CHAPTER 27

Configuring Advanced VPNs Using the IPsec VPN SPA

This chapter provides information about configuring advanced IPsec VPNs on the IPsec VPN SPA on the Catalyst 6500 Series switch. It includes the following sections:

- Overview of Advanced VPNs, page 27-2
- Configuring DMVPN, page 27-2
- Configuring the Easy VPN Server, page 27-15
- Configuring the Easy VPN Remote, page 27-16
- Configuring Easy VPN Remote RSA Signature Storage, page 27-17
- Configuration Examples, page 27-17

Note

The procedures in this chapter assume you have familiarity with security configuration concepts, such as VLANs, ISAKMP policies, preshared keys, transform sets, access control lists, and crypto maps. For more information about these and other security configuration concepts, refer to the following Cisco IOS documentation:

For additional information about the commands used in this chapter, see the the *Catalyst 6500 Series Cisco IOS Command Reference, Release 12.2SX* and the related Cisco IOS Release 12.2 software configuration guide and master index publications. For more information about accessing these publications, see the “Related Documentation” section on page xliv.

Tip

To ensure a successful configuration of your VPN using the IPsec VPN SPA, read all of the configuration summaries and guidelines before you perform any configuration tasks.
Overview of Advanced VPNs

Configuring IP Security (IPsec) Virtual Private Networks (VPNs) in large, complicated networks can be quite complex. This chapter introduces Dynamic Multipoint VPN (DMVPN) and Easy VPN, two features that ease IPsec configuration in advanced environments.

Configuring DMVPN

The DMVPN feature allows users to better scale large and small IPsec VPNs by combining generic routing encapsulation (GRE) tunnels, IPsec encryption, and Next Hop Resolution Protocol (NHRP). Figure 27-1 shows an example of a DMVPN configuration with a hub and two spokes.

DMVPN Configuration Guidelines and Restrictions

When configuring DMVPN, follow these guidelines and restrictions:

- A tunnel key should not be configured. If a tunnel key is configured, neither the PFC3 nor the IPsec VPN SPA will take over the tunnel and the tunnel will be switched in software.
- GRE tunnels in different Virtual Routing and Forwarding (VRF) instances cannot share the same tunnel source.
In non-VRF mode, multipoint GRE tunnels should not share the same tunnel source.

Multicast streaming is not supported across DMVPN on a Catalyst 6500 Series switch. Only multicast packets from a control plane such as routing protocols are supported.

In a VRF-Aware DMVPN configuration, the `mls mpls tunnel-recir` command must be configured globally on the PE/hub if the CE/DMVPN spokes need to talk to other CEs across the MPLS cloud.

For the NAT-transparency aware enhancement to work with DMVPN, you must use IPsec transport mode on the transform set. Also, even though NAT-transparency (IKE and IPsec) can support two peers (IKE and IPsec) being translated to the same IP address (using the User Datagram Protocol [UDP] ports to differentiate them [this would be Peer Address Translation]), this functionality is not supported for DMVPN. All DMVPN spokes must have a unique IP address after they have been NAT translated. They can have the same IP address before they are NAT translated.

If you use the dynamic creation for spoke-to-spoke tunnels benefit of this feature, you must use IKE certificates or wildcard preshared keys for Internet Security Association and Key Management Protocol (ISAKMP) authentication.

Note

We recommend that you do not use wildcard preshared keys because access to the entire VPN is compromised if one spoke switch is compromised.

- GRE tunnel keepalive (that is, the `keepalive` command under the GRE interface) is not supported on multipoint GRE tunnels
- FVRF is not supported on a multipoint GRE (mGRE) tunnel configured on a DMVPN spoke. FVRF is supported on an mGRE tunnel configured on a DMVPN hub.

To enable mGRE and IPsec tunneling for hub and spoke switches, configure your mGRE tunnel for IPsec encryption using the following procedures:

- DMVPN Prerequisites, page 27-3
- Configuring an IPsec Profile, page 27-4
- Configuring the Hub for DMVPN in VRF Mode, page 27-5
- Configuring the Hub for DMVPN in Crypto-Connect Mode, page 27-7
- Configuring the Spoke for DMVPN in VRF Mode, page 27-8
- Configuring the Spoke for DMVPN in Crypto-Connect Mode, page 27-10
- Verifying the DMVPN Configuration, page 27-12
- DMVPN Configuration Examples, page 27-18

For complete configuration information for DMVPN support, refer to this URL:

DMVPN Prerequisites

Before configuring an IPsec profile, you must define a transform set by using the `crypto ipsec transform-set` command.
Configuring an IPsec Profile

The IPsec profile shares most of the same commands with the crypto map configuration, but only a subset of the commands are valid in an IPsec profile. Only commands that pertain to an IPsec policy can be issued under an IPsec profile; you cannot specify the IPsec peer address or the access control list (ACL) to match the packets that are to be encrypted.

