1-Port G.SHDSL WAN Interface Card for Cisco 2600 Series and Cisco 3600 Series Routers

This document describes the Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC) (WIC-1SHDSL) on Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release 12.2(8)T.

G.SHDSL is an ATM-based, multirate, high-speed (up to 2.3 MB), symmetrical digital subscriber line technology for data transfer between a single customer premises equipment (CPE) subscriber and a central office.

G.SHDSL is supported on the G.SHDSL WAN interface card (WIC-1SHDSL), a 1-port WAN interface card (WIC) for Cisco 2600 series and Cisco 3600 series routers.

The G.SHDSL WIC is compatible with the Cisco 6015, Cisco 6130, Cisco 6160, and Cisco 6260 Digital Subscriber Line Access Multiplexers (DSLAMs). The DSLAM must be equipped with G.SHDSL line cards that are compatible with the DSL service to be configured.

The G.SHDSL WIC supports ATM Adaptation Layer 2 (AAL2), ATM Adaptation Layer 5 (AAL5), and various classes of service for ATM

- Finding Feature Information, page 2
- Prerequisites for 1-Port G.SHDSL WAN Interface Card, page 2
- Restrictions for 1-Port G.SHDSL WAN Interface Card, page 2
- Information About 1-Port G.SHDSL WAN Interface Card, page 2
- How to Configure 1-Port G.SHDSL WAN Interface Card, page 3
- Configuration Examples for 1-Port G.SHDSL WAN Interface Card, page 8
- Additional References, page 13
- Feature Information for 1-Port G.SHDSL WAN Interface Card, page 14
- Glossary, page 15
Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for 1-Port G.SHDSL WAN Interface Card

A G.SHDSL WIC must be installed in the router to match the DSL service to be configured. A compatible G.SHDSL line card must be installed in the DSLAM.

Restrictions for 1-Port G.SHDSL WAN Interface Card

- The G.SHDSL WIC does not support dual latency. When the DSL link is intended to support both voice and data traffic simultaneously, the total supported data rate must be reduced to adjust for the reduced coding gain, which is usually present with high-latency traffic.
- The G.SHDSL WIC does not support Dying Gasp in ANSI T1.413 Issue 2.
- The G.SHDSL WIC does not support available bit rate (ABR) class of service (CoS).
- The G.SHDSL WIC should be inserted only into onboard WIC slots or 1FE2W, 2W, 1FE1R, 2FE2W network modules. This WIC is not supported in old combination network modules.

Information About 1-Port G.SHDSL WAN Interface Card

Benefits

- Enables business-class broadband service with voice integration, scalable performance, flexibility, and security.
- Symmetrical WAN speeds (up to 2.3Mbps) over a single copper pair.
- Repeatable and has thirty percent longer reach than SDSL.
- Rate adaptive with G.HS "handshake" Protocol.
- Based on ITU Recommendation G.991.2 (Accepted Worldwide).
- Support for G.SHDSL Annex A (U.S. signaling) and Annex B (European signaling).
- Multiple G.SHDSL WAN Interface Cards configurable per Cisco 2600 series and Cisco 3600 series chassis.
How to Configure 1-Port G.SHDSL WAN Interface Card

Configuring G.SHDSL on a Cisco Router

To configure G.SHDSL service on a Cisco router containing a G.SHDSL WIC, complete the following steps, beginning in global configuration mode:

SUMMARY STEPS

1. interface atm 1/0
2. ip address IP-address
3. atm ilmi-keepalive seconds
4. pvc [name] vpi/vci
5. protocol ip IP-address
6. vbr-rt peak-rate average-rate burst
7. encapsulation aal1 | aal2 | aal5ciscopp | aal5mux | aal5nlpid | aal5snap
8. exit
9. dsl operating-mode gshdsl symmetric annex {A| B} }
10. equipment-type co | cpe
11. dsl linerate kbps | auto
12. exit
13. exit
14. show interface atm 1/0
15. clear interface atm 1/0

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 interface atm 1/0</td>
<td>Enters ATM configuration mode for interface ATM 0 in slot 1.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# interface atm 1/0
If a slot has two subslots for WIC modules and no ATM interface is present in subslot 0, the WIC will take ATM x/0 as its interface number even if placed in subslot 1 (ATMx/1). If a two-port ATM module is present in subslot 0, the WIC will use ATM x/2 as its interface number. This subslot number is pertinent to all interface commands such as `show interface atm` and `show dsl interface atm`.

