NX-API CLI

» About NX-API CLI, on page 1

* Using NX-API CLI, on page 3

* Kernel Stack ACL, on page 29

* Table of NX-API Response Codes, on page 30
* JSON and XML Structured Output, on page 32
» Sample NX-API Scripts, on page 42

About NX-API CLI

NX-API CLI is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API CLI
also supports JSON output format for specific commands.

On Cisco Nexus switches, command-line interfaces (CLIs) are run only on the switch. NX-API CLI improves
the accessibility of these CLIs by making them available outside of the switch by using HTTP/HTTPS. You
can use this extension to the existing Cisco NX-OS CLI system on the switches. NX-API CLI supports show
commands, configurations, and Linux Bash.

NX-API CLI supports JSON-RPC.

Guidelines and Limitations

* NX-API CLI spawns VSH to execute Cisco NX-OS CLIs on a switch. The VSH timeout limit is 5
minutes. If the Cisco NX-OS CLIs take longer than 5 minutes to execute, the commands fail with the
message: "Back-end processing error.". This is governed by the NX-API command timeout, which
governs how long a command requested via NX-API can run. It is fixed at 300s and cannot be changed.

* Beginning with Cisco NX-OS Release 10.2(1)F, can use System server session cmd-timeout to increase
the timeout.

* NX-API spawns the worker processes and load balances the request between the worker processes.

* The number of nginx backend worker processes is 4.

* The number of nginx backend worker processes in N3k and the low memory-based platform is 2.

» Each worker process maintains a pool of 5 persistent VSH sessions. Each VSH session is uniquely
identified with a combination of username and remote IP from the incoming request. Whenever a new

NX-API CLI
I .-

. Transport

Transport

NX-APICLI |

request comes, the worker process checks if a matching username and remote IP entry is already present,
if yes then use the corresponding VSH session else a new VSH session is created based on the availability
in the pool and a new entry is added into the pool. If a worker process is already running with the max
allowed VSH sessions, then the new request will be rejected, and an appropriate error message will be
returned in the response.

* The number of VSH sessions per worker process is a hardcoded value and cannot be configured. The
total number of sessions that can exist at any point in time is 20.

» Whenever the trustpoint, certificate, or key associated with NX-API is deleted, NX-API still keeps
NX-API certificate, trustpoint, or NX-API client certificate authentication configurations. Therefore, the
NX-API functionality gets impacted. Though the current instance of NX-API works fine, the
reconfigurations of any NX-API commands can cause breakage to it. To prevent this, it is important to
delete or update the NX-API configurations also when trustpoint or certiifcate is deleted using no crypto
catrustpoint command.

Chunk-mode

* Chunk mode supports only 2 concurrent sessions. If the chunk option is selected, then it can be given
only in 2 parallel sessions at a time.

* The maximum size of response supported for chunk mode is 200MB until the release 10.3(1)F release.

* After the 10.3(1)F release, the chunk mode supports the response size, until the space is available in the
volatile (which is approximately 2.0GB). The size of chunk mode response supports depends on the
space in the volatile. Once volatile is 90% full, chunk mode returns failure when first the show output
is collected to file. The chunk size supported for each response is 10MB.

NX-API uses HTTP/HTTPS as its transport. CLIs are encoded into the HTTP/HTTPS POST body.

Starting with Cisco NX-OS Release 9.2(1), the NX-API feature is enabled by default on HTTPS port 443.
HTTP port 80 is disabled.

NX-API is also supported through UNIX Domain Sockets for applications running natively on the host or
within Guest Shell.

The NX-API backend uses the Nginx HTTP server. The Nginx process, and all its children processes, are
under the Linux cgroup protection where the CPU and memory usage is capped. The NX-API processes are
part of the cgroup ext ser nginx, which is limited to 2,147,483,648 bytes of memory. If the Nginx memory
usage exceeds the cgroup limitations, the Nginx process is restarted and the NX-API configuration (the VRF,
port, and certificate configurations) is restored.

Message Format

NX-API is an enhancement to the Cisco Nexus 7000 Series CLI system, which supports XML output. NX-API
also supports JSON output format for specific commands.

NX-API is an enhancement to the Cisco NX-OS CLI system, which supports XML output. NX-API also
supports JSON output format for specific commands.

Jl NX-APICLI

| NX-APICLI

Security .

\)

Note * NX-API XML output presents information in a user-friendly format.
* NX-API XML does not map directly to the Cisco NX-OS NETCONF implementation.
* NX-API XML output can be converted into JSON.

Security
* NX-API supports HTTPS. All communication to the device is encrypted when you use HTTPS.
* NX-API does not support insecure HTTP by default.

* NX-API does not support weak TLSv1 protocol by default.

NX-API is integrated into the authentication system on the device. Users must have appropriate accounts to
access the device through NX-API. NX-API uses HTTP basic authentication. All requests must contain the
username and password in the HTTP header.

\)

Note You should consider using HTTPS to secure your user's login credentials.

You can enable NX-API by using the feature manager CLI command. NX-API is disabled by default.

NX-API provides a session-based cookie, nxapi_auth when users first successfully authenticate. With the
session cookie, the username and password are included in all subsequent NX-API requests that are sent to
the device. The username and password are used with the session cookie to bypass performing the full
authentication process again. If the session cookie is not included with subsequent requests, another session
cookie is required and is provided by the authentication process. Avoiding unnecessary use of the authentication
process helps to reduce the workload on the device.

\)

Note A nxapi_auth cookie expires in 600 seconds (10 minutes). This value is a fixed and cannot be adjusted.

)

Note NX-API performs authentication through a programmable authentication module (PAM) on the switch. Use
cookies to reduce the number of PAM authentications, which reduces the load on the PAM.

Using NX-API CLI

The commands, command type, and output type for the Cisco Nexus 9000 Series switches are entered using
NX-API by encoding the CLlIs into the body of a HTTP/HTTPS POST. The response to the request is returned
in XML or JSON output format.

NX-API CLI
I .-

NX-APICLI |
[l using Nx-API CLI

\)

Note For more details about NX-API response codes, see Table of NX-API Response Codes, on page 30.

NX-API CLI is enabled by default for local access. The remote HTTP access is disabled by default.
The following example shows how to configure and launch the NX-API CLI:

* Enable the management interface.

switch# conf t

Enter configuration commands, one per line.

End with CNTL/Z.

switch (config)# interface mgmt 0
switch(config-if)# ip address 10.126.67.53/25
switch (config-if)# vrf context managment

switch (config-vrf)# ip route 0.0.0.0/0 10.126.67.1
switch (config-vrf)# end

switch#

Enable the NX-API nxapi feature.

switch# conf t
switch(config)# feature nxapi

The following example shows a request and its response in XML format:

Request:

<?xml version="1.0" encoding="IS0-8859-1"?>
<ins_api>

<version>0.1l</version>

<type>cli show</type>

<chunk>0</chunk>

<sid>sessionl</sid>

<input>show switchname</input>

<output format>xml</output format>
</ins_api>

Response:

<?xml version="1.0"?>
<ins_api>
<type>cli show</type>
<version>0.1</version>
<sid>eoc</sid>
<outputs>
<output>
<body>
<hostname>switch</hostname>
</body>
<input>show switchname</input>
<msg>Success</msg>
<code>200</code>
</output>
</outputs>
</ins_api>

The following example shows a request and its response in JSON format:

Request:

Jl NX-APICLI

| NX-APICLI

"ins_api": {
"version": "0.1",
"type": "cli show",
"chunk": "0",
"sid": "sessionl",
"input": "show switchname",
"output format": "json"
}
}
Response:
{
"ins_api": {
"type": "cli show",
"version": "0.1",
"sid": "eoc",
"outputs": {
"output": {
"body": {
"hostname": "switch"
} 4
"input": "show switchname",
"msg": "Success",
"code": "200"

Escalate Privileges to Root on NX-API .

Note There is a known issue where an attempt to delete a user might fail, resulting in an error message similar to
the following appearing every 12 hours or so:

user delete failed for username:userdel:

This issue might occur in a scenario where you try to delete a user who is still logged into a switch through

user username is currently logged in - securityd

NX-API. Enter the following command in this case to try to log the user out first:

switch (config)# clear user username

Then try to delete the user again. If the issue persists after attempting this workaround, contact Cisco TAC

for further assistance.

Escalate Privileges to Root on NX-API

For NX-API, the privileges of an admin user can escalate their privileges for root access.

The following are guidelines for escalating privileges:

* Only an admin user can escalate privileges to root.

» Escalation to root is password protected.

The following examples show how an admin escalates privileges to root and how to verify the escalation.
Note that after becoming root, the whoami command shows you as admin; however, the admin account has

all the root privileges.

NX-APiCLl [

NX-APICLI |
. NX-API Management Commands

First example:

<?xml version="1.0"?2>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo su root ; whoami</input>
<output format>xml</output format>
</ins_api>

<?xml version="1.0" encoding="UTF-8"7?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>admin </body>
<code>200</code>
<msg>Success</msg>
</output>
</outputs>
</ins_api>

Second example:

<?xml version="1.0"?>
<ins_api>
<version>1.0</version>
<type>bash</type>
<chunk>0</chunk>
<sid>sid</sid>
<input>sudo cat path to_file </input>
<output format>xml</output format>
</ins_api>

<?xml version="1.0" encoding="UTF-8"?>
<ins_api>
<type>bash</type>
<version>1.0</version>
<sid>eoc</sid>
<outputs>
<output>
<body>[Contents of file]</body>
<code>200</code>
<msg>Success</msg>
</output>
</outputs>
</ins_api>

NX-API Management Commands

You can enable and manage NX-API with the CLI commands listed in the following table.