To configure an IPsec profile, perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# crypto ipsec profile name</td>
</tr>
<tr>
<td></td>
<td>Defines the IPsec parameters that are to be used for IPsec encryption between “spoke and hub” and “spoke and spoke” switches. This command enters crypto map configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• name—Name of the IPsec profile.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-crypto-map)# set transform-set transform-set-name</td>
</tr>
<tr>
<td></td>
<td>Specifies which transform sets can be used with the IPsec profile.</td>
</tr>
<tr>
<td></td>
<td>• transform-set-name—Name of the transform set.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-crypto-map)# set identity</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies identity restrictions to be used with the IPsec profile.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-crypto-map)# **set security association lifetime (seconds seconds</td>
</tr>
<tr>
<td></td>
<td>(Optional) Overrides the global lifetime value for the IPsec profile.</td>
</tr>
<tr>
<td></td>
<td>• seconds—Number of seconds a security association will live before expiring.</td>
</tr>
<tr>
<td></td>
<td>• kilobytes—Volume of traffic (in kilobytes) that can pass between IPsec peers using a given security association before that security association expires.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-crypto-map)# **set pfs [group1</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies that IP Security should ask for perfect forward secrecy (PPS) when requesting new security associations for this IPsec profile. If this command is not specified, the default (group1) will be enabled.</td>
</tr>
<tr>
<td></td>
<td>• group1—(Optional) Specifies that IPsec should use the 768-bit Diffie-Hellman (DH) prime modulus group when performing the new DH exchange.</td>
</tr>
<tr>
<td></td>
<td>• group2—(Optional) Specifies the 1024-bit DH prime modulus group.</td>
</tr>
</tbody>
</table>
Configuring the Hub for DMVPN in VRF Mode

In VPN routing and forwarding instance (VRF) mode, to configure the hub switch for mGRE and IPsec integration (that is, to associate the tunnel with the IPsec profile configured in the previous procedure), perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `Router(config)# interface tunnel tunnel-number` | Configures a tunnel interface and enters interface configuration mode.
 - `tunnel-number`—Number of the tunnel interface that you want to create or configure. There is no limit on the number of tunnel interfaces you can create. |
| 2 | `Router(config-if)# ip vrf forwarding inside-vrf-name` | (Optional) Associates a VRF with an interface or subinterface. This step is required only when configuring an inside VRF.
 - `inside-vrf-name`—Name assigned to the VRF. |
| 3 | `Router(config-if)# ip address ip-address mask [secondary]` | Sets a primary or secondary IP address for the tunnel interface.
 - `ip-address`—IP address.
 - `mask`—Subnet mask.
 - `secondary`—(Optional) Secondary IP address. |
| 4 | `Router(config-if)# ip mtu bytes` | (Optional) Sets the maximum transmission unit (MTU) size, in bytes, of IP packets sent on an interface.
 - `bytes`—MTU size in bytes. |
| 5 | `Router(config-if)# ip nhrp authentication string` | (Optional) Configures the authentication string for an interface using the Next Hop Resolution Protocol (NHRP).
 - `string`—Text of the authentication string. This string must be identical for all tunnels belonging to the same DMVPN. |
| 6 | `Router(config-if)# ip nhrp map multicast dynamic` | Allows NHRP to automatically add spoke switches to the multicast NHRP mappings. |
| 7 | `Router(config-if)# ip nhrp network-id number` | Enables NHRP on an interface.
 - `number`—A 32-bit network identifier, unique within this chassis, from a nonbroadcast multiaccess (NBMA) network. The range is from 1 to 4294967295. |
| 8 | `Router(config-if)# tunnel source {ip-address | type number}` | Sets source address for a tunnel interface.
 - `ip-address`—IP address to use as the source address for packets in the tunnel.
 - `type number`—Interface type and number (for example, VLAN 2). |
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td><code>Router(config-if)# tunnel mode gre multipoint</code></td>
<td>Sets the encapsulation mode to mGRE for the tunnel interface.</td>
</tr>
<tr>
<td>Step 10</td>
<td><code>Router(config-if)# tunnel vrf front-door-vrf-name</code></td>
<td>(Optional) Associates a VRF instance with a specific tunnel destination, interface, or subinterface. This step is required only when configuring a front door VRF (FVRF).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>front-door-vrf-name</code>—Name assigned to the VRF. This may or may not be the same as the <code>inside-vrf-name</code>.</td>
</tr>
<tr>
<td>Step 11</td>
<td><code>Router(config-if)# tunnel protection ipsec profile name</code></td>
<td>Associates a tunnel interface with an IPsec profile.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>name</code>—Name of the IPsec profile; this value must match the name specified in the <code>crypto ipsec profile</code> command.</td>
</tr>
<tr>
<td>Step 12</td>
<td><code>Router(config-if)# crypto engine slot slot/subslot inside</code></td>
<td>Assigns the specified crypto engine to the inside interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>slot/subslot</code>—The slot where the IPsec VPN SPA is located.</td>
</tr>
<tr>
<td>Step 13</td>
<td><code>Router(config-if)# interface type slot/subslot/port</code></td>
<td>Configures the DMVPN physical egress interface.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>Router(config-if)# ip vrf forwarding front-door-vrf-name</code></td>
<td>(Optional) Associates a VRF with an interface or subinterface. This step is required only when configuring a front door VRF (FVRF).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>front-door-vrf-name</code>—Name assigned to the VRF. This is the same name used in Step 10.</td>
</tr>
<tr>
<td>Step 15</td>
<td><code>Router(config-if)# ip address address mask</code></td>
<td>Sets a primary or secondary IP address for an interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>address</code>—IP address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>mask</code>—Subnet mask.</td>
</tr>
<tr>
<td>Step 16</td>
<td><code>Router(config-if)# crypto engine slot slot/subslot outside</code></td>
<td>Enables the crypto engine on the interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>slot/subslot</code>—The slot where the IPsec VPN SPA is located.</td>
</tr>
<tr>
<td></td>
<td>or in Cisco IOS Release 12.2(33)SXI and later releases:</td>
<td>In Cisco IOS Release 12.2(33)SXI and later releases, it is not necessary to specify the slot for the outside interface in VRF mode.</td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# crypto engine outside</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Hub for DMVPN in Crypto-Connect Mode

