

Setting Up the IP Fabric for Media

This chapter describes how to set up an IP fabric for media network.

- Determining the Number and Types of Leaf Switches Required in the IP Fabric, on page 1
- Determining the Number of Achievable Flows in the IP Fabric, on page 4

Determining the Number and Types of Leaf Switches Required in the IP Fabric

The number and types of leaf switches required in your IP fabric depend on the number and types of endpoints in your broadcasting center.

Follow these steps to help determine how many leaf switches you need:

1. Count the number of endpoints (cameras, microphones, and so on) in your broadcasting center (for example, 360 10-Gbps endpoints and 5040 -Gbps endpoints).
2. Determine the type of leaf switches required based on the type of endpoints in your broadcasting center.

- For 10-Gbps endpoints, use the Cisco Nexus 92160YC-X, 93108TC-EX, 93108TC-FX, 93216TC-FX2, 93180YC-FX, or $93180 \mathrm{YC}-E X$ leaf switches.
- For $25-\mathrm{Gbps}$ endpoints, use the Cisco Nexus 93180YC-FX, 93180YC-EX, 93240YC-FX2, or 93360YC-FX2 leaf switches.
- For 40-Gbps endpoints, use the Cisco Nexus 9272Q, 9336C-FX2, 9364C, or 9332C leaf switches.
- For 100-Gbps endpoints, use the Cisco Nexus 9236C, 9336C-FX2, 9364C, or 9332C leaf switches.

3. Determine the number of leaf switches required based on the number of endpoints and uplinks that each leaf switch supports.

Note The uplink and downlink numbers in the following table are a recommendation. There are no technical limitations to use certain ports as uplinks or host-facing links.

Table 1: Endpoints and Uplinks Supported Per Leaf Switch

Leaf Switch	Endpoint Capacity	Uplink Capacity
Cisco Nexus 9236C switch	$25 \times 40-\mathrm{Gbps}$ endpoints	$10 \times 100-\mathrm{Gbps}$ ($1000-\mathrm{Gbps}$) uplinks
Cisco Nexus 9272Q switch	$36 \times 40-\mathrm{Gbps}$ endpoints	$36 \times 40-\mathrm{Gbps}$ (1440-Gbps) uplinks
Cisco Nexus 92160YC-X switch	$40 \times 10-\mathrm{Gbps}$ endpoints	$4 \times 100-\mathrm{Gbps}$ ($400-\mathrm{Gbps}$) uplinks
Cisco Nexus 9336C-FX2 switch	$25 \times 40-\mathrm{Gbps}$ endpoints	$10 \times 100-\mathrm{Gbps}$ (1000-Gbps) uplinks
Cisco Nexus 9348GC-FXP switch	$48 \times 1-\mathrm{Gbps} / 100-\mathrm{Mbps}$ endpoints	$2 \times 100-\mathrm{Gbps}(200-\mathrm{Gbps})$ uplinks
Cisco Nexus 9364C switch ${ }^{1}$	Not applicable	64 x 100-Gbps (6400-Gbps) uplinks
Cisco Nexus 93108TC-EX switch	$48 \times 10-\mathrm{Gbps}$ endpoints	$6 \times 100-\mathrm{Gbps}$ ($600-\mathrm{Gbps}$) uplinks
Cisco Nexus 93108TC-FX switch	$48 \times 1 / 10-\mathrm{Gbps}$ endpoints	$6 \times 100-\mathrm{Gbps}(600-\mathrm{Gbps})$ uplinks
Cisco Nexus 93180LC-EX switch	$32 \times 40-\mathrm{Gbps}$ endpoints	$4 \times 100-\mathrm{Gbps}$ ($400-\mathrm{Gbps}$) uplinks
Cisco Nexus 93180YC-EX switch	$48 \times 10-\mathrm{Gbps}$ endpoints	$6 \times 100-\mathrm{Gbps}(600-\mathrm{Gbps})$ uplinks
Cisco Nexus 93180YC-FX switch	$48 \times 10 / 25-\mathrm{Gbps}$ endpoints	$6 \times 100-\mathrm{Gbps}(600-\mathrm{Gbps})$ uplinks
Cisco Nexus 93216TC-FX2 switch	$96 \times 1 / 10$-Gbps endpoints	$12 \times 40 / 100-\mathrm{Gbps} \text { (1200-Gbps) }$ uplinks
Cisco Nexus 93240YC-FX2 switch	$48 \times 10 / 25-\mathrm{Gbps}$ endpoints	$12 \times 100-\mathrm{Gbps}$ ($1200-\mathrm{Gbps}$) uplinks
Cisco Nexus 93360YC-FX2 switch	$96 \times 10 / 25-\mathrm{Gbps}$ endpoints	$12 \times 40 / 100-\mathrm{Gbps}(1200-\mathrm{Gbps})$ uplinks