Note

Assigns an IP address to the DSL ATM interface.

Step 2

`ip address IP-address`

Example:

```
Router(config-if)# ip address 10.3.0.1 255.255.255.0
```

Assigns an IP address to the DSL ATM interface.

Step 3

`atm ilmi-keepalive seconds`

Example:

```
Router(config-if)# atm ilmi-keepalive 10
```

(Optional) Enables Integrated Local Management Interface (ILMI) keepalives.

If you enable ILMI keepalives without specifying the seconds, the default time interval is 3 seconds.

Step 4

`pvc [name] vpi/vci`

Example:

```
Router(config-if-vc)# pvc 10/100
```

Enters atm-virtual-circuit (interface-atm-vc) configuration mode, and configures a new ATM permanent virtual circuit (PVC) by assigning a name (optional) and VPI/VCI numbers.

The default traffic shaping is an unspecified bit rate (UBR); the default encapsulation is AAL5+LLC/SNAP.

Step 5

`protocol ip IP-address`

Example:

```
Router(config-if-vc)# protocol ip 10.3.0.2 broadcast
```

(Optional) Enables IP connectivity and create a point-to-point IP address for the virtual circuit (VC).

Step 6

`vbr-rt peak-rate average-rate burst`

Example:

```
Router(config-if-vc)# vbr-rt 672 672 512
```

(Optional) Configures the PVC for real-time variable bit rate (VBR) traffic shaping.

- **Peak rate** --Peak information rate (PIR)
- **Average rate** --Average information rate (AIR)
- **Burst** --Burst size in cells

Step 7

`encapsulation aal1 | aal2 | aal5ciscopp | aal5mux | aal5nlpid | aal5snap`

Example:

```
Router(config-if-vc)# encapsulation aal2
```

(Optional) Configures the ATM adaptation layer (AAL) and encapsulation type.

- **aal1** --AAL1
- **aal2** --AAL2
- **aal5ciscopp** --Cisco PPP over AAL5
- **aal5mux** --AAL5+MUX
- **aal5nlpid** --AAL5+NLPI
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits from interface-atm-vc configuration mode. Example: Router(config-if-vc)# exit</td>
</tr>
<tr>
<td>9</td>
<td>dsl operating-mode gshdsl symmetric annex {A</td>
<td>B}</td>
</tr>
<tr>
<td>10</td>
<td>equipment-type co</td>
<td>cpe</td>
</tr>
<tr>
<td>11</td>
<td>dsl linerate kbps</td>
<td>auto</td>
</tr>
<tr>
<td>12</td>
<td>exit</td>
<td>Exits from ATM interface configuration mode. Example: Router(config-if)# exit</td>
</tr>
</tbody>
</table>
Configuring ILMI on the DSLAM Connected to the G.SHDSL WIC

The ILMI protocol allows DSLAMs to be used for ATM address registration across an ATM User-Network Interface (UNI). If ILMI is configured on the G.SHDSL WIC, the ATM PVC must be configured on the DSLAM. All switch terminating connections use interface 0/0 to connect to the switch CPU.

For information about configuring the DSLAM, see the Configuration Guide for Cisco DSLAMs with NI-2.

Verifying ATM Configuration

Use the following commands to verify your configuration:

