CONTENTS

CHAPTER 1

HyperFlex Deferred Releases
HyperFlex Deferred Releases 1

CHAPTER 2

Overview 3

- Cisco HyperFlex HX-Series System 3
- Cisco HyperFlex HX-Series System Components 3
- Cisco HyperFlex HX-Series System Configuration Options 4
- Cisco HyperFlex HX-Series System Management Components 6
- Cisco HyperFlex Connect User Interface and Online Help 7

 - Dashboard Page 9
 - Operational Status Dialog Box 10
 - Resiliency Health Dialog Box 11

CHAPTER 3

Installation Prerequisites 13

- Required Hardware Cables 13
- Host Requirements 14
- Disk Requirements 14
- Port Requirements 19
- HyperFlex External Connections 27
- Fabric Interconnect Uplink Provisioning 28
- Network Settings 31
- VLAN and vSwitch Requirements 32
- Cisco UCS Requirements 33
- Hypervisor Requirements 33
- Storage Cluster Requirements 34
- vCenter Configuration Requirements 36
System Services Requirements 36
CPU Resource Reservation for Controller VMs 38
Memory Resource Reservation for Controller Virtual Machines 38
Auto Support Requirements 39
Single Sign On Requirements 39

CHAPTER 4

Install Cisco HyperFlex Systems Servers 41
Rack Cisco HyperFlex Nodes 41
Setting Up the Fabric Interconnects 42
 Configuring the Primary Fabric Interconnect Using Cisco UCS Manager GUI 43
 Configuring the Secondary Fabric Interconnect Using Cisco UCS Manager GUI 45
 Configure the Primary Fabric Interconnect Using CLI 46
 Configure the Subordinate Fabric Interconnect Using CLI 47
 Verify Console Setup 48
Connecting HX-Series Servers to Cisco UCS Fabric Interconnects 50
Overview 50
 Connecting Converged Nodes to the Fabric Interconnect 50
 Physical Connectivity Illustrations for Direct Connect Mode Cluster Setup 51
 Connecting Compute-Only Nodes to the Fabric Interconnect 52

CHAPTER 5

Configure Cisco HyperFlex Systems 55
Installation Workflow 55
Deploy HX Data Platform Installer OVA Using vSphere Web Client 56
Deploy the HX Data Platform Installer OVA with a Static IP Address 58
Configure Syslog 59
Configure and Deploy Your HyperFlex Cluster 60
 Common Task Steps used In HyperFlex GUI 60
 Associate HyperFlex Servers 61
 Configure UCS Manager 62
 Configure Hypervisor 65
 Configure IP Addresses 66
 Configure Your HyperFlex Cluster 67
Installation of HyperFlex Nodes with GPUs 71
HX Data Platform Installer Navigation Aid Buttons 71
Contents

CHAPTER 6

Configure Licensing with HyperFlex Data Platform 73
- Smart Licensing and HyperFlex 73
- Renewing Smart Licensing Authorization 77
- Registering a Cluster with Smart Licensing 77
 - Creating a Registration Token 78
 - Registering a Cluster with Smart Licensing 78
 - Recommended Registration Method 78
- Registering a Cluster with Smart Software Licensing through a Controller VM 80
- Deregistering a Cluster from Smart Licensing 81

CHAPTER 7

Configure HyperFlex Hardware Acceleration Cards 83
- Overview of HyperFlex Hardware Acceleration Cards 83
- Install HyperFlex Hardware Acceleration Cards 83
- Deploy HX Data Platform Installer OVA Using vSphere Web Client 84
- Deploy the HX Data Platform Installer OVA with a Static IP Address 86
- Configure and Deploy Your HyperFlex Cluster 88
 - Enter Credentials 88
 - Associate HyperFlex Servers 90
 - Configure UCS Manager 91
 - Configure Hypervisor 94
 - Configure IP Addresses 95
 - Configure Your HyperFlex Cluster 97
- Verify Installation of HyperFlex Hardware Acceleration Cards 101
- Troubleshoot HyperFlex Hardware Acceleration Cards 101
- Additional Information on HyperFlex Hardware Acceleration Cards 102

CHAPTER 8

Post Cluster Configuration Tasks 103
- Post Cluster Configuration Guidelines 103
- Enabling PCI Passthrough for a Network Device on a Host 103
- Run Post-Installation Script 104
- Changing ESXi Host Root Password 106
- Changing Storage Controller Password 107
Contents

Access the HX Data Platform Plugin through vSphere 108
Add Datastores in the Storage Cluster 108
Set HA Heartbeat 108
Auto Support and Smart Call Home for HyperFlex 109
 Configuring Auto Support Using HX Connect 110
 Configuring Notification Settings Using CLI 111
 Configuring Smart Call Home for Data Collection 112
Replacing Self-Signed with CA-Signed Certificate 114
Replication Pairing 116
Adding Private VLAN 116
 About Private VLANs 116
 Configuring a Private VLAN on a VM Network without Existing VMs 117
 Configuring Private VLAN on ESX Hosts 117
 Configuring a Private VLAN on a VM Network with Existing VMs 117
 Deleting VMNICS on the vSphere Standard Switch 118
 Creating vSphere Distributed Switch 118
 Creating Private VLANs on vSphere Distributed Switch 119
 Set Private VLAN in Distributed Port Group 119
Distributed Virtual Switches and Cisco Nexus 1000v 120
Hosting vCenter on the HX Data Platform 121
Deploying AMD GPUs 121

CHAPTER 9

Setting Up Multiple HX Clusters 123
 Setting Up Multiple Clusters 123

CHAPTER 10

Expand Cisco HyperFlex System Clusters 125
 Cluster Expansion Guidelines 125
 ESXi Installation Guidelines 126
 Prerequisites When Creating a Mixed M4/M5 Cluster 126
 Mixed Cluster Expansion Guidelines 126
 Steps During Mixed Cluster Expansion 127
 Prerequisites for Adding a Converged (HX220c/HX240c) Node 127
 Preparing a Converged Node 128
 Adding a Converged Node to an Existing Cluster 129
HyperFlex Deferred Releases

Cisco HyperFlex Data Platform release 3.5(2c) is no longer available for download. It is recommended that you upgrade to 3.5(2g) or the latest suggested release on the Cisco Software Download site.

For more information, see Software Deferral Notice for CSCvp90129.
Overview

This chapter provides an overview of the components in Cisco HyperFlex Systems:

- Cisco HyperFlex HX-Series System, on page 3
- Cisco HyperFlex HX-Series System Components, on page 3
- Cisco HyperFlex HX-Series System Configuration Options, on page 4
- Cisco HyperFlex HX-Series System Management Components, on page 6
- Cisco HyperFlex Connect User Interface and Online Help, on page 7

Cisco HyperFlex HX-Series System

Cisco HyperFlex HX-Series System provides a fully contained, virtual server platform that combines all three layers of compute, storage, and network with the powerful Cisco HX Data Platform software tool resulting in a single point of connectivity for simplified management. Cisco HyperFlex HX-Series System is a modular system designed to scale out by adding HX nodes under a single UCS management domain. The hyperconverged system provides a unified pool of resources based on your workload needs.

Cisco HyperFlex HX-Series System Components

- **Cisco HX-Series Server**—You can use any of the following servers to configure the Cisco HyperFlex System:
 - Converged nodes—**All Flash**: Cisco HyperFlex HXAF240c M5, HXAF220c M5, HXAF240c M4, and HXAF220c M4.
 - Converged nodes—**Hybrid**: Cisco HyperFlex HX240c M5, HX220c M5, HX240c M4, and HX220c M4.

- **Cisco HX Data Platform**—The HX Data Platform consists of the following components:
 - **Cisco HX Data Platform Installer**: Download this installer to a server connected to the storage cluster. The HX Data Platform Installer configures the service profiles and policies within Cisco UCS Manager, deploys the controller VMs, installs the software, creates the storage cluster, and updates the VMware vCenter plug-in.
• **Storage Controller VM**: Using the HX Data Platform Installer, installs the storage controller VM on each converged node in the managed storage cluster.

• **Cisco HX Data Platform Plug-in**: This integrated VMware vSphere interface monitors and manages the storage in your storage cluster.

• **Cisco UCS Fabric Interconnects (FI)**

 Fabric Interconnects provide both network connectivity and management capabilities to any attached Cisco HX-Series Server.

 FI that were purchased and deployed as part of the Cisco HyperFlex System are also referred to as an **HX FI Domain** in this document. The following Fabric Interconnects are supported:

 - Cisco UCS 6200 Series Fabric Interconnects
 - Cisco UCS 6300 Series Fabric Interconnects

• **Cisco Nexus Switches**

 Cisco Nexus switches deliver high-density, configurable ports for flexible access deployment and migration.

Cisco HyperFlex HX-Series System Configuration Options

The Cisco HyperFlex HX-Series System offers flexible and scalable options to expand storage and compute capabilities in your environment. To add more storage capabilities to your Cisco HyperFlex System, you simply add a Cisco HX-Series Server.
An **HX Cluster** is a group of HX-Series Servers. Each HX-Series Server in the cluster is referred to as a HX node or a Host.

You can configure a HX Cluster in any of the ways, as shown in the following images:

Configuration Options for a HX Cluster

Figure 2: Cisco HyperFlex Hybrid M5 Configurations

Figure 3: Cisco HyperFlex Hybrid M4 Configurations*
Cisco HyperFlex HX-Series System Management Components

The Cisco HyperFlex HX-Series System is managed using the following Cisco software components:

Cisco UCS Manager

Cisco UCS Manager is embedded software that resides on a pair of Fabric Interconnects providing complete configuration and management capabilities for Cisco HX-Series Server. The most common way to access UCS Manager is to use a web browser to open the GUI. UCS Manager supports role-based access control.

The configuration information is replicated between two Cisco UCS Fabric Interconnects (FI) providing a high-availability solution. If one FI becomes unavailable, the other takes over.

A key benefit of UCS Manager is the concept of Stateless Computing. Each node in an HX Cluster has no set configuration. MAC addresses, UUIDs, firmware, and BIOS settings, for example, are all configured on UCS Manager in a Service Profile and applied uniformly to all the HX-Series servers. This enables consistent configuration and ease of reuse. A new Service Profile can be applied within a matter of minutes.
Cisco HX Data Platform

Cisco HX Data Platform is a hyperconverged software appliance that transforms Cisco servers into a single pool of compute and storage resources. It eliminates the need for network storage and tightly integrates with VMware vSphere and its existing management application to provide a seamless data management experience. In addition, native compression and deduplication reduce storage space occupied by the VMs.

HX Data Platform is installed on a virtualized platform, such as vSphere. It manages the storage for your virtual machines, applications, and data. During installation, you specify the Cisco HyperFlex HX Cluster name, and HX Data Platform creates a hyperconverged storage cluster on each of the nodes. As your storage needs increase and you add nodes to the HX Cluster, HX Data Platform balances the storage across the additional resources.

VMware vCenter Management

Cisco HyperFlex System has VMware vCenter-based management. The vCenter Server is a data center management server application developed to monitor virtualized environments. The HX Data Platform is also accessed from the preconfigured vCenter Server to perform all storage tasks. vCenter supports key shared storage features like VMware vMotion, DRS, HA, and vSphere replication. More scalable, native HX Data Platform snapshots and clones replace VMware snapshots and cloning capability.

You must have a vCenter installed on a separate server to access HX Data Platform. vCenter is accessed through the vSphere Client, which is installed on the administrator's laptop or PC.

Cisco HyperFlex Connect User Interface and Online Help

Cisco HyperFlex Connect (HX Connect) provides a user interface to Cisco HyperFlex. It is divided into two main sections, a Navigation pane on the left and a Work pane on the right.

To perform most actions in HX Connect, you must have administrative privileges.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>☰</td>
<td>Menu</td>
<td>Toggles between the full-size Navigation pane and the icon-only, hover-over Navigation pane.</td>
</tr>
<tr>
<td>📜</td>
<td>Messages</td>
<td>Displays a list of user initiated actions; for example, datastore created, disk removed. Use Clear All to remove all of the messages and hide the Messages icon.</td>
</tr>
<tr>
<td>🛠️</td>
<td>Settings</td>
<td>Accesses Support, Notification, and Cloud Management settings. You can also access the Support Bundle page.</td>
</tr>
<tr>
<td>🚨</td>
<td>Alarms</td>
<td>Displays an alarm count of your current errors or warnings. If there are both errors and warnings, the count shows the number of errors. For more detailed alarm information, see the Alarms page.</td>
</tr>
</tbody>
</table>
Icon | Name | Description
--- | --- | ---
 | Help | Opens the context-sensitive HX Connect Online Help file.

| User | User Settings is visible only to administrators. |
| Information | Accesses more detailed data about that element. |

To access the online help for:

- A particular page in the user interface, click **Help** in the header.
- A dialog box, click **Help** in that dialog box.
- A wizard, click **Help** in that wizard.

Table Header Common Fields

Several tables in HX Connect provide one or more of the following three fields that affect the content displayed in the table.

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh field and icon</td>
<td>The table automatically refreshes for dynamic updates to the HX Cluster. The timestamp indicates the last time the table was refreshed. Click the circular icon to refresh the content now.</td>
</tr>
<tr>
<td>Filter field</td>
<td>Display in the table only list items that match the entered filter text. The items listed in the current page of the table below are automatically filtered. Nested tables are not filtered. Type in the selection text in the Filter field. To empty the Filter field, click the x. To export content from other pages in the table, scroll to the bottom, click through the page numbers, and apply the filter.</td>
</tr>
<tr>
<td>Export menu</td>
<td>Save out a copy of the current page of table data. The table content is downloaded to the local machine in the selected file type. If the listed items are filtered, the filtered subset list is exported. Click the down arrow to select an export file type. The file type options are: cvs, xls, and doc. To export content from other pages in the table, scroll to the bottom, click through the page numbers, and apply the export.</td>
</tr>
</tbody>
</table>
Dashboard Page

If you are a read-only user, you may not see all of the options available in the Help. To perform most actions in HyperFlex (HX) Connect, you must have administrative privileges.

Displays a status summary of your HX storage cluster. This is the first page that you see when you log in to Cisco HyperFlex Connect.

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Status</td>
<td>Provides the functional status of the HX storage cluster and application performance. Click Information (i) to access the HX storage cluster name and status data.</td>
</tr>
</tbody>
</table>
| **Cluster License Status** | Displays the following link when you log into the HX storage cluster for the first time or till the HX storage cluster license is registered:
 Cluster License not registered link—Appears when the HX storage cluster is not registered. To register a cluster license, click this link and provide product instance registration token in the Smart Software Licensing Product Registration screen. For more information on how to get a product instance registration token, refer the Registering a Cluster with Smart Licensing section in the Cisco HyperFlex Systems Installation Guide for Microsoft Hyper-V. |
| **Resiliency Health** | Provides the data health status and ability of the HX storage cluster to tolerate failures. Click Information (i) to access the resiliency status, and replication and failure data. |
| **Capacity** | Displays a breakdown of the total storage versus how much storage is used or free. Also displays the storage optimization, compression-savings, and deduplication percentages based on the data stored in the cluster. |
| **Nodes** | Displays the number of nodes in the HX storage cluster, and the division of converged versus compute nodes. Hovering over a node icon displays that node’s name, IP address, node type, and an interactive display of disks with access to capacity, usage, serial number, and disk type data. |
| **Performance** | Displays an HX storage cluster performance snapshot for a configurable amount of time, showing IOPS, throughput, and latency data. For full details, see Performance Page. |
| **Cluster Time** | System date and time for the cluster. |
Table Header Common Fields

Several tables in HX Connect provide one or more of the following three fields that affect the content displayed in the table.

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh field and icon</td>
<td>The table automatically refreshes for dynamic updates to the HX Cluster. The timestamp indicates the last time the table was refreshed. Click the circular icon to refresh the content now.</td>
</tr>
<tr>
<td>Filter field</td>
<td>Display in the table only list items that match the entered filter text. The items listed in the current page of the table below are automatically filtered. Nested tables are not filtered. Type in the selection text in the Filter field. To empty the Filter field, click the x. To export content from other pages in the table, scroll to the bottom, click through the page numbers, and apply the filter.</td>
</tr>
<tr>
<td>Export menu</td>
<td>Save out a copy of the current page of table data. The table content is downloaded to the local machine in the selected file type. If the listed items are filtered, the filtered subset list is exported. Click the down arrow to select an export file type. The file type options are: csv, xls, and doc. To export content from other pages in the table, scroll to the bottom, click through the page numbers, and apply the export.</td>
</tr>
</tbody>
</table>

Operational Status Dialog Box

Provides the functional status of the HX storage cluster and application performance.

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Name field</td>
<td>Name of this HX storage cluster.</td>
</tr>
</tbody>
</table>
| Cluster Status field | - **Online**—Cluster is ready.
- **Offline**—Cluster is not ready.
- **Read Only**—Cluster cannot accept write transactions, but can continue to display static cluster information.
- **Out of space**—Either the entire cluster is out of space or one or more disks are out of space. In both cases, the cluster cannot accept write transactions, but can continue to display static cluster information. |
| Data-at-rest encryption capable field | - **Available**
- **Not supported**
Alternatively, **Yes** and **No** can be used. |
Resiliency Health Dialog Box

Provides the data health status and ability of the HX storage cluster to tolerate failures.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Resiliency Status field | • **Healthy**—Cluster is healthy with respect to data and availability.
 | |
| | • **Warning**—Either data or cluster availability is being adversely
 | |
| | affected. |
| | • **Unknown**—Transitional state while the cluster is coming online.
 | |
| Data Replication Compliance | • **Compliant** |
| field | |
| Data Replication Factor field | Displays the number of redundant data replicas across the HX storage
 | cluster. |
| Number of node failures tolerable field | Displays the number of node disruptions the HX storage cluster can handle. |
| Number of Persistent Device failures tolerable field | Displays the number of persistent device disruptions the HX storage cluster can handle. |
| Number of Caching Device failures tolerable field | Displays the number of cache device disruptions the HX storage cluster can handle. |
| Reason to view drop-down list | Displays the number of messages to explain what is contributing to the current status. |

Click Close.
Resiliency Health Dialog Box
Installation Prerequisites

This chapter describes the installation and configuration requirements for the Cisco HyperFlex Systems:

- Required Hardware Cables, on page 13
- Host Requirements, on page 14
- Disk Requirements, on page 14
- Port Requirements, on page 19
- HyperFlex External Connections, on page 27
- Fabric Interconnect Uplink Provisioning, on page 28
- Network Settings, on page 31
- VLAN and vSwitch Requirements, on page 32
- Cisco UCS Requirements, on page 33
- Hypervisor Requirements, on page 33
- Storage Cluster Requirements, on page 34
- vCenter Configuration Requirements, on page 36
- System Services Requirements, on page 36
- CPU Resource Reservation for Controller VMs, on page 38
- Memory Resource Reservation for Controller Virtual Machines, on page 38
- Auto Support Requirements, on page 39
- Single Sign On Requirements, on page 39

Required Hardware Cables

- Use at least two 10-Gb Small Form-Factor Pluggable (SFP) cables per server when using the 6200 series FI. Use at least two 40-GbE QSFP cables per server when using the 6300 series FI.

- Ensure that the Fabric Interconnect console cable (CAB-CONSOLE-RJ45) has an RJ-45 connector on one end and a DB9 connector on the other. This cable is used to connect into the RS-232 console connection on a laptop.

- Ensure that the standard power cords have an IEC C13 connector on the end that plugs into the power supplies. Make sure that the optional jumper power cords have an IEC C13 connector on the end that plugs into the power supplies and an IEC C14 connector on the end that plugs into an IEC C13 outlet receptacle.

For further details, see the Cisco UCS 6200 Series Fabric Interconnect Hardware Guide.
• The KVM cable provides a connection for the Cisco HX-Series Servers into the system. It has a DB9 serial connector, a VGA connector for a monitor, and dual USB 2.0 ports for a keyboard and mouse. With this cable, you can create a direct connection to the operating system and the BIOS running on the system.

Note

This same KVM cable is used for both UCS rack mount and blade servers.

For further details on cables and ordering information for M4 or M5 servers, see the respective Cisco HyperFlex HX-Series Models and Cisco UCS B200 Blade Server Installation and Service Note.

Host Requirements

A Cisco HyperFlex cluster contains a minimum of three converged HyperFlex nodes. There is an option of adding compute-only nodes to provide additional compute power if there is no need for extra storage. Each server in a HyperFlex cluster is also referred as a HyperFlex node. Make sure that each node has the following settings installed and configured before you deploy the storage cluster.

For further information, refer to the Cisco HX240c/220c HyperFlex Node Installation Guides.

Ensure that the following host requirements are met.

• Use the same VLAN IDs for all the servers (node or hosts) in the cluster.
• Use the same administrator login credentials for all the ESXi servers across the storage cluster.
• Keep SSH enabled on all ESXi hosts.
• Configure DNS and NTP on all servers.
• Install and configure VMware vSphere.
• Use single VIC only for Converged nodes or Compute–only nodes. Additional VICs or PCIe NICs are not supported.

Disk Requirements

The disk requirements vary between converged nodes and compute-only nodes. To increase the available CPU and memory capacity, you can expand the existing cluster with compute-only nodes as needed. These compute-only nodes provide no increase to storage performance or storage capacity.

Alternatively, adding converged nodes increase storage performance and storage capacity alongside CPU and memory resources.

Servers with only Solid-State Disks (SSDs) are All-Flash servers. Servers with both SSDs and Hard Disk Drives (HDDs) are hybrid servers.

The following applies to all the disks in a HyperFlex cluster:

• All the disks in the storage cluster must have the same amount of storage capacity. All the nodes in the storage cluster must have the same number of disks.
• All SSDs must support TRIM and have TRIM enabled.

• All HDDs can be either SATA or SAS type. All SAS disks in the storage cluster must be in a pass-through mode.

• Disk partitions must be removed from SSDs and HDDs. Disks with partitions are ignored and not added to your HX storage cluster.

• Optionally, you can remove or backup existing data on disks. All existing data on a provided disk is overwritten.

Note
New factory servers are shipped with appropriate disk partition settings. Do not remove disk partitions from new factory servers.

• Only the disks ordered directly from Cisco are supported.

• On servers with Self Encrypting Drives (SED), both the cache and persistent storage (capacity) drives must be SED capable. These servers support Data at Rest Encryption (DARE).

Converged Nodes
In addition to the disks listed in the table below, all M4 converged nodes have 2 x 64-GB SD FlexFlash cards in a mirrored configuration with ESX installed. All M5 converged nodes have M.2 SATA SSD with ESXi installed.

Note
Do not mix storage disks type or storage size on a server or across the storage cluster. Mixing storage disk types is not supported.

• When replacing cache or persistent disks, always use the same type and size as the original disk.

• Do not mix any of the persistent drives. Use all HDD or SSD and the same size drives in a server.

• Do not mix hybrid and All-Flash cache drive types. Use the hybrid cache device on hybrid servers and All-Flash cache devices on All-Flash servers.

• Do not mix encrypted and non-encrypted drive types. Use SED hybrid or SED All-Flash drives. On SED servers, both the cache and persistent drives must be SED type.

• All nodes must use same size and quantity of SSDs. Do not mix SSD types.

The following tables list the compatible drives for each HX server type. Drives are located in the front slots of the server, unless otherwise indicated. Multiple drives listed are options. Use one drive size for capacity per server. Minimum and maximum number of drives are listed for each component.

HX240 M5 Servers

<table>
<thead>
<tr>
<th>Component</th>
<th>Qty</th>
<th>Hybrid</th>
<th>All Flash</th>
<th>Hybrid SED</th>
<th>All Flash SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
</tr>
</tbody>
</table>
Disk Requirements

For information on disk requirements for HX240 M5 LFF servers, see [Disk Requirements for LFF Converged Nodes Hardware and Software Requirements](#), on page 17.

<table>
<thead>
<tr>
<th>HX240 M4 Servers</th>
<th>Component</th>
<th>Qty</th>
<th>Hybrid</th>
<th>All Flash</th>
<th>Hybrid SED</th>
<th>All Flash SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>240 GB SSD</td>
</tr>
<tr>
<td>Cache SSD</td>
<td>1</td>
<td>480 GB SSD</td>
<td>1.6 TB SSD</td>
<td>1.6 TB NVMe</td>
<td>400 GB SSD</td>
<td>800 GB SSD</td>
</tr>
<tr>
<td>Persistent</td>
<td>6-8</td>
<td>1.2 TB HDD</td>
<td>960 GB SSD</td>
<td>1.2 TB HDD</td>
<td>800 GB SSD</td>
<td>960 GB SSD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HX220 M5 Servers</th>
<th>Component</th>
<th>Qty</th>
<th>Hybrid</th>
<th>All Flash</th>
<th>Hybrid SED</th>
<th>All Flash SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>240 GB SSD</td>
</tr>
<tr>
<td>Cache SSD</td>
<td>1</td>
<td>800 GB SSD</td>
<td>1.6 TB SSD</td>
<td>1.6 TB NVMe</td>
<td>400 GB SSD</td>
<td>800 GB SSD</td>
</tr>
<tr>
<td>Persistent</td>
<td>6-8</td>
<td>1.2 TB HDD</td>
<td>960 GB SSD</td>
<td>1.2 TB HDD</td>
<td>800 GB SSD</td>
<td>960 GB SSD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HX 220 M4 Servers</th>
<th>Component</th>
<th>Qty</th>
<th>Hybrid</th>
<th>All Flash</th>
<th>Hybrid SED</th>
<th>All Flash SED</th>
</tr>
</thead>
<tbody>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>240 GB SSD</td>
</tr>
<tr>
<td>Component</td>
<td>Qty</td>
<td>Hybrid</td>
<td>All Flash</td>
<td>Hybrid SED</td>
<td>All Flash SED</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Cache SSD</td>
<td>1</td>
<td>480 GB SSD</td>
<td>400 GB SSD</td>
<td>800 GB SSD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>6</td>
<td>1.2 TB HDD</td>
<td>960 GB SSD</td>
<td>1.2 TB HDD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8 TB HDD</td>
<td>3.8 TB SSD</td>
<td></td>
<td>960 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8 TB SSD</td>
<td></td>
</tr>
<tr>
<td>HX220 M5 Servers for Edge Clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td></td>
</tr>
<tr>
<td>Cache SSD</td>
<td>1</td>
<td>480 GB SSD</td>
<td>1.6 TB NVMe</td>
<td>800 GB SSD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 GB SSD</td>
<td>400 GB SSD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>3-8</td>
<td>1.2 TB HDD</td>
<td>960 GB SSD</td>
<td>1.2 TB HDD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.8 TB SSD</td>
<td></td>
<td>960 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8 TB SSD</td>
<td></td>
</tr>
<tr>
<td>HX 220 M4 Servers for Edge Clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System SSD for logs</td>
<td>1</td>
<td>120 GB SSD</td>
<td>120 GB SSD</td>
<td>120 GB SSD</td>
<td>120 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td>240 GB SSD</td>
<td></td>
</tr>
<tr>
<td>Cache SSD</td>
<td>1</td>
<td>480 GB SSD</td>
<td>400 GB SSD</td>
<td>800 GB SSD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>3-6</td>
<td>1.2 TB HDD</td>
<td>960 GB SSD</td>
<td>1.2 TB HDD</td>
<td>800 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.8 TB SSD</td>
<td></td>
<td>960 GB SSD</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8 TB SSD</td>
<td></td>
</tr>
</tbody>
</table>

Disk Requirements for LFF Converged Nodes

The following table lists the supported HX240 M5 Server Large-Form-Factor (LFF) converged node configurations:

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>HX-MR-X16G1RS-H</td>
<td>Min. 128 MB</td>
</tr>
<tr>
<td></td>
<td>HX-MR-X32G2RS-H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HX-MR-X64G4RS-H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HX-MR-128G8RS-H</td>
<td></td>
</tr>
</tbody>
</table>

Cisco HyperFlex Systems Installation Guide for VMware ESXi, Release 3.5
Hardware and Software Requirements

Hardware
- Memory Configurable
- CPU Configurable
- HDD Storage Quantity

Software
- Storage Controller
 - Reserves 72GB RAM
 - Reserves 8 vCPU, 10.800 GHz CPU
- VAAI VIB
- IO Visor VIB

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>Varies</td>
<td>2</td>
</tr>
<tr>
<td>Drive Controller</td>
<td>Cisco 12Gbps Modular SAS HBA</td>
<td>1</td>
</tr>
<tr>
<td>SSD1 (Boot SSD)</td>
<td>240GB 2.5 inch Enterprise Value 6G SATA SSD</td>
<td>1</td>
</tr>
<tr>
<td>SSD2 (Cache/WL)</td>
<td>3.2TB 2.5 inch Enterprise Performance 12G SAS SSD(3X)</td>
<td>1</td>
</tr>
<tr>
<td>HDD (Capacity/Data)</td>
<td>6TB 12G SAS 7.2K RPM LFF HDD (4K) OR 8TB 12G SAS 7.2K RPM LFF HDD (4K)</td>
<td>6 - 12</td>
</tr>
<tr>
<td>Network</td>
<td>Cisco VIC 1387 Dual Port 40GB QSFP CNA MLOM</td>
<td>1</td>
</tr>
<tr>
<td>Boot Device</td>
<td>240GB SATA M.2</td>
<td>1</td>
</tr>
<tr>
<td>Software</td>
<td>Cisco HX Data Platform 1, 2, 3, or 4 or 5yr SW subscription</td>
<td>1</td>
</tr>
<tr>
<td>Optional VMware License</td>
<td>Factory Installed – VMware vsphere6 Enterprise Plus/Standard SW License & Subscription</td>
<td>2</td>
</tr>
<tr>
<td>FI Support</td>
<td>2G FI and 3G FI</td>
<td></td>
</tr>
</tbody>
</table>
Compute-Only Nodes

The following table lists the supported compute-only node configurations for compute-only functions. Storage on compute-only nodes is not included in the cache or capacity of storage clusters.

When adding compute nodes to your HyperFlex cluster, the compute-only service profile template automatically configures it for booting from an SD card. If you are using another form of boot media, update the local disk configuration policy. See the Cisco UCS Manager Server Management Guide for server-related policies.

