

# **EVPN Distributed NAT**

• EVPN Distributed NAT, on page 1

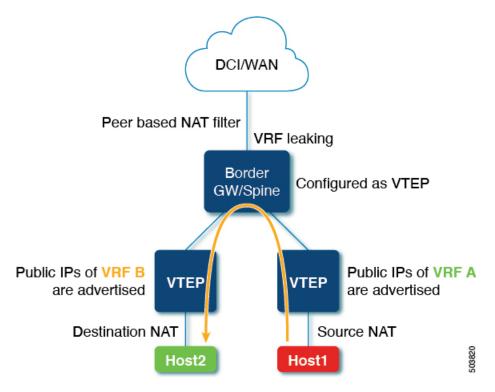
# **EVPN Distributed NAT**

Beginning with Cisco NX-OS Release 10.2(1)F, EVPN Distributed NAT feature is supported on N9K-C9336C-FX2, N9K-C93240YC-FX2, N9K-C93360YC-FX2 TOR switches. The Distributed Elastic NAT feature enables NAT on the leaf and spine in the VXLAN topology.

#### **Guidelines and Limitations of EVPN Distributed NAT**

EVPN Distributed NAT supports the following:

- Up to 8192 NAT translations
- Static NAT
- IPv4 NAT
- Match in VRF-aware NAT
- Add-route for static inside configuration


EVPN Distributed NAT does not support the following:

- IPv6 NAT
- Dynamic NAT
- NAT mobility
- · Subnet-based filtering
- · Per rule statistics
- NAT is unaware of vPC. NAT configuration should be identical on both vPC peers.
- Within a fabric if source and destination hosts are in same VRF, regular NAT can be used. EVPN Distributed NAT is not supported within same VRF. It is supported between different VRF's.

### **EVPN Distributed NAT Topology**

The following topology illustrates the EVPN Distributed NAT configuration on VTEPs.

Figure 1: EVPN Distributed NAT Configuration Topology



In the above topology:

- EVPN Distributed NAT is configured only on the VTEPs.
- The spine does not require any EVPN Distributed NAT related configuration.
- Spine is configured as a VTEP.
- Only the routes are leaked in the spine for reachability using VxLAN underlay routing protocols.
- The Source and Destination NAT are configured on both the leaf.
- Source NAT is performed on the switch directly connected to the Source.
- Destination NAT is performed on the switch directly connected to the Destination.
- If both Source and Destination are on the same switch, Source NAT is performed first. The packet is then looped through Spine, and the Destination NAT is performed.
- · Hosts can send traffic using private IP address or public IP address, depending on the requirement.
- VXLAN Peer-based NAT filtering is configured.

#### **Peer-based NAT Filter**

• The peer-based NAT filter allows NAT only for the flows that are destined to the configured tunnel endpoints and the rest of the flows remain unaffected.

- Peer-based NAT filter is useful in cases where large number of prefixes needs to be NATed.
- NAT ACL region must be carved first so that the peer-based NAT filter can work.
- You can configure peer-based filters on the border nodes.
- Peer-based NAT filter is useful for inter-VRF cases such as a service leaf where centralized VRF leak is configured.
- You can configure peer-based NAT filter using the **system nve nat peer-ip** < peer-ip < command.

#### **VRF-Aware NAT**

- The VRF aware NAT enables a switch to understand an address space in a VRF (virtual routing and forwarding instances) and to translate the packet. This allows the NAT feature to translate traffic in an overlapping address space that is used between two VRFs.
- You can enable FP Tile-based NAT using system routing vrf-aware-nat command.
- For more details on VRF aware NAT, see Cisco Nexus 9000 NX-OS Interfaces Configuration Guide.

## **Configuring EVPN Distributed NAT**

The following is the EVPN Distributed NAT configuration in Leaf-1.

```
feature bgp
feature interface-vlan
feature vn-segment-vlan-based
feature nat
feature nv overlav
hardware access-list tcam region nat 512 (Carves NAT TCAM)
system routing vrf-aware-nat
system nve nat peer-ip 100.100.100.3
                                            (peer-ip is the Spine address which is leaking
the route)
ip nat inside source static 21.1.1.10 172.21.1.10 vrf vrf1 match-in-vrf add-route
ip nat inside source static 31.1.1.10 172.31.1.10 vrf vrf2 match-in-vrf add-route
vlan 202
  vn-segment 20202
vlan 301
  vn-segment 20301
vlan 3200
 vn-segment 33200
vlan 3300
vn-segment 33300
interface Vlan202
  no shutdown
  vrf member vrf1
 ip address 22.1.1.1/24
  fabric forwarding mode anycast-gateway
  ip nat inside
```

```
interface Vlan3200
 no shutdown
  vrf member vrf1
  ip forward
  ip nat outside
interface Vlan301
 no shutdown
  vrf member vrf2
  ip address 31.1.1.1/24
  fabric forwarding mode anycast-gateway
 ip nat inside
interface Ethernet1/11
 switchport mode trunk
interface Ethernet1/35
 switchport mode trunk
vrf context vrf1
 vni 33200
  rd auto
  address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
vrf context vrf2
 vni 33300
  rd auto
  address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
router bgp 100
  vrf vrf1
   address-family ipv4 unicast
      network 172.21.1.10/32
      advertise 12vpn evpn
vrf vrf2
   address-family ipv4 unicast
      network 172.31.1.10/32
      advertise 12vpn evpn
```

#### The following is the EVPN Distributed NAT configuration in Leaf-2.

```
feature bgp
feature interface-vlan
feature vn-segment-vlan-based
feature nat
feature nv overlay

system routing vrf-aware-nat
system nve nat peer-ip 100.100.100.3 (peer-ip is the spine address which is leaking the
route)

ip nat inside source static 21.1.1.20 172.21.1.20 vrf vrf1 match-in-vrf add-route

ip nat inside source static 31.1.1.20 172.31.1.20 vrf vrf2 match-in-vrf add-route

vlan 202
vn-segment 20202

vlan 301
vn-segment 20301
```

```
vlan 3200
 vn-segment 33200
vlan 3300
vn-segment 33300
interface Vlan202
 no shutdown
 vrf member vrf1
 ip address 22.1.1.1/24
 fabric forwarding mode anycast-gateway
 ip nat inside
interface Vlan3200
 no shutdown
  vrf member vrf1
 ip forward
 ip nat outside
interface Vlan301
 no shutdown
 vrf member vrf2
 ip address 31.1.1.1/24
 fabric forwarding mode anycast-gateway
 ip nat inside
interface Vlan3300
 no shutdown
 vrf member vrf2
 ip forward
 ip nat outside
interface Ethernet1/16
 switchport
  switchport mode trunk
interface Ethernet1/43
 switchport
  switchport mode trunk
vrf context vrf1
  vni 33200
  rd auto
 address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
vrf context vrf2
  vni 33300
  rd auto
  address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
router bgp 100
 vrf vrf1
   address-family ipv4 unicast
      network 172.21.1.20/32
      advertise 12vpn evpn
vrf vrf2
   address-family ipv4 unicast
      network 172.31.1.20/32
```

```
advertise 12vpn evpn
```

The following show command provides the display of insulation policies configured in the switch for EVPN Distributed NAT.

```
show ip nat translations
Pro Inside global Inside local Outside local Outside global any 174.2.216.2 42.2.216.2 --- --- any 174.3.217.2 42.3.217.2 --- ---
```