- To verify current configuration and to view the status for all controllers, use the `show running-config` command.
- To view ATM controller statistics, use the `show controllers atm slot/port` command.
- To verify the PVC status, use the `show atm vc` command. Make sure that active PVCs are up.
- To help identify ATM related events as they are generated, use the `debug atm events` command.
- To indicate which interfaces are having trouble, use the `debug atm errors` command.
- To identify an entry for the ATM interface you configured and to show an entry for the ATM slot/port you configured, use the `show ip route` command.
- To view the status of ATM interface, use the `show interface atm` command. Make sure that the ATM slot/port and the line protocol are up, as shown in the following example:

```text
Router# show interface atm 1/0
ATM1/0 is up, line protocol is up
```
Hardware is DSLSAR (with Globespan G.SHDSL Module)
MTU 4470 bytes, sub MTU 4470, BW 800 Kbit, DLY 2560 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Keepalive not supported
Encapsulation(s): AAL5 AAL2, PVC mode
24 maximum active VCs, 256 VCs per VP, 2 current VCCs
VC disconnect time: 300 seconds
Last input never, output never
Last clearing of "show interface" counters 03:16:00
Queueing strategy: fifo
Output queue 0/40, 0 drops; input queue 0/75, 0 drops
30 second input rate 0 bits/sec, 0 packets/sec
30 second output rate 0 bits/sec, 0 packets/sec
2527 packets input, 57116 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
Output errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
10798 packets output, 892801 bytes, 0 underruns
Output errors, 0 collisions, 0 interface resets
0 output buffer failures, 0 output buffers swapped out

Router# show atm vc
VCD / Peak Avg/Min Burst
Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells Sts
1/0.3 2 9 36 PVC MUX UBR 800 UP
1/0.2 1 9 37 PVC SNAP UBR 800 UP

Router# show controllers
atm 1/0

Interface ATM1/0 is up
Hardware is DSLSAR (with Globespan G.SHDSL Module)
IDB: 62586758 Instance: 6258E054 reg_dslsar:3C810000 wic_regs:3C810080
PHY Inst: 62588490 Ser0Inst: 62573074 Ser1Inst: 6257CBD8 us_bwidth:800
Slot: 1 Unit: 1 Subunit: 0 pkt Size: 4496
VCPerVP: 256 max_vp: 256 max_vcc: 65536 total vc: 2
rct_size: 65536 vpi_vcbit: 16 connTblVCI: 8 vpi_bits: 8
vpcell_sel: 3 enabled: 0 throttled: 0
WIC Register Value Notes
-------------------- ----------- -------------------
FPGA Dev ID (LB) 0x44 'D'
FPGA Dev ID (UB) 0x53 'S'
FPGA Revision 0x99
WIC Config Reg 0x45 WIC / VIC select = WIC;
CTRL addr bit 8 = 1;
OK LED on;
LOOPBACK LED off;
CD LED on;
WIC Config Reg2 0x07 Gen bus error on bad ADSL access
Int 0 Enable Reg 0x03 ADSL normal interrupt enabled
ADSL error interrupt enabled

• To view the status of the G.SHDSL modem, use the show dsl interface atm command. If the line is
down, the following statement appears: Line is not active. Some of the values may not be accurate. You
can also verify whether the equipment type and operating mode configuration are correct for your
application.

Sample output--The WIC is configured as central office equipment, and the line is up

Router# show dsl interface atm 0/0

Globespan G.SHDSL Chipset Information
Equipment Type: Central Office
Operating Mode: G.SHDSL
Clock Rate Mode: Auto rate selection Mode
Reset Count: 2
Actual rate: 2320 Kbps
Modem Status: Data
Noise Margin: 43 dB
Loop Attenuation: 0.0 dB

Broadband Access Aggregation and DSL Configuration Guide, Cisco IOS Release 15M&T
Sample output--The WIC is configured as customer premises equipment, and the line is up

Router# show dsl interface atm 0/0

Globespan G.SHDSL Chipset Information
Equipment Type: Customer Premise
Operating Mode: G.SHDSL
Clock Rate Mode: Auto rate selection Mode
Reset Count: 1
Actual rate: 2320 Kbps
Modem Status: Data
Noise Margin: 42 dB
Loop Attenuation: 0.0 dB
Transmit Power: 13.5 dB
Receiver Gain: 204.8000 dB
Last Activation Status: No Failure
CRC Errors: 0
Errored Seconds: 0
Severly ES: 0
Un Available S: 48
Loss Of Sync S: 0

Configuration Examples for 1-Port G.SHDSL WAN Interface Card

Configuration in CPE Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in customer premises equipment (CPE) mode, on a Cisco 2600 series router. This router in CPE mode can be linked to either a DSLAM or to another router that is configured to operate in central office (CO) mode.

