

Configure Control Plane Policing

This chapter describes how to configure Control Plane Policing on Cisco NX-OS devices.

- About CoPP, on page 1
- Guidelines and Limitations for CoPP, on page 18
- Default Settings for CoPP, on page 20
- Configuring CoPP, on page 21
- Protocol ACL Filtering, on page 28
- Verifying the CoPP Configuration, on page 32
- Displaying the CoPP Configuration Status, on page 34
- Monitoring CoPP, on page 34
- Monitoring CoPP with SNMP, on page 35
- Clearing the CoPP Statistics, on page 36
- Configuration Examples for CoPP, on page 36
- Additional References for CoPP, on page 38

About CoPP

Control Plane Policing (CoPP) protects the control plane and separates it from the data plane, which ensures network stability, reachability, and packet delivery.

This feature allows a policy map to be applied to the control plane. This policy map looks like a normal QoS policy and is applied to all traffic entering the switch from a non-management port. A common attack vector for network devices is the denial-of-service (DoS) attack, where excessive traffic is directed at the device interfaces.

The Cisco NX-OS device provides CoPP to prevent DoS attacks from impacting performance. Such attacks, which can be perpetrated either inadvertently or maliciously, typically involve high rates of traffic destined to the supervisor module or CPU itself.

The supervisor module divides the traffic that it manages into three functional components or planes:

Data plane

Handles all the data traffic. The basic functionality of a Cisco NX-OS device is to forward packets from one interface to another. The packets that are not meant for the switch itself are called the transit packets. These packets are handled by the data plane.

Control plane

Handles all routing protocol control traffic. These protocols, such as the Border Gateway Protocol (BGP) and the Open Shortest Path First (OSPF) Protocol, send control packets between devices. These packets are destined to router addresses and are called control plane packets.

Management plane

Runs the components meant for Cisco NX-OS device management purposes such as the command-line interface (CLI) and Simple Network Management Protocol (SNMP).

The supervisor module has both the management plane and control plane and is critical to the operation of the network. Any disruption or attacks to the supervisor module will result in serious network outages. For example, excessive traffic to the supervisor module could overload and slow down the performance of the entire Cisco NX-OS device. For example, a DoS attack on the supervisor module could generate IP traffic streams to the control plane at a very high rate, forcing the control plane to spend a large amount of time in handling these packets and preventing the control plane from processing genuine traffic.

Examples of DoS attacks include:

- Internet Control Message Protocol (ICMP) echo requests
- IP fragments
- TCP SYN flooding

These attacks can impact the device performance and have the following negative effects:

- Reduced service quality (such as poor voice, video, or critical applications traffic)
- High route processor or switch processor CPU utilization
- Route flaps due to loss of routing protocol updates or keepalives
- Unstable Layer 2 topology
- Slow or unresponsive interactive sessions with the CLI
- Processor resource exhaustion, such as the memory and buffers
- Indiscriminate drops of incoming packets

Caution

It is important to ensure that you protect the supervisor module from accidental or malicious attacks by configuring control plane protection.

Control Plane Protection

To protect the control plane, the Cisco NX-OS device segregates different packets destined for the control plane into different classes. Once these classes are identified, the Cisco NX-OS device polices the packets, which ensures that the supervisor module is not overwhelmed.

Control Plane Packet Types

Different types of packets can reach the control plane:

Receive packets

Packets that have the destination address of a router. The destination address can be a Layer 2 address (such as a router MAC address) or a Layer 3 address (such as the IP address of a router interface). These packets include router updates and keepalive messages. Multicast packets can also be in this category where packets are sent to multicast addresses that are used by a router.

Exception packets

Packets that need special handling by the supervisor module. For example, if a destination address is not present in the Forwarding Information Base (FIB) and results in a miss, the supervisor module sends an ICMP unreachable packet back to the sender. Another example is a packet with IP options set.

The following exceptions are possible from line cards only:

- match exception ip option
- match exception ipv6 option
- match exception ttl-failure

The following exceptions are possible from fabric modules only:

- match exception ipv6 icmp unreachable
- match exception ip icmp unreachable

The following exceptions are possible from line cards and fabric modules:

• match exception mtu-failure

Redirected packets

Packets that are redirected to the supervisor module.

Glean packets

If a Layer 2 MAC address for a destination IP address is not present in the FIB, the supervisor module receives the packet and sends an ARP request to the host.

All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco NX-OS device. CoPP classifies these packets to different classes and provides a mechanism to individually control the rate at which the supervisor module receives these packets.