<table>
<thead>
<tr>
<th>Supported Compute-Only Node Servers</th>
<th>Supported Methods for Booting ESXi</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco B200 M3/M4/M5</td>
<td>Choose any method.</td>
</tr>
<tr>
<td>• B260 M4</td>
<td></td>
</tr>
<tr>
<td>• B420 M4</td>
<td>Important: Ensure that only one form of boot media is exposed to the server for ESXi installation. Post install, you may add in additional local or remote disks.</td>
</tr>
<tr>
<td>• B460 M4</td>
<td>USB boot is not supported for HX Compute-only nodes.</td>
</tr>
<tr>
<td>• C240 M3/M4/M5</td>
<td></td>
</tr>
<tr>
<td>• C220 M3/M4/M5</td>
<td>• SD Cards in a mirrored configuration with ESXi installed.</td>
</tr>
<tr>
<td>• C460 M4</td>
<td>• Local drive HDD or SSD.</td>
</tr>
<tr>
<td>• C480 M5</td>
<td>• SAN boot.</td>
</tr>
<tr>
<td>• B480 M5</td>
<td>• M.2 SATA SSD Drive.</td>
</tr>
</tbody>
</table>

Note: HW RAID M.2 (UCS-M2-HWRAID and HX-M2-HWRAID) is not supported on Compute-only nodes.

Port Requirements

If your network is behind a firewall, in addition to the standard port requirements, VMware recommends ports for VMware ESXi and VMware vCenter.

• CIP-M is for the cluster management IP.
• SCVM is the management IP for the controller VM.
• ESXi is the management IP for the hypervisor.

Verify that the following firewall ports are open:
Time Server

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>NTP/UDP</td>
<td>Each ESXi Node</td>
<td>Time Server</td>
<td>Bidirectional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCSM</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HX Data Platform Installer

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>SSH/TCP</td>
<td>HX Data Platform Installer</td>
<td>Each ESXi Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td>UCSM management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIMC IPs</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>HTTP/TCP</td>
<td>HX Data Platform Installer</td>
<td>Each ESXi Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td>UCSM management addresses</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS/TCP</td>
<td>HX Data Platform Installer</td>
<td>Each ESXi Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td>UCSM management addresses</td>
</tr>
<tr>
<td>8089</td>
<td>vSphere SDK/TCP</td>
<td>HX Data Platform Installer</td>
<td>Each ESXi Node</td>
<td>Management addresses</td>
</tr>
</tbody>
</table>
Port Requirements

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>902</td>
<td>Heartbeat/UDP/TCP</td>
<td>HX Data Platform Installer</td>
<td>vCenter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each ESXi Node</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>Ping/ICMP</td>
<td>HX Data Platform Installer</td>
<td>ESXi IPs</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CVM IPs</td>
<td></td>
</tr>
<tr>
<td>9333</td>
<td>UDP/TCP</td>
<td>HX Data Platform Installer</td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
</tbody>
</table>

Mail Server

Optional for email subscription to cluster events.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>SMTP/TCP</td>
<td>Each SCVM Node</td>
<td>Mail Server</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Monitoring

Optional for monitoring UCS infrastructure.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>SNMP Poll/UDP</td>
<td>Monitoring Server</td>
<td>UCSM</td>
<td>Optional</td>
</tr>
<tr>
<td>162</td>
<td>SNMP Trap/UDP</td>
<td>UCSM</td>
<td>Monitoring Server</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Name Server

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>53 (external lookups)</td>
<td>DNS/TCP/UDP</td>
<td>Each ESXi Node</td>
<td>Name Server</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td>Name Server</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Name Server</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UCSM</td>
<td>Name Server</td>
<td></td>
</tr>
</tbody>
</table>
vCenter

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>HTTP/TCP</td>
<td>vCenter</td>
<td>Each SCVM Node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>HTTPS (Plug-in)/TCP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td>Bidirectional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td></td>
</tr>
<tr>
<td>7444</td>
<td>HTTPS (VC SSO)/TCP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td>Bidirectional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td></td>
</tr>
<tr>
<td>9443</td>
<td>HTTPS (Plug-in)/TCP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td>Bidirectional</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td></td>
</tr>
<tr>
<td>5989</td>
<td>CIM Server/TCP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td></td>
</tr>
<tr>
<td>9080</td>
<td>CIM Server/TCP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td>Introduced in ESXi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Release 6.5</td>
</tr>
<tr>
<td>902</td>
<td>Heartbeat/TCP/UDP</td>
<td>vCenter</td>
<td>Each ESXi Node</td>
<td>This port must be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>accessible from each</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>host. Installation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>results in errors if</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the port is not open</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>from the HX Installer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>to the ESXi hosts.</td>
</tr>
</tbody>
</table>
Installation Prerequisites: Port Requirements

User

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>SSH/TCP</td>
<td>User</td>
<td>Each ESXi Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Each SCVM Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HX Data Platform Installer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td>UCSM management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vCenter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SSO Server</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>HTTP/TCP</td>
<td>User</td>
<td>Each SCVM Node</td>
<td>Management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td>Cluster management</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HX Data Platform Installer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vCenter</td>
<td></td>
</tr>
<tr>
<td>443</td>
<td>HTTPS/TCP</td>
<td>User</td>
<td>Each SCVM Node</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CIP-M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UCSM</td>
<td>UCSM management addresses</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HX Data Platform Installer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>vCenter</td>
<td></td>
</tr>
<tr>
<td>7444</td>
<td>HTTPS (SSO)/TCP</td>
<td>User</td>
<td>vCenter</td>
<td>SSO Server</td>
</tr>
<tr>
<td>9443</td>
<td>HTTPS (Plug-in)/TCP</td>
<td>User</td>
<td>vCenter</td>
<td></td>
</tr>
</tbody>
</table>
SSO Server

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>7444</td>
<td>HTTPS (SSO)/TCP</td>
<td>SSO Server</td>
<td>Each ESXi Node, Each SCVM Node, CIP-M</td>
<td>Bidirectional</td>
</tr>
</tbody>
</table>

Stretch Witness

Required only when deploying HyperFlex Stretched Cluster.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>2181</td>
<td>Zookeeper/TCP</td>
<td>Witness</td>
<td>Each CVM Node</td>
<td>Bidirectional, management addresses</td>
</tr>
<tr>
<td>2888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3888</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8180</td>
<td>Exhibitor (Zookeeper lifecycle)/TCP</td>
<td>Witness</td>
<td>Each CVM Node</td>
<td>Bidirectional, management addresses</td>
</tr>
<tr>
<td>80</td>
<td>HTTP/TCP</td>
<td>Witness</td>
<td>Each CVM Node</td>
<td>Potential future requirement</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS/TCP</td>
<td>Witness</td>
<td>Each CVM Node</td>
<td>Potential future requirement</td>
</tr>
</tbody>
</table>

Replication

Required only when configuring native HX asynchronous cluster to cluster replication.

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>9338</td>
<td>Data Services Manager Peer/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>3049</td>
<td>Replication for CVM/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>4049</td>
<td>Cluster Map/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>Port Number</td>
<td>Service/Protocol</td>
<td>Source</td>
<td>Port Destinations</td>
<td>Essential Information</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>--------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>4059</td>
<td>NR NFS/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>9098</td>
<td>Replication Service</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>8889</td>
<td>NR Master for Coordination/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>9350</td>
<td>Hypervisor Service/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
</tbody>
</table>

SED Cluster

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>HTTPS</td>
<td>Each SCVM Management IP (including cluster management IP)</td>
<td>UCSM (Fabric A, Fabric B, VIP)</td>
<td>Policy Configuration</td>
</tr>
<tr>
<td>5696</td>
<td>TLS</td>
<td>CIMC from each node</td>
<td>KVM Server</td>
<td>Key Exchange</td>
</tr>
</tbody>
</table>

UCSM

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>443</td>
<td>Encryption etc./TCP</td>
<td>Each CVM Node</td>
<td>CIMC OOB</td>
<td>Bidirectional for each UCS node</td>
</tr>
<tr>
<td>81</td>
<td>KVM/HTTP</td>
<td>User</td>
<td>UCSM</td>
<td>OOB KVM</td>
</tr>
<tr>
<td>743</td>
<td>KVM/HTTP</td>
<td>User</td>
<td>UCSM</td>
<td>OOB KVM encrypted</td>
</tr>
</tbody>
</table>
Miscellaneous

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service/Protocol</th>
<th>Source</th>
<th>Port Destinations</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>9350</td>
<td>Hypervisor Service/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional, include cluster management IP addresses</td>
</tr>
<tr>
<td>9097</td>
<td>CIP-M Failover/TCP</td>
<td>Each CVM Node</td>
<td>Each CVM Node</td>
<td>Bidirectional for each CVM to other CVMs</td>
</tr>
<tr>
<td>111</td>
<td>RPC Bind/TCP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>CVM outbound to Installer</td>
</tr>
<tr>
<td>8002</td>
<td>Installer/TCP</td>
<td>Each SCVM node</td>
<td>Installer</td>
<td>Service Location Protocol</td>
</tr>
<tr>
<td>8080</td>
<td>Apache Tomcat/TCP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>stDeploy makes connection, any request with uri /stdeploy</td>
</tr>
<tr>
<td>8082</td>
<td>Auth Service/TCP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>Any request with uri /auth/</td>
</tr>
<tr>
<td>9335</td>
<td>hxRoboControl/TCP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>Robo deployments</td>
</tr>
<tr>
<td>443</td>
<td>HTTPS/TCP</td>
<td>Each CVM Mgmt IP including CIP-M</td>
<td>UCSM A/B and VIP</td>
<td>Policy Configuration</td>
</tr>
<tr>
<td>5696</td>
<td>TLS/TCP</td>
<td>CIMC from each node</td>
<td>KMS Server</td>
<td>Key Exchange</td>
</tr>
<tr>
<td>8125</td>
<td>UDP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>Graphite</td>
</tr>
<tr>
<td>427</td>
<td>UDP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>Service Location Protocol</td>
</tr>
<tr>
<td>32768 to 65535</td>
<td>UDP</td>
<td>Each SCVM node</td>
<td>Each SCVM node</td>
<td>SCVM outbound communication</td>
</tr>
</tbody>
</table>

Tip
If you do not have standard configurations and need different port settings, refer to Table C-5 Port Literal Values for customizing your environment.
HyperFlex External Connections

<table>
<thead>
<tr>
<th>External Connection</th>
<th>Description</th>
<th>IP Address/ FQDN/ Ports/Version</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intersight Device Connector</td>
<td>Supported HX systems are connected to Cisco Intersight through a device connector that is embedded in the management controller of each system.</td>
<td>HTTPS Port Number: 443 1.0.5-2084 or later (Auto-upgraded by Cisco Intersight)</td>
<td>All device connectors must properly resolve svc.ucs-connect.com and allow outbound-initiated HTTPS connections on port 443. The current HX Installer supports the use of an HTTP proxy. The IP addresses of ESXi management must be reachable from Cisco UCS Manager over all the ports that are listed as being needed from installer to ESXi management, to ensure deployment of ESXi management from Cisco Intersight.</td>
</tr>
<tr>
<td>Auto Support</td>
<td>Auto Support (ASUP) is the alert notification service provided through HX Data Platform.</td>
<td>SMTP Port Number: 25</td>
<td>Enabling Auto Support is strongly recommended because it provides historical hardware counters that are valuable in diagnosing future hardware issues, such as a drive failure for a node.</td>
</tr>
<tr>
<td>External Connection</td>
<td>Description</td>
<td>IP Address/ FQDN/ Ports/Version</td>
<td>Essential Information</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Post Installation Script</td>
<td>To complete the post installation tasks, you can run a post installation script on the Installer VM. The script pings across all network interfaces (management, vMotion, and storage network) to ensure full fabric availability. The script also validates the correct tagging of VLANs and jumbo frame configurations on the northbound switch.</td>
<td>HTTP Port Number: 80</td>
<td>The post install script requires name resolution to http://cs.co/hx-scripts via port 80 (HTTP).</td>
</tr>
</tbody>
</table>

Fabric Interconnect Uplink Provisioning

Prior to setting up the HyperFlex cluster, plan the upstream bandwidth capacity for optimal network traffic management. This ensures that the flow is in steady state, even if there is a component failure or a partial network outage.

By default, the hx-vm-network vSwitch is configured as **active/active**. All other vSwitches are configured as **active/standby**.

Note

For clusters running Catalyst switches upstream to the FI's, set the best effort Quality of Service (QOS) MTU to 9216 (located in LAN > LAN Cloud > QoS System Class), otherwise failover will fail.
Set the default vSwitch NIC teaming policy and failover policy to **yes** to ensure that all management, vMotion, and storage traffic are locally forwarded to the fabric interconnects to keep the flow in steady state. When vNIC-a fails, ESXi computes the load balancing and all the virtual ports are repinned to vNIC-b. When vNIC-a comes back online, repinning does apply and virtual ports are rebalanced across vNIC-a and vNIC-b. This reduces the latency and bandwidth utilization upstream of the Cisco UCS fabric interconnects.
In case one or more server links fail, for instance, if Host 1 loses connectivity to Fabric A while Host 2 loses connectivity to Fabric B, the traffic must go through the upstream switches. Therefore, the uplink network bandwidth usage increases, and you must add more uplinks.
When you have uplinks from a fabric interconnect to two different upstream switches, you encounter a condition called **Disjoint Layer 2 (DJL2)** on the FI. This is known to happen on the FI on End Host Mode and if the DJL2 is not configured properly.

To deploy the DJL2 properly, refer to the *Cisco UCS 6200 Series Fabric Interconnects—Deploy Layer 2 Disjoint Networks Upstream in End Host Mode* white paper.

Network Settings

Note

All IP addresses must be IPv4. HyperFlex does not support IPv6 addresses.

Important

- Must use different subnets and VLANs for each network.
- Directly attach each host to a Cisco UCS fabric interconnect using a 10-Gbps cable.
- Do not use VLAN 1 which is the default VLAN as it can cause networking issues, especially if Disjoint Layer 2 configuration is used.
- Installer sets the VLANs as *non-native* by default. Ensure to configure the upstream switches to accommodate the non-native VLANs.

Each ESXi host needs the following networks.

- **Management traffic network**—From the vCenter, handles the hypervisor (ESXi server) management, and storage cluster management.
- **Data traffic network**—Handles the hypervisor and storage data traffic.
- **vMotion network**
- **VM network**

There are four vSwitches, each carrying a different network.

- **vswitch-hx-inband-mgmt**—Used for ESXi management and storage controller management.
- **vswitch-hx-storage-data**—Used for ESXi storage data and HX Data Platform replication.

 These two vSwitches are further divided in two port groups with assigned static IP addresses to handle traffic between the storage cluster and the ESXi host.
- **vswitch-hx-vmotion**—Used for VM and storage vMotion.

 This vSwitch, has one port group for management, defined through vSphere that connects to all the hosts in the vCenter cluster.
- **vswitch-hx-vm-network**—Used for VM data traffic.
You can add or remove VLANs on the corresponding vNIC templates in Cisco UCS Manager. See Managing VLANs in Cisco UCS Manager and Managing vNIC templates in Cisco UCS Manager for the detailed steps. To create port groups on the vSwitch, refer to Adding Virtual Port Groups to VMware Standard vSwitch.

1. The Cisco HX Data Platform Installer automatically creates the vSwitches.

2. The following services in vSphere must be enabled after the HyperFlex storage cluster is created.
 - DRS (Optional, if licensed)
 - vMotion
 - High Availability

VLAN and vSwitch Requirements

Provide at least three VLAN IDs. All VLANs must be configured on the fabric interconnects during the installation.

<table>
<thead>
<tr>
<th>VLAN Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| VLAN ESXi and HyperFlex Management Traffic | VLAN Name: hx-inband-mgmt
VLAN ID |
| VLAN HyperFlex Storage Traffic | VLAN Name: hx-storage-data
VLAN ID |
| VLAN VM vMotion | VLAN Name: hx-vmotion
VLAN ID |
| VLAN VM data | User defined |
| IP Blocks | KVM IP pool
One IP addresses per host. |
| Subnet mask | Ex: 255.255.0.0 |
| Default Gateway | Ex: 10.193.0.1 |

Note: Must use different subnets and VLANs for each of the following networks.

The VLAN tagging with External Switch VLAN Tagging (EST) and vSwitch settings are applied using UCS Manager profiles. The HX Data Platform Installer, simplifies this process.
• Do not use VLAN 1 which is the default VLAN as it can cause networking issues, especially if Disjoint Layer 2 configuration is used. Use a different VLAN other than VLAN 1.

 Installer sets the VLANs as non-native by default. Configure the upstream switches to accommodate the non-native VLANs.

• Inband Management is not supported on VLAN 2 or VLAN 3.

Cisco UCS Requirements

Provide the listed content for the UCS Fabric Interconnect and UCS Manager when prompted.

Cisco UCS Fabric Interconnect Requirements

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uplink Switch Model</td>
<td>Provide the switch type and connection type (SFP + Twin Ax or Optic).</td>
</tr>
<tr>
<td>Fabric Interconnect Cluster IP address</td>
<td><IP address>.</td>
</tr>
<tr>
<td>FI-A IP Address</td>
<td><IP address>.</td>
</tr>
<tr>
<td>FI-B IP Address</td>
<td><IP address>.</td>
</tr>
<tr>
<td>MAC Address Pool</td>
<td>Check 00:00:00 MAC address pool.</td>
</tr>
<tr>
<td>IP Blocks</td>
<td>KVM IP pool. A minimum of 4 IP addresses.</td>
</tr>
<tr>
<td>Subnet mask</td>
<td>For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>For example, 10.193.0.1.</td>
</tr>
</tbody>
</table>

Cisco UCS Manager Requirements

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS Manager Host Name</td>
<td>Hostname or IP address.</td>
</tr>
<tr>
<td>User Name</td>
<td><admin username></td>
</tr>
<tr>
<td>Password</td>
<td><admin username></td>
</tr>
</tbody>
</table>

Hypervisor Requirements

Enter the IP address from the range of addresses that are available to the ESXi servers on the storage management network or storage data network through vCenter. Provide static IP addresses for all network addresses.
Storage Cluster Requirements

Storage cluster is a component of the Cisco HX Data Platform which reduces storage complexity by providing a single datastore that is easily provisioned in the vSphere Web Client. Data is fully distributed across disks in all the servers that are in the storage cluster, to leverage controller resources and provide high availability.

A storage cluster is independent of the associated vCenter cluster. You can create a storage cluster using ESXi hosts that are in the vCenter cluster.

To define the storage cluster, provide the following parameters.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Enter a name for the storage cluster.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Management IP Address</td>
<td>This provides the storage management network, access on each ESXi host.</td>
</tr>
<tr>
<td></td>
<td>• The IP address must be on the same subnet as the Management IP addresses for the nodes.</td>
</tr>
<tr>
<td></td>
<td>• Do not allow cluster management IPs to share the last octet with another cluster on the same subnet.</td>
</tr>
<tr>
<td></td>
<td>• These IP addresses are in addition to the four IP addresses we assign to each node in the Hypervisor section.</td>
</tr>
<tr>
<td>Storage Cluster Data IP Address</td>
<td>This provides the storage data network and storage controller VM network, access on each ESXi host.</td>
</tr>
<tr>
<td></td>
<td>The same IP address must be applied to all ESXi nodes in the cluster.</td>
</tr>
<tr>
<td>Data Replication Factor</td>
<td>Data Replication Factor defines the number of redundant replicas of your data across the storage cluster.</td>
</tr>
<tr>
<td></td>
<td>This is set during HX Data Platform installation and cannot be changed.</td>
</tr>
<tr>
<td></td>
<td>Choose a Data Replication Factor. The choices are:</td>
</tr>
<tr>
<td></td>
<td>• Data Replication Factor 3—A replication factor of three is highly recommended for all environments except HyperFlex Edge. A replication</td>
</tr>
<tr>
<td></td>
<td>factor of two has a lower level of availability and resiliency. The risk of outage due to component or node failures should be</td>
</tr>
<tr>
<td></td>
<td>mitigated by having active and regular backups.</td>
</tr>
<tr>
<td></td>
<td>Attention This is the recommended option.</td>
</tr>
<tr>
<td></td>
<td>• Data Replication Factor 2—Keep two redundant replicas of the data. This consumes less storage resources, but reduces your data</td>
</tr>
<tr>
<td></td>
<td>protection in the event of simultaneous node or disk failure. If nodes or disks in the storage cluster fail, the cluster's ability to</td>
</tr>
<tr>
<td></td>
<td>function is affected. If more than one node fails or one node and disk(s) on a different node fail, it is called a simultaneous</td>
</tr>
<tr>
<td></td>
<td>failure.</td>
</tr>
</tbody>
</table>
vCenter Configuration Requirements

Provide administrator level account and password for vCenter. Ensure that you have an existing vCenter server. Ensure that the following vSphere services are operational.

- Enable Dynamic Resource Scheduler (DRS) [Optional, enable if licensed].
- Enable vMotion.
- Enable High availability (HA) [Required to define failover capacity and for expanding the datastore heartbeat].
- User VMs must be version 9 or later [Required to use HX Data Platform, Native Snapshots, and ReadyClones].

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server</td>
<td>Enter your current vCenter server web address. For example, http://<IP address>.</td>
</tr>
<tr>
<td>User Name</td>
<td>Enter <admin username>.</td>
</tr>
<tr>
<td>Password</td>
<td>Enter <admin password>.</td>
</tr>
<tr>
<td>Datacenter Name</td>
<td>Enter the required name for the vCenter datacenter.</td>
</tr>
<tr>
<td>Note</td>
<td>An existing datacenter object can be used. If the datacenter doesn’t exist in vCenter, it will be created.</td>
</tr>
<tr>
<td>Cluster Name</td>
<td>Enter the required name for the vCenter cluster. The cluster must contain a minimum of three ESXi servers.</td>
</tr>
</tbody>
</table>

System Services Requirements

Before installing Cisco HX Data Platform, ensure that the following network connections and services are operational.

- DNS server

Caution

DNS servers should reside outside of the HX storage cluster. Nested DNS servers can cause a cluster to not start after entire cluster is shutdown, such as during DC power loss.

- NTP server
NTP servers should reside outside of the HX storage cluster. Nested NTP servers can cause a cluster to not start after entire cluster is shutdown, such as during DC power loss.

Caution

- Before configuring the storage cluster, manually verify that the NTP server is working and providing a reliable source for the time.
- Use the same NTP server for all nodes (both converged and compute) and all storage controller VMs.
- The NTP server must be stable, continuous (for the lifetime of the cluster), and reachable through a static IP address.
- If you are using Active Directory as an NTP server, please make sure that the NTP server is setup according to Microsoft best practices. For more information, see Windows Time Service Tools and Settings. Please note that if the NTP server is not set correctly, time sync may not work, and you may need to fix the time sync on the client-side. For more information, see Synchronizing ESXi/ESX time with a Microsoft Domain Controller.

Note

- To provide more than one DNS servers address, separate the address with a comma. Check carefully to ensure that DNS server addresses are entered correctly.

DNS Server(s)

<IP address>

DNS server address is required if you are using hostnames while installing the HyperFlex Data Platform.

Note

- If you do not have a DNS server, do not enter a hostname under System Services in the Cluster Configuration page of the HX Data Platform Installer. Use only IP addresses.

Time Zone

Essential Information

NTP Server(s)
(A reliable NTP server is required)

<IP address>
NTP server is used for clock synchronization between:
- Storage controller VM
- ESXi hosts
- vCenter server

Important Static IP address for an NTP server is required to ensure clock synchronization between the storage controller VM, ESXi hosts, and vCenter server.

During installation, this information is propagated to all the storage controller VMs and corresponding hosts. The servers are automatically synchronized on storage cluster startup.

Time Zone
<your time zone>
Select a time zone for the storage controller VMs. It is used to determine when to take scheduled snapshots.

Note All the VMs must be in the same time zone.

CPU Resource Reservation for Controller VMs

As the storage controller VMs provide critical functionality for the HyperFlex Data Platform, the HX Data Platform Installer configures CPU resource reservations for the controller VMs. This reservation guarantees that the controller VMs have the minimum required CPU resources. This is useful in situations where the physical CPU resources of the ESXi hypervisor host are heavily consumed by the guest VMs. The following table details the CPU resource reservation for storage controller VMs.

<table>
<thead>
<tr>
<th>Number of VM CPU</th>
<th>Shares</th>
<th>Reservation</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Low</td>
<td>10,800 MHz</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

Memory Resource Reservation for Controller Virtual Machines

The following table details the memory resource reservations for the storage controller VMs.

<table>
<thead>
<tr>
<th>Server Model</th>
<th>Amount of Guest Memory</th>
<th>Reserve All Guest Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>HX220c-M4/M5s</td>
<td>48 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>HXAF220C-M4/M5s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HX240c-M4/M5SX</td>
<td>72 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>HXAF240C-M4/M5SX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Model</td>
<td>Amount of Guest Memory</td>
<td>Reserve All Guest Memory</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>HX240C-M5L</td>
<td>78 GB</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- B200 compute-only blades have a lightweight storage controller VM, it is configured with only 1 vCPU and 512 MB of memory reservation.
- C240 Rack Server delivers outstanding levels of expandability and performance in a two rack-unit (2RU) form-factor.
- C220 Server delivers expandability in a one rack-unit (1RU) form-factor.

Auto Support Requirements

Auto Support (ASUP) is the alert notification service provided through HX Data Platform. If you enable Auto Support, notifications are sent from HX Data Platform to designated email addresses or email aliases that you want to receive the notifications.

To configure Auto Support, you need the following information:

<table>
<thead>
<tr>
<th>Auto Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Auto Support check box Check this box during HX storage cluster creation.</td>
</tr>
<tr>
<td>Mail Server</td>
</tr>
<tr>
<td><IP address></td>
</tr>
<tr>
<td>SMTP mail server must be configured in your network to enable Auto Support. Used for handling email sent from all the storage controller VM IP addresses.</td>
</tr>
<tr>
<td>Note Only unauthenticated SMTP is supported for ASUP.</td>
</tr>
<tr>
<td>Mail Sender</td>
</tr>
<tr>
<td><username@domain.com></td>
</tr>
<tr>
<td>Email address to use for sending Auto Support notifications.</td>
</tr>
<tr>
<td>ASUP Recipient</td>
</tr>
<tr>
<td>List of email addresses or email aliases to receive Auto Support notifications.</td>
</tr>
</tbody>
</table>

Note Enabling Auto Support is strongly recommended because it provides historical hardware counters that are valuable in diagnosing future hardware issues, such as drive failure for a node.

Single Sign On Requirements

The SSO URL is provided by vCenter. If it is not directly reachable from the controller VM, then configure the location explicitly using **Installer Advanced Settings**.
Single Sign On (SSO)

| SSO Server URL | SSO URL can be found in vCenter at vCenter Server > Manage > Advanced Settings, key `config.vpxd.sso.sts.uri` |

Single Sign On Requirements
Install Cisco HyperFlex Systems Servers

This chapter describes how to install the physical components for setting up a HyperFlex cluster:

- Rack Cisco HyperFlex Nodes, on page 41
- Setting Up the Fabric Interconnects, on page 42
- Connecting HX-Series Servers to Cisco UCS Fabric Interconnects, on page 50
- Overview, on page 50

Rack Cisco HyperFlex Nodes

For details on the HyperFlex cluster and node limits, see Cisco HX Data Platform Storage Cluster Specifications in the latest version of the Release Notes for Cisco HX Data Platform.

For UCS C-Series integration guidelines, see the Cisco UCS C-Series Server Integration with Cisco UCS Manager Configuration Guide for your release.

For details on the installation of Cisco HyperFlex nodes, refer to respective links from the following table:

<table>
<thead>
<tr>
<th>Type of Node To Be Installed</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converged Nodes</td>
<td></td>
</tr>
<tr>
<td>HyperFlex HX220c M4/M5 Nodes</td>
<td>Cisco HyperFlex HX220c M4/M5 Node Installation Guides</td>
</tr>
<tr>
<td>HyperFlex HX240c M4/M5 Nodes</td>
<td>Cisco HyperFlex HX240c M4/M5 Node Installation Guides</td>
</tr>
<tr>
<td>Compute-only Nodes</td>
<td></td>
</tr>
<tr>
<td>Cisco UCS B200 M3/M4/M5 Nodes</td>
<td>Cisco UCS B200 M3/M4/M5 Blade Server Installation and Service Note</td>
</tr>
</tbody>
</table>
| Cisco UCS B260 M4 Nodes, B460 M4 Nodes | Cisco UCS B260 M4 and B460 M4 Blade Server Installation and Service Note for Servers with E7 v4 CPUs
 Cisco UCS B260 M4 and B460 M4 Blade Server Installation and Service Note for Servers with E7 v3 and E7 v2 CPUs |
Setting Up the Fabric Interconnects

Configure a redundant pair of fabric interconnects for high availability as follows:

1. Connect the two fabric interconnects directly using Ethernet cables between the L1 and L2 high availability ports.

2. Connect Port L1 on fabric interconnect A to port L1 on fabric interconnect B, and Port L2 on fabric interconnect A to port L2 on fabric interconnect B.

This allows both the fabric interconnects to continuously monitor the status of each other.

Verify and obtain the following information before connecting the fabric interconnects.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
</table>
| Verify the physical connections of the fabric interconnects. | • Console port for the first fabric interconnect must be physically connected to a computer or console server.
• Management Ethernet port (mgmt0) must be connected to an external hub, switch, or router.
• L1 ports on both the fabric interconnects must be directly connected to each other.
• L2 ports on both the fabric interconnects must be directly connected to each other. |
Configure the Primary Fabric Interconnect Using Cisco UCS Manager GUI

Specify the following three IP addresses in the same subnet before you begin the configuration.

- Management Port IP address for the primary fabric interconnect, FI A.
- Management Port IP address for the secondary fabric interconnect, FI B.
- IP address of the HyperFlex Cluster.

Configure the Primary Fabric Interconnect using the Cisco UCS Manager GUI as follows:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Connect to the console port. See Cisco 6200 Series Fabric Interconnect Hardware Installation guide for more details.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Power on the fabric interconnect. You will see the Power On self-test message as the fabric interconnect boots.</td>
</tr>
<tr>
<td>Step 3</td>
<td>At the installation method prompt, enter gui.</td>
</tr>
</tbody>
</table>
| Step 4 | If the system cannot access the DHCP server, you will be prompted to enter the following information:
 - IPv4 address for the management port on the fabric interconnect.
 - IPv4 subnet mask for the management port on the fabric interconnect. |
• IPv4 for the default gateway assigned to the fabric interconnect.

