
Python API

• Using Python, on page 1

Using Python
This section describes how to write and execute Python scripts.

Guidelines and Limitations
The Python API has the following guidelines and limitations:

Cisco Python Package
Cisco NX-OS provides a Cisco Python package that enables access to many core network-device modules,
such as interfaces, VLANs, VRFs, ACLs, and routes. You can display the details of the Cisco Python package
by entering the help() command. To obtain additional information about the classes and methods in a module,
you can run the help command for a specific module. For example, help(cisco.interface) displays the properties
of the cisco.interface module.

The following is an example of how to display information about the Cisco Python package:
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

FILE
/isan/python/scripts/cisco/__init__.py

PACKAGE CONTENTS
acl
bgp
cisco_secret
cisco_socket
feature
interface
key
line_parser
md5sum

Python API
1

nxcli
ospf
routemap
routes
section_parser
ssh
system
tacacs
vrf

CLASSES
__builtin__.object

cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

The following is an example of how to display information about the Cisco Python Package for Python 3:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cisco
>>> help(cisco)
Help on package cisco:

NAME
cisco

PACKAGE CONTENTS
acl
bgp
buffer_depth_monitor
check_port_discards
cisco_secret
feature
historys
interface
ipaddress
key
line_parser
mac_address_table
md5sum
nxcli
nxos_cli
ospf
routemap
routes
section_parser
ssh
system
tacacs
transfer
vlan
vrf

CLASSES
builtins.dict(builtins.object)
cisco.history.History
builtins.object
cisco.cisco_secret.CiscoSecret
cisco.interface.Interface
cisco.key.Key

Python API
2

Python API
Cisco Python Package

Using the CLI Command APIs
The Python programming language uses three APIs that can execute CLI commands. The APIs are available
from the Python CLI module.

These APIs are listed in the following table. You must enable the APIs with the from cli import * command.
The arguments for these APIs are strings of CLI commands. To execute a CLI command through the Python
interpreter, you enter the CLI command as an argument string of one of the following APIs:

Table 1: CLI Command APIs

DescriptionAPI

Returns the raw output of CLI commands, including
control or special characters.

Note
The interactive Python interpreter prints control or
special characters 'escaped'. A carriage return is
printed as '\n' and gives results that can be difficult
to read. The clip() API gives results that are more
readable.

cli()

Example:
string = cli (“cli-command”)

Returns JSON output for cli-command, if XML
support exists for the command, otherwise an
exception is thrown.

Note
This API can be useful when searching the output of
show commands.

clid()

Example:
json_string = clid (“cli-command”)

Prints the output of the CLI command directly to
stdout and returns nothing to Python.

Note
clip (“cli-command”)

is equivalent to
r=cli(“cli-command”)
print r

clip()

Example:
clip (“cli-command”)

When two or more commands are run individually, the state is not persistent from one command to subsequent
commands.

In the following example, the second command fails because the state from the first command does not persist
for the second command:
>>> cli("conf t")
>>> cli("interface eth4/1")

When two or more commands are run together, the state is persistent from one command to subsequent
commands.

In the following example, the second command is successful because the state persists for the second and
third commands:

Python API
3

Python API
Using the CLI Command APIs

>>> cli("conf t ; interface eth4/1 ; shut")

Commands are separated with " ; " as shown in the example. The semicolon (;) must be surrounded with
single blank characters.

Note

Invoking the Python Interpreter from the CLI
The following example shows how to invoke Python 2 from the CLI:

The Python interpreter is designated with the ">>>" or "…" prompt.Note

Python 2.7 is End of Support, Future NX-OS software deprecates Python 2.7 support. We recommend for
new scripts to use python3' instead. Type python3 to use the new shell.

Important

The following example shows how to invoke Python 3 from the CLI:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
>>> from cli import *
>>> import json
>>> cli('configure terminal ; interface loopback 1 ; no shut')
''
>>> intflist=json.loads(clid('show interface brief'))
>>> i=0
>>> while i < len(intflist['TABLE_interface']['ROW_interface']):
... intf=intflist['TABLE_interface']['ROW_interface'][i]
... i=i+1
... if intf['state'] == 'up':
... print(intf['interface'])
...
mgmt0
loopback1
>>>

Display Formats
The following examples show various display formats using the Python APIs:

Example 1:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> clip('where detail')
mode:
username: admin
vdc: switch