Jl NX-APICLI

| NX-APICLI

Table 1: NX-API Management Commands

NX-API Management Commands .

NX-API Management Command

Description

feature nxapi

Enables NX-API.

no feature nxapi

Disables NX-API.

nxapi {http | https} port port

Specifies a port.

no nxapi {http | https}

Disables HTTP/HTTPS.

show nxapi

Displays port and certificate information.

Note
The "show nxapi" command doesn't display certificate/config
information for network-operator role.

nxapi certificate {httpscrt certfile |
httpskey keyfile} filename

Specifies the upload of the following:
* HTTPS certificate when httpscrt is specified.

* HTTPS key when httpskey is specified.

Example of HTTPS certificate:

nxapi certificate httpscrt certfile bootflash:cert.crt

Example of HTTPS key:

nxapi certificate httpskey keyfile bootflash:privkey.key

nxapi certificatehttpskey keyfile
filename passwor d passphrase

Installs NX-API certificates with encrypted private keys:

Note
The passphrase for decrypting the encrypted private key is
pass123!.

Example:

nxapi certificate httpskey keyfile bootflash:encr-cc.pem
password passl23!

nxapi certificate enable

Enables a certificate.

NX-APiCLl [

. NX-API Management Commands

NX-APICLI |

NX-API Management Command

Description

nxapi certificate trustpoint <trustpoint
label>

Jl NX-APICLI

| NX-APICLI

NX-API Management Commands .

NX-API Management Command

Description

Beginning with Cisco NX-OS release 10.2(3)F, the user can now
import the certificate or use the CA certificate for the NX-API
using the trustpoint infra.

Note

Refer to the Cisco Nexus 9000 Security Configuration Guide
to configure the crypto ca import trustpoint to first import
certificate.

Currently only pkcs12 certificate import is supported in
this form. The NX-API certificate enable/NX-API certificate
trustpoint and NX-API certificate sudi are mutually
exclusive and each configuration will overwrite the
certificate/key.

The maximum size of cert/key supported with NX-API
certificate enable is 8k. If the size is >8k, use NX-API
certificate trustpoint to import the certificate.

If you have configured a custom certificate in NX-API
using trustpoint infra, upon entering the reload ascii
command the configuration is lost. It will revert to the
default day-1 NX-API certificate. After entering the reload
ascii command, the switch will reload. Once the switch is
up again, you need to reconfigure the NX-API certificate
trustpoint configuration.

Beginning with Cisco NX-OS Release 10.3(1)F, support
for ascii truspoint reload is added.

Config-replace will fail if the current running-config do not
contain the trustpoint and certificate imported, but the target
config contains the creation of trustpoint "crypto ca
trustpoint <trustpoint name>" and "nxapi certificate
trustpoint <trustpoint-name>" CLI. If trustpoint is not
present, then first you need to create trustpoint and import
certificate before attempting "nxapi certificate trustpoint
<trustpoint-label>".

Whenever the certificate or trustpoint associated with
NX-API gets deleted , the link becomes broken though the
current instance of NX-API continues to work. Any change
in NX-API configuration or restart will make the NX-API
to run with default certificate and show nxapi will show
these details.

When certifcates and trustpoints are added back, which are
associated with NX-API, the NX-API is automatically
restarted and will continue to work.

In case of ASCII reload or ISSU case with crypto
certificates , there may be a multiple restart of NGINX until
all certificates are restored back after system ready.

NX-APiCLl [

. NX-API Management Commands

NX-APICLI |

NX-API Management Command

Description

Wait for the certificate to be restored to use NX-API

nxapi certificate sudi

This CLI provides a secure way of authenticating to the device
by using Secure Unique Device Identifier (SUDI).

The SUDI based authentication in nginx will be used by the
CISCO SUDI compliant controllers.

SUDI is an IEEE 802.1 AR-compliant secure device identity in
an X.509v3 certificate which maintains the product identifier and
serial number of Cisco devices. The identity is implemented at
manufacturing and is chained to a publicly identifiable root
certificate authority.

Note
* When NX-API comes up with the SUDI certificate, it is
not accessible by any third-party applications like browser,
curl, and so on.

* "nxapi certificate sudi" will overwrite the custom
certificate/key if configured, and there is no way to get the
custom certificate/key back.

* "nxapi certificate sudi" and "nxapi certificate trustpoint"
and "nxapi certificate enable" are mutually exclusive , and
configuring one will delete the other configuration.

* NX-API do not support SUDI certificate-based client
certificate authentication. If client certificate authentication
is needed, then Identity certificate need to be used.

» As NX-API certificate CLI is not present in show run
output, CR/Rollback case currently does not go back to the
custom certificate once it is overwritten with "nxapi
certificate sudi" options.

no nxapi certificate sudi

This will disable the SUDI and NX-API will come with a default
self-signed certificate.

nxapi ssl-ciphersweak

Beginning with Cisco NX-OS Release 9.2(1), weak ciphers are
disabled by default. Running this command changes the default
behavior and enables the weak ciphers for NGINX. The no form
of the command changes it to the default (by default, the weak
ciphers are disabled).

Jl NX-APICLI

| NX-APICLI

NX-API Management Commands .

NX-API Management Command

Description

nxapi ssl-protocols{TLSv1.0 TLSv1.1
TLSv1.2TLSv1.3}

Beginning with Cisco NX-OS Release 10.2(4)M, TLSv1.3 is
supported on Cisco Nexus 9000 series platform switches. Running
this command enables the TLS versions specified in the string.
Beginning with Cisco NX-OS Release 9.3(2), only TLSv1.2 is
enabled by default.

The no form of the command changes the TLS version to the
default version.

* If you want to enable particular TLS version, specify only
that respective TLS version.

For example, if you need TLSv1.3, use the following
command:

switch (config)# nxapi ssl protocols TLSv1.3
* If you want to enable multiple TLS versions for backward

compatibility at a later stage, specify all the required TLS
versions that are supported.

For example:

* If you need TLSv1.1 through TLSv1.3, use the
following command to enable all required TLS
versions:

switch (config)# nxapi ssl protocols TLSv1.2
TLSv1.3

* When you need backward compatibility, use the
following command to enable that version:

switch (config)# nxapi ssl protocols TLSv1.2

Note
e It is recommended to use TLSv1.2 and TLSv1.3 for
backward compatibility.

switch(config) # nxapi ssl protocols TLSv1.2 TLSv1.3
For example, if you are :

* Before configuring TLSv1.3, validate the server and client
certificates for TLSv1.3 support.

* NX-API server side SUDI certificate is not supported with
TLSv1.3.

nxapi use-vrf vrf

Specifies the default VRF, management VRF, or named VRF.

Note
In Cisco NX-OS Release 7.0(3)I2(1) NGINX listens on only
one VRF.

NX-APiCLl [

NX-APICLI |
. NX-API Management Commands

NX-API Management Command Description
system server session cmd-timeout Beginning with Cisco NX-OS release, 10.2(3)F, in NGINX server,
<timeout> the default timeout to run any command is 5 minutes. The users

can increase the timeout to the desired value from 60 seconds (1
minute) to 3600 seconds (1 hour) according to their need and
time taken for executing the commands.

ip netns exec management iptables Implements any access restrictions and can be run in management
VRF.

Note

You must enable featurebash-shell and then run the command
from Bash Shell. For more information on Bash Shell, see the
chapter on Bash.

Iptablesisa command-linefirewall utility that uses policy chains
to allow or block traffic and almost always comes pre-installed
on any Linux distribution.

Note

For more information about making iptables persistent across
reloads when they are modified in a bash-shell, see Making an
Iptable Persistent Across Reloads, on page 28.

nxapi idle-timeout <timeout> Starting with Release 9.3(5), you can configure the amount of
time before an idle NX-API session is invalidated. The time can
be 1 - 1440 minutes. The default time is 10 minutes. Return to
the default value by using the no form of the command: no nxapi
idle-timeout <timeout>

The following is an example for NX-API output for SUDI:

switch(config)# nxapi certificate sudi
switch# show nxapi

nxapi enabled

NXAPI timeout 10

NXAPI cmd timeout 300

HTTP Listen on port 80

HTTPS Listen on port 443

Certificate Information:

Issuer: issuer=CN = High Assurance SUDI CA, O = Cisco
Expires: Aug 9 20:58:26 2099 GMT

switch#

switch#

switch# show run | sec nxapi

feature nxapi

nxapi http port 80
nxapil certificate sudi
switch#

The following is an example for trustpoint configuration:

switch (config)# crypto ca trustpoint ngx

switch (config-trustpoint)# crypto ca import ngx pkcsl2 bootflash:server.pfx ciscol23
witch (config) # nxapi certificate trustpoint ngx

switch(config)# show nxapi

nxapi enabled

NXAPI timeout 10

NXAPI cmd timeout 300

Jl NX-APICLI

| NX-APICLI
NX-API Management Commands .

HTTP Listen on port 80

Trustpoint label ngx

HTTPS Listen on port 443

Certificate Information:

Issuer: issuer=C = IN, ST = KA, L = bang, O = cisco, OU = nxpi, CN = %$username%@cisco.com,
emailAddress = %Susername%@cisco.com

Expires: Jan 13 06:13:50 2023 GMT
switch (config) #

switch(config)# show run | sec nxapi
feature nxapi

nxapi http port 80

nxapl certificate trustpoint ngx

Following is an example of a successful upload of an HTTPS certificate:

switch (config)# nxapi certificate httpscrt certfile certificate.crt
Upload done. Please enable. Note cert and key must match.
switch(config)# nxapi certificate enable

switch (config) #

\}

Note You must configure the certificate and key before enabling the certificate.