Important All IP addresses must be IPv4. HyperFlex does not support IPv6 addresses.

Step 5 Copy the web link from the prompt into a web browser and navigate to the Cisco UCS Manager launch page.

Step 6 Select **Express Setup**.

Step 7 Select **Initial Setup** and click **Submit**.

Step 8 In the **Cluster and Fabric Setup** area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Cluster option</td>
<td>Select the enable cluster option.</td>
</tr>
<tr>
<td>Fabric Setup option</td>
<td>Select Fabric A.</td>
</tr>
<tr>
<td>Cluster IP Address field</td>
<td>Enter the IPv4 address that Cisco UCS Manager will use.</td>
</tr>
</tbody>
</table>

Step 9 In the **System Setup** area, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Name field</td>
<td>The name assigned to the Cisco UCS domain.</td>
</tr>
<tr>
<td>Admin Password field</td>
<td>The password used for the admin account on the fabric interconnect.</td>
</tr>
<tr>
<td></td>
<td>Choose a strong password that meets the guidelines for Cisco UCS Manager passwords. This password cannot be blank.</td>
</tr>
<tr>
<td>Confirm Admin Password field</td>
<td>The password used for the admin account on the fabric interconnect.</td>
</tr>
<tr>
<td>Mgmt IP Address field</td>
<td>The static IP address for the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>Mgmt IP Netmask field</td>
<td>The IP subnet mask for the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>Default Gateway field</td>
<td>The IP address for the default gateway assigned to the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>DNS Server IP field</td>
<td>The IP address for the DNS server assigned to the management port on the fabric interconnect.</td>
</tr>
<tr>
<td>Domain name field</td>
<td>The name of the domain in which the fabric interconnect resides.</td>
</tr>
</tbody>
</table>

Step 10 Click **Submit**.

A page displays the results of your setup operations.
Configuring the Secondary Fabric Interconnect Using Cisco UCS Manager GUI

Make sure that the console port of the secondary fabric interconnect is physically connected to a computer or a console server. Ensure that you know the password for the admin account on the primary fabric interconnect that you configured earlier.

Procedure

Step 1
Connect to the console port. See Cisco 6200 Series Fabric Interconnect Hardware Installation guide for more details.

Step 2
Power on the fabric interconnect. You will see the Power On self-test message as the fabric interconnect boots.

Step 3
At the installation method prompt, enter gui.

Step 4
If the system cannot access the DHCP server, you will be prompted to enter the following information:

- IPv4 address for the management port on the fabric interconnect.
- IPv4 subnet mask for the management port on the fabric interconnect.
- IPv4 address for the default gateway assigned to the fabric interconnect.

Note Both the fabric interconnects must be assigned the same management interface address type during setup.

Step 5
Copy the web link from the prompt into a web browser and go to the Cisco UCS Manager GUI launch page.

Step 6
Copy the web link from the prompt into a web browser and navigate to the Cisco UCS Manager launch page.

Step 7
Select Express Setup.

Step 8
Select Initial Setup and click Submit.

The fabric interconnect should detect the configuration information for the first fabric interconnect.

Step 9
In the Cluster and Fabric Setup area, complete the following fields:

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Cluster option</td>
<td>Select the enable cluster option.</td>
</tr>
<tr>
<td>Fabric Setup option</td>
<td>Select Fabric B.</td>
</tr>
</tbody>
</table>

Step 10
In the System Setup area, enter the password for the Admin account into the Admin Password of Master field. The Manager Initial Setup Area is displayed.

Step 11
In the Manager Initial Setup area, the field that is displayed depends on whether you configured the first fabric interconnect with an IPv4 management address. Complete the field that is appropriate for your configuration as follows:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer FI is IPv4 Cluster enabled. Please provide</td>
<td>Enter an IPv4 address for the Mgmt0 interface on the local fabric</td>
</tr>
<tr>
<td>local FI Mgmt0 IPv4 address field</td>
<td>interconnect.</td>
</tr>
</tbody>
</table>
Step 12 Click Submit.
A page displays the results of your setup operations.

Configure the Primary Fabric Interconnect Using CLI

Procedure

Step 1 Connect to the console port.

Step 2 Power on the fabric interconnect.
You will see the power-on self-test messages as the fabric interconnect boots.

Step 3 When the unconfigured system boots, it prompts you for the setup method to be used. Enter **console** to continue the initial setup using the console CLI.

Step 4 Enter **setup** to continue as an initial system setup.

Step 5 Enter **y** to confirm that you want to continue the initial setup.

Step 6 Enter the password for the admin account.

Step 7 To confirm, re-enter the password for the admin account.

Step 8 Enter **yes** to continue the initial setup for a cluster configuration.

Step 9 Enter the fabric interconnect fabric (either **A** or **B**).

Step 10 Enter the system name.

Step 11 Enter the IPv4 address for the management port of the fabric interconnect.

You will be prompted to enter an IPv4 subnet mask.

Step 12 Enter the IPv4 subnet mask, then press **Enter**.

You are prompted for an IPv4 address for the default gateway, depending on the address type you entered for the management port of the fabric interconnect.

Step 13 Enter the IPv4 address of the default gateway.

Step 14 Enter **yes** if you want to specify the IP address for the DNS server, or **no** if you do not.

Step 15 (Optional) Enter the IPv4 address for the DNS server.
The address type must be the same as the address type of the management port of the fabric interconnect.

Step 16 Enter **yes** if you want to specify the default domain name, or **no** if you do not.

Step 17 (Optional) Enter the default domain name.

Step 18 Review the setup summary and enter **yes** to save and apply the settings, or enter **no** to go through the Setup wizard again to change some of the settings.

If you choose to go through the Setup wizard again, it provides the values you previously entered, and the values appear in brackets. To accept previously entered values, press **Enter**.
Example

The following example sets up the first fabric interconnect for a cluster configuration using the console and IPv4 management addresses:

```
Enter the installation method (console/gui)? console
Enter the setup mode (restore from backup or initial setup) [restore/setup]? setup
You have chosen to setup a new switch. Continue? (y/n): y
Enter the password for "admin": adminpassword958
Confirm the password for "admin": adminpassword958
Do you want to create a new cluster on this switch (select 'no' for standalone setup or if you want this switch to be added to an existing cluster)? (yes/no) [n]: yes
Enter the switch fabric (A/B): A
Enter the system name: foo
Mgmt0 IPv4 address: 192.168.10.10
Mgmt0 IPv4 netmask: 255.255.255.0
IPV4 address of the default gateway: 192.168.10.1
Virtual IPv4 address: 192.168.10.12
Configure the DNS Server IPv4 address? (yes/no) [n]: yes
DNS IPv4 address: 20.10.20.10
Configure the default domain name? (yes/no) [n]: yes
Default domain name: domainname.com
Join centralized management environment (UCS Central)? (yes/no) [n]: no
Following configurations will be applied:
  Switch Fabric=A
  System Name=foo
  Management IP Address=192.168.10.10
  Management IP Netmask=255.255.255.0
  Default Gateway=192.168.10.1
  Cluster Enabled=yes
  Virtual Ip Address=192.168.10.12
  DNS Server=20.10.20.10
  Domain Name=domainname.com
Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): yes
```

Configure the Subordinate Fabric Interconnect Using CLI

This procedure describes setting up the second fabric interconnect using the IPv4 address for the management port.

Note

When adding a new Fabric Interconnect to an existing High Availability cluster, for example, during a new install or when replacing a Fabric Interconnect, the new device will not be able to log into the cluster as long as the authentication method is set to remote. To successfully add a new Fabric Interconnect to the cluster, the authentication method must be temporarily set to local and the local admin credentials of the primary Fabric Interconnect must be used.

Procedure

Step 1
Connect to the console port.

Step 2
Power up the fabric interconnect.

You will see the power-on self-test messages as the fabric interconnect boots.
Step 3 When the unconfigured system boots, it prompts you for the setup method to be used. Enter `console` to continue the initial setup using the console CLI.

Note The fabric interconnect should detect the peer fabric interconnect in the cluster. If it does not, check the physical connections between the L1 and L2 ports, and verify that the peer fabric interconnect has been enabled for a cluster configuration.

Step 4 Enter `y` to add the subordinate fabric interconnect to the cluster.

Step 5 Enter the admin password of the peer fabric interconnect.

Step 6 Enter the IP address for the management port on the subordinate fabric interconnect.

Step 7 Review the setup summary and enter `yes` to save and apply the settings, or enter `no` to go through the Setup wizard again to change some of the settings.

If you choose to go through the Setup wizard again, it provides the values you previously entered, and the values appear in brackets. To accept previously entered values, press `Enter`.

Example

The following example sets up the second fabric interconnect for a cluster configuration using the console and the IPv4 address of the peer:

```
Enter the installation method (console/gui)? console
Installer has detected the presence of a peer Fabric interconnect. This Fabric interconnect will be added to the cluster. Continue (y/n)? y
Enter the admin password of the peer Fabric Interconnect: adminpassword%958
Peer Fabric interconnect Mgmt0 IPv4 Address: 192.168.10.11
Apply and save the configuration (select 'no' if you want to re-enter)? (yes/no): yes
```

Verify Console Setup

You can verify that both fabric interconnect configurations are complete by logging in to the fabric interconnect through SSH.

Use the following commands to verify the cluster status using Cisco UCS Manager CLI.
Table 3:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
<th>Sample Output</th>
</tr>
</thead>
</table>
| show cluster state | Displays the operational state and leadership role for both fabric interconnects in a high availability cluster. | The following example displays that both fabric interconnects are in the Up state, HA is in the Ready state, fabric interconnect A has the primary role, and fabric interconnect B has the subordinate role.
UCS-A# show cluster state
Cluster Id: 0xa432f72a371511de-0xb97c000de2bada4
A: UP, PRIMARY
B: UP, SUBORDINATE HA READY |
| show cluster extended-state | Displays extended details about the cluster state and typically used when troubleshooting issues.
UCSC# show cluster extended-state
0xa66b4c20-8692-11df-bd63-1b72ef3ac801, state: active
Device 1010, serial: 00e3e6d0-8693-11df-9e10-0f4428357744, state: active
Device 1012, serial: 1d892c8b-8693-11df-9133-89fa154e3fa1, state: active | The following example shows how to view the extended state of a cluster.
UCSC# show cluster extended-state
0xa66b4c20-8692-11df-bd63-1b72ef3ac801, state: active
Device 1007, serial: a66b4c20-8692-11df-bd63-1b72ef3ac801, state: active
Device 1010, serial: 00e3e6d0-8693-11df-9e10-0f4428357744, state: active
Device 1012, serial: 1d892c8b-8693-11df-9133-89fa154e3fa1, state: active |
Connecting HX-Series Servers to Cisco UCS Fabric Interconnects

Overview

The Cisco HX220c and HX240c Servers connect directly to the fabric interconnects. The direct connection enables Cisco UCS Manager to manage the HX-Series servers using a single cable for both management traffic and data traffic.

After connecting the server with the fabric interconnect, when the server is discovered, update the C-Series software bundle available for Cisco UCS Manager using the UCS Manager configuration form.

When you use direct connect mode, all Cisco UCS managed adapters must be connected to the server ports on the fabric interconnects. Make sure that the HX servers have the recommended firmware as listed in the Requirements Chapter. If not, use Cisco UCS Manager to update the firmware.

Note

Note the following UCS configuration limits:

- Cisco HX-specific UCS configuration limit: HX M4 servers are incompatible with 1227 VIC and 6332-16UP fabric interconnects.

- General Cisco UCS configuration limits: see the Cisco UCS 6200, 6332, and 6324 Series Configuration Limits for Cisco UCS Manager.

Connecting Converged Nodes to the Fabric Interconnect

This topic describes how to physically add converged nodes for creating a HX cluster or adding to an existing HX cluster.

Before you begin

Important

- Set the CIMC server to factory default settings before integrating with Cisco UCS Manager.

- Do not connect dedicated CIMC ports to the network for integrated nodes. Doing so causes the server to not be discovered in Cisco UCS Manager. If the server is not discovered, reset CIMC to factory settings for each server.

- Before you connect the CIMC server, make sure a Cisco VIC 1227 is installed in the PCIe slot 2 of an HXc240, or Riser 1 slot 1 for an HXc220 for integration with Cisco UCS Manager. If the card is not installed in the correct slot, you cannot enable direct connect management for the server.
Complete the physical cabling of servers to the fabric interconnects, and configure the ports as server ports.

Procedure

Step 1
Install the HX server in the rack. See Rack Cisco HyperFlex Nodes, on page 41 for more details.

Step 2
Configure the server ports on the fabric interconnect.

a) Connect a 10-Gb SFP+ cable from one port on the server to fabric interconnect A. You can use any port on fabric interconnect A, but the port must be enabled for server traffic.

Connect one cable from the VIC to the fabric interconnect for one card. Do not connect both ports to the same fabric interconnect.

b) Configure that port on FI-A as a server port. For the detailed steps, refer to the Configuring Port Modes for a 6248 Fabric Interconnect section of the Cisco UCS Manager Network Management Guide.

c) Connect 10-Gb SFP+ cable from the other port on the server to FI B. You can use any port on FI B, but the port must be enabled for server traffic.

Note
Do not mix SFP+ types on an uplink. If you do, you will get Discovery Failed errors.

d) Configure that port on FI-B as a server port. For the detailed steps, refer to the Configuring Port Modes for a 6248 Fabric Interconnect section of the Cisco UCS Manager Network Management Guide.

Step 3
Attach a power cord to each power supply in your node, and to a grounded AC power outlet. During initial boot up, wait for approximately two minutes to let the node boot in standby power.

Note

a. When powered up, the server is discovered by the fabric interconnects. You can monitor node discovery in UCS Manager.

b. Verify the node's power status by looking at the node Power Status LED on the front panel. A node is in the standby power mode when the LED is amber.

Step 4
Repeat steps one through four to connect the remaining HX-Series servers to the HyperFlex cluster.

Physical Connectivity Illustrations for Direct Connect Mode Cluster Setup

The following images show a sample of direct connect mode physical connectivity for C-Series Rack-Mount Server with Cisco UCS Domain, Cisco UCS Manager, release 3.1 or later. This image shows the cabling configuration for Cisco UCS Manager integration with a C-Series Rack-Mount Server. The paths shown in gold carry both management traffic and data traffic.
Figure 9: Direct Connect Cabling Configuration

Figure 10: Direct Connect Cabling Configuration with Cisco VIC 1455

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cisco UCS 6454 Fabric Interconnect or Cisco UCS 6200 Series or 6300 FI (Fabric A)</td>
</tr>
<tr>
<td>2</td>
<td>Cisco UCS 6454 Fabric Interconnect or Cisco UCS 6200 Series or 6300 FI (Fabric B)</td>
</tr>
<tr>
<td>3</td>
<td>C-Series Rack-Mount Server</td>
</tr>
<tr>
<td>4</td>
<td>Cisco UCS VIC in supported PCIe slot</td>
</tr>
</tbody>
</table>

XGb represents a 40 Gigabit Ethernet connection or a 10 Gigabit Ethernet connection. For the 10 Gigabit Ethernet, the following cables are used:

- 4x10 Breakout Small Form-Factor Pluggable (SFP) cables
- 4x10 Active Optical (OAC) cables
- 10G Small Form-Factor Pluggable (SFP) cable that uses the Qualified Security Assessor (QSA) module

Connecting Compute-Only Nodes to the Fabric Interconnect

This topic describes how to physically add compute-only nodes to an existing HyperFlex cluster.

Note

Connect compute-only nodes to a HyperFlex cluster after creating and configuring the HyperFlex storage cluster.

1. Ensure that the HyperFlex storage cluster is already created.
2. Connect the HX servers that will be compute nodes. For details on the installation of compute-only nodes, see Rack Cisco HyperFlex Nodes, on page 41.

3. Run the cluster expansion workflow using Cisco HX Data Platform. To add compute-only nodes, use the cluster expansion workflow. See Adding a Compute-Only Node to an Existing Cluster, on page 140 for the detailed steps.
CHAPTER 5

Configure Cisco HyperFlex Systems

This chapter describes how to configure the components of the Cisco HyperFlex Systems:
- Installation Workflow, on page 55
- Deploy HX Data Platform Installer OVA Using vSphere Web Client, on page 56
- Deploy the HX Data Platform Installer OVA with a Static IP Address, on page 58
- Configure Syslog, on page 59
- Configure and Deploy Your HyperFlex Cluster, on page 60
- Installation of HyperFlex Nodes with GPUs, on page 71
- HX Data Platform Installer Navigation Aid Buttons, on page 71
- Warnings and Error Messages, on page 72

Installation Workflow

The following installation workflow summarizes the steps involved in creating a Standard Cluster, using the HX Data Platform Installer.

1. Deploy the HX Data Platform Installer OVA using the vSphere Web Client. If your hypervisor wizard defaults to DHCP for assigning IP addresses to new VMs, deploy the HX Data Platform Installer OVA with a static IP address. See Deploy HX Data Platform Installer OVA Using vSphere Web Client, on page 56 or Deploy the HX Data Platform Installer OVA with a Static IP Address, on page 58 for more information.

2. Configure syslog to send all logging information to a centralized syslog repository. See Configure Syslog, on page 59 for more information.
3. Enter UCS Manager, vCenter, and Hypervisor credentials.

4. Configure server ports and associate HyperFlex servers. See Associate HyperFlex Servers, on page 61 for more information.

6. Configure the Hypervisor. See Configure Hypervisor, on page 65 for more information.

7. Configure the IP addresses. See Configure IP Addresses, on page 66 for more information.

8. Configure and deploy the Hyperflex cluster. See Configure Your HyperFlex Cluster, on page 67 for more information.

Deploy HX Data Platform Installer OVA Using vSphere Web Client

In addition to installing the HX Data Platform on an ESXi host, you may also deploy the HX Data Platform Installer on either VMware Workstation, VMware Fusion, or Virtual Box.

Note

- Connect to vCenter to deploy the OVA file and provide the IP address properties. Deploying directly from an ESXi host will not allow you to set the values correctly.

- Do not deploy the HX Data Platform Installer to an ESXi server that is going to be a node in the Cisco HX Storage Cluster.

Procedure

Step 1
Locate and download the HX Data Platform Installer OVA from Download Software. Download the HX Data Platform Installer to a node that is on the storage management network, which will be used for the HX Data Platform storage cluster.

Example: Cisco-HX-Data-Platform-Installer-v2.5.1d-26363.ova

Step 2
Deploy the HX Data Platform Installer using VMware hypervisor, to create a HX Data Platform Installer virtual machine.

Note Use a version of the virtualization platform that supports virtual hardware version 10.0 or greater.

vSphere is a system requirement. You can use either vSphere thick client, vSphere thin client, or vSphere Web Client. To deploy the HX Data Platform Installer, you can also use VMware Workstation, VMware Fusion, or VirtualBox.
a) Open a virtual machine hypervisor, such as vSphere, VirtualBox, Workstation, or Fusion.
b) Select the node where you want to deploy the HX Data Platform Installer.

Important Ensure that you provide user credentials while deploying the HX Installer OVA using vSphere Web Client.

- Using vSphere thick Client—Expand **Inventory list > Host > File > Deploy OVA**.
- Using vSphere Web Client—Expand **vCenter Inventory list > Hosts > Host > Deploy OVA**.

Step 3
Select where the HX Data Platform Installer is located. Accept the defaults, and select the appropriate network.

Step 4
Enter a static IP address for use by the HX Data Platform Installer VM.

Note
- Static IP Address is necessary even if DHCP is configured for the network. You need the static IP address to run the HX Data Platform Installer, to install the HX Data Platform, and to create the HX Data Platform storage cluster.
- If your hypervisor wizard defaults to DHCP for assigning IP addresses to new VMs, then complete the steps in **Deploy the HX Data Platform Installer OVA with a Static IP Address**, on page 58, to install the HX Data Platform Installer VM with a static IP address. DNS must be reachable from the Installer VM.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>The hostname for this VM. Leave blank to try to reverse lookup the IP address.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The default gateway address for this VM. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>DNS</td>
<td>The domain name servers for this VM (comma separated). Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>IP Address</td>
<td>The IP address for this interface. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>Netmask</td>
<td>The netmask or prefix for this interface. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>Root Password</td>
<td>The root user password. This field is a required field.</td>
</tr>
</tbody>
</table>

Step 5
Click **Next**. Verify if the options listed are correct and select **Power on after deployment**.

To power on the HX Data Platform Installer manually, navigate to the virtual machine list and power on the installer VM.

Note The preferred settings for the HX Data Platform Installer virtual machine is 3 vCPU and 4 GB of memory. Reducing these settings can result in 100% CPU usage and spikes for the host.
Step 6 Click **Finish**. Wait for the HX Data Platform Installer VM to be added to the vSphere infrastructure.

Step 7 Open the HX Data Platform Installer virtual machine console.

The initial console display lists the HX Data Platform Installer virtual machine IP address.

Data Platform Installer.

You can start the installation by visiting
the following URL:
http://192.168.10.210

Cisco-HX-Data-Platform-Installer login:

Step 8 Use the URL to log in to the HX Data Platform Installer.

Example:
http://192.168.10.210

Step 9 Accept the self-signed certificate.

Step 10 Log in using the username **root** and the password you provided as part of the OVA deployment.

Deploy the HX Data Platform Installer OVA with a Static IP Address

If your hypervisor wizard defaults to DHCP for assigning IP addresses to new VMs, deploy the HX Data Platform Installer using the following steps:

Procedure

Step 1 Install the VMware OVF Tool 4.1 or later on a node that is on the storage management network that will be used for the HX Data Platform storage cluster. See [OVF Tool Documentation](#) for more details.

Step 2 Locate and download HX Data Platform installer OVA from [Download Software](#) on the node where VMware OVF was installed.

Step 3 Deploy the downloaded HX Data Platform installer OVA, using the **ovftool** command. For example:

```bash
root@server:/tmp/test_ova# ovftool --noSSLVerify --diskMode=thin
--acceptAllEulas=true --powerOn --skipManifestCheck --X:injectOvfEnv
--datastore=qd-048-ssd1 --name=rfsi_static_test1 --network='VM Network'
--prop:hx.3gateway.Cisco_HX_Installer_Appliance=10.64.8.1
--prop:hx.4DNS.Cisco_HX_Installer_Appliance=10.64.1.8
--prop:hx.5domain.Cisco_HX_Installer_Appliance=cisco
--prop:hx.6NTP.Cisco_HX_Installer_Appliance=10.64.8.5
--prop:hx.11ip0.Cisco_HX_Installer_Appliance=10.64.8.36
--prop:hx.2netmask0.Cisco_HX_Installer_Appliance=255.255.248.0
--prop:hx.7root_password.Cisco_HX_Installer_Appliance=mypassword

/vi://root:password@esx_server
```

The command deploys the HX Data Platform installer, powers on the HX Data Platform installer VM, and configures the provided static IP address. A sample of processing response:

```
Opening OVA source:
/opt/ovf/rfsi_test/Cisco-HX-Data-Platform-Installer-v1.7.1-14786.ova
```

Opening VI target: vi://root@esx_server:443/
Deploying to VI: vi://root@esx_server:443/
Transfer Completed
Powering on VM: rfsi_static_test
Task Completed
Completed successfully

DNS must be reachable from the Installer VM. The required command options for the static IP address to be configured successfully are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>powerOn</td>
<td>To power on the HX Data Platform installer VM after it is deployed.</td>
</tr>
<tr>
<td>X:injectOvfEnv</td>
<td>To insert the static IP properties onto the HX Data Platform installer VM.</td>
</tr>
<tr>
<td>prop:hx.3gateway.Cisco_HX_Installer_Appliance=10.64.8.1</td>
<td>Specify the appropriate gateway IP address.</td>
</tr>
<tr>
<td>prop:hx.4DNS.Cisco_HX_Installer_Appliance=10.64.1.8</td>
<td>Specify the appropriate DNS IP address.</td>
</tr>
<tr>
<td>prop:hx.5domain.Cisco_HX_Installer_Appliance=cisco</td>
<td>Specify the appropriate domain.</td>
</tr>
<tr>
<td>prop:hx.6NTP.Cisco_HX_Installer_Appliance=10.64.8.5</td>
<td>Specify the appropriate NTP IP address.</td>
</tr>
<tr>
<td>prop:hx.1ip0.Cisco_HX_Installer_Appliance=10.64.8.36</td>
<td>Specify the appropriate installer static IP address.</td>
</tr>
<tr>
<td>prop:hx.2netmask0.Cisco_HX_Installer_Appliance=255.255.248.0</td>
<td>Specify the appropriate netmask address.</td>
</tr>
<tr>
<td>prop:hx?root_password.Cisco_HX_Installer_Appliance=mypassword</td>
<td>Specify the root user password.</td>
</tr>
<tr>
<td>/opt/ovf/rfsi_test/Cisco-HX-Data-Platform-Installer-v1.7.1-14786.ova</td>
<td>The source address of the HX Data Platform installer OVA.</td>
</tr>
<tr>
<td>vi://root:password@esx_server</td>
<td>The destination ESX server where the HX Data Platform installer VM is installed. Include the appropriate ESX server root login credentials.</td>
</tr>
</tbody>
</table>

Configure Syslog

It is best practice to send all logging information to a centralized syslog repository.

Attention

In general, configuring audit log export using syslog is recommended if long term retention of audit log is required. Specifically for HX220c nodes and compute-only nodes booting from SD card, configuring syslog is required for persistent logging. If you do not configure the syslog server, audit logs are overwritten because of the log rotation policy.
You cannot select an NFS datastore as a destination for the persistent scratch location on ESXi. If you select the HX datastore for the persistent scratch location, it will be removed after the ESXi host reboots.

For all M5 servers, M.2 boot SSD is automatically selected for use as scratch. This is configured out of the box on any new install.

For HX240M4 (non-SED), Intel SSD is used for persistent logs/scratch (same applies on 220M5/240M5, but on a different local SSD).

For HX220M4 and HX240M4 (SED), there is no location to store the scratch partition. So, the only option is to use syslog for persistent logging over the network.

Procedure

Step 1 Verify that the syslog server is up and running and TCP/UDP ports are open to receive logs from ESXi servers.

Step 2 SSH to the ESXi shell and execute the following commands.

a) `esxcli system syslog config set --loghost='udp://remote-syslog-server-ip'`

b) `esxcli system syslog reload`

c) `esxcli network firewall ruleset set -r syslog -e true`

d) `esxcli network firewall refresh`

Step 3 Repeat steps 1 and 2 for all ESXi hosts in the cluster.

Step 4 At the remote syslog server, verify if the logs are being received in the designated directory.

Configure and Deploy Your HyperFlex Cluster

Common Task Steps used In HyperFlex GUI

Procedure

Step 1 Log in to the HX Data Platform Installer with root user credentials. For first time log in, you will be prompted to change the default password set in the factory.

a) In a browser, enter the URL for the VM where HX Data Platform Installer was installed.

b) Enter the following login credentials.

- **Username:** root

- **Password:** Cisco123

c) Read the EULA, select the **I accept the terms and conditions** checkbox, and click **Login**.

Step 2 In the **Change factory default password** screen, complete the following fields, and click **Change Password** & **Login**.
Associate HyperFlex Servers

On the **Server Selection** page, the **Configuration** pane on the right displays a detailed list of the **Credentials** used. The **Server Selection** page displays a list of unassociated HX servers under the **Unassociated** tab, and the list of discovered servers under the **Associated** tab.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locator LED</td>
<td>Turn on to locate a server.</td>
</tr>
<tr>
<td>Server Name</td>
<td>Name assigned to the server.</td>
</tr>
<tr>
<td>Status</td>
<td>• Inaccessible—</td>
</tr>
<tr>
<td>Model</td>
<td>Displays the server model.</td>
</tr>
<tr>
<td>Serial</td>
<td>Displays the serial number of the server.</td>
</tr>
<tr>
<td>Assoc State</td>
<td>• Associated
• Unassociated</td>
</tr>
<tr>
<td>Service Profile</td>
<td>[Only for Associated Servers]
Service profile assigned to the server.</td>
</tr>
<tr>
<td>Actions</td>
<td>• Launch KVM Console—Choose this option to launch the KVM Console directly from the HX Data Platform Installer.
• Disassociate Server—Choose this option to remove a service profile from that server.</td>
</tr>
</tbody>
</table>

Before you begin

Ensure that you completed entering UCS Manager, vCenter, and Hypervisor credentials.

Procedure

Step 1 Click the **Configure Server Ports** button to discover any new HX nodes. In the **Configure Server Ports** dialog box, list all ports to be configured as server ports. Click **Configure**.

Note Typically, the server ports are configured in Cisco UCS Manager before you start the configuration.
Step 2 Select the servers under the Unassociated tab to include in the HyperFlex cluster.

If HX servers do not appear in this list, check Cisco UCS Manager and ensure that they have been discovered.

Note If there are no unassociated servers, the following error message is displayed:

No unassociated servers found. Login to UCS Manager and ensure server ports are enabled.

Step 3 Click Continue to configure UCS Manager. See Configure UCS Manager, on page 62.

Configure UCS Manager

On the UCSM Configuration page, you can configure VLAN, MAC Pool, 'hx-ext-mgmt' IP Pool for Out-of-Band CIMC, iSCSI Storage, and FC Storage.

Before you begin

Associate servers to the HyperFlex cluster. See Associate HyperFlex Servers, on page 61.

Procedure

Step 1 In the VLAN Configuration section, complete the following fields:

Note Use separate subnet and VLANs for each of the following networks.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN for Hypervisor and HyperFlex management</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>hx-inband-mgmt</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default—3091</td>
</tr>
<tr>
<td>VLAN for HyperFlex storage traffic</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>hx-storage-data</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default—3092</td>
</tr>
<tr>
<td>VLAN for VM vMotion</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>hx-vmotion</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default—3093</td>
</tr>
<tr>
<td>VLAN for VM Network</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>vm-network</td>
</tr>
<tr>
<td>VLAN ID(s)</td>
<td>Default—3094</td>
</tr>
<tr>
<td></td>
<td>A comma-separated list of guest VLANs,</td>
</tr>
</tbody>
</table>
Step 2 In the **MAC Pool** section, configure **MAC Pool Prefix** by adding in two more hex characters (0-F).

Note Select a prefix that is not used with any other MAC address pool across all UCS domains.