${ }^{1}$ The Cisco Nexus 9364 C switch does not support breakout.
For example:

- For 360 10-Gbps endpoints, you need eight Cisco Nexus 93180 YC-EX leaf switches because each switch can support up to 48 10-Gbps endpoints.
- For 50 40-Gbps endpoints, you need two Cisco Nexus 9236C leaf switches because each switch can support up to $2540-\mathrm{Gbps}$ endpoints.

4. Make sure that the uplink bandwidth (toward the spine switch) is greater than or equal to the downstream bandwidth (toward the endpoints).
a. Use this equation to determine the uplink bandwidth:
```
Uplink Capacity per Leaf Switch x Number of Leaf Switches = Uplink Bandwidth
```

For example:
600 Gbps (uplink capacity for each Cisco Nexus 93180 YC-EX switch) x eight Cisco Nexus 93180 YC-EX leaf switches $=4800-$ Gbps uplink bandwidth.

1000 Gbps (uplink capacity for each Cisco Nexus 9236C switch) x two Cisco Nexus 9236C leaf switches $=2000-$ Gbps uplink bandwidth.

4800-Gbps uplink bandwidth (for eight Cisco Nexus 93180 YC-EX leaf switches) +2000 -Gbps uplink bandwidth (for two Cisco Nexus 9236C leaf switches) $=6800-\mathrm{Gbps}$ total uplink bandwidth.
b. Use this equation to determine the downstream bandwidth:

Endpoint Capacity per Leaf Switch x Number of Leaf Switches = Downstream Bandwidth
For example:
$48 \times 10 \mathrm{Gbps}$ (480-Gbps endpoint capacity) for each Cisco Nexus 93180 YC -EX leaf switch x eight leaf switches $=3840-\mathrm{Gbps}$ downstream bandwidth.
25×40 Gbps (1000-Gbps endpoint capacity) for each Cisco Nexus 9236C leaf switch x two leaf switches $=2000-\mathrm{Gbps}$ downstream bandwidth.
$3840-\mathrm{Gbps}$ downstream bandwidth (for eight Cisco Nexus 93180 YC-EX leaf switches) $+2000-\mathrm{Gbps}$ downstream bandwidth (for two Cisco Nexus 9236C leaf switches) $=5840-\mathrm{Gbps}$ total downstream bandwidth.
5. If the total uplink bandwidth is greater than or equal to the total downstream bandwidth, your topology is valid. You can now determine the number of achievable flows. If the uplink bandwidth is less than the downstream bandwidth, rework your topology until the upstream bandwidth is equal to or greater than the downstream bandwidth.
The NBM flows can't utilize all the expected bandwidth as the PIM bidir RP configuration utilizes the NBM bandwidth available. To increase the NBM bandwidth, remove the PIM bidir RP configuration.
The following topology uses the examples in this section:

The following diagram shows an example topology with a Cisco Nexus 9508 spine switch and an N9K-X9636C-R line card:

Determining the Number of Achievable Flows in the IP Fabric

Use this equation to determine the number of possible flows in your IP fabric:

```
Total Bandwidth \div Flow Size = Number of Achievable Flows
```

The flow size is configurable and is typically based on the type of video technology that is used in your broadcasting center.

Table 2: Flow Sizes Per Video Technology

Technology	Flow Size
HD video	$1.5 \mathrm{Gbps}(1500 \mathrm{Mbps})$
3G HD video	$3 \mathrm{Gbps}(3000 \mathrm{Mbps})$
4 K ultra HD video	$12 \mathrm{Gbps}(12,000 \mathrm{Mbps})$
8 K ultra HD video	$48 \mathrm{Gbps}(48,000 \mathrm{Mbps})$

For example:
7200 -Gbps total bandwidth $\div 1.5$-Gbps flow size (for HD video) $=4800$ possible flows