Following is an example of a successful upload of an HTTPS key:

switch (config)# nxapi certificate httpskey keyfile bootflash:privkey.key
Upload done. Please enable. Note cert and key must match.

switch (config) # nxapi certificate enable

switch (config) #

The following is an example of how to install an encrypted NXAPI server certificate:

switch (config)# nxapi certificate httpscrt certfile bootflash:certificate.crt
switch (config)# nxapi certificate httpskey keyfile bootflash:privkey.key password passl23!

switch (config) #nxapi certificate enable
switch (config) #

In some situations, you might get an error message saying that the key file is encrypted:

switch (config)# nxapi certificate httpscrt certfile bootflash:certificate.crt

switch (config)# nxapi certificate httpskey keyfile bootflash:privkey.key

ERROR: Unable to load private key!

Check keyfile or provide pwd if key is encrypted, using 'nxapi certificate httpskey keyfile
<keyfile> password <passphrase>'.

In this case, the passphrase of the encrypted key file must be specified using nxapi certificatehttpskey keyfile
filename passwor d passphrase.

If this was the reason for the issue, you should now be able to successfully install the certificate:

switch (config) # nxapi certificate httpskey keyfile bootflash:privkey.key password passl23!
switch (config) # nxapi certificate enable
switch (config) #

NX-API CLI
I .-_

NX-APICLI |
. Working With Interactive Commands Using NX-API

Working With Interactive Commands Using NX-API

To disable confirmation prompts on interactive commands and avoid timing out with an error code 500,
prepend interactive commands with terminal dont-ask. Use ; to separate multiple interactive commands,
where each ; is surrounded with single blank characters.

Following are several examples of interactive commands where terminal dont-ask is used to avoid timing
out with an error code 500:

terminal dont-ask ; reload module 21

terminal dont-ask ; system mode maintenance

NX-API Client Authentication

NX-API Client Basic Authentication

NX-API clients can authenticate with the NGINX server on the switch through basic authentication over
SSL/TLS. This authentication method is supported by configuring a username and password that is saved to
a database on the switch. When the NX-API client initiates a connection request, it sends the Hello message
which contains the username and password. Assuming the username and password exist in the database, the
switch responds by sending the Hello response, which contains a cookie. After this initial handshake is
complete, the communication session is open, and the client can begin sending API calls to the switch. For
additional information, see Security, on page 3.

For additional information about basic authentication, including how to configure the username and password
on the switch, refer to the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

NX-API Client Certificate Authentication

Beginning with NX-OS 9.3(3), NX-API supports client-initiated certificate-based authentication.
Certificate-based authentication offers stronger security by mutually authenticating both the client, using a
trusted party—the Certificate Authority (CA)—and the server during the TLS handshake. Certificate-based
authentication allows for human authentication, as well as machine authentication, for accessing the NX-OS
switch.

Client certificate authentication is supported by using an X509 SSL certificate that is assigned through a valid
CA (certificate authority) and stored on the NX-API client. A certificate is assigned to each NX-API username.

When the NX-API client initiates a connection request with a Hello message, the server Hello response contains
the list of valid CAs. The client’s response contains additional information elements, including the certificate
for the specific username that the NX-API client is using.

You can configure the NX-API client to use either basic authentication, certificate authentication, or give
priority to certificate but fallback to basic authentication if the certificate authentication method is not available.

Guidelines and Limitations
Certificate authentication has the following guidelines and limitations:
» The NX-API client must be configured with a user name and password.

» The NX-API client and the switch communicate over HTTP by default on its well-known port. For
flexibility HTTP is also supported on its well-known port. However, you can configure additional ports.

Jl NX-APICLI

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

| NX-API CLI
Guidelines and Limitations .

* Python scripting of client certificate authentication is supported. If the client certificate is encrypted with
a passphrase, python successfully prompts for the passphrase. However, the passphrase cannot be passed
into the script due to a current limitation with the Python requests library.

* The NX-API client and switch must use the same trustpoint.

» Whenever the certificate or trustpoint gets deleted, NX-API for that certificate will continue to work
unless you explicitly modify NX-API client certificate authentication configuration or use no feature
nxapi command. Ensure that certificates are present in trustpoint associated with NX-API, else reload
ascii Nnxapi will fail to start. This can be verified using show nxapi command.

When certifcates and trustpoints associated with NX-API are added back, NX-API will automatically
restart and continue to work.

While doing reload ascii or ISSU with crypto certificates , there may be a multiple restart of NGINX
untill all certificates are restored back after system ready. Wait for the certificate to be restored to use
NX-APIL

* The maximum number of trustpoints supported is 16 for each switch.

* The list of trusted CAs must be the same for all NX-API clients and the switch. Separate lists of trusted
CAs are not supported.

* Certificate authentication is not supported for the NX-API sandbox.

* The following conditions determine if the NX-API sandbox loads on the switch:

» The NX-API sandbox loads only when nxapi client certificate authentication optional or no
nxapi client certificate authentication are configured.

» The NX-API sandbox does not load for strict and two-step authentication modes unless a valid
client certificate is presented to the browser when a connection is being established.

* The switch has an embedded NGINX server. If multiple trustpoints are configured, but a certificate
revocation list (CRL) is installed for only one of the trustpoints, NX-API client certificate authentication
fails because of an NGINX limitation. To workaround this limitation, configure CRLs for all trustpoints.

* Certificates can expire or become out of date, which can affect the validity of the CRL set by the CA
(trustpoint). To ensure the switch uses valid CRLs, always install CRLs for all of the configured trustpoints.
If no certificates were revoked by the trustpoints, an empty CRL should be generated, installed, and
updated periodically, for example, once a week.

After you update the CRLs through the crypto CLIs, issue nxapi client cert authentication to reapply
the newly updated CRLs.

* If you use ASCII reload when NX-API client certificate authentitcation is enabled, you must issue nxapi
client certificate authentication after the reload is complete.

* The certificate path must terminate with a trusted CA certificate.

* Server certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.

* Client certificates that are presented for TLS must have the Server Authentication purpose (id-kp 1 with
OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.

* The feature supports CRLs (certificate revocation lists). Online Certificate Status Protocol (OSCP) is
not supported.

NX-API CLI
I .-_

NX-APICLI |
. NX-API Client Certificate Authentication Prerequisites

* Follow the additional Guidelines and Limitations in the NX-OS Security Guide.

* Use both certificate and basic authentication. By doing so, the correct user and password is still
required if the certificate somehow gets compromised.

» Keep private keys private, as the servers public key is accessible to anyone attempting a connection.

* CRLs should be downloaded from the central CA and kept current. Out-of-date CRLs can lead to
a security risk.

* Keep trustpoints updated. When a trust point or configuration change is made to the certificate
authentication feature, explicitly disable then reenable the feature to reload the updated information.
* There is a maximum file size limit of 8K for the client certificate identity file associated to NX-API with

nxapi certificate httpscert certfile bootflash:<>" CLL" This is a day-1 limitation.

* In the NX-API Management Commands Table 1 for the row associated with the command nxapi certificate
{httpscrt certfile | httpskey keyfile} filename, the maximum certfile size supported is less than 8K.

NX-API Client Certificate Authentication Prerequisites
Before configuring certificate authentication, make sure the following are present on the switch:

1. Configure the client with a username and password. For information see Configuring User Accounts and
RBAC.

2. Configure the CA(s) (trustpoint) and CRL(s) (if any).

If no certificates were revoked by a trustpoint, create a blank CRL for each trustpoint.

For information, see the Cisco Nexus 9000 Series NX-OS Security Configuration Guide.

Configuring NX-API Client Certificate Authentication

You can configure the NX-API certificate authentication through the nxapi client certificate authentication
command. The command supports restriction options that control how authentication occurs.

You can disable this feature by using no nxapi client certificate authentication .

To configure certificate authentication for NX-API clients, follow this procedure:

SUMMARY STEPS

1. Make sure the prerequisites for the feature are complete.
2. configterminal
3. nxapi client certificate authentication [{optional | strict | two-step}]

DETAILED STEPS

Procedure

Command or Action Purpose

Step 1 Make sure the prerequisites for the feature are complete. | See NX-API Client Certificate Authentication Prerequisites,
on page 16.

Jl NX-APICLI

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/93x/security/configuration/guide/b-cisco-nexus-9000-nx-os-security-configuration-guide-93x.html

| NX-APICLI

Example Python Scripts for Certificate Authentication .

Command or Action

Purpose

Step 2

config terminal

Example:

switch-1# config terminal
Enter configuration commands,
with CNTL/Z.

switch-1 (config) #

one per line. End

Enters configuration mode.

Step 3

nxapi client certificate authentication [{optional | strict
| two-step}]

Example:

switch-1# nxapi client certificate authentication
strict
switch-1 (config) #

Enables certificate authentication in any of the following
modes:

« optional requests a client certificate:

» If the client provides a certificate, mutual
verification occurs between the client and the
server.

« If the client provides an invalid certificate,
authentication fails and fall back to basic
authentication does not occur.

» If the client does not provide a certificate,
authentication falls back to basic authentication
(username and password).

e strict enables client certificate verification and
requires a valid client certificate to be presented for
authentication.

* two-step enables two-step verification in which both
the basic authentication and certificate authentication
methods are required.

Note

If no trustpoints are configured on the switch, this feature
cannot be enabled, and the switch displays an onscreen
error message.