Python API
4

Python API
Invoking the Python Interpreter from the CLI

routing-context vrf: default

Example 2:
>>> from cli import *
>>> cli("conf ; interface loopback 1")
''
>>> cli('where detail')
' mode: \n username: admin\n vdc:
switch\n routing-context vrf: default\n'
>>>

Example 3:
>>> r = cli('where detail')
>>> print(r)
mode:
username: admin
vdc: switch
routing-context vrf: default

>>>

Example 4:
>>> from cli import *
>>> import json
>>> out=json.loads(clid('show version'))
>>> for k in out.keys():
... print("%30s - %s" % (k,out[k]))
...
header_str - Cisco Nexus Operating System (NX-OS) Software
TAC support: http://www.cisco.com/tac
Copyright (C) 2002-2020, Cisco and/or its affiliates.
All rights reserved.
The copyrights to certain works contained in this software are
owned by other third parties and used and distributed under their own
licenses, such as open source. This software is provided "as is," and unless
otherwise stated, there is no warranty, express or implied, including but not
limited to warranties of merchantability and fitness for a particular purpose.
Certain components of this software are licensed under
the GNU General Public License (GPL) version 2.0 or
GNU General Public License (GPL) version 3.0 or the GNU
Lesser General Public License (LGPL) Version 2.1 or
Lesser General Public License (LGPL) Version 2.0.
A copy of each such license is available at
http://www.opensource.org/licenses/gpl-2.0.php and
http://opensource.org/licenses/gpl-3.0.html and
http://www.opensource.org/licenses/lgpl-2.1.php and
http://www.gnu.org/licenses/old-licenses/library.txt.
bios_ver_str - 07.67
kickstart_ver_str - 9.3(5) [build 9.3(4)IIL9(0.879)]
nxos_ver_str - 9.3(5) [build 9.3(4)IIL9(0.879)]
bios_cmpl_time - 01/29/2020
kick_file_name - bootflash:///nxos.9.3.4.IIL9.0.879.bin
nxos_file_name - bootflash:///nxos.9.3.4.IIL9.0.879.bin
kick_cmpl_time - 5/10/2020 21:00:00
nxos_cmpl_time - 5/10/2020 21:00:00
kick_tmstmp - 05/12/2020 07:08:44
nxos_tmstmp - 05/12/2020 07:08:44
chassis_id - Nexus9000 93180YC-EX chassis
cpu_name - Intel(R) Xeon(R) CPU @ 1.80GHz
memory - 24632252

Python API
5

Python API
Display Formats

mem_type - kB
proc_board_id - FDO22280FFK
host_name - switch
bootflash_size - 53298520
kern_uptm_days - 0
kern_uptm_hrs - 0
kern_uptm_mins - 19
kern_uptm_secs - 34
rr_usecs - 641967
rr_ctime - Tue May 12 09:52:28 2020
rr_reason - Reset Requested by CLI command reload
rr_sys_ver - 9.4(1)
rr_service - None
plugins - Core Plugin, Ethernet Plugin
manufacturer - Cisco Systems, Inc.
>>>

Non-Interactive Python
A Python script can run in non-interactive mode by providing the Python script name as an argument to the
Python CLI command. Python scripts must be placed under the bootflash or volatile scheme. A maximum of
32 command-line arguments for the Python script are allowed with the Python CLI command.

The switch also supports the source CLI command for running Python scripts. The bootflash:scripts
directory is the default script directory for the source CLI command.

This example shows the script first and then executing it. Saving is like bringing any file to the bootflash.
switch# show file bootflash:scripts/deltaCounters.py
#!/isan/bin/python3
from cli import *
import sys, time
ifName = sys.argv[1]
delay = float(sys.argv[2])
count = int(sys.argv[3])
cmd = 'show interface ' + ifName + ' counters'
out = json.loads(clid(cmd))
rxuc = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbc = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txuc = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbc = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
print ('row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast')
print ('===')
print (' %8d %8d %8d %8d %8d %8d' % (rxuc, rxmc, rxbc, txuc, txmc, txbc))
print ('===')
i = 0
while (i < count):

time.sleep(delay)
out = json.loads(clid(cmd))
rxucNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][0]['eth_inucast'])
rxmcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inmcast'])
rxbcNew = int(out['TABLE_rx_counters']['ROW_rx_counters'][1]['eth_inbcast'])
txucNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][0]['eth_outucast'])
txmcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outmcast'])
txbcNew = int(out['TABLE_tx_counters']['ROW_tx_counters'][1]['eth_outbcast'])
i += 1
print ('%-3d %8d %8d %8d %8d %8d %8d' % (i, rxucNew - rxuc, rxmcNew - rxmc, rxbcNew -

rxbc, txucNew - txuc, txmcNew - txmc, txbcNew - txbc))