In crypto-connect mode, to configure the hub switch for mGRE and IPsec integration (that is, to associate the tunnel with the IPsec profile configured in the previous procedure), perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **Router(config)# interface tunnel tunnel-number**
| | Configures a tunnel interface and enters interface configuration mode.
| | - *tunnel-number*—Number of the tunnel interface that you want to create or configure. There is no limit on the number of tunnel interfaces you can create. |
| **Step 2** | **Router(config-if)# ip address ip-address mask [secondary]**
| | Sets a primary or secondary IP address for the tunnel interface.
| | - *address*—IP address.
| | - *mask*—Subnet mask.
| | - *secondary*—(Optional) Secondary IP address. |
| **Step 3** | **Router(config-if)# ip mtu bytes**
| | (Optional) Sets the maximum transmission unit (MTU) size, in bytes, of IP packets sent on an interface.
| | - *bytes*—MTU size in bytes. |
| **Step 4** | **Router(config-if)# ip nhrp authentication string**
| | (Optional) Configures the authentication string for an interface using the Next Hop Resolution Protocol (NHRP).
| | - *string*—Text of the authentication string. This string must be identical for all tunnels belonging to the same DMVPN. |
| **Step 5** | **Router(config-if)# ip nhrp map multicast dynamic**
| | Allows NHRP to automatically add spoke switches to the multicast NHRP mappings. |
| **Step 6** | **Router(config-if)# ip nhrp network-id number**
| | Enables NHRP on an interface.
| | - *number*—A 32-bit network identifier, unique within this chassis, from a nonbroadcast multaccess (NBMA) network. The range is from 1 to 4294967295. |
| **Step 7** | **Router(config-if)# tunnel source (ip-address | type number)**
| | Sets source address for a tunnel interface.
| | - *ip-address*—IP address to use as the source address for packets in the tunnel.
| | - *type number*—Interface type and number (for example, VLAN 2). |
| **Step 8** | **Router(config-if)# tunnel mode gre multipoint**
| | Sets the encapsulation mode to mGRE for the tunnel interface. |
Configuring DMVPN

In VRF mode, to configure spoke switches for mGRE and IPsec integration, perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface tunnel tunnel-number</td>
<td>Configures a tunnel interface and enters interface configuration mode</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# ip vrf forwarding inside-vrf-name</td>
<td>(Optional) Associates a VRF with an interface or subinterface. This step is required only when configuring an inside VRF.</td>
</tr>
</tbody>
</table>
Step 3

`Router(config-if)# ip address ip-address mask [secondary]`

Sets a primary or secondary IP address for the tunnel interface.

- `address`—IP address.
- `mask`—Subnet mask.
- `secondary`—(Optional) Secondary IP address.

Step 4

`Router(config-if)# ip mtu bytes`

(Optional) Sets the maximum transmission unit (MTU) size, in bytes, of IP packets sent on an interface.

- `bytes`—MTU size in bytes.

Step 5

`Router(config-if)# ip nhrp authentication string`

Configures the authentication string for an interface using NHRP.

- `string`—Text of the authentication string. This string must be identical for all tunnels belonging to the same DMVPN.

Step 6

`Router(config-if)# ip nhrp map hub-tunnel-ip-address hub-physical-ip-address`

Statically configures the IP-to-NonBroadcast MultiAccess (NBMA) address mapping of IP destinations connected to an NBMA network.

- `hub-tunnel-ip-address`—Defines the NHRP server at the hub, which is permanently mapped to the static public IP address of the hub.
- `hub-physical-ip-address`—Defines the static public IP address of the hub.

Step 7

`Router(config-if)# ip nhrp map multicast hub-physical-ip-address`

Enables the use of a dynamic routing protocol between the spoke and hub, and sends multicast packets to the hub switch.