No trustpoints configured! Please configure
trustpoint using 'crypto ca trustpoint
<trustpoint-label>' and associated commands,
then enable this feature.

and

Example Python Scripts for Certificate Authentication

The following example shows a Python script with a client certificate for authentication.

import requests
import json

wun

Modify these please

mwn

switchuser='USERID'
switchpassword="'PASSWORD'

NX-APiCLl [

NX-APICLI |
. Example cURL Certificate Request

mgmtip="'NXOS MANAGEMENT IP/DOMAIN NAME'
client cert file='PATH TO CLIENT CERTIFICATE'
client key file='PATH TO CLIENT KEY FILE'

ca cert='PATH TO CA CERT THAT SIGNED NXAPI SERVER CERT'

url='https://' + mgmtip + '/ins'

myheaders={"'content-type':'application/json-rpc'}
payload=|[
{
"jsonrpc": "2.0",
"method": "cli",
"params": |
"cmd": "show clock",
"version": 1
}I
"id": 1
}
]
response = requests.post (url,data=json.dumps (payload),

headers=myheaders, auth= (swi tchuser, switchpassword) , cert=(client cert file path,client key file),verify=ca cert).json()
If needed, you can change the script:

* Depending on the client certificate authentication mode, you can omit the switch password by setting
the switch password to a null value (switchpassword=):

* For optional and strict modes, the switchpassword= can be left blank. In this situation, NX-API
authenticates the client based on username and client certificate alone.

* For two-step mode, a password is required, so you must specify a value for switchpassword=.

* You can bypass verifying that the NX-API server's certificate is valid by setting verify=False in the
POST command.

Example cURL Certificate Request

The following example shows a correctly structured cURL certificate request for NX-API client authentication.

/usr/bin/curl --user admin: --tlsvl.2 --cacert ./ca.pem --cert ./user.crt:passl23! --key
./user.key -v -X POST -H "Accept: application/json" -H "Content-type: application/json"

--data '{"ins_api":{"version": "1.0", "type": "cli show", "chunk": "0", "sid": "1", "input":
"show clock","output format": "json"}}' https://<device-management-ip>:443/ins

Syntax Elements

The following table shows the parameters that are used in this request.

Parameter Description

--user Takes the username that the user wants to log in as,
which should be same as the common name in
user.crt).

To provide a password for user, specify it after a
colon, for example: --user
username : password

Jl NX-APICLI

| NX-APICLI

Validating Certificate Authentication .

Parameter

Description

--cacert

Takes the path to the CA that signed the NX-API
server certificate.

If the server certificate does not need to be verified,
specify cURL with the -k (insecure) option, for
example: /usr/bin/curl -k

--cert

Takes the path to the client certificate.

If the client certificate is encrypted, specify the
password after a colon, for example: --cert
user.crt:passl23!

--key

Takes the path to the client certificate's private key.

Validating Certificate Authentication

When correctly configured, certificate authentication occurs and the NX-API clients can access the switch.

If the NX-API client cannot access the switch, you can use the following guidelines to assist with

3. Iferrors occur, flap the feature to reload any changes to the trustpoint, CA, CRL, or NX-OS certificate
feature, by issuing no nxapi client certificate authentication , then nxapi client certificate

troubleshooting:
SUMMARY STEPS
1. Check user or cookie errors.
Check for client or certificate errors.
authentication .
DETAILED STEPS
Procedure

Command or Action

Purpose

Step 1 Check user or cookie errors.

If any of the following errors occur:

* No username provided in auth header and no valid

cookie provided

* Incorrect user provided in auth header
* Invalid cookie provided

* Mismatch between username in auth header and

username in client certificate's CN field

You will see specific errors depending on the NX-API
method used:

NX-APiCLl [

NX-APICLI |
. NX-API Request Elements

Command or Action Purpose

* For JSON/XML, a 401 Authentication failure -
user not found. error occurs. For example:

{{{

"code": "400",
"msg": "Authentication failure - user not
found."

I

For JSON RPC 2.0, a -32004 Invalid username or
password error occurs. For example:

{{
"code": -32004,
"message": "Invalid username or password"

+}

Step 2 Check for client or certificate errors. Look for HTTPs 400 errors which can indicate the
following:

« Ifan invalid or revoked client certificate was provided.

« If the CRL configured on the switch has expired.

For example:

<html>

<head><title>400 The SSL certificate
error</title></head>

<body bgcolor="white">

<center><h1>400 Bad Request</hl></center>
<center>The SSL certificate error</center>
<hr<center>nginx/1.7.10</center>

</body>

</html>

Step 3 If errors occur, flap the feature to reload any changes to the | Disables, then reenables certificate authentication.
trustpoint, CA, CRL, or NX-OS certificate feature, by
issuing no nxapi client certificate authentication , then
nxapi client certificate authentication .

NX-API Request Elements

NX-API request elements are sent to the device in XML format or JSON format. The HTTP header of the
request must identify the content type of the request.

You use the NX-API elements that are listed in the following table to specify a CLI command:

\}

Note Users need to have permission to execute "configure terminal" command. When JSON-RPC is the input
request format, the "configure terminal” command will always be executed before any commands in the
payload are executed.

Jl NX-APICLI

| NX-APICLI

NX-API Request Elements .

Table 2: NX-API Request Elements for XML or JSON Format

NX-API Request Element

Description

version

Specifies the NX-API version.

type

Specifies the type of command to be executed.
The following types of commands are supported:
« cli_show

CLI show commands that expect structured output. If the
command does not support XML output, an error message is
returned.

« cli_show_array

CLI show commands that expect structured output. Only for
show commands. Similar to cli_show, but with
cli_show_array, data is returned as a list of one element, or
an array, within square brackets [].

« cli_show_ascii

CLI show commands that expect ASCII output. This aligns
with existing scripts that parse ASCII output. Users are able
to use existing scripts with minimal changes.

« cli_conf
CLI configuration commands.
* bash
Bash commands. Most non-interactive Bash commands are

supported by NX-API.

Note
» Each command is only executable with the current user's
authority.

* The pipe operation is supported in the output when the
message type is ASCIL. If the output is in XML format, the
pipe operation is not supported.

* A maximum of 10 consecutive show commands are
supported. If the number of show commands exceeds 10, the
11th and subsequent commands are ignored.

* No interactive commands are supported.

NX-APiCLl [

. NX-API Request Elements

NX-APICLI |

NX-API Request Element

Description

chunk

Some show commands can return a large amount of output. For
the NX-API client to start processing the output before the entire
command completes, NX-API supports output chunking for show
commands.

Enable or disable chunk with the following settings:

Note
0 Do not chunk output.

1 Chunk output.

Note
* Only show commands support chunking. When a series of
show commands are entered, only the first command is
chunked and returned.

* The output message format options are XML or JSON.

* For the XML output message format , special characters,
such as < or >, are converted to form a valid XML message
(< is converted into < > is converted into >).

You can use XML SAX to parse the chunked output.

* When the output message format is JSON, the chunks are
concatenated to create a valid JSON object.

Note
When chunking is enabled, the maximum message size supported
is currently 200MB of chunked output.

rollback

Valid only for configuration CLIs, not for show commands.
Specifies the configuration rollback options. Specify one of the
following options.

* Stop-on-error—Stops at the first CLI that fails.
* Continue-on-error—Ignores and continues with other CLIs.
* Rollback-on-error—Performs a rollback to the previous state

the system configuration was in.

Note
The rollback element is available in the cli_conf mode when the
input request format is XML or JSON.

Jl NX-APICLI

| NX-APICLI
NX-API Request Elements .

NX-API Request Element Description

sid The session ID element is valid only when the response message
is chunked. To retrieve the next chunk of the message, you must
specify a sid to match the sid of the previous response message.

NX-OS release 9.3(1) introduces the sid option c1ear. When a new
chunk request is initiated with the Sid set to c1ear, all current chunk
requests are discarded or abandoned.

When you receive response code 429: Max number of concurrent
chunk request is 2, use Sid clear to abandon the current chunk
requests. After using Sid c1ear, subsequent response codes operate
as usual per the rest of the request.

input Input can be one command or multiple commands. However,
commands that belong to different message types should not be
mixed. For example, sShow commands are cli_show message type
and are not supported in cli_conf mode.

Note
Except for bash, multiple commands are separated with " ; ". (The
; must be surrounded with single blank characters.)

Prepend commands with terminal dont-ask to avoid timing out
with an error code 500. For example:

terminal dont-ask ; cli_conf ; interface Eth4/1 ; no
shut ; switchport

For bash, multiple commands are separated with ";". (The ; is not
surrounded with single blank characters.)

The following are examples of multiple commands:

Note

cli show |show version ; show interface brief ; show
- vlan

cli conf |interface Eth4/1 ; no shut ; switchport

bash cd /bootflash;mkdir new dir

NX-API CLI
I .“

. NX-API Request Elements

NX-APICLI |

NX-API Request Element

Description

output_format

The available output message formats are the following:

Note
xml Specifies output in XML format.
json Specifies output in JSON format.
Note

The Cisco NX-OS CLI supports XML output, which means that
the JSON output is converted from XML. The conversion is
processed on the switch.

To manage the computational overhead, the JSON output is
determined by the amount of output. If the output exceeds 1 MB,
the output is returned in XML format. When the output is chunked,
only XML output is supported.

The content-type header in the HTTP/HTTPS headers indicate the
type of response format (XML or JSON).

When JSON-RPC is the input request format, use the NX-API elements that are listed in the following table

to specify a CLI command:

Table 3: NX-API Request Elements for JSON-RPC Format

NX-API Request Element

Description

jsonrpc

A string specifying the version of the JSON-RPC protocol.

Version must be 2.0.

method

A string containing the name of the method to be invoked.
NX-API supports either:

* cli-show or configuration commands

« cli_ascii—show or configuration commands; output without
formatting

« cli_array—only for show commands; similar to cli, but with
cli_array, data is returned as a list of one element, or an array,
within square brackets, [].

params

A structured value that holds the parameter values used during the
invocation of a method.