Example: 00:25:B5:A0:

Step 3 In the **'hx-ext-mgmt' IP Pool for Out-of-Band CIMC** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Blocks</td>
<td>The range of IP addresses designated for the HyperFlex nodes. The IP addresses can be a comma-separated list of values for the guest VLANs. For example, 10.193.211.124-127, 10.193.211.158-163.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Set the subnet to the appropriate level to limit and control IP addresses. For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Enter the IP address. For example, 10.193.0.1.</td>
</tr>
</tbody>
</table>

Step 4 If you want to add external storage, configure **iSCSI Storage** by completing the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable iSCSI Storage check box</td>
<td>Select to configure iSCSI storage.</td>
</tr>
<tr>
<td>VLAN A Name</td>
<td>Name of the VLAN associated with the iSCSI vNIC, on the primary Fabric Interconnect (FI-A).</td>
</tr>
<tr>
<td>VLAN A ID</td>
<td>ID of the VLAN associated with the iSCSI vNIC, on the primary Fabric Interconnect (FI-A).</td>
</tr>
<tr>
<td>VLAN B Name</td>
<td>Name of the VLAN associated with the iSCSI vNIC, on the subordinate Fabric Interconnect (FI-B).</td>
</tr>
<tr>
<td>VLAN B ID</td>
<td>ID of the VLAN associated with the iSCSI vNIC, on the subordinate Fabric Interconnect (FI-A).</td>
</tr>
</tbody>
</table>

Step 5 If you want to add external storage, configure **FC Storage** by completing the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable FC Storage check box</td>
<td>Select to enable FC Storage.</td>
</tr>
<tr>
<td>WWxN Pool</td>
<td>A WWN pool that contains both WW node names and WW port names. For each Fabric Interconnect, a WWxN pool is created for WWPN and WWNN.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
VSAN A Name | The name of the VSAN for the primary Fabric Interconnect (FI-A).
Default—hx-ext-storage-fc-a.

VSAN A ID | The unique identifier assigned to the network for the primary Fabric Interconnect (FI-A).
Caution Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.

VSAN B Name | The name of the VSAN for the subordinate Fabric Interconnect (FI-B).
Default—hx-ext-storage-fc-b.

VSAN B ID | The unique identifier assigned to the network for the subordinate Fabric Interconnect (FI-B).
Caution Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.

Step 6
In the **Advanced** section, do the following:

### Field	Description
UCS Server Firmware Version | Select the UCS firmware version to associate with the HX servers from the drop-down list. The UCS firmware version must match the UCSM version. See the latest Cisco HX Data Platform Release Notes for more details.
For example, 3.2(1d).

HyperFlex Cluster Name | Specify a user-defined name. The HyperFlex cluster name is applied to a group of HX Servers in a given cluster. The HyperFlex cluster name adds a label to service profiles for easier identification.

Org Name | Specify a unique *Org Name* to ensure isolation of the HyperFlex environment from the rest of the UCS domain.
Step 7
Click **Continue** to configure the Hypervisor. See *[Configure Hypervisor, on page 65]*.

Configure Hypervisor

Note

Review the VLAN, MAC pool, and IP address pool information on the **Hypervisor Configuration** page, in the **Configuration** pane. These VLAN IDs may be changed by your environment. By default, the HX Data Platform Installer sets the VLANs as non-native. You must configure the upstream switches to accommodate the non-native VLANs by appropriately applying a trunk configuration.

Attention

You can skip configuring Hypervisor in case of a reinstall, if ESXi networking has been completed.

Before you begin

Configure VLAN, MAC Pool, and 'hx-ext-mgmt' IP Pool for Out-of-Band CIMC. If you are adding external storage, configure iSCSI Storage and FC Storage. Select the UCS Server Firmware Version and assign a name for the HyperFlex cluster. See *[Configure UCS Manager, on page 62]*.

Procedure

Step 1

In the **Configure Common Hypervisor Settings** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnet Mask</td>
<td>Set the subnet mask to the appropriate level to limit and control IP addresses.</td>
</tr>
<tr>
<td></td>
<td>For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address of gateway.</td>
</tr>
<tr>
<td></td>
<td>For example, 10.193.0.1.</td>
</tr>
<tr>
<td>DNS Server(s)</td>
<td>IP address for the DNS Server.</td>
</tr>
</tbody>
</table>

Note

- If you do not have a DNS server, do not enter a hostname in any of the fields on the **Cluster Configuration** page of the HX Data Platform Installer. Use only static IP addresses and hostnames for all ESXi hosts.
- If you are providing more than one DNS server, check carefully to ensure that both DNS servers are correctly entered, separated by a comma.
Step 2 On the Hypervisor Settings section, select Make IP Addresses and Hostnames Sequential to make the IP addresses sequential. Complete the following fields:

Note You can rearrange the servers using drag and drop.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name assigned to the server.</td>
</tr>
<tr>
<td>Locator LED</td>
<td>Turn on to locate a server.</td>
</tr>
<tr>
<td>Serial</td>
<td>Displays the serial number of the server.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>Input static IP addresses and hostnames for all ESXi hosts.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Do not leave the hostname fields empty.</td>
</tr>
</tbody>
</table>

Step 3 Click Continue to configure IP Addresses. See Configure IP Addresses, on page 66.

Configure IP Addresses

Before you begin

Ensure that you completed configuring Hypervisor on the Hypervisor Configuration page. See Configure Hypervisor, on page 65.

Procedure

Step 1 On the IP Addresses page, select Make IP Addresses Sequential to make the IP Addresses sequential.

Step 2 When you enter IP addresses in the first row for Hypervisor, Storage Controller (Management) and Hypervisor, Storage Controller (Data) columns, the HX Data Platform Installer incrementally autofills the node information for the remaining nodes. The minimum number of nodes in the storage cluster is three. If you have more nodes, use the Add button to provide the address information.

Note Compute-only nodes can be added only after the storage cluster is created.

For each HX node, enter the Hypervisor, Storage Controller, Management, and Data IP addresses. For the IP addresses, specify if the network belongs to the Data Network or the Management Network.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor management network connection between the ESXi host and the storage cluster.</td>
</tr>
</tbody>
</table>
Management Storage Controller
Enter the static IP address that handles the storage controller VM management network connection between the storage controller VM and the storage cluster.

Data Hypervisor
Enter the static IP address that handles the Hypervisor data network connection between the ESXi host and the storage cluster.

Data Storage Controller
Enter the static IP address that handles the storage controller VM data network connection between the storage controller VM and the storage cluster.

Step 3
The IP address provided here are applied to one node in the storage cluster. In the event the node becomes unavailable the affected IP address is moved to another node in the storage cluster. All nodes must have a port configured to accept these IP addresses.

Provide the following IP addresses:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Cluster Data IP Address</td>
<td>Enter the management network IP address for the HX Data Platform storage cluster.</td>
</tr>
<tr>
<td>Data Cluster Data IP Address</td>
<td>Enter the IP address of data network for the HX Data Platform storage cluster.</td>
</tr>
<tr>
<td>Management Subnet Mask</td>
<td>Enter the subnet information for your VLAN and vSwitches. Provide the management network value. For example, 255.255.255.0.</td>
</tr>
<tr>
<td>Data Subnet Mask</td>
<td>Provide the network value for the data network. For example, 255.255.255.0.</td>
</tr>
<tr>
<td>Management Gateway</td>
<td>Provide the network value for your management network. For example, 10.193.0.1.</td>
</tr>
<tr>
<td>Data Gateway</td>
<td>Provide the network value for your data network. For example, 10.193.0.1.</td>
</tr>
</tbody>
</table>

Step 4
Click **Continue** to configure the HyperFlex cluster. See *Configure Your HyperFlex Cluster*, on page 67.

Configure Your HyperFlex Cluster

On the **Cluster Configuration** page, for the Cisco HX Storage Cluster complete the following fields to begin deploying the HyperFlex cluster.
Before you begin

Ensure that you completed configuring IP addresses on the IP Addresses page. See Configure IP Addresses, on page 66.

Procedure

Step 1

In the Cisco HX Cluster section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Name</td>
<td>Specify a name for the HX Data Platform storage cluster.</td>
</tr>
</tbody>
</table>
| Replication Factor | Specify the number of redundant replicas of your data across the storage cluster. Set the replication factor to either 2 or 3 redundant replicas.
 - For hybrid servers (servers that contain SSD and HDDs), the default value is 3.
 - For flash servers (servers that contain only SSDs), select either 2 or 3.
 - A replication factor of three is highly recommended for all environments except HyperFlex Edge. A replication factor of two has a lower level of availability and resiliency. The risk of outage due to component or node failures should be mitigated by having active and regular backups. |

Step 2

In the Controller VM section, create a new password for the Administrative User of the HyperFlex cluster. A default administrator username and password is applied to the controller VMs. The VMs are installed on all converged and compute-only nodes.

Important

- You cannot change the name of the controller VM or the controller VM’s datastore.
- Use the same password for all controller VMs. The use of different passwords is not supported.
- Provide a complex password that includes 1 uppercase character, 1 lowercase character, 1 digit, 1 special character, and a minimum of 10 characters in total.
- You can provide a user-defined password for the controller VMs and for the HX cluster to be created. For password character and format limitations, see the section on Guidelines for HX Data Platform Special Characters in the Cisco HX Data Platform Management Guide.

Step 3

In the vCenter Configuration section, complete the following fields:
Configure Cisco HyperFlex Systems

Configure Your HyperFlex Cluster

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Datacenter Name</td>
<td>Enter the vCenter datacenter name for the Cisco HyperFlex cluster.</td>
</tr>
<tr>
<td>vCenter Cluster Name</td>
<td>Enter the vCenter cluster name.</td>
</tr>
</tbody>
</table>

Step 4

In the **System Services** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Server(s)</td>
<td>A comma-separated list of IP addresses of each DNS server.</td>
</tr>
<tr>
<td>NTP Server(s)</td>
<td>A comma-separated list of IP addresses of each NTP server.</td>
</tr>
<tr>
<td>Note</td>
<td>All hosts must use the same NTP server, for clock synchronization between services running on the storage controller VMs and ESXi hosts.</td>
</tr>
<tr>
<td>DNS Domain Name</td>
<td>DNS FQDN or IP address.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>The local time zone for the controller VM, to determine when to take scheduled snapshots. Scheduled native snapshot actions are based on this setting.</td>
</tr>
</tbody>
</table>

Step 5

In the **Connected Services** section, select **Enable Connected Services** to enable Auto Support and Intersight Management.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Connected Services (Recommended)</td>
<td>Enables Auto Support and Intersight management. Log on to HX Connect to configure these services or selectively turn them On or Off.</td>
</tr>
<tr>
<td>Send service ticket notifications to</td>
<td>Email address where SR notifications are sent when triggered by Auto Support.</td>
</tr>
</tbody>
</table>

Step 6

In the **Advanced Configuration** section, do the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jumbo frames</td>
<td>Check to set the MTU size for the storage data network on the host vSwitches and vNICs, and each storage controller VM. The default value is 9000.</td>
</tr>
<tr>
<td>Enable Jumbo Frames</td>
<td>To set your MTU size to a value other than 9000, contact Cisco TAC.</td>
</tr>
</tbody>
</table>
Click **Start** to begin deploying the HyperFlex cluster. The **Progress** page displays the progress of various configuration tasks.
Caution Do not skip validation warnings.
See the Warnings section for more details.

What to do next

- Some validation errors require you to go back and re-enter a parameter (for example, an invalid ESXi password, incorrect NTP server, bad SSO server, or other incorrect input). Click Re-enter Values to return to the Cluster Configuration page and resolve the issue.

- When complete, the HyperFlex servers are installed and configured. The deployed cluster status shows as Online and Healthy.

- Click Launch HyperFlex Connect to create datastores and manage your cluster.

Installation of HyperFlex Nodes with GPUs

A specific BIOS policy change is required when installing HyperFlex nodes with GPUs. All supported GPU cards require enablement of BIOS setting that allows greater than 4 GB of Memory Mapped I/O (MMIO). For more information, see Requirement for All Supported GPUs.

Installing GPU After the HyperFlex Cluster Is Created

If the GPUs are installed after a cluster is created, then the service profile associated with the servers must be modified to have the BIOS policy setting enabled.

Enable the BIOS Setting as detailed in Cisco UCS Manager Controlled Server. Set Memory Mapped I/O above 4 GB config to Enabled as specified in step 3.

Installing GPU Before the HyperFlex Cluster Is Created

If the GPU card is installed before the cluster is created, then during cluster creation, select the Advanced workflow.

1. On the HX Data Platform Installer page, select I know what I’m doing, let me customize my workflow.

2. Check Run UCS Manager Configuration and click Continue.

 This creates the necessary service profiles for the HyperFlex nodes.

3. Enable the BIOS Setting as detailed in Cisco UCS Manager Controlled Server. Set Memory Mapped I/O above 4 GB config to Enabled as specified in step 3.

4. Go back to the Advanced workflow on the HX Data Platform Installer page to continue with Run ESX Configuration, Deploy HX Software, and Create HX Cluster to complete cluster creation.

HX Data Platform Installer Navigation Aid Buttons

- Export Configuration—Click the down arrow icon to download a JSON configuration file.
• **Workflow Info**—Hover over the information icon to view the current workflow. For HyperFlex cluster creation, the workflow info is *Create Workflow = Esx*.

• **Tech Support**—Click the question mark icon to view details related to the HyperFlex Data Platform software version. Click *Create New Bundle* to create a Tech Support Bundle for Cisco TAC.

• **Save Changes**—Click the circle icon to save changes made to the HyperFlex cluster configuration parameters.

• **Settings**—Click the gear icon to *Start Over* or *Log Out*.

Warnings and Error Messages

• UCSM configuration and Hypervisor configuration succeeded, but deployment or cluster creation fails—Click *Settings Icon > Start Over*. Select *I know what I’m doing, let me customize my workflow* to start the cluster configuration from the point where the failure occurred.

• IP Address screen shows as blank when you go back to re-enter values—Add the IP addresses manually. Click *Add Server* for the number of servers in your cluster and re-input all of the IP addresses on this page.

• Server reachability issues are seen observed when DNS is not properly configured on the Installer VM (SSO Error)—Edit the *SSO* field manually and either substitute IP address in place of FQDN or troubleshoot and remediate the DNS configuration.

• Ensure that a matching Cisco UCS Manager version to Cisco HyperFlex version is selected when creating another cluster—If a matching version is not selected, manually enter the correct version.

For the current compatibility matrix, refer to the *Software Versions* table in the latest *Release Notes for Cisco HX Data Platform*.
Configure Licensing with HyperFlex Data Platform

Smart Licensing and HyperFlex

Overview

Cisco Smart Software Licensing (Smart Licensing) is an intelligent software license management system that automates time-consuming, manual licensing tasks, such as procuring, deploying, and managing licenses across your entire organization. It provides visibility into your license ownership and consumption so you know what you own and how you are using it.

Smart Licensing introduces company-wide license pooling. Server-based licenses, or smart licenses, are not node-locked to devices so they can be used on any compatible device owned by your company. Using virtual accounts to organize licenses and product instances for your company into logical entities, for example, by business unit, product type, or IT group, makes it easy to transfer devices and licenses across virtual accounts.

The Smart Licensing feature integrates with Cisco HyperFlex and is automatically enabled as soon as you create an HX storage cluster. For your HX storage cluster to start reporting license consumption, you must register it with Cisco Smart Software Manager (SSM) through your Cisco Smart Account. A Smart Account is a cloud-based repository that provides full visibility and access control to Cisco software licenses and product instances across your company. Registration is valid for one year.

Registration enables HyperFlex to be identified to a Smart Account and allows license usage to be reported to Cisco Smart Software Manager or Smart Software Manager satellite. After registration, HyperFlex reports license usage to Cisco Smart Software Manager or Smart Software Manager satellite with the current license status. See the following License Status section for details.

Note

You will need to open ports 80 and 443 to tools.cisco.com for all HyperFlex management IPs in order for this to work.

After you register your HX storage cluster, communication messages are signed by a certificate used to identify HyperFlex to Cisco Smart Software Manager or Smart Software Manager satellite. HyperFlex automatically sends the following requests:
• A renew registration request every six months. In case the automatic registration renewal does not occur, use the `stcli license renew id` command to manually renew.

• A renew authorization request every 30 days is required by Smart Licensing. In case the automatic authorization renewal does not occur, use the `stcli license renew auth` command to manually renew. You need to manually renew Smart Licensing authorization only if connectivity is not available when renewal is attempted or your renewal time is outside of your connectivity window.

• A renew authorization request is also sent to Cisco Smart Software Manager or Smart Software Manager satellite whenever license consumption changes. This authorization is valid for 90 days. If HyperFlex doesn't contact Cisco Smart Software Manager or Smart Software Manager satellite for 90 days to renew its authorization, licenses consumed by HyperFlex are reclaimed and put back in the pool.

License Status

<table>
<thead>
<tr>
<th>Registration Status</th>
<th>Description</th>
<th>Verify Status</th>
<th>System Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation Mode</td>
<td>Smart Licensing is enabled but your HX storage cluster is not registered to Cisco Smart Software Manager or Smart Software Manager satellite and in a 90-day evaluation period.</td>
<td>To verify the status or check the remaining time left in the evaluation period, run <code>#stcli license show all</code>. Result: Mode = Eval & Remaining period(Number of Days:Hours:Minutes)</td>
<td>No impact on features or functionality.</td>
</tr>
<tr>
<td>Evaluation Expired</td>
<td>Smart Licensing is enabled but your HX storage cluster is not registered to Cisco Smart Software Manager or Smart Software Manager satellite. Your license is in the Initial Unidentified state and not considered out of compliance.</td>
<td>To verify the status, run <code>#stcli license show all</code>. Result: Mode = Evaluation Expired</td>
<td>No impact on features or functionality.</td>
</tr>
<tr>
<td>In Compliance</td>
<td>Smart Licensing is enabled and your HX storage cluster is registered to Cisco Smart Software Manager or Smart Software Manager satellite. You are consuming less licenses than you own.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Registration Status</td>
<td>Description</td>
<td>Verify Status</td>
<td>System Functionality</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| Out of Compliance | You are consuming *more* licenses than you own. **Important** Cisco will never interfere with or shutdown a customer network when a device is out of compliance.
* Out of Compliance at Initial Registration state — Smart Licensing is enabled and your HX storage cluster is registered to Cisco Smart Software Manager or Smart Software Manager Satellite but after initial registration you do not have enough licenses.
* Out of Compliance after Initial state or after being in-compliance for some period — Smart Licensing is enabled and your HX storage cluster is registered to Cisco Smart Software Manager or Smart Software Manager Satellite but you no longer have enough licenses. | To verify the status, run `#stcli license show all`.
Result:
Mode = Out of Compliance | No impact on features or functionality.
• Generates syslog message.
• Generates an *Out of Compliance* alarm in the HX Connect UI at cluster level.
Note The Out of Compliance state breaches the intellectual property EULA and the license must be purchased/renewed in order to continue receiving support. |
| Authorization Expired | Smart Licensing is enabled and your HX storage cluster is registered to Cisco Smart Software Manager or Smart Software Manager satellite but has not communicated to Cisco Smart Software Manager or Smart Software Manager satellite for more than 90 days. | To verify the status, run `#stcli license show status`.
Result:
Mode = Authorization Expired | No impact on features or functionality.
• Generates syslog message.
• No event or alarm on HX Connect.
• Cisco Smart Software Manager portal displays flags and notifications. |
Smart Licensing and Smart Software Manager Satellite

If you would prefer not to, or are not permitted to manage your installed base using an Internet connection, you can install Smart Software Manager Satellite on-premises to manage your licenses locally using a subset of Cisco Smart Software Manager. Download Smart Software Manager satellite.

To configure Smart Software Manager satellite for HyperFlex, from the HX Data Platform CLI, run the following command:

```
stcli services sch set --portal-url http://<satellite-host>/Transportgateway/services/DeviceRequestHandler --email <user-email-address>
```

After Smart Software Manager satellite registers with Cisco Smart Software Manager and is fully functional, it needs to synchronize with Cisco Smart Software Manager every 30 days. There are two options for syncing:

- **On-demand or scheduled synchronization** when your network is connected.
- **Manual synchronization** by downloading and then uploading the license file.

Note

Once the HX cluster is configured with a Smart Satellite server, the token can no longer be generated from the Smart Licensing registration from the Smart portal, as it needs to be generated from the Smart Satellite Server UI.
Renewing Smart Licensing Authorization

Before you begin

- Verify that your HX storage cluster is registered with Smart Licensing using the following command:

 `# stcli license show status`

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Log in to a controller VM.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Renew the Smart Licensing authorization using the following commands:</td>
</tr>
<tr>
<td></td>
<td><code># stcli license renew id</code></td>
</tr>
<tr>
<td></td>
<td><code># stcli license renew auth</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Confirm that the HX storage cluster is renewed and authorized.</td>
</tr>
<tr>
<td></td>
<td><code># stcli license show summary</code></td>
</tr>
</tbody>
</table>

Registering a Cluster with Smart Licensing

Smart Licensing automatically integrates with your HX storage cluster and is enabled by default. You need not install Smart Licensing. Your HX storage cluster is unregistered with Smart Licensing and in a 90-day EVAL MODE. Within the 90 days, you need to register your HX storage cluster to use full functionality.

Attention

Before registering the HyperFlex cluster with Smart Software Manager satellite, ensure that proxy is not configured. If proxy is configured, remove proxy before registering the cluster with Smart Software Manager satellite.

Before you begin

- Before you can begin using Smart Licensing, you need to have a Cisco Smart Account. You can create (or select) a Smart Account while placing an order, or create a Smart Account outside of placing an order and add new or existing licenses over time.

 To create a Smart Account, see [Cisco Software Central > Request a Smart Account](https://webapps.cisco.com/software/company/smartaccounts/home?route=module/accountcreation).

You can register the HX storage cluster with Cisco Smart Software Manager (SSM) in one of the following ways:

- [Recommended Registration Method](#) (Registering a Cluster with Smart Software Licensing through HX Connect)
- [Registering a Cluster with Smart Software Licensing through a Controller VM, on page 80](#)
Creating a Registration Token

Registration Token is used to register and consume a product for smart licensing. You must create a token to register the product and add the product instance to a specified virtual account.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Log in to the software manager depending on which version you are using.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>Cisco Smart Software Manager</td>
<td>Navigate to Cisco Software Central and log in to your Smart Account. In the License pane, click Smart Software Licensing. Click Inventory.</td>
</tr>
<tr>
<td>Smart Software Manager satellite</td>
<td>Navigate to https://<IP address of the satellite>:8443, and log in to the satellite using admin credentials.</td>
</tr>
</tbody>
</table>

Step 2	From the virtual account where you want to register your HX storage cluster, click General, and then click New Token.
Step 3	In the Create Registration Token dialog box, do the following, and then click Create Token:
	• Add a short Description for the token.
	• Enter the number of days you want the token to be active and available to use on other products. Maximum = 365 days
	• Check Allow export-controlled functionality on the products registered with this token.

| Step 4 | From the New ID Token row, click the Actions drop-down list, and click Copy. |

Registering a Cluster with Smart Licensing

- [Recommended Registration Method, on page 78](#)
- [Registering a Cluster with Smart Software Licensing through a Controller VM, on page 80](#)

Recommended Registration Method

Cisco recommends registration of cluster with Smart Software Licensing through HX Connect.

Before you begin

- Verify that your HX storage cluster is running HyperFlex Data Platform 4.0 (2a) or later.
- You must have a product instance registration token. If you do not have a token, you can create a token in Cisco Smart Software manager. For more information on how to create a product instance registration token, see [Creating a Registration Token, on page 78](#).
Procedure

Step 1 Log in to HX Connect.

Step 2 In the Dashboard page, click Cluster License not registered.

Alternatively, you can do the registration by clicking the Register Now link in the System Information page.

Step 3 In the Smart Software Licensing Product Registration dialog box, enter the registration token in the Product Instance Registration Token field.
For more information on how to create a product instance registration token, see Creating a Registration Token, on page 78.

Step 4 Click Register.

On successful registration, the license type and license status appears in the System Information page.

- **License Type**—Displays Evaluation, Edge, Standard, or Enterprise as the HX storage cluster license type.

- **License Status**—Displays one of the following as the HX storage cluster license status:
 - In compliance
 - License expires in <n> days. Cluster not registered - Register Now. (This status appears only for Evaluation type license)
 - License expired. Cluster not registered - Register Now. (This status appears only for Evaluation type license)
 - Out of compliance - Insufficient license
 - Authentication expired—This status appears when HX is unable to communicate with Cisco Smart Software Manager or Smart Software Manager satellite for more than 90 days.

Registering a Cluster with Smart Software Licensing through a Controller VM

This section covers the alternate method for registering a cluster with Smart Software Licensing.

Procedure

Step 1 Log in to a controller VM.

Step 2 Confirm that your HX storage cluster is in Smart Licensing mode.

```
# stcli license show status
```

Feedback should show **Smart Licensing is ENABLED, Status: UNREGISTERED**, and the amount of time left during the 90-day evaluation period (in days, hours, minutes, and seconds). The Smart Licensing evaluation period starts when the HX storage cluster begins using the licensing feature and is not renewable. When the evaluation period expires, the Smart Agent sends a notification.

Step 3 Register your HX storage cluster, where *idtoken-string* is the New ID Token from Cisco Smart Software Manager or Smart Software Manager satellite. For more information on how to create a token for product instance registration, see Creating a Registration Token, on page 78.

```
# stcli license register --idtoken idtoken-string
```

Step 4 Confirm that your HX storage cluster is registered.

```
# stcli license show summary
```

Alternatively, you can confirm that your HX storage cluster is registered in Cisco Smart Software Manager > Inventory > Product Instances.

Example:
Deregistering a Cluster from Smart Licensing

You deregister an HX storage cluster when you want to release the licenses back into the pool to be used by another HX storage cluster or to remove Cisco Smart Software Manager registration; for example, if you want to decommission a cluster. After the HX storage cluster is deregistered, HyperFlex runs in evaluation mode, if any evaluation period remains. If not, HyperFlex is in evaluation expired status.

The Smart Agent contacts the licensing cloud and unregisters itself. All Smart Licensing entitlements and certificates on the platform are removed. All certificates and registration information on the trusted store are removed. The Smart Agent can unregister even if it is unable to communicate with Cisco to deregister. If you need to use Smart Licensing again, reregister your HX storage cluster. See Registering a Cluster with Smart Software Licensing through a Controller VM, on page 80.

Before you begin

- Verify that your HX storage cluster is registered with Smart Licensing using the following command:

  ```bash
  # stcli license show status
  ```

Procedure

Step 1 Log in to a controller VM.

Step 2 Deregister your HX storage cluster from Smart Licensing.

  ```bash
  # stcli license deregister
  ```

Step 3 Confirm that your HX storage cluster is deregistered.
Deregistering a Cluster from Smart Licensing

stcli license show summary
CHAPTER 7

Configure HyperFlex Hardware Acceleration Cards

This chapter describes how to configure Cisco HyperFlex Hardware Acceleration Cards.

- Overview of HyperFlex Hardware Acceleration Cards, on page 83
- Install HyperFlex Hardware Acceleration Cards, on page 83
- Deploy HX Data Platform Installer OVA Using vSphere Web Client, on page 84
- Deploy the HX Data Platform Installer OVA with a Static IP Address, on page 86
- Configure and Deploy Your HyperFlex Cluster, on page 88
- Verify Installation of HyperFlex Hardware Acceleration Cards, on page 101
- Troubleshoot HyperFlex Hardware Acceleration Cards, on page 101
- Additional Information on HyperFlex Hardware Acceleration Cards, on page 102

Overview of HyperFlex Hardware Acceleration Cards

This chapter provides details for installation, post-installation, and troubleshooting of HyperFlex Hardware Acceleration Cards (PID: HX-PCIE-OFFLOAD-1) on HyperFlex nodes and for configuring your initial cluster. These cards provide improved performance and compression efficiency for most storage workloads.

Note

An HXDP-P Enterprise license is required for installing and configuring HyperFlex Hardware Acceleration Cards.

For a description of PCIe slots and riser cards (and other related information), please refer to the Cisco HX240c M5 HyperFlex Node (Hybrid and All-Flash Models) Installation Guide.

Install HyperFlex Hardware Acceleration Cards

Before you begin

Before beginning the HyperFlex Hardware Acceleration Cards installation process, note the following:

- Installation is only supported on NEW deployments.
• Installation is only supported on the following HX 240 M5 servers:
 • HXAF240C-M5SX Cisco HyperFlex HX240c M5 All Flash
 • HX240C-M5SX Cisco HyperFlex HX240c M5
 • HX240C-M5L HyperFlex HX240c M5 LFF

• Installation is not supported in Hyper-V and is not supported for stretched clusters.
• All nodes in the HX cluster must contain the HyperFlex Hardware Acceleration Cards.

Note
If any nodes do not contain an acceleration card during validation, the installer fails to proceed and an error message appears.

• The cluster type must be All Flash/Hybrid ESXi.
• Installation is only supported on HX 240 M5 servers.
• Hardware Acceleration Cards do not work with Cisco HX Data Replication.

Procedure

Step 1
Install the PCIe cards. This is a Cisco-assisted installation.

Step 2
Configure your cluster using the HX installer. For more information, see:
 • Deploying HX Data Platform Installer OVA Using vSphere Web Client
 • Configure and Deploy your HX Cluster

Deploy HX Data Platform Installer OVA Using vSphere Web Client

In addition to installing the HX Data Platform on an ESXi host, you may also deploy the HX Data Platform Installer on either VMware Workstation, VMware Fusion, or Virtual Box.

Note
• Connect to vCenter to deploy the OVA file and provide the IP address properties. Deploying directly from an ESXi host will not allow you to set the values correctly.
• Do not deploy the HX Data Platform Installer to an ESXi server that is going to be a node in the Cisco HX Storage Cluster.
Procedure

Step 1
Locate and download the HX Data Platform Installer OVA from Download Software. Download the HX Data Platform Installer to a node that is on the storage management network, which will be used for the HX Data Platform storage cluster.

Example:
Cisco-HX-Data-Platform-Installer-v2.5.1d-26363.ova

Step 2
Deploy the HX Data Platform Installer using VMware hypervisor, to create a HX Data Platform Installer virtual machine.