- `hub-physical-ip-address`—Defines the static public IP address of the hub.

Step 8

`Router(config-if)# ip nhrp nhs hub-tunnel-ip-address`

Configures the hub switch as the NHRP next-hop server.

- `hub-tunnel-ip-address`—Defines the NHRP server at the hub, which is permanently mapped to the static public IP address of the hub.

Step 9

`Router(config-if)# ip nhrp network-id number`

Enables NHRP on an interface.

- `number`—A 32-bit network identifier, unique within this chassis, from a nonbroadcast multiaccess (NBMA) network. The range is from 1 to 4294967295.

Step 10

`Router(config-if)# tunnel source {ip-address | type number}`

Sets source address for a tunnel interface.

- `ip-address`—IP address to use as the source address for packets in the tunnel.
- `type number`—Interface type and number; for example, VLAN 2.
Configuring DMVPN

Configuring the Spoke for DMVPN in Crypto-Connect Mode

In crypto-connect mode, to configure spoke switches for mGRE and IPsec integration, perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tunnel tunnel-number</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip-address mask [secondary]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring DMVPN

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3 | `Router(config-if)# ip mtu bytes` | (Optional) Sets the maximum transmission unit (MTU) size, in bytes, of IP packets sent on an interface.
 - `bytes`—MTU size in bytes. |
| 4 | `Router(config-if)# ip nhrp authentication string` | Configures the authentication string for an interface using NHRP.
 - `string`—Text of the authentication string. This string must be identical for all tunnels belonging to the same DMVPN. |
| 5 | `Router(config-if)# ip nhrp map hub-tunnel-ip-address hub-physical-ip-address` | Statically configures the IP-to-NonBroadcast MultiAccess (NBMA) address mapping of IP destinations connected to an NBMA network.
 - `hub-tunnel-ip-address`—Defines the NHRP server at the hub, which is permanently mapped to the static public IP address of the hub.
 - `hub-physical-ip-address`—Defines the static public IP address of the hub. |
| 6 | `Router(config-if)# ip nhrp map multicast hub-physical-ip-address` | Enables the use of a dynamic routing protocol between the spoke and hub, and sends multicast packets to the hub switch.
 - `hub-physical-ip-address`—Defines the static public IP address of the hub. |
| 7 | `Router(config-if)# ip nhrp nhs hub-tunnel-ip-address` | Configures the hub switch as the NHRP next-hop server.
 - `hub-tunnel-ip-address`—Defines the NHRP server at the hub, which is permanently mapped to the static public IP address of the hub. |
| 8 | `Router(config-if)# ip nhrp network-id number` | Enables NHRP on an interface.
 - `number`—A 32-bit network identifier, unique within this chassis, from a nonbroadcast multiaccess (NBMA) network. The range is from 1 to 4294967295. |
| 9 | `Router(config-if)# tunnel source {ip-address | type number}` | Sets source address for a tunnel interface.
 - `ip-address`—IP address to use as the source address for packets in the tunnel.
 - `type number`—Interface type and number; for example, VLAN 2. |
| 10 | `Router(config-if)# tunnel mode gre multipoint` | Sets the encapsulation mode to mGRE for the tunnel interface. Use this command if data traffic can use dynamic spoke-to-spoke traffic. |
| 11 | `Router(config-if)# tunnel protection ipsec profile name` | Associates a tunnel interface with an IPsec profile.
 - `name`—Name of the IPsec profile; this value must match the name specified in the `crypto ipsec profile` command. |
Verifying the DMVPN Configuration

To verify that your DMVPN configuration is working, use the `show crypto isakmp sa`, `show crypto map`, and `show ip nhrp` commands.

The `show crypto isakmp sa` command displays all current IKE security associations (SAs) at a peer.

The following sample output is displayed after IKE negotiations have successfully completed between a hub and two spokes and between the two spokes, as shown in Figure 27-1 on page 27-2:

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUB# <code>show crypto isakmp sa</code></td>
</tr>
<tr>
<td>dst</td>
</tr>
<tr>
<td>10.0.0.1</td>
</tr>
<tr>
<td>10.0.0.1</td>
</tr>
</tbody>
</table>

| SPOKE1# `show crypto isakmp sa` |
dst	src	state	conn-id	slot	status
11.0.0.1	21.0.0.1	QM_IDLE	68002	ACTIVE	
21.0.0.1	11.0.0.1	QM_IDLE	68003	ACTIVE	
10.0.0.1	11.0.0.1	QM_IDLE	68001	ACTIVE	

| SPOKE2# `show crypto isakmp sa` |
dst	src	state	conn-id	slot	status
10.0.0.1	21.0.0.1	QM_IDLE	68001	ACTIVE	
11.0.0.1	21.0.0.1	QM_IDLE	68003	ACTIVE	
21.0.0.1	11.0.0.1	QM_IDLE	68002	ACTIVE	

The `show crypto map` command displays the crypto map configuration.