Classification for CoPP

For effective protection, the Cisco NX-OS device classifies the packets that reach the supervisor modules to allow you to apply different rate controlling policies based on the type of the packet. For example, you might want to be less strict with a protocol packet such as Hello messages but more strict with a packet that is sent to the supervisor module because the IP option is set. You configure packet classifications and rate controlling policies using class maps and policy maps.

Rate Controlling Mechanisms

Once the packets are classified, the Cisco NX-OS device has different mechanisms to control the rate at which packets arrive at the supervisor module. Two mechanisms control the rate of traffic to the supervisor module. One is called policing and the other is called rate limiting.

Using hardware policers, you can define separate actions for traffic that conforms to or violates certain conditions. The actions can transmit the packet, mark down the packet, or drop the packet.

You can configure the following parameters for policing:

Committed information rate (CIR)

Desired bandwidth, specified as a bit rate or a percentage of the link rate.

Committed burst (BC)

Configuration Guide.

Size of a traffic burst that can exceed the CIR within a given unit of time and not impact scheduling In addition, you can set separate actions such as transmit or drop for conform and violate traffic.

For more information on policing parameters, see the Cisco Nexus 9000 Series NX-OS Quality of Service

Dynamic and Static CoPP ACLs

CoPP access control lists (ACLs) are classified as either dynamic or static. Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches use only dynamic CoPP ACLs. Cisco Nexus 9200 Series switches use both dynamic and static CoPP ACLs.

Dynamic CoPP ACLs work only for Forwarding Information Base (FIB)-based supervisor redirected packets, and static CoPP ACLs work for ACL-based supervisor redirected packets. Dynamic CoPP ACLs are supported for myIP and link-local multicast traffic, and static CoPP ACLs are supported for all other types of traffic.

Static CoPP ACLs are identified by a substring. Any ACL that has one of these substrings is categorized as a static CoPP ACL.

- MAC-based static CoPP ACL substrings:
 - acl-mac-cdp-udld-vtp
 - · acl-mac-cfsoe
 - · acl-mac-dot1x
 - acl-mac-12-tunnel
 - · acl-mac-13-isis
 - acl-mac-lacp
 - acl-mac-lldp
 - · acl-mac-sdp-srp
 - acl-mac-stp
 - acl-mac-undesirable
- Protocol-based static CoPP ACL substrings:
 - acl-dhcp
 - · acl-dhcp-relay-response
 - acl-dhcp6
 - acl-dhcp6-relay-response
 - · acl-ptp
- Multicast-based static CoPP ACL substrings:
 - · acl-igmp

For more information on static CoPP ACLs, see Guidelines and Limitations for CoPP, on page 18.

Default Policing Policies

When you bring up your Cisco NX-OS device for the first time, the Cisco NX-OS software installs the default copp-system-p-policy-strict policy to protect the supervisor module from DoS attacks. You can set the level of protection by choosing one of the following CoPP policy options from the initial setup utility:

- Strict—This policy is 1 rate and 2 color.
- Moderate—This policy is 1 rate and 2 color. The important class burst size is greater than the strict policy but less than the lenient policy.
- Lenient—This policy is 1 rate and 2 color. The important class burst size is greater than the moderate policy but less than the dense policy.
- Dense—This policy is 1 rate and 2 color. The policer CIR values are less than the strict policy.
- Skip—No control plane policy is applied. (Cisco does not recommend using the Skip option because it will impact the control plane of the network.)

If you do not select an option or choose not to execute the setup utility, the software applies strict policing. We recommend that you start with the strict policy and later modify the CoPP policies as required.

Note

Strict policing is not applied by default when using POAP, so you must configure a CoPP policy.

The copp-system-p-policy policy has optimized values suitable for basic device operations. You must add specific class and access-control list (ACL) rules that meet your DoS protection requirements. The default CoPP policy does not change when you upgrade the software.

Caution

Selecting the skip option and not subsequently configuring CoPP protection can leave your Cisco NX-OS device vulnerable to DoS attacks.

You can reassign the CoPP default policy by entering the setup utility again using the **setup** command from the CLI prompt or by using the **copp profile** command.

Related Topics

Changing or Reapplying the Default CoPP Policy, on page 27

Default Class Maps

The copp-system-class-critical class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-critical match access-group name copp-system-p-acl-bgp match access-group name copp-system-p-acl-rip match access-group name copp-system-p-acl-vpc match access-group name copp-system-p-acl-bgp6 match