Note Use a version of the virtualization platform that supports virtual hardware version 10.0 or greater.

vSphere is a system requirement. You can use either vSphere thick client, vSphere thin client, or vSphere Web Client. To deploy the HX Data Platform Installer, you can also use VMware Workstation, VMware Fusion, or VirtualBox.

a) Open a virtual machine hypervisor, such as vSphere, VirtualBox, Workstation, or Fusion.
b) Select the node where you want to deploy the HX Data Platform Installer.

Important Ensure that you provide user credentials while deploying the HX Installer OVA using vSphere Web Client.

• Using vSphere thick Client—Expand Inventory list > Host > File > Deploy OVA.
• Using vSphere Web Client—Expand vCenter Inventory list > Hosts > Host > Deploy OVA.

Step 3
Select where the HX Data Platform Installer is located. Accept the defaults, and select the appropriate network.

Step 4
Enter a static IP address for use by the HX Data Platform Installer VM.

Note
• Static IP Address is necessary even if DHCP is configured for the network. You need the static IP address to run the HX Data Platform Installer, to install the HX Data Platform, and to create the HX Data Platform storage cluster.

• If your hypervisor wizard defaults to DHCP for assigning IP addresses to new VMs, then complete the steps in Deploy the HX Data Platform Installer OVA with a Static IP Address, on page 58, to install the HX Data Platform Installer VM with a static IP address. DNS must be reachable from the Installer VM.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hostname</td>
<td>The hostname for this VM. Leave blank to try to reverse lookup the IP address.</td>
</tr>
<tr>
<td>Default Gateway</td>
<td>The default gateway address for this VM. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>DNS</td>
<td>The domain name servers for this VM (comma separated). Leave blank if DHCP is desired.</td>
</tr>
</tbody>
</table>
Deploy the HX Data Platform Installer OVA with a Static IP Address

If your hypervisor wizard defaults to DHCP for assigning IP addresses to new VMs, deploy the HX Data Platform Installer using the following steps:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>The IP address for this interface. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>Netmask</td>
<td>The netmask or prefix for this interface. Leave blank if DHCP is desired.</td>
</tr>
<tr>
<td>Root Password</td>
<td>The root user password. This field is a required field.</td>
</tr>
</tbody>
</table>

Step 5
Click Next. Verify if the options listed are correct and select **Power on after deployment**.

To power on the HX Data Platform Installer manually, navigate to the virtual machine list and power on the installer VM.

Note
The preferred settings for the HX Data Platform Installer virtual machine is 3 vCPU and 4 GB of memory. Reducing these settings can result in 100% CPU usage and spikes for the host.

Step 6
Click Finish. Wait for the HX Data Platform Installer VM to be added to the vSphere infrastructure.

Step 7
Open the HX Data Platform Installer virtual machine console.

The initial console display lists the HX Data Platform Installer virtual machine IP address.

```
Data Platform Installer.
*******************************
You can start the installation by visiting
the following URL:
http://192.168.10.210
*******************************
Cisco-HX-Data-Platform-Installer login:
```

Step 8
Use the URL to log in to the HX Data Platform Installer.

Example:
http://192.168.10.210

Step 9
Accept the self-signed certificate.

Step 10
Log in using the username **root** and the password you provided as part of the OVA deployment.
Procedure

Step 1
Install the VMware OVF Tool 4.1 or later on a node that is on the storage management network that will be used for the HX Data Platform storage cluster. See OVF Tool Documentation for more details.

Step 2
Locate and download HX Data Platform installer OVA from Download Software on the node where VMware OVF was installed.

Step 3
Deploy the downloaded HX Data Platform installer OVA, using the `ovftool` command. For example:

```
root@server:/tmp/test_ova# ovftool --noSSLVerify --diskMode=thin
--acceptAllEulas=true --powerOn --skipManifestCheck --X:injectOvfEnv
--datastore=qa-048-ssd1 --name=rfsi_static_test1 --network=VM Network'
--prop:hx.3gateway.Cisco_HX_Installer_Appliance=10.64.8.1
--prop:hx.4DNS.Cisco_HX_Installer_Appliance=10.64.1.8
--prop:hx.5domain.Cisco_HX_Installer_Appliance=cisco
--prop:hx.6NTP.Cisco_HX_Installer_Appliance=10.64.8.5
--prop:hx.1ip0.Cisco_HX_Installer_Appliance=10.64.8.36
--prop:hx.2netmask0.Cisco_HX_Installer_Appliance=255.255.248.0
--prop:hx.7root_password.Cisco_HX_Installer_Appliance=mypassword
/opt/ovf/rfsi_test/Cisco-HX-Data-Platform-Installer-v1.7.1-14786.ova
vi://root:password@esx_server
```

The command deploys the HX Data Platform installer, powers on the HX Data Platform installer VM, and configures the provided static IP address. A sample of processing response:

```
Opening OVA source: 
/opt/ovf/rfsi_test/Cisco-HX-Data-Platform-Installer-v1.7.1-14786.ova
Opening VI target: vi://root@esx_server:443/
Deploying to VI: vi://root@esx_server:443/
Transfer Completed
Powering on VM: rfsi_static_test
Task Completed
Completed successfully
```

DNS must be reachable from the Installer VM. The required command options for the static IP address to be configured successfully are:

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>powerOn</td>
<td>To power on the HX Data Platform installer VM after it is deployed.</td>
</tr>
<tr>
<td>X:injectOvfEnv</td>
<td>To insert the static IP properties onto the HX Data Platform installer VM.</td>
</tr>
<tr>
<td>prop:hx.3gateway.Cisco_HX_Installer_Appliance=10.64.8.1</td>
<td>Specify the appropriate gateway IP address.</td>
</tr>
<tr>
<td>prop:hx.4DNS.Cisco_HX_Installer_Appliance=10.64.1.8</td>
<td>Specify the appropriate DNS IP address.</td>
</tr>
<tr>
<td>prop:hx.5domain.Cisco_HX_Installer_Appliance=cisco</td>
<td>Specify the appropriate domain.</td>
</tr>
<tr>
<td>prop:hx.6NTP.Cisco_HX_Installer_Appliance=10.64.8.5</td>
<td>Specify the appropriate NTP IP address.</td>
</tr>
<tr>
<td>prop:hx.1ip0.Cisco_HX_Installer_Appliance=10.64.8.36</td>
<td>Specify the appropriate installer static IP address.</td>
</tr>
<tr>
<td>prop:hx.2netmask0.Cisco_HX_Installer_Appliance=255.255.248.0</td>
<td>Specify the appropriate netmask address.</td>
</tr>
<tr>
<td>prop:hx.7root_password.Cisco_HX_Installer_Appliance=mypassword</td>
<td>Specify the root user password.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>/opt/vrfsi_test/Cisco-HX-Data-Platform-Installer-v1.7.1-14786.ova</td>
<td>The source address of the HX Data Platform installer OVA.</td>
</tr>
<tr>
<td>vi://root:password@esx_server</td>
<td>The destination ESX server where the HX Data Platform installer VM is installed. Include the appropriate ESX server root login credentials.</td>
</tr>
</tbody>
</table>

Configure and Deploy Your HyperFlex Cluster

Enter Credentials

On the **Credentials** page, you can choose to import the required configuration data from a JSON file or input data into the required fields manually.

Note

For first-time installation of a HyperFlex cluster, contact your Cisco representative to procure the factory preinstallation JSON file.

To perform cluster creation, by importing the configuration data from a *JSON configuration* file, do the following:

1. Click **Select a file** and choose your *JSON file* to load the configuration data. Select **Use Configuration**.
2. An **Overwrite Imported Values** dialog box displays if your imported values for Cisco UCS Manager are different. Select **Use Discovered Values**.

Procedure

Step 1
In your web browser, enter the IP address or the node name for the HX Data Platform Installer VM. Click **Accept** or **Continue** to bypass any SSL certificate errors. On the Cisco HX Data Platform Installer login page, verify the HX Data Platform Installer **Build ID** in the lower right corner of the login screen.

Step 2
In the login page, enter the following credentials:

- **Username**: root
- **Password** (Default): Cisco123

Attention Systems ship with a default password of Cisco123 that must be changed during installation. You cannot continue installation unless you specify a new user supplied password.

Step 3
Select the **I accept the terms and conditions** check box, and click **Login**.

Step 4
On the **Select a Workflow** page, from the **Create Cluster** drop-down list, select **Standard Cluster**.

Step 5
On the **Credentials** page, enter the following configuration data:
Enter the UCS Manager FQDN or IP address. For example, 10.193.211.120.

UCS Manager User Name
Enter the administrative username.

Password
Enter the administrative password.

vCenter Credentials

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| vCenter Server | Enter the vCenter server FQDN or IP address. For example, 10.193.211.120.
Note
• A vCenter server is required before the cluster can be made operational.
• The vCenter address and credentials must have root level administrator permissions to the vCenter.
• vCenter server input is optional if you are building a nested vCenter. See the Nested vCenter TechNote for more details. |
| User Name | Enter the administrative username. For example, administrator@vsphere.local. |
| Admin Password | Enter the administrative password. |

Step 6
On the Hypervisor Configuration page, enter the following configuration data:

Hypervisor Credentials

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin User Name</td>
<td>Enter the administrative username. The username is root for factory nodes.</td>
</tr>
</tbody>
</table>
You are required to change the factory default password for the hypervisor. Important

Create a new password for the hypervisor using the following guidelines:

- Must be 6 to 80 characters in length.
- Must have 1 uppercase character, 1 lowercase character, 1 digit, and 1 special character.
- If password starts with uppercase character, then 2 uppercase characters are required.
- If password ends with a digit, then 2 digits are required.

Re-enter the new password for the hypervisor.

Step 7

Click Continue to begin associating HyperFlex Servers. See Associate HyperFlex Servers, on page 61.

Associate HyperFlex Servers

On the Server Selection page, the Configuration pane on the right displays a detailed list of the Credentials used. The Server Selection page displays a list of unassociated HX servers under the Unassociated tab, and the list of discovered servers under the Associated tab.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locator LED</td>
<td>Turn on to locate a server.</td>
</tr>
<tr>
<td>Server Name</td>
<td>Name assigned to the server.</td>
</tr>
<tr>
<td>Status</td>
<td>• Inaccessible—</td>
</tr>
<tr>
<td>Model</td>
<td>Displays the server model.</td>
</tr>
<tr>
<td>Serial</td>
<td>Displays the serial number of the server.</td>
</tr>
<tr>
<td>Assoc State</td>
<td>• Associated</td>
</tr>
<tr>
<td></td>
<td>• Unassociated</td>
</tr>
<tr>
<td>Service Profile</td>
<td>Service profile assigned to the server.</td>
</tr>
<tr>
<td>[Only for Associated Servers]</td>
<td></td>
</tr>
</tbody>
</table>

Turn on to locate a server.

Name assigned to the server.

• Inaccessible—

Displays the server model.

Displays the serial number of the server.

• Associated

• Unassociated

Service profile assigned to the server.
Configure UCS Manager

On the UCSM Configuration page, you can configure VLAN, MAC Pool, 'hx-ext-mgmt' IP Pool for Out-of-Band CIMC, iSCSi Storage, and FC Storage.

Before you begin

Associate servers to the HyperFlex cluster. See [Associate HyperFlex Servers, on page 61](#).

Procedure

Step 1

In the **VLAN Configuration** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN for Hypervisor and HyperFlex management</td>
<td>Use separate subnet and VLANs for each of the following networks.</td>
</tr>
</tbody>
</table>
Field | **Description**
--- | ---
VLAN Name | hx-inband-mgmt
VLAN ID | Default—3091

VLAN for HyperFlex storage traffic

Field	**Description**
VLAN Name | hx-storage-data
VLAN ID | Default—3092

VLAN for VM vMotion

Field	**Description**
VLAN Name | hx-vmotion
VLAN ID | Default—3093

VLAN for VM Network

Field	**Description**
VLAN Name | vm-network
VLAN ID(s) | Default—3094
A comma-separated list of guest VLANs.

Step 2
In the **MAC Pool** section, configure **MAC Pool Prefix** by adding in two more hex characters (0-F).

Note Select a prefix that is not used with any other MAC address pool across all UCS domains.

Example:
00:25:B5:A0:

Step 3
In the 'hx-ext-mgmt' **IP Pool for Out-of-Band CIMC** section, complete the following fields:

Field	**Description**
IP Blocks | The range of IP addresses designated for the HyperFlex nodes. The IP addresses can be a comma-separated list of values for the guest VLANs.
For example, 10.193.211.124-127, 10.193.211.158-163.

Subnet Mask | Set the subnet to the appropriate level to limit and control IP addresses.
For example, 255.255.0.0.

Gateway | Enter the IP address.
For example, 10.193.0.1.

Step 4
If you want to add external storage, configure **iSCSI Storage** by completing the following fields:
Step 5

If you want to add external storage, configure **FC Storage** by completing the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable FC Storage check box</td>
<td>Select to enable FC Storage.</td>
</tr>
<tr>
<td>WWxN Pool</td>
<td>A WWN pool that contains both WW node names and WW port names. For each Fabric Interconnect, a WWxN pool is created for WWPN and WWNN.</td>
</tr>
<tr>
<td>VSAN A Name</td>
<td>The name of the VSAN for the primary Fabric Interconnect (FI-A). Default — <code>hx-ext-storage-fc-a</code>.</td>
</tr>
<tr>
<td>VSAN A ID</td>
<td>The unique identifier assigned to the network for the primary Fabric Interconnect (FI-A). Caution Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.</td>
</tr>
<tr>
<td>VSAN B Name</td>
<td>The name of the VSAN for the subordinate Fabric Interconnect (FI-B). Default — <code>hx-ext-storage-fc-b</code>.</td>
</tr>
<tr>
<td>VSAN B ID</td>
<td>The unique identifier assigned to the network for the subordinate Fabric Interconnect (FI-B). Caution Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.</td>
</tr>
</tbody>
</table>
Step 6
In the Advanced section, do the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS Server Firmware Version</td>
<td>Select the UCS firmware version to associate with the HX servers from the drop-down list. The UCS firmware version must match the UCSM version. See the latest Cisco HX Data Platform Release Notes for more details. For example, 3.2(1d).</td>
</tr>
<tr>
<td>HyperFlex Cluster Name</td>
<td>Specify a user-defined name. The HyperFlex cluster name is applied to a group of HXServers in a given cluster. The HyperFlex cluster name adds a label to service profiles for easier identification.</td>
</tr>
<tr>
<td>Org Name</td>
<td>Specify a unique Org Name to ensure isolation of the HyperFlex environment from the rest of the UCS domain.</td>
</tr>
</tbody>
</table>

Step 7
Click Continue to configure the Hypervisor. See Configure Hypervisor, on page 65.

Configure Hypervisor

Note
Review the VLAN, MAC pool, and IP address pool information on the Hypervisor Configuration page, in the Configuration pane. These VLAN IDs may be changed by your environment. By default, the HX Data Platform Installer sets the VLANs as non-native. You must configure the upstream switches to accommodate the non-native VLANs by appropriately applying a trunk configuration.

Attention
You can skip configuring Hypervisor in case of a reinstall, if ESXi networking has been completed.

Before you begin
Configure VLAN, MAC Pool, and 'hx-ext-mgmt' IP Pool for Out-of-Band CIMC. If you are adding external storage, configure iSCSI Storage and FC Storage. Select the UCS Server Firmware Version and assign a name for the HyperFlex cluster. See Configure UCS Manager, on page 62.

Procedure

Step 1
In the Configure Common Hypervisor Settings section, complete the following fields:
Configure IP Addresses

Before you begin

Ensure that you completed configuring Hypervisor on the Hypervisor Configuration page. See Configure Hypervisor, on page 65.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Subnet Mask** | Set the subnet mask to the appropriate level to limit and control IP addresses.
 For example, 255.255.0.0. |
| **Gateway** | IP address of gateway.
 For example, 10.193.0.1. |
| **DNS Server(s)** | IP address for the DNS Server.
 Note • If you do not have a DNS server, do not enter a hostname in any of the fields on the Cluster Configuration page of the HX Data Platform Installer. Use only static IP addresses and hostnames for all ESXi hosts.
 • If you are providing more than one DNS server, check carefully to ensure that both DNS servers are correctly entered, separated by a comma. |

Step 2

On the Hypervisor Settings section, select Make IP Addresses and Hostnames Sequential to make the IP addresses sequential. Complete the following fields:

Note You can rearrange the servers using drag and drop.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name assigned to the server.</td>
</tr>
<tr>
<td>Locator LED</td>
<td>Turn on to locate a server.</td>
</tr>
<tr>
<td>Serial</td>
<td>Displays the serial number of the server.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>Input static IP addresses and hostnames for all ESXi hosts.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Do not leave the hostname fields empty.</td>
</tr>
</tbody>
</table>

Step 3

Click Continue to configure IP Addresses. See Configure IP Addresses, on page 66.
Procedure

Step 1
On the **IP Addresses** page, select **Make IP Addresses Sequential** to make the IP Addresses sequential.

Step 2
When you enter IP addresses in the first row for Hypervisor, Storage Controller (Management) and Hypervisor, Storage Controller (Data) columns, the HX Data Platform Installer incrementally autofills the node information for the remaining nodes. The minimum number of nodes in the storage cluster is three. If you have more nodes, use the **Add** button to provide the address information.

Note
Compute-only nodes can be added only after the storage cluster is created.

For each HX node, enter the Hypervisor, Storage Controller, Management, and Data IP addresses. For the IP addresses, specify if the network belongs to the Data Network or the Management Network.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor management network connection between the ESXi host and the storage cluster.</td>
</tr>
<tr>
<td>Management Storage Controller</td>
<td>Enter the static IP address that handles the storage controller VM management network connection between the storage controller VM and the storage cluster.</td>
</tr>
<tr>
<td>Data Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor data network connection between the ESXi host and the storage cluster.</td>
</tr>
<tr>
<td>Data Storage Controller</td>
<td>Enter the static IP address that handles the storage controller VM data network connection between the storage controller VM and the storage cluster.</td>
</tr>
</tbody>
</table>

Step 3
The IP address provided here are applied to one node in the storage cluster. In the event the node becomes unavailable the affected IP address is moved to another node in the storage cluster. All nodes must have a port configured to accept these IP addresses.

Provide the following IP addresses:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Cluster Data IP Address</td>
<td>Enter the management network IP address for the HX Data Platform storage cluster.</td>
</tr>
<tr>
<td>Data Cluster Data IP Address</td>
<td>Enter the IP address of data network for the HX Data Platform storage cluster.</td>
</tr>
<tr>
<td>Management Subnet Mask</td>
<td>Enter the subnet information for your VLAN and vSwitches. Provide the management network value. For example, 255.255.255.0.</td>
</tr>
</tbody>
</table>
Step 4
Click **Continue** to configure the HyperFlex cluster. See [Configure Your HyperFlex Cluster, on page 67](#).

Configure Your HyperFlex Cluster

On the **Cluster Configuration** page, for the Cisco HX Storage Cluster complete the following fields to begin deploying the HyperFlex cluster.

Before you begin

Ensure that you completed configuring IP addresses on the **IP Addresses** page. See [Configure IP Addresses, on page 66](#).

Procedure

Step 1
In the **Cisco HX Cluster** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Name</td>
<td>Specify a name for the HX Data Platform storage cluster.</td>
</tr>
<tr>
<td>Replication Factor</td>
<td>Specify the number of redundant replicas of your data across the storage cluster. Set the replication factor to either 2 or 3 redundant replicas.</td>
</tr>
<tr>
<td></td>
<td>• For hybrid servers (servers that contain SSD and HDDs), the default value is 3.</td>
</tr>
<tr>
<td></td>
<td>• For flash servers (servers that contain only SSDs), select either 2 or 3.</td>
</tr>
<tr>
<td></td>
<td>• A replication factor of three is highly recommended for all environments except HyperFlex Edge. A replication factor of two has a lower level of availability and resiliency. The risk of outage due to component or node failures should be mitigated by having active and regular backups.</td>
</tr>
</tbody>
</table>
Step 2 In the **Controller VM** section, create a new password for the Administrative User of the HyperFlex cluster. A default administrator username and password is applied to the controller VMs. The VMs are installed on all converged and compute-only nodes.

Important • You cannot change the name of the controller VM or the controller VM’s datastore.

• Use the same password for all controller VMs. The use of different passwords is not supported.

• Provide a complex password that includes 1 uppercase character, 1 lowercase character, 1 digit, 1 special character, and a minimum of 10 characters in total.

• You can provide a user-defined password for the controller VMs and for the HX cluster to be created. For password character and format limitations, see the section on Guidelines for HX Data Platform Special Characters in the *Cisco HX Data Platform Management Guide*.

Step 3 In the **vCenter Configuration** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Datacenter Name</td>
<td>Enter the vCenter datacenter name for the Cisco HyperFlex cluster.</td>
</tr>
<tr>
<td>vCenter Cluster Name</td>
<td>Enter the vCenter cluster name.</td>
</tr>
</tbody>
</table>

Step 4 In the **System Services** section, complete the following fields:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS Server(s)</td>
<td>A comma-separated list of IP addresses of each DNS server.</td>
</tr>
<tr>
<td>NTP Server(s)</td>
<td>A comma-separated list of IP addresses of each NTP server.</td>
</tr>
<tr>
<td>Note</td>
<td>All hosts must use the same NTP server, for clock synchronization between services running on the storage controller VMs and ESXi hosts.</td>
</tr>
<tr>
<td>DNS Domain Name</td>
<td>DNS FQDN or IP address.</td>
</tr>
<tr>
<td>Time Zone</td>
<td>The local time zone for the controller VM, to determine when to take scheduled snapshots. Scheduled native snapshot actions are based on this setting.</td>
</tr>
</tbody>
</table>

Step 5 In the **Connected Services** section, select **Enable Connected Services** to enable Auto Support and Intersight Management.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Connected Services (Recommended)</td>
<td>Enables Auto Support and Intersight management. Log on to HX Connect to configure these services or selectively turn them On or Off.</td>
</tr>
</tbody>
</table>
Step 6

In the **Advanced Configuration** section, do the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send service ticket notifications to</td>
<td>Email address where SR notifications are sent when triggered by Auto Support.</td>
</tr>
<tr>
<td>Jumbo frames</td>
<td>Check to set the MTU size for the storage data network on the host vSwitches and vNICs, and each storage controller VM. The default value is 9000.</td>
</tr>
<tr>
<td>Clean up Disk Partitions</td>
<td>Check to remove all existing data and partitions from all nodes added to the storage cluster for manually prepared servers. Select this option to delete existing data and partitions. You must backup any data that should be retained.</td>
</tr>
<tr>
<td>Attention</td>
<td>Do not select this option for factory prepared systems. The disk partitions on factory prepared systems are properly configured.</td>
</tr>
</tbody>
</table>

Note: To set your MTU size to a value other than 9000, contact Cisco TAC.
Check for VDI only environments.

To change the VDI settings after the storage cluster is created, shut down or move the resources, make the changes (described in the steps below), then restart the cluster.

The HyperFlex cluster by default is configured to be performance tuned for VSI workloads.

You may change this performance customization by performing the following steps on your HyperFlex Data Platform cluster. To change the HyperFlex cluster from VDI to VSI workloads (and vice versa):

WARNING: A maintenance window is required as this will cause data to be unavailable while the cluster is offline.

a. Shut down the cluster (stcli cluster shutdown).

b. Edit the storfs.cfg in all the controller VMs to modify the workloadType to Vsi or Vdi.

c. Start the cluster (stcli cluster start) to enable the tune changes after the cluster is created.

This information is only required if the SSO URL is not reachable.

Note

Do not use this field. It is used for legacy deployments.

You can locate the SSO URL in vCenter by navigating to vCenter Server > Manage > Advanced Settings > key config.vpxd.sso.sts.uri.

Step 7
Click Start to begin deploying the HyperFlex cluster. The Progress page displays the progress of various configuration tasks.

Caution
Do not skip validation warnings.

See the Warnings section for more details.
What to do next

- Some validation errors require you to go back and re-enter a parameter (for example, an invalid ESXi password, incorrect NTP server, bad SSO server, or other incorrect input). Click **Re-enter Values** to return to the **Cluster Configuration** page and resolve the issue.

- When complete, the HyperFlex servers are installed and configured. The deployed cluster status shows as **Online** and **Healthy**.

- Click **Launch HyperFlex Connect** to create datastores and manage your cluster.

Verify Installation of HyperFlex Hardware Acceleration Cards

You can verify that you installed the HyperFlex Hardware Acceleration Card successfully as follows:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Log in to the controller VM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Find the following tunes file: <code>/opt/springpath/config/offload.tunes</code>.</td>
</tr>
</tbody>
</table>

Note The tunes file can only be seen by System Administrators and root users. If these users are able to access this file, the installation is successful. If you do not have System Administrator or root user permissions, you can verify that the installation is successful if there are no error messages or events in the UI.

Troubleshoot HyperFlex Hardware Acceleration Cards

Procedure

Troubleshoot post-installation HyperFlex Hardware Acceleration Card related issues as follows:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Workaround</th>
</tr>
</thead>
<tbody>
<tr>
<td>Although the cluster is operational, you may note generic alerts in the vCenter and HX Connect UI.</td>
<td>Contact your Cisco representative for assistance.</td>
</tr>
<tr>
<td>The Cluster reports a pairing error when NR pairing is attempted.</td>
<td>In a cluster running 3.5.2, NR pairing is not allowed with any other release (2.6, 3.0.1, 3.5.1, 3.5.2) and is not allowed with a cluster that has been enabled by the HX Hardware Acceleration Card.</td>
</tr>
</tbody>
</table>
Additional Information on HyperFlex Hardware Acceleration Cards

Additional notes on HyperFlex Hardware Acceleration Cards include the following:

- Compression gain value can be seen in HX connect UI dashboard.
- Enhance performance for the 8K read workload using the following commands:
 - `root@ucs984scvm:~# echo 3 > /sys/module/fdma/parameters/decompress_min_t`
 - `root@ucs984scvm:~# echo 3 > /sys/module/fdma/parameters/decompress_max_t`
Post Cluster Configuration Tasks

- Post Cluster Configuration Guidelines, on page 103
- Enabling PCI Passthrough for a Network Device on a Host, on page 103
- Run Post-Installation Script, on page 104
- Changing ESXi Host Root Password, on page 106
- Changing Storage Controller Password, on page 107
- Access the HX Data Platform Plugin through vSphere, on page 108
- Add Datastores in the Storage Cluster, on page 108
- Set HA Heartbeat, on page 108
- Auto Support and Smart Call Home for HyperFlex, on page 109
- Replacing Self-Signed with CA-Signed Certificate, on page 114
- Replication Pairing, on page 116
- Adding Private VLAN, on page 116
- Distributed Virtual Switches and Cisco Nexus 1000v, on page 120
- Hosting vCenter on the HX Data Platform, on page 121
- Deploying AMD GPUs, on page 121

Post Cluster Configuration Guidelines

Important

- Keep SSH enabled on all ESXi hosts. This is required for the following Cisco HyperFlex post cluster configuration operations.
- Do not change these pre-configured values without approval from Cisco.

Enabling PCI Passthrough for a Network Device on a Host

Passthrough devices provide the means to more efficiently use resources and improve performance in your environment. Enabling PCI passthrough allows a VM to use a host device as if the device were directly attached to the VM.

The following procedure describes how to configure a network device (such as NVIDIA GPUs) for PCI passthrough on an ESXi host.
Procedure

Step 1 In vSphere Client, browse to the ESXi host in the Navigator panel.
Step 2 Enter HX maintenance mode on the node that has the GPUs installed. To enter maintenance mode, right click on the node > Cisco HX Maintenance Mode > Enter HX Maintenance Mode
Step 3 In a new browser window, login directly to the ESXi node.
Step 4 Click Manage.
Step 5 Under the Hardware tab, click PCI Devices. A list of available passthrough devices appears.
Step 6 Select PCI device you want to enable for passthrough. Click Toggle passthrough.
Step 7 Reboot the host to make the PCI device available for use.
Step 8 When the reboot completes, ensure that the node is not in maintenance mode.
Step 9 Log in to vCenter Server.
Step 10 Locate the VM, right click and select Edit Settings.
Step 11 From the New device drop-down, select PCI Device, and click Add.
Step 12 Click the passthrough device to use (example: NVIDIA GPU) and click OK.
Step 13 Log in to the ESXi host and open the virtual machine configuration file (.vmx) in a text editor.

 cd /vmfs/volumes/[datastore_name]/[vm_name]
 vi [vmname].vmx

Step 14 Add the following lines, save, and exit the text editor.

 # pciPassthru.64bitMMIOSizeGB = "64"
 # Firmware = "efi"
 # pciPassthru.use64bitMMIO = "TRUE"

Run Post-Installation Script

To complete the post-installation tasks, you can run a post-installation script on the Installer VM.

Important

- Ensure that you run post_install and confirm network operation immediately following the deployment of the HyperFlex System.

1. Use an SSH client to connect to the shell on the installer VM.
2. Log in with installer VM root credentials.
3. Type post_install and hit Enter.
4. Set the post-install script parameters as specified in the following table:
If you run into any post-install script issues, set the post-install script parameters manually.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable HA/DRS on cluster?</td>
<td>Enables vSphere High Availability (HA) feature per best practice.</td>
</tr>
<tr>
<td>Disable SSH warning?</td>
<td>Suppresses the SSH and shell warnings in the vCenter.</td>
</tr>
<tr>
<td>Add vMotion interfaces</td>
<td>Configure vMotion interfaces per best practice. Requires IP address and VLAN ID input.</td>
</tr>
<tr>
<td>Add VM network VLANs</td>
<td>Add additional guest VLANs to Cisco UCS Manager and within ESXi on all cluster hosts.</td>
</tr>
</tbody>
</table>

5. Correct network errors reported, if any.

Sample Post-Install Script

root@Cisco-HX-Data-Platform-Installer:~# post_install
Select post_install workflow-
1. New/Existing Cluster
2. Expanded Cluster
3. Generate Certificate

Note: Workflow No.3 is mandatory to have unique SSL certificate in the cluster. By generating this certificate, it will replace your current certificate. If you're performing cluster expansion, then this option is not required.

Selection: 3
Certificate generation workflow selected

Logging in to controller 10.20.1.64
HX CVM admin password:
Getting ESX hosts from HX cluster...