The following sample output is displayed after a crypto map has been configured:

HUB# `show crypto map`
Crypto Map *Tunnel0-head-0* 65536 ipsec-isakmp
Profile name: VPN-PROF
Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (Y/N): N
Transform sets=
 {ts},

Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
Map is a PROFILE INSTANCE.
Peer = 11.0.0.1
Extended IP access list
 access-list permit gre host 10.0.0.1 host 11.0.0.1
Current peer: 11.0.0.1
Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (Y/N): N
Transform sets=
 {ts},

Crypto Map "Tunnel0-head-0" 65538 ipsec-isakmp
Map is a PROFILE INSTANCE.
Peer = 21.0.0.1
Extended IP access list
 access-list permit gre host 10.0.0.1 host 21.0.0.1
Current peer: 21.0.0.1
Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (Y/N): N
Transform sets=
 {ts},

Interfaces using crypto map Tunnel0-head-0:
 Tunnel0

using crypto engine SPA-IPSEC-2G[4/0]

SPOKE1# show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
 Profile name: VPN-PROF
 Security association lifetime: 4608000 kilobytes/3600 seconds
 PFS (Y/N): N
 Transform sets=
 {ts},

Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
 Map is a PROFILE INSTANCE.
 Peer = 10.0.0.1
 Extended IP access list
 access-list permit gre host 11.0.0.1 host 10.0.0.1
 Current peer: 10.0.0.1
 Security association lifetime: 4608000 kilobytes/3600 seconds
 PFS (Y/N): N
 Transform sets=
 {ts},

Crypto Map "Tunnel0-head-0" 65538 ipsec-isakmp
 Map is a PROFILE INSTANCE.
 Peer = 21.0.0.1
 Extended IP access list
 access-list permit gre host 11.0.0.1 host 21.0.0.1
 Current peer: 21.0.0.1
 Security association lifetime: 4608000 kilobytes/3600 seconds
PFS (Y/N): N
Transform sets=
 ts,
)
Interfaces using crypto map Tunnel0-head-0:
 Tunnel0
using crypto engine SPA-IPSEC-2G[4/0]

SPOKE2# show crypto map
Crypto Map "Tunnel0-head-0" 65536 ipsec-isakmp
 Profile name: VPN-PROF
 Security association lifetime: 4608000 kilobytes/3600 seconds
 PFS (Y/N): N
 Transform sets=
 ts,
)

Crypto Map "Tunnel0-head-0" 65537 ipsec-isakmp
 Map is a PROFILE INSTANCE.
 Peer = 10.0.0.1
 Extended IP access list
 access-list permit gre host 21.0.0.1 host 10.0.0.1
 Current peer: 10.0.0.1
 Security association lifetime: 4608000 kilobytes/3600 seconds
 PFS (Y/N): N
 Transform sets=
 ts,
)

Crypto Map "Tunnel0-head-0" 65538 ipsec-isakmp
 Map is a PROFILE INSTANCE.
 Peer = 11.0.0.1
 Extended IP access list
 access-list permit gre host 21.0.0.1 host 11.0.0.1
 Current peer: 11.0.0.1
 Security association lifetime: 4608000 kilobytes/3600 seconds
 PFS (Y/N): N
 Transform sets=
 ts,
)
Interfaces using crypto map Tunnel0-head-0:
 Tunnel0
using crypto engine SPA-IPSEC-2G[4/0]

The show ip nhrp command displays the NHRP cache.
The following sample output shows that NHRP registration occurred. Note that NHRP between the hub and a spoke is static, while NHRP between spokes is dynamic:

Router# show ip nhrp
HUB# show ip nhrp
 30.1.0.1/32 via 30.1.0.1, Tunnel0 created 00:18:13, expire 01:41:46
 Type: dynamic, Flags: authoritative unique registered
 NBMA address: 11.0.0.1
 30.2.0.1/32 via 30.2.0.1, Tunnel0 created 00:11:55, expire 01:48:04
 Type: dynamic, Flags: authoritative unique registered
 NBMA address: 21.0.0.1

SPOKE1# show ip nhrp
 30.0.0.1/32 via 30.0.0.1, Tunnel0 created 00:23:39, never expire
 Type: static, Flags: authoritative used
NBMA address: 10.0.0.1
30.2.0.1/32 via 30.2.0.1, Tunnel0 created 00:04:27, expire 01:47:59
 Type: dynamic, Flags: router
NBMA address: 21.0.0.1

SPOKE2# show ip nhrp
30.0.0.1/32 via 30.0.0.1, Tunnel0 created 00:12:02, never expire
 Type: static, Flags: authoritative used
NBMA address: 10.0.0.1
30.1.0.1/32 via 30.1.0.1, Tunnel0 created 00:04:29, expire 01:41:40
 Type: dynamic, Flags: router
NBMA address: 11.0.0.1

For DMVPN configuration examples, see the “DMVPN Configuration Examples” section on page 27-18.

