

Service Redirection in VXLAN Fabrics

This chapter contains these sections:

- Service Redirection in VXLAN EVPN Fabrics, on page 1
- Guidelines and Limitations for Policy-Based Redirect, on page 1
- Enabling the Policy-Based Redirect Feature, on page 2
- Configuring a Route Policy, on page 3
- Verifying the Policy-Based Redirect Configuration, on page 4
- Configuration Example for Policy-Based Redirect, on page 4

Service Redirection in VXLAN EVPN Fabrics

Today, insertion of service appliances (also referred to as service nodes or service endpoints) such as firewalls, load-balancers, etc are needed to secure and optimize applications within a data center. This section describes the Layer 4-Layer 7 service insertion and redirection features offered on VXLAN EVPN fabrics that provides sophisticated mechanisms to onboard and selectively redirect traffic to these services.

Guidelines and Limitations for Policy-Based Redirect

The following guidelines and limitations apply to PBR over VXLAN.

- The following platforms support PBR over VXLAN:
 - Cisco Nexus 9332C and 9364C switches
 - Cisco Nexus 9300-EX switches
 - Cisco Nexus 9300-FX/FX2/FX3 switches
 - Cisco Nexus 9300-GX switches
 - Cisco Nexus 9504 and 9508 switches with -EX/FX line cards
- PBR over VXLAN doesn't support the following features: VTEP ECMP, and the **load-share** keyword in the **set {ip | ipv6} next-hop** *ip-address* command.
- When you configure **bestpath as-path multipath-relax**, BGP installs all the multi-paths for IPv4 as best-path in URIB with least metric available among the paths.

• When you configure **bestpath as-path multipath-relax**, BGP doesn't install all the multi-paths for IPv6 as best-path in U6RIB. It will still have the individual metric available for those paths.

Enabling the Policy-Based Redirect Feature

To configure basic PBR, in cases where the advanced (and recommended) ePBR functions are not deployed, see the following sections:

- Enabling the Policy-Based Redirect Feature, on page 2
- Configuring a Route Policy, on page 3
- Verifying the Policy-Based Redirect Configuration, on page 4
- Configuration Example for Policy-Based Redirect, on page 4

Before you begin

Enable the policy-based redirect feature before you can configure a route policy.

SUMMARY STEPS

- 1. configure terminal
- 2. [no] feature pbr
- 3. (Optional) show feature
- 4. (Optional) copy running-config startup-config

DETAILED STEPS

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	switch# configure terminal	
Step 2	[no] feature pbr	Enables the policy-based routing feature.
	Example:	
	switch(config)# feature pbr	
Step 3	(Optional) show feature	Displays enabled and disabled features.
	Example:	
	switch(config)# show feature	
Step 4	(Optional) copy running-config startup-config	Saves this configuration change.
	Example:	
	switch(config)# copy running-config startup-config	

Configuring a Route Policy

You can use route maps in policy-based routing to assign routing policies to the inbound interface. Cisco NX-OS routes the packets when it finds a next hop and an interface.

Note

The switch has a RACL TCAM region by default for IPv4 traffic.

Before you begin

Configure the RACL TCAM region (using TCAM carving) before you apply the policy-based routing policy. For instructions, see the "Configuring ACL TCAM Region Sizes" section in the Cisco Nexus 9000 Series NX-OS Security Configuration Guide, Release 9.2(x).

SUMMARY STEPS

- 1. configure terminal
- 2. interface type slot/port
- 3. {ip | ipv6} policy route-map map-name
- **4.** route-map map-name [permit | deny] [seq]
- 5. match {ip | ipv6} address access-list-name name [name...]
- **6. set ip next-hop** *address1*
- **7. set ipv6 next-hop** *address1*
- 8. (Optional) set interface null0
- **9.** (Optional) copy running-config startup-config

DETAILED STEPS

Procedure

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example: switch# configure terminal	
Step 2	interface type slot/port	Enters interface configuration mode.
	<pre>Example: switch(config) # interface ethernet 1/2</pre>	
Step 3	<pre>{ip ipv6} policy route-map map-name Example: switch(config-inf) # ip policy route-map Testmap</pre>	Assigns a route map for IPv4 or IPv6 policy-based routing to the interface.