Router# show running config
Building configuration...
version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname host1
memory-size iomem 10
voice-card 1
!ip subnet-zero
ip host host2 225.255.255.224
!no mgcp timer receive-rtcp
call rsvp-sync
!controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start
.
.
ds0-group 23 timeslots 24 type e&m-wink-start
! controller T1 1/1
 framing esf
 linecode b8zs
! interface Ethernet0/0
 ip address 209.165.202.128 255.255.255.224
 half-duplex
 no cdp enable
! interface Serial0/0
 no ip address
 shutdown
!
interface ATM0/1
 ip address 209.165.201.1 255.255.255.224
 dsl operating-mode gshdsl symmetric annex A
 dsl equipment-type cpe
dsl linerate auto
 load-interval 30
 atm vc-per-vp 256
 no atm ilmi-keepalive
 pvc 10/100
 vbr-rt 672 672 512
 encapsulation aal2
 !
 pvc 10/200
 protocol ip 209.165.202.159 broadcast
 encapsulation aal5snap
 !
 no fair-queue
!
interface Ethernet0/1
 no ip address
 shutdown
!
 ip classless
 ip route 209.165.202.128 255.255.255.224 Ethernet0/0
 no ip http server
!
 !
 snmp-server engineID local 000000090200003080477F20
 snmp-server manager
!
voice-port 1/0:0
 local-alerting
 timeouts wait-release 3
 connection trunk 3001
!
voice-port 1/0:1
 local-alerting
 timeouts wait-release 3
 connection trunk 3002
.
.
voice-port 1/0:23
 local-alerting
 timeouts wait-release 3
 connection trunk 3024
 shutdown
!
dial-peer cor custom
!
dial-peer voice 3001 voatm
 destination-pattern 3001
Configuration in CO Mode Example

The following example shows a G.SHDSL configuration of VoATM over AAL2, operating in central office (CO) mode, on a Cisco 2600 series router. This router in CO mode can be linked to another router that is configured to operate in CPE mode.

Router# version 12.2
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
hostname host2

memory-size iomem 10
voice-card 1

ip subnet-zero
ip host host2 225.255.255.224
no mgcp timer receive-rtcp
call rsvp-sync

controller T1 1/0
framing esf
linecode b8zs
ds0-group 0 timeslots 1 type e&m-wink-start
ds0-group 1 timeslots 2 type e&m-wink-start

ds0-group 23 timeslots 24 type e&m-wink-start

controller T1 1/1
framing esf
linecode b8zs

interface Ethernet0/0
ip address 209.165.202.128 255.255.255.224
half-duplex
no cdp enable

interface Serial0/0
no ip address
shutdown

interface ATM0/1
ip address 209.165.201.1 255.255.255.224
dsl operating-mode gshdsl symmetric annex A
dsl equipment-type co
dsl linerate auto
load-interval 30
atm vc-per-vp 256
no atm ilmi-keepalive
pvc 10/100
vbr-rt 672 672 512
encapsulation aal2

pvc 10/200
protocol ip 209.165.202.159 broadcast
encapsulation aal5snap

no fair-queue

interface Ethernet0/1
no ip address
shutdown

ip classless
ip route 209.165.202.128 255.255.255.224 Ethernet0/0
no ip http server

snmp-server engineID local 000000090200003080477F20
snmp-server manager

voice-port 1/0:0
local-alerting
timeouts wait-release 3
connection trunk 3001

voice-port 1/0:1
local-alerting
timeouts wait-release 3
connection trunk 3002

voice-port 1/0:23
local-alerting
timeouts wait-release 3
connection trunk 3024
shutdown

dial-peer cor custom

dial-peer voice 3001 voatm
destination-pattern 3001
called-number 4001
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 31
codec aal2-profile ITUT 1 g711ulaw
no vad

dial-peer voice 3002 voatm
destination-pattern 3002
called-number 4002
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 32
codec aal2-profile custom 100 g726r32
no vad

dial-peer voice 3003 voatm
destination-pattern 3003
called-number 4003
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 33
codec aal2-profile ITUT 7 g729abr8
no vad

dial-peer voice 3024 voatm
destination-pattern 3024
called-number 3024
session protocol aal2-trunk
session target ATM0/1 pvc 10/100 54
codec aal2-profile ITUT 7 g729abr8
no vad