Python API
6

Python API
Non-Interactive Python

switch# python bootflash:scripts/deltaCounters.py mgmt0 1 5
row rx_ucast rx_mcast rx_bcast tx_ucast tx_mcast tx_bcast
===

291 8233 1767 185 57 2
===
1 1 4 1 1 0 0
2 2 5 1 2 0 0
3 3 9 1 3 0 0
4 4 12 1 4 0 0
5 5 17 1 5 0 0
switch#

The following example shows how a source command specifies command-line arguments. In the example,
policy-map is an argument to the cgrep python script. The example also shows that a source command can
follow the pipe operator ("|").
switch# show running-config | source sys/cgrep policy-map

policy-map type network-qos nw-pfc
policy-map type network-qos no-drop-2
policy-map type network-qos wred-policy
policy-map type network-qos pause-policy
policy-map type qos foo
policy-map type qos classify
policy-map type qos cos-based
policy-map type qos no-drop-2
policy-map type qos pfc-tor-port

Running Scripts with Embedded Event Manager
On Cisco Nexus switches, Embedded Event Manager (EEM) policies support Python scripts.

The following example shows how to run a Python script as an EEM action:

• An EEM applet can include a Python script with an action command.
switch# show running-config eem

!Command: show running-config eem
!Running configuration last done at: Thu Jun 25 15:29:38 2020
!Time: Thu Jun 25 15:33:19 2020

version 9.3(5) Bios:version 07.67
event manager applet a1
event cli match "show clock"
action 1 cli python bootflash:pydate.py

switch# show file logflash:vdc_1/event_archive_1 | last 33

eem_event_time:06/25/2020,15:34:24 event_type:cli event_id:24 slot:active(1) vdc
:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
stty: standard input: Inappropriate ioctl for device
Executing the following commands succeeded:

python bootflash:pydate.py
Completed executing policy a1
Event Id:24 event type:10241 handling completed

Python API
7

Python API
Running Scripts with Embedded Event Manager

• You can search for the action that is triggered by the event in the log file by running the show file
logflash:event_archive_1 command.
switch# show file logflash:event_archive_1 | last 33

eem_event_time:05/01/2011,19:40:28 event_type:cli event_id:8 slot:active(1)
vdc:1 severity:minor applets:a1
eem_param_info:command = "exshow clock"
Starting with policy a1
Python

2011-05-01 19:40:28.644891
Executing the following commands succeeded:

python bootflash:pydate.py

PC_VSH_CMD_TLV(7679) with q

Python Integration with Cisco NX-OS Network Interfaces
On Cisco Nexus switches, Python is integrated with the underlying Cisco NX-OS network interfaces. You
can switch from one virtual routing context to another by setting up a context through the
cisco.vrf.set_global_vrf() API.

The following example shows how to retrieve an HTML document over themanagement interface of a device.
You can also establish a connection to an external entity over the in-band interface by switching to a desired
virtual routing context.
switch# python

Warning: Python 2.7 is End of Support, and future NXOS software will deprecate
python 2.7 support. It is recommended for new scripts to use 'python3' instead.
Type "python3" to use the new shell.

Python 2.7.11 (default, Jun 4 2020, 09:48:24)
[GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import urllib2
>>> from cisco.vrf import *
>>> set_global_vrf('management')
>>> page=urllib2.urlopen('http://172.23.40.211:8000/welcome.html')
>>> print page.read()
Hello Cisco Nexus 9000
>>>
>>> import cisco
>>> help(cisco.vrf.set_global_vrf)
Help on function set global vrf in module cisco.vrf:
set global vrf(vrf)
Sets the global vrf. Any new sockets that are created (using socket.socket)
will automatically get set to this vrf (including sockets used by other
python libraries).
Arguments:
vrf: VRF name (string) or the VRF ID (int).
Returns: Nothing
>>>

Cisco NX-OS Security with Python
CiscoNX-OS resources are protected by the CiscoNX-OS Sandbox layer of software and by the CLI role-based
access control (RBAC).

Python API
8

Python API
Python Integration with Cisco NX-OS Network Interfaces

All users who are associated with a Cisco NX-OS network-admin or dev-ops role are privileged users. Users
who are granted access to Python with a custom role are regarded as nonprivileged users. Nonprivileged users
have limited access to Cisco NX-OS resources, such as the file system, guest shell, and Bash commands.
Privileged users have greater access to all the resources of Cisco NX-OS.