Configuring the Easy VPN Server

The Easy VPN server provides server support for the Cisco VPN Client Release 4.x and later software clients and Cisco VPN hardware clients. The feature allows a remote end user to communicate using IP Security (IPsec) with any Cisco IOS Virtual Private Network (VPN) gateway. Centrally managed IPsec policies are pushed to the client by the server, minimizing configuration by the end user.

Easy VPN Server features include:

- Mode configuration and Xauth support
- User-based policy control
- Session monitoring for VPN group access
- RADIUS server support
- **backup-gateway** command
- **pfs** command
- Virtual IPsec interface support
- Banner, auto-update, and browser proxy
- Configuration management enhancements (pushing a configuration URL through a mode-configuration exchange)
- Per-user AAA policy download with PKI
- Syslog message enhancements
- Network admission control support

Easy VPN Server Configuration Guidelines and Restrictions

When configuring the Easy VPN server, follow these guidelines and restrictions:

- The following IPsec protocol options and attributes currently are not supported by Cisco VPN clients, so these options and attributes should not be configured on the switch for these clients:
 - Authentication with public key encryption
 - Digital Signature Standard (DSS)
Configuring the Easy VPN Remote

The Easy VPN remote feature allows Cisco routers and security appliances to establish a site-to-site VPN connection to a Cisco Easy VPN Server without complex remote-side configuration. Centrally managed IPsec policies are pushed to the client by the server, minimizing configuration by the end user.

Easy VPN Remote features include the following:

- Virtual IPsec interface support
- Banner, auto-update, and browser proxy
- Dual tunnel support
- Configuration management enhancements (pushing a configuration URL through a mode-configuration exchange)
- Reactivate primary peer

Easy VPN Remote Configuration Guidelines

Follow these guidelines when configuring Easy VPN for the IPsec VPN SPA:

⚠️ Caution ⚠️

You must clear all other crypto configurations from your running configuration on the Cisco IOS-based Easy VPN client that you are using to connect to the IPsec VPN SPA. If an ISAKMP policy is configured, it takes precedence over the preinstalled Easy VPN ISAKMP policies and the connection will fail. Other clients such as the VPN3000 and PIX systems running Easy VPN will prevent you from configuring Easy VPN unless all crypto configurations are removed. For complete configuration information for Easy VPN client support, refer to this URL:

For an Easy VPN server configuration example, see the “Easy VPN Server (Router Side) Configuration Example” section on page 27-22.
Configuring Easy VPN Remote RSA Signature Storage

The Easy VPN remote RSA signature support feature provides for the support of Rivest, Shamir, and Adelman (RSA) signatures on Easy VPN remote devices. The support is provided through RSA certificates that can be stored on or off the remote device.

Note

The Easy VPN remote RSA signature support feature supported in Cisco IOS Release 12.2(33)SXH and later releases.

Easy VPN Remote RSA Signature Support Configuration Guidelines and Restrictions

When configuring Easy VPN remote RSA signature support, follow these guidelines and restrictions:

- You must have a Cisco Virtual Private Network (VPN) remote device and be familiar with configuring the device.
- You must have a certificate authority (CA) available to your network before you configure this interoperability feature. The CA must support the public key infrastructure (PKI) protocol of Cisco Systems, which is the Simple Certificate Enrollment Protocol (SCEP) (formerly called Certificate Enrollment Protocol [CEP]).
- This feature should be configured only when you also configure both IPsec and Internet Key Exchange (IKE) in your network.
- The Cisco IOS software does not support CA server public keys greater than 2048 bits.

Configuring Easy VPN Remote RSA Signature Support

The RSA signatures for an Easy VPN remote device are configured the same way that you would configure RSA signatures for any other Cisco device.

For information about configuring RSA signatures, refer to the Cisco IOS Security Configuration Guide.

To enable the RSA signatures, when you are configuring the Easy VPN remote and assigning the configuration to the outgoing interface, you must omit the group command. The content of the first Organizational Unit (OU) field will be used as the group.

For information about configuring Cisco Easy VPN remote devices, refer to the feature document, Easy VPN Remote RSA Signature Support, at the following location:

Configuration Examples

This section provides examples of the following configurations:

- DMVPN Configuration Examples, page 27-18
- Easy VPN Server (Router Side) Configuration Example, page 27-22
The following examples use commands at the level of Cisco IOS Release 12.2(33)SXH.

As of Cisco IOS Release 12.2(33)SXH, the `crypto engine subslot` command used in previous releases has been replaced with the `crypto engine slot` command (of the form `crypto engine slot slot { inside | outside}`). The `crypto engine subslot` command is no longer supported. When upgrading, ensure that this command has been modified in your start-up configuration to avoid extended maintenance time.