It must contain the following:

» cmd—CLI command

* version—NX-API request version identifier

Jl NX-APICLI

| NX-APICLI

NX-API Response Elements .

NX-API Request Element

Description

rollback

Valid only for configuration CLIs, not for show commands.
Configuration rollback options. You can specify one of the
following options.

* Stop-on-error—Stops at the first CLI that fails.

* Continue-on-error—Ignores the failed CLI and continues with
other CLIs.

* Rollback-on-error—Performs a rollback to the previous state
the system configuration was in.

validate

Configuration validation settings. This element allows you to
validate the commands before you apply them on the switch. This
enables you to verify the consistency of a configuration (for
example, the availability of necessary hardware resources) before
applying it. Choose the validation type from the Validation Type
drop-down list.

* Validate-Only—Validates the configurations, but does not
apply the configurations.

« Validate-and-Set—Validates the configurations, and applies
the configurations on the switch if the validation is successful.

lock

An exclusive lock on the configuration can be specified, whereby
no other management or programming agent will be able to modify
the configuration if this lock is held.

An optional identifier established by the client that must contain a
string, number, or null value, if it is specified. The value should
not be null and numbers contain no fractional parts. If a user does
not specify the id parameter, the server assumes that the request is
simply a notification, resulting in a no response, for example, id :
1

NX-API Response Elements

The NX-API elements that respond to a CLI command are listed in the following table:

Table 4: NX-API Response Elements

NX-API Response Element

Description

version NX-API version.
type Type of command to be executed.
sid Session ID of the response. This element is valid only when the response

message is chunked.

NX-APiCLl [

. Restricting Access to NX-API

NX-APICLI |

NX-API Response Element

Description

outputs

Tag that encloses all command outputs.

When multiple commands are in cli_show or cli_show_ascii, each command
output is enclosed by a single output tag.

When the message type is cli_conf or bash, there is a single output tag for
all the commands because cli_conf and bash commands require context.

output

Tag that encloses the output of a single command output.

For cli_conf and bash message types, this element contains the outputs of
all the commands.

input

Tag that encloses a single command that was specified in the request. This
element helps associate a request input element with the appropriate
response output element.

body

Body of the command response.

code

Error code returned from the command execution.

NX-API uses standard HTTP error codes as described by the Hypertext
Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

msg

Error message associated with the returned error code.

Restricting Access to NX-API

There are two methods for restricting HTTP and HTTPS access to a device: ACLs and iptables. The method
that you use depends on whether you have configured a VRF for NX-API communication using the nxapi
use-vrf <vrf-name> CLI command.

Use ACLs to restrict HTTP or HTTPS access to a device only if you have not configured NXAPI to use a
specific VRF. For information about configuring ACLs, see the Cisco Nexus Series NX-OS Security
Configuration Guide for your switch family.

If you have configured a VRF for NX-API communication, however, ACLs will not restrict HTTP or HTTPS
access. Instead, create a rule for an iptable. For more information about creating a rule, see Updating an iptable,

on page 26.

Updating an iptable

An iptable enables you to restrict HTTP or HTTPS access to a device when a VRF has been configured for
NX-API communication. This section demonstrates how to add, verify, and remove rules for blocking HTTP
and HTTPS access to an existing iptable.

Procedure

Step 1 To create a rule that blocks HTTP access:

Jl NX-APICLI

| NX-APICLI

Step 2

Step 3

Step 4

Step 5

Updating an iptable .

bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 80 -3j DROP

Note
The management mentioned in this step is the VRF name. It can be management | default | custom vrf name.

To create a rule that blocks HTTPS access:

bash-4.3# ip netns exec management iptables -A INPUT -p tcp --dport 443 -j DROP

To verify the applied rules:

bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination
DROP tcp -- anywhere anywhere tcp dpt:http
DROP tcp -- anywhere anywhere tcp dpt:https

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

To create and verify a rule that blocks all traffic with a 10.155.0.0/24 subnet to port 80:

bash-4.3# ip netns exec management iptables -A INPUT -s 10.155.0.0/24 -p tcp --dport 80 -j DROP
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination
DROP tcp -- 10.155.0.0/24 anywhere tcp dpt:http

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

To remove and verify previously applied rules:
This example removes the first rule from INPUT.

bash-4.3# ip netns exec management iptables -D INPUT 1
bash-4.3# ip netns exec management iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

NX-APiCLl [

. Making an Iptable Persistent Across Reloads

What to do next

NX-APICLI |

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. To make the

rules persistent, see Making an Iptable Persistent Across Reloads, on page 28.

Making an Iptable Persistent Across Reloads

The rules in iptables are not persistent across reloads when they are modified in a bash-shell. This section
explains how to make a modified iptable persistent across a reload.

Before you begin

You have modified an iptable.

Procedure

Step 1 Create a file called iptables_init.log in the /etc directory with full permissions:

bash-4.3# touch /etc/iptables init.log; chmod 777 /etc/iptables_init.log

Step 2 Create the /etc/sys/iptables file where your iptables changes will be saved:

bash-4.3# ip netns exec management iptables-save > /etc/sysconfig/iptables

Step 3 Create a startup script called iptables_init in the /etc/init.d directory with the following set of commands:

#!/bin/sh

#i## BEGIN INIT INFO

#

#

Provides:
Required-Start:
Required-Stop:
Default-Start:

Default-Stop:

Short-Description:

Description:

END INIT INFO

iptables_init

2345

init for iptables
sets config for iptables

during boot time

PATH=/usr/local/sbin: /usr/local/bin:/sbin:/bin: /usr/sbin:/usr/bin
start_script() {
ip netns exec management iptables-restore < /etc/sysconfig/iptables
ip netns exec management iptables

echo "iptables init script executed" > /etc/iptables_init.log

}

case "$1" in

start)

Jl NX-APICLI

| NX-APICLI

Step 4

Step 5

start_script
stop)
restart)
sleep 1
$0 start
*)
echo "Usage: $0 {start|stop|status|restart}"
exit 1
esac
exit 0

Set the appropriate permissions to the startup script:

bash-4.3# chmod 777 /etc/init.d/iptables_int

Set the iptables_int startup script to on with the chkconfig utility:

bash-4.3# chkconfig iptables init on

Kernel Stack ACL [J|j

The iptables_init startup script will now execute each time that you perform a reload, making the iptable rules persistent.

Kernel Stack ACL

The Kernel Stack ACL is a common CLI infrastructure to configure ACLs for management of inband and
outband components.

The Kernel Stack ACL uses NX-OS ACL CLI to secure management applications on management and front
panel ports. Configuring a single ACL must be able to secure all management applications on NX-OS.

Kernel Stack ACL is the component that fixes the manual intervention of the user and automatically programs
iptable entries when the ACL is applied to mgmtO interface.

The following is an example for configuring Kernel Stack ACL:

swtich# conf t

Enter configuration commands, one per line. End with CNTL/Z.
switch(config)# ip access-list kacll

switch (config-acl)# statistics per-entry

switch (config-acl)# 10 deny tcp any any eq 443

switch (config-acl)# 20 permit ip any any

switch (config-acl) # end

switch#

switch (config-if

(interface mgmtO
switch (config-if

(

(

ip access-group acll in
switch (config-if ipv6e traffic-filter acl6é in

switch (config-if

HH= HH FH I

)
)
)
)

switch# sh ip access-lists kacll

IP access list kacll

statistics per-entry

10 deny tcp any any eq 443 [match=136]
20 permit ip any any [match=44952]
switch (config) #

The following is the Kernel Stack filtering for iptables entries based on the configuration:

NX-APiCLl [

. Table of NX-API Response Codes

NX-APICLI |

bash-4.4# ip netns exec management iptables -L -n -v --line-numbers

Chain INPUT (policy ACCEPT 0 packets,

0 bytes)

num pkts bytes target prot opt in out source destination
1 9 576 DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:443
2 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0
3 0 0 DROP all -- * * 0.0.0.0/0 0.0.0.0/0

Chain FORWARD (policy ACCEPT 0 packets,

0 bytes)

num pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 0 packets,

0 bytes)

num pkts bytes target prot opt in out source destination

bash-4.44#

The following are the limitations for the Kernel Stack ACL support:

* This feature is supported only on mgmt0 interface and not on other inband interfaces.

* Five tuples (protocol, source-ip, destination-ip, source-port, and destination-port) of the ACL entry are
programmed in the iptables. Rest of the options provided in the ACL entry are not programmed in the
iptables and throws a warning syslog in such instances.

For example, "WARNING: Some ACL options are not supported in kstack. Only partial rule will be

installed".

» [f the device user has host bash access, then the user can manually update the iptables. This update could
potentially corrupt the iptable rules for which they are programmed.

* The verified maximum number of ACEs is 100 for IPv4 traffic and an additional 100 for IPv6 traffic.
Throughput may be impacted if more than this scale is applied.

Table of NX-API Response Codes

The following are the possible NX-API errors, error codes, and messages of an NX-API response.

The following are the possible NX-API errors, error codes, and messages of an NX-API response.

When the request format is in XML or JSON format, the following are the possible NX-API errors, error

codes, and messages of an NX-API response.

)

Note The standard HTTP error codes are at the Hypertext Transfer Protocol (HTTP) Status Code Registry
(http://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml).

Table 5: NX-API Response Codes

NX-API Response Code M essage

SUCCESS 200 Success.

CUST OUTPUT PIPED 204 Output is piped elsewhere due to request.
BASH CMD_ ERR 400 Bash command error.