	Command or Action	Purpose
Step 4	<pre>route-map map-name [permit deny] [seq] Example: switch(config-inf)# route-map Testmap</pre>	Creates a route map or enters route-map configuration mode for an existing route map. Use <i>seq</i> to order the entries in a route map.
Step 5	<pre>match {ip ipv6} address access-list-name name [name] Example: switch(config-route-map) # match ip address access-list-name ACL1</pre>	Matches an IPv4 or IPv6 address against one or more IPv4 or IPv6 access control lists (ACLs). This command is used for policy-based routing and is ignored by route filtering or redistribution.
Step 6	<pre>set ip next-hop address! Example: switch(config-route-map)# set ip next-hop 192.0.2.1</pre>	Sets the IPv4 next-hop address for policy-based routing.
Step 7	<pre>set ipv6 next-hop address1 Example: switch(config-route-map) # set ipv6 next-hop 2001:0DB8::1</pre>	Sets the IPv6 next-hop address for policy-based routing.
Step 8	(Optional) set interface null0 Example: switch(config-route-map) # set interface null0	Sets the interface that is used for routing. Use the null0 interface to drop packets.
Step 9	(Optional) copy running-config startup-config Example: switch(config-route-map)# copy running-config startup-config	Saves this configuration change.

Verifying the Policy-Based Redirect Configuration

To display the policy-based redirect configuration information, perform one of the following tasks:

Command	Purpose
show [ip ipv6] policy [name]	Displays information about an IPv4 or IPv6 policy.
show route-map [name] pbr-statistics	Displays policy statistics.

Use the **route-map** *map-name* **pbr-statistics** command to enable policy statistics. Use the **clear route-map** *map-name* **pbr-statistics** command to clear these policy statistics.

Configuration Example for Policy-Based Redirect

Perform the following configuration on all tenant VTEPs, excluding the service VTEP.

```
feature pbr
ipv6 access-list IPV6 App group 1
10 permit ipv6 any 2001:10:1:1::0/64
ip access-list IPV4 App group 1
10 permit ip any 10.1.1.0/24
ipv6 access-list IPV6 App group 2
10 permit ipv6 any 2001:20:1:1::0/64
ip access-list IPV4 App group 2
10 permit ip any 20.1.1.0/24
route-map IPV6 PBR Appgroup1 permit 10
 match ipv6 address IPV6_App_group_2
  set ipv6 next-hop 2001:100:1:1::20 (next hop is that of the firewall)
route-map IPV4 PBR_Appgroup1 permit 10
  match ip address IPV4 App group 2
  set ip next-hop 10.100.1.20 (next hop is that of the firewall)
route-map IPV6 PBR Appgroup2 permit 10
  match ipv6 address IPV6_App_group1
  set ipv6 next-hop 2001:\overline{1}00:\overline{1}:1::20 (next hop is that of the firewall)
route-map IPV4_ PBR_Appgroup2 permit 10
  match ip address IPV4 App group 1
  set ip next-hop 10.100.1.20 (next hop is that of the firewall)
interface Vlan10
! tenant SVI appgroup 1
vrf member appgroup
ip address 10.1.1.1/24
no ip redirect
ipv6 address 2001:10:1:1::1/64
no ipv6 redirects
fabric forwarding mode anycast-gateway
ip policy route-map IPV4 PBR Appgroup1
ipv6 policy route-map IPV6_PBR_Appgroup1
interface Vlan20
! tenant SVI appgroup 2
vrf member appgroup
 ip address 20.1.1.1/24
no ip redirect
ipv6 address 2001:20:1:1::1/64
no ipv6 redirects
fabric forwarding mode anycast-gateway
ip policy route-map IPV4 PBR Appgroup2
ipv6 policy route-map IPV6 PBR Appgroup2
On the service VTEP, the PBR policy is applied on the tenant VRF SVI. This ensures the
traffic post decapsulation will be redirected to firewall.
feature pbr
ipv6 access-list IPV6_App_group_1
10 permit ipv6 any 2001:10:1:1::0/64
ip access-list IPV4_App_group_1
10 permit ip any 10.1.1.0/24
ipv6 access-list IPV6 App group 2
10 permit ipv6 any 2001:20:1:1::0/64
```

```
ip access-list IPV4_App_group_2
10 permit ip any 20.1.1.0/24
route-map IPV6_PBR_Appgroup1 permit 10
  match ipv6 address IPV6 App group 2
  set ipv6 next-hop 2001:100:1:1::20 (next hop is that of the firewall)
route-map IPV6 PBR Appgroup permit 20
 match ipv6 address IPV6_App_group1
                                      (next hop is that of the firewall)
  set ipv6 next-hop 2001:100:1:1::20
route-map IPV4_ PBR_Appgroup permit 10
  match ip address IPV4_App_group_2
  set ip next-hop 10.100.1.20 (next hop is that of the firewall)
route-map IPV4_ PBR_Appgroup permit 20
  match ip address IPV4_App_group_1
  set ip next-hop 10.100.1.20 (next hop is that of the firewall)
interface vlan1000
!L3VNI SVI for Tenant VRF
vrf member appgroup
ip forward
ipv6 forward
ipv6 ipv6 address use-link-local-only
ip policy route-map IPV4 PBR Appgroup
ipv6 policy route-map IPV6_PBR_Appgroup
```