Select Certificate Generation Workflow-
1. With vCenter
2. Without vCenter

Selection: 1
vCenter URL: 10.33.16.40
Enter vCenter username (user@domain): administrator@vsphere.local
vCenter Password:
Starting certificate generation and re-registration.
Trying to retrieve vCenterDatacenter information
Trying to retrieve vCenterCluster information
Certificate generated successfully.
Cluster re-registration in progress
Cluster re-registered successfully.
root@HyperFlex-Installer:~#
Sample Network Errors

Host: esx-hx-5.cpoc-rtp.cisco.com
No errors found

Host: esx-hx-6.cpoc-rtp.cisco.com
No errors found

Host: esx-hx-1.cpoc-rtp.cisco.com
No errors found

Host: esx-hx-2.cpoc-rtp.cisco.com
No errors found

controller VM clocks:
stctlVM-FCH1946V34Y - 2016-09-16 22:34:04
stCtlVM-FCH1946V23M - 2016-09-16 22:34:04
stctIVM-FCH1951V2TT - 2016-09-16 22:34:04
stctlVM-FCH2004VINS - 2016-09-16 22:34:04

Cluster:
Version - 1.8.1a-19499
Model - HX220C-M4S
Health - HEALTHY
Access policy - LENIENT
ASUP enabled - False
SMTP server - smtp.cisco.com

Changing ESXi Host Root Password

You can change the default ESXi password for the following scenarios:

- During creation of a standard and stretch cluster (supports only converged nodes)
- During expansion of a standard cluster (supports both converged or compute node expansion)
- During Edge cluster creation

Note
In the above cases, the ESXi root password is secured as soon as installation is complete. In the event a subsequent password change is required, the procedure outlined below may be used after installation to manually change the root password.

As the ESXi comes up with the factory default password, you should change the password for security reasons. To change the default ESXi root password post-installation, do the following.

Note
If you have forgotten the ESXi root password, for password recovery please contact Cisco TAC.

Procedure

Step 1 Log in to the ESXi host service control using SSH.
Changing Storage Controller Password

To reset the HyperFlex storage controller password post-installation, do the following.

Procedure

1. **Step 1** Log in to a storage controller VM.
2. **Step 2** Change the Cisco HyperFlex storage controller password.
   ```bash
   stcli security password set
   ```
 This command applies the change to all the controller VMs in the storage cluster.

 Note If you add new compute nodes and try to reset the cluster password using the `stcli security password set` command, the converged nodes get updated, but the compute nodes may still have the default password. To change the compute node password, use the following procedure.

To change the password on compute nodes:

- **a.** Vmotion all the user VMs off the ESXi hosts.
- **b.** Launch the storage controller VM console from vCenter and log in as the root user.
- **c.** Run the `passwd` command to change the password.
- **d.** Log out and re-login to confirm that the password changed successfully.
- **e.** Run the `stcli node add -f` command to add the node back into the cluster.

3. **Step 3** Type in the new password.
4. **Step 4** Press **Enter**.
Access the HX Data Platform Plugin through vSphere

To manage your storage cluster through a GUI, launch the vSphere Web Client. You access your storage cluster through the vSphere Web Client and HX Data Platform plug-in.

Procedure

Step 1
From the HX Data Platform installer, after installation is completed, on the Summary page, click **Launch vSphere Web Client**.

Step 2
Display the login page, click **Login to vSphere Web Client** and enter your vSphere credentials.

Step 3
View the HX Data Platform plug-in.

From the vSphere Web Client Navigator, select **vCenter Inventory Lists > Cisco HyperFlex Systems > Cisco HX Data Platform**.

Add Datastores in the Storage Cluster

A new HyperFlex cluster has no default datastores configured for virtual machine storage, so the datastores must be created using VMware vSphere Web Client.

Note
A minimum of two datastores is recommended for high availability.

Procedure

Step 1
From the vSphere Web Client Navigator, **Global Inventory Lists** expand **Cisco HyperFlex Systems > Cisco HX Data Platform > cluster > Manage > Datastores**.

Step 2
Click the **Create Datastore** icon.

Step 3
Enter a **Name** for the datastore. The vSphere Web Client enforces a 42 character limit for the datastore name. Assign each datastore a unique name.

Step 4
Specify the **Size** for the datastore. Choose **GB** or **TB** from the drop-down list. Click **OK**.

Step 5
Click the **Refresh** button to display your new datastore.

Step 6
Click the **Hosts** tab to see the **Mount Status** of the new datastore.

Set HA Heartbeat

Under the vSphere HA settings, ensure that you set the Datastore for Heartbeating option to allow selecting any datastore from the list of available datastores.
Procedure

Step 1 Login to vSphere.
Step 2 Verify DRS is enabled.
From vSphere Home > Hosts and Clusters > cluster > ConfigureServices. Click vSphere DRS.
Step 3 Select the Edit button. Click vSphere HA. Click Edit.
Step 4 Select Turn on vSphere HA if it is not selected.
Step 5 Expand Admission Control > Define Failover capacity by > Cluster resource percentage from the drop-down menu. You may use the default value or enable Override calculated failover capacity and enter a percentage.
Step 6 Expand Heartbeat Datastores and select Use datastore only from the specified list. Select which datastores to include.
Step 7 Click OK.

Auto Support and Smart Call Home for HyperFlex

You can configure the HX storage cluster to send automated email notifications regarding documented events. The data collected in the notifications can be used to help troubleshoot issues in your HX storage cluster.

Auto Support (ASUP)

Auto Support is the alert notification service provided through HX Data Platform. If you enable Auto Support, notifications are sent from HX Data Platform to designated email addresses or email aliases that you want to receive the notifications. Typically, Auto Support is configured during HX storage cluster creation by configuring the SMTP mail server and adding email recipients.

Note

Only unauthenticated SMTP is supported for ASUP.

If the Enable Auto Support check box was not selected during configuration, Auto Support can be enabled post-cluster creation using the following methods:

<table>
<thead>
<tr>
<th>Post-Cluster ASUP Configuration Method</th>
<th>Associated Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>HX Connect user interface</td>
<td>Configuring Auto Support Using HX Connect, on page 110</td>
</tr>
<tr>
<td>Command Line Interface (CLI)</td>
<td>Configuring Notification Settings Using CLI, on page 111</td>
</tr>
<tr>
<td>REST APIs</td>
<td>Cisco HyperFlex Support REST APIs on Cisco DevNet.</td>
</tr>
</tbody>
</table>

Auto Support can also be used to connect your HX storage cluster to monitoring tools.
Smart Call Home (SCH)

Smart Call Home is an automated support capability that monitors your HX storage clusters and then flags issues and initiates resolution before your business operations are affected. This results in higher network availability and increased operational efficiency.

Call Home is a product feature embedded in the operating system of Cisco devices that detects and notifies the user of a variety of fault conditions and critical system events. Smart Call Home adds automation and convenience features to enhance basic Call Home functionality. After Smart Call Home is enabled, Call Home messages/alerts are sent to Smart Call Home.

Smart Call Home is included with many Cisco service contracts and includes:

- Automated, around-the-clock device monitoring, proactive diagnostics, real-time email alerts, service ticket notifications, and remediation recommendations.
- Proactive messaging sent to your designated contacts by capturing and processing Call Home diagnostics and inventory alarms. These email messages contain links to the Smart Call Home portal and the TAC case if one was automatically created.
- Expedited support from the Cisco Technical Assistance Center (TAC). With Smart Call Home, if an alert is critical enough, a TAC case is automatically generated and routed to the appropriate support team through https, with debug and other CLI output attached.
- Customized status reports and performance analysis.
- Web-based access to: all Call Home messages, diagnostics, and recommendations for remediation in one place; TAC case status; and up-to-date inventory and configuration information for all Call Home devices.

To ensure automatic communication among your HX storage cluster, you, and Support, see Configuring Smart Call Home for Data Collection, on page 112.

Configuring Auto Support Using HX Connect

Typically, Auto Support (ASUP) is configured during HX storage cluster creation. If it was not, you can enable it post cluster creation using the HX Connect user interface.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Log in to HX Connect.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>In the banner, click Edit settings (gear icon) > Auto Support Settings and fill in the following fields.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Auto Support (Recommended) check box</td>
<td>Configures Call home for this HX storage cluster by enabling:</td>
</tr>
<tr>
<td></td>
<td>• Data delivery to Cisco TAC for analysis.</td>
</tr>
<tr>
<td></td>
<td>• Notifications from Support as part of proactive support.</td>
</tr>
<tr>
<td>Send service ticket notifications to field</td>
<td>Enter the email address that you want to receive the notifications.</td>
</tr>
</tbody>
</table>

Essential Information

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terms and Conditions</td>
<td>End user usage agreement. The check box must be checked to use the Auto-Support feature.</td>
</tr>
<tr>
<td>Use Proxy Server</td>
<td>• Web Proxy Server url</td>
</tr>
<tr>
<td></td>
<td>• Port</td>
</tr>
<tr>
<td></td>
<td>• Username</td>
</tr>
<tr>
<td></td>
<td>• Password</td>
</tr>
</tbody>
</table>

Step 3

Click **OK**.

Step 4

In the banner, click **Edit settings (gear icon) > Notifications Settings** and fill in the following fields.

<table>
<thead>
<tr>
<th>UI Element</th>
<th>Essential Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send email notifications for alarms</td>
<td>If checked, fill in the following fields:</td>
</tr>
<tr>
<td></td>
<td>• Mail Server Address</td>
</tr>
<tr>
<td></td>
<td>• From Address—Enter the email address used to identify your HX storage cluster in Support service tickets, and as the sender for Auto Support notifications. Support information is currently not sent to this email address.</td>
</tr>
<tr>
<td></td>
<td>• Recipient List (Comma separated)</td>
</tr>
</tbody>
</table>

Step 5

Click **OK**.

Configuring Notification Settings Using CLI

Use the following procedure to configure and verify that you are set up to receive alarm notifications from your HX storage cluster.

Note

Only unauthenticated SMTP is supported for ASUP.

Procedure

Step 1

Log in to a storage controller VM in your HX storage cluster using `ssh`.

Step 2

Configure the SMTP mail server, then verify the configuration.

Email address used by the SMTP mail server to send email notifications to designated recipients.

Syntax:

```
stcli services smtp set [-h] --smtp SMTPSERVER --fromaddress FROMADDRESS
```

Example:

Configuring Smart Call Home for Data Collection

Data collection is enabled by default but, during installation, you can opt-out (disable). You can also enable data collection post cluster creation. During an upgrade, Smart Call Home is set up based on your legacy configuration. For example, if `stcli services asup show` is enabled, Smart Call Home is enabled on upgrade.

Data collection about your HX storage cluster is forwarded to Cisco TAC through https. If you have a firewall installed, configuring a proxy server for Smart Call Home is completed post cluster creation.

Note

In HyperFlex Data Platform release 2.5(1.a), Smart Call Home Service Request (SR) generation does not use a proxy server.

Using Smart Call Home requires the following:

- Cisco Unified Computing Support Service or Cisco Unified Computing Mission Critical Support Service for the device to be registered.

Procedure

Step 1
Log in to a storage controller VM in your HX storage cluster.
Step 2 Register your HX storage cluster with Support.

Registering your HX storage cluster adds identification to the collected data and automatically enables Smart Call Home. To register your HX storage cluster, you need to specify an email address. After registration, this email address receives support notifications whenever there is an issue and a TAC service request is generated.

Note Upon configuring Smart Call Home in Hyperflex, an email will be sent to the configured address containing a link to complete registration. If this step is not completed, the device will remain in an inactive state and an automatic Service Request will not be opened.

Syntax:

```
stcli services sch set [-h] --email EMAILADDRESS
```

Example:

```
# stcli services sch set --email name@company.com
```

Step 3 Verify data flow from your HX storage cluster to Support is operational.

Operational data flow ensures that pertinent information is readily available to help Support troubleshoot any issues that might arise.

--all option runs the commands on all the nodes in the HX cluster.

```
# asupcli [--all] ping
```

If you upgraded your HX storage cluster from HyperFlex 1.7.1 to 2.1.1b, also run the following command:

```
# asupcli [--all] post --type alert
```

Contact Support if you receive the following error:

```
root@ucs-stctlvm-554-1:/tmp# asupcli post --type alert
/bin/sh: 1: ansible: not found
Failed to post - not enough arguments for format string
root@ucs-stctlvm-554-1:/tmp#
```

Step 4 (Optional) Configure a proxy server to enable Smart Call Home access through port 443.

If your HX storage cluster is behind a firewall, after cluster creation, you must configure the Smart Call Home proxy server. Support collects data at the url: https://diag.hyperflex.io:443 endpoint.

a. Clear any existing registration email and proxy settings.

```
# stcli services sch clear
```

b. Set the proxy and registration email.

Syntax:

```
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Required or Optional</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--email EMAILADDRESS</td>
<td>Required</td>
<td>Add an email address for someone to receive email from Cisco support. Recommendation is to use a distribution list or alias.</td>
</tr>
</tbody>
</table>
Replacing Self-Signed with CA-Signed Certificate

Import CA certificate is automated through shell script. Generate CSR (certificate signing request) from any CVM, preferably from the CIP node. Only one CSR is required for the cluster as each CVM must be installed with the same certificate. When generating the CSR, you should enter the hostname assigned to the management CIP as the Common Name of the Subject’s Distinguished Name.

Step 5 Verify Smart Call Home is enabled.

When Smart Call Home configuration is set, it is automatically enabled.

```
# stcli services sch set
   --email name@company.com
   --proxy-url www.company.com
   --proxy-port 443
   --proxy-user admin
   --proxy-password adminpassword
```

c. Ping to verify the proxy server is working and data can flow from your HX storage cluster to the Support location.

