
<tr>
<td>AAA</td>
<td>Cisco IOS Security Configuration Guide; refer to "Part 1: Authentication, Authorization, and Accounting (AAA)"</td>
</tr>
<tr>
<td>AAA commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Broadband access, PPPoE</td>
<td>Cisco IOS Wide-Area Networking Configuration Guide; refer to "Part 2: Broadband Access"</td>
</tr>
<tr>
<td>Broadband access, PPPoE, commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
<tr>
<td>PPP</td>
<td>Cisco IOS Dial Technologies Configuration Guide; refer to "Part 9: PPP Configuration "</td>
</tr>
<tr>
<td>VPDN</td>
<td>Cisco IOS Dial Technologies Configuration Guide; refer to "Part 8: Virtual Templates, Profiles, and Networks "</td>
</tr>
<tr>
<td>PPP and VPDN commands: complete command syntax, command mode, defaults, usage guidelines, and examples</td>
<td>Cisco IOS Dial Technologies Command Reference</td>
</tr>
<tr>
<td>Subscriber Service Switch</td>
<td>Subscriber Service Switch feature module</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>

Feature Information for Subscriber Profile Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber Profile Support</td>
<td>12.3(4)T</td>
<td>The Subscriber Profile Support feature introduces new functionality for the Subscriber Service Switch architecture, a Cisco IOS subsystem that connects subscribers to network access services at Layer 2. This new functionality affects how the Subscriber Service Switch Manager determines a service for each subscriber with a combination of a policy and a service lookup model. The following commands were introduced or modified: service deny, service local, service vpdn group, subscriber profile.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)
Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Controlling Subscriber Bandwidth

The Dynamic Subscriber Bandwidth Selection (DBS) feature enables wholesale service providers to sell different classes of service to retail service providers by controlling bandwidth at the ATM virtual circuit (VC) level. ATM quality of service (QoS) parameters from the subscriber domain are applied to the ATM PVC on which a PPP over Ethernet (PPPoE) or PPP over ATM (PPPoA) session is established.

- Finding Feature Information, page 319
- Restrictions for Controlling Subscriber Bandwidth, page 319
- Information About Controlling Subscriber Bandwidth, page 319
- How to Control Subscriber Bandwidth, page 321
- Configuration Examples for Controlling Subscriber Bandwidth, page 331
- Additional References, page 332
- Feature Information for Controlling Subscriber Bandwidth, page 333

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for Controlling Subscriber Bandwidth

The DBS feature does not support the following:

- Switched virtual circuits (SVC)
- PA-A1 or PA-A2 port adapters installed in a Cisco 7200 series router
- When changing QoS values dynamically on a VC, there will be some duration (typically milliseconds) during which traffic on the VC is dropped.

Information About Controlling Subscriber Bandwidth

- Traffic-Shaping Parameters, page 320
• Benefits of Controlling Subscriber Bandwidth, page 320

Traffic-Shaping Parameters

Using DBS you can set the ATM permanent virtual circuit (PVC) traffic-shaping parameters to be dynamically changed based on the RADIUS profile of a PPPoE or PPPoA user logging in on the PVC. If the user is the first user on a given PVC, the RADIUS profile values override the default values of the PVC. If users already exist on the PVC, the new value overrides the existing configuration only if it is higher than the existing value. If multiple PPPoE sessions are allowed on a subscriber VC, the highest peak cell rate (PCR) and sustainable cell rate (SCR) of all the sessions are selected as the PCR and SCR, respectively, of the VC.

You can apply DBS QoS parameters per user as well as per domain. If you apply DBS QoS parameters under a domain profile, all users in that profile are assigned the same DBS QoS parameters. These parameters are assigned to the RADIUS profile for that domain. You can also apply distinctive DBS QoS parameters via the RADIUS user profile.

Traffic-shaping parameters can be locally configured by Cisco IOS command-line interface (CLI) in VC-mode, VC-class, range mode, or PVC-in-range mode. These parameters have a lower priority and are overridden by the shaping parameters specified in the domain service profile. Traffic-shaping parameters that are CLI-configured at the VC class interface or subinterface level are treated as the default QoS parameters for the PVCs to which they apply. These parameters are overridden by the domain service profile QoS parameters of the domain the user is logged in to. If no VC class is configured, the default is the unspecified bit rate (UBR).

When a network access server (NAS) sends a domain authorization request and receives an affirmative response from the RADIUS server, this response may include a "QoS-management" string via vendor-specific attribute (VSA) 26 for QoS management in the NAS. The QoS management values are configured as part of the domain service profile attributes on the RADIUS server. These values contain PCR and SCR values for a particular user or domain. If the QoS specified for a domain or user cannot be applied on the PVC to which the session belongs, the session is not established.

Changing PVC traffic parameters because of new simultaneous PPPoE sessions on the PVC does not cause existing PPPoE sessions that are already established to disconnect. Changing domain service profile QoS parameters on the RADIUS server does not cause traffic parameters to automatically change for PVCs that have existing sessions.

When you enter the `dbs enable` or `no dbs enable` command to configure or unconfigure DBS, existing sessions are not disconnected. If you have a session that has been configured for DBS and you configure the `no dbs enable` command on a VC, additional sessions that are configured will display DBS-configured QoS values until the first new session is up. After the first session is brought up, the VC has default and locally configured values. If you configure the `dbs enable` command after multiple sessions are already up on the VC, all sessions on that VC have DBS QoS parameters.

Benefits of Controlling Subscriber Bandwidth

DBS provides the following benefits:

• Wholesale service providers can provide different bandwidth options to their retail service provider customers, such as ISPs and enterprises.
• Subscribers can choose between enhanced and basic service, with a fixed billing plan for each service.
How to Control Subscriber Bandwidth

- Configuring DBS Under a VC Class, page 321
- Configuring DBS on a PVC, page 322
- Configuring DBS on a Range of PVCs, page 323
- Configuring DBS on a PVC Within a PVC Range, page 324
- Configuring the RADIUS Attributes for DBS, page 325
- Verifying DBS, page 326
- Monitoring DBS, page 330

Configuring DBS Under a VC Class

Perform the following task to configure DBS under a VC class.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `vc-class atm vc-class-name`
4. `dbs enable`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 vc-class atm vc-class-name</td>
<td>Creates an ATM VC class and enters ATM VC class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• A VC class can be applied to an ATM interface, subinterface, or VC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vc-class atm class1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring DBS on a PVC

Perform the following task to configure DBS for a PVC.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm number [point-to-point | multipoint]`
4. `pvc [name] vpi/vci`
5. `dbs enable`
6. `protocol pppoe`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 `interface atm number [point-to-point</td>
<td>multipoint]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm 5/0.1 multipoint</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring DBS on a Range of PVCs

Perform this task to configure DBS for a range of PVCs.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number [point-to-point | multipoint]
4. range [range-name] pvc start-vpi / start-vci end-vpi / end-vci
5. dbs enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable

Command or Action

<table>
<thead>
<tr>
<th>Step 4 pvc [name] vpi /vci</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies an ATM PVC and creates or assigns a name to an ATM PVC, and enters interface-ATM-VC configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Note The arguments vpi and vci cannot both be set to 0; if one is 0, the other cannot be 0.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if)# pvc 2/101
```

Command or Action

<table>
<thead>
<tr>
<th>Step 5 dbs enable</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applies DBS QoS parameters.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if-atm-vc)# dbs enable
```

Command or Action

<table>
<thead>
<tr>
<th>Step 6 protocol pppoe</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifies PPPoE as the protocol of the ATM PVC.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if-atm-vc)# protocol pppoe
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm number [point-to-point</td>
<td>multipoint]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 5/0.1 multipoint</td>
<td></td>
</tr>
<tr>
<td>Step 4 range [range-name] pvc start-vpi</td>
<td>start-vci end-vpi</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-subif)# range pvc 0/101 0/500 class-range pppoe</td>
<td></td>
</tr>
<tr>
<td>Step 5 dbs enable</td>
<td>Applies DBS QoS parameters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-vc)# dbs enable</td>
<td></td>
</tr>
</tbody>
</table>

Configuring DBS on a PVC Within a PVC Range

Perform this task to configure DBS for a specific PVC within a range of PVCs.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm number [point-to-point | multipoint]
4. range [range-name] pvc start-vpi | start-vci end-vpi | end-vci
5. in-range [pvc-name] [[vpi | vci]
6. dbs enable
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** interface atm *number* [point-to-point | Specifies an ATM interface or subinterface and enters interface configuration mode.
| | multipoint] |
| **Example:** | Router(config)# interface atm 5/0.1 multipoint |
| **Step 4** range *range-name* [pvc start-vpi / start-vci end-vpi / end-vci] | Defines a range of ATM PVCs and enables PVC range configuration mode. |
| **Example:** | Router(config-subif)# range pvc 0/101 0/500 class-range pppoe |
| **Step 5** in-range *pvc-name* [[vpi | Defines an individual PVC within a PVC range and enables PVC-in-range configuration mode.
| | vci]] |
| **Example:** | Router(config-if-atm-range)# pvc-in-range pvc1 3/104 |
| **Step 6** dbs enable | Applies DBS QoS parameters. |
| **Example:** | Router(config-if-atm-range-pvc)# dbs enable |

Configuring the RADIUS Attributes for DBS

You can apply DBS QoS parameters per user as well as per domain. If you apply DBS QoS parameters under a domain profile, all users in that profile are assigned the same DBS QoS parameters. These parameters are assigned to the RADIUS profile for that domain. You can also apply distinctive DBS QoS parameters via the RADIUS user profile.
Configure the RADIUS attributes listed in this section in the user or domain profiles on the authentication, authorization, and accounting (AAA) server. The user or domain profile is downloaded from the AAA server as part of user authentication.

The QoS management string for DBS has the following syntax:

```
Cisco-Avpair = atm:peak-cell-rate=155000
Cisco-Avpair = atm:sustainable-cell-rate=155000
```

You must configure the PCR. Configuring the SCR is optional. If you configure only the PCR, the ATM service type is an unspecified bit rate (UBR). If you specify both the SCR and the PCR, the ATM service type is a variable bit rate nonreal-time (VBR-nrt) connection.

If the peak rate is greater than the maximum rate permitted on the ATM physical interface, the PCR applied on the ATM PVC is set to the maximum rate. If the specified PCR is less than the minimum rate, then the PCR applied on the ATM PVC is the minimum rate.

If the sustainable-cell-rate (in Kbps) applied exceeds the maximum for the interface, the session is rejected.

Note

DBS cannot change service categories such as from UBR to VBR-nrt. For details, see the table in Configuring Dynamic Subscriber Services.

Verifying DBS

Note

The configuration examples in this section explain the PPPOE termination using a VPDN group. Effective with Cisco IOS Release 12.2(28)SB, PPPOE termination is performed using the BBA group.

SUMMARY STEPS

1. Enter the `show atm pvc vpi / vci` command to view details about ATM PVCs or VCs:
2. Enter the `show atm pvc dbs` command to display information about ATM PVCs that have DBS QoS parameters applied:
3. Enter the `show running-config` command to verify that DBS QoS parameters have been applied. If you enter the `dbs enable` or the `no dbs enable` command, it appears in the output of the `show running-config` command. If you enter the `default dbs enable` command, it does not appear.

DETAILED STEPS

Step 1

Enter the `show atm pvc vpi / vci` command to view details about ATM PVCs or VCs:

Example:

```
Router# show atm pvc 0/75
ATM1/0.4:VCD:1, VPI:0, VCI:75
UBR, PeakRate:149760
AAL5-LLC/SNAP, etype:0x0, Flags:0xC2, VCmode:0x0
OAM frequency:0 second(s), OAM retry frequency:1 second(s)
OAM up retry count:3, OAM down retry count:5
```
Step 2 Enter the `show atm pvc dbs` command to display information about ATM PVCs that have DBS QoS parameters applied:

Example:

```
Router# show atm pvc dbs

VCD / VPI VCI Type Encaps SC Peak Avg/Min Burst
Sts
1/0.7 3 0 95 PVC MUX VBR 2000 700 94

Step 3 Enter the `show running-config` command to verify that DBS QoS parameters have been applied. If you enter the `dbs enable` or the `no dbs enable` command, it appears in the output of the `show running-config` command. If you enter the `default dbs enable` command, it does not appear.

Example:

```
Router# show running-config
Building configuration...
Current configuration : 2902 bytes
!
version 12.2
no service single-slot-reload-enable
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host1
!
```
username nrp1-3 password 0 password5
username xyz@abc.com password 0 password6
ip subnet-zero
!
ip host dirt 172.69.1.129
ip host boot 172.19.192.254
!
vpdn enable
!
vpdn-group lac
request-dialin
    protocol 12f
    domain pepsi.com
    initiate-to ip 10.1.1.5
    local name lac
!
vpdn-group pppoe_terminate
accept-dialin
    protocol pppoe
    virtual-template 1
    pppoe limit per-mac 2000
    pppoe limit per-vc 2000
!
!
vc-class atm pppoa
    encapsulation aal5mux ppp Virtual-Template2
dbs enable
!
vc-class atm pppoe
dbs enable
protocol pppoe
!
interface Loopback1
    no ip address
!
interface FastEthernet0/0
    ip address 10.0.74.211 255.255.255.0
duplex half
    no cdp enable
!
interface ATM1/0
    no ip address
    no ip route-cache
    no ip mroute-cache
    no atm ilmi-keepalive
    atm voice aal2 aggregate-svc upspeed-number 0
!
interface ATM1/0.4 point-to-point
    ip address 10.1.1.6 255.255.255.0
    no ip route-cache
    no ip mroute-cache
    pvc 0/75
dbs enable
    protocol pppoe
!
interface ATM1/0.5 point-to-point
    ip address 10.1.1.6 255.255.255.0
    no ip route-cache
    no ip mroute-cache
    pvc 0/85
!
interface ATM1/0.7 point-to-point
    ip address 10.1.1.6 255.255.255.0
    no ip route-cache
    no ip mroute-cache
    pvc 0/95
class-vc pppoa
    ubr 5000
interface ATM1/0.10 point-to-point
no ip route-cache
no ip mroute-cache
range pvc 0/101 0/500
class-range pppoe
! pvc-in-range 0/102
no dbs enable
!
interface Virtual-Template1
ip unnumbered Loopback1
ip mtu 1492
no keepalive
peer default ip address pool local_pool
ppp authentication chap
!
interface Virtual-Template2
ip address negotiated
ip mtu 1492
peer default ip address pool local_pool
ppp authentication chap
!
interface Virtual-Template10
ip address 192.168.11.1 255.255.255.0
no keepalive
peer default ip address pool p3
ppp authentication chap
!
interface Virtual-Template11
ip address negotiated
no keepalive
ppp chap hostname host1
ppp chap password password1
!
ip local pool p3 192.168.0.0 192.170.12.250
ip local pool local_pool 150.10.3.1 150.10.10.250
ip default-gateway 10.0.74.1
ip classless
ip route 10.0.0.0 255.0.0.0 10.0.74.1
ip route 10.107.164.0 255.255.255.0 FastEthernet0/0
no ip http server
!
!
radius-server host 172.18.0.0 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server key cisco
call rsvp-sync
!
mgcp profile default
!
gatekeeper
shutdown
!
line con 0
line aux 0
line vty 5 15
!
end
## Monitoring DBS

Use the commands listed below to monitor DBS:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug atm events</td>
<td>Displays the normal set of ATM events when a session comes up or goes down.</td>
</tr>
<tr>
<td>debug atm errors</td>
<td>Displays protocol errors and error statistics associated with VCs.</td>
</tr>
<tr>
<td>debug atm status</td>
<td>Displays changes in the status of a VC when a session comes up or goes down or when the VC configuration is changed.</td>
</tr>
<tr>
<td>debug ppp authentication</td>
<td>Displays authentication protocol messages, including Challenge Authentication Protocol (CHAP) packet exchanges and Password Authentication Protocol (PAP) exchanges.</td>
</tr>
<tr>
<td>debug ppp error</td>
<td>Displays protocol errors and error statistics associated with PPP connection negotiation and operation.</td>
</tr>
<tr>
<td>debug ppp negotiation</td>
<td>Enables debugging of PPP negotiation process.</td>
</tr>
<tr>
<td>debug radius</td>
<td>Displays detailed debugging information associated with RADIUS.</td>
</tr>
<tr>
<td>debug vpdn event</td>
<td>Displays Layer 2 tunneling protocol (L2TP) errors and events that are a part of normal tunnel establishment or shutdown for VPDNs.</td>
</tr>
<tr>
<td>debug vpdn 12x-errors</td>
<td>Displays Layer 2 forwarding protocol (L2F) and L2TP errors that prevent tunnel establishment or normal operation.</td>
</tr>
<tr>
<td>debug vpdn 12x-events</td>
<td>Displays L2F and L2TP events that are part of tunnel establishment or shutdown.</td>
</tr>
<tr>
<td>debug vpdn pppoe-errors</td>
<td>Displays PPPoE protocol errors that prevent a session from being established or errors that cause an established session to be closed.</td>
</tr>
<tr>
<td>debug vpdn pppoe-events</td>
<td>Displays PPPoE protocol messages about events that are part of normal session establishment or shutdown.</td>
</tr>
<tr>
<td>show atm pvc</td>
<td>Displays all ATM PVCs and traffic information.</td>
</tr>
<tr>
<td>show atm pvc dbs</td>
<td>Displays ATM PVCs that have DBS QoS parameters applied.</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show atm vc detailed</td>
<td>Displays information about ATM PVCs and SVCs.</td>
</tr>
<tr>
<td>show interfaces virtual-access</td>
<td>Displays status, traffic data, and configuration information about a specified virtual access interface.</td>
</tr>
</tbody>
</table>

### Configuration Examples for Controlling Subscriber Bandwidth

- **Configuring DBS for a VC Example, page 331**
- **Configuring DBS for a PVC Example, page 331**
- **Configuring DBS for a Range of PVCs Example, page 331**
- **Configuring DBS for a PVC Within a PVC Range Example, page 331**
- **Configuring RADIUS Attributes Examples, page 332**

#### Configuring DBS for a VC Example

In the following example, DBS QoS parameters have been applied to a VC called "cisco":

```plaintext
vc-class atm cisco
dbs enable
```

#### Configuring DBS for a PVC Example

In the following example, DBS QoS parameters have been applied on a PVC called "cisco":

```plaintext
interface atm0/0/0.5 point-to-point
ip address 10.0.0.0 255.255.255.0
pvc cisco 0/100
dbs enable
protocol pppoe
```

#### Configuring DBS for a Range of PVCs Example

In the following example, DBS QoS parameters have been applied on a range of PVCs. The range is named "cisco range" and has a start-vpi of 0, a start-vci of 50, an end-vpi of 0, and an end-vci of 70:

```plaintext
interface atm0/0/0.1 multipoint
ip address 10.0.0.0 255.255.255.0
range cisco pvc 0/50 0/70
dbs enable
```

#### Configuring DBS for a PVC Within a PVC Range Example

In the following example, DBS parameters have been applied on PVC 60, which is part of the PVC range called "cisco":

```plaintext
interface atm0/0/0.1 multipoint
```
range cisco pvc 0/50 0/70
pvc-in-range 60
dbs enable

Configuring RADIUS Attributes Examples

The following example shows how to configure RADIUS attributes for a domain profile for DBS:

cisco.com  Password = "cisco", Service-Type = Outbound
Service-Type = Outbound,
Cisco-Avpair = "vpdn:tunnel-id=tunnel33",
Cisco-Avpair = "vpdn:tunnel-type=l2tp",
Cisco-Avpair = "vpdn:ip-addresses=172.16.0.0",
Cisco-Avpair = "atm:peak-cell-rate=155000",
Cisco-Avpair = "atm:sustainable-cell-rate=155000"

The following example shows how to configure RADIUS attributes for a user profile for DBS:

user1@cisco.com Password = "userpassword1", Service-Type = Outbound
Service-Type = Outbound,
Cisco-Avpair = "vpdn:tunnel-id=tunnel33",
Cisco-Avpair = "vpdn:tunnel-type=l2tp",
Cisco-Avpair = "vpdn:ip-addresses=172.16.0.0",
Cisco-Avpair = "atm:peak-cell-rate=155000",
Cisco-Avpair = "atm:sustainable-cell-rate=155000"

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Subscriber Edge Services Manager</td>
<td>Cisco Subscriber Edge Services Manager</td>
</tr>
<tr>
<td>HTTP Redirect-Login on 6400 series routers</td>
<td>&quot;Service Selection Gateway&quot; chapter of the Cisco 6400 Feature Guide for Releases 12.1(5)DB and 12.1(5)DC</td>
</tr>
<tr>
<td>Cisco 6400</td>
<td>Cisco 6400 Software Configuration Guide and Command Reference</td>
</tr>
<tr>
<td>Access Point Name Manager</td>
<td>APN Manager Application Programming Guide</td>
</tr>
<tr>
<td>RADIUS configuration</td>
<td>&quot;Configuring RADIUS&quot; chapter of the Cisco IOS Security Configuration Guide</td>
</tr>
<tr>
<td>RADIUS attributes</td>
<td>&quot;RADIUS Attributes&quot; appendix to the Cisco IOS Security Configuration Guide</td>
</tr>
<tr>
<td>Broadband access aggregation concepts</td>
<td>“Understanding Broadband Access Aggregation” module</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>“Preparing for Broadband Access Aggregation” module</td>
</tr>
</tbody>
</table>
Feature Information for Controlling Subscriber Bandwidth

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 25  Feature Information for Controlling Subscriber Bandwidth

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Configuration Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Subscriber Bandwidth Selection (DBS)</td>
<td>12.2(4)B 12.2(13)T</td>
<td>This feature enables wholesale service providers to sell different classes of service to retail service providers by controlling bandwidth at the ATM virtual circuit (VC) level. ATM quality of service (QoS) parameters from the subscriber domain are applied to the ATM PVC on which a PPPoE or PPPoA session is established.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: [www.cisco.com/go/trademarks](http://www.cisco.com/go/trademarks). Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Configuring the Physical Subscriber Line for RADIUS Access and Accounting

Configuring a physical subscriber line for RADIUS Access and Accounting enables an L2TP access concentrator (LAC) and an L2TP network server (LNS) to forward RADIUS NAS-Port and NAS-Port-Type attribute values for PPP over ATM, PPPoE over ATM, and PPPoE over IEEE 802.1Q VLANs.

- Finding Feature Information, page 335
- Prerequisites for Configuring the Physical Subscriber Line for RADIUS Access and Accounting, page 335
- Information About Configuring the Physical Subscriber Line for RADIUS Access and Accounting, page 336
- How to Configure the Physical Subscriber Line for RADIUS Access and Accounting, page 337
- Configuration Examples for Identifying the Physical Subscriber Line, page 339
- Additional References, page 341
- Feature Information for Identifying the Physical Subscriber Line for RADIUS Access and Accounting, page 343

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for Configuring the Physical Subscriber Line for RADIUS Access and Accounting

- RADIUS port identification for PPP requires the PPP extended NAS-Port format.
- You must perform the configuration procedures in the "Configuring RADIUS" chapter in the Cisco IOS Security Configuration Guide.
- You must perform the PPP over ATM configuration procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions" module.
• You must perform the PPPoE configuration procedures in the "Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions" module.

The PPP extended NAS-Port format increases the size of the NAS-Port attribute field to 32 bits and changes the NAS-Port attribute format to provide the RADIUS server with details about the ATM port, the virtual path identifier (VPI), the virtual channel identifier (VCI), and, for IEEE 802.1Q VLANs, the VLAN ID.

### Information About Configuring the Physical Subscriber Line for RADIUS Access and Accounting

- PPP over ATM and PPPoE over ATM NAS-Port Attribute Field Format, page 336
- PPPoE over IEEE 802.1Q VLANs Format, page 337

### PPP over ATM and PPPoE over ATM NAS-Port Attribute Field Format

For PPP over ATM and PPP over ATM, the PPP extended format enables the NAS-Port attribute field to provide details about the ATM interface, VPI, and VCI. The figure below shows the format of the NAS-Port attribute field when the PPP extended NAS-Port format is configured and PPPoA over ATM or PPPoE over ATM is being used.

![Figure 18 Format of the NAS-Port Attribute Field for PPP over ATM and PPPoE over ATM](image)

The interfaces, VPI, and VCI correspond to the interface and virtual circuit (VC) on which the ppp session entered the router.

**Note**

For Cisco 6400 series routers, the interface, VPI, and VCI correspond to the interface and VC on which the session entered the Cisco 6400 node switch processor (NSP).

The figure below shows the format of the 8-bit interface field. For platforms that do not have slots or modules, the slot and module fields is 0.

![Figure 19 Format of the Interface Field for PPP over ATM and PPPoE over ATM](image)
The NAS-Port-Type value for PPP over ATM and PPPoE over ATM is 5, which is the value for virtual port types.

**PPPoE over IEEE 802.1Q VLANs Format**

For PPPoE over 802.1Q VLANs, the PPP extended format provides details about the interface and the VLAN ID. The figure below shows the format of the NAS-Port attribute field when the PPP extended NAS-Port format is configured and PPPoE over an IEEE 802.1Q VLAN is being used.

![Figure 20](image)

**Figure 20**  
Format of the NAS-Port Attribute Field for PPPoE over 802.1Q VLANs

The figure below shows the format of the 8-bit interface field. For platforms that do not have slots or modules, the slot and module fields will be 0.

![Figure 21](image)

**Figure 21**  
Format of the Interface Field for PPPoE over 802.1Q VLANs

The NAS-Port-Type value for PPPoE over 802.1Q VLANs is 15.

**How to Configure the Physical Subscriber Line for RADIUS Access and Accounting**

- Configuring the LAC for RADIUS Port Identification for PPP, page 337
- Configuring the LNS for RADIUS Port Identification for PPP, page 338

**Configuring the LAC for RADIUS Port Identification for PPP**

Perform this task to configure the LAC for RADIUS port identification for PPP.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. radius-server attribute nas-port format d
4. end
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>radius-server attribute nas-port format d</code></td>
<td>Specifies that PPP extended NAS-Port format that is used for RADIUS accounting.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# radius-server attribute nas-port format d</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>end</code></td>
<td>Ends the configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-bba-group)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

### Configuring the LNS for RADIUS Port Identification for PPP

Perform this task to configure the LNS for RADIUS port identification for PPP.

**Note**

In order for the LNS to forward PPP extended NAS-Port format values to the RADIUS server, both the LAC and the LNS must be Cisco routers running a Cisco IOS image that supports RADIUS port identification for PPP.

### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `radius-server attribute nas-port format d`
4. `vpdn aaa attribute nas-port vpdn-nas`
5. `end`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  - Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** Router# configure terminal |
| **Step 3** radius-server attribute nas-port format d | Specifies that PPP extended NAS-Port format that is used for RADIUS accounting. |
| **Example:** Router(config)# radius-server attribute nas-port format d |
| **Step 4** vpdn aaa attribute nas-port vpdn-nas | Enables the LNS to send PPP extended NAS-Port format values to the RADIUS server for accounting. |
| **Example:** Router(config)# vpdn aaa attribute nas-port vpdn-nas |
| **Step 5** end | Ends the configuration session and returns to privileged EXEC mode. |
| **Example:** Router(config-bba-group)# end |

## Configuration Examples for Identifying the Physical Subscriber Line

- RADIUS Port Identification for PPPoE over ATM Example, page 340
- RADIUS Port Identification for PPPoE over an 802.1Q VLAN Example, page 340
- LNS Configuration for RADIUS Port Identification for PPP Example, page 341
RADIUS Port Identification for PPPoE over ATM Example

The following example shows the configuration of the PPP extended NAS-Port format on an LAC using PPPoE over ATM:

```
vpdn enable
vpdn-group 1
 request-dialin
 protocol l2tp
domain vpn1

 initiate-to ip 10.12.1.64 priority 1
 local name NAS1-1

 virtual-template 1 pre-clone 20
 virtual-template 2 pre-clone 20

 bba-group pppoe vpn1
 virtual-template 1
 sessions per-vc limit 2
 sessions per-mac limit 1

 interface ATM4/0.1 multipoint
 pvc 1/33
 encapsulation aal5snap
 protocol pppoe group vpn1

 aaa new-model
 aaa authentication ppp default local group radius
 aaa authorization network default local group radius
 aaa accounting network default start-stop group radius
 radius-server host 172.69.69.66 auth-port 1645 acct-port 1646
 radius-server retransmit 3
 radius-server attribute nas-port format d
 radius-server key rad123
```

RADIUS Port Identification for PPPoE over an 802.1Q VLAN Example

The following example shows the configuration of the PPP extended NAS-Port format on an LAC running PPPoE over an 802.1Q VLAN:

```
bba-group pppoe global
 virtual-template 1
 sessions max limit 8000
 sessions per-vc limit 8
 sessions per-mac limit 2

 bba-group pppoe vpn1
 virtual-template 1
 sessions per-vc limit 2
 sessions per-mac limit 1

bba-group pppoe vpn2
 virtual-template 2
 sessions per-vc limit 2
```
LNS Configuration for RADIUS Port Identification for PPP Example

In the following example, the LNS is configured to recognize and forward PPP extended NAS-Port format values to the RADIUS server. The PPP extended NAS-Port format must also be configured on the LAC for this configuration to be effective.