CHUNK _ALLOW_ONE CMD_ERR 400 Chunking honors only one command.

Jl NX-APICLI

| NX-APICLI

Table of NX-API Response Codes .

CLI CLIENT ERR 400 CLI execution error.

CLI CMD_ERR 400 Input CLI command error.

EOC NOT ALLOWED ERR 400 The eoc value is not allowed as session Id in the
request.

IN_MSG_ERR 400 Incoming message is invalid.

INVALID REMOTE IP ERR 400 Unable to retrieve remote ip of request.

MSG_VER MISMATCH 400 Message version mismatch.

NO_INPUT CMD_ERR 400 No input command.

SID NOT ALLOWED_ ERR 400 Invalid character that is entered as a session ID.

PERM_DENY ERR 401 Permission denied.

CONF_NOT _ALLOW_SHOW_ERR 405 Configuration mode does not allow show .

SHOW_NOT ALLOW_CONF_ERR 405 Show mode does not allow configuration.

EXCEED MAX SHOW_ERR 413 Maximum number of consecutive show
commands exceeded. The maximum is 10.

MSG SIZE LARGE ERR 413 Response size too large.

RESP_SIZE LARGE ERR 413 Response size stopped processing because it

exceeded the maximum message size. The
maximum is 200 MB.

EXCEED MAX INFLIGHT CHUNK REQ ERR

429

Maximum number of concurrent chunk requests
is exceeded. The maximum is 2.

MAX SESSIONS ERR 429 Max sessions reached. If you are a new
user/client, please try again later.

OBJ NOT _EXIST 432 Requested object does not exist.

BACKEND ERR 500 Backend processing error.

CREATE _CHECKPOINT ERR 500 Error creating a checkpoint.

DELETE CHECKPOINT ERR 500 Error deleting a checkpoint.

FILE OPER_ERR 500 System internal file operation error.

LIBXML NS ERR 500 System internal LIBXML NS error. This is a
request format error.

LIBXML PARSE ERR 500 System internal LIBXML parse error. This is a
request format error.

LIBXML PATH CTX ERR 500 System internal LIBXML path context error. This

is a request format error.

NX-APiCLl [

NX-APICLI |
. JSON and XML Structured Output

MEM_ALLOC ERR 500 System internal memory allocation error.

ROLLBACK ERR 500 Error executing a rollback.

SERVER BUSY ERR 500 Request is rejected because the server is busy.

USER NOT FOUND ERR 500 User not found from input or cache.

VOLATILE FULL 500 Volatile memory is full. Free up memory space
and retry.

XML _TO_JSON_CONVERT_ERR 500 XML to JSON conversion error.

BASH CMD NOT SUPPORTED ERR 501 Bash command not supported.

CHUNK ALLOW XML ONLY ERR 501 Chunking allows only XML output.

CHUNK ONLY ALLOWED IN SHOW ERR |501 Response chunking allowed only in show
commands.

CHUNK TIMEOUT 501 Timeout while generating chunk response.

CLI CMD NOT_SUPPORTED ERR 501 CLI command not supported.

JSON_NOT SUPPORTED_ ERR 501 JSON not supported due to a potential large
amount of output.

MALFORMED XML 501 Malformed XML output.

MSG _TYPE UNSUPPORTED ERR 501 Message type not supported.

OUTPUT REDIRECT NOT SUPPORTED ERR |501 Output redirection is not supported.

PIPE XML NOT ALLOWED_ IN INPUT |501 Pipe XML for this command is not allowed in
input.

PIPE NOT ALLOWED IN INPUT 501 Pipe is not allowed for this input type.

RESP_BIG_USE CHUNK ERR 501 Response is greater than the allowed maximum.

The maximum is 10 MB. Use XML or JSON
output with chunking enabled.

STRUCT NOT SUPPORTED_ERR 501 Structured output unsupported.

ERR_UNDEFINED 600 Unknown error.

JSON and XML Structured Output

The NX-OS supports redirecting the standard output of various show commands in the following structured
output formats:

* XML
* JSON. The limit for JSON output is 60 MB.

Jl NX-APICLI

| NX-API CLI
About JSON (JavaScript Object Notation) .

* JSON Pretty, which makes the standard block of JSON-formatted output easier to read. The limit for
JSON output is 60 MB.

* Introduced in NX-OS release 9.3(1), JSON Native and JSON Pretty Native displays JSON output faster
and more efficiently by bypassing an extra layer of command interpretation. JSON Native and JSON
Pretty Native preserve the data type in the output. They display integers as integers instead of converting
them to a string for output.

Converting the standard NX-OS output to any of these formats occurs on the NX-OS CLI by "piping" the
output to a JSON or XML interpreter. For example, you can issue the show ip access command with the
logical pipe (|) and specify the output format. If you do, the NX-OS command output is properly structured
and encoded in that format. This feature enables programmatic parsing of the data and supports streaming
data from the switch through software streaming telemetry. Most commands in Cisco NX-OS support JSON,
JSON Pretty, JSON Native, JSON Native Pretty, and XML output. Some, for example, consistency checker
commands, do not support all formats. Consistency checker commands support XML, but not any variant of
JSON.

N

Note To avoid validation error, use file redirection to redirect the JSON output to a file, and use the file output.

Example:

Switch#show version | json > json output ; run bash cat /bootflash/json output

Selected examples of this feature follow.

About JSON (JavaScript Object Notation)

JSON is a light-weight text-based open standard that is designed for human-readable data and is an alternative
to XML. JSON was originally designed from JavaScript, but it is language-independent data format. JSON
and JSON Pretty format, as well as JSON Native and JSON Pretty Native, are supported for command output.

The two primary Data Structures that are supported in some way by nearly all modern programming languages
are as follows:

* Ordered List :: Array
* Unordered List (Name/Value pair) :: Objects

JSON or XML output for a show command can be accessed through the NX-API sandbox also.
CLI Execution

switch-1l-vxlan-1# show cdp neighbors | json

{"TABLE cdp neighbor brief info": {"ROW cdp neighbor brief info": [{"ifindex": "

83886080", "device id": "SW-SWITCH-1", "intf id": "mgmtO", "ttl": "148"
"capability": ["switch", "IGMP cnd filtering"], "platform id": "cisco AA-C0000

5-29-L", "port id": "GigabitEthernetl/0/24"}, {"ifindex": "436207616", "device

~id": "SWITCH-1-VXLAN-1(FOC1234A01B)", "intf id": "Ethernetl/1", "ttl": "166

", "capability": ["router", "switch", "IGMP cnd filtering", "Supports-STP-Disput

e"], "platform id": "N3K-C3132Q-40G", "port id": "Ethernetl/1"}]}}

BLR-VXLAN-NPT-CR-179#

Examples of XML and JSON Qutput

This section documents selected examples of NX-OS commands that are displayed as XML and JSON output.

NX-API CLI
I .“

NX-APICLI |

. Examples of XML and JSON Output

This example shows how to display the unicast and multicast routing entries in hardware tables in JSON
format:

switch (config) # show hardware profile status | json

{"total 1pm": (["8191", "1024"], "total host": "8192", "max host4 limit": "4096",
"max host6 limit": "2048", "max mcast limit": "2048", "used lpm total": "9", "u
sed v4 1lpm": "6", "used v6_ lpm": "3", "used v6 lpm 128": "1", "used host lpm tot
al": "O0", "used host v4 lpm": "O", "used host v6 lpm": "0", "used mcast": "O0", "
used mcast oifl": "2", "used host in host total": "13", "used host4 in host": "1
2", "used host6_in host": "1", "max ecmp_ table limit": "64", "used ecmp_ table":
"0", "mfib fd status": "Disabled", "mfib fd maxroute": "0", "mfib fd count": "O"

}
switch (config) #

This example shows how to display the unicast and multicast routing entries in hardware tables in XML
format:

switch(config)# show hardware profile status | xml
<?xml version="1.0" encoding="IS0-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:fib">
<nf:data>
<show>
<hardware>
<profile>
<status>
<__XML_ OPT_Cmd_dynamic_tcam_ status>
< XML OPT Cmd dynamic tcam status readonly >
<__readonly >
<total lpm>8191</total lpm>
<total host>8192</total host>
<total lpm>1024</total lpm>
<max_host4 1imit>4096</max host4 limit>
<max_host6 1imit>2048</max host6 limit>
<max mcast 1imit>2048</max mcast limit>
<used lpm total>9</used lpm total>
<used v4 lpm>6</used v4 lpm>
<used v6_ lpm>3</used v6 lpm>
<used v6 lpm 128>1</used v6 lpm 128>
<used host lpm total>0</used host lpm total>
<used host v4 lpm>0</used host v4 lpm>
<used host v6 lpm>0</used host v6 lpm>
<used mcast>0</used mcast>
<used mcast o0ifl>2</used mcast oifl>
<used host in host total>13</used host in host total>
<used host4 in host>12</used host4 in host>
<used host6_in host>1</used host6 in host>
<max_ecmp_ table limit>64</max ecmp table limit>
<used ecmp table>0</used ecmp table>
<mfib fd status>Disabled</mfib fd status>
<mfib fd maxroute>0</mfib fd maxroute>
<mfib fd count>0</mfib fd count>
</__readonly >
</ XML OPT Cmd dynamic tcam status readonly >
</__XML_ OPT Cmd dynamic tcam status>
</status>
</profile>
</hardware>
</show>
</nf:data>
</nf:rpc-reply>

Jl NX-APICLI

| NX-APICLI
Examples of XML and JSON Output .