dial-peer voice 1 pots
destination-pattern 4001
port 1/0:0

dial-peer voice 2 pots
destination-pattern 4002
port 1/0:1

dial-peer voice 24 pots
destination-pattern 4024
port 1/0:23

line con 0
exec-timeout 0 0
transport input none
line aux 0
line vty 0 4
login

no scheduler allocate
end
Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Cisco Subscriber Edge Services Manager</td>
<td>Cisco Subscriber Edge Services Manager</td>
</tr>
<tr>
<td>Access Point Name Manager</td>
<td>APN Manager Application Programming Guide</td>
</tr>
<tr>
<td>RADIUS configuration</td>
<td>"Configuring RADIUS" chapter of the Cisco IOS Security Configuration Guide</td>
</tr>
<tr>
<td>RADIUS attributes</td>
<td>"RADIUS Attributes" appendix to the Cisco IOS Security Configuration Guide</td>
</tr>
<tr>
<td>Broadband access aggregation concepts</td>
<td>"Understanding Broadband Access Aggregation" module</td>
</tr>
<tr>
<td>Tasks for preparing for broadband access aggregation</td>
<td>"Preparing for Broadband Access Aggregation" module</td>
</tr>
<tr>
<td>Broadband access commands: complete command syntax, command mode, command history, defaults, usage guidelines, and examples</td>
<td>"Wide-Area Networking Commands" in the Cisco IOS Wide-Area Networking Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS XE software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>
Feature Information for 1-Port G.SHDSL WAN Interface Card

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to . An account on Cisco.com is not required.

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>--</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Feature Information for 1-Port G.SHDSL WAN Interface Card

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Port G.SHDSL WAN Interface Card</td>
<td>12.2(4)XL 12.2(8)T</td>
<td>The Multirate Symmetrical High-Speed Digital Subscriber Line (G.SHDSL) feature supported on the 1-port G.SHDSL WAN interface card (WIC) (WIC-1SHDSL) on Cisco 2600 series and Cisco 3600 series routers in Cisco IOS Release 12.2(8)T. This feature is supported on the following platforms: Cisco 2610, Cisco 2611, Cisco 2612, Cisco 2613, Cisco 2620, Cisco 2621, Cisco 2650, Cisco 2651, Cisco 3620, Cisco 3631, Cisco 3640, Cisco 3661, Cisco 3662 The following commands were introduced or modified: dsl equipment-type, dsl linderate, dsl operating-mode (G.SHDSL).</td>
</tr>
</tbody>
</table>

Glossary

ABR--available bit rate.

ADSL--asymmetric digital subscriber line. Available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

ATM --Asynchronous Transfer Mode. International standard for cell relay in which multiple service types (such as voice, video, or data) are conveyed in fixed-length (53-byte) cells. Fixed-length cells allow cell processing to occur in hardware, thereby reducing transit delays. ATM is designed to take advantage of high-speed transmission media such as E3, SONET, and T3.

CLI--command-line interface.

CO--central office. Local exchange (local switch) that terminates individual local telephone subscriber lines for switching, and connects to the public network. A CO is known as a class 5 switch office. For example, 5ESS by Lucent and DMS 100 by Nortel.

CPE--customer premise equipment. Devices such as channel service units (CSUs)/data service units (DSUs), modems, and ISDN terminal adapters, required to provide an electromagnetic termination for wide-area network circuits before connecting to the router or access server. This equipment was historically provided by the telephone company, but is now typically provided by the customer in North American markets.

DSL--digital subscriber line available through several telecommunications carriers to accommodate the need for increased bandwidth for Internet access and telecommuting applications.

FXO--foreign exchange office. An FXO interface connects to a central office.
FXS--foreign exchange station. An FXS interface connects directly to a standard telephone, supplying ring voltage, dial tone, and so on.

G.SHDSL--Multirate Symmetrical High-Speed Digital Subscriber Line

IAD--integrated access device. A CPE device used to combine services from various sources onto a common platform for transmission on a common transport span. Typically, an IAD combines various voice and data services such as circuit-based services like traditional POTS and packet-switched services such as frame relay or ATM.

PVC--permanent virtual circuit.