```
sessions per-mac limit 1!
vc-class atm class-pppoe-global
protocol pppoe
!
interface FastEthernet2/0.2
encapsulation dot1Q 2
pppoe enable group vpn1
!
interface FastEthernet2/0.3
encapsulation dot1Q 3
pppoe enable group vpn2
!

aaa new-model

aaa authentication ppp default local group radius
aaa authorization network default local group radius
aaa accounting network default start-stop group radius
radius-server host 172.69.69.66 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server attribute nas-port format d

radius-server key rad123

vpdn enable
no vpdn logging
!
vpdn-group L2TP-tunnel
accept-dialin
protocol l2tp
virtual-template 1
terminate-from hostname lac1
local name lns1
!

aaa new-model
aaa authentication ppp default local group radius
aaa authorization network default local group radius
aaa accounting network default start-stop group radius
radius-server host 172.79.79.76 auth-port 1645 acct-port 1646
radius-server retransmit 3
radius-server attribute nas-port format d
radius-server key lns123
!

vpdn aaa attribute nas-port vpdn-nas
```

Additional References

The following sections provide references related to the Identifying the Physical Subscriber Line for RADIUS Access and Accounting feature.
### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring PPP over ATM sessions</td>
<td>&quot;Providing Protocol Support for Broadband Access Aggregation of PPP over ATM Sessions&quot; module</td>
</tr>
<tr>
<td>Configuring PPPoE sessions</td>
<td>&quot;Providing Protocol Support for Broadband Access Aggregation of PPPoE Sessions&quot; module</td>
</tr>
<tr>
<td>RADIUS configuration</td>
<td>&quot;Configuring RADIUS&quot; module of the <em>Cisco IOS Security Configuration Guide</em></td>
</tr>
<tr>
<td>RADIUS attributes</td>
<td>&quot;RADIUS Attributes&quot; appendix to the <em>Cisco IOS Security Configuration Guide</em></td>
</tr>
<tr>
<td>Tunneling configuration</td>
<td>&quot;Configuring Virtual Private Networks&quot; module of the <em>Cisco IOS Dial Technologies Configuration Guide</em></td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIBs are supported by this feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Identifying the Physical Subscriber Line for RADIUS Access and Accounting

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to [www.cisco.com/go/cfn](http://www.cisco.com/go/cfn). An account on Cisco.com is not required.

Table 26  Feature Information for Identifying the Physical Subscriber Line for RADIUS Access and Accounting

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| RADIUS Port Identification | 12.2(1) 12.2(33)SRC | Configuring RADIUS port identification for PPP enables an L2TP access concentrator (LAC) and an L2TP network server (LNS) to identify and forward RADIUS NAS-Port and NAS-Port-type attribute values for PPP over ATM, PPPoE over ATM, and PPPoE over IEEE 802.1Q VLANs.  
In 12.2(1), this feature was introduced.  
In 12.2(33)SRC, this feature was integrated into the SRC release. |
Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
1-Port ADSL WAN Interface Card

This feature module describes the 1-port Asymmetric Digital Subscriber Line (ADSL) Wide Area Network (WAN) Interface Card (WIC) feature. It describes the benefits of the feature, supported platforms, configuration, related documents, and provides command reference information.

The Cisco ADSL WAN interface cards are 1-port WAN interface cards (WIC) for Cisco modular access routers. These cards provide high-speed ADSL digital data transfer between a single customer premises equipment (CPE) subscriber and a central office.

ADSL is a last-mile access technology that uses an asymmetrical data rate over a single copper wire pair.

The ADSL WICs are available in two variations: ADSL over POTS (WIC-1ADSL), and ADSL over ISDN WAN with Dying Gasp support (WIC-1ADSL-I-DG). The following bullets summarize the features of each card:

- Cisco WIC-1ADSL--Provides ADSL services over ordinary telephone lines. It is compatible with the Alcatel Digital Subscriber Loop Access Multiplexer (DSLAM), the Cisco 6260 DSLAM with Flexi-line cards, and the Cisco 6130 DSLAM with Flexi-line cards.
- Cisco WIC-1ADSL-I-DG--Provides ADSL services in areas of the world that have extensive ISDN backbones already in place. It is compatible with ECI, Siemens, Alcatel, and Cisco DSLAMs that support ISDN.

All Cisco ADSL WICs support Asynchronous Transfer Mode (ATM) Adaptation Layer 2 (AAL2) for the Cisco 2600, Cisco 3600, and Cisco 3700 series only, and AAL5 for the those models as well as for the Cisco 1700. The cards support various classes of Quality of Service (QoS) for both voice and data.

- Finding Feature Information, page 345
- Restrictions for 1-Port ADSL WAN Interface Card, page 346
- Information About 1-Port ADSL WAN Interface Card, page 346
- How to Configure 1-Port ADSL WAN Interface Card, page 346
- Configuration Examples for 1-Port ADSL WAN Interface Card, page 347
- Additional References, page 347
- Feature Information for 1-Port ADSL WAN Interface Card, page 349

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.
Restrictions for 1-Port ADSL WAN Interface Card

The Cisco ADSL WAN interface cards do not support dual latency, ADSL2, or ADSL2plus. When the ADSL link is intended to support both voice and data traffic simultaneously, the link should be configured for either all fast-path data or all interleave data, with an interleave depth of zero to ensure that latency is minimized. In addition, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.

Information About 1-Port ADSL WAN Interface Card

- Benefits, page 346

Benefits

Both Cisco ADSL WAN interface cards provide the following benefits:

- Enable business-class broadband service with voice integration, scalable performance, flexibility, and security
- Aggregate both ADSL and other transport options into a single box
- Provide ADSL high-speed digital data transmissions between CPE and the central office (CO)
- Support ATM AAL5 services and applications, ATM class of service (constant bit rate [CBR], variable bit rate-nonreal time [VBR-NRT], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR]), as well as up to 23 virtual circuits on a WIC in Cisco routers
- Provide ATM traffic management and QoS features to enable service providers to manage their core ATM network infrastructure.

The following benefits are specific to each card:

- Cisco WIC-1ADSL--Supports and complies with ANSI T1.413 Issue 2, and ITU G.992.1, Annex A (G.DMT for full-rate ADSL over POTS)
- Cisco WIC-1ADSL-I-DG--Allows the coexistence of ADSL and ISDN on the same local loop; supports and complies with ITU G.992.1, Annex B (G.DMT for full-rate ADSL over ISDN), ETSI 101-388, and the Deutsche Telekom U-R2 specification

How to Configure 1-Port ADSL WAN Interface Card

This section documents the new or changed Cisco IOS commands for configuring the Cisco ADSL WAN Interface Card feature. All other commands used to configure that feature are documented in the following publications:

- Configuring an ADSL WAN Interface Card on Cisco 1700 Series Routers
- The "Configuring ATM" section of the Cisco IOS Wide-Area Networking Configuration Guide
- The "ATM Commands" section of the Cisco IOS Wide-Area Networking Command Reference

See the following sections for configuration information:
Configuration Examples for 1-Port ADSL WAN Interface Card

- Example Configuring Bridging on the ATM Interface with a Cisco ADSL WIC, page 347

Example Configuring Bridging on the ATM Interface with a Cisco ADSL WIC

The following sample shows a Cisco 1700 series router configured for bridging on the ATM interface with a Cisco ADSL WIC:

Current configuration:

```
! version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname meltrack
!
no ip routing
!
interface ATM0
no ip address
atm vc-per-vp 256
 pvc 8/35
 encapsulation aal5snap
!
dsl operating-mode auto
bridge-group 1
!
interface FastEthernet0
no ip address
speed auto
bridge-group 1
!
ip classless
no ip http server
!
bridge 1 protocol ieee
!
line con 0
transport input none
line aux 0
line vty 0 4
login
!
end
```

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
### Related Topic

<table>
<thead>
<tr>
<th>ADSL WAN interface card on Cisco 1700 series routers</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuring an ADSL WAN Interface Card on Cisco 1700 Series Routers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Release Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Release Notes for the Cisco 1700 Series Routers for Cisco IOS Release 12.3(4)T</td>
</tr>
<tr>
<td></td>
<td>• Caveats for Cisco IOS Release 12.3 T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface card installation</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cisco Interface Cards Hardware Installation Guide</td>
</tr>
</tbody>
</table>

| Configuring an ADSL WAN Interface Card             | Configuring an ADSL WAN Interface Card on Cisco 1700 Series Routers |


### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

---

Related Topic: ADSL WAN interface card on Cisco 1700 series routers

Document Title: Configuring an ADSL WAN Interface Card on Cisco 1700 Series Routers

Release Notes

- Release Notes for the Cisco 1700 Series Routers for Cisco IOS Release 12.3(4)T
- Caveats for Cisco IOS Release 12.3 T

Interface card installation

Configuring an ADSL WAN Interface Card

Enhanced Voice and QoS for ADSL and G.SHDSL

Enhanced Voice and QoS for ADSL and G.SHDSL on Cisco 1700 Series, Cisco 2600 Series, and Cisco 3600 Series Routers

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for 1-Port ADSL WAN Interface Card

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port ADSL WAN Interface Card</td>
<td>12.1(3)XJ 12.2(2)T 12.2(13)ZH 12.2(15)ZJ 12.3(4)T</td>
<td>The Cisco ADSL WAN interface cards are 1-port WAN interface cards (WIC) for Cisco modular access routers. These cards provide high-speed ADSL digital data transfer between a single customer premises equipment (CPE) subscriber and a central office. Cisco WIC-1ADSL is supported on the following platforms: Cisco 1720, Cisco 1721, Cisco 1751, Cisco 1760, Cisco 2600, Cisco 2600XM, Cisco 2691, Cisco 3600, Cisco 3700 Cisco WIC-1ADSL-I-DG is supported on the following platforms: Cisco 1721, Cisco 1751, Cisco 1760, Cisco 2600XM, Cisco 2691, Cisco 3700 The following commands were introduced or modified: dsl operating-mode .</td>
</tr>
</tbody>
</table>
1-Port ADSL WAN Interface for the Cisco IAD2420 Series

This feature module describes the 1-port Asymmetric Digital Subscriber Line Wide Area Network (ADSL WAN) Interface for the Cisco IAD2420 Series. It describes the benefits of the new feature, supported platforms, configuration, related documents, and provides command reference information.

- Finding Feature Information, page 351
- Restrictions for 1-Port ADSL WAN Interface, page 351
- Information About 1-Port ADSL WAN Interface, page 351
- How to Configure the 1-Port ADSL WAN Interface, page 354
- Configuration Examples for 1-Port ADSL WAN Interface, page 361
- Additional References, page 364
- Feature Information for 1-Port ADSL WAN Interface, page 366
- Glossary, page 367

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for 1-Port ADSL WAN Interface

The ADSL WAN interface does not support dual latency. When the ADSL link is intended to support both voice and data traffic simultaneously, the link should be configured for either all fast-path data or all interleave data with an interleave depth of zero to insure that latency is minimized. In addition, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.

Information About 1-Port ADSL WAN Interface
ADSL WAN Interface

The ADSL 1-port WAN interface provides asymmetric digital subscriber line (ADSL) high-speed digital data transfer between a single customer premises equipment (CPE) subscriber and the central office. The ADSL WAN interface is compatible with the Alcatel Digital Subscriber Line Access Multiplexer (DSLAM), the Cisco 6260 DSLAM with Flexi-line cards and the Cisco 6130 DSLAM with Flexi-line cards. It supports Asynchronous Transfer Mode (ATM) Adaptation Layer (AAL5 and AAL2) and various classes of Quality of Service (QoS) for both voice and data service.

**Note**

ADSL is a last-mile access technology, which has an asymmetrical data rate running over a single copper wire pair.

The diagrams below show examples of typical deployment scenarios for the Cisco IAD2423.
Benefits

- Enables business class broadband service with voice integration, scalable performance, flexibility, and security.
- Aggregates both ADSL and other transport options onto a single platform.
- Provides both POTS and ADSL high-speed digital data transmissions between the customer premise equipment (CPE) and the central office (CO).
- Supports ITU G.992.1 (or G.DMT, which specifies full-rate ADSL). Supports and complies with ANSI T1.413 issue 2, and ITU G.992.1 (G.DMT for full-rate ADSL).
- Supports ATM AAL5 and AAL2 services and applications, ATM class of service (constant bit rate [CBR], variable bit rate-nonreal time [VBR-NRT], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR]).
- Provides ATM traffic management and Quality of Service (QoS) features to enable service providers to manage their core ATM network infrastructures.
How to Configure the 1-Port ADSL WAN Interface

See the following sections for configuration tasks for the ADSL WAN interface feature. Each task in the list is identified as either required or optional.

- Configuring the ADSL ATM Interface, page 354
- Configuring ATM for AAL2 Voice, page 358
- Configuring RSVP over an ATM Network, page 358
- Verifying the ATM Interface Configuration, page 359
- Troubleshooting Tips, page 360

Configuring the ADSL ATM Interface

If your Cisco IAD has an ADSL port, a default ATM configuration is automatically in effect when the Cisco IAD is first powered on. If your Cisco IAD has a T1-WAN port, a default ATM configuration takes effect when you enter the mode atm controller command. The default ATM configuration has the following operating parameters:

- ADSL port only.
  - Operating mode is auto--The ADSL interface operates in the mode specified by the remote DSL access multiplexer (DSLAM).
- T1-WAN port and ADSL port.
  - Maximum VPIs per VCI (atm vc-per-vc)--1024.
  - No IP address.
  - ATM UNI Version 4.0 is assigned.
  - ATM ILMI keepalive is disabled.
  - No ATM PVCs are configured

To configure the ADSL ATM interface, follow these steps:
### SUMMARY STEPS

1. `enable`  
2. `config terminal`  
3. `controller t1 0`  
4. `mode atm`  
5. `exit`  
6. `interface atm 0`  
7. `ip address ip-address`  
8. `atm uni-version version-number`  
9. `atm ilmi-keepalive seconds`  
10. `pvc [name] vpi/vci`  
11. `protocol ip IP-address`  
12. `vbr-rt peak-rate average-rate burst`  
13. `encapsulation {aal1 | aal2 | aal5cisco | aal5mux | aal5snap}`  
14. `exit`  
15. Repeat steps 9 through 13 for each ATM PVC to be configured.  
16. `dsl operating-mode {ansi-dmt | auto | itu-dmt | splitterless}`  
17. `Router(config-if)# no shutdown`  
18. `exit`  
19. `exit`  
20. `show interface atm 0`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>enable</code></td>
<td>Enters privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>config terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# config terminal</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>controller t1 0</code></td>
<td>Enter controller configuration mode and enter the controller number. The controller number for the T1-WAN port is 0. <strong>Note</strong> This step is only necessary if you have a T1 interface.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# controller t1</code></td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action | Purpose
--- | ---
**Step 4** mode atm | Enable ATM encapsulation and create logical ATM interface 0. Controller framing is automatically set to Extended SuperFrame (ESF). The linecode is automatically set to B8ZS.  
**Note** This step is only necessary if you have a T1 interface.
```
Router(config-ctrl)# mode atm
```

**Step 5** exit | Return to global configuration mode.
```
Example:
Router(config-ctrl)# exit
```

**Step 6** interface atm 0 | Enters interface configuration mode for ATM 0.
```
Example:
Router(config)# interface atm 0
```

**Step 7** ip address ip-address | (Optional) Assigns an IP address to the ADSL ATM interface.
```
Example:
Router(config-if)# ip address 10.2.0.1
```

**Step 8** atm uni-version version-number | (Optional) Assign an ATM user network interface (UNI) version number.
```
Example:
Router(config-if)# atm uni-version 2
```

**Step 9** atm ilmi-keepalive seconds | (Optional) Enable Integrated Local Management Interface (ILMI) keepalives.  
**Note** The default value is 3 seconds.
```
Example:
Router(config-if)# atm ilmi-keepalive
```

**Step 10** pvc [name] vpi/vci | Enters atm-virtual-circuit configuration mode, and configures a new permanent virtual circuit (PVC). Assigning a name is optional.  
**Note** The default traffic shaping is UBR and the default encapsulation is AAL5+LLC/SNAP.
```
Example:
Router(config-if)# pvc vc1 25/35
```

**Step 11** protocol ip IP-address | (Optional) Enable IP and create a point-to-point IP address for the virtual circuit (VC).
```
Example:
Router(config-if-vc)# protocol ip 10.2.0.2
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 12</strong> vbr-rt peak-rate average-rate burst</td>
<td>(Optional) Configure the PVC for real-time variable bit rate (VBR) traffic shaping.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-vc)# vbr-rt 672 672 512</td>
</tr>
<tr>
<td>• Peak rate--peak information rate (PIR)</td>
<td></td>
</tr>
<tr>
<td>• Average rate--average information rate (AIR)</td>
<td></td>
</tr>
<tr>
<td>• Burst--burst size in cells</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> encapsulation {aal1</td>
<td>aal2</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-vc)# encapsulation aal5snap</td>
</tr>
<tr>
<td>• aal1 for AAL1</td>
<td></td>
</tr>
<tr>
<td>• aal2 for AAL2</td>
<td></td>
</tr>
<tr>
<td>• aal5ciscoppp for Cisco PPP over AAL5</td>
<td></td>
</tr>
<tr>
<td>• aal5mux for AAL5+MUX</td>
<td></td>
</tr>
<tr>
<td>• aal5nlpid for AAL5+NLPID</td>
<td></td>
</tr>
<tr>
<td>• aal5snap for AAL5+LLC/SNAP (default)</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> exit</td>
<td>Exit for interface-ATM-VC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-vc)# exit</td>
</tr>
<tr>
<td><strong>Step 15</strong> Repeat steps 9 through 13 for each ATM PVC to be configured.</td>
<td>Configure the ADSL interface mode.</td>
</tr>
<tr>
<td><strong>Step 16</strong> dsl operating-mode {ansi-dmt</td>
<td>auto</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# dsl operating-mode itu-dmt</td>
</tr>
<tr>
<td>• auto --Automatic detection mode (default)</td>
<td></td>
</tr>
<tr>
<td>• itu-dmt --ITU full rate mode (ITU G dmt Issue 1)</td>
<td></td>
</tr>
<tr>
<td>• splitterless --G.lite mode per ITU G.992.2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 17</strong> Router(config-if)# no shutdown</td>
<td>Activate the ATM interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# no shutdown</td>
</tr>
<tr>
<td><strong>Step 18</strong> exit</td>
<td>Exit from the ATM interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>
**Configuring ATM for AAL2 Voice**

This feature enables the Cisco IAD2423 to carry voice traffic (for example, telephone calls and faxes) over ATM networks using AAL2. AAL2 is the most bandwidth-efficient standards-based trunking method for transporting compressed voice, voice-band data, circuit-mode data, and frame-mode data over ATM infrastructures.

For configuration information, refer to the Cisco IOS Release 12.1(2)T feature module, Voice over ATM with AAL2 Trunking on Cisco MC3810 Series Concentrators, located on the World Wide Web at:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t2/dt_aal2v.htm

**Configuring RSVP over an ATM Network**

The RSVP-ATM Quality of Service (QoS) Interworking feature provides support for Controlled Load Service using RSVP over an ATM core network. This feature requires the ability to signal for establishment of switched virtual circuits (SVCs) across the ATM cloud in response to RSVP reservation messages. To meet this requirement, RSVP over ATM supports mapping of RSVP sessions to ATM SVCs.

RSVP-ATM QoS Interworking allows you to:

- Configure an interface or subinterface to dynamically create SVCs in response to RSVP reservation requests. To ensure defined QoS, these SVCs are established having QoS profiles consistent with the mapped RSVP flow specifications (flowspecs).
- Attach Distributed Weighted Random Early Detection (DWRED) group definitions to the PA-A3 ATM PA interface to support per-VC DWRED drop policy. Use of per-VC DWRED ensures that if packets must be dropped, then best-effort packets are dropped first and not those that conform to the appropriate QoS determined by the RSVP's token bucket.
- Configure the IP Precedence and type of service (ToS) values to be used for packets that conform to or exceed QoS profiles. As part of its input processing, RSVP uses the values that you specify to set the ToS and IP Precedence bits on incoming packets. If per-VC DWRED is configured, it then uses the ToS and IP Precedence bit settings on the output interface of the same router in determining which packets to drop. Also, interfaces on downstream routers use these settings in processing packets.

For configuration information, refer to, Configuring RSVP-ATM QoS Interworking, located on the World Wide Web at:


---

### Command or Action	Purpose

**Step 19** | exit

Example:

```
Router(config)# exit
```

Exit from the global configuration mode.

**Step 20** | show interface atm 0

Example:

```
Router> show interface atm 0
```

Verify the ATM interface configuration.

---

**How to Configure the 1-Port ADSL WAN Interface**

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
Verifying the ATM Interface Configuration

To display ATM-specific information about an ATM interface, use the `show interface atm` privileged EXEC command.

```
Router# show interface atm 0
ATM0 is up, line protocol is up
 Hardware is PQUICC Atom1 (with Alcatel ADSL Module)
 Internet address is 15.15.15.3/24
 MTU 4470 bytes, sub MTU 4470, BW 832 Kbit, DLY 20000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ATM, loopback not set
 Keepalive not supported
 Encapsulation(s):, PVC mode
 512 maximum active VCs, 8 current VCCs
 VC idle disconnect time: 300 seconds
 Last input 3d23h, output never, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: Per VC Queueing
 30 second input rate 0 bits/sec, 0 packets/sec
 30 second output rate 0 bits/sec, 0 packets/sec
 333 packets input, 209797720 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 5051487 packets output, 464110057 bytes, 0 underruns
 0 output errors, 0 collisions, 1 interface resets
 0 output buffer failures, 0 output buffers swapped out
```

To display DSL information about an ADSL interface, use the `show dsl interface atm` privileged EXEC command.

```
Router# show dsl interface atm 0
Alcatel 20150 chipset information
 ATU-R (DS) ATU-C (US)
 Modem Status: Showtime (DMTDSL_SHOWTIME)
 DSL Mode: ITU G.992.1 (G.DMT)
 ITU STD NUM: 0x01 0x1
 Vendor ID: 'ALCB'
 Vendor Specific: 0x0000 0x0000
 Vendor Country: 0x00 0x0F
 Capacity Used: 85% 98%
 Noise Margin: 13.5 dB 7.0 dB
 Output Power: 9.5 dBm 10.0 dBm
 Attenuation: 1.5 dB 3.5 dB
 Defect Status: None
 Last Fail Code: None
 Selftest Result: 0x00
 Subfunction: 0x15
 Interrupts: 5940 (0 spurious)
 PHY Access Err: 0
 Activations: 1
 SW Version: 3.670
 FW Version: 0x1A04
 Interleave: Fast Interleave: Fast
 Speed (kbps): 0 8128
 Reed-Solomon EC: 0 0
 CRC Errors: 0 0
 Header Errors: 0 0
 Bit Errors: 0 0
 BER Valid sec: 0 0
 BER Invalid sec: 0 0
 DMT Bits Per Bin
 00: 0 0 0 0 0 0 0 7 6 7 9 A B C C
 10: C C C C C C B B B A 9 A 9 0 0
 20: 0 0 0 0 0 0 2 2 3 4 4 5 6 6 7 7
 30: 7 8 8 8 9 9 9 A A A A A A B B B
```

How to Configure the 1-Port ADSL WAN Interface

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
Troubleshooting Tips

To troubleshoot ADSL line problems, follow these steps:

**SUMMARY STEPS**

1. Check the carrier detect LED on the card. It will be off when the ADSL carrier is not detected. If it is off, it is a physical problem probably due to a bad cable or the problem with ADSL line or WAN service.