11>11>
switch (config) #

This example shows how to display LLDP timers that are configured on the switch in JSON format:

switch (config)# show 1lldp timers | Jjson

{"ttl": "120", "reinit": "2", "tx interval": "30", "tx delay": "2", "hold mplier
": "4", "notification interval": "5"}

switch (config) #

This example shows how to display LLDP timers that are configured on the switch in XML format:

switch(config)# show 1lldp timers | xml
<?xml version="1.0" encoding="IS0-8859-1"?>
<nf:rpc-reply xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="http://w
ww.cisco.com/nxos:1.0:11dp">
<nf:data>
<show>
<1ldp>
<timers>
<_XML_OPT _Cmd_1lldp_ show_ timers__ readonly >
<__readonly >
<ttl>120</ttl>
<reinit>2</reinit>
<tx interval>30</tx interval>
<tx delay>2</tx_delay>
<hold mplier>4</hold mplier>
<notification interval>5</notification interval>
</__readonly >
</_ XML OPT Cmd 1lldp show timers__ readonly >
</timers>
</11dp>
</show>
</nf:data>
</nf:rpc-reply>
11>11>
switch (config) #

This example shows how to display ACL statistics in XML format.

switch-1(config-acl)# show ip access-lists acl-testl | xml
<?xml version="1.0" encoding="IS0-8859-1"7?>
<nf:rpc-reply xmlns="http://www.cisco.com/nxos:1.0:aclmgr" xmlns:nf="urn:ietf:p
arams:xml:ns:netconf:base:1.0">
<nf:data>
<show>
< XML OPT Cmd_show _acl ip ipvé6_mac>
<ip ipv6 mac>ip</ip ipv6 mac>
<access-lists>
<_ XML OPT Cmd_show_acl name>
<name>acl-testl</name>
<_ XML OPT Cmd show_acl capture>
<_ XML OPT _Cmd show_acl expanded>
<__XML__OPT_Cmd_show_acl_ readonly_ >
<_ readonly >
<TABLE_ip_ ipv6_mac>
<ROW_ip ipv6_mac>
<op ip ipvé mac>ip</op ip ipv6 mac>
<show_summary>0</show_ summary>
<acl_name>acl-testl</acl_name>
<statistics>enable</statistics>
<frag opt permit deny>permit-all</frag opt permit deny>
<TABLE_seqgno>

NX-API CLI
I .“

NX-APICLI |
. Examples of XML and JSON Output

<ROW_seqgno>
<seqno>10</seqno>
<permitdeny>permit</permitdeny>
<ip>ip</ip>
<src_ip prefix>192.0.2.1/24</src_ip prefix>
<dest any>any</dest any>
</ROW_segno>
</TABLE_ segno>
</ROW_ip ipv6 mac>
</TABLE ip ipv6 mac>
</__readonly >
</ XML OPT Cmd show acl readonly >
</ XML OPT Cmd show_acl expanded>
</ XML OPT Cmd show acl capture>
</ XML OPT Cmd show_acl name>
</access-lists>
</ XML OPT Cmd show_acl ip ipv6 mac>
</show>
</nf:data>
</nf:rpc-reply>
11>11>
switch-1 (config-acl)#

This example shows how to display ACL statistics in JSON format.

switch-1(config-acl)# show ip access-lists acl-testl | json
{"TABLE ip ipv6 mac": {"ROW ip ipv6 mac": {"op ip ipv6 mac": "ip", "show_ summar
y": "0", "acl name": "acl-testl", "statistics": "enable", "frag opt permit deny
": "permit-all", "TABLE seqno": {"ROW _segno": {"segno": "10", "permitdeny": "pe
rmit", "ip": "ip", "src_ip prefix": "192.0.2.1/24", "dest any": "any"}}}}}
switch-1 (config-acl) #

The following example shows how to display the switch's redundancy status in JSON format.

switch-1# show system redundancy status | json

{"rdn mode admin": "HA", "rdn mode oper": "None", "this sup": " (sup-1)", "this
sup_rdn state": "Active, SC not present", "this sup sup state": "Active", "this
_sup internal state": "Active with no standby", "other sup": "(sup-1)", "other
sup_rdn_state": "Not present"}

nxosv2#

switch-1#

This example shows how to display the switch's redundancy information in JSON Pretty Native format.

switch-1# show system redundancy status | json-pretty native
{
"rdn mode admin": "HA",
"rdn_mode oper": "None",
"this sup": "(sup-1)",
"this sup rdn_state": "Active, SC not present",
"this sup sup_state": "Active",
"this sup internal state": "Active with no standby",
"other sup": "(sup-1)",
"other sup rdn state": "Not present"
}
switch-1#

The following example shows how to display the switch's OSPF routing parameters in JSON Native format.

switch-1# show ip ospf | json native

{"TABLE ctx":{"ROW ctx":[{"ptag":"Blah","instance number":4,"cname":"default","
rid":"0.0.0.0","stateful ha":"true","gr ha":"true","gr planned only":"true","gr
_grace _period":"PT60S","gr state":"inactive","gr last status":"None","support t
0s0_only":"true","support opaque lsa":"true","is abr":"false","is asbr":"false"
,"admin dist":110,"ref bw":40000,"spf start time":"PTOS","spf hold time":"PT1S"
,"spf max time":"PT58","lsa start time":"PTOS","lsa hold time":"PT5S","lsa max

Jl NX-APICLI

| NX-APICLI
Examples of XML and JSON Output .

time":"PT5S", "min lsa arr time":"PT1S","lsa aging pace":10,"spf max paths":8,"m
ax_metric_adver":"false","asext lsa cnt":0,"asext lsa crc":"0","asopaque lsa cn
t":0,"asopaque_lsa crc":"0","area total":0,"area normal":0,"area stub":0,"area_
nssa":0,"act _area total":0,"act area normal":0,"act area stub":0,"act area nssa
":0,"no_discard rt ext":"false","no discard rt int":"false"}, {"ptag":"100","ins
tance number":3,"cname":"default","rid":"0.0.0.0","stateful ha":"true","gr_ha":
"true","gr planned only":"true","gr grace period":"PT60S","gr state":"inactive"
,"gr_last status":"None","support tos0 only":"true","support opaque lsa":"true"

,"is_abr":"false","is_asbr":"false","admin dist":110,"ref bw":40000,"spf start
time":"PTOS", "spf_hold time":"PT1S","spf max time":"PT5S","lsa start time":"PTO
S","lsa _hold time":"PT5S","lsa max time":"PT5S","min lsa arr time":"PT1S","lsa

aging pace":10,"spf max paths":8,"max metric_adver":"false","asext lsa cnt":0,"
asext lsa crc":"0","asopaque lsa cnt":0,"asopaque_lsa crc":"0","area total":0,"
area normal":0,"area stub":0,"area nssa":0,"act _area total":0,"act area normal"
:0,"act_area_stub":0,"act_area nssa":0,"no discard rt ext":"false","no discard
rt_int":"false"}, {"ptag":"111","instance number":1,"cname":"default","rid":"0.0
.0.0","stateful ha":"true","gr_ha":"true","gr planned only":"true","gr grace pe
riod":"PT60S", "gr_state":"inactive","gr last status":"None","support tos0 only"

:"true", "support opaque lsa":"true","is abr":"false","is_ asbr":"false","admin d
ist":110,"ref bw":40000,"spf start time":"PTOS","spf hold time":"PT1S","spf max
time":"PT5S","1lsa_start time":"PTO0S","lsa hold time":"PT5S","lsa max time":"PT

558", "min lsa arr time":"PT1S","lsa aging pace":10,"spf max paths":8,"max metric
adver":"false","asext lsa cnt":0,"asext lsa crc":"0","asopaque lsa cnt":0,"aso
paque_lsa crc":"0","area total":0,"area normal":0,"area stub":0,"area nssa":0,"
act_area total":0,"act_area normal":0,"act area stub":0,"act_area nssa":0,"no_d
iscard rt ext":"false","no discard rt int":"false"}, {"ptag":"112","instance num
ber":2,"cname":"default","rid":"0.0.0.0", "stateful ha":"true","gr_ha":"true","g
r planned only":"true","gr grace period":"PT60S","gr state":"inactive","gr_ last

status":"None", "support tos0_only":"true", "support opaque lsa":"true","is abr"

?"false","is_asbr":"false","admin_dist":llO,"ref_bw":4000O,"spf_start_time":"PT
0S","spf_hold time":"PT1S","spf max time":"PT5S","lsa start time":"PTOS","lsa h
old time":"PT5S","lsa max time":"PT5S","min lsa arr time":"PT1S","lsa aging pac

e":10,"spf max paths":8,"max metric_adver":"false","asext lsa cnt":0,"asext lsa
_crc":"0","asopaque_lsa cnt":0,"asopaque_ lsa crc":"0","area total":0,"area norm
al":0,"area_stub":0,"area nssa":0,"act area total":0,"act area normal":0,"act_a
rea stub":0,"act area nssa":0,"no_discard rt ext":"false","no discard rt int":"
false"}1}}
switch-1#

The following example shows how to display OSPF routing parameters in JSON Pretty Native format.

switch-1# show ip ospf | json-pretty native

{

"TABLE ctx": {
"ROW_ctx": [{

"ptag": "Blah",
"instance number": 4,
"cname": "default",
"rid": "0.0.0.0",
"stateful ha": "true",
"gr_ha": "true",
"gr_planned only": "true",
"gr_grace period": "PT60S",
"gr_state": "inactive",
"gr_ last status": "None",
"support tosO _only": "true",
"support opaque lsa": "true",
"is abr": "false",
"is_asbr": "false",
"admin dist": 110,
"ref bw": 40000,
"spf start time": "PTOS",
"spf hold time": "PT1S",
"spf max time": "PT5S",
"lsa start time": "PTOS",

NX-API CLI
I .“

. Examples of XML and JSON Output

}
switch-1+#

The following example shows how to display the IP route summary in XML format.