Examples of Security and User Authority
The following example shows how a privileged user runs commands:

Python 3 example.
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
admin
0
>>> f=open('/tmp/test','w')
>>> f.write('hello from python')
17
>>> f.close()
>>> r=open('/tmp/test','r')
>>> print(r.read())
hello from python
>>> r.close()
>>>

The following example shows a nonprivileged user being denied access:
switch# python3
Python 3.7.3 (default, Nov 20 2019, 14:38:01)
[GCC 5.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import os
>>> os.system('whoami')
system(whoami): rejected!
-1
>>> f=open('/tmp/test','w')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

PermissionError: [Errno 13] Permission denied: '/tmp/test'
>>>

RBAC controls CLI access based on the login user privileges. A login user's identity is given to Python that
is invoked from the CLI shell or from Bash. Python passes the login user's identity to any subprocess that is
invoked from Python.

The following is an example for a privileged user:
>>> from cli import *
>>> cli('show clock')
'Warning: No NTP peer/server configured. Time may be out of sync.\n15:39:39.513 UTC Thu Jun
25 2020\nTime source is NTP\n'
>>> cli('configure terminal ; vrf context myvrf')
''
>>> clip('show running-config l3vm')

!Command: show running-config l3vm
!Running configuration last done at: Thu Jun 25 15:39:49 2020
!Time: Thu Jun 25 15:39:55 2020

Python API
9

Python API
Examples of Security and User Authority

version 9.3(5) Bios:version 07.67

interface mgmt0
vrf member management

vrf context blue
vrf context management
vrf context myvrf

The following is an example for a nonprivileged user:
>>> from cli import *
>>> cli('show clock')
'11:18:47.482 AM UTC Sun May 08 2011\n'
>>> cli('configure terminal ; vrf context myvrf2')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/isan/python/scripts/cli.py", line 20, in cli
raise cmd_exec_error(msg)

errors.cmd_exec_error: '% Permission denied for the role\n\nCmd exec error.\n'

The following example shows an RBAC configuration:
switch# show user-account
user:admin

this user account has no expiry date
roles:network-admin

user:pyuser
this user account has no expiry date
roles:network-operator python-role

switch# show role name python-role

Example of Running Script with Scheduler
The following example shows a Python script that is running the script with the scheduler feature:
#!/bin/env python
from cli import *
from nxos import *
import os

switchname = cli("show switchname")
try:

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print msg
py_syslog(1, msg)
Save this script in bootflash:///scripts

Python 3 example.
#!/bin/env python3
from cli import *
from nxos import *
import os

switchname = cli("show switchname")
try:

Python API
10

Python API
Example of Running Script with Scheduler

user = os.environ['USER']
except:

user = "No user"
pass

msg = user + " ran " + __file__ + " on : " + switchname
print(msg)
py_syslog(1, msg)

Save this script in bootflash:///scripts

switch# conf t
Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# feature scheduler
switch(config)# scheduler job name testplan
switch(config-job)# python bootflash:///scripts/test.py
switch(config-job)# exit
switch(config)# scheduler schedule name testplan
switch(config-schedule)# job name testplan
switch(config-schedule)# time start now repeat 0:0:4
Schedule starts from Sat Jun 13 04:29:38 2020
switch# 2020 Jun 13 04:29:41 switch %USER-1-SYSTEM_MSG: No user ran /bootflash/scripts/test.py
on : switch - nxpython
switch# show scheduler schedule
Schedule Name : testplan

User Name : admin
Schedule Type : Run every 0 Days 0 Hrs 4 Mins
Start Time : Sat Jun 13 04:29:38 2020
Last Execution Time : Sat Jun 13 04:29:38 2020
Last Completion Time: Sat Jun 13 04:29:41 2020
Execution count : 1

Job Name Last Execution Status

testplan Success (0)
==
switch#

Python API
11

Python API
Example of Running Script with Scheduler

Python API
12

Python API
Example of Running Script with Scheduler

	Python API
	Using Python
	Guidelines and Limitations
	Cisco Python Package
	Using the CLI Command APIs
	Invoking the Python Interpreter from the CLI
	Display Formats
	Non-Interactive Python
	Running Scripts with Embedded Event Manager
	Python Integration with Cisco NX-OS Network Interfaces
	Cisco NX-OS Security with Python
	Examples of Security and User Authority
	Example of Running Script with Scheduler