DMVPN Configuration Examples

The following sections provide examples of DMVPN configuration:

- DMVPN Hub with VRF Mode Configuration Example, page 27-18
- DMVPN Spoke with VRF Mode Configuration Example, page 27-20
- DMVPN Spoke with Crypto-Connect Mode Configuration Example, page 27-21

The DMVPN examples are based on the implementation shown in Figure 27-1 on page 27-2, using the following configuration parameters:

- The hub switch (HUB) is configured in VRF mode with inside VRF (IVRF) and front-door VRF (FVRF).
- One spoke switch (SPOKE1) is configured in VRF mode with IVRF but no FVRF.
- One spoke switch (SPOKE2) is configured in crypto-connect mode.
- EIGRP is configured to distribute routes over the tunnels.
- In all switches, interface gi3/1 is the interface to the provider network.
- In all switches, interface gi3/13 is the interface to the private LAN.

The tunnel source can be the same as the physical egress port. If the tunnel source is not the physical egress port, make sure that traffic to and from the tunnel source passes through the physical egress port.

DMVPN Hub with VRF Mode Configuration Example

The following is a configuration example of the IPsec VPN SPA serving as a DMVPN hub using VRF mode with inside VRF and front-door VRF (FVRF):

```
hostname HUB
!
ip vrf fvrf
   rd 1000:1
!
ip vrf ivrf
   rd 1:1
!
crypto engine mode vrf
!
crypto keyring RING1 vrf fvrf
   pre-shared-key address 0.0.0.0 0.0.0.0 key abcdef
!
crypto isakmp policy 10
   encr 3des
   hash md5
```
authentication pre-share
!
crypto ipsec transform-set ts esp-3des esp-md5-hmac
mode transport
!
crypto ipsec profile VPN-PROF
set transform-set ts
!
interface Tunnel0
! EIGRP uses the configured bandwidth to allocate bandwidth for its routing update mechanism
bandwidth 1000000
ip vrf forwarding ivrf
ip address 30.0.0.1 255.0.0.0
ip nhrp authentication cisco123
ip nhrp map multicast dynamic
ip nhrp network-id 1000
! For a large number of tunnels, the following two commands are recommended
! EIGRP timers are adjusted to match the default timers for a WAN interface
ip hello-interval eigrp 200 60
ip hold-time eigrp 200 180
! The following two EIGRP commands are necessary to allow spoke-to-spoke communication
no ip next-hop-self eigrp 200
no ip split-horizon eigrp 200
tunnel source Vlan10
tunnel mode gre multipoint
tunnel vrf fvrf
tunnel protection ipsec profile VPN-PROF
crypto engine slot 4/0 inside
!
interface Vlan10
ip vrf forwarding fvrf
ip address 10.0.0.1 255.255.255.0
crypto engine outside
!
interface GigabitEthernet3/1
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 10
switchport mode trunk

interface GigabitEthernet3/13
description Local LAN interface
ip vrf forwarding ivrf
ip address 70.0.0.1 255.255.255.0
router eigrp 10
no auto-summary
!
address-family ipv4 vrf ivrf
redistribute connected
network 30.0.0.0
network 70.0.0.0
no auto-summary
autonomous-system 200
exit-address-family
!
! In this example, tunnel destination reachability is provided by static routes
! A routing protocol could also be used
ip route vrf fvrf 11.0.0.0 255.0.0.0 10.0.0.2
ip route vrf fvrf 21.0.0.0 255.0.0.0 10.0.0.2
end
DMVPN Spoke with VRF Mode Configuration Example

The following is a configuration example of the IPsec VPN SPA serving as a DMVPN spoke using VRF mode with inside VRF but no front-door VRF:

```
hostname SPOKE1
!
ip vrf ivrf
  rd 1:1
!
crypto engine mode vrf
!
!crypto isakmp policy 10
  encr 3des
  hash md5
  authentication pre-share
  crypto isakmp key abcdef address 0.0.0.0 0.0.0.0
  crypto isakmp keepalive 60
!
!crypto ipsec transform-set ts esp-3des esp-md5-hmac
  mode transport
!
crypto ipsec profile VPN-PROF
  set transform-set ts
!
interface Tunnel0
  bandwidth 100000
  ip vrf forwarding ivrf
  ip address 30.1.0.1 255.0.0.0
  ip nhrp authentication cisco123
  ip nhrp map 30.0.0.1 10.0.0.1
  ip nhrp map multicast 10.0.0.1
  ip nhrp network-id 1000
  ip nhrp nhs 30.0.0.1
  ip hello-interval eigrp 200 60
  ip hold-time eigrp 200 180
  tunnel source Loopback0
  tunnel mode gre multipoint
  tunnel protection ipsec profile VPN-PROF
  crypto engine slot 4/0 inside
!
interface Loopback0
  ip address 11.0.0.1 255.255.255.0
!
interface GigabitEthernet3/1
  ip address 11.255.255.1 255.255.255.0
  crypto engine outside
!
interface GigabitEthernet3/13
  ip vrf forwarding ivrf
  ip address 80.0.0.1 255.255.255.0

router eigrp 10
  no auto-summary
  !
  address-family ipv4 vrf ivrf
  autonomous-system 200
```
network 30.0.0.0
global 70.0.0.0
no auto-summary
redistribute connected
exit-address-family
ip route 10.0.0.0 255.0.0.0 11.255.255.2
ip route 21.0.0.0 255.0.0.0 11.255.255.2
end