2. Make sure the ATM0 interface is not administratively shut down and the cable is good.

3. If the `show interface atm 0` command shows the interface as down, it means the Cisco IAD2423 sees the ADSL carrier but cannot train up with the Digital Subscriber Line Access Multiplexer (DSLAM) at the central office (CO).

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Check the carrier detect LED on the card. It will be off when the ADSL carrier is not detected. If it is off, it is a physical problem probably due to a bad cable or the problem with ADSL line or WAN service.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Make sure the ATM0 interface is not administratively shut down and the cable is good.</td>
</tr>
<tr>
<td>Step 3</td>
<td>If the <code>show interface atm 0</code> command shows the interface as down, it means the Cisco IAD2423 sees the ADSL carrier but cannot train up with the Digital Subscriber Line Access Multiplexer (DSLAM) at the central office (CO). Turn on <code>debug atm events</code> (you need to turn on terminal monitor if you are in a telnet session to the router) and look at the output: The ADSL activation stages are shown below:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOP</th>
<th>in shutdown state</th>
</tr>
</thead>
<tbody>
<tr>
<td>INIT</td>
<td>initialization</td>
</tr>
<tr>
<td>DLOAD_1</td>
<td>init and downloading first image</td>
</tr>
<tr>
<td>DLOAD_2</td>
<td>downloading second image</td>
</tr>
<tr>
<td>DO-OPEN</td>
<td>requesting activation with central office (CO)</td>
</tr>
<tr>
<td>SHOWTIME</td>
<td>activation succeeded</td>
</tr>
</tbody>
</table>

When in DO_OPEN state, look for the modem state for the progress information:

<table>
<thead>
<tr>
<th>Modem state = 0x0</th>
<th>modem down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modem state = 0x8</td>
<td>modem waiting to hear from CO</td>
</tr>
</tbody>
</table>
The following is a sample debug output:

Example:

*Mar  1 00:08:21.771: DSL: SM: [DMTDSL_DO_OPEN -> DMTDSL_INIT]
*Mar  1 00:08:23.771: DSL: SM: [DMTDSL_INIT -> DMTDSL_DLOAD_1]
*Mar  1 00:08:23.771: DSL: Downloading asw_init_2_5_8.bin
*Mar  1 00:08:23.771: DSL: Downloaded 2 blocks... Finished!
*Mar  1 00:08:23.775: DSL: Sent command 0x14
*Mar  1 00:08:26.275: DSL: Received 1 timer events during wait
*Mar  1 00:08:27.715: DSL: SM: [DMTDSL_DLOAD_1 -> DMTDSL_DLOAD_2]
*Mar  1 00:08:27.715: DSL: Downloading asw_r2_5_8.bin
*Mar  1 00:08:27.791: DSL: Downloaded 100 blocks
*Mar  1 00:08:27.863: DSL: Downloaded 200 blocks
*Mar  1 00:08:27.935: DSL: Downloaded 300 blocks
*Mar  1 00:08:27.975: DSL: Downloaded 354 blocks... Finished!
*Mar  1 00:08:29.991: DSL: SM: [DMTDSL_DLOAD_2 -> DMTDSL_DO_OPEN]
*Mar  1 00:08:29.991: DSL: Send ADSL_OPEN command.
*Mar  1 00:08:29.991: DSL: Using subfunction 0x2
*Mar  1 00:08:29.991: DSL: Sent command 0x3
*Mar  1 00:08:32.491: DSL: 1: Modem state = 0x8
*Mar  1 00:08:34.991: DSL: 2: Modem state = 0x8
*Mar  1 00:08:37.491: DSL: 3: Modem state = 0x10
*Mar  1 00:08:39.991: DSL: 4: Modem state = 0x10
*Mar  1 00:08:42.491: DSL: 5: Modem state = 0x10
*Mar  1 00:08:44.991: DSL: 6: Modem state = 0x10
*Mar  1 00:08:46.003: DSL: Received response: 0x24
*Mar  1 00:08:46.003: DSL: Showtime!
*Mar  1 00:08:46.007: DSL: Sent command 0x11
*Mar  1 00:08:46.071: DSL: Received response: 0x61
*Mar  1 00:08:46.111: DSL: Read firmware revision 0x1A04
*Mar  1 00:08:46.111: DSL: SM: [DMTDSL_DO_OPEN -> DMTDSL_SHOWTIME]

Configuration Examples for 1-Port ADSL WAN Interface

- Example Cisco IAD2423 Configuration, page 361

Example Cisco IAD2423 Configuration

The following sample shows a Cisco IAD2423 configuration:

Building configuration...
Current configuration : 3187 bytes
!
version 12.1
no service single-slot-reload-enable
no service pad
service timestamps debug datetime msec
service timestamps log uptime
no service password-encryption
hostname Router
no logging buffered
logging rate-limit console 10 except errors
enable password mortify
network-clock base-rate 56k
network-clock-select 2 system(SCB)
ip subnet-zero
no ip finger
no ip domain-lookup
ip host newrouter 12.2.63.7
ip host motley 222.255.254.254
ip audit notify log
ip audit po max-events 100
frame-relay switching
voice-card 0
interface Ethernet0
   ip address 1.7.18.127 255.255.0.0
   ip helper-address 222.255.254.254
   no ip route-cache
   no ip mroute-cache
load-interval 30
no cdp enable
interface Serial0
   no ip address
   encapsulation frame-relay
   no ip route-cache
   no ip mroute-cache
   no keepalive
   shutdown
   no fair-queue
   no arp frame-relay
   frame-relay traffic-shaping
   frame-relay interface-dlci 200
class fr801
   frame-relay ip rtp header-compression
interface ATM0
   ip address 15.15.15.3 255.255.255.0
   load-interval 30
   no atm ilmi-keepalive
   pvc 25/35
capsulation aal5snap
   pvc 110/110
capsulation aal2
   pvc 111/111
capsulation aal2
   protocol ip 15.15.15.2
   encapsulation aal5snap
   pvc 120/120
capsulation aal2
capsulation aal2
dsl operating-mode itu-dmt
no ip classless
ip route 0.0.0.0 0.0.0.0 1.3.0.1
ip route 163.69.0.0 255.255.0.0 163.22.124.1
ip route 222.255.254.254 255.255.255.255 Ethernet0
no ip http server
map-class frame-relay fr801
no frame-relay adaptive-shaping
frame-relay cir 100000
frame-relay bc 1000
frame-relay mincir 100000
frame-relay fair-queue
!
map-class frame-relay fr38
frame-relay traffic-rate 1500000 1500000
no frame-relay adaptive-shaping
frame-relay cir 1500000
frame-relay mincir 1500000
!
map-class frame-relay voice
!
map-class frame-relay 801
logging trap debugging
no cdp run
call rsvp-sync
!
voice-port 1/1
!
voice-port 1/2
!
voice-port 1/3
!
voice-port 1/4
!
voice-port 1/5
  connection plar 702
!
voice-port 1/6
  connection plar 702
!
mgcp modem passthrough voip mode ca
no mgcp timer receive-rtcp
!
mgcp profile default
!
dial-peer cor custom
!
!
dial-peer voice 1001 pots
  destination-pattern 1001
  port 1/1
!
dial-peer voice 2001 voatm
  destination-pattern 2001
  session protocol aal2-trunk
  session target ATM0 pvc 110/110 101
  signal-type trans
  codec aal2-profile custom 110 g711ulaw
  no vad
!
dial-peer voice 701 pots
  destination-pattern 701
  port 1/1
!
dial-peer voice 702 pots
  destination-pattern 702
  port 1/2
!
dial-peer voice 703 pots
  destination-pattern 703
  port 1/3
!
dial-peer voice 704 pots
  destination-pattern 704
  port 1/4
!
dial-peer voice 705 pots
  destination-pattern 705
  port 1/5
!
dial-peer voice 706 pots
destination-pattern 706
port 1/6
!
dial-peer voice 9999 voip
destination-pattern 2222
session target ipv4:12.12.12.2
signal-type ext-signal
!
dial-peer voice 9998 voip
destination-pattern 2223
session target ipv4:123.123.123.123
signal-type ext-signal
!
dial-peer voice 1000 voip
signal-type ext-signal
!
line con 0
exec-timeout 0 0
privilege level 15
transport input none
line aux 0
line 2 3
line vty 0 4
privilege level 15
no login
!
end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Release notes</td>
<td>• Release Notes for Cisco IAD2420 Series for Cisco IOS Release 12.1(5)XR</td>
</tr>
<tr>
<td></td>
<td>• Cross-Platform Release Notes for Cisco IOS Release 12.2(4)T</td>
</tr>
<tr>
<td>IAD2420 configuration</td>
<td>• Cisco IAD2420 Series Software Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco IAD2420 Series Hardware Installation Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco IAD2420 Series Regulatory Compliance and Safety Information</td>
</tr>
<tr>
<td>Multiservice Applications configuration</td>
<td>• Cisco IOS Multiservice Applications Configuration Guide, Release 12.1</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Multiservice Applications Command Reference, Release 12.1</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>WAN configuration</td>
<td><em>Cisco IOS Wide-Area Networking Configuration Guide</em>, Release 12.1</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU G.992.1</td>
<td>G.DMT</td>
</tr>
<tr>
<td>ITU G.992.2</td>
<td>G.Lite</td>
</tr>
<tr>
<td>T1.413 Issue 2</td>
<td>ANSI</td>
</tr>
<tr>
<td>AAL5</td>
<td>ATM Adaptation Layer 5</td>
</tr>
<tr>
<td>AAL2</td>
<td>ATM Adaptation Layer 2</td>
</tr>
<tr>
<td>UNI3.1 PVC</td>
<td><em>ST2+ over ATM Protocol Specification - UNI 3.1 Version</em></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Interface MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1483</td>
<td><em>Multiprotocol over ATM</em></td>
</tr>
<tr>
<td>RFC 2364</td>
<td><em>PPP over ATM</em></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for 1-Port ADSL WAN Interface

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 28  Feature Information for 1-Port ADSL WAN Interface

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port ADSL WAN Interface</td>
<td>12.1(5)XR1 12.2(4)T</td>
<td>The ADSL 1-port WAN interface provides asymmetric digital subscriber line (ADSL) high-speed digital data transfer between a single customer premises equipment (CPE) subscriber and the central office. The ADSL WAN interface is compatible with the Alcatel Digital Subscriber Line Access Multiplexer (DSLAM), the Cisco 6260 DSLAM with Flexi-line cards and the Cisco 6130 DSLAM with Flexi-line cards. It supports Asynchronous Transfer Mode (ATM) Adaptation Layer (AAL5 and AAL2) and various classes of Quality of Service (QoS) for both voice and data service. The following platforms are supported: Cisco IAD2423-8FXS, Cisco IAD2423-16FXS, Cisco IAD2423-1T1, Cisco IAD2423-16FXS8FXO. The following commands were introduced or modified: <code>dsla operating-mode</code>, <code>show dsl interface atm</code>.</td>
</tr>
</tbody>
</table>

Glossary

**AAL** -- ATM Adaptation Layer. ATM adaptation layer. Service-dependent sublayer of the data link layer. The AAL accepts data from different applications and presents it to the ATM layer in the form of 48-byte ATM payload segments.

**AAL2** -- ATM adaptation layer 2. ATM adaptation layer 2. One of four AALs recommended by the ITU-T. AAL2 is used for connection-oriented services that support a variable bit rate, such as some isochronous video and voice traffic.

**AAL5** -- ATM adaptation layer 5. ATM adaptation layer 5. One of four AALs recommended by the ITU-T. AAL5 supports connection-oriented, VBR services, and is used predominantly for the transfer of classical IP over ATM and LANE traffic.

ADSL -- Asymmetric Digital Subscriber Line.
ATM—Asynchronous Transfer Mode. Asynchronous Transfer Mode - International standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. An internationally standardized implementation of cell relay technology, ATM represents the first worldwide standard to be embraced by the computer, communications, and entertainment industry. ATM is a high-bandwidth, low-delay, connection-oriented, packet-like switching and multiplexing technique for data transmission that communicates all types of information (traditionally data, burst data, voice, video, image, and cell) over a common backbone using fixed cell lengths. ATM uses a 53-byte cell format that includes a 5-byte header and 48 bytes of payload. Because of the architecture, ATM has the capability to run from 45 Mbps using a DS3 to 2.5 Gbps using an OC-48.

broadband—Transmission system that multiplexes multiple independent signals onto one cable. In telecommunications terminology, any channel having a bandwidth greater than a voice-grade channel (4 kHz).

CBR—constant bit rate. QOS class defined by the ATM Forum for ATM networks. CBR is used for connections that depend on precise clocking to ensure undistorted delivery.

CPE—customer premises equipment. Customer Premises Equipment. Devices that a subscriber is responsible for in order to make use of telecommunications. CPE includes PCs, telephones, TVs, scanners, and much more. These devices or terminating equipment—such as terminals, telephones, and modems—are generally supplied by the telephone company, installed at customer sites, and connected to the telephone company network.

CO—Central Office - Local telephone company office to which all local loops in a given area connect and in which circuit switching of subscriber lines occurs. CO refers to the physical facility that contains the telephone switching system, transmission equipment, and other support systems that provide telephone and other telecommunications services to local telephone subscribers. There are numerous types of telephone switching systems, such as 1ESS, 4ESS, 5ESS, DMS 10/100/250/500, EAX2, or GTD5 that can be housed in a central office. The central office is not to be confused with the point of presence (POP) of the interexchange carrier, even though both perform many similar functions.

DSLAM—Digital Subscriber Line Access Multiplexer. A device that concentrates traffic in DSL implementations through a process of time-division multiplexing (TDM) at the CO or remote line shelf. This device is usually located in the CO for termination of multiple customer DSL devices.

DWRED—Distributed Weighted Random Early Detection. Random Early Detection (RED) is a congestion avoidance mechanism that takes advantage of TCP's congestion control mechanism. By randomly dropping packets prior to periods of high congestion, RED tells the packet source to decrease its transmission rate. Assuming the packet source is using TCP, it will decrease its transmission rate until all the packets reach their destination, indicating that the congestion is cleared.

Weighted RED (WRED) generally drops packets selectively based on IP precedence. Packets with a higher IP precedence are less likely to be dropped than packets with a lower precedence. Thus, higher priority traffic is delivered with a higher probability than lower priority traffic. However, you can also configure WRED to ignore IP precedence when making drop decisions so that non-weighted RED behavior is achieved.

ILMI—Interim Local Management Interface. Specification developed by the ATM Forum for incorporating network-management capabilities into the ATM UNI.

POTS—plain old telephone service. Basic analog telephone service, usually associated with residential or business subscribers.

PPP over ATM—Point-to-Point Protocol. A successor to SLIP, PPP provides router-to-router and host-to-network connections over synchronous and asynchronous circuits.

PVC—permanent virtual circuit. Virtual circuit that is permanently established. PVCs save bandwidth associated with circuit establishment and tear down in situations where certain virtual circuits must exist all the time.
QoS—quality of service. Measure of performance for a transmission system that reflects its transmission quality and service availability.

RSVP—Resource Reservation Protocol. The Resource Reservation Protocol is a network-control protocol that enables Internet applications to obtain special qualities of service (QoSs) for their data flows.

SVC—switched virtual circuit. Virtual circuit that is dynamically established on demand and is torn down when transmission is complete. SVCs are used in situations where data transmission is sporadic. Called a switched virtual connection in ATM terminology.

ToS—type of service. See COS.

UBR—unspecified bit rate. QOS class defined by the ATM Forum for ATM networks. UBR allows any amount of data up to a specified maximum to be sent across the network, but there are no guarantees in terms of cell loss rate and delay.

UNI—User-Network Interface. ATM Forum specification that defines an interoperability standard for the interface between ATM-based products (a router or an ATM switch) located in a private network and the ATM switches located within the public carrier network.

VBR—variable bit rate. QOS class defined by the ATM Forum for ATM networks. VBR is subdivided into a real time (RT) class and non-real time (NRT) class.

VC—virtual circuit. Logical circuit created to ensure reliable communication between two network devices. A virtual circuit is defined by a virtual path identifier/virtual channel identifier (VPI/VCI) pair, and can be either a PVC or a SVC. Virtual circuits are used in Frame Relay and X.25. In ATM, a virtual circuit is called a virtual channel.
1-Port ADSL WAN Interface Card for Cisco 2600 Series and Cisco 3600 Series Routers

This document describes the 1-port Asymmetric Digital Subscriber Line (ADSL) WAN Interface Card (WIC) (WIC-1ADSL) feature for Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release xx.x(x)X. It describes the benefits of the new feature, supported platforms, configuration, related documents, and provides command reference information.

- Finding Feature Information, page 371
- Prerequisites for 1-Port ADSL WAN Interface Card, page 371
- Restrictions for 1-Port ADSL WAN Interface Card, page 371
- Information About 1-Port ADSL WAN Interface Card, page 372
- How to Configure 1-Port ADSL WAN Interface Card, page 373
- Configuration Examples for 1-Port ADSL WAN Interface Card, page 377
- Additional References, page 381
- Feature Information for 1-Port ADSL WAN Interface Card, page 382
- Glossary, page 383

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for 1-Port ADSL WAN Interface Card

A 1-Port ADSL WIC must be installed in the router to match the DSL service to be configured.

Restrictions for 1-Port ADSL WAN Interface Card

- The ADSL WAN interface card does not support dual latency. When the ADSL link is intended to support both voice and data traffic simultaneously, the link should be configured for either all fast-path data or all interleave data with an interleave depth of zero to insure that latency is minimized. In
addition, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.

- The ADSL WAN interface card does not support available bit rate (ABR) class of service (CoS).
- For the Cisco 2600 series routers, the ADSL WAN interface card should be inserted only into on-board WIC slots or 2W network modules. This card does not function properly in older network modules.
- For the Cisco 3600 series routers, the ADSL WAN interface card should be inserted only into on-board WIC slots or 2W, 1FE2W, 2FE2W, or 1FE1R2W network modules. This card does not function properly in older network modules.
- When using AAL2, analog voice is not supported. Voice calls should come through a digital voice card, such as the NM-HDV.
- VoATM is supported in both AAL2 and AAL5 modes on the Cisco 2600 series and Cisco 3600 series.
- VoATM AAL2 and AAL5 are supported only if voice and data use separate permanent virtual circuits (PVCs).
- VoATM AAL2 supports digital voice (T1/E1) only, while VoATM AAL5 supports both analog and digital voice.
- VoIP is not supported unless the ADSL WIC carries only voice traffic (with no data). The QoS features necessary for VoIP and data sharing the same PVC, or different PVCs on the same interface, are not supported yet. These features include LLQ, LFI, and tx-ring tuning.

### Information About 1-Port ADSL WAN Interface Card

- ADSL WAN Interface Card, page 372

### ADSL WAN Interface Card

The ADSL WAN interface card is a 1-port WAN interface card (WIC) for the Cisco 2600 series and Cisco 3600 series routers. The card provides asymmetric digital subscriber line (ADSL) high-speed digital data transfer between a single customer premises equipment (CPE) subscriber and the central office.

The ADSL WIC is compatible with the Alcatel Digital Subscriber Loop Access Multiplexer (DSLAM) and the Cisco 6130, Cisco 6160, and Cisco 6260 DSLAMs with Flexi-line cards. It supports Asynchronous Transfer Mode (ATM) Adaptation Layer 2 (AAL2) and AAL5 for the Cisco 2600 series and Cisco 3600 series platforms for both voice and data service.

The general topology is shown in the figure below.

![General Topology for ADSL WIC](image-url)
ADSL is a last-mile access technology, which has an asymmetrical data rate running over a single copper wire pair.

- **Benefits**, page 373

**Benefits**

- Enables business class broadband service with voice integration, scalable performance, flexibility, and security.
- Aggregates both ADSL and other transport options into a single box.
- Provides both POTS and ADSL high-speed digital data transmissions between the customer premises equipment (CPE) and the central office (CO).
- Supports ITU G.992.1 (or G.DMT, which specifies full-rate ADSL).
- Supports and complies with ANSI T1.413 issue 2, and ITU G.992.1 (G.DMT for full-rate ADSL).
- Supports ATM AAL2 and AAL5 services on the Cisco 2600 series and Cisco 3600 series platforms.
- Supports applications (including VoATM voice), ATM class of service (variable bit rate-nonreal time [VBR-NRT], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR]) and up to 23 virtual circuits on a WIC.
- Provides ATM traffic management to enable service providers to manage their core ATM network infrastructures.

**How to Configure 1-Port ADSL WAN Interface Card**

Features used on the ADSL WAN interface card must also be configured on the DSLAM. See the documentation for the specific DSLAM for information about configuring features.

- Configuring the ADSL Port on the ADSL WAN Interface Card, page 373
- Verifying ATM Configuration, page 376

**Configuring the ADSL Port on the ADSL WAN Interface Card**

To configure an ADSL port on the ADSL WAN interface card, complete the following steps:
SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm slot/port
4. ip address IP-address
5. pvc [ name ] vpi/vci
6. protocol ip IP-address
7. vbr-rt peak-rate average-rate burst
8. encapsulation aal2 | aal5ciscoppp | aal5mux | aal5lpid | aal5snap
9. exit
10. dsl operating-mode ansi-dmt | auto | itu-dmt | splitterless
11. Router(config-if)# no shutdown
12. exit
13. exit
14. show interface atm 1/0

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface atm slot/port</td>
<td>Enters ATM configuration mode for the ATM interface in the specified slot and port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ip address IP-address</td>
<td>Assigns an IP address to the ADSL ATM interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.1.1.1 255.0.0.0</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 5</strong> pvc [ name ] vpl/vci</td>
<td>Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and configures a new ATM PVC by assigning a name (optional) and virtual path identifier (VPI)/virtual channel identifier (VCI) numbers. The default traffic shaping is UBR; the default encapsulation is AAL5+LLC/SNAP.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if)# pvc 10/100
```

| **Step 6** protocol ip\[IP-address\] | (Optional) Enables IP connectivity and create a point-to-point IP address for the virtual circuit (VC). |

**Example:**

```
Router(config-if-vc)# protocol ip 10.1.1.2 broadcast
```

| **Step 7** vbr-rt\[peak-rate average-rate burst\] | (Optional) Configures the PVC for real-time variable bit rate (VBR) traffic shaping. |

**Example:**

```
Router(config-if-vc)# vbr-rt 672 672 512
```

- **Peak rate** --Peak information rate (PIR)
- **Average rate** --Average information rate (AIR)
- **Burst** --Burst size in cells

| **Step 8** encapsulation aal2 | aal5ciscopp | aal5mux | aal5nlpid | aal5snap |

(Optional) Configures the ATM adaptation layer (AAL) and encapsulation type.

**Example:**

```
Router(config-if-vc)# encapsulation aal2
```

- **aal2** --AAL2
- **aal5ciscopp** --Cisco PPP over AAL5
- **aal5mux** --AAL5+MUX
- **aal5nlpid** --AAL5+NLPIID
- **aal5snap** --AAL5+LLC/SNAP (the default)

| **Step 9** exit | Exits from interface-atm-vc configuration mode. |

**Example:**

```
Router(config-if-vc)# exit
```

| **Step 10** dsl operating-mode ansi-dmt | auto | itu-dmt | splitterless |

Configures the ADSL interface to operate in a specified mode:

**Example:**

```
Router(config-if)# dsl operating-mode ansi-dmt
```

- **ansi-dmt** --ANSI full rate mode per T1.413 (ITU G.DMT Issue 1)
- **auto** --Automatic detection mode
- **itu-dmt** --ITU full rate mode (ITU G.DMT Issue 1)
- **splitterless** --G.lite mode per ITU G.992.2

**Caution** This command is for testing or lab environments only. Using a configuration other than the default configuration for the DSL operating mode can lead to unpredictable behavior on the ADSL line.
### Command or Action	Purpose
**Step 11** Router(config-if)# no shutdown | Activates the ATM interface.
**Example:**
Router(config-if)# no shutdown

**Step 12** exit | Exits from ATM interface configuration mode.
**Example:**
Router(config-if)# exit

**Step 13** exit | Exits from global configuration mode.
**Example:**
Router(config)# exit

**Step 14** show interface atm 1/0 | Verifies the ATM interface configuration.
**Example:**
Router# show interface atm0/1

---

**Verifying ATM Configuration**

Use the following commands to verify configuration:

- To verify current configuration and to view the status for all controllers, use the show running-config command.
- To view ATM controller statistics, use the show controllers atm slot/port command.
- To verify the PVC status, use the show atm vc command. Make sure that active PVCs are up.
- To help identify ATM related events as they are generated, use the `debug atm events` command.
- To indicate what interfaces are having trouble, use the `debug atm errors` command.
- To identify an entry for the ATM interface you configured and to show an entry for the ATM slot/port you configured, use the `show ip route` command.
- To display the configured list of ATM static maps to remote hosts on an ATM network, use the `show atm map` command.
- To view the status of ATM interface, use the `show interface atm slot/port` command. Make sure that ATM slot/port and line protocol is up, as shown in the following example:

```
Router# show interface atm1/0
ATM1/0 is up, line protocol is up
 Hardware is DSLSAR (with Alcatel ADSL Module)
 MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ATM, loopback not set
 Keepalive not supported
```
VoATM over AAL2 on the ATM Interface Example

The following example shows a Cisco 2600 series router configured for VoATM over AAL2 on the ATM interface with an ADSL card:

```
Router#
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host1
!
memory-size iomem 10
voice-card 1
!
ip subnet-zero
```

Configuration Examples for 1-Port ADSL WAN Interface Card

- VoATM over AAL2 on the ATM Interface Example, page 377
- VoATM over AAL5 on the ATM Interface Example, page 379
ip host host2 225.255.255.224
no mgcp timer receive-rtcp
call rsvp-sync

controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start

controller T1 1/1
framing esf
linecode b8zs

interface Ethernet0/0
ip address 1.6.46.119 255.255.255.224
half-duplex
no cdp enable

interface Serial0/0
no ip address
shutdown

interface ATM0/1
ip address 10.1.1.1 255.0.0.0
load-interval 30
atm vc-per-vp 256
no atm ilmi-keepalive
pvc 10/100
vbr-rt 672 672 512
encapsulation aal2

pvc 10/200
protocol ip 10.1.1.2 broadcast
encapsulation aal5snap

dsl operating-mode ansi-dmt
no fair-queue

interface Ethernet0/1
no ip address
shutdown

ip classless
ip route 223.255.254.254 255.255.255.224 Ethernet0/0
no ip http server

snmp-server engineID local 000000090200003080477F20
snmp-server manager

voice-port 1/0:0
local-alerting
timeouts wait-release 3
connection trunk 3001

voice-port 1/0:1
local-alerting
timeouts wait-release 3
connection trunk 3002

voice-port 1/0:23
local-alerting
timeouts wait-release 3
connection trunk 3024
VoATM over AAL5 on the ATM Interface Example

The following example shows a Cisco 2600 series router configured for VoATM over AAL5 on the ATM interface with an ADSL card.

Router# version 12.2
no service single-slot-reload-enable
service timestamps debug uptime

service timestamps log uptime
no service password-encryption

hostname u2621

no logging buffered
no logging buffered
logging rate-limit console 10 except errors

memory-size iomem 15
voice-card 1

! ip subnet-zero
! no ip finger
no ip domain-lookup
! no mgcp timer receive-rtcp
call rsvp-sync
!
controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1-24 type e&m-wink-start
!
controller T1 1/1

!
interface ATM0/0
ip address 12.0.0.1 255.255.255.224
load-interval 30
atm vc-per-vp 256
no atm ilmi-keepalive
dsl operating-mode auto
no fair-queue
!
interface FastEthernet0/0
ip address 1.7.73.1 255.255.255.224
duplex auto
speed auto
!
interface FastEthernet0/1
ip address 192.168.2.1 255.255.255.224
load-interval 30
duplex auto
speed auto
!
ip classless
ip route 223.255.254.0 255.255.255.224 FastEthernet0/0
no ip http server
!
! snmp-server engineID local 000000090200002163DB260
snmp-server packetsize 4096
snmp-server manager
voice-port 1/0:0
!
dial-peer cor custom
!
dial-peer voice 5 pots
  destination-pattern 777...
  port 1/0:0
  prefix 777
!
dial-peer voice 100 voatm
  destination-pattern 888...
  session target atm0/0 pvc 0/72
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>
| Vice configuration          | • Cisco IOS Voice, Video, and Fax Configuration Guide, Release 12.2  
                              | • Cisco IOS Voice, Video, and Fax Command Reference, Release 12.2 |
| Configuring IP              | Cisco IOS IP Configuration Guide, Release 12.2            |
| Configuring a DSLAM         | Configuration Guide for Cisco DSLAMs with NI-2           |

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T G.991.2</td>
<td>Single-pair high-speed digital subscriber line (SHDSL) transceivers</td>
</tr>
<tr>
<td>ANSI T1.413 issue 2</td>
<td>ADSL features</td>
</tr>
<tr>
<td>ITU 992.1</td>
<td>G.DMT</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected</td>
</tr>
<tr>
<td></td>
<td>platforms, Cisco software releases, and</td>
</tr>
<tr>
<td></td>
<td>feature sets, use Cisco MIB Locator found at</td>
</tr>
<tr>
<td></td>
<td>the following URL:</td>
</tr>
<tr>
<td></td>
<td><a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>to download documentation, software, and tools. Use these resources to</td>
<td></td>
</tr>
<tr>
<td>install and configure the software and to troubleshoot and resolve</td>
<td></td>
</tr>
<tr>
<td>technical issues with Cisco products and technologies. Access to most</td>
<td></td>
</tr>
<tr>
<td>tools on the Cisco Support and Documentation website requires a Cisco.com</td>
<td></td>
</tr>
<tr>
<td>user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for 1-Port ADSL WAN Interface Card

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
### Table 29 Feature Information for 1-Port ADSL WAN Interface Card

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port ADSL WAN Interface</td>
<td>12.1(3)XJ 12.1(5)YB 12.2(2)T 12.2(4)T</td>
<td>This feature is supported on Cisco 2600 series and Cisco 3600 series routers. The following commands were introduced or modified: show diag, show dsl interface atm.</td>
</tr>
</tbody>
</table>

### Glossary

**ABR**—available bit rate.

**ADSL**—asymmetric digital subscriber line (ADSL) available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

**ATM**—Asynchronous Transfer Mode. International standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media such as E3, SONET, and T3.

**CLI**—command line interface.

**CO**—central office, or local exchange (local switch), which terminates individual local telephone subscriber lines for switching, and connects to the public network. Known as a class 5 switch office. For example, 5ESS by Lucent and DMS 100 by Nortel.

**CPE**—customer premise equipment, including devices such as channel service units (CSUs)/data service units (DSUs), modems, and ISDN terminal adapters, required to provide an electromagnetic termination for wide-area network circuits before connecting to the router or access server. This equipment was historically provided by the telephone company, but is now typically provided by the customer in North American markets.

**DSL**—digital subscriber line available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

**FXO**—foreign exchange office. A FXO interface connects to a central office.

**FXS**—foreign exchange station: A FXS interface connects directly to a standard telephone, supplying ring voltage, dial tone, etc.

**G.SHDSL**—multirate symmetrical high-speed digital subscriber line.

**PVC**—permanent virtual circuit.
and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
ADSL Support in IPv6

Asymmetric Digital Subscriber Line (ADSL) support in IPv6 provides the extensions that make large-scale access possible for IPv6 environments, including IPv6 RADIUS attributes, stateless address configuration on PPP links, per-user static routes, and ACLs.

• Finding Feature Information, page 385
• Restrictions for ADSL Support in IPv6, page 385
• ADSL Support in IPv6, page 385
• How to Configure ADSL Support in IPv6, page 386
• Configuration Examples for ADSL Support in IPv6, page 392
• Additional References, page 393
• Feature Information for ADSL Support in IPv6, page 394

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for ADSL Support in IPv6

ADSL and dial deployment are available for interfaces with PPP encapsulation enabled, including PPP over ATM (PPPoA), PPP over Ethernet (PPPoE), PPP over async, and PPP over ISDN.

ADSL Support in IPv6

• Address Assignment for IPv6, page 385

Address Assignment for IPv6

A Cisco router configured with IPv6 will advertise its IPv6 prefixes on one or more interfaces, allowing IPv6 clients to automatically configure their addresses. In IPv6, address assignment is performed at the network layer, in contrast to IPv4 where a number of functions are handled in the PPP layer. The only
function handled in IPv6 control protocol is the negotiation of a unique interface identifier. Everything else, including Domain Name Server (DNS) server discovery, is done within the IPv6 protocol itself.

Contrary to IPv4 address assignment, an IPv6 user will be assigned a prefix, not a single address. Typically, the ISP assigns a 64- or 48-bit prefix.

In IPv6, ISPs assign long-lived prefixes to users, which has some impact on the routing system. In typical IPv4 environments, each network access server (NAS) has a pool of 24-bit addresses and users get addresses from this pool when dialing in. If a user dials another point of presence (POP) or is connected to another NAS at the same POP, a different IPv4 address is assigned.

Addresses for IPv6 are assigned using two methods:

- **Stateless Address Autoconfiguration**, page 386

### Stateless Address Autoconfiguration

Assigning addresses using the stateless address autoconfiguration method can be used only to assign 64-bit prefixes. Each user is assigned a 64-bit prefix, which is advertised to the user in a router advertisement (RA). All addresses are automatically configured based on the assigned prefix.

A typical scenario is to assign a separate 64-bit prefix per user; however, users can also be assigned a prefix from a shared pool of addresses. Using the shared pool limits addresses to only one address per user.

This method works best for the cases where the customer provider edge (CPE) router is a single PC or is limited to only one subnet. If the user has multiple subnets, Layer 2 (L2) bridging, multilink subnets or proxy RA can be used. The prefix advertised in the RA can come from an authorization, authentication, and accounting (AAA) server, which also provides the prefix attribute, can be manually configured, or can be allocated from a prefix pool.

The Framed-Interface-Id AAA attribute influences the choice of interface identifier for peers and, in combination with the prefix, the complete IPv6 address can be determined.

### How to Configure ADSL Support in IPv6

- **Configuring the NAS**, page 386
- **Configuring the Remote CE Router**, page 390

### Configuring the NAS
SUMMARY STEPS

1. enable
2. configure terminal
3. hostname name
4. aaa new-model
5. aaa authentication ppp {default | list-name} method1 [method2...]
6. aaa authorization configuration default {radius | tacacs+}
7. show ipv6 route [ipv6-address | ipv6-prefix / prefix-length | protocol | interface-type interface-number
8. virtual-profile virtual-template number
9. interface serial controller-number : timeslot
10. encapsulation encapsulation-type
11. exit
12. dialer-group group-number
13. ppp authentication protocol1 [protocol2...] [if-needed] [list-name | default | callin | one-time] [optional]
14. interface virtual-template number
15. ipv6 enable
16. dialer-list dialer-group protocol protocol-name {permit | deny | list access-list-number | access-group}
17. radius-server host {hostname | ip-address} [test username user-name] [auth-port port-number]
   [ignore-auth-port] [acct-port port-number] [ignore-acct-port] [timeout seconds] [retransmit retries]
   [key string] [alias {hostname | ip-address}] [idle-time seconds]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 hostname name</td>
<td>Specifies the hostname for the network server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# hostname cust1-53a</td>
<td></td>
</tr>
</tbody>
</table>
### Command or Action

**Step 4**  
```  
aaa new-model
```

**Example:**
```
Router(config)# aaa new-model
```

**Purpose:** Enables the AAA server.

**Step 5**  
```  
aaa authentication ppp {default | list-name} method1 [method2...]
```

**Example:**
```
Router(config)# aaa authentication ppp default if-needed group radius
```

**Purpose:** Specifies one or more AAA authentication methods for use on serial interfaces that are running PPP.

**Step 6**  
```  
aaa authorization configuration default {radius | tacacs+
```

**Example:**
```
Router(config)# aaa authorization configuration default radius
```

**Purpose:** Downloads configuration information from the AAA server.

**Step 7**  
```  
show ipv6 route [ipv6-address | ipv6-prefix / prefix-length | protocol | interface-type interface-number
```

**Example:**
```
Router(config)# show ipv6 route
```

**Purpose:** Shows the routes installed by the previous commands.

**Step 8**  
```  
virtual-profile virtual-template number
```

**Example:**
```
Router(config)# virtual-profile virtual-template 1
```

**Purpose:** Enables virtual profiles by virtual interface template.

**Step 9**  
```  
interface serial controller-number : timeslot
```

**Example:**
```
Router(config)# interface serial 0:15
```

**Purpose:** Specifies a serial interface created on a channelized E1 or channelized T1 controller (for ISDN PRI, channel-associated signaling, or robbed-bit signaling). This command also puts the router into interface configuration mode.

**Step 10**  
```  
encapsulation encapsulation-type
```

**Example:**
```
Router(config-if)# encapsulation ppp
```

**Purpose:** Sets the encapsulation method used by the interface.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong> exit</td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> dialer-group group-number</td>
<td>Controls access by configuring an interface to belong to a specific dialing group.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# dialer-group 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> ppp authentication protocol1 [protocol2...] [if-needed] [list-name</td>
<td>Enables Challenge Handshake Authentication Protocol (CHAP) or Password Authentication Protocol (PAP) or both and specifies the order in which CHAP and PAP authentication are selected on the interface.</td>
</tr>
<tr>
<td>name</td>
<td>default] [callin] [one-time] [optional]</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ppp authentication chap</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> interface virtual-template number</td>
<td>Creates a virtual template interface that can be configured and applied dynamically in creating virtual access interfaces.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface virtual-template 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> ipv6 enable</td>
<td>Enables IPv6 processing on an interface that has not been configured with an explicit IPv6 address.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> dialer-list dialer-group protocol protocol-name {permit</td>
<td>deny</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# dialer-list 1 protocol ipv6 permit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Remote CE Router

**SUMMARY STEPS**

1. enable
2. configure terminal
3. hostname name
4. interface bri number . subinterface-number [multipoint | point-to-point]
5. encapsulation encapsulation-type
6. ipv6 address autoconfig [default]
7. isdn switch-type switch-type
8. ppp authentication [protocol1 [protocol2...]] [if-needed] [list-name | default] [callin] [one-time]
9. ppp multilink [bap | required]
10. exit
11. dialer-list dialer-group protocol protocol-name {permit | deny} [list access-list-number | access-group]
12. ipv6 route ipv6-prefix /prefix-length {ipv6-address | interface-type interface-number ipv6-address} [administrative-distance] [administrative-multicast-distance] [unicast | multicast] [tag tag]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 hostname name</td>
<td>Specifies the hostname for the network server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# hostname cust1-36a</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface bri number . subinterface-number [multipoint</td>
<td>point-to-point]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface bri 1.0</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation encapsulation-type</td>
<td>Sets the encapsulation method used by the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation ppp</td>
<td></td>
</tr>
<tr>
<td>Step 6 ipv6 address autoconfig [default]</td>
<td>Indicates that the IPv6 address will be generated automatically.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ipv6 address autoconfig</td>
<td></td>
</tr>
<tr>
<td>Step 7 isdn switch-type switch-type</td>
<td>Specifies the central office switch type on the ISDN interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# isdn switch-type basic-net3</td>
<td></td>
</tr>
<tr>
<td>Step 8 ppp authentication [protocol1 [protocol2...]] [if-needed] [list-name</td>
<td>default] [callin] [one-time]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp authentication chap</td>
<td></td>
</tr>
</tbody>
</table>
### Configuration Examples for ADSL Support in IPv6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 9</strong> ppp multilink [bap</td>
<td><strong>required</strong>]</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ppp multilink</td>
</tr>
<tr>
<td><strong>Step 10</strong> exit</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td><strong>Step 11</strong> dialer-list dialer-group protocol protocol-name [permit</td>
<td>deny</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# dialer-list 1 protocol ipv6 permit</td>
</tr>
<tr>
<td><strong>Step 12</strong> ipv6 route ipv6-prefix / prefix-length [ipv6-address</td>
<td>interface-type interface-number ipv6-address]] [administrative-distance] [administrative-multicast-distance</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 route 2001:DB8::1/128 BRI1/0</td>
</tr>
</tbody>
</table>

**Example: NAS Configuration**

This configuration for the ISP NAS shows the configuration that supports access from the remote CE router.

```
hostname cust1-53a
aaa new-model
aaa authentication ppp default if-needed group radius
aaa authorization network default group radius
virtual-profile virtual-template 1
interface Serial0:15
encapsulation ppp
dialer-group 1
 ppp authentication chap
! interface Virtual-Template1
```

**Example: Remote CE Router Configuration**

This configuration for the Remote CE router shows the configuration that supports access from the ISP NAS.
Example: Remote CE Router Configuration

This configuration for the remote customer edge router shows PPP encapsulation and IPv6 routes defined.

```
hostname cust-36a
interface BRI1/0
 encapsulation ppp
 ipv6 enable
 isdn switch-type basic-net3
 ppp authentication chap optional
 ppp multilink
 !
dialer-list 1 protocol ipv6 permit
ipv6 route 2001:DB8::1/128 BRI1/0
ipv6 route ::/0 2001:DB8::1
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 addressing and connectivity</td>
<td>IPv6 Configuration Guide</td>
</tr>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>IPv6 commands</td>
<td>Cisco IOS IPv6 Command Reference</td>
</tr>
<tr>
<td>Cisco IOS IPv6 features</td>
<td>Cisco_IOS_IPV6_Feature_Mapping</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standards and RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFCs for IPv6</td>
<td>IPv6 RFCs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
<td></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for ADSL Support in IPv6

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

**Table 30 Feature Information for ADSL Support in IPv6**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 ADSL and Dial Deployment Support</td>
<td>12.2(13)T</td>
<td>ADSL and dial deployment provide the extensions that make large-scale access possible for IPv6 environments, including IPv6 RADIUS attributes, stateless address configuration on PPP links, per-user static routes, and ACLs. The following commands were introduced or modified: aaa authentication ppp, aaa authorization multicast default, aaa new-model, dialer-group, dialer-list, encapsulation, hostname, ipv6 address autoconfig, ipv6 route, isdn switch-type, ppp authentication, ppp multilink, radius-server host, show ipv6 route, virtual-profile virtual-template.</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Releases</td>
<td>Feature Information</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>IPv6 Access Services: PPPoA</td>
<td>12.2(13)T</td>
<td>ADSL and dial deployment is available for interfaces with PPP encapsulation enabled, including PPPoA.</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3(2)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4(2)T</td>
<td></td>
</tr>
<tr>
<td>IPv6 Access Services: PPPoE</td>
<td>12.2(13)T</td>
<td>ADSL and dial deployment is available for interfaces with PPP encapsulation enabled, including PPPoE.</td>
</tr>
<tr>
<td></td>
<td>12.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.3(2)T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.4(2)T</td>
<td></td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: [www.cisco.com/go/trademarks](http://www.cisco.com/go/trademarks). Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
ATM Mode for Two-Wire or Four-Wire SHDSL

This document describes the ATM Mode for Two-Wire or Four-Wire SHDSL feature on the Cisco 1700 series, Cisco 1800 series, Cisco 26xxXM, Cisco 2691, Cisco 2800, Cisco 3700 series, and Cisco 3800 series routers.

The ATM Mode for Two-Wire or Four-Wire SHDSL feature adds 4-wire support in fixed line-rate mode only on a WIC-1SHDSL-V2 or WIC-1SHDSL-V3 interface card. 2-wire mode supports 2-wire line-rate and auto line-rate. This feature builds on the existing features of the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC-1SHDSL). The 4-wire feature of G.991.2 doubles the bandwidth in ATM mode and increases usable distance over two pairs of wires.

The WIC-1SHDSL-V2 and WIC-1SHDSL-V3 support ATM on 2-wire and 4-wire line mode. Embedded Operation Channel (EOC) messages support for customer premises equipment (CPE) is provided for 2-wire and 4-wire modes.

- Finding Feature Information, page 397
- Prerequisites for ATM Mode for Two-Wire or Four-Wire SHDSL, page 398
- Restrictions for ATM Mode for Two-Wire or Four-Wire SHDSL, page 398
- Information About ATM Mode for Two-Wire or Four-Wire SHDSL, page 399
- How to Configure ATM Mode for Two-Wire or Four-Wire SHDSL, page 401
- Configuration Examples for ATM Mode for Two-Wire or Four-Wire SHDSL, page 426
- Additional References, page 429
- Feature Information for ATM Mode for Two-Wire or Four-Wire SHDSL, page 430
- Glossary, page 432

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for ATM Mode for Two-Wire or Four-Wire SHDSL

- A G.SHDSL WIC must be installed in the router to match the DSL service to be configured.
- Minimum memory recommendations are shown in the table below.

<table>
<thead>
<tr>
<th>Platform Name</th>
<th>Image Name</th>
<th>Flash Memory Recommended</th>
<th>DRAM Memory Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco 1700 Series</td>
<td>IOS IP BASE</td>
<td>16 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>Cisco 1800 Series</td>
<td>IOS IP BASE</td>
<td>16 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>Cisco 2610XM, Cisco 2611XM, Cisco 2620XM, Cisco 2621XM, Cisco 2650XM, Cisco 2651XM</td>
<td>IOS IP BASE</td>
<td>16 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>Cisco 2691</td>
<td>IOS IP BASE</td>
<td>32 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Cisco 2800 Series</td>
<td>IOS IP BASE</td>
<td>32 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Cisco 3725</td>
<td>IOS IP BASE</td>
<td>32 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Cisco 3745</td>
<td>IOS IP BASE</td>
<td>32 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>Cisco 3800 Series</td>
<td>IOS IP BASE</td>
<td>32 MB</td>
<td>128 MB</td>
</tr>
</tbody>
</table>

Restrictions for ATM Mode for Two-Wire or Four-Wire SHDSL

- The `auto` parameter of the `line-mode` command on the WIC-1SHDSL-V2 is supported only in Cisco IOS Release 12.3(4)XG1 and later releases.
- The `standard` and `enhanced` keywords of the `line-mode 4-wire` command on the WIC-1SHDSL-V3 are supported only in Cisco IOS Release 12.4(2)XA and later releases.
- The WIC-1SHDSL-V2 and WIC-1SHDSL-V3 ATM mode for SHDSL does not support ATM adaptation layer 1 (AAL1) and/or circuit emulation service.
- ATM adaptation layer 2 (AAL2) is not supported on Cisco 1700 series, Cisco 1800 series, and Cisco 2801 routers.
- The ATM mode for SHDSL does not interface with AIM-ATM.
- The ATM mode for SHDSL does not support available bit rate (ABR) class of service (CoS).
- The ATM mode for SHDSL only supports 23 private virtual circuits (PVC) per WIC.
- The WIC-1SHDSL-V2 and WIC-1SHDSL-V3 should be inserted only into onboard WIC slots or NM-2W, NM-1FE2W, NM-1FE1R2W, NM-2FE2W, NM-1FE2W-V2, or NM-2FE2W-V2 network.
modules. This WIC is not supported in NM-1E2W, NM-1E1R-2W, or NM-2E2W combination
network modules.
• The WIC-1SHDSL and WIC-1SHDSL-V3 do not support T1/E1 mode.

Note
The WIC-1SHDSL-V2 supports T1/E1 mode in 2-wire mode only, and only on certain routers with specific
Cisco IOS images. For information about T1/E1 support on the WIC-1SHDSL-V2, see the T1/E1 Mode for
SHDSL document.

Information About ATM Mode for Two-Wire or Four-Wire
SHDSL

• SHDSL Features, page 399
• ATM Features, page 399
• Interface and Controller Numbering on the Cisco 1721 Router, page 400
• Interface Numbering on Cisco 2800 and Cisco 3800 Series Routers, page 400

SHDSL Features
Supported SHDSL features are as follows:
• ITU G.991.2 support (full support for Annex A and B)
  ◦ Dying gasp (ITU G.991.2) is supported.
  ◦ Terminating wetting current is supported.
  ◦ 2-wire mode supports speeds from 192 kbps to 2.304 Mbps in increments of 64 kbps in both fixed
    and auto line-rate.
  ◦ 4-wire mode supports speeds from 384 kbps to 4.608 Mbps in increments of 128 kbps in fixed
    line-rate only and provides increased rate capability and greater reach.
• 4-wire mode supports both enhanced and standard mode.
• 2-wire and 4-wire auto-detection is supported.
• Diagnostic loopback mode is supported.
• Annex modes A-B, A-B-ANFP, and B-ANFP are supported

ATM Features
The supported ATM features in this release are:
• Provide ATM traffic management to enable service providers to manage their core ATM network
  infrastructures.
• Support ATM Class of Service features constant bit rate (CBR), variable bit rate-non-real time (VBR-
  nrt), variable bit rate-real time (VBR-rt), unspecified bit rate (UBR), and unspecified bit rate plus
  (UBR+).
• Operate back-to-back or through a digital subscriber line access multiplexer (DSLAM).
• Provide toll-quality Voice over IP delivery over AAL5.
• Support VoiATM over AAL2, but AAL2 is not supported on the Cisco 1700 series routers.
• Support VoATM over AAL5.
• Support FS OAM loopback and continuity check (oversubscription).

Interface and Controller Numbering on the Cisco 1721 Router

If a WIC-1SHDSL-V2 or WIC-1SHDSL-V3 is installed in a Cisco 1721 router, the interfaces and controllers are assigned numbers based on a numbering scheme that is different from the slot numbering scheme on other Cisco routers. This is because the Cisco 1721 router assigns only a slot number without also assigning a port number. Other Cisco routers typically use a slot and port number combination.

If a WIC-1SHDSL-V2 or WIC-1SHDSL-V3 (the DSL controller) is installed in slot 0, the ATM interfaces (ADSL/SHDSL) will be numbered relative to the DSL controller in slot 0. See the table below for examples of the slot numbering scheme on the Cisco 1721 router.

With an ATM card in slot 0, the WIC-1SHDSL-V2 or WIC-1SHDSL-V3 in slot 1 will be numbered relative to the number of ports in slot 0.

If both slots are occupied by DSL controllers, the logical interfaces configured on each controller will have the same number as the slot occupied by the DSL controller. All logical interfaces on the WIC-1SHDSL-V2 will have the same number as the DSL controller.

Table 32 Examples of Slot Numbering on the Cisco 1721 Router

<table>
<thead>
<tr>
<th>Interface Cards and Controllers Installed</th>
<th>Slot Numbering Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A WIC-1SHDSL-V2 or WIC-1SHDSL-V3 is in slot 0, and an ADSL/SHDSL WIC is in slot 1.</td>
<td>For WIC-1SHDSL-V2 or WIC-1SHDSL-V3:</td>
</tr>
<tr>
<td></td>
<td>controller dsl 0</td>
</tr>
<tr>
<td></td>
<td>interface atm 0</td>
</tr>
<tr>
<td></td>
<td>For ADSL/SHDSL:</td>
</tr>
<tr>
<td></td>
<td>interface atm 1</td>
</tr>
</tbody>
</table>

An ATM card is in slot 0, and a WIC-1SHDSL-V2 or WIC-1SHDSL-V3 is in slot 1. The WIC-1SHDSL-V2 or WIC-1SHDSL-V3 will be numbered relative to the ports in slot 0.	For ADSL/SHDSL:
	interface atm 0
	For WIC-1SHDSL-V2 or WIC-1SHDSL-V3:
	controller dsl 1
	interface atm 1

Interface Numbering on Cisco 2800 and Cisco 3800 Series Routers

This section describes the interface numbering scheme for Cisco 2800 and Cisco 3800 series routers. If an interface card is installed in a Cisco 2800 series or Cisco 3800 series router, the interfaces must use a triple-number scheme to identify them. This triple-number assignment is different from the standard interface numbering scheme on other Cisco routers.