"lsa hold time":

"lsa max_time": "PT5S",

"min lsa arr_ time":
"lsa aging pace":
"spf max paths":
"max metric adver":
"asext lsa_cnt":
"asext lsa_crc":
"asopaque_ lsa_cnt":
"asopaque_ lsa_crc":
"area total": 0,
"area normal": O,
"area stub": 0,
"area nssa": 0
"act_area_ total":
"act_area normal":
"act_area_ stub":
"act_area nssa":

’

"no discard rt ext":
"no discard rt_int":

{
"ptagll: lllOOll’
"instance number":

"pT5S",

"PT1S",
10,

8/
"false",
OI

"O"’

OI

"O"’

o O O o

"false",
"false"

3,

"cname": "default",

"rid": "0.0.0.0",

"stateful ha": "true",
"gr ha": "true",

"gr_planned only":
"gr grace period":

"true",
"PT60S",

"gr state": "inactive",

... content deleted for brevity ...

"max metric adver":
"asext lsa_cnt":
"asext lsa_crc":
"asopaque_ lsa_cnt":
"asopaque_ lsa_crc":

"area total": 0,
"area normal": O,
"area stub": 0,
"area nssa": 0,

"act_area_ total":
"act_area normal":
"act_area_ stub":
"act_area nssa":

"no discard rt ext":
"no discard rt_int":

switch-1# show ip route summary | xml

<?xml version="1.0" encoding="IS0-8859-1"?> <nf:rpc-reply

"false",
OI
"O"
4
OI
"O"
4

o

’

o

’

’

o O

4
"false",
"false"

NX-APICLI |

xmlns="http://www.cisco.com/nxos:1.0:urib" xmlns:nf="urn:ietf:params:xml:ns:netconf:base:1.0">

<nf:data>
<show>
<ip>
<route>

< XML OPT Cmd urib_show ip route command ip>

< XML OPT Cmd urib show ip route command unicast>

Jl NX-APICLI

| NX-APICLI
Examples of XML and JSON Output .

< XML OPT Cmd urib show ip_ route command_ topology>
< XML OPT Cmd urib show ip route command 13vm-info>
< XML OPT _Cmd urib show ip route command rpf>
< XML OPT _Cmd urib show ip route command_ ip-addr>
< XML OPT Cmd urib show ip_ route command protocol>
< XML OPT _Cmd urib show ip route command_ summary>
< XML OPT Cmd urib show ip route command vrf>
< XML OPT Cmd urib show ip_ route command _ readonly >
<__readonly >
<TABLE_vrf>
<ROW_vrf>
<vrf-name-out>default</vrf-name-out>
<TABLE_addrf>
<ROW_addrf>
<addrf>ipv4</addrf>
<TABLE_summary>
<ROW_summary>
<routes>938</routes>
<paths>1453</paths>
<TABLE unicast>
<ROW_unicast>
<clientnameuni>am</clientnameuni>
<best-paths>2</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>local</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>direct</clientnameuni>
<best-paths>105</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>broadcast</clientnameuni>
<best-paths>203</best-paths>
</ROW_unicast>
<ROW_unicast>
<clientnameuni>ospf-10</clientnameuni>
<pbest-paths>1038</best-paths>
</ROW_unicast>
</TABLE unicast>
<TABLE_route_count>
<ROW_route_count>
<mask len>8</mask len>
<count>1</count>
</ROW_route count>
<ROW_route_count>
<mask len>24</mask len>
<count>600</count>
</ROW_route count>
<ROW_route_count>
<mask len>31</mask len>
<count>13</count>
</ROW_route count>
<ROW_route_count>
<mask len>32</mask len>
<count>324</count>
</ROW_route count>
</TABLE route count>
</ROW_summary>
</TABLE_ summary>
</ROW_addrf>
</TABLE addrf>
</ROW_vrf>

NX-API CLI
I .“

NX-APICLI |
Examples of XML and JSON Output

</TABLE vrf>
</__readonly >
</ XML OPT Cmd urib show ip route command readonly >
</ XML OPT Cmd urib show ip route command vrf>
</ XML OPT Cmd urib show ip route command summary>
</ XML OPT Cmd urib show ip route command protocol>
</ XML OPT Cmd urib show ip route command ip-addr>
</ XML OPT Cmd urib show ip route command rpf>
</ XML OPT Cmd urib show ip route command 13vm-info>
</ XML OPT Cmd urib show ip route command topology>
</ XML OPT Cmd urib show ip route command unicast>
</ XML OPT Cmd urib show ip route command ip>
</route>
</ip>
</show>
</nf:data>
</nf:rpc-reply>
11>11>
switch-1#

The following example shows how to display the IP route summary in JSON format.

switch-1# show ip route summary | json

{"TABLE vrf": {"ROW vrf": {"vrf-name-out": "default", "TABLE addrf": {"ROW addrf": {"addrf":
"ipv4", "TABLE summary": {"ROW_summary": {"routes": "938", "paths": "

1453", "TABLE unicast": {"ROW unicast": [{"clientnameuni": "am", "best-paths": "2"},
{"clientnameuni": "local", "best-paths": "105"}, {"clientnameuni": "direct",

"best-paths": "105"}, {"clientnameuni": "broadcast", "best-paths": "203"}, {"clientnameuni':
"ospf-10", "best-paths": "1038"}]}, "TABLE route count": {"ROW route

count": [{"mask len": "8", "count": "1"}, {"mask len": "24", "count": "600"}, {"mask len":
"31", "count": "13"}, {"mask len": "32", "count": "324"}]1}}}}}}}}

switch-1#

The following example shows how to display the IP route summary in JSON Pretty format.

switch-1# show ip route summary | json-pretty
{
"TABLE vrf": {
"ROW vrf": {
"vrf-name-out": "default",
"TABLE addrf": {
"ROW addrf": {
"addrf": "ipv4",
"TABLE summary": {
"ROW_ summary": {
"routes": "938",
"paths": "1453",
"TABLE unicast": ({
"ROW unicast": [
{

"clientnameuni": "am",
"best-paths": "2"

}l

{
"clientnameuni": "local",
"best-paths": "105"

}l

{
"clientnameuni": "direct",
"best-paths": "105"

}l

{
"clientnameuni": "broadcast",
"best-paths": "203"

Jl NX-APICLI

| NX-APICLI
Examples of XML and JSON Output .

"clientnameuni": "ospf-10",
"best-paths": "1038"

}I
"TABLE_route count": {
"ROW_route count": [
{
"mask len": "8",
"count": "1"

}I

"mask len": "24",
"count": "600"

"mask len": "31",
"count": "13"

"mask len": "32",
"count": "324"

}

}
switch-1#

The following example shows how to display the IP route table in JSON native format.

switch-1(config)# show ip route summary | json native

{"TABLE vref™: {"ROW vief™': [{"vrf-rame-out™ s "defaul ", "TABLE acdrf™: {"RON acdrf™': [{"actrf™:"ipA", "TARLE stnmery™: {"ROV stmery™': [{"'routes":3, "
aths':3, "IARE unicast": {"ROW unicast": [{"'clientrameuni":"oroadtast”", "best-aths":3}] }, "IABLE route cant™: {"ROW raute count': [{"esk len":8,
"count":1}, {"mask len":32,"count":2}1}}1}}1}111}})

switch-1 (config) #

Notice that with JSON native (as well as JSON pretty native), integers are represented as true integers. For
example,"mask len:" is displayed as the actual value of 32.

The following example shows to display the IP route table in JSON Pretty Native format.

switch-1(config)# show ip route summary | json-pretty native
{
"TABLE vrf": {
"ROW vrf": [{
"vrf-name-out": "default",
"TABLE addrf": {
"ROW addrf": [{
"addrf": "ipv4",
"TABLE_summary": {
"ROW_ summary": [{
"routes": 3,
"paths": 3,
"TABLE unicast": ({
"ROW unicast": [{
"clientnameuni": "broadcast",
"best-paths": 3
H]

NX-API CLI
I .“

[l sample NX-API Scripts

}
}

switch-1 (config) #

Sample NX-API Scripts

}I

"TABLE route count": {
"ROW_route_ count": [{
"mask len": 8,

"count": 1

b A
"mask len": 32,

"count": 2

NX-APICLI |

You can access sample scripts that demonstrate how to use a script with NX-API. To access a sample script,
click the following link then choose the directory that corresponds to the required software release: Cisco
Nexus 9000 NX-OS NX-API

Jl NX-APICLI

https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/
https://github.com/datacenter/nexus9000/tree/master/nx-os/nxapi/

	NX-API CLI
	About NX-API CLI
	Guidelines and Limitations
	Transport
	Message Format
	Security

	Using NX-API CLI
	Escalate Privileges to Root on NX-API
	NX-API Management Commands
	Working With Interactive Commands Using NX-API
	NX-API Client Authentication
	NX-API Client Basic Authentication
	NX-API Client Certificate Authentication
	Guidelines and Limitations
	NX-API Client Certificate Authentication Prerequisites
	Configuring NX-API Client Certificate Authentication
	Example Python Scripts for Certificate Authentication
	Example cURL Certificate Request
	Validating Certificate Authentication

	NX-API Request Elements
	NX-API Response Elements
	Restricting Access to NX-API
	Updating an iptable
	Making an Iptable Persistent Across Reloads

	Kernel Stack ACL
	Table of NX-API Response Codes
	JSON and XML Structured Output
	About JSON (JavaScript Object Notation)
	Examples of XML and JSON Output

	Sample NX-API Scripts