DMVPN Spoke with Crypto-Connect Mode Configuration Example

The following is a configuration example of the IPsec VPN SPA serving as a DMVPN spoke using crypto-connect mode:

hostname SPOKE2
!
crypto isakmp policy 10
 encr 3des
 hash md5
 authentication pre-share
 crypto isakmp key abcdef address 0.0.0.0 0.0.0.0
 crypto isakmp keepalive 60

 crypto ipsec transform-set ts esp-3des esp-md5-hmac
 mode transport

 crypto ipsec profile VPN-PROF
 set transform-set ts

 interface Tunnel0
 bandwidth 1000000
 ip address 30.2.0.1 255.0.0.0
 ip nhrp authentication cisco123
 ip nhrp map 30.0.0.1 10.0.0.1
 ip nhrp map multicast 10.0.0.1
 ip nhrp network-id 1000
 ip nhrp nhs 30.0.0.1
 ip hello-interval eigrp 200 60
 ip hold-time eigrp 200 180
 tunnel source Vlan10
 tunnel mode gre multipoint
 tunnel protection ipsec profile VPN-PROF
 crypto engine slot 4/0 inside

 interface Vlan10
 ip address 21.0.0.1 255.255.255.0
 no mop enabled
 crypto engine slot 4/0 inside

 interface GigabitEthernet3/1
 no ip address
 crypto connect vlan 10

 interface GigabitEthernet3/13
 ip address 90.0.0.1 255.255.255.0

 router eigrp 200
 redistribute connected
network 30.0.0.0
network 90.0.0.0
no auto-summary

ip route 10.0.0.0 255.0.0.0 21.0.0.2
ip route 11.0.0.0 255.0.0.0 21.0.0.2

end

Easy VPN Server (Router Side) Configuration Example

The following is an example of an Easy VPN server router-side configuration:

! version 12.2
! hostname sanjose
! logging snmp-authfail
logging buffered 1000000 debugging
aaa new-model
aaa authentication login authen local
aaa authorization network author local
!
username unity password 0 uc
ip subnet-zero
no ip source-route
!
mls ldp logging neighbor-changes
mls flow ip destination
mls flow ipx destination
!
crypto isakmp policy 1
encr 3des
hash md5
authentication pre-share
group 2
crypto isakmp key 12345 address 0.0.0.0 0.0.0.0
crypto isakmp keepalive 10 2
!
crypto isakmp client configuration group group1
key 12345
domain cisco.com
pool pool1
!
crypto isakmp client configuration group default
key 12345
domain cisco.com
pool pool2
!
crypto ipsec transform-set myset3 esp-3des esp-md5-hmac
!
crypto dynamic-map test_dyn 1
set transform-set myset3
reverse-route
!
! Static client mapping
crypto map testtag client authentication list authen
crypto map testtag isakmp authorization list author
crypto map testtag client configuration address respond
crypto map testtag 10 ipsec-isakmp
set peer 10.5.1.4
set security-association lifetime seconds 900
set transform-set myset3
match address 109

! Dynamic client mapping
crypto map test_dyn client authentication list authen
crypto map test_dyn isakmp authorization list author
crypto map test_dyn client configuration address respond
crypto map test_dyn 1 ipsec-isakmp dynamic test_dyn

! no spanning-tree vlan 513

! redundancy
 main-cpu
 auto-sync running-config
 auto-sync standard

! interface GigabitEthernet2/1
 no ip address
 switchport
 switchport trunk encapsulation dot1q
 switchport trunk allowed vlan 1,513,1002-1005
 switchport mode trunk

! interface GigabitEthernet2/2
 no ip address
 shutdown

! interface GigabitEthernet6/1/1
 no ip address
 flowcontrol receive on
 flowcontrol send off
 switchport
 switchport trunk encapsulation dot1q
 switchport trunk allowed vlan 1,513,1002-1005
 switchport mode trunk
 cdp enable

! interface GigabitEthernet6/1/2
 no ip address
 flowcontrol receive on
 flowcontrol send off
 switchport
 switchport trunk encapsulation dot1q
 switchport trunk allowed vlan 1,2,1002-1005
 switchport mode trunk
 cdp enable

! interface Vlan1
 no ip address
 shutdown

! interface Vlan2
 no ip address
 crypto connect vlan 513

! interface Vlan513
 ip address 10.5.1.1 255.255.0.0
 crypto map test_dyn
 crypto engine slot 6/1 inside

! ip local pool pool1 22.0.0.2
! ip local pool pool2 23.0.0.3
! ip classless
ip pim bidir-enable
!
access-list 109 permit ip host 10.5.1.1 host 22.0.0.2
arp 127.0.0.12 0000.2100.0000 ARPA
!
snmp-server enable traps tty
snmp-server enable traps ipsec tunnel start
snmp-server enable traps ipsec tunnel stop
!
line con 0
line vty 0 4
 password lab
 transport input lat pad mop telnet rlogin udptn nasi
!
end