The table below shows the interface numbering for the onboard Fast Ethernet ports and the interface slots on Cisco 2800 and Cisco 3800 series routers.
Table 33  Interface Numbering on Cisco 2800 Series and Cisco 3800 Series Router

<table>
<thead>
<tr>
<th>Port/Slot</th>
<th>Interface Numbering</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Ethernet ports (onboard)</td>
<td>0/0, 0/1</td>
<td>FE 0/0, 0/1</td>
</tr>
<tr>
<td>Slot 1</td>
<td>Slot 0/0/0</td>
<td>FE 0/0/0, 0/0/1, 0/0/2, 0/0/3</td>
</tr>
<tr>
<td>Slot 2</td>
<td>Slot 0/1/0</td>
<td>(Serial 2T) Serial 0/1/0, 0/1/1</td>
</tr>
<tr>
<td>Slot 3</td>
<td>Slot 0/2/0</td>
<td>FE 0/2/0</td>
</tr>
<tr>
<td>Slot 4</td>
<td>Slot 0/3/0</td>
<td>(G.SHDSL) ATM 0/3/0</td>
</tr>
</tbody>
</table>

How to Configure ATM Mode for Two-Wire or Four-Wire SHDSL

- Configuring G.SHDSL Service, page 401
- Verifying the ATM Configuration, page 408
- Verifying DSL Configuration, page 412
- Troubleshooting Tasks, page 417

Configuring G.SHDSL Service

This section details how to configure the ATM Mode for Two-Wire or Four-Wire SHDSL feature for G.SHDSL service.

To configure G.SHDSL service in ATM mode on a Cisco router containing a G.SHDSL WIC, complete the steps in the Summary Steps or the Detailed Steps, beginning in global configuration mode.

The following list of prerequisites should be followed for this configuration:

- A G.SHDSL WIC must be installed in the router to match the DSL service to be configured.
- Routers may be set up for back-to-back operation as shown in the figure below, or they may be connected to a DSLAM.

Figure 26  Back-to-Back Setup
SUMMARY STEPS

1. enable
2. configure terminal
3. controller dsl slot / port
4. line-term {co | cpe}
5. dsl-mode shdsl symmetric annex mode
6. ignore-error-duration seconds
7. mode atm
8. For CPE:
9. line-rate {rate| auto}
10. exit
11. interface atm slot / port
12. ip address ip-address subnet-mask
13. atm ilmi-keepalive [seconds]
14. pvc [name] vpi/vci
15. protocol protocol [protocol-address]
16. vbr-rt peak-rate average-cell-rate burst
17. encapsulation aal2 | aal5ciscopp | aal5mux | aal5nlpid | aal5snap | aal5autopp
18. exit
19. exit
20. exit
21. show interface atm slot / port
22. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Step 3 controller dsl slot/port</td>
<td>Enters controller configuration mode. The keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller dsl 0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 line-term [co</td>
<td>cpe]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# line-term cpe</td>
<td></td>
</tr>
<tr>
<td>Step 5 dsl-mode shdsl symmetric annex mode</td>
<td>Sets the DSL operating mode parameters. The valid values are:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# dsl-mode shdsl symmetric annex A</td>
<td></td>
</tr>
<tr>
<td>Step 6 ignore-error-duration seconds</td>
<td>(Optional) Permits the router to ignore errors for a given amount of time while the line is being trained when connected to a controller with a different chipset type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# ignore-error-duration 15</td>
<td></td>
</tr>
<tr>
<td>Step 7 mode atm</td>
<td>Enables ATM encapsulation and creates a logical ATM interface slot/port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# mode atm</td>
<td></td>
</tr>
</tbody>
</table>

Note: If the **no mode atm** command is used to leave ATM mode, the router must be rebooted to clear the mode.
### Step 8

**For CPE:**

Example:

```bash
line-mode {4-wire [enhanced | standard] | 2-wire line-number | auto}
```

(Optional) Configures the controller to operate in 2-wire or 4-wire mode. The 2-wire mode is the default if this step is not configured or if the mode is not specified.

- **2-wire** --Configures the controller to operate in 2-wire mode. This is the default if this step is omitted or if the mode is not specified.
- **4-wire** --Configures the controller to operate in 4-wire mode.
  - **enhanced** --Configures 4-wire mode to exchange handshake status on both wire pairs. This is the default if the handshake mode is not specified.
  - **standard** --Configures 4-wire mode to exchange handshake status on the master wire pair only.
- **line-number** --For 2-wire mode only, specifies the pair of wires used. Valid values are `line-zero` (default) or `line-one`. Line-zero choose RJ-11 pin 1 and pin 2; line-one chooses RJ-11 pin 3 and pin 4.
- **auto** --Configures the line mode to be automatically detected for the CPE. This option is not available for configuring the CO.

**For CO:**

Example:

```bash
line-mode {4-wire [enhanced | standard] | 2-wire line-number}
```

Example:

```bash
Router(config-controller)# line-mode 4-wire enhanced
```

Example:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 9** line-rate \{rate|auto\} | No**te** Perform this step only if line-mode was not set to *auto* in Step 8. Specifies the DSL line rate for the SHDSL port. Auto mode is supported only in 2-wire mode. The argument is as follows:  
  - auto--Allows the controller to select the rate. This option is available only in 2-wire mode.  
  - *rate* --Sets the DSL line rate. The supported line rates are as follows:  
    - For 2-wire mode--192, 256, 320, 384, 448, 512, 576, 640, 704, 768, 832, 896, 960, 1024, 1088, 1152, 1216, 1280, 1344, 1408, 1472, 1536, 1600, 1664, 1728, 1792, 1856, 1920, 1984, 2048, 2112, 2176, 2240, and 2304  
    - For 4-wire mode--384, 512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664, 1792, 1920, 2048, 2176, 2304, 2432, 2560, 2688, 2816, 2944, 3072, 3200, 3328, 3456, 3584, 3712, 3840, 3968, 4096, 4224, 4352, 4480, and 4608. **Note** The configured line rate is the data rate available. Third-party equipment may use a line rate that includes an additional SHDSL overhead of 8 kbps for 2-wire mode or 16 kbps for 4-wire mode. |
| **Step 10** exit       | Exits controller configuration mode.                                                                                                                                                                    |
| **Step 11** interface atm *slot* / *port* | Enters ATM configuration mode for interface ATM 0 in slot 1. The keywords and arguments are as follows:  
  - *slot* --The backplane slot number for the interface being configured.  
  - *port* --The backplane port number for the interface being configured. **Note** If a slot has two subslots for WIC modules and no ATM interface is present in subslot 0, the WIC will take ATM x/0 as its interface number even if placed in subslot 1 (ATMx/1). If a two-port WIC is present in subslot 0, the WIC will use ATM x/2 as its interface number. This subslot number is pertinent to all interface commands such as show interface atm and show dsl interface atm. |
| **Step 12** ip address *ip-address* *subnet-mask* | Assigns an IP address to the DSL ATM interface.                                                                                                                                                        |

**Example**:

- Router(config-controller)# line-rate 1024
- Router(config-controller)# exit
- Router(config)# interface atm 1/0
- Router(config-if)# ip address 192.168.10.25 255.255.255.0

**ATM Mode for Two-Wire or Four-Wire SHDSL**

How to Configure ATM Mode for Two-Wire or Four-Wire SHDSL

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 13</strong> atm ilmi-keepalive <code>[seconds]</code></td>
<td>(Optional) Enables Integrated Local Management Interface (ILMI) keepalives.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config-if)# atm ilmi-keepalive 5</strong></td>
</tr>
<tr>
<td><strong>Step 14</strong> pvc <code>[name] vpi/vci</code></td>
<td>Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>configures a new ATM permanent virtual circuit (PVC) by assigning a</td>
</tr>
<tr>
<td></td>
<td>name (optional) and VPI/VCI numbers.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Router(config-if)# pvc [name] vpi/vci</strong></td>
</tr>
<tr>
<td></td>
<td>The default traffic shaping is an unspecified bit rate (UBR); the default</td>
</tr>
<tr>
<td></td>
<td>encapsulation is AAL5+LLC/SNAP.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Router(config-if)# atm ilmi-keepalive 5</strong></td>
</tr>
<tr>
<td></td>
<td>• <code>seconds</code> --The number of seconds between keepalives.</td>
</tr>
<tr>
<td></td>
<td>• If you enable ILMI keepalives without specifying the seconds, the</td>
</tr>
<tr>
<td></td>
<td>default time interval is 3 seconds.</td>
</tr>
<tr>
<td><strong>Step 15</strong> protocol <code>protocol [protocol-address]</code></td>
<td>(Optional) Enables IP connectivity and creates a point-to-point IP</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>address for the virtual circuit (VC).</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Router(config-if-vc)# protocol ip 192.168.0.4</strong></td>
</tr>
<tr>
<td></td>
<td>• <code>protocol</code> --Choose the ip protocol for this configuration.</td>
</tr>
<tr>
<td></td>
<td>• <code>protocol-address</code> --Destination address that is being mapped to a</td>
</tr>
<tr>
<td></td>
<td>permanent virtual circuit (PVC).</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Router(config-if-vc)# protocol ip 192.168.0.4</strong></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 16</strong> vbr-rt peak-rate average-cell-rate burst</td>
<td>(Optional) Configures the PVC for real-time variable bit rate (VBR) traffic shaping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-vc)# vbr-rt peak-rate average-cell-rate burst</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• <strong>peak rate</strong> --Peak cell rate (PCR).</td>
</tr>
<tr>
<td></td>
<td>• <strong>average-cell-rate</strong> --Average cell rate (ACR).</td>
</tr>
<tr>
<td></td>
<td>• <strong>burst</strong> --Burst size in cells.</td>
</tr>
<tr>
<td><strong>Step 17</strong> encapsulation aal2</td>
<td>(Optional) Configures the ATM adaptation layer (AAL) and encapsulation type.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal2</strong> --AAL2.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal5ciscopp</strong> --Cisco PPP over AAL5.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal5mux</strong> --AAL5+MUX.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal5nlpid</strong> --AAL5+NLPID.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal5snap</strong> --AAL5+LLC/SNAP.</td>
</tr>
<tr>
<td></td>
<td>• <strong>aal5autopp</strong> --PPP autosense over AAL5.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-vc)# encapsulation aal2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The default is <strong>aal5snap</strong>.</td>
</tr>
<tr>
<td><strong>Step 18</strong> exit</td>
<td>Exits interface-atm-vc configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-vc)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 19</strong> exit</td>
<td>Exits ATM interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 20</strong> exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 21</strong> show interface atm slot / port</td>
<td>Displays the ATM interface configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>The keywords and arguments are as follows:</td>
</tr>
<tr>
<td>Router# show interface atm 1/0</td>
<td>• <strong>slot</strong> --The backplane slot number for the interface being configured.</td>
</tr>
<tr>
<td></td>
<td>• <strong>port</strong> --The backplane port number for the interface being configured.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 22 exit</td>
<td>Exits privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router# exit
```

- Examples, page 408
- What to Do Next, page 408

Examples

**Example of the Configuration Before Configuring ATM Mode:**

```
ccontroller DSL 0/0
line-term cpe
```

**Example for 4-wire ATM, Annex B, and Line Rate 3200**

```
ccontroller DSL 0/1
mode atm
line-term cpe
line-mode 4-wire enhanced
dsl-mode shdsl symmetric annex B
line-rate 3200
```

What to Do Next

The next task is to verify the ATM mode or DSL mode for the router.

Verifying the ATM Configuration

Perform the steps in this section to verify the ATM configuration.

**SUMMARY STEPS**

1. enable
2. show running-config
3. show controllers atm slot/port
4. show atm vc
5. debug atm events
6. debug atm errors
7. show interface atm slot/port
8. exit
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Example:**  
Router> enable | |
| **Step 2** show running-config | Displays current running configuration and the status for all controllers. |
| **Example:**  
Router# show running-config | |
| **Step 3** show controllers atm slot/port | Displays ATM controller statistics.  
The keywords and arguments are as follows:  
• slot --The backplane slot number for the interface being configured.  
• port --The backplane port number for the interface being configured. |
| **Example:**  
Router# show controllers atm 0/1 | |
| **Step 4** show atm vc | Displays PVC status. |
| **Example:**  
Router# show atm vc | |
| **Step 5** debug atm events | Identifies ATM-related events as they are generated. |
| **Example:**  
Router# debug atm events | |
| **Step 6** debug atm errors | Identifies interfaces with ATM errors. |
| **Example:**  
Router# debug atm errors | |
| **Step 7** show interface atm slot/port | Displays the status of the ATM interface. Ensure that the ATM slot/port and the line protocol are up.  
The keywords and arguments are as follows:  
• slot --The backplane slot number for the interface being configured.  
• port --The backplane port number for the interface being configured. |
| **Example:**  
Router# show interface atm 0/1 | |
Command or Action | Purpose
---|---
**Step 8** exit | Exits privileged EXEC mode.

**Example:**

`Router# exit`

- Examples, page 410
- What to Do Next, page 412

**Examples**

The following example shows how the `show interface atm` command is used and that the ATM slot/port and line protocol are up:

```
Router# show interfaces atm 0/0
ATM0/0 is up, line protocol is up
Hardware is DSLSAR
MTU 4470 bytes, sub MTU 4470, BW 4608 Kbit, DLY 110 usec,
reliability 0/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Encapsulation(s): AALS , PVC mode
23 maximum active VCs, 256 VCs per VP, 1 current VCCs
VC Auto Creation Disabled.
VC idle disconnect time: 300 seconds
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: Per VC Queueing
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
0 packets input, 0 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 output buffer failures, 0 output buffers swapped out
```

```
3725# show atm vc
VCD / Peak Avg/Min Burst
Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells Sts
1/0.3 2 9 36 PVC MUX UBR 800 800 UP
1/0.2 1 9 37 PVC SNAP UBR 800 800 UP
3725# show atm vc
```

```
VCD / Peak Avg/Min Burst
Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells Sts
0/0.1 1 2 100 PVC MUX VBR 2000 2000 0 UP
0/0.2 1 2 100 PVC SNAP CBR 4608 4608 0 UP
0/0.3 1 2 100 PVC SNAP VBR 4608 4200 0 UP
0/0.4 1 2 100 PVC SNAP VBR 4608 4608 0 UP
```

---

ATM Mode for Two-Wire or Four-Wire SHDSL

Examples

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
3725# show controllers atm
0
/
0

Interface: ATM0/0, Hardware: DSLSAR, State: up
IDB: 645F4B98 Instance: 645F646C reg_dsars:3C200000 wic_regs:
3C200080
PHY Inst:0 SerInst: 645DFC8C SerInst: 645EA608 ua_bwidth:4608
Slot: 0 Unit: 0 Subunit: 0 pkt Size: 4528
VCPervP: 256 max_vp: 256 max_vc: 65536 total vc: 1
rct_size:65536 vpivcbit:16 connTb1VC1:8 vpi_bits: 8
vpvc_sel:3 enabled: 0 throttled: 0 cell drops: 0
Last Periodic Timer 00:44:26.872(2666872)
Parallel reads to TCQ:0 tx count reset = 0, periodic safe start = 0
Attempts to overwrite SCC txring: 0
Host Controller lockup recovery Info:
recovery count1= 0, recovery count2= 0
Saved Host Controller Info to check any lockup:
accel = 0, output_gcount = 0, head:0,
buf addr = 0x000000000, serial outputs = 0
accel = 1, output_gcount = 0, head:54,
buf addr = 0x000000000, serial outputs = 212
Serial idb(AAL5) output_gcount=0 max:40
Serial idb(RAW) output_gcount:0 max:40
Sar ctrl queue: max depth = 0, current queue depth = 0, drops = 0, urun
cnt = 0, total cnt = 106
Serial idb tx count: AAL5: 0, RAW: 212, Drop count:AAL5: 0, RAW: 0
Host Controller Clock rate Info:
SCC Clockrates:
SCC0 = 1000000 (ATM0/0)
SCC1 = 8000000 (ATM0/0)
SCC2 = 1000000 (ATM0/1)
SCC3 = 1000000 (ATM0/2)
SCC4 = 5300000 (ATM0/1)
SCC5 = 8000000 (ATM0/2)
SCC6 = 0
SCC7 = 0

WIC Register Value Notes
------------------- ---------- --------------
FPGA Dev ID (LB) 0x53 'S'
FPGA Dev ID (UB) 0x4E 'N'
FPGA Revision 0xA7
WIC Config Reg 0x35 WIC / VIC select = WIC;
CTRL addr bit 8 = 0;
OK LED on;
LOOPBACK LED off;
CD LED on;
WIC Config Reg2 0x07 Gen bus error on bad G.SDSL ATM/T1/E1 access
Int 0 Enable Reg 0x01 G.SDSL ATM/T1/E1 normal interrupt enabled
G.SDSL ATM/T1/E1 error interrupt disabled
DSLSAR Register Value Notes
------------------- ---------- --------------
sdram_refresh: 0x410FFFF Expected value: 0x428xxxx
intr_event_reg: 0xC0 TMR.
intr_enable_reg: 0x13C FIPOP.FBQE.RQAF.RPQAF.TSQAF.
config: 0x66D00A20 UTOPA.RXEN.RegulateXmit.RMCell.TXEN.
Rx Buffer size: 8192. RCT: Large, VPI Bits:
8.
status: 0x0
clkPerCell: 814121 (line rate: 4608 Kbps)
Pre-timer Count: 461
rcid_tableBase: 0x0
rct_base: 0x100000
TSTBase: 0x13c28 TST boot jump.
rwCellBase: 0x14300 (0/128) slots used.
rgp_base: 0x16000
tsqb(Tx Stat Q): 0x17000
rbq_base: 0x17880 (fbq_count: 128)
txChanQueue: 0x18000
rxBuffers: 0x300000
txBuffers: 0x130000
Lookup Error cnt: 0x0

Examples

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT

411
What to Do Next

Verify the configuration using the detailed steps in the Verifying DSL Configuration, page 412.

Verifying DSL Configuration

Perform the steps in this section to verify the DSL configuration.

SUMMARY STEPS

1. enable
2. show running-config
3. show controller dsl slot/port
4. debug xdsl application
5. debug xdsl eoc
6. debug xdsl error
7. exit
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  • Enter your password if prompted. |
| **Example:** Router> enable |
| **Step 2** show running-config | Displays the current running configuration and the status for all controllers. |
| **Example:** Router# show running-config |
| **Step 3** show controller dsl *slot/port* | Displays the DSL controller status.  
  The keywords and arguments are as follows:  
  • *slot* --The backplane slot number for the interface being configured.  
  • *port* --The backplane port number for the interface being configured. |
| **Example:** Router# show controller dsl 0/2 |
| **Step 4** debug xdsl application | Displays output of the DSL if the DSL does not come up. |
| **Example:** Router# debug dsl application |
| **Step 5** debug xdsl eoc | Displays what is in the embedded operation channel (EOC) messages. |
| **Example:** Router# debug xdsl eoc |
| **Step 6** debug xdsl error | Displays error messages. |
| **Example:** Router# debug xdsl error |
### Command or Action | Purpose
--- | ---
**Step 7** | exit
| Exits privileged EXEC mode.

#### Example:
```
Router# exit
```

#### Examples

The following example shows how to verify 4-wire ATM mode in line zero (CPE):

```
Router# show controller dsl 0/0
DSL 0/0 controller UP
Globespan xDSL controller chipset
Line Mode: Four Wire
DSL mode: Trained with SHDSL Annex B
Frame mode: Utopia
Configured Line rate: 4608Kbps
Line Re-activated 9 times after system bootup
LOSW Defect alarm: ACTIVE
CRC per second alarm: ACTIVE
Line termination: CPE
FPGA Revision: 0xB3

Line 0 statistics
 Current 15 min counters
 CRC : 0 LOSW Defect : 0 ES : 0 SES : 0 UAS : 25
 Previous 15 min counters
 CRC : 0 LOSW Defect : 0 ES : 0 SES : 0 UAS : 0
 Current 24 hr counters
 CRC : 0 LOSW Defect : 4 ES : 0 SES : 0 UAS : 25
 Previous 24 hr counters
 CRC : 5 LOSW Defect : 4 ES : 1 SES : 0 UAS : 19

Line 1 statistics
 Current 15 min counters
 CRC : 0 LOSW Defect : 0 ES : 0 SES : 0 UAS : 25
 Previous 15 min counters
 CRC : 0 LOSW Defect : 0 ES : 0 SES : 0 UAS : 0
 Current 24 hr counters
 CRC : 0 LOSW Defect : 0 ES : 0 SES : 0 UAS : 25
 Previous 24 hr counters
 CRC : 6 LOSW Defect : 4 ES : 1 SES : 0 UAS : 19

Line-0 status
 Chipset Version: 0
 Firmware Version: R3.0.1
 Modem Status: Data, Status 1
```
Last Fail Mode: No Failure status:0x0
Line rate: 2312 Kbps
Framer Sync Status: In Sync
Rcv Clock Status: In the Range
Loop Attenuation: 0.0 dB
Transmit Power: 9.5 dB
Receiver Gain: 19.5420 dB
SNR Sampling: 37.6080 dB
Line-1 status
Chipset Version: 0
Firmware Version: R3.0.1
Modem Status: Data, Status 1
Last Fail Mode: No Failure status:0x0
Line rate: 2312 Kbps
Framer Sync Status: In Sync
Rcv Clock Status: In the Range
Loop Attenuation: 0.0 dB
Transmit Power: 9.5 dB
Receiver Gain: 19.5420 dB
SNR Sampling: 37.6080 dB
Dying Gasp: Present

Sample Output—Building Configuration

Router> show running-config
Current configuration : 3183 bytes
!
version 12.3
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname 3725
!
boot-start-marker
boot system flash c3725-is-mz.0424
boot system tftp shriv/c3725-is-mz.new 223.255.254.254
boot-end-marker
!
memory-size iomem 25
no network-clock-participate alot 1
no network-clock-participate alot 2
no network-clock-participate wic 0
no network-clock-participate wic 1
no network-clock-participate wic 2
no network-clock-participate aim 0
no network-clock-participate aim 1
no aaa new-model
ip subnet-zero
ip cef
!
!
controller DSL 0/0
mode atm
line-term co
line-mode 4-wire
dsl-mode shdsl symmetric annex B
line-rate 4608
!
controller DSL 0/1
mode atm
line-term co
line-mode 4-wire
dsl-mode shdsl symmetric annex B
line-rate 4608
controller DSL 0/2
mode atm
line-term co
line-mode 4-wire
dsl-mode shdsl symmetric annex B
line-rate 4608
!
controller DSL 1/0
mode atm
line-term co
line-mode 4-wire
dsl-mode shdsl symmetric annex B
line-rate 4608
!
!
interface ATM0/0
no ip address
load-interval 30
no atm ilmi-keepalive
clock rate aal5 8000000
!
interface ATM0/0.1 point-to-point
ip address 5.0.0.1 255.0.0.0
vbr-rt 2000 2000
oam-pvc 0
encapsulation aal5mux ip
!
interface FastEthernet0/0
ip address 1.3.208.25 255.255.0.0
duplex auto
speed auto
no cdp enable
!
interface ATM0/1
no ip address
load-interval 30
no atm ilmi-keepalive
clock rate aal5 5300000
!
interface ATM0/1.1 point-to-point
ip address 6.0.0.1 255.0.0.0
pvc 2/100
cbr 4608
!
interface FastEthernet0/1
mac-address 0000.0000.0011
ip address 70.0.0.2 255.0.0.0 secondary
ip address 90.0.0.2 255.0.0.0 secondary
ip address 50.0.0.2 255.0.0.0
load-interval 30
speed 100
full-duplex
no cdp enable
!
interface ATM0/2
no ip address
no atm ilmi-keepalive
clock rate aal5 8000000
!
interface ATM0/2.1 point-to-point
ip address 7.0.0.1 255.0.0.0
pvc 2/100
vbr-nrt 4608 4200
!
!
interface ATM1/0
no ip address
load-interval 30
no atm ilmi-keepalive
clock rate aal5 5300000
Troubleshooting Tasks

The following commands verify hardware on the router:

- **show version** --Lists the modules installed in the router. If DSL controllers are installed, the output displays the following line:
  
  - 1 DSL controller --Indicates one DSL controller is installed in the router

  and one of the following lines:

  - 1 ATM network interface(s) --If the DSL controller is configured for mode ATM
1 Channelized T1/PRI port(s) -- If the DSL controller is configured for mode T1

- `show controllers atm` -- Displays the ATM controller status and statistics. The sample below shows the output in ATM mode. Actual output may vary depending on the router and the configuration.

```
Router# show controllers atm
0
/0
Interface: ATM0/0, Hardware: DSLSAR, State: up
IDB: 645F4B98 Instance: 645F646C reg_dslsar:3C200000 wic_regs: 3C200080
PHY Inst: 0 Ser0Inst: 645DFC8C Ser1Inst: 645EA608 us_bwidth:4608
Slot: 0 Unit: 0 Subunit: 0 pkt Size: 4528
VCPerVP: 256 max_vp: 256 max_vc: 65536 total vc: 1
rct_size:65536 vpivcbit:16 connTblVCI:8 vpi_bits: 8
vpvc_sel:3 enabled: 0 throttled: 0 cell drops: 0
Last Periodic Timer 00:44:26.872(2666872)
Parallel reads to TCQ:0 tx count reset = 0, periodic safe start = 0
Attempts to overwrite SCC txring: 0
Host Controller lockup recovery Info:
 recovery count1= 0, recovery count2= 0
Saved Host Controller Info to check any lockup:
 scc = 0, output_qcount = 0, head:0,
 buf addr = 0x00000000, serial outputs = 0
 scc = 1, output_qcount = 0, head:54,
 buf addr = 0x00000000, serial outputs = 212
Serial idb(AAL5) output_qcount:0 max:40
Serial idb(RAW) output_qcount:0 max:40
Sar ctrl queue: max depth = 0, current queue depth = 0, drops = 0, urun
cnt = 0, total cnt = 106
Serial idb tx count: AAL5: 0, RAW: 212, Drop count:AAL5: 0, RAW: 0
Host Controller Clock rate Info:
SCC Clockrates:
 SCC0 = 1000000 (ATM0/0)
 SCC1 = 8000000 (ATM0/0)
 SCC2 = 1000000 (ATM0/1)
 SCC3 = 1000000 (ATM0/2)
 SCC4 = 5300000 (ATM0/1)
 SCC5 = 8000000 (ATM0/2)
 SCC6 = 0
 SCC7 = 0

WIC Register Value Notes
-------- ------- --------
FPGA Dev ID (LB) 0x53 'S'
FPGA Dev ID (UB) 0x4E 'N'
FPGA Revision 0xA7
WIC Config Reg 0x35 WIC / VIC select = WIC;
CTRL addr bit 8 = 0;
NTR Enable = 0;
OK LED on;
LOOPBACK LED off;
CD LED on;
WIC Config Reg2 0x87 Gen bus error on bad G.SHDSL ATM/T1/E1 access
Int 0 Enable Reg 0x01 G.SHDSL ATM/T1/E1 normal interrupt enabled
 G.SHDSL ATM/T1/E1 error interrupt disabled
DSLSAR Register Value Notes
---------- ------- --------
sdram_refresh: 0x410FFFF Expected value: 0x428xxxx
intr_event_reg: 0xC0 TMR.
intr_enable_reg: 0x13C FIFOF.FBQE.RQAF.RPQAF.TSQAF.
config: 0x660D0A20 UTOPIA.RXEN.RegulateXmit.RMCell.TXEN.
Rx Buffer size: 8192. RCT: Large, VPI Bits: 8.
status: 0x0
clkPerCell: 814121 (line rate: 4608 Kbps)
Pre-timer Count: 461
rclid_tableBase: 0x0
rct_base: 0x10000
tstBase1: 0x13C28 TST boot jump.
rawCellBase: 0x14300 (0/128) slots used.
rpq_base: 0x16000
tsqB(Tx Stat Q): 0x17000
fbq_base: 0x17880 (fbq_count: 128)

Examples

ATM Mode for Two-Wire or Four-Wire SHDSL

ATM Mode for Two-Wire or Four-Wire SHDSL
Examples

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
show controllers dsl-- Displays the DSL controller status and statistics. The sample below shows the output in T1 mode. Actual output may vary depending on the router and the configuration.

Router# show controllers dsl

0 / 0
DSL 0/0 controller UP
Globespan xDSL controller chipset
DSL mode: SHDSL Annex B
Frame mode: Utopia
Configured Line rate: 4608Kbps
Line Re-activated 5 times after system bootup
LOSW Defect alarm: ACTIVE
CRC per second alarm: ACTIVE
Line termination: CO
FPGA Revision: 0xA7
Line 0 statistics
 Current 15 min CRC: 679
 Current 15 min LOSW Defect: 8
 Current 15 min ES: 5
 Current 15 min SES: 5
 Current 15 min UAS: 441
 Previous 15 min CRC: 0
 Previous 15 min LOSW Defect: 0
 Previous 15 min ES: 0
 Previous 15 min SES: 0
 Previous 15 min UAS: 0
Line 1 statistics
 Current 15 min CRC: 577
 Current 15 min LOSW Defect: 8
 Current 15 min ES: 7
 Current 15 min SES: 4
 Current 15 min UAS: 455
 Previous 15 min CRC: 0
 Previous 15 min LOSW Defect: 0
 Previous 15 min ES: 0
 Previous 15 min SES: 0
 Previous 15 min UAS: 0
Line-0 status
 Chipset Version: 1
 Firmware Version: A29733
 Modem Status: Data, Status 1
 Last Fail Mode: No Failure status:0x0
 Line rate: 2312 Kbps
 Framer Sync Status: In Sync
 Rcv Clock Status: In the Range
 Loop Attenuation: 0.600 dB
 Transmit Power: 8.5 dB
 Receiver Gain: 21.420 dB
 SNR Sampling: 39.3690 dB
Line-1 status
 Chipset Version: 1
 Firmware Version: A29733
 Modem Status: Data, Status 1
 Last Fail Mode: No Failure status:0x0
 Line rate: 2312 Kbps
Framer Sync Status: In Sync
Rcv Clock Status: In the Range
Loop Attenuation: 0.4294966256 dB
Transmit Power: 8.5 dB
Receiver Gain: 21.420 dB
SNR Sampling: 39.1570 dB
Dying Gasp: Present

- **debug xdsl application** — Displays output from the xDSL to see what is happening if the DSL does not come up. When the debug xdsl application command is used, resources and the buffer are used and will impact operation.

```
Router# debug xdsl application
xdsl application debugging is on
Router# Apr 23 06:01:26.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:27.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:27.720: DSL 0/0 process_get_wakeup
Apr 23 06:01:27.720: DSL 0/0 xdsl_process_boolean_events
XDSL_LINE_UP_EVENT:
Apr 23 06:01:28.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:29.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:30.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:31.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:32.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:33.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:34.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:34.476: DSL 0/0 SNR Sampling: 42.8370 dB
Apr 23 06:01:35.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:35.476: DSL 0/0 SNR Sampling: 41.9650 dB
Apr 23 06:01:36.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:36.476: DSL 0/0 SNR Sampling: 41.2400 dB
Apr 23 06:01:37.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:37.476: DSL 0/0 SNR Sampling: 40.6180 dB
Apr 23 06:01:37.476: DSL 0/0 xdsl_process_boolean_events
XDSL_LINE_UP_EVENT:
Apr 23 06:01:37.812: DSL 0/0 process_get_wakeup
Apr 23 06:01:37.812: DSL 0/0 xdsl_process_boolean_events
```

Amir Homaiouni
Nokia Bell Labs
Budapest, Hungary

ATM Mode for Two-Wire or Four-Wire SHDSL

Examples

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT

420
Apr 23 06:01:57.912: DSL 0/0 process_get_wakeup
Apr 23 06:01:57.916: DSL 0/0 process_get_wakeup
Apr 23 06:01:57.916: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:01:58.008: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.008: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.012: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.012: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:01:58.104: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.104: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:01:58.108: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.108: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:01:58.200: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.204: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.204: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.208: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.208: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:01:58.296: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.392: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.476: DSL 0/0 process_get_wakeup
Apr 23 06:01:58.476: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:00.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:00.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:00.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:00.476: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:01.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:02.476: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:02.920: DSL 0/0 process_get_wakeup
Apr 23 06:02:02.920: DSL 0/0 process_get_wakeup
Apr 23 06:02:02.920: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:03.016: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.016: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.016: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.016: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:03.020: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.112: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.208: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.304: DSL 0/0 process_get_wakeup
Apr 23 06:02:03.476: DSL 0/0 process_get_wakeup
Router#
Apr 23 06:02:04.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:04.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:04.476: DSL 0/0 SNR Sampling: 42.3790 dB
Apr 23 06:02:04.476: DSL 0/0 SNR Sampling: 42.8370 dB
Router#
Apr 23 06:02:04.476: %LINK-3-UPDOWN: Interface ATM0/0, changed state to up
Apr 23 06:02:05.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:05.476: DSL 0/0 SNR Sampling: 41.5880 dB
Apr 23 06:02:05.476: DSL 0/0 SNR Sampling: 42.3790 dB
Apr 23 06:02:05.476: %LINEPROTO-5-UPDOWN: Line protocol on Interface ATM0/0, changed state to up
Router#
Apr 23 06:02:06.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:06.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:06.476: DSL 0/0 SNR Sampling: 40.9180 dB
Apr 23 06:02:06.476: DSL 0/0 SNR Sampling: 41.2400 dB
Router#
Apr 23 06:02:06.476: %PROFILE-5-UPDOWN: Protocol on Interface ATM0/0, changed state to up
Apr 23 06:02:07.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:07.476: DSL 0/0 SNR Sampling: 40.6180 dB
Apr 23 06:02:07.476: DSL 0/0 SNR Sampling: 41.2400 dBu all
Apr 23 06:02:07.912: DSL 0/0 process_get_wakeup
Apr 23 06:02:07.912: DSL 0/0 process_get_wakeup
Apr 23 06:02:07.912: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:08.008: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.008: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.008: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.008: DSL 0/0 xdsl_background_process: EOC boolean event received
Apr 23 06:02:08.016: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.104: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.200: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.296: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.476: DSL 0/0 process_get_wakeup
Apr 23 06:02:08.476: DSL 0/0 process_get_wakeup
All possible debugging has been turned off
Router#
Router#
Router# debug xdsl driver

- debug xdsl driver --Displays what is happening when the drivers are being downloaded and installed.
 The following example displays a sample output from the debug xdsl driver command:

 - 4-wire mode:
01:04:19: DSL 0/2 xdsl_gsi_int_disable(true):: 0x0
01:04:19: DSL 0/2 xdsl_gsi_int_disable(false):: 0x1
01:04:22: DSL 0/0 dsp interrupt-download next block for line-0
01:04:22: DSL 0/0 framer intr_status 0xC0
01:04:22: DSL 0/0 dsp interrupt-download next block for line-1
01:04:22: DSL 0/0 framer intr_status 0xC0
01:04:22: DSL 0/0 dsp interrupt-download next block for line-0
01:04:22: DSL 0/0 framer intr_status 0xC0
01:04:22: DSL 0/0 dsp interrupt-download next block for line-1
01:04:22: DSL 0/0 framer intr_status 0xC0
01:04:23: DSL 0/0 dsp interrupt-download next block for line-0
01:04:23: DSL 0/0 DSP interrupt disabled
01:04:23: DSL 0/0 Download completed for line-0
01:04:23: DSL 0/0 framer intr_status 0xC0
01:04:23: DSL 0/0 DSP interrupt disabled
01:04:23: DSL 0/0 Download completed for line-1
01:04:23: DSL 0/0 Framer interrupt enabled
01:04:23: DSL 0/0 controller Link up! line rate: 4608 Kbps
00:58:22: DSL 0/0 dsp interrupt-download next block for line-0
00:58:23: DSL 0/0 framer intr_status 0xC0
00:58:24: DSL 0/0 dsp interrupt-download next block for line-0
00:58:24: DSL 0/0 framer intr_status 0xC0
00:58:37: DSL 0/0 dsp interrupt-download next block for line-0
00:58:37: DSL 0/0 framer intr_status 0xC0
00:58:38: DSL 0/0 dsp interrupt-download next block for line-0
00:58:38: DSL 0/0 framer intr_status 0xC0
00:58:38: DSL 0/0 DSP interrupt disabled
00:58:38: DSL 0/0 Download completed for line-0
00:58:38: DSL 0/0 Framer interrupted enabled
00:58:38: DSL 0/0 controller Link up! line rate: 1600 Kbps
00:58:38: DSL 0/0 controller Link up! line rate: 1600 Kbps
00:58:38: Dslsar data rate 1600
00:58:38: DSL 0/0 framer intr_status 0xC4
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 framer intr_status 0xC4
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 framer intr_status 0xC1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1

2-wire mode line 0:

Router# debug xdsl driver
xDLS driver debugging is on
00:58:22: DSL 0/0 dsp interrupt-download next block for line-0
00:58:23: DSL 0/0 framer intr_status 0xC0
00:58:24: DSL 0/0 dsp interrupt-download next block for line-0
00:58:24: DSL 0/0 framer intr_status 0xC0
00:58:37: DSL 0/0 dsp interrupt-download next block for line-0
00:58:37: DSL 0/0 framer intr_status 0xC0
00:58:38: DSL 0/0 dsp interrupt-download next block for line-0
00:58:38: DSL 0/0 framer intr_status 0xC0
00:58:38: DSL 0/0 DSP interrupt disabled
00:58:38: DSL 0/0 Download completed for line-0
00:58:38: DSL 0/0 Framer interrupted enabled
00:58:38: DSL 0/0 controller Link up! line rate: 1600 Kbps
00:58:38: %CONTROLLER-5-UPDOWN: Controller DSL 0/0, changed state to up
00:58:38: %CONTROLLER-5-UPDOWN: Controller DSL 0/0, changed state to up
00:58:38: Dslsar data rate 1600
00:58:38: DSL 0/0 framer intr_status 0xC4
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 framer intr_status 0xC4
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1
00:58:38: DSL 0/0 framer intr_status 0xC1
00:58:38: DSL 0/0 xdsl_gsi_int_disable(true):: 0x0
00:58:38: DSL 0/0 xdsl_gsi_int_disable(false):: 0x1

2-wire mode line 1:

Router# debug xdsl driver
xDLS driver debugging is on
00:55:15: DSL 0/0 dsp interrupt-download next block for line-1
00:55:15: DSL 0/0 framer intr_status 0xC0
00:55:16: DSL 0/0 dsp interrupt-download next block for line-1
00:55:16: DSL 0/0 framer intr_status 0xC0
00:55:17: DSL 0/0 dsp interrupt-download next block for line-1
00:55:17: DSL 0/0 framer intr_status 0xC0

ATM Mode for Two-Wire or Four-Wire SHDSL

Examples
debug xDSL eoc -- Displays what is in the embedded operations channel messages. The following example shows the use of the `debug xDSL eoc` command and sample output.

```
Router# debug xDSL eoc

*Jan 3 18:34:46.824: %CONTROLLER-5-UPDOWN: Controller DSL 0/0, changed state to up
*Jan 3 18:34:46.924: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:46.924: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:46.924: DSL 0/0:msg rcvd line 0
*Jan 3 18:34:46.924: eoc_get_message for line::0
*Jan 3 18:34:46.924: Rx EOC remove transparency:: 1F 1  0  46 10
*Jan 3 18:34:46.928: data_transparency_remove: Done, eoc packet size = 5
*Jan 3 18:34:46.928: Good eoc packet received
*Jan 3 18:34:46.928: incoming request eocmsgid: 1 from line 0
*Jan 3 18:34:46.928: Tx Converted EOC message:: 21 81 1  43 43 49 53 43 4F 0  0  0  2
  1  0  E9 61
*Jan 3 18:34:46.932: data_transparency_add: eoc packet size - before 17, after 17
*Jan 3 18:34:48.824: %CONTROLLER-5-UPDOWN: Controller DSL 0/0, changed state to up
*Jan 3 18:34:48.924: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:48.924: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:48.924: DSL 0/0:msg rcvd line 0
*Jan 3 18:34:48.924: eoc_get_message for line::0
*Jan 3 18:34:48.924: Rx EOC remove transparency:: 1F 1  0  46 10
*Jan 3 18:34:48.924: Tx Converted EOC message:: 21 82 1  0  0  0  0  0  52 33 2E 30 2E
  31 43 4E 53 38 44 44 44 44 41 41 43 43 43 49 53 43 4F 0  0  0  57 49 43 2D 53 48 44 44 53 4C 2D
  56 32 46 4F 43 30 38 33 37 35 55 41 4C 0  31 32 2E 34 28 33 2E 35 2E 31 29 0  66 74
*Jan 3 18:34:48.928: data_transparency_remove: Done, eoc packet size = 4
```

ATM Mode for Two-Wire or Four-Wire SHDSL

Examples

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
ATM Mode for Two-Wire or Four-Wire SHDSL

Examples

*Jan 3 18:34:47.116: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:47.116: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:47.116: DSL 0/0: msg rcvd line 0
*Jan 3 18:34:47.116: DSL 0/0: GT_FAIL
*Jan 3 18:34:47.116: eoc_get_message for line::0
*Jan 3 18:34:47.116: Rx EOC remove transparency:: 12 3 0 0 6D E9
*Jan 3 18:34:47.120: data_transparency_remove: Done, eoc packet size = 6
*Jan 3 18:34:47.120: Good eoc packet received
*Jan 3 18:34:47.120: incoming request eomsgid: 3 from line 0
*Jan 3 18:34:47.120: Tx Converted EOC message:: 21 83 0 0 0 1 AC
*Jan 3 18:34:47.120: data_transparency_add: eoc packet size - before 7, after 7
GSI Tx buffer yet to transmit
*Jan 3 18:34:47.216: data_transparency_remove: Done, eoc packet size = 24
*Jan 3 18:34:47.216: Good eoc packet received
*Jan 3 18:34:47.216: incoming request eomsgid: 5 from line 0
*Jan 3 18:34:47.220: Tx Converted EOC message:: 21 85 0 0 0 0 0 0 0 0 0 0 0 0 0 1E AB
*Jan 3 18:34:47.224: data_transparency_add: eoc packet size - before 26, after 26
GSI Tx buffer yet to transmit
GSI Tx buffer yet to transmit
*Jan 3 18:34:47.224: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:47.224: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:47.224: DSL 0/0: msg rcvd line 0
*Jan 3 18:34:47.224: DSL 0/0: GT_FAIL
*Jan 3 18:34:47.224: eoc_get_message for line::0
*Jan 3 18:34:47.224: Rx EOC remove transparency:: 12 C A 63
*Jan 3 18:34:47.232: data_transparency_remove: Done, eoc packet size = 4
*Jan 3 18:34:47.232: Good eoc packet received
*Jan 3 18:34:47.232: incoming request eomsgid: 12 from line 0
*Jan 3 18:34:47.232: Tx Converted EOC message:: 21 8C 0 F D3 1 0 6 1 46 5 2 44 59
*Jan 3 18:34:47.232: data_transparency_remove: eoc packet size - before 4, after 4
*Jan 3 18:34:47.232: size of eoc full status request :: 2
*Jan 3 18:34:47.232: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:47.232: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:47.232: DSL 0/0: msg rcvd line 0
*Jan 3 18:34:47.232: DSL 0/0: GT_FAIL
*Jan 3 18:34:47.232: eoc_get_message for line::0
*Jan 3 18:34:47.232: Rx EOC remove transparency:: 12 C A 63
*Jan 3 18:34:51.932: data_transparency_remove: Done, eoc packet size = 4
*Jan 3 18:34:51.932: size of eoc status response :: 13
*Jan 3 18:34:51.932:Tx Converted EOC message:: 21 8C 0 10 D3 1 0 0 6 1 46 5 2 50 2C
*Jan 3 18:34:51.932: data_transparency_add: eoc packet size - before 15, after 15
*Jan 3 18:34:51.936: size of eoc status response :: 13
*Jan 3 18:34:51.936:Tx Converted EOC message:: 21 89 4 DB 82
*Jan 3 18:34:51.940: data_transparency_add: eoc packet size - before 5, after 5
*Jan 3 18:34:51.940: size of eoc status response :: 3
GSI Tx buffer yet to transmit
GSI Tx buffer yet to transmit
*Jan 3 18:34:52.024: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:52.024: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:52.024: DSL 0/0: msg rcvd line 0
*Jan 3 18:34:52.024: DSL 0/0: GT_FAIL
*Jan 3 18:34:52.024: eoc_get_message for line::0
*Jan 3 18:34:52.024: Rx EOC remove transparency:: 12 11 6E A8
*Jan 3 18:34:52.024: data_transparency_remove: Done, eoc packet size = 4

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15MT
*Jan 3 18:34:52.028: Good eoc packet received
*Jan 3 18:34:52.028: incoming request eocmsgid: 17 from line 0
*Jan 3 18:34:52.028: Tx Converted EOC message:: 21 91 0 0 0 D6 56
*Jan 3 18:34:52.028: data_transparency_add: eoc packet size - before 7, after 7
*Jan 3 18:34:55.028: size of eoc status response :: 5GSI Tx buffer yet to transmit
*Jan 3 18:34:55.120: DSL 0/0: line 0 EOC Rcv Intr :: 0x4
*Jan 3 18:34:55.120: DSL 0/0:Current length 40 GTI_OK
*Jan 3 18:34:55.120: Rx EOC remove transparency:: 12 8C 0 0 0 7 5 D8 4 5F 6 1 27 64
*Jan 3 18:34:55.124: data_transparency_remove: Done, eoc packet size = 15

- **debug xDSL error** --Displays error messages. The following example shows the *debug xDSL error* command.

  ```
  Router# debug xDSL error
  xDSL error debugging is on
  Router#
  ```

Configuration Examples for ATM Mode for Two-Wire or Four-Wire SHDSL

- **Router A CPE Configuration Example, page 426**
- **Router B CO Configuration Example, page 426**

Router A CPE Configuration Example

```
controller DSL 1/2
mode atm
line-term cpe
line-mode 2-wire line-zero
dsl-mode shdsl symmetric annex B
```

Router B CO Configuration Example

```
Current configuration: 3183 bytes
```
ATM Mode for Two-Wire or Four-Wire SHDSL

Configuration Examples for ATM Mode for Two-Wire or Four-Wire SHDSL

! version 12.3
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname 3725
!
boot-start-marker
boot system flash c3725-is-mz.0424
boot system tftp shriv/c3725-is-mz.new 223.255.254.254
boot-end-marker
!
memory-size iomem 25
no network-clock-participate slot 1
no network-clock-participate slot 2
no network-clock-participate wic 0
no network-clock-participate wic 1
no network-clock-participate wic 2
no network-clock-participate aim 0
no network-clock-participate aim 1
no aaa new-model
ip subnet-zero
ip cef
!
!
!
!
!
!
controller DSL 0/0
mode atm
line-term co
line-mode 4-wire enhanced
dsl-mode shdsl symmetric annex B
line-rate 4608
!
controller DSL 0/1
mode atm
line-term co
line-mode 4-wire enhanced
dsl-mode shdsl symmetric annex B
line-rate 4608
controller DSL 0/2
mode atm
line-term co
line-mode 4-wire enhanced
dsl-mode shdsl symmetric annex B
line-rate 4608
!
controller DSL 1/0
mode atm
line-term co
line-mode 4-wire enhanced
dsl-mode shdsl symmetric annex B
line-rate 4608
!
!
interface ATM0/0
no ip address
load-interval 30
no atm ilmi-keepalive
clock rate aal5 8000000
!
interface ATM0/0.1 point-to-point
ip address 5.0.0.1 255.0.0.0
pvc 2/100
vbr-rt 2000 2000
oam-pvc 0
encapsulation aal5mux ip
interface FastEthernet0/0
 ip address 1.3.208.25 255.255.0.0
 duplex auto
 speed auto
 no cdp enable

interface ATM0/1
 no ip address
 load-interval 30
 no atm ilmi-keepalive
 clock rate aal5 5300000

interface ATM0/1.1 point-to-point
 ip address 6.0.0.1 255.0.0.0
 pvc 2/100
 cbr 4608
!

interface FastEthernet0/1
 mac-address 0000.0000.0011
 ip address 70.0.0.2 255.0.0.0 secondary
 ip address 90.0.0.2 255.0.0.0 secondary
 ip address 50.0.0.2 255.0.0.0
 load-interval 30
 speed 100
 full-duplex
 no cdp enable

interface ATM0/2
 no ip address
 no atm ilmi-keepalive
 clock rate aal5 8000000

interface ATM0/2.1 point-to-point
 ip address 7.0.0.1 255.0.0.0
 pvc 2/100
 vbr-nrt 4608 4200
!

interface ATM1/0
 no ip address
 load-interval 30
 no atm ilmi-keepalive
 clock rate aal5 5300000

interface ATM1/0.1 point-to-point
 ip address 8.0.0.1 255.0.0.0
 pvc 2/100
 vbr-nrt 4608 4608
!

interface FastEthernet1/0
 no ip address
 shutdown
duplex auto
 speed auto
 no cdp enable
!

interface FastEthernet1/1
 no ip address
 shutdown
duplex auto
 speed auto
 no cdp enable
!
 ip default-gateway 172.19.163.44
ip classless
ip route 60.0.0.0 255.0.0.0 ATM1/0.1
ip route 80.0.0.0 255.0.0.0 ATM0/1.1
ip route 223.255.254.254 255.255.255.255 FastEthernet0/0
ip route 223.255.254.254 255.255.255.255 1.3.0.1
ip http server
!
access-list 101 permit ip host 20.0.0.2 host 20.0.0.1
snmp-server community public RO
snmp-server enable traps tty
no cdp run
!
control-plane
!
!
!
!
!

alias exec c conf t
!
line con 0
 exec-timeout 0 0
 privilege level 15
line aux 0
line vty 0 4
 exec-timeout 0 0
 privilege level 15
 no login
!
end

Additional References

For additional information related to the ATM Mode for Two-Wire or Four-Wire SHDSL feature, refer to the following references.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-port G.SHDSL WAN interface card</td>
<td>1-Port G.SHDSL WAN Interface Card for Cisco 2600 Series and Cisco 3600 Series Routers, Release 12.2(8)T</td>
</tr>
<tr>
<td>Voice configuration</td>
<td>Cisco IOS Voice Configuration Library, Release 12.3</td>
</tr>
<tr>
<td>Voice commands</td>
<td>Cisco IOS Voice Command Reference, Release 12.3</td>
</tr>
<tr>
<td>IP configuration</td>
<td>Cisco IOS IP Configuration Guide, Release 12.3</td>
</tr>
<tr>
<td>Voice over ATM with AAL5 and AAL2 support</td>
<td>Voice over ATM, Release 12.3</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T G.991.2 (SHDSL)</td>
<td>Single-Pair High-Speed Digital Subscriber Line (SHDSL) Transceivers</td>
</tr>
<tr>
<td>ITU-T G.994.1 (G.HDSL)</td>
<td>Handshake Procedures for Digital Subscriber Line (DSL) Transceivers</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ATM MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• HDSL2-SHDSL-LINE-MIB(RFC3276)</td>
<td></td>
</tr>
<tr>
<td>• G.SHDSL MIB</td>
<td></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature and support for existing RFCs has not been modified by this feature.</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>

Feature Information for ATM Mode for Two-Wire or Four-Wire SHDSL

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Feature Information for ATM Mode for Two-Wire or Four-Wire SHDSL

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Mode for Two-Wire or Four-Wire SHDSL</td>
<td>12.3(4)XD 12.3(4)XG 12.3(7)T 12.3(4)XG1 12.3(11)T 12.3(14)T 12.4(2)XA 12.4(5)</td>
<td>In Cisco IOS Release 12.3(4)XD, this feature (WIC-1SHDSL-V2) was introduced on the Cisco 2600 series and Cisco 3700 series routers to add 4-wire support. 2-wire support was previously available in Cisco IOS Release 12.2(8)T. For more information, see the document "1-Port G.SHDSL WAN Interface Card for Cisco 2600 Series and Cisco 3600 Series Routers". This feature (WIC-1SHDSL-V2) was integrated into Cisco IOS Release 12.3(4)XG on the Cisco 1700 series routers. This feature (WIC-1SHDSL-V2) was integrated into the Cisco IOS Release 12.3(7)T on the Cisco 2600 series, Cisco 3631, and Cisco 3700 series routers. Cisco 1700 series routers do not support the WIC-1SHDSL-V2 in this release. In Cisco IOS Release 12.3(4)XG1, support for the auto line-mode feature was added. In Cisco IOS Release 12.3(11)T, support for the following was added: additional annex parameters for Cisco 1700, Cisco 2600, Cisco 2800, Cisco 3631, Cisco 3700, and Cisco 3800 series routers; the HDSL2-SHDSL-LINE-MIB (RFC3276); and support for the ATM Mode for SHDSL feature was added for Cisco 2800 series and Cisco 3800 series routers. In Cisco IOS Release 12.3(14)T, support was added for Cisco 1800 series routers and the Cisco 2801 integrated services router.</td>
</tr>
</tbody>
</table>
In Cisco IOS Release 12.4(2)XA, support was added for the WIC-1SHDSL-V3 interface card.

Support for the WIC-1SHDSL-V3 interface card was integrated into the Cisco IOS Release 12.4(5)

The following commands were introduced or modified:
controller dsl, dsl-mode shdsl symmetric annex, ignore-error-duration, line-mode, line-rate, line-term, loopback (DSL controller), show controller dsl, snr margin, debug xdsl application, debug xdsl driver, debug xdsl eoc, debug xdsl error.

Glossary

ABR—available bit rate. An ATM service type in which the ATM network makes a "best effort" to meet the transmitter’s bandwidth requirements. ABR uses a congestion feedback mechanism that allows the ATM network to notify the transmitters that they should reduce their rate of data transmission until the congestion decreases. Thus, ABR offers a qualitative guarantee that the transmitter’s data can get to the intended receivers without unwanted cell loss.

ATM—Asynchronous Transfer Mode. A form of digitized data transmission based on fixed-length cells that can carry data, voice, and video at high speeds.

CBR—constant bit rate. A data transmission that can be represented by a nonvarying, or continuous, stream of bits or cell payloads. Applications such as voice circuits generate CBR traffic patterns. CBR is an ATM service type in which the ATM network guarantees to meet the transmitter’s bandwidth and quality-of-service (QoS) requirements.

CO—central office. Local telephone company office to which all local loops in a given area connect and in which circuit switching of subscriber lines occur.

CPE—customer premises equipment. CPE includes devices, such as CSU/DSUs, modems, and ISDN terminal adapters, required to provide an electromagnetic termination for wide-area network circuits before connecting to the router or access server. This equipment was historically provided by the telephone company, but is now typically provided by the customer in North American markets.

Downstream—Refers to the transmission of data from the central office (CO or COE) to the customer premises equipment (CPE).

G.SHDSL—Multirate Symmetrical High-Speed Digital Subscriber Line.

UBR—unspecified bit rate. QoS class defined by the ATM Forum for ATM networks. UBR allows any amount of data up to a specified maximum to be sent across the network, but there are no guarantees in terms of cell loss rate and delay. Compare with ABR (available bit rate), CBR, and VBR.
Upstream--Refers to the transmission of data from the customer premises equipment (CPE) to the central office equipment (CO or COE).

VBR--variable bit rate. QOS class defined by the ATM Forum for ATM networks. VBR is subdivided into a real time (rt) class and non-real time (nrt) class.

VBR-rt--VBR-real-time is used for connections in which there is a fixed timing relationship between samples.

VBR-nrt--VBR-non-real-time is used for connections in which there is no fixed timing relationship between samples, but that still need a guaranteed QoS. Compare with ABR, CBR, and UBR.

Note

Refer to the *Internetworking Terms and Acronyms* for terms not included in this glossary.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
1-Port G.SHDSL WAN Interface Card for Cisco 2600 Series and Cisco 3600 Series Routers

This document describes the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC) (WIC-1SHDSL) on Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release 12.2(8)T.

G.SHDSL is an ATM-based, multirate, high-speed (up to 2.3 MB), symmetrical digital subscriber line technology for data transfer between a single customer premises equipment (CPE) subscriber and a central office.

G.SHDSL is supported on the G.SHDSL WAN interface card (WIC-1SHDSL), a 1-port WAN interface card (WIC) for Cisco 2600 series and Cisco 3600 series routers.

The G.SHDSL WIC is compatible with the Cisco 6015, Cisco 6130, Cisco 6160, and Cisco 6260 Digital Subscriber Line Access Multiplexers (DSLAMs). The DSLAM must be equipped with G.SHDSL line cards that are compatible with the DSL service to be configured.

The G.SHDSL WIC supports ATM Adaptation Layer 2 (AAL2), ATM Adaptation Layer 5 (AAL5), and various classes of service for ATM

- Finding Feature Information, page 435
- Prerequisites for 1-Port G.SHDSL WAN Interface Card, page 436
- Restrictions for 1-Port G.SHDSL WAN Interface Card, page 436
- Information About 1-Port G.SHDSL WAN Interface Card, page 436
- How to Configure 1-Port G.SHDSL WAN Interface Card, page 436
- Configuration Examples for 1-Port G.SHDSL WAN Interface Card, page 442
- Additional References, page 446
- Feature Information for 1-Port G.SHDSL WAN Interface Card, page 448
- Glossary, page 448

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for 1-Port G.SHDSL WAN Interface Card

A G.SHDSL WIC must be installed in the router to match the DSL service to be configured. A compatible G.SHDSL line card must be installed in the DSLAM.

Restrictions for 1-Port G.SHDSL WAN Interface Card

- The G.SHDSL WIC does not support dual latency. When the DSL link is intended to support both voice and data traffic simultaneously, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.
- The G.SHDSL WIC does not support Dying Gasp in ANSI T1.413 Issue 2.
- The G.SHDSL WIC does not support available bit rate (ABR) class of service (CoS).
- The G.SHDSL WIC should be inserted only into onboard WIC slots or 1FE2W, 2W, 1FE1R, 2FE2W network modules. This WIC is not supported in old combination network modules.

Information About 1-Port G.SHDSL WAN Interface Card

- Benefits, page 436

Benefits

- Enables business-class broadband service with voice integration, scalable performance, flexibility, and security.
- Symmetrical WAN speeds (up to 2.3Mbps) over a single copper pair.
- Repeatable and has thirty percent longer reach than SDSL.
- Rate adaptive with G.HS "handshake" Protocol.
- Based on ITU Recommendation G.991.2 (Accepted Worldwide).
- Support for G.SHDSL Annex A (U.S. signaling) and Annex B (European signaling).
- Multiple G.SHDSL WAN Interface Cards configurable per Cisco 2600 series and Cisco 3600 series chassis.
- Toll-quality voice over IP delivery over AAL2 and AAL5.
- Provides ATM traffic management to enable service providers to manage their core ATM network infrastructures.
- Supports ATM class of service features constant bit rate (CBR), variable bit rate-nonreal time (VBR-nrt), variable bit rate-real time (VBR-rt), and unspecified bit rate (UBR and UBR+).
- Operates back-to-back or through a DSLAM.
- Sustains up to 23 virtual circuits per WAN on a WIC in Cisco 2600 series and Cisco 3600 series routers.

How to Configure 1-Port G.SHDSL WAN Interface Card

- Configuring G.SHDSL on a Cisco Router, page 437
Configuring G.SHDSL on a Cisco Router

To configure G.SHDSL service on a Cisco router containing a G.SHDSL WIC, complete the following steps, beginning in global configuration mode:

SUMMARY STEPS

1. `interface atm 1/0`
2. `ip address IP-address`
3. `atm ilmi-keepalive seconds`
4. `pvc [name] vpi/vci`
5. `protocol ip IP-address`
6. `vbr-rt peak-rate average-rate burst`
7. `encapsulation aal1 | aal2 | aal5ciscoppp | aal5mux | aal5nlpid | aal5snap`
8. `exit`
9. `dsl operating-mode gshdsl symmetric annex {A|B} }
10. `equipment-type co | cpe`
11. `dsl linerate kbps | auto`
12. `exit`
13. `exit`
14. `show interface atm 1/0`
15. `clear interface atm 1/0`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>interface atm 1/0</code></td>
<td>Enters ATM configuration mode for interface ATM 0 in slot 1.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm 1/0</td>
<td>If a slot has two subslots for WIC modules and no ATM interface is present in subslot 0, the WIC will take ATM x/0 as its interface number even if placed in subslot 1 (ATMx/1). If a two-port ATM module is present in subslot 0, the WIC will use ATM x/2 as its interface number. This subslot number is pertinent to all interface commands such as <code>show interface atm</code> and <code>show dsl interface atm</code>.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>ip address IP-address</code></td>
<td>Assigns an IP address to the DSL ATM interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.3.0.1 255.255.255.0</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
--- | ---
Step 3 atm ilmi-keepalive *seconds* | (Optional) Enables Integrated Local Management Interface (ILMI) keepalives. If you enable ILMI keepalives without specifying the seconds, the default time interval is 3 seconds.

Example:
```
Router(config-if-)# atm ilmi-keepalive 10
```

Step 4 pvc [name] vpi/vci | Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and configures a new ATM permanent virtual circuit (PVC) by assigning a name (optional) and VPI/VCI numbers.
The default traffic shaping is an unspecified bit rate (UBR); the default encapsulation is AAL5+LLC/SNAP.

Example:
```
Router(config-if-vc)# pvc 10/100
```

Step 5 protocol ip *IP-address* | (Optional) Enables IP connectivity and create a point-to-point IP address for the virtual circuit (VC).

Example:
```
Router(config-if-vc)# protocol ip 10.3.0.2 broadcast
```

Step 6 vbr-rt peak-rate average-rate burst | (Optional) Configures the PVC for real-time variable bit rate (VBR) traffic shaping.
- *Peak rate* --Peak information rate (PIR)
- *Average rate* --Average information rate (AIR)
- *Burst* --Burst size in cells

Example:
```
Router(config-if-vc)# vbr-rt 672 672 512
```

Step 7 encapsulation aal1 | aal2 | aal5ciscoppp | aal5mux | aal5nlpid | aal5snap | (Optional) Configures the ATM adaptation layer (AAL) and encapsulation type.
- *aal1* --AAL1
- *aal2* --AAL2
- *aal5ciscoppp* --Cisco PPP over AAL5
- *aal5mux* --AAL5+MUX
- *aal5nlpid* --AAL5+NLPID
- *aal5snap* --AAL5+LLC/SNAP

The default is aal5snap.

Example:
```
Router(config-if-vc)# encapsulation aal2
```

Step 8 exit | Exits from interface-atm-vc configuration mode.

Example:
```
Router(config-if-vc)# exit
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 9** dsl operating-mode gshdsl symmetric annex {A|B} } | Configures the DSL interface to operate in a specified DSL mode:
 - gshdsl --Configures multirate, high-speed DSL per ITU G.991.2
 - symmetric --Configures symmetrical mode per ITU G.992.1.
 - annex --Configures the regional operating parameters.
 - A --Sets the operating parameters for North America. This value is the default.
 - B --Sets the operating parameters for Europe.
 The default is g shdsl symmetric annex A. |
| **Step 10** equipment-type co | cpe | Configures the DSL interface to function as central office equipment or customer premises equipment:
 - co --The WIC functions as central office equipment and can interface with another G.SHDSL WIC configured as cpe.
 - cpe --The WIC functions as customer premises equipment and can interface with a DSLAM or with another G.SHDSL WIC configured as co.
 The default is cpe. |
| **Step 11** dsl linerate kbps | auto | Configures the DSL line rate:
 - kbps --Line rate (data transfer rate) in kilobits per second. Allowable entries are 72, 136, 200, 264, 392, 520, 776, 1032, 1160, 1544, 2056, and 2312.
 - auto --The WIC automatically trains for an optimal line rate by negotiating with the far-end DSLAM or WIC.
 The default is auto. |
| **Step 12** exit | Exits from ATM interface configuration mode. |
| **Step 13** exit | Exits from global configuration mode. |
| **Step 14** show interface atm 1/0 | Verifies the ATM interface configuration. |
Command or Action

<table>
<thead>
<tr>
<th>Step 15 clear interface atm 1/0</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permits the configuration changes to take effect.</td>
</tr>
</tbody>
</table>

Example:

```
Router# clear interface atm 1/0
```

Configuring ILMI on the DSLAM Connected to the G.SHDSL WIC

The ILMI protocol allows DSLAMs to be used for ATM address registration across an ATM User-Network Interface (UNI). If ILMI is configured on the G.SHDSL WIC, the ATM PVC must be configured on the DSLAM. All switch terminating connections use interface 0/0 to connect to the switch CPU.

For information about configuring the DSLAM, see the Configuration Guide for Cisco DSLAMs with NI-2.

Verifying ATM Configuration

Use the following commands to verify your configuration:

- To verify current configuration and to view the status for all controllers, use the `show running-config` command.
- To view ATM controller statistics, use the `show controllers atm slot/port` command.
- To verify the PVC status, use the `show atm vc` command. Make sure that active PVCs are up.
- To help identify ATM related events as they are generated, use the `debug atm events` command.
- To indicate which interfaces are having trouble, use the `debug atm errors` command.
- To identify an entry for the ATM interface you configured and to show an entry for the ATM slot/port you configured, use the `show ip route` command.
- To view the status of ATM interface, use the `show interface atm` command. Make sure that the ATM slot/port and the line protocol are up, as shown in the following example:

```
Router# show interface atm 1/0
ATM1/0 is up, line protocol is up
Hardware is DSLSAR (with Globespan G.SHDSL Module)
MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec, reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Keepalive not supported
Encapsulation(s): AAL5 AAL2, PVC mode
24 maximum active VCs, 256 VCs per VP, 2 current VCCs
VC idle disconnect time: 300 seconds
Last input never, output 00:00:01, output hang never
Last clearing of "show interface" counters 03:16:00
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
2527 packets input, 57116 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
10798 packets output, 892801 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out
```
Router# show atm vc

<table>
<thead>
<tr>
<th>VCD</th>
<th>Interface</th>
<th>Name</th>
<th>VPI</th>
<th>VCI</th>
<th>Type</th>
<th>Encaps</th>
<th>SC</th>
<th>Kbps</th>
<th>Avg/Min Burst</th>
<th>Cells</th>
<th>STS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/0.3</td>
<td>2</td>
<td>9</td>
<td>36</td>
<td>PVC</td>
<td>MUX</td>
<td>UBR</td>
<td>800</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/0.2</td>
<td>1</td>
<td>9</td>
<td>37</td>
<td>PVC</td>
<td>SNAP</td>
<td>UBR</td>
<td>800</td>
<td>UP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Router# show controllers

atm 1/0

Interface ATM1/0 is up
Hardware is DSLSAR (with Globespan G.SHDSL Module)
IDB: 62586758 Instance:6258E054 reg_dslsar:3C810000 wic_regs:3C810080
PHY Inst:62588490 Ser0Inst:62573074 Ser1Inst: 6257CBD8 us_bwidth:800
Slot: 1 Unit: 1 Subunit: 0 pkt_size:4496
VcperVP:256 max_vp: 256 max_vc: 65536 total vc:2
rct_size:65536 vpvcvciibit:16 connTb1VCI:8 vpi_bits:8
vpcvci_sel:3 enabled: 0 throttled:0

WIC Register Value Notes
--------------- ---------- -------------
FPGA Dev ID (LB) 0x44 'D'
FPGA Dev ID (UB) 0x53 'S'
FPGA Revision 0x99
WIC Config Reg 0x45 WIC / VIC select = WIC;
CTRLE addr bit 8 = 1;
OK LED on;
LOOPBACK LED off;
CD LED on;
WIC Config Reg2 0x07 Gen bus error on bad ADSL access
Int 0 Enable Reg 0x03 ADSL normal interrupt enabled
ADSL error interrupt enabled

• To view the status of the G.SHDSL modem, use the show dsl interface atm command. If the line is down, the following statement appears: Line is not active. Some of the values may not be accurate.
You can also verify whether the equipment type and operating mode configuration are correct for your application.

Sample output--The WIC is configured as central office equipment, and the line is up

Router# show dsl interface atm 0/0

Globespan G.SHDSL Chipset Information
Equipment Type: Central Office
Operating Mode: G.SHDSL
Clock Rate Mode: Auto rate selection Mode
Reset Count: 2
Actual rate: 2320 Kbps
Modem Status: Data
Noise Margin: 43 dB
Loop Attenuation: 0.0 dB
Transmit Power: 13.5 dB
Receiver Gain: 204.8000 dB
Last Activation Status: No Failure
CRC Errors: 0
Chipset Version: 1
Firmware Version: R1.0
Farend Statistics since CO boot-time:
CRC Errors: 0
Errored Seconds: 0
Severly ES: 0
Un Available S: 48
Loss Of Sync S: 0

Sample output--The WIC is configured as customer premises equipment, and the line is up

Router# show dsl interface atm 0/0

Globespan G.SHDSL Chipset Information
Equipment Type: Customer Premise
Operating Mode: G.SHDSL
Clock Rate Mode: Auto rate selection Mode
Configuration Examples for 1-Port G.SHDSL WAN Interface Card

- Configuration in CPE Mode Example, page 442
- Configuration in CO Mode Example, page 444

Configuration in CPE Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in customer premises equipment (CPE) mode, on a Cisco 2600 series router. This router in CPE mode can be linked to either a DSLAM or to another router that is configured to operate in central office (CO) mode.

```
Router# show running config
Building configuration...
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
!
hostname host1
!
memory-size iomem 10
voice-card 1
!
ip subnet-zero
ip host host2 225.255.255.224
!
no mgcp timer receive-rtcp
call rsvp-sync
!
controller T1 1/0
  framing esf
  linecode b8zs
  ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
.
ds0-group 23 timeslots 24 type e&m-wink-start
!
controller T1 1/1
  framing esf
  linecode b8zs
  interface Ethernet0/0
  ip address 209.165.202.128 255.255.255.224
  half-duplex
  no cdp enable
```
interface Serial0/0
 no ip address
 shutdown

interface ATM0/1
 ip address 209.165.201.1 255.255.255.224
 dsl operating-mode gshdsl symmetric annex A
 dsl equipment-type cpe
 dsl linerate auto
 load-interval 30
 atm vc-per-vp 256
 no atm ilmi-keepalive
 pvc 10/100
 vbr-rt 672 672 512
 encapsulation aal2

 pvc 10/200
 protocol ip 209.165.202.159 broadcast
 encapsulation aal5snap

 no fair-queue

interface Ethernet0/1
 no ip address
 shutdown

 ip classless
 ip route 209.165.202.128 255.255.255.224 Ethernet0/0
 no ip http server

 !
 ! snmp-server engineID local 000000090200003080477F20
 snmp-server manager

 !
 voice-port 1/0:0
 local-alerting
 timeouts wait-release 3
 connection trunk 3001

 !
 voice-port 1/0:1
 local-alerting
 timeouts wait-release 3
 connection trunk 3002

 .
 .

 voice-port 1/0:23
 local-alerting
 timeouts wait-release 3
 connection trunk 3024
 shutdown

 !
 dial-peer cor custom

 !
 dial-peer voice 3001 voatm
 destination-pattern 3001
 called-number 4001
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 31
 codec aal2-profile ITUT 1 g711ulaw
 no vad

 !
 dial-peer voice 3002 voatm
 destination-pattern 3002
 called-number 4002
 session protocol aal2-trunk
 session target ATM0/1 pvc 10/100 32
 codec aal2-profile custom 100 g726r32
 no vad

 !
 dial-peer voice 3003 voatm
 destination-pattern 3003
 called-number 4003
Configuration in CO Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in central office (CO) mode, on a Cisco 2600 series router. This router in CO mode can be linked to another router that is configured to operate in CPE mode.

Router# version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption

hostname host2
memory-size iomem 10
voice-card 1

ip subnet-zero
ip host host2 225.255.255.224
no mgcp timer receive-rtcp
call rsvp-sync

controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
ds0-group 23 timeslots 24 type esm-wink-start
controller T1 1/1
framing esf
linecode b8zs
interface Ethernet0/0
ip address 209.165.202.128 255.255.255.224
dl lincode auto
interface Serial0/0
shutdown
interface ATM0/1
ip address 209.165.201.1 255.255.255.224
dsl oper-mode gshdsl symmetric annex a
dsl equipment-type co
dsl linrate auto
load-interval 30
atm vc-per-vp 256
no atm ilmi-keepalive
pvc 10/100
vbr-rt 672 672 512
encapsulation aal2
pvc 10/200
protocol ip 209.165.202.159 broadcast
encapsulation aal5snap
no fair-queue
interface Ethernet0/1
no ip address
shutdown
ip classless
ip route 209.165.202.128 255.255.255.224 Ethernet0/0
no ip http server
snmp-server engineID local 000000090200003080477F20
snmp-server manager
voice-port 1/0:0
local-alerting
timeouts wait-release 3
connection trunk 3001
voice-port 1/0:1
local-alerting
timeouts wait-release 3
connection trunk 3002
voice-port 1/0:23
local-alerting
timeouts wait-release 3
connection trunk 3024
shutdown
dial-peer cor custom
dial-peer voice 3001 voatm
destination-pattern 3001
called-number 4001
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 31
codec aal2-profile ITUT 1 g711ulaw
no vad

dial-peer voice 3002 voatm
destination-pattern 3002
called-number 4002
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 32
codec aal2-profile custom 100 g726r32
no vad

dial-peer voice 3003 voatm
destination-pattern 3003
called-number 4003
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 33
codec aal2-profile ITUT 7 g729abr8
no vad

dial-peer voice 3024 voatm
destination-pattern 3024
called-number 3024
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 54
codec aal2-profile ITUT 7 g729abr8
no vad

dial-peer voice 1 pots
destination-pattern 4001
port 1/0:0

dial-peer voice 2 pots
destination-pattern 4002
port 1/0:1

dial-peer voice 24 pots
destination-pattern 4024
port 1/0:23

line con 0
 exec-timeout 0 0
 transport input none
line aux 0
line vty 0 4
 login

no scheduler allocate
end

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Voice configuration</td>
<td>• Cisco IOS Voice, Video, and Fax Configuration Guide</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Voice, Video, and Fax Command Reference</td>
</tr>
<tr>
<td>Configuring IP</td>
<td>Cisco IOS IP Configuration Guide</td>
</tr>
<tr>
<td>Configuring ATM</td>
<td>Configuring ATM in the Wide-Area Networking Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-T G.991.2</td>
<td>SHDSL</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Feature Information for 1-Port G.SHDSL WAN Interface Card

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port G.SHDSL WAN Interface Card</td>
<td>12.2(4)XL 12.2(8)T</td>
<td>The Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC) (WIC-1SHDSL) on Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release 12.2(8)T. This feature is supported on the following platforms: Cisco 2610, Cisco 2611, Cisco 2612, Cisco 2613, Cisco 2620, Cisco 2621, Cisco 2650, Cisco 2651, Cisco 3620, Cisco 3631, Cisco 3640, Cisco 3661, Cisco 3662. The following commands were introduced or modified: dsl equipment-type, dsl llinerate, dsl operating-mode (G.SHDSL).</td>
</tr>
</tbody>
</table>

Glossary

ABR--available bit rate.

ADSL--asymmetric digital subscriber line. Available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

ATM--Asynchronous Transfer Mode. International standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media such as E3, SONET, and T3.

CLI--command-line interface.
CO--central office. Local exchange (local switch) that terminates individual local telephone subscriber lines for switching, and connects to the public network. A CO is known as a class 5 switch office. For example, 5ESS by Lucent and DMS 100 by Nortel.

CPE--customer premise equipment. Devices such as channel service units (CSUs)/data service units (DSUs), modems, and ISDN terminal adapters, required to provide an electromagnetic termination for wide-area network circuits before connecting to the router or access server. This equipment was historically provided by the telephone company, but is now typically provided by the customer in North American markets.

DSL--digital subscriber line available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

FXO--foreign exchange office. An FXO interface connects to a central office.

FXS--foreign exchange station. An FXS interface connects directly to a standard telephone, supplying ring voltage, dial tone, and so on.

G.SHDSL--Multirate Symmetrical High-Speed Digital Subscriber Line

IAD--integrated access device. A CPE device used to combine services from various sources onto a common platform for transmission on a common transport span. Typically, an IAD combines various voice and data services such as circuit-based services like traditional POTS and packet-switched services such as frame relay or ATM.

PVC--permanent virtual circuit.
G.SHDSL Symmetric DSL Support for Cisco IAD2420 Series IAD

This document describes the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the Cisco IAD2420 series integrated access devices (IADs) in Cisco IOS Release 12.2(8)T.

G.SHDSL is ATM-based, multirate, high-speed (up to 2.3 MB), symmetrical digital subscriber line technology for data transfer between a single customer premises equipment (CPE) subscriber and a central office (CO). G.SHDSL refers to the approved standard officially designated in ITU-T G.991.2.

The Cisco IAD2420 series IADs support G.SHDSL in the following models: IAD2424-8FXS, IAD2424-16FXS, IAD2424-16FXS8FXO, and IAD2424-1T1. These models are compatible with the Cisco 6160 and Cisco 6260 Digital Subscriber Line Access Multiplexers (DSLAM). The DSLAM must be equipped with compatible G.SHDSL line cards.

The Cisco IAD2424 IAD supports ATM Adaption Layer 2 (AAL2), ATM Adaption Layer 5 (AAL5), and quality of service (QoS) features for both voice and data services.

- Finding Feature Information, page 451
- Prerequisites for G.SHDSL Symmetric DSL Support, page 452
- Restrictions for G.SHDSL Symmetric DSL Support, page 452
- Information About G.SHDSL Symmetric DSL Support, page 452
- How to Configure G.SHDSL Symmetric DSL Support, page 452
- Configuration Examples for G.SHDSL Symmetric DSL Support, page 457
- Additional References, page 459
- Feature Information for G.SHDSL Symmetric DSL Support, page 460
- Glossary, page 461

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for G.SHDSL Symmetric DSL Support

A compatible G.SHDSL line card must be installed in the DSLAM.

Restrictions for G.SHDSL Symmetric DSL Support

The wetting current function is not supported as part of G.SHDSL.

Information About G.SHDSL Symmetric DSL Support

- Benefits, page 452

Benefits

- Enables business class broadband service with voice integration, scalable performance, flexibility, and security.
- Aggregates G.SHDSL and other transport options into a single box.
- Provides G.SHDSL high-speed digital data transmissions between CPE and the CO.
- Supports AAL2 and AAL5 services and applications (including voice), ATM class of service (constant bit rate [CBR], variable bit rate-nonreal time [VBR-nrt], variable bit rate-real time [VBR-rt], and unspecified bit rate [UBR and UBR+]).
- Provides ATM traffic management and quality of service (QoS) features to enable service providers to manage their core ATM network infrastructures.

How to Configure G.SHDSL Symmetric DSL Support

- Configuring G.SHDSL on Cisco IAD2420 Series IADs, page 452
- Verifying ATM Configuration, page 456
- Verifying Your Configuration, page 457

Configuring G.SHDSL on Cisco IAD2420 Series IADs

To configure G.SHDSL service on the Cisco IAD2420 series IAD that supports G.SHDSL, complete the following steps, beginning in global configuration mode:
SUMMARY STEPS

1. controller shdsl 0
2. mode atm
3. annex {a | b
4. line-rate auto | rate
5. exit
6. interface atm 0
7. ip address ip-address
8. atm ilmi-keepalive seconds
9. pvc [name] vpi/vci
10. protocol ip/IP-address
11. vbr-rate peak-rate average-rate burst
12. encapsulation aal1 | aal2 | aal5cisco | aal5mux | aal5nlpid | aal5snap
13. exit
14. shutdown
15. Router(config-if)# no shutdown
16. Router(config-if)# exit
17. Router(config)# exit
18. Router> show interface atm 0

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 controller shdsl 0</td>
<td>Enters controller configuration mode and the controller number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller shdsl 0</td>
<td></td>
</tr>
<tr>
<td>Step 2 mode atm</td>
<td>Enables ATM encapsulation and creates logical ATM interface 0. Controller framing is automatically set to Extended SuperFrame (ESF). The line code is automatically set to B8ZS.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrl)# mode atm</td>
<td></td>
</tr>
<tr>
<td>Step 3 annex {a</td>
<td>b</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrl)# annex a</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | **Purpose**
---|---
Step 4 line-rate auto | Specifies the DSL line rate for the SHDSL port. The range is 192 to 2312 kbps. The default is **auto** (negotiated between the SHDSL port and the DSLAM).
Example:
Router(config-ctrl)# line-rate auto 1160

Note If different DSL line rates are configured at opposite ends of the DSL uplink, the actual DSL line rate is always the lower rate.
Note The maximum peak cell rate is 8 kbps less than the line rate.

Step 5 exit | Exits from controller configuration mode.
Example:
Router(config-ctrl)# exit

Step 6 interface atm 0 | Enters ATM configuration mode for interface ATM 0.
Example:
Router(config)# interface atm 0

Step 7 ip address *ip-address* | Assigns an IP address to the DSL ATM interface.
Example:
Router(config-if)# ip address 10.1.0.1 255.255.255.0

Step 8 atm ilmi-keepalive *seconds* | (Optional) Enables Integrated Local Management Interface (ILMI) keepalives.
If you enable ILMI keepalives without specifying the number of seconds, the default time interval is 3 seconds.
Example:
Router(config-if)# atm ilmi-keepalive 10

Step 9 pvc [*name*] vpi/vci | Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and configures a new ATM PVC by assigning a name (optional) and VPI/VCI numbers.
The default traffic shaping is UBR; the default encapsulation is AAL5+LLC/SNAP.
Example:
Router(config-if)# pvc 110/110

Step 10 protocol ip *IP-address* | (Optional) Enables IP connectivity and creates a point-to-point IP address for the VC.
Example:
Router(config-if-vc)# protocol ip 10.1.0.2
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 11** vbr-rt peak-rate average-rate burst | *(Optional)* Configures the PVC for real-time variable bit rate (VBR) traffic shaping.
 - Peak rate = peak information rate (PIR)
 - Average rate = average information rate (AIR)
 - Burst = burst size in cells |
| **Example:**
Router(config-if-vc)# vbr-rt 2304 2304 65535 | |
| **Step 12** encapsulation aal1 | *(Optional)* Configures the ATM adaptation layer (AAL) and encapsulation type.
 - Use the **aal2** keyword for AAL2
 - Use the **aal5ciscopp** keyword for Cisco PPP over AAL5
 - Use the **aal5mux** keyword for AAL5+MUX
 - Use the **aal5nlpid** keyword for AAL5+NLPID
 - Use the **aal5snap** keyword for AAL5+LLC/SNAP (the default) |
| **Example:**
Router(config-if-vc)# encapsulation aal2 | |
| **Step 13** exit | Exits from interface-ATM-VC configuration mode. |
| **Example:**
Router(config-if-vc)# exit | |
| **Step 14** shutdown | Ensures that the ATM interface is shut down. |
| **Example:**
Router(config-if)# shutdown | |
| **Step 15** Router(config-if)# no shutdown | Activates the ATM interface. |
| **Example:**
Router(config-if)# no shutdown | |
| **Step 16** Router(config-if)# exit | Exits from ATM interface configuration mode. |
| **Example:**
Router(config-if)# exit | |
| **Step 17** Router(config)# exit | Exits from global configuration mode. |
| **Example:**
Router(config)# exit | |
Verifying ATM Configuration

You can verify the ATM interface configuration by doing the following:

- To verify the ATM interface configuration, enter the `show interface atm 0` command in EXEC mode.

 Router# show interface atm 0
 ATM0 is up, line protocol is up
 Hardware is DSLSAR (with Globespan G.SHDSL Module)
 MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec,
 reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ATM, loopback not set
 Keapalive not supported
 Encapsulation(s): AAL5 AAL2, PVC mode
 24 maximum active VCs, 256 VCs per VP, 2 current VCCs
 VC idle disconnect time: 300 seconds
 Last input never, output 00:00:01, output hang never
 Last clearing of "show interface" counters 03:16:00
 Queueing strategy: fifo
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops
 30 second input rate 0 bits/sec, 0 packets/sec
 30 second output rate 0 bits/sec, 0 packets/sec
 2527 packets input, 57116 bytes, 0 no buffer
 Received 0 broadcasts, 0 runs, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 10798 packets output, 892801 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 output buffer failures, 0 output buffers swapped out

- For an SHDSL port, to verify the SHDSL controller status and view the statistics, enter the `show controller shdsl 0` command in EXEC mode.

 Router# show controller shdsl 0
 SHDSL 0 controller UP
 SLOT 3: Globespan xDSL controller chipset
 Frame mode: Serial ATM
 Configured Line rate: 1160Kbps
 Line Re-activated 0 times after system bootup
 LOSW Defect alarm: None
 CRC per second alarm: None
 Line termination: CPE
 FPGA Revision: 9
 Current 15 min CRC: 0
 Current 15 min LOSW Defect: 0
 Current 15 min SES: 0
 Current 15 min UAS: 7
 Previous 15 min CRC: 0
 Previous 15 min LOSW Defect: 0
 Previous 15 min SES: 0
 Previous 15 min UAS: 7
 Chipset Version: 1
 Firmware Version: R1.2
 Modem Status: Data
 Line rate: 1160 Kbps
Framer Sync Status: In Sync
Rcv Clock Status: In the Range
Loop Attenuation: 0.0 dB
Transmit Power: 13.5 dB
Receiver Gain: 11.420 dB
SNR Sampling: 40
Last Fail Mode: No Failure

- To verify the SHDSL controller status and view the statistics, change state to administratively down and enter the show controller shdsl 0 command in EXEC mode.

 Router# conf t
 Enter configuration commands, one per line. End with CNTL/Z.
 iadl(config)#contr shds 0
 iadl(config-controller)#shut
 iadl(config-controller)#
 01:30:46: %CONTROLLER-5-UPDOWN: Controller SHDSL 0, changed state to administratively down
 01:30:49: %LINEPROTO-5-UPDOWN: Line protocol on Interface ATM0, changed state to down
 iadl(config-controller)#end
 Router# show controller shdsl 0
 SHDSL 0 controller ADMINDOWN
 SLOT 3: Globespan xDSL controller chipset
 Frame mode: Serial ATM
 Configured Line rate: 1160Kbps
 Line Re-activated 2 times after system bootup
 LOSW Defect alarm: None
 CRC per second alarm: None
 Line termination: CPE
 FPGA Revision: 9
 Current 15 min CRC: 0
 Current 15 min LOSW Defect: 0
 Current 15 min ES: 0
 Current 15 min SES: 0
 Current 15 min UAS: 7
 Previous 15 min CRC: 0
 Previous 15 min LOSW Defect: 0
 Previous 15 min ES: 0
 Previous 15 min SES: 0
 Previous 15 min UAS: 0
 Chipset Version: 1
 Firmware Version: R1.2
 Modem Status: Idle

Verifying Your Configuration

You can perform the following tests at any time to verify the hardware or software configuration of the Cisco IAD2420 series IADs:

- Display the hardware configuration with the show version command.
- Display T1 and SHDSL controllers with the show controllers command.
- Display the running configuration with the show running-config command

Display the configuration stored in NVRAM using the show startup-config command.

Configuration Examples for G.SHDSL Symmetric DSL Support

The following example shows a typical running configuration with the initial configuration tasks completed:

 Router# show running config
 Building configuration...
Current configuration : 1654 bytes

version 12.2
no service single-slot-reload-enable
no service pad
service timestamps debug uptime
service timestamps log uptime
no service password-encryption

hostname Router

boot system flash:c2420-a2i8sv5-mz.1.0.9
logging rate-limit console 10 except errors

network-clock base-rate 56k
ip subnet-zero

ip audit notify log
ip audit po max-events 100
no ip dhcp-client network-discovery
ip max-session-starts 0

no voice confirmation-tone
voice-card 0

controller SHDSL 0
 mode atm

controller T1 1
 mode cas
 framing esf
 clock source loop-timed
 linecode b8zs
 ds0-group 1 timeslots 1-24 type e&m-immediate-start

interface Loopback0
 ip address 3.3.3.3 255.255.0.0

interface Ethernet0
 ip address 1.3.95.50 255.255.0.0
 no ip mroute-cache

interface Serial0
 bandwidth 10000000
 ip address 180.100.9.11 255.255.255.0
 no keepalive

interface ATM0
 no ip address
 ip mroute-cache
 atm idle-cell-format itu
 atm enable-payload-scrambling
 no atm ilmi-keepalive
 pvc 110/110
 vbr-rt 2304 2304 65535
 vcci 2
 encapsulation aal2

router eigrp 10
 network 10.0.0.0
 network 180.100.0.0
 no auto-summary
 no eigrp log-neighbor-changes
!
ip classless
ip route 0.0.0.0 0.0.0.0 1.3.0.1
ip route 2.2.2.2 255.255.255.255 10.10.10.2
no ip http server
!
call rsvp-sync
!
voice-port 1:1
!
mgcp
mgcp call-agent 1.4.173.1 service-type mgcp version 0.1
mgcp tse payload 100
no mgcp timer receive-rtcp
mgcp timer net-cont-test 3000
!
mgcp profile default
!
dial-peer cor custom
!
!
dial-peer voice 1 pots
 application mgcpapp
 port 1:1
!
!
line con 0
 exec-timeout 0 0
line aux 0
line 2 3
line vty 0 4
 login
!
end

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Voice configuration</td>
<td>• Cisco IOS Voice, Video, and Fax Configuration Guide, Release 12.2</td>
</tr>
<tr>
<td></td>
<td>• Cisco IOS Voice, Video, and Fax Command Reference, Release 12.2</td>
</tr>
<tr>
<td>Configuring IP</td>
<td>Cisco IOS IP Configuration Guide, Release 12.2</td>
</tr>
<tr>
<td>Configuring a DSLAM</td>
<td>Configuration Guide for Cisco DSLAMs with NI-2</td>
</tr>
<tr>
<td>Installing and configuring Cisco IAD2420 series IAD hardware and software</td>
<td>http://www.cisco.com/univercd/cc/td/doc/product/access/iad/iad2420/index.htm</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supports ITU-T G.991.2</td>
<td>SHDSL</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>

Feature Information for G.SHDSL Symmetric DSL Support

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 36
Feature Information for G.SHDSL Symmetric DSL Support

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.SHDSL Symmetric DSL Support</td>
<td>12.2(4)T3 12.2(8)T</td>
<td>In Cisco IOS Release 12.2(4)T3, the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature was supported on the G.SHDSL one-port WAN interface on the Cisco 2600 series and Cisco 3600 series routers. In Cisco IOS Release 12.2(8)T, the G.SHDSL feature was expanded to the Cisco IAD2420 series IADs. The following commands were introduced or modified: controller shdsl 0, mode atm, show controller shdsl 0.</td>
</tr>
</tbody>
</table>

Glossary

ADSL--Asymmetric DSL (ADSL) available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

ATM--Asynchronous Transfer Mode. International standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media such as E3, SONET, and T3.

CLI--command line interface.

CO--central office. Local exchange (local switch) that terminates individual local telephone subscriber lines for switching and connects to the public network. Known as a class 5 switch office. For example, 5ESS by Lucent and DMS 100 by Nortel.

CPE--customer premises equipment. Devices such as channel service units, data service units, modems, and ISDN terminal adapters, required to provide an electromagnetic termination for wide-area network circuits before connecting to the router or access server. This equipment was historically provided by the telephone company, but is now typically provided by the customer in North American markets.

DSL--Digital Subscriber Line available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

FXO--Foreign Exchange Office. An FXO interface connects to a central office.

FXS--Foreign Exchange Station: An FXS interface connects directly to a standard telephone, supplying ring voltage, dial tone, and so on.

G.SHDSL--Multirate Symmetrical High-Speed Digital Subscriber Line.

IAD--integrated access device. A CPE device used to combine services from various sources onto a common platform for transmission on a common transport span. Typically, an IAD combines various voice
and data services such as circuit-based services like traditional telephone service and packet-switched services such as frame relay or ATM.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Monitoring and Retraining on Reception of Loss of Margin Messages

Loss of Margin (LoM) monitoring allows the router to handle asymmetric digital subscriber line (ADSL) loss of margin messages received from the digital subscriber line access multiplexer (DSLAM). The `dsl lom` command is used to set digital subscriber line (DSL) LoM monitoring. The `no dsl lom` command disables LoM monitoring after the router has been configured to monitor LoM messages.

When set to monitor LoM, the router will retrain with the DSLAM when it receives LoM messages consecutively for the number of times specified in the `number` argument.

- Finding Feature Information, page 463
- Information About Monitoring and Retraining on Reception of Loss of Margin Messages, page 463
- How to Enable Monitoring and Retraining on Reception of Loss of Margin Messages, page 464
- Configuration Examples for Monitoring and Retraining on Reception of Loss of Margin Messages, page 466
- Additional References, page 466
- Feature Information for Monitoring and Retraining on Reception of Loss of Margin Messages, page 467

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About Monitoring and Retraining on Reception of Loss of Margin Messages

- ATM Technology, page 464
- DSL Technology, page 464
ATM Technology

Asynchronous Transfer Mode (ATM) is a technology designed for the high-speed transfer of voice, video, and data through public and private networks using cell relay technology. ATM is an International Telecommunication Union Telecommunication Standardization Sector (ITU-T) standard. Ongoing work on ATM standards is being done primarily by the ATM Forum, which was jointly founded by Cisco Systems, NET/ADAPTIVE, Northern Telecom, and Sprint in 1991.

A cell switching and multiplexing technology, ATM combines the benefits of circuit switching (constant transmission delay, guaranteed capacity) with those of packet switching (flexibility, efficiency for intermittent traffic). To achieve these benefits, ATM uses the following features:

- Fixed-size cells, permitting more efficient switching in hardware than is possible with variable-length packets
- Connection-oriented service, permitting routing of cells through the ATM network over virtual connections, sometimes called virtual circuits, using simple connection identifiers
- Asynchronous multiplexing, permitting efficient use of bandwidth and interleaving of data of varying priority and size

The combination of these features allows ATM to provide different categories of service for different data requirements and to establish a service contract at the time a connection is set up. This means that a virtual connection of a given service category can be guaranteed a certain bandwidth, as well as other traffic parameters, for the life of the connection.

For more details on ATM Technology, refer to the following URL:
http://www.cisco.com/univercd/cc/td/doc/product/atm/c8540/12_1/pereg_1/atm_tech/index.htm

DSL Technology

Digital Subscriber Line (DSL) is a public network technology that delivers high bandwidth over conventional copper wiring at limited distances. There are four types of DSL: Asymmetric DSL (ADSL), High-Data-Rate DSL (HDSL), Single-line DSL (SDSL), and Very-high-data-rate DSL (VDSL). All are provisioned via modem pairs, with one modem located at a central office and the other at the customer site. Because most DSL technologies do not use the whole bandwidth of the twisted pair, there is room remaining for a voice channel.

For more details on DSL Technology, refer to the following URL:

How to Enable Monitoring and Retraining on Reception of Loss of Margin Messages

- Enabling LOM Monitoring, page 464

Enabling LOM Monitoring

To enable LOM monitoring, perform the following steps:
SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm interface-number`
4. `dsl lom number number`
5. `end`
6. `show dsl interface atm`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** | Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** interface atm interface-number | Configures an ATM interface and enters interface configuration mode. |
| **Example:** | Router(config)# interface atm 3 |
| **Step 4** dsl lom number number | Enables LoM monitoring and checks for the specified number of consecutive LoM messages. |
| **Example:** | Router(config-if)# dsl lom 200 |
| **Step 5** end | Ends the current configuration session and returns to privileged EXEC mode. |
| **Example:** | Router(config-if)# end |
Configuration Examples for Monitoring and Retraining on Reception of Loss of Margin Messages

- Enabling LoM Monitoring Example, page 466

Enabling LoM Monitoring Example

The following example shows LoM monitoring enabled on an ATM interface with retraining configured for 200 counts:

```console
configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
interface atm0
dsl lom 200
end
!
show run interface atm0
00:16:46: %SYS-5-CONFIG_I: Configured from console by consoleint a0
Building Configuration
Current configuration: 209 bytes
!
interface atm0
ip address 1.2.3.4 255.255.255.0
no atm ilmi-keepalive
pvc 1/40
protocol ip 1.2.3.5 broadcast
encapsulation aal5snap
!
dsl operating-mode auto
dsl lom 200
dsl power-cutback 0
end
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS Release 12.3 Configuration Guides and Command References</td>
<td>Cisco IOS Release 12.3 Configuration Guides and Command References</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 show dsl interface atm</td>
<td>Verifies the LOM monitoring configuration.</td>
</tr>
</tbody>
</table>

Example:

Router# show dsl interface atm
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/public/support/tac/home.shtml</td>
</tr>
</tbody>
</table>

Feature Information for Monitoring and Retraining on Reception of Loss of Margin Messages

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 37 Feature Information for Phrase Based on Module Title

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring and Retraining on Reception of Loss of Margin Messages</td>
<td>12.3(2)T</td>
<td>Loss of Margin (LoM) monitoring allows the router to handle asymmetric digital subscriber line (ADSL) loss of margin messages received from the digital subscriber line access multiplexer (DSLAM). The <code>dsl lom</code> command is used to set digital subscriber line (DSL) LoM monitoring. The <code>no dsl lom</code> command disables LoM monitoring after the router has been configured to monitor LoM messages. When set to monitor LoM, the router will retrain with the DSLAM when it receives LoM messages consecutively for the number of times specified in the <code>number</code> argument. The following command was introduced or modified: <code>dsl lom</code>.</td>
</tr>
</tbody>
</table>

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.
Virtual Auxiliary Port Feature and Configuration of DSL Settings

The virtual auxiliary port feature provides support for dial backup and out-of-band management on Cisco 837 and Cisco 831 routers, and provides support for out-of-band management on Cisco SOHO 97 and Cisco SOHO 91 routers. On these routers, the console port and the auxiliary port share the same physical RJ-45 port. The console port must be changed to act as a virtual auxiliary port, using the command-line interface (CLI) before the dial backup and out-of-band management capabilities can be enabled.

In addition, digital subscriber line (DSL) settings can now be configured on the Cisco 837, Cisco 831, Cisco SOHO 97, and Cisco SOHO 91 routers by using the DSL settings commands.

- Finding Feature Information, page 469
- Information About the Virtual Auxiliary Port, page 469
- How to Configure the Virtual Auxiliary Port and the DSL Settings, page 470
- Configuration Example for Configuring the DSL Settings, page 474
- Additional References, page 474
- Feature Information for Configuring the DSL Settings, page 476

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release.

To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Information About the Virtual Auxiliary Port

When the virtual auxiliary port is enabled, the signals directed from the RJ-45 pins are processed by the auxiliary port driver, and the console port is disabled. The virtual auxiliary port can be used to provide the standard Cisco IOS interactive user interface.
How to Configure the Virtual Auxiliary Port and the DSL Settings

- Configuring the Virtual Auxiliary Port, page 470
- Configuring the DSL Settings, page 471

Configuring the Virtual Auxiliary Port

Perform these steps to configure the virtual auxiliary port.

SUMMARY STEPS

1. enable
2. configure terminal
3. line con0
4. modem enable

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 line con0</td>
<td>Enters line configuration mode for the console interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# line con0</td>
<td></td>
</tr>
<tr>
<td>Step 4 modem enable</td>
<td>Changes the console port to function as an auxiliary port.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-line)# modem enable</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the DSL Settings

Perform these steps to configure the DSL settings.

Note
For each DSL setting to take effect, the asymmetric digital subscriber line (ADSL) driver resets the ADSL subsystem, which causes the firmware to be downloaded again.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface atm0
4. dsl noise-margin decimal
5. end
6. enable
7. configure terminal
8. interface atm0
9. dsl max-tone-bits integer
10. end
11. enable
12. configure terminal
13. interface atm0
14. dsl gain-setting tx-offset decimal
15. end
16. enable
17. configure terminal
18. interface atm0
19. dsl gain-setting rx-offset decimal
20. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:

Router> enable
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface atm0</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 dsl noise-margin <code>decimal</code></td>
<td>Sets the noise margin offset.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# dsl noise-margin 0.5</code></td>
<td>- <code>Decimal</code> ranges from -3 dB to 3 dB with a granularity of 0.5 dB.</td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits interface configuration mode and resets the ADSL subsystem.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 7 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 interface atm0</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface atm0</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Step 9** dsl max-tone-bits integer | Sets the maximum bits per tone limit.
 - *Integer* ranges from 2 dB to 14 dB with a granularity of 1 dB. |
| Example: | Router(config-if)# max-tone-bits 10 |
| **Step 10** end | Exits interface configuration mode and resets the ADSL subsystem. |
| Example: | Router(config-if)# end |
| **Step 11** enable | Enables privileged EXEC mode. |
| Example: | Router> enable |
| **Step 12** configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |
| **Step 13** interface atm0 | Enters interface configuration mode. |
| Example: | Router(config)# interface atm0 |
| **Step 14** dsl gain-setting tx-offset decimal | Sets the transmit gain offset.
 - *Decimal* ranges from -10 dB to 3 dB with a granularity of 0.5 dB. |
<p>| Example: | Router(config-if)# dsl gain-setting tx-offset 0 |
| Step 15 end | Exits interface configuration mode and resets the ADSL subsystem. |
| Example: | Router(config-if)# end |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 16 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 17 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 18 interface atm0</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface atm0</td>
<td></td>
</tr>
<tr>
<td>Step 19 dsl gain-setting rx-offset decimal</td>
<td>Sets the receive gain offset.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Decimal ranges from -5 dB to 3 dB with a granularity of 0.5 dB.</td>
</tr>
<tr>
<td>Router(config-if)# dsl gain-setting rx-offset 1</td>
<td></td>
</tr>
<tr>
<td>Step 20 end</td>
<td>Ends the configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Example for Configuring the DSL Settings

interfac atm0
no ip address
dsl noise-margin 0
dsl max-tone-bits 14
dsl gain-setting tx-offset 0
dsl gain-setting rx-offset 1

Additional References
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring Dial Backup</td>
<td>Cisco 826, 827, 828, 831, 836, and 837 and Cisco SOHO 76, 77, 78, 91, 96, and 97 Routers Software Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards<sup>9</sup></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified standards are supported by this feature. Support for existing standards has not been modified by this feature.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs<sup>10</sup></th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator available at the following URL:</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td></td>
<td>No new or modified MIBs are supported by this feature. Support for existing MIBs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs<sup>11</sup></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature. Support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
</tr>
</tbody>
</table>

⁹ Not all supported standards are listed.

¹⁰ Not all supported MIBs are listed.

¹¹ Not all supported RFCs are listed.
Feature Information for Configuring the DSL Settings

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Auxiliary Port Feature and Configuration of DSL Settings</td>
<td>12.2(8)YN 12.3(2)T</td>
<td>The virtual auxiliary port feature provides support for dial backup and out-of-band management on Cisco 837 and Cisco 831 routers, and provides support for out-of-band management on Cisco SOHO 97 and Cisco SOHO 91 routers. On these routers, the console port and the auxiliary port share the same physical RJ-45 port. The console port must be changed to act as a virtual auxiliary port, using the command-line interface (CLI) before the dial backup and out-of-band management capabilities can be enabled. In addition, digital subscriber line (DSL) settings can now be configured on the Cisco 837, Cisco 831, Cisco SOHO 97, and Cisco SOHO 91 routers by using the DSL settings commands. The following commands were introduced or modified: modem enable, dsl max-tone-bits, dsl gain-setting rx-offset, dsl gain-setting rx-offset, dsl gain-setting tx-offset, dsl noise-margin.</td>
</tr>
</tbody>
</table>
Virtual Auxiliary Port Feature and Configuration of DSL Settings

Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.