```
# asupcli [--all] ping
   --all option runs the command on all the nodes in the HX cluster.
```

Step 6 Enable Auto Support (ASUP) notifications.

Typically, Auto Support (ASUP) is configured during HX storage cluster creation. If it was not, you can enable it post cluster creation using HX Connect or CLI. For more information, see Auto Support and Smart Call Home for HyperFlex.

Replacing Self-Signed with CA-Signed Certificate

Import CA certificate is automated through shell script. Generate CSR (certificate signing request) from any CVM, preferably from the CIP node. Only one CSR is required for the cluster as each CVM must be installed with the same certificate. When generating the CSR, you should enter the hostname assigned to the management CIP as the Common Name of the Subject’s Distinguished Name.
For example:

You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter ".", the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:CA
Locality Name (eg, city) []:San Jose
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Cisco
Organizational Unit Name (eg, section) []:HyperFlex
Common Name (e.g. server FQDN or YOUR name) []:<hostname-cluster-management-IP>
Email Address []:support@cisco.com

Once you get the CA certificate, import the certificate using the automated script. The script will update the certificate on that CVM only.

Procedure

Step 1
Script Location in CVM: /usr/share/springpath/storfs-misc/hx-scripts/

certificate_import_input.sh
run stcli cluster reregister

Step 2
In the Controller VM (Pointing to CIP), execute this commands to generate the CSR request.

openssl req -nodes -newkey rsa:2048 -keyout /etc/ssl/private/<Host Name of the CVM>.key -out /etc/ssl/certs/<Host Name of the CVM>.csr
cat /etc/ssl/certs/<host name mapped to the management CIP>.csr - Copy the request to any notepad.
Send the request to CA to generate the certificate

Step 3
Once you receive the certificate from CA (.crt files), copy the certificate and key to each CVM.

Step 4
On each CVM, use this script to import the certificate: /certificate_import_input.sh.

root@SpringpathControllerVUFSTD858L:/usr/share/springpath/storfs-misc/hx-scripts#/
./certificate_import_input.sh

Step 5
Enter the path for the key: /etc/ssl/private/<Host Name of the CVM>.key.

Step 6
Enter the path for the certificate in certificate format: <Path to the CA .crt file>

 Note
 After providing all the inputs, it takes some time to finish the import process.

Step 7
From the CVM pointing to CIP, run stcli reregister command to reregister the cluster to vCenter. It is mandatory to reregister the cluster once the certificate is imported.
Replication Pairing

Creating a replication cluster pair is a pre-requisite for setting up VMs for replication. The replication network and at least one datastore must be configured prior to creating the replication pair.

By pairing cluster 1 with cluster 2, you are specifying that all VMs on cluster 1 that are explicitly set up for replication can replicate to cluster 2, and that all VMs on cluster 2 that are explicitly set up for replication can replicate to cluster 1.

By pairing a datastore A on cluster 1 with a datastore B on cluster 2, you are specifying that for any VM on cluster 1 that is set up for replication, if it has files in datastore A, those files will be replicated to datastore B on cluster 2. Similarly, for any VM on cluster 2 that is set up for replication, if it has files in datastore B, those files will be replicated to datastore A on cluster 1.

Pairing is strictly 1-to-1. A cluster can be paired with no more than one other cluster. A datastore on a paired cluster, can be paired with no more than one datastore on the other cluster.

For the detailed procedure on creating, editing, and deleting replication pairs, see the Cisco HyperFlex Systems Administration Guide.

Adding Private VLAN

About Private VLANs

A private VLAN partitions the Layer 2 broadcast domain of a VLAN into subdomains, allowing you to isolate the ports on the switch from each other. A subdomain consists of a primary VLAN and one or more secondary VLANs. A private VLAN domain has only one primary VLAN. Each port in a private VLAN domain is a member of the primary VLAN, and the primary VLAN is the entire private VLAN domain.

Understanding Private VLAN Ports

Table 4: Types of Private VLAN Ports

<table>
<thead>
<tr>
<th>VLAN Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promiscuous Primary VLAN</td>
<td>Belongs to the primary VLAN. Can communicate with all interfaces that belong to those secondary VLANs that are associated to the promiscuous port and associated with the primary VLAN. Those interfaces include the community and isolated host ports. All packets from the secondary VLANs go through this VLAN.</td>
</tr>
<tr>
<td>Isolated Secondary VLAN</td>
<td>Host port that belongs to an isolated secondary VLAN. This port has complete isolation from other ports within the same private VLAN domain, except that it can communicate with associated promiscuous ports.</td>
</tr>
<tr>
<td>Community Secondary VLAN</td>
<td>Host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with associated promiscuous ports.</td>
</tr>
</tbody>
</table>
Following HX deployment, a VM network uses a regular VLAN by default. To use a Private VLAN for the VM network, see the following sections:

- Configuring a Private VLAN on a VM Network without Existing VMs, on page 117.
- Configuring a Private VLAN on a VM Network with Existing VMs, on page 117.

Configuring a Private VLAN on a VM Network without Existing VMs

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To configure a private VLAN on Cisco UCS Manager, see the Cisco UCS Manager Network Management Guide.</td>
</tr>
<tr>
<td>Step 2</td>
<td>To configure a private VLAN on the upstream switch, see the Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide.</td>
</tr>
<tr>
<td>Step 3</td>
<td>To configure a private VLAN on ESX hosts, see Configuring Private VLAN on ESX Hosts, on page 117.</td>
</tr>
</tbody>
</table>

Configuring Private VLAN on ESX Hosts

To configure private VLANs on the ESX hosts do the following:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Delete VMNICs on the vSphere Standard Switches from the VMware vSphere Client.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Create new vSphere Distributed Switch with the VMNICs deleted from the previous step.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Create promiscuous, isolated, and community VLAN.</td>
</tr>
</tbody>
</table>

Configuring a Private VLAN on a VM Network with Existing VMs

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>To configure a private VLAN on Cisco UCS Manager, see the Cisco UCS Manager Network Management Guide.</td>
</tr>
<tr>
<td>Step 2</td>
<td>To configure a private VLAN on the upstream switch, see the Cisco Nexus 9000 Series NX-OS Layer 2 Switching Configuration Guide.</td>
</tr>
<tr>
<td>Step 3</td>
<td>To configure a private VLAN on ESX hosts, see Configuring Private VLAN on ESX Hosts, on page 117.</td>
</tr>
</tbody>
</table>
| Step 4 | Migrate VMs from vSphere standard switch to the newly created vSphere distributed switch.
 a) Right-click the vCenter Virtual Machine and click **Migrate Virtual Machine Networking**.
 b) Choose **source network** and **destination network** from the drop-down list.
 c) Click **Next**. |
d) Select the Virtual Machines that you want to migrate.
e) Click Finish.

Step 5 Change network connection of the network adapter on the VMs to private VLAN.

a) Right-click the vCenter Virtual Machine and click **Edit Settings**.
b) Under the **Hardware** tab, select the network adapter you want to modify.
c) Select the **Network Connection** you want to use from the **Network Label** drop-down list.
d) Click **OK**.

Deleting VMNICs on the vSphere Standard Switch

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Log on to VMware vSphere Client.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select Home > Hosts and Clusters.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Select the ESX host from which you want to delete the VMNIC.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Open the Configuration tab.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Networking.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Select the switch you wish to remove a VMNIC from.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Click the Manage the physical adapters connected to the selected switch button.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Select the vmnic you want to delete and click Remove.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Confirm your selection by clicking Yes.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Click Close.</td>
</tr>
</tbody>
</table>

Creating vSphere Distributed Switch

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Log on to the VMware vSphere Client.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select Home > Networking.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Right click on the cluster Distributed Switch > New Distributed Switch.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Name and Location dialog box, enter a name for the distributed switch.</td>
</tr>
<tr>
<td>Step 5</td>
<td>In the Select Version dialog box, select the distributed switch version that correlates to your version and configuration requirements.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Click Next.</td>
</tr>
</tbody>
</table>
| Step 7 | In the **Edit Settings** dialog box, specify the following:
 - Number of uplink ports
 - Enable Network I/O Control.
 - Create a default port group should be checked. |
• Enter the default port group **name** in the **Port Group Name** box.

Step 8 Click Next.

Step 9 Review the settings in the **Ready to complete** dialog box.

Step 10 Click Finish.

Creating Private VLANs on vSphere Distributed Switch

Procedure

Step 1 From the VMware vSphere Client, select **Inventory > Networking**.

Step 2 Right-click on the dvSwitch.

Step 3 Click **Edit Settings**.

Step 4 Select the **Private VLAN** tab.

Step 5 On the **Primary private VLAN ID** tab, enter a **private VLAN ID**.

Step 6 On the **Secondary private VLAN ID** tab, enter a **private VLAN ID**.

Step 7 Select the type of VLAN from the **Type** drop-down list. Valid values include:

 - **Isolated**
 - **Community**
 - **Promiscuous** (Default)

Step 8 Click OK.

Set Private VLAN in Distributed Port Group

Before you begin

Create Private VLAN on the vSphere Distribute Switch.

Procedure

Step 1 Right click **dvPortGroup** under **dvSwitch**, and click **Edit Settings**.

Step 2 Click **Policies > VLAN**.

Step 3 Select **Private VLAN**, from the **VLAN type** drop-down list.

Step 4 From the **Private VLAN Entry** drop-down list, select the type of private VLAN. It can be one of the following:

 - **Isolated**
 - **Community**
Community private VLAN is recommended.
Promiscuous ports are not supported

Step 5 Click OK.

Distributed Virtual Switches and Cisco Nexus 1000v

Considerations when Deploying Distributed Switches

- Using Distributed Virtual Switches (DVS) or Cisco Nexus 1000v (NK1v) is an optional and not a required step.

- DVS for your vMotion network is available only if your environment has Enterprise Plus License for vSphere.

- You can use only one of the two switches at a given time.

- There may be a potential conflict between the Quality of Service (QoS) policy for HyperFlex and Nexus 1000v. Make sure that the QoS classes for N1Kv are set as per the HyperFlex policy. See Creating a QoS Policy, in the Network and Storage Management Guide.

- If you choose to deploy N1Kv switch, apply the settings as described, so that the traffic between the HyperFlex hosts flows locally on the FIs in a steady state. If not configured accurately, it could lead to a situation where most traffic will go through the upstream switches leading to latency. In order to avoid that scenario, ensure that the Storage Controller, Management Network, and vMotion port groups are configured with active/standby and failover enabled.

1. Set the link status for the Network Control Policy using UCS Manager. For details, see the "Configuring Network Control Policy" section in the Cisco UCS Manager GUI Configuration Guide.

2. Set the vSwitch properties in vCenter.
 a. Set the Network Failure Detection to Link Status only.
 b. Set Failback to Yes. For details, see the "Configuring the VM-FEX for VMware" section in the Cisco UCS Manager VM-FEX for VMware Configuration guide

Distributed switches ensure that each node is using the same configuration. It helps prioritize traffic and allows other network streams to utilize available bandwidth when no vMotion traffic is active.

The HyperFlex (HX) Data Platform can use Distributed Virtual Switch (DVS) Networks for non-HyperFlex dependent networks.

These non-HX dependent networks include:

- VMware vMotion networks
- VMware applications networks

The HX Data Platform has dependency that the following networks use standard vSwitches.
• vswitch-hx-inband-mgmt: Storage Controller Management Network
• vswitch-hx-inband-mgmt: Management Network
• vswitch-hx-storage-data: Storage Hypervisor Data Network
• vswitch-hx-storage-data: Storage Controller Data Network

During HX Data Platform installation, all the networks are configured with standard vSwitch networks. After the storage cluster is configured, the non-HX dependent networks can be migrated to DVS networks. For example:

• vswitch-hx-vm-network: VM Network
• vmotion: vmotion pg

For further details on how to migrate the vMotion Network to Distributed Virtual Switches, please see the Migrating vMotion Networks to Distributed Virtual Switches (DVS) or Cisco Nexus 1000v (N1Kv) in the Network and Storage Management Guide.

Hosting vCenter on the HX Data Platform

Deployment of vCenter on the HyperFlex cluster is supported with some constraints. See the How to Deploy vCenter on the HX Data Platform TechNote for more details.

Deploying AMD GPUs

AMD FirePro S7150 series GPUs are supported in HX240c M5 nodes. These graphic accelerators enable highly secure, high performance, and cost-effective VDI deployments. Follow the steps below to deploy AMD GPUs in HyperFlex.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Step Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>For the service profiles attached to the servers modify the BIOS policy.</td>
<td>Requirement For All Supported GPUs: Memory-Mapped I/O Greater than 4 GB</td>
</tr>
<tr>
<td>2</td>
<td>Install the GPU card in the servers.</td>
<td>GPU Card Installation</td>
</tr>
<tr>
<td>3</td>
<td>Power on the servers, and ensure that the GPUs are visible in the Cisco UCS Manager inventory for the servers.</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>Install the vSphere Installation Bundle (VIB) for the AMD GPU card and reboot.</td>
<td>Download the inventory list from Cisco Software Downloads that includes the latest driver ISO for C-series standalone firmware / software version bundle 3.1(3) for AMD on VMware ESXi</td>
</tr>
<tr>
<td>5</td>
<td>Create a Win10 VM on the cluster with the VM configuration.</td>
<td>Specifying Eligible Virtual Machines</td>
</tr>
<tr>
<td>Step</td>
<td>Action</td>
<td>Step Instructions</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>6</td>
<td>On each ESXi hosts run the <code>MxGPU.sh</code> script to configure the GPUs and to create virtual functions from the GPU.</td>
<td>Using the MxGPU Setup Script</td>
</tr>
<tr>
<td>7</td>
<td>Assign the virtual functions (VFs) created in the previous step to the Win10 VMs.</td>
<td>—</td>
</tr>
</tbody>
</table>
Setting Up Multiple HX Clusters

Multiple HyperFlex clusters may coexist under the same UCS domain (pair of fabric interconnects). The following guidelines should be followed to ensure smooth ongoing operations for all equipment connected to the domain.

Note

Having HX clusters with two different HX versions on the same UCSM domain is a supported configuration as long as the UCSM infrastructure release supports the needed server firmware bundles. HXDP versions are mapped to UCSM server firmware bundles per the release notes. The version of UCSM infrastructure is independent.

Recommendations

- The number of Compute-only nodes must be less than or equal to the number of converged nodes when using the standard HXDP license. The enterprise HXDP licenses allows a maximum 2:1 ratio of compute to converged nodes.

- To create a new HyperFlex cluster, ensure that all the requirements listed in Chapter 2 are met. In addition, follow the process as outlined in Chapter 4.

- Use the HX Data Platform Installer for the deployment.

- All nodes in an HX cluster should reference the same policies and service profiles.

- Assign a unique name for each HX cluster.

- Each HX cluster will be created in a unique sub-org as part of installation. Do not modify this hierarchy as it ensures unique policies are created per cluster.

- Each cluster should use a unique storage data VLAN to keep all storage traffic isolated. Reuse of this VLAN across multiple clusters is highly discouraged.

- When reusing VLANs (e.g. management and guest traffic VLANs), create a new unique VLAN name for each VLAN even if it already exists in UCSM. This will ensure no disruption to other clusters and servers in that domain.
• Ensure that you select the compatible Cisco UCS Manager and Cisco HyperFlex versions.

For the latest compatibility matrix, refer to the Software Versions table in the latest Release Notes for Cisco HX Data Platform.

• Ensure that you clear browser cache before setting up a second cluster on a different vCenter using the same Cisco HX Data Platform Installer. This avoids issues such as caching the older cluster's IP address which could result in deployment failure.

Note

You may need to add more uplink ports depending on your traffic.

Note

It is possible to use the same VLANs across multiple clusters connected to the same pair of Fabric Interconnects, for example - Management, vMotion and VM guest VLANs. This is possible as long as you do not overlap IPs. It is, however, recommended to keep the HX storage VLANs different per cluster to ensure storage traffic is secure and isolated. If deciding to reuse the storage VLAN against best practices, be extremely vigilant to avoid duplicate IPs. A duplicate IP can disrupt existing storage traffic on another cluster.

Procedure

Step 1
Log in to the HX Data Platform Installer.

Step 2
Follow the Create Cluster workflow for a standard cluster to create additional clusters. See Configure Cisco HyperFlex Systems, on page 55 for more details.
CHAPTER 10

Expand Cisco HyperFlex System Clusters

- Cluster Expansion Guidelines, on page 125
- Prerequisites When Creating a Mixed M4/M5 Cluster, on page 126
- Mixed Cluster Expansion Guidelines, on page 126
- Steps During Mixed Cluster Expansion, on page 127
- Prerequisites for Adding a Converged (HX220c/HX240c) Node, on page 127
- Preparing a Converged Node, on page 128
- Adding a Converged Node to an Existing Cluster, on page 129
- Prerequisites for Adding a Compute-Only Node, on page 137
- Preparing a Compute-Only Node, on page 138
- Adding a Compute-Only Node to an Existing Cluster, on page 140
- Resolving Failure of Cluster Expansion, on page 146
- Enabling Logical Availability Zones, on page 147

Cluster Expansion Guidelines

- If you have replication configured, put replication in pause mode before performing upgrade, expansion or cluster maintenance. After the upgrade, expansion or cluster maintenance is completed, then resume replication. Perform the pause and resume on any cluster that has replication configured to or from this local cluster.

- If you are using RESTful APIs to perform cluster expansion, sometimes the task may take longer than expected.

- ESXi installation is supported on SD cards for M4 converged nodes and M.2 SATA SSD for M5 converged nodes. For compute-only nodes, ESXi installation is supported for SD Cards, SAN boot, or front SSD/HDD. Installing ESXi on USB Flash is not supported for compute-only nodes.

 Note
 HW RAID M.2 (UCS-M2-HWRAID and HX-M2-HWRAID) is not supported on Compute-only nodes.

- Use only Admin credentials for the Controller VM during expansion work flow. Using any other credentials other than Admin may cause the expansion to fail.
ESXi Installation Guidelines

1. Modify boot policy for compute node.

 To modify the template and boot policy for HyperFlex Stretched Cluster compute only node on M5 server:
 a. Clone the template.
 b. Uncheck the Flex flash from local boot policy, if the compute M5 node does not have flash cards.
 c. Add the SAN boot with proper WWPN to the boot order.

2. Start the DPI expansion workflow.

3. When prompted, install ESXi using an ISO image.

4. Return to the DPI expansion workflow and complete the ESXi installation workflow.

 If the Hypervisor configuration fails with the SOL logging failure message, access the installer CLI through SSH with root and default password and configure the ESXi hypervisor. Then, run the advanced installer and check the HX Storage Software and Expand Cluster check boxes to proceed with the ESXi installation process.

Note

Prerequisites When Creating a Mixed M4/M5 Cluster

The following tasks should be performed prior to beginning cluster expansion in a mixed cluster:

- **Hypercheck Health Check Utility** — Cisco recommends running this proactive health check utility on your HyperFlex cluster prior to upgrade. These checks provide early visibility into any areas that may need attention and will help ensure a seamless upgrade experience. For more information, see the Hyperflex Health & Pre-Upgrade Check Tool TechNote for full instructions on how to install and run Hypercheck.

- Upgrade UCS Manager to 3.2(1d) or later.
- Upgrade the existing HX cluster fully to 2.6(1a) or later.
- Download and deploy the matching 2.6(1a) or later HX Data Platform Installer to run the expansion workflow.
- Upgrade existing M4 server firmware to the latest 3.2(1) patch release.
- Upgrade vCenter to 6.5 or later. Without vCenter 6.5, Broadwell EVC mode cannot be enabled. Only vCenter upgrade is required. ESXi can remain on an older version subject to the VMware software interoperability matrix. Proceeding with EVC mode off is not supported and will cause operational issues in the future.

Mixed Cluster Expansion Guidelines

- Expanding existing M4 cluster with M5 converged nodes is supported.
• Expanding existing M5 cluster with M4 converged nodes is not supported.

• Expanding existing mixed M4/M5 cluster with M4 or M5 converged nodes is supported.

• Adding any supported compute-only nodes is permitted with all M4, M5, and mixed M4/M5 clusters using the HX Data Platform 2.6 or later Installer. Some example combinations are listed here, many other combinations are possible.

Example combinations:
Expand mixed M4/M5 cluster with compute-only B200, C220, C240 M4/M5
Expand M4 cluster with compute-only B200 M5, C220 M5, C240 M5

• Only expansion workflow is supported to create a mixed cluster. Initial cluster creation with mixed M4/M5 servers is not supported.

• All M5 servers must match the form factor (220/240), type (Hybrid/AF), security capability (Non-SED only) & disk configuration (QTY, capacity, and non-SED) of the existing M4 servers.
 • HX220-M5 will use a maximum of 6 capacity disks (2 disk slots to remain empty) when mixed with HX220-M4.

• HX Edge, SED, LFF, Hyper-V, and Stretched Clusters do not support mixed M4 and M5 clusters.

Steps During Mixed Cluster Expansion

• During the validation steps, before expansion begins, an EVC check is performed. Follow the displayed guidance to manually enable EVC mode on the existing cluster at this time.

Caution
Failure to enable EVC at the time of the warning will require a complete shutdown of the storage cluster and all associated VMs at a later point in time. Do not skip this warning.

• Perform the EVC mode configuration in vCenter and then retry the validation.

• Cluster expansion will then validate a second time and then continue with the expansion.

Prerequisites for Adding a Converged (HX220c/HX240c) Node

A converged node can be added to a HyperFlex cluster after cluster creation. The storage on a converged node is automatically added to the cluster's storage capacity.

Before you start adding a converged node to an existing storage cluster, make sure that the following prerequisites are met.

• Ensure that the storage cluster state is healthy.

• Ensure that the new node meets the system requirements listed under Installation Prerequisites, including network and disk requirements.
Preparing a Converged Node

Procedure

Step 1 Connect the converged node to the hardware and the network of the existing storage cluster. For more details refer to Installation Prerequisites.

Step 2 Ensure that the HX node is a node prepared at factory.

Note If the node is not prepared at factory, for manually preparing the HX servers, refer the Cisco HyperFlex Systems Customized Installation Method section in the Cisco HyperFlex Systems Installation Guide for VMware ESXi.

• Ensure that the new node uses the same configuration as the other nodes in the storage cluster. This includes VLAN IDs and switch types (whether vSwitches), VLAN tagging with External Switch VLAN Tagging (EST), VLAN tagging with Virtual Switch Tagging (VST), or Virtual Distributed Switch.

Note If the storage cluster is in an out of space condition, when you add a new node, the system automatically rebalances the storage cluster. This is in addition to the rebalancing that is performed every 24 hours.

• Ensure that the node you add is of the same model (HX220 or HX240) type (Hybrid or All Flash), and disk configuration (SED or non-SED). In addition, ensure that the number of capacity disks matches the existing cluster nodes.

• To add a node that has a different CPU family from what is already in use in the HyperFlex cluster, enable EVC. For more details, see the Setting up Clusters with Mixed CPUs section in the Cisco HyperFlex Systems Installation Guide for VMware ESXi.

• Ensure that the software version on the node matches the Cisco HX Data Platform version, the ESXi version, and the vCenter version. To identify the software version, go to the Storage Cluster Summary tab in vCenter and check the HX Data Platform version in the top section. Upgrade if necessary.

Note If you upgraded the cluster, you must download and install a new installer VM, that matches the current version of HXDP running on the cluster.

• Ensure that the new node has at least one valid DNS and NTP server configured.

• If you are using SSO or Auto Support, ensure that the node is configured for SSO and SMTP services.

• Allow ICMP for ping between the HX Data Platform Installer and the existing cluster management IP address.
Adding a Converged Node to an Existing Cluster

If you are using RESTful APIs to perform cluster expansion, sometimes the task may take longer than expected.

Procedure

Step 1
Launch the Cisco HX Data Platform Installer.

a) In your web browser, enter the IP address or the node name for the HX Data Platform Installer VM. Click Accept or Continue to bypass any SSL certificate errors. The Cisco HX Data Platform Installer login page appears. Verify the HX Data Platform Installer Build ID in the lower right corner of the login screen.

b) In the login page, enter the following credentials:

 - Username: root
 - Password (Default): Cisco123

 Note: Systems ship with a default password of Cisco123 that must be changed during installation. You cannot continue installation unless you specify a new user supplied password.

c) Read the EULA, check the I accept the terms and conditions checkbox, and click Login.

Step 2
On the Workflow page, select Cluster Expansion.

Step 3
On the Credentials page, complete the following fields.

To perform cluster creation, you can import a JSON configuration file with the required configuration data. The following two steps are optional if importing a JSON file, otherwise you can input data into the required fields manually.

Note: For a first-time installation, contact your Cisco representative to procure the factory preinstallation JSON file.

a. Click Select a file and choose your JSON file to load the configuration. Select Use Configuration.

b. An Overwrite Imported Values dialog box displays if your imported values for Cisco UCS Manager are different. Select Use Discovered Values.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS Manager Credentials</td>
<td></td>
</tr>
<tr>
<td>UCS Manager Host Name</td>
<td>UCS Manager FQDN or IP address. For example, 10.193.211.120.</td>
</tr>
<tr>
<td>User Name</td>
<td><admin> username.</td>
</tr>
<tr>
<td>Password</td>
<td><admin> password.</td>
</tr>
</tbody>
</table>
vCenter Credentials

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCenter Server</td>
<td>vCenter server FQDN or IP address. For example, 10.193.211.120.</td>
</tr>
</tbody>
</table>

Note
- A vCenter server is required before the cluster can be made operational.
- The vCenter address and credentials must have root level administrator permissions to the vCenter.
- vCenter server input is optional if you are building a nested vCenter. See the [Nested vCenter TechNote](#) for more details.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name</td>
<td><admin> username. For example, administrator@vsphere.local.</td>
</tr>
<tr>
<td>Admin Password</td>
<td><root> password.</td>
</tr>
</tbody>
</table>

Hypervisor Credentials

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin User Name</td>
<td><admin> username. This is root for factory nodes.</td>
</tr>
<tr>
<td>Admin Password</td>
<td><root> password. Default password is Cisco123 for factory nodes. Note Systems ship with a default password of Cisco123 that must be changed during installation. You cannot continue installation unless you specify a new user supplied password.</td>
</tr>
</tbody>
</table>

Step 4
Click **Continue**. A **Cluster Expand Configuration** page is displayed. Select the **HX Cluster** that you want to expand.

If the HX cluster to be expanded is not found, or if loading the cluster takes time, enter the IP of the Cluster Management Address in the **Management IP Address** field.

Step 5
The **Server Selection** page displays a list of unassociated HX servers under the **Unassociated** tab, and the list of discovered servers under the **Associated** tab. Select the servers under the **Unassociated** tab to include in the HyperFlex cluster.

If HX servers do not appear in this list, check Cisco UCS Manager and ensure that they have been discovered.

For each server you can use the **Actions** drop-down list to set the following:
• **Launch KVM Console**—Choose this option to launch the KVM Console directly from the HX Data Platform Installer.

• **Disassociate Server**—Choose this option to remove a service profile from that server.

Note If there are no unassociated servers, the following error message is displayed:

No unassociated servers found. Please login to UCS Manager and ensure server ports are enabled.

The **Configure Server Ports** button allows you to discover any new HX nodes. Typically, the server ports are configured in Cisco UCS Manager before you start the configuration.

Step 6 Click **Continue**. The **UCSM Configuration** page appears.

Note If you imported a JSON file at the beginning, the **Credentials** page should be populated with the required configuration data from the preexisting HX cluster. This information must match your existing cluster configuration.

Step 7 In the **UCSM Configuration** page, complete the following fields for each network.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN Configuration</td>
<td>Use separate subnet and VLANs for each of the following networks.</td>
</tr>
<tr>
<td>Note</td>
<td>VLAN for Hypervisor and HyperFlex management</td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: hx-inband-mgmt</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3091</td>
</tr>
<tr>
<td>VLAN for HyperFlex storage traffic</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: hx-storage-data</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3092</td>
</tr>
<tr>
<td>VLAN for VM vMotion</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: hx-vmotion</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3093</td>
</tr>
<tr>
<td>VLAN for VM Network</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: vm-network</td>
</tr>
<tr>
<td>VLAN ID(s)</td>
<td>Default VLAN ID: 3094</td>
</tr>
<tr>
<td>A comma-separated list of guest VLANs.</td>
<td></td>
</tr>
<tr>
<td>MAC Pool</td>
<td>Configure MAC Pool prefix by adding in two more hex characters (0-F). For example, 00:25:B5:A0.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>'hx-ext-mgmt' IP Pool for Out-of-Band CIMC</td>
<td>The range of IP addresses designated for the HyperFlex nodes. This can be a comma-separated list of values for the guest VLANs. For example, 10.193.211.124-127, 10.193.211.158-163</td>
</tr>
<tr>
<td>IP Blocks</td>
<td>Set the subnet to the appropriate level to limit and control IP addresses. For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address. For example, 10.193.0.1.</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>IP address. For example, 10.193.0.1.</td>
</tr>
</tbody>
</table>

iSCSI Storage

Note This must be configured upfront if you want to use external storage at any point in the future.

<table>
<thead>
<tr>
<th>Enable iSCSI Storage checkbox</th>
<th>Check to configure iSCSI storage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN A Name</td>
<td>Name of the VLAN associated with the iSCSI vNIC, on the primary fabric interconnect (FI-A).</td>
</tr>
<tr>
<td>VLAN A ID</td>
<td>ID of the VLAN associated with the iSCSI vNIC, on the primary fabric interconnect (FI-A).</td>
</tr>
<tr>
<td>VLAN B Name</td>
<td>Name of the VLAN associated with the iSCSI vNIC, on the subordinate fabric interconnect (FI-B).</td>
</tr>
<tr>
<td>VLAN B ID</td>
<td>ID of the VLAN associated with the iSCSI vNIC, on the subordinate fabric interconnect (FI-A).</td>
</tr>
</tbody>
</table>

FC Storage

Note This must be configured upfront if you want to use external storage at any point in the future.

<table>
<thead>
<tr>
<th>Enable FC Storage checkbox</th>
<th>Check to enable FC Storage.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWxN Pool</td>
<td>A WWN pool that contains both WW node names and WW port names. For each fabric interconnect, a WWxN pool is created for WWPN and WWNN.</td>
</tr>
<tr>
<td>VSAN A Name</td>
<td>The name of the VSAN for the primary fabric interconnect (FI-A). By default, this is set to hx-ext-storage-fc-a.</td>
</tr>
</tbody>
</table>
Field | Description
--- | ---
VSAN A ID | The unique identifier assigned to the network for the primary fabric interconnect (FI-A). **Caution** Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.

VSAN B Name | The name of the VSAN for the subordinate fabric interconnect (FI-B). By default, this is set to `hx-ext-storage-fc-b`.

VSAN B ID | The unique identifier assigned to the network for the subordinate fabric interconnect (FI-B). **Caution** Do not enter VSAN IDs that are currently used on the UCS or HyperFlex system. If you enter an existing VSAN ID in the installer which utilizes UCS zoning, zoning will be disabled in your existing environment for that VSAN ID.

Advanced

UCS Firmware Version | Select the UCS firmware version to associate with the HX servers from the drop-down list. The UCS firmware version must match the UCSM version. See the latest Cisco HX Data Platform Release Notes for more details. For example, 3.2(1d).

HyperFlex Cluster Name | The name applied to a group of HX Servers in a given cluster. This is a user-defined name. The HyperFlex cluster name adds a label to service profiles for easier identification.

Org Name | Displays a unique `Org Name` of the cluster, that ensures isolation of the HyperFlex environment from the rest of the UCS domain.

Note Review the VLAN, MAC pool, and IP address pool information in the Configuration pane. These VLAN IDs might be changed by your environment. By default, the Installer sets the VLANs as non-native. You must configure the upstream switches to accommodate the non-native VLANs by appropriately applying a trunk configuration.

Step 8 Click Continue. The Hypervisor Configuration page appears. Complete the following fields:
Attention You can skip the completion of the fields described in this step in case of a reinstall, and if ESXi networking has been completed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Common Hypervisor Settings</td>
<td></td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Set the subnet mask to the appropriate level to limit and control IP addresses. For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address of gateway. For example, 10.193.0.1.</td>
</tr>
<tr>
<td>DNS Server(s)</td>
<td>IP address for the DNS Server. If you do not have a DNS server, do not enter a hostname in any of the fields on the Cluster Configuration page of the HX Data Platform installer. Use only static IP addresses and hostnames for all ESXi hosts. Note If you are providing more than one DNS server, check carefully to ensure that both DNS servers are correctly entered, separated by a comma.</td>
</tr>
</tbody>
</table>

Hypervisor Settings

Ensure to select **Make IP Addresses and Hostnames Sequential**, to make the IP addresses sequential. **Note** You can rearrange the servers using drag and drop.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Server name.</td>
</tr>
<tr>
<td>Serial</td>
<td>Serial number of the server.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>Input static IP addresses and hostnames for all ESXi hosts.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Do not leave the hostname fields empty.</td>
</tr>
</tbody>
</table>

Step 9

Click **Continue**. The *IP Addresses* page appears. You can add more compute or converged servers, by clicking **Add Compute Server** or **Add Converged Server**.

Ensure to select **Make IP Addresses Sequential**, to make the IP addresses sequential. For the IP addresses, specify if the network should belong to Data Network or Management Network.

For each HX node, complete the following fields for Hypervisor Management and Data IP addresses.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor management network connection between the ESXi host and the storage cluster.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Management Storage Controller</td>
<td>Enter the static IP address that handles the HX Data Platform storage controller VM management network connection between the storage controller VM and the storage cluster.</td>
</tr>
<tr>
<td>Data Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor data network connection between the ESXi host and the storage cluster.</td>
</tr>
<tr>
<td>Data Storage Controller</td>
<td>Enter the static IP address that handles the HX Data Platform storage controller VM data network connection between the storage controller VM and the storage cluster.</td>
</tr>
</tbody>
</table>

When you enter IP addresses in the first row for Hypervisor (Management), Storage Controller VM (Management), Hypervisor (Data), and Storage Controller VM (Data) columns, the HX Data Platform Installer applies an incremental auto-fill to the node information for the rest of the nodes. The minimum number of nodes in the storage cluster is three. If you have more nodes, use the **Add** button to provide the address information.

Note Compute-only nodes can be added only after the storage cluster is created.

Controller VM Password

A default administrator username and password is applied to the controller VMs. The VMs are installed on all converged and compute-only nodes.

Important

- You cannot change the name of the controller VM or the controller VM’s datastore.
- Use the same password for all controller VMs. The use of different passwords is not supported.
- Provide a complex password that includes 1 uppercase character, 1 digit, 1 special character, and a minimum of 10 characters in total.
- You can provide a user-defined password for the controller VMs and for the HX cluster to be created. For password character and format limitations, see the section on Guidelines for HX Data Platform Special Characters in the *Cisco HX Data Platform Management Guide*.

Advanced Configuration
Jumbo frames

Enable Jumbo Frames checkbox

Check to set the MTU size for the storage data network on the host vSwitches and vNICs, and each storage controller VM.

The default value is 9000.

Note To set your MTU size to a value other than 9000, contact Cisco TAC.

Disk Partitions

Clean up Disk Partitions checkbox

Check to remove all existing data and partitions from all nodes added to the storage cluster. You must backup any data that should be retained.

Important Do not select this option for factory prepared systems. The disk partitions on factory prepared systems are properly configured. For manually prepared servers, select this option to delete existing data and partitions.

Step 10

Click **Start**. A **Progress** page displays the progress of various configuration tasks.

Note If the vCenter cluster has EVC enabled, the deploy process fails with a message: The host needs to be manually added to vCenter. To successfully perform the deploy action, do the following:

- Log in to the ESXi host to be added in vSphere Client.
- Power off the controller VM.
- Add the host to the vCenter cluster in vSphere Web Client.
- In the HX Data Platform Installer, click **Retry Deploy**.

Step 11

When cluster expansion is complete, start managing your storage cluster by clicking **Launch HyperFlex Connect**.

Note When you add a node to an existing storage cluster, the cluster continues to have the same HA resiliency as the original storage cluster until auto-rebalancing takes place at the scheduled time.

Rebalancing is typically scheduled during a 24-hour period, either 2 hours after a node fails or if the storage cluster is out of space.

If you need to rebalance the storage cluster before the scheduled time, initiate rebalance storage cluster command manually as shown below.

From a storage cluster controller VM command line, run the following commands:

a.
 `# stcli rebalance start --force`

b.
 To monitor rebalance status

 `# stcli rebalance status`
Step 12
After the new nodes are added to the storage cluster, HA services are reset so that HA is able to recognize the added nodes.

a) Log in to vSphere.
b) In the vSphere Web Client, navigate to Home > vCenter > Inventory Lists > Hosts and Clusters > vCenter > Server > Datacenter > Cluster > Host.
c) Select the new node.
d) Right-click and select Reconfigure for vSphere HA.

Prerequisites for Adding a Compute-Only Node

A compute-only node can be added to a HyperFlex cluster, after cluster creation. It is added to provide extra compute resources. The Cisco UCS server does not need to have any caching or persistent drives as they do not contribute any storage capacity to the cluster.

Before you start adding a compute-only node, make sure that the following prerequisites are met.

• Ensure that the storage cluster state is healthy.

• Ensure that the new node meets the compute-only system requirements listed in Installation Prerequisites, including network and disk requirements.

• Install ESXi hypervisor after service profile association.

• Ensure that the new node uses the same configuration as the other nodes in the storage cluster. This includes VLAN IDs and switch types (whether vSwitches), VLAN tagging with External Switch VLAN Tagging (EST), VLAN tagging with Virtual Switch Tagging (VST), or Virtual Distributed Switch.

Note
If the storage cluster is in an out of space condition, when you add a new node, the system automatically rebalances the storage cluster. This is in addition to the rebalancing that is performed every 24 hours.

• Enable EVC if the new node to be added has a different CPU family than what is already used in the HX cluster. For more details, see the Setting up Clusters with Mixed CPUs section in the Cisco HyperFlex Systems Installation Guide for VMware ESXi.

• Ensure that the software version on the node matches the Cisco HX Data Platform version, the ESXi version, and the vCenter version. To identify the software version, go to the Storage Cluster Summary tab in vCenter and check the HX Data Platform version in the top section. Upgrade if necessary.

• Ensure that the new node has at least one valid DNS and NTP server configured.

• If you are using SSO or Auto Support, ensure that the node is configured for SSO and SMTP services.

• ESXi installation is supported on SD cards for M4 converged nodes and M.2 SATA SSD for M5 converged nodes. For compute-only nodes, ESXi installation is supported for SD Cards, SAN boot, or front SSD/HDD. Installing ESXi on USB Flash is not supported for compute-only nodes.
Preparing a Compute-Only Node

Procedure

Step 1 Ensure that the server is a supported HX server and meets the requirements. For more details, see the Host Requirements section in the Cisco HyperFlex Systems Installation Guide for VMware ESXi.

Step 2 Log in to Cisco UCS Manager.
 a) Open a browser and enter the Cisco UCS Manager address for the fabric interconnect of the storage cluster network.
 b) Click the Launch UCS Manager button.
 c) If prompted, download, install, and accept Java.
 d) Log in with administrator credentials.

 Username: admin

 Password: <admin password>

Step 3 Locate the server to ensure that the server has been added to the same FI domain as the storage cluster and is an approved compute-only model. Check the latest Release Notes for Cisco HX Data Platform for a full list of compatible Compute-only nodes.

Verify the HX Data Platform Installer

Procedure

Step 1 Verify that the HX Data Platform installer is installed on a node that can communicate with all the nodes in the storage cluster and compute nodes that are being added to the storage cluster.

Step 2 If the HX Data Platform installer is not installed, see Deploy the HX Data Platform Installer.

Apply an HX Profile on a Compute-only Node Using UCS Manager

In Cisco UCS Manager the network policies are grouped into an HX profile. The HX installer handles automatic service profile association for compute-only nodes. Manual association is not required.
Install VMware ESXi on Compute Nodes

Important

Install VMware ESXi on each compute-only node.

Install a Cisco HX Data Platform supported version of ESXi. See the [Cisco HyperFlex Data Platform Release Notes](#) for a list of supported ESXi versions.

If the compute only node already has ESXi installed, it must be re-imaged with the Cisco HX Custom image.

Before you begin

Ensure the required hardware and network settings are met. For more details, see the *Installation Prerequisites* section in the *Cisco HyperFlex Systems Installation Guide for VMware ESXi*. Ensure the service profiles in the previous step have finished associating.

Procedure

Step 1

Download the *HX Custom Image for ESXi* from the Cisco.com download site for Cisco HyperFlex. See [Download Software](#).

Select a networked location that can be accessed through Cisco UCS Manager.

Step 2

Log in to Cisco UCS Manager.

Step 3

Log in to the KVM console of the server through Cisco UCS Manager.

a) In the Navigation Pane, click **Servers > Service Profiles > Sub-Organizations > hx-cluster**.

b) Right click the **hx-cluster** and choose **KVM Console**.

Step 4

Copy the *HX-Vmware.iso* image to the KVM path for the compute server.

Example:

HX-Vmware-ESXi-60U3-5050593-Cisco-Custom-6.0.3.1.iso

Step 5

From the KVM console session, select **Virtual Media > Map CD/DVD** and mount the *HX Custom Image for ESXi* image. If you do not see the **Map CD/DVD** option, first activate virtual devices.

a) Select **Virtual Media > Activate Virtual Devices**.

 This opens in a pop-up window.

b) Click **Accept the session > Apply**.

Step 6

From the **Map CD/DVD** option, map to the location of the *HX-Vmware.iso* file.

a) Select the *HX-Vmware.iso* file.
b) Select **Map Device**.

There is a check mark indicating that the file is on a mapped location, once the process is complete. The mapped file's full name includes the ESXi build ID.

Step 7
Reset the compute server.

a) Click the **Reset** button on the KVM console. Click **OK** to confirm.

b) Select **Power Cycle**. Click **OK**.

Step 8
Change the boot path to point to the **HX-Vmware.iso** file.

a) Press **F6**.

b) From the **Enter boot selection** menu, use the arrow keys to highlight the **Cisco vKVM-Mapped vDVD1.22** option.

c) Press **Enter** to select.

This launches the ESXi installer bootloader. Select one of the three compute-only node options based on desired boot type: SD Card, Local Disk, or Remote Disk. Type in **yes** (all lowercase) to confirm selection. The rest of the installation is automated. ESXi will reboot several times. It is normal to see warnings that automatically dismiss after a short wait period. Wait for the **ESXi DCUI** to fully appear, signaling the end of installation.

Step 9
Repeat steps 3 to 8 for each Cisco HyperFlex server.

Step 10
Once ESXi is fully installed, click **continue**. Then click **Retry Hypervisor Configuration** to complete the rest of the cluster expansion.

Adding a Compute-Only Node to an Existing Cluster

To add a HyperFlex compute-only node to an existing HyperFlex system cluster, complete the following steps.

Note
If you are using RESTful APIs to perform cluster expansion, sometimes the task may take longer than expected.

Note
After you add a compute-only node to an existing cluster, you must manually configure the vmk2 interface for vmotion.

Procedure

Step 1
Launch the Cisco HX Data Platform Installer.

a) In your web browser, enter the IP address or the node name for the HX Data Platform Installer VM. Click **Accept** or **Continue** to bypass any SSL certificate errors. The Cisco HX Data Platform Installer login page appears. Verify the HX Data Platform Installer **Build ID** in the lower right corner of the login screen.

b) In the login page, enter the following credentials:
Username: root
Password (Default): Cisco123

Note Systems ship with a default password of Cisco123 that must be changed during installation. You cannot continue installation unless you specify a new user supplied password.

c) Read the EULA, check the I accept the terms and conditions checkbox, and click Login.

Step 2 On the Workflow page, select Cluster Expansion.
Step 3 On the Credentials page, complete the following fields.

To perform cluster creation, you can import a JSON configuration file with the required configuration data. The following two steps are optional if importing a JSON file, otherwise you can input data into the required fields manually.

Note For a first-time installation, contact your Cisco representative to procure the factory preinstallation JSON file.

a. Click Select a file and choose your JSON file to load the configuration. Select Use Configuration.

b. An Overwrite Imported Values dialog box displays if your imported values for Cisco UCS Manager are different. Select Use Discovered Values.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCS Manager Credentials</td>
<td></td>
</tr>
<tr>
<td>UCS Manager Host Name</td>
<td>UCS Manager FQDN or IP address.</td>
</tr>
<tr>
<td></td>
<td>For example, 10.193.211.120.</td>
</tr>
<tr>
<td>User Name</td>
<td><admin> username.</td>
</tr>
<tr>
<td>Password</td>
<td><admin> password.</td>
</tr>
<tr>
<td>vCenter Credentials</td>
<td></td>
</tr>
<tr>
<td>vCenter Server</td>
<td>vCenter server FQDN or IP address.</td>
</tr>
<tr>
<td></td>
<td>For example, 10.193.211.120.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>• A vCenter server is required before the cluster can be made operational.</td>
</tr>
<tr>
<td></td>
<td>• The vCenter address and credentials must have root level administrator permissions to the vCenter.</td>
</tr>
<tr>
<td></td>
<td>• vCenter server input is optional if you are building a nested vCenter. See the Nested vCenter TechNote for more details.</td>
</tr>
</tbody>
</table>
Hypervisor Credentials

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin User Name</td>
<td><code><admin></code> username. For example, <code>administrator@vsphere.local</code>.</td>
</tr>
<tr>
<td>Admin Password</td>
<td><code><root></code> password. Default password is <code>Cisco123</code> for factory nodes.</td>
</tr>
</tbody>
</table>

Note
- Systems ship with a default password of `Cisco123` that must be changed during installation. You cannot continue installation unless you specify a new user supplied password.

Adding a Compute-Only Node to an Existing Cluster

Step 4
Click **Continue**. A **Cluster Expand Configuration** page is displayed. Select the **HX Cluster** that you want to expand.

If the HX cluster to be expanded is not found, or if loading the cluster takes time, enter the IP of the Cluster Management Address in the **Management IP Address field**.

Step 5
Click **Continue**. A **Server Selection** page is displayed. On the **Server Selection** page, the **Associated** tab lists all the HX servers that are already connected. Do not select them. On the **Unassociated** tab, select the servers you wish to add to the cluster.

Step 6
Click **Continue**. A **UCS Manager Configuration** page is displayed.

Note
- If you imported a JSON file at the beginning, the fields should be populated with the required configuration data from the pre-existing HX cluster. If the server to add into the cluster is not associated, select them and click **Continue**.

- This information must match your existing cluster configuration. Ensure that you use the proper settings on this page.

Enter the following information for each network:

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN for ESXi and HyperFlex management</td>
<td></td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: hx-inband-mgmt</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3091</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN for HyperFlex Storage traffic</td>
<td></td>
</tr>
<tr>
<td>Field</td>
<td>Information</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>VLAN Name</td>
<td>Name: hx-storage-data</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3092</td>
</tr>
<tr>
<td>VLAN for VM vMotion</td>
<td>Name: hx-vmotion</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3093</td>
</tr>
<tr>
<td>VLAN for VM Network</td>
<td>Name: hx-vm-network</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>Default VLAN ID: 3094</td>
</tr>
<tr>
<td>MAC Pool</td>
<td>For example, 00:25:B5:99 (99 is default and can be set as per the user environment).</td>
</tr>
<tr>
<td>MAC Pool Prefix</td>
<td>hx-ext-mgmt IP Pool for Out-of-Band CIMC</td>
</tr>
<tr>
<td>IP Blocks</td>
<td>The range of IP addresses designated for the HyperFlex nodes. This can be a comma-separated list of values for the guest VLANs.</td>
</tr>
<tr>
<td></td>
<td>For example, 10.193.211.124-127, 10.193.211.158-163, 255.255.255.0.</td>
</tr>
<tr>
<td></td>
<td>Enter IP address of gateway. For example, 10.193.0.1.</td>
</tr>
<tr>
<td>Subnet</td>
<td>Set the subnet to the appropriate level to limit and control IP addresses.</td>
</tr>
<tr>
<td></td>
<td>For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Default gateway</td>
<td>IP address.</td>
</tr>
<tr>
<td></td>
<td>For example, 10.193.0.1.</td>
</tr>
<tr>
<td>Advanced</td>
<td>UCS Firmware version</td>
</tr>
<tr>
<td></td>
<td>Select the UCS firmware version to associate with the HX servers from the drop-down list. The UCS firmware version must match the UCSM version. See the latest Cisco HX Data Platform Release Notes for more details.</td>
</tr>
<tr>
<td></td>
<td>For example, 3.2(1d).</td>
</tr>
<tr>
<td>HyperFlex Cluster Name</td>
<td>The name applied to a group of HX Servers in a given cluster. This is a user-defined name. The HyperFlex cluster name adds a label to service profiles for easier identification.</td>
</tr>
</tbody>
</table>
Review the VLAN, MAC pool, and IP address pool information in the Configuration pane. These VLAN IDs might be changed by your environment. By default, the Installer sets the VLANs as non-native. You must configure the upstream switches to accommodate the non-native VLANs by appropriately applying a trunk configuration.

Step 7

Click **Continue**. The **Hypervisor Configuration** page appears. Complete the following fields:

Attention You can skip the completion of the fields described in this step in case of a reinstall, and if ESXi networking has been completed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Common Hypervisor Settings</td>
<td></td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>Set the subnet mask to the appropriate level to limit and control IP addresses. For example, 255.255.0.0.</td>
</tr>
<tr>
<td>Gateway</td>
<td>IP address of gateway. For example, 10.193.0.1.</td>
</tr>
<tr>
<td>DNS Server(s)</td>
<td>IP address for the DNS Server. If you do not have a DNS server, do not enter a hostname in any of the fields on the Cluster Configuration page of the HX Data Platform installer. Use only static IP addresses and hostnames for all ESXi hosts. Note If you are providing more than one DNS server, check carefully to ensure that both DNS servers are correctly entered, separated by a comma.</td>
</tr>
</tbody>
</table>

Hypervisor Settings

Ensure to select **Make IP Addresses and Hostnames Sequential**, to make the IP addresses sequential.

Note You can rearrange the servers using drag and drop.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Server name.</td>
</tr>
<tr>
<td>Serial</td>
<td>Serial number of the server.</td>
</tr>
<tr>
<td>Static IP Address</td>
<td>Input static IP addresses and hostnames for all ESXi hosts.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Do not leave the hostname fields empty.</td>
</tr>
</tbody>
</table>

Step 8

Click **Continue**. An **IP Addresses** page is displayed. Click **Add Compute-only Node** to add a new node. If you are adding more than one compute-only node, select **Make IP Addresses Sequential**.
<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor management network connection between the ESXi host and storage cluster.</td>
</tr>
<tr>
<td>Management Storage Controller</td>
<td>None.</td>
</tr>
<tr>
<td>Data Hypervisor</td>
<td>Enter the static IP address that handles the Hypervisor data network connection between the ESXi host and the storage cluster.</td>
</tr>
<tr>
<td>Data Storage Controller</td>
<td>None.</td>
</tr>
<tr>
<td>Controller VM</td>
<td>Enter the default Admin username and password that were applied to controller VMs when they were installed on the existing HX Cluster. Note: The name of the controller VM cannot be changed. Use the existing cluster password.</td>
</tr>
</tbody>
</table>

Step 9

Click **Start**. A **Progress** page displays the progress of various configuration tasks.

Note
By default no user intervention is required if you are booting from FlexFlash (SD Card). However, if you are setting up your compute-only node to boot from a local disk, complete the following steps in Cisco UCS Manager:

1. Click the service profile created by the HX Data Platform Installer. For example, `blade-1(HX_Cluster_Name)`.
2. On the **General** tab, click **Unbind from the Template**.
3. In the working pane, click the **Storage** tab. Click the **Local Disk Configuration Policy** sub tab.
4. In the Actions area, select **Change Local Disk Configuration Policy > Create Local Disk Configuration Policy**.
5. Under **Create Local Disk Configuration Policy**, enter a name for the policy, and keep the rest as default. Click **Ok**.
6. In the **Change Local Disk Configuration Policy** Actions area, select the newly created local disk configuration policy from the drop-down list. Click **Ok**.
g. Now, go back to the HX Data Platform Installer UI and click Continue, and then click Retry UCSM.

Compute Node Expansion - ESXi Installation Required

ESXi must be installed on all nodes being added at this point using the HX ESXi ISO on cisco.com

Using an existing installation of ESXi will cause installation to fail. Other ESXi ISOs other than the one posted on Cisco are not supported.

Once ESXi is installed, select Continue and then Retry to continue installation. Full instructions can be found below.

If ESXi is already installed using the HX ESXi ISO wait for it to boot and then select Continue and Retry to continue installation.

Note
If the vCenter cluster has EVC enabled, the deploy process fails. The host needs to be manually added to vCenter. To successfully perform the deploy action, do the following:

a) Log into the ESXi host to be added in vSphere Client.
b) Power off the controller VM.
c) Add the host to the vCenter cluster in vSphere Web Client.
d) In the HX installer, click Retry Deploy.

Step 10
When installation is complete, start managing your storage cluster by clicking Launch HyperFlex Connect.

Step 11
After the new nodes are added to the storage cluster, HA services are reset so that HA is able to recognize the added nodes.

a) Log on to VMware vSphere Client.
b) Select Home > Hosts and Clusters > Datacenter > Cluster > Host.
c) Select the new node.
d) Right-click and select Reconfigure for vSphere HA.

Step 12
After adding compute-only nodes to an existing cluster, you must manually configure the vmk2 interface for vmotion.

Resolving Failure of Cluster Expansion

If you receive an error dialog box and the storage cluster expansion doesn't complete, proceed with the resolution options listed below:
Procedure

Step 1 Edit Configuration - Returns you to the Cluster Configuration page. You fix the issues listed in the validation page.

Step 2 Start Over - Allows you to reverse the settings you applied by clearing progress table entries and you are returned to the Cluster Configuration page to restart a new deployment. See Technical Assistance Center (TAC).

Step 3 Continue - Adds the node to the storage cluster in spite of the failure generating errors. See Technical Assistance Center (TAC).

Note Select the Continue button only if you understand the failures and are willing to accept the possibility of unpredictable behavior.

For more information about cleaning up a node for the purposes of redeploying HyperFlex, see the HyperFlex Customer Cleanup Guides for FI and Edge.

Enabling Logical Availability Zones

Once you have successfully configured your HyperFlex cluster, refer to the commands below to enable or disable Logical Availability Zones (LAZ).

Please be advised to wait for at least 10 seconds between successive invocations of LAZ disable and, LAZ enable operations in that order.

In case of fresh cluster installation, for best results, it is recommended that LAZ is enabled during cluster creation.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stcli cluster get-zone</td>
<td>Checks if zones are enabled.</td>
</tr>
<tr>
<td>stcli cluster set-zone --zone 0</td>
<td>Disables zones.</td>
</tr>
</tbody>
</table>
Requirements and Limitations for Logical Availability Zones

Logical Availability Zones (LAZ) are subject to the following requirements and limitations:

- Only HyperFlex clusters with 8 nodes or more can be configured with Logical Availability Zones during the installation process.

- Logical Availability Zones can be enabled during the HyperFlex cluster installation, or it can be enabled using the command line interface at a later time. It is recommended to enable this feature during installation, in order to avoid a large migration and reorganization of data across the cluster, which would be necessary to comply with the data distribution rules if LAZ is turned on in a cluster already containing data.

- The number of zones can be manually specified as 3, 4, 5, or you can allow the installer to automatically choose, which is the recommended setting. When you let the installer decide the number of zones, the number of zones is decided based on the number of nodes in the cluster.

Here is a mapping table of number of nodes and resultant number of zones, with the assumption of RF as 3:

<table>
<thead>
<tr>
<th>No. of Hyperconverged Nodes in the cluster</th>
<th>No. of Zones in the cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>No. of Hyperconverged Nodes in the cluster</td>
<td>No. of Zones in the cluster</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
</tr>
</tbody>
</table>

You can view the LAZ status and check which node is in which zone, by accessing **HyperFlex Connect > System information** and **HyperFlex Connect > Dashboard** respectively.

Also, you can view the LAZ details through CLI by running the following command:

```
stcli cluster get-zone
```

```
zones:
-----------------
  pNodes:
-----------------
    state: ready
```
• The HyperFlex cluster determines which nodes participate in each zone, and this configuration cannot be modified.

• To maintain the most balanced consumption of space and data distribution, it is recommended that the number of nodes in a cluster are whole multiples of 3, 4, 5, or 7. For example, 8 nodes would evenly divide into 4 zones of 2 servers each, and 9 nodes would divide evenly into 3 zones of 3 servers each. Eleven nodes would create an unbalanced number of nodes across the zones, leading to unbalanced space consumption on the nodes.

• Expansion of a cluster should be done in multiples of the number of zones, when the cluster is operating with LAZ enabled. Expanding in such a way preserves a matched number of nodes in each zone, and prevents any unbalance of space consumption. For example, a cluster with 3 zones should be expanded by adding 3 more nodes, because adding only 1 or 2 nodes would lead to an imbalance, as would adding 4 nodes.
Expanding Cluster with Nodes Lesser than Zones

There are several requirements and guidelines to configuring Logical Availability Zones (LAZ) in a cluster. See Requirements and Limitations for Logical Availability Zones, on page 148. If you choose to ignore these requirements, you can expand the cluster with the following procedure.

Procedure

Step 1 Disable LAZ.

```
stcli cluster --set-zone 0
```

You must wait for a few minutes, roughly around 5 minutes for LAZ to be disabled.

Step 2 Add nodes to the cluster.

Step 3 After the nodes are added to the cluster, enable LAZ.

```
stcli cluster set-zone --zone 1
```

If the number of zones are not set explicitly, by default 4 zones are created.

Step 4 Initiate rebalancing in the cluster.

```
stcli rebalance start
```

Note

- Rebalancing of nodes may decrease the performance of the cluster by about 30% to 40%.
- The time taken to rebalance the nodes in the cluster depends on the cluster size and the data within the cluster. You can use the `stcli rebalance status` command to review the progress of the rebalancing activity.

Step 5 Review the cluster configuration and determine if the cluster is zone compliant.

```
stcli cluster --get-zone
```
Set Up Clusters with Mixed CPUs

This chapter describes how to add HX nodes with different Intel CPU versions on the same FI.

- Overview, on page 153
- Prerequisites for Using Mixed CPUs, on page 153
- CPU Compatibility with EVC Mode, on page 154
- Enable Enhanced vMotion Compatibility (EVC) on an Existing Cluster, on page 154

Overview

HyperFlex supports Intel v3 and Intel v4 CPUs on the same fabric interconnect. Enable VMware Enhanced vMotion Compatibility (EVC) to migrate virtual machines between Intel v3 and Intel v4 CPUs. After EVC is enabled, all hosts in the HyperFlex cluster are configured to give them a baseline with features of the lower model of CPU. Identical CPU features are exposed to virtual machines regardless of which host they are running on, so virtual machines can be migrated between hosts in a HyperFlex cluster. This ensures CPU compatibility for vMotion even if the hosts have different underlying hardware.

Prerequisites for Using Mixed CPUs

- You can only use CPUs from a single vendor in an EVC-enabled cluster. You cannot add a host from a different vendor into an EVC-enabled cluster.

- When enabling EVC for a cluster with Intel processors of the Xeon E3 or Xeon E5 family that have different revision numbers (v2, v3, or v4), an EVC baseline is required.

- Enable advanced virtualization CPU features in the BIOS if they are available. Otherwise it can cause problems in enabling EVC, as EVC compatibility checks may fail to detect the features that are expected to be present for a particular CPU.

- Migration of virtual machines using vMotion may fail, even if they are within an EVC cluster under the following scenarios:
 - When a host is not connected to a vCenter Server system.
 - When a host is not configured for vMotion.
 - If the virtual machine does not reside on storage shared by the source and destination hosts.
CPU Compatibility with EVC Mode

To determine the Enhanced vMotion Compatibility (EVC) modes compatible with your CPU, search the VMware Compatibility Guide. Search for the server model or CPU family, and click the entry in the CPU Series column to display the compatible EVC modes.

Finding the Current EVC Mode for a Host

Each EVC mode corresponds closely to the features available in processors with the same name.

Using vSphere Web Client

1. From the vSphere Web Client Navigator, select Hosts and Clusters > HX Cluster > Summary. The Summary tab indicates whether EVC is enabled, and displays the current EVC mode for the host.
2. Click the blue icon next to the EVC mode to display a list of all the supported EVC modes for the host.

Using VMware Shared Utilities Tool

VMware provides a free CPU identification utility that displays the compatible EVC modes, in addition to other CPU features. You can download this utility and boot the host from the ISO image from Shared Utilities.

Enable Enhanced vMotion Compatibility (EVC) on an Existing Cluster

Enable EVC to ensure that migration with vMotion is possible between hosts in the cluster. EVC mode is required when mixing different CPU families within the same HyperFlex cluster. Once EVC mode is enabled, only hosts that meet the minimum requirements of the configured EVC mode may be added to the cluster. EVC mode can be enabled, even during cluster expansion without disruption.

Note

- EVC is disabled by default. It can be enabled in the cluster settings under VMware EVC.
- This is not an HX Data Platform constraint but rather a VMware limitation. For further details, refer to the VMware KB article EVC and CPU Compatibility FAQ (1005764).

There are two paths to consider, uniform clusters that you want to add newer generation servers to, and existing clusters with mixed generations of servers.

Adding Newer Generation Servers to Uniform Clusters

If the cluster is currently uniform and you want to add newer generation servers to the cluster, you can enable EVC online and without disruption by selecting the current generation EVC mode in VC. Then proceed normally with expansion (converged or compute only). It is imperative the EVC mode is set before any expansion is attempted.

To enable EVC mode on a uniform cluster prior to performing a cluster expansion, perform the following steps:
Procedure

Step 1 Enable Enhanced vMotion Compatibility (EVC) in the HX cluster.
 a) From the vSphere Web Client Navigator, select Hosts and Cluster > Datacenter > HX Cluster.
 b) Select the cluster for which you want to enable EVC. In the Work pane, click the Manage or Configure tab. Select VMware EVC.
 c) Click the Edit button and select the desired EVC mode. Click Ok.

Step 2 Proceed with compute only or converged node expansion using the HyperFlex installer.

Adding Mixed or Older Generation Servers to Existing Clusters

The cluster already has mixed generations of servers OR you wish to add older generation servers to an existing cluster (compute only nodes).

Note

These steps should be followed if EVC mode was not enabled during the cluster expansion workflow with newer nodes.

To add an older generation server to an existing cluster perform the following steps:

Procedure

Step 1 Ensure that the HyperFlex cluster is healthy, and all the nodes are online before you start.
 • Using vSphere Web Client
 From the vSphere Web Client Navigator, select Home > Global Inventory Lists > Cisco HyperFlex Systems > Cisco HX Data Platform > HX Cluster > Summary.
 Example response:
 Operational Status: Online
 Resiliency Status: Healthy
 • Using the Controller VM
 In the controller VM, run the command # stcli cluster info.
 Example response:
 healthstate: healthy
 state: online

Step 2 Power off all non-storage controller virtual machines.
Step 3 Log in to one storage controller VM and execute the command stcli cluster shutdown. Wait until the execution is complete.
Step 4 Shut down all the storage controller VMs.
 a) From the vSphere Web Client Navigator, select VMs and Templates > vCenter server > Datacenter > Discovered virtual machine > Virtual Machines > controller_vm.
b) Right-click the `controller_vm` or from the Actions menu, select **Power > Shut Down Guest OS**.

Step 5

Put each HX host in maintenance mode.

a) From the vSphere Web Client Navigator, select **Hosts and Cluster > Datacenter > HX Cluster > node**.

b) Right-click the node and select **Maintenance Mode > Enter Maintenance Mode**.

Note Do not use the Cisco HX Maintenance Mode menu for this operation.

Step 6

Enable Enhanced vMotion Compatibility (EVC) in the HX cluster.

a) From the vSphere Web Client Navigator, select **Hosts and Cluster > Datacenter > HX Cluster**.

b) Select the cluster for which you want to enable EVC. In the Work pane, click the **Manage or Configure** tab. Select **VMware EVC**.

c) Click the **Edit** button and select the desired **EVC mode**. Click Ok.

Step 7

Exit maintenance mode.

a) From the vSphere Web Client Navigator, select **Hosts and Cluster > Datacenter > HX Cluster > node**.

b) Right-click the node and select **Maintenance Mode > Exit Maintenance Mode**.

Note Do not use the Cisco HX Maintenance Mode menu for this operation.

Step 8

The controller VMs should automatically power on after the host exits maintenance mode. If the controller VMs do not power on automatically, do the following:

a) From the vSphere Web Client Navigator, select **VMs and Templates > vCenter server > Datacenter > ESXi Agents > Virtual Machines > controller_vm**.

b) Right-click the `controller_vm` or from the Actions menu. Select **Power > Power On or Power > Power ON**.

Step 9

Make sure all controller VMs are fully booted. Then, log in to one of the controller VMs, and run the command `stcli cluster start`.

Step 10

Make sure that all datastores are mounted from vCenter HX plug-in and ensure that the cluster is healthy.

Step 11

Start the user VMs.

Step 12

Proceed with compute only expansion using the HyperFlex installer.
CHAPTER 12

Cisco HyperFlex Systems Customized Installation Method

• Overview, on page 157
• Installation and Configuration Workflow for Non Pre-Configured Cisco HyperFlex Systems, on page 157
• Installing VMware ESXi, on page 158

Overview

This chapter describes the process for manually preparing the HyperFlex servers, before moving to the installation steps. This customized installation method can be used during the following scenarios:

• Adding a compute-only node to the HyperFlex cluster.
• Redeploying your Cisco HyperFlex System.

The tasks to perform are essentially the same as for deploying pre-configured HyperFlex Systems. The new task specific to non pre-configured systems is, installing VMware ESXi.

Installation and Configuration Workflow for Non Pre-Configured Cisco HyperFlex Systems

Before you begin

Review the installation and configuration requirements for Cisco HyperFlex Systems. See Installation Prerequisites for more details.

Procedure

Step 1
Clean up the existing environment by deleting the cluster in vCenter. Remove the vCenter MOB entries, UCS Manager service profiles, and VLANs in Cisco UCS.

Step 2
Download the Cisco HyperFlex Data Platform Installer OVA file from Download Software.
Example:
Cisco-HX-Data-Platform-Installer-v2.5.1b-26284.ova

Step 3
Launch the Cisco HX Data Platform Installer and sign-in.

a) Select Customized Workflow.

b) Select Run UCS Manager configuration to configure UCS service profiles. Follow the steps as described in Configuring Cisco UCS Manager and HX Data Platform section of the Cisco HyperFlex Systems Installation Guide for VMware ESXi.

Step 4
Perform a fresh ESXi installation using the vMedia method.

Note
Using Dynamic Host Configuration Protocol (DHCP) for automatic IP address assignment is not recommended. By default, the HX Data Platform Installer assigns static IP addresses to the ESXi servers. If you are using DHCP, configure the networking in the ESXi manually with the proper VLANs.

Step 5
Launch the Cisco HX Data Platform Installer again.

a) Select Customized Workflow.

b) Select Run ESX Configuration, Deploy HX Software, and Create HX Cluster.

Ensure that you select Delete Existing Partitions in the wizard.

Installing VMware ESXi

The servers must have a supported version of VMware ESXi. See the latest Release notes for Cisco HX Data Platform for a list of supported ESXi versions.

Important
Install ESXi on each HX server.

Procedure

Download the VMware ESXi image from the Cisco HyperFlex Data Platform Download Software page. Select a networked location that can be accessed through Cisco UCS Manager.

The HX custom ISO is based on the Cisco custom ESXi release.

For example,

HX-Vmware-ESXi-60U2-4192238-Cisco-Custom-6.0.2.3.iso
What to do next

- Configure vMedia and Boot Policies through Cisco UCS Manager.
- Open a remote KVM console.
- Reboot the servers to begin installation.
- Undo vMedia and Boot Policy changes through Cisco UCS Manager.

Configure vMedia and Boot Policies Through Cisco UCS Manager

To configure the Cisco UCS vMedia and Boot Policies, complete the following steps:

Before you begin

Log in to Cisco HX Data Platform Installer. Run the Create Cluster workflow for standard cluster. up to Cisco UCS Manager configuration.

Note

Create a cluster with name as Temporary, so it is easier to identify it during service profile disassociation from the server.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>In Cisco UCS Manager, click the Servers tab in the Navigation Pane.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Expand Servers > Policies > root > Sub-Organizations > hx-cluster > vMedia Policies</td>
</tr>
<tr>
<td>Step 3</td>
<td>Click vMedia Policy HyperFlex.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the configuration pane, click Create vMedia Mount.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Enter a name for the mount, for example: ESX.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Select the CDD option.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Select the HTTP as the protocol.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Enter the IP Address of the HyperFlex installer VM, for example: 192.168.10.210.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Select None as the Image Variable Name.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Enter HX-Vmware-ESXi-6.0.0-3380124-Custom-Cisco-6.0.1.2.iso as the Remote File.</td>
</tr>
<tr>
<td>Step 11</td>
<td>Enter /images/ as the Remote Path.</td>
</tr>
<tr>
<td>Step 12</td>
<td>Click Save Changes, and click OK.</td>
</tr>
<tr>
<td>Step 13</td>
<td>In the Configuration Pane, select Servers > Service Profile Templates > root > Sub-Organizations > hx-cluster > Service Template hx-nodes</td>
</tr>
<tr>
<td>Step 14</td>
<td>Click the vMedia Policy tab.</td>
</tr>
<tr>
<td>Step 15</td>
<td>Click Modify vMedia Policy.</td>
</tr>
<tr>
<td>Step 16</td>
<td>Choose the HyperFlex vMedia Policy from the drop-down selection, and click OK twice.</td>
</tr>
<tr>
<td>Step 17</td>
<td>Select Servers > Policies > root > Sub-Organizations > hx-cluster > Boot Policy HyperFlex.</td>
</tr>
<tr>
<td>Step 18</td>
<td>In the Navigation Pane, expand the section titled CIMC Mounted vMedia.</td>
</tr>
<tr>
<td>Step 19</td>
<td>Click the entry labeled Add CIMC Mounted CD/DVD.</td>
</tr>
</tbody>
</table>
Step 20 Select the CIMC Mounted CD/DVD entry in the Boot Order list, and click the Move Up button until the CIMC Mounted CD/DVD entry is listed first.

Step 21 Click Save Changes, and click OK.

What to do next
Delete the Sub-Organization Temporary.

Opening a Remote KVM Console

To monitor the progress of one or more servers, it is advisable to open a remote KVM console session to watch the installation.

To open the KVM console, complete the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In Cisco UCS Manager, click Servers in the Navigation pane.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Expand Servers > Service Profiles > Root > Sub-Organizations > hx-cluster > rack-unit-number.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the General tab.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Actions area, click KVM Console.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Continue to any security alerts that appear. The remote KVM Console window appears shortly and shows the server’s local console output.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Repeat Steps 2-4 for any additional servers whose KVM Console you wish to monitor during the installation.</td>
</tr>
</tbody>
</table>

Rebooting Servers

Reboot the servers to begin the installation after modifying the vMedia policy, boot policy, and service profile template.

To reboot servers, complete the following steps:

Before you begin
Open a remote KVM Console sessions to monitor the progress of rebooting servers.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>In Cisco UCS Manager, click Servers in the Navigation pane.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Expand Equipment > Rack Mounts > Servers.</td>
</tr>
<tr>
<td>Step 3</td>
<td>In the Work pane, click the first server to be rebooted, then shift+click the last server to be rebooted, selecting them all.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Right-click the mouse, and click Reset.</td>
</tr>
</tbody>
</table>
Step 5 Click OK.
Step 6 Select Power Cycle and click OK.

Now, the servers that you are monitoring in the KVM console windows immediately reboot, then boot from the remote vMedia mount, and install the Cisco customized ESXi ISO. If there are any error messages, they can be safely ignored.

Undo vMedia and Boot Policy Changes

To prevent the servers from going into a boot loop, constantly booting from the installation ISO file, undo the changes to the boot policy.

Before you begin

Ensure that all the servers have booted from the remote vMedia file and have begun their installation process.

Procedure

Step 1 In Cisco UCS Manager, click Servers in the Navigation pane.
Step 2 Expand Servers > Policies > Root > Sub-Organizations > hx-cluster_name > Boot Policies > Boot Policy HyperFlex.
Step 3 In the Work pane, click the General tab.
Step 4 In the Actions area, click CIMC Mounted CD/DVD.
Step 5 Select the CIMC Mounted CD/DVD entry in the Boot Order list, and click Delete.
Step 6 Click Save Changes, and click OK.

What to do next

New Node

If you are adding a new node, never used before in the cluster, expand the HX cluster. See Cluster Expansion Guidelines for more details.

Reinstalling an Existing Node

If this node was part of the cluster in the past and was reimaged to fix something, contact Cisco TAC for guidance.
Undo vMedia and Boot Policy Changes
Lockdown Mode

Overview

This section provides an introduction to Lockdown mode, which is used to increase the security of an ESXi host by limiting the access allowed to the host. When this mode is enabled, the ESXi host can only be accessed through the vCenter server or the Direct Console User Interface (DCUI). Enabling Lockdown mode affects which users are authorized to access host services.

Once Lockdown mode is enabled, and if root or administrator@vsphere.local or any other use is not part of the Exception user list, SSH to that ESX is not allowed. Similarly, if the host has been removed from the vCenter for some reason, adding the host back to vCenter is not allowed.

<table>
<thead>
<tr>
<th>Service</th>
<th>Normal Mode</th>
<th>Normal Lockdown Mode</th>
<th>Strict Lockdown Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>vSphere Web Services API</td>
<td>All users, based on permissions.</td>
<td>vCenter(vpxuser)</td>
<td>vCenter(vpxuser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception includes users, based on permissions.</td>
<td>Exception includes users, based on permissions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vCloud Director (vslauser, if available)</td>
<td>vCloud Director (vslauser, if available)</td>
</tr>
<tr>
<td>CIM Providers</td>
<td>Users with administrator privileges on the host.</td>
<td>vCenter (vpxuser)</td>
<td>vCenter (vpxuser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exception includes users, based on permissions.</td>
<td>Exception includes users, based on permissions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vCloud Director (vslauser, if available)</td>
<td>vCloud Director (vslauser, if available)</td>
</tr>
<tr>
<td>Direct Console UI (DCUI)</td>
<td>Users with administrator privileges on the host, and users in the DCUI.</td>
<td>Users defined in the DCUI access advanced option.</td>
<td>DCUI service is stopped.</td>
</tr>
<tr>
<td></td>
<td>Access advanced option.</td>
<td>Exception includes users with administrator privileges on the host.</td>
<td></td>
</tr>
</tbody>
</table>
Enable or Disable Lockdown Mode

This section describes how to enable or disable Lockdown mode either from the DCUI or from the vSphere web client.

Note

Once Lockdown mode is enabled, and if root or administrator@vsphere.local or any other use is not part of the Exception user list, SSH to that ESX is not allowed. Similarly, if the host has been removed from the vCenter for some reason, adding the host back to vCenter is not allowed.

Enable or Disable Lockdown Mode from the DCUI:

Procedure

1. Log directly in to the ESXi host.
2. Open the Direct Console User Interface (DCUI) on the host.
3. Press F2 for Initial Setup.
4. Press Enter to toggle the Configure Lockdown Mode setting.
5. Browse to the host in the vSphere Web Client inventory.
Enable or Disable Lockdown Mode from the vSphere Web Client:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Browse to the host in the vSphere Web Client inventory.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Click the Manage tab and click Settings.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Under System, select Security Profile.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Lockdown Mode panel, click Edit.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Lockdown Mode and select one of the Lockdown mode options.</td>
</tr>
</tbody>
</table>

Troubleshoot Lockdown Mode

If you receive an error dialog box and/or the software upgrade fails in Lockdown mode, proceed with the following resolution options based on either of the following scenarios:

- At least one host is in Lockdown mode.
- The host is in Lockdown mode while the upgrade is in progress.

When at least one host is in Lockdown mode:

1. Check the host Lockdown mode in pre-upgrade validation.
2. Detect the situation, throw an error, and terminate the cluster upgrade.
3. Disable Lockdown mode and try the upgrade again.

When the host is in Lockdown mode while the upgrade in progress:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Check the host Lockdown mode before host upgrade.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Detect the situation and error out and failed the upgrade.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Disable Lockdown mode and try the upgrade again.</td>
</tr>
</tbody>
</table>

Add Hosts to vCenter in Deploy Phase Error

Validation for Lockdown during HX installation is a check for ESXi host's SSH accessibility with the 'root' user. Adding the root user in the exception list is bypassing the deploy validation check for Lockdown mode. In this case, when hosts are being added to the vCenter in the deploy phase, it fails and therefore the HX installation also fails.

If adding hosts to vCenter in the deploy phase fails, and you receive the error message **Failed to add hosts to vCenter**:
Procedure

Check for the Lockdown mode status, disable it, and remove the ‘root’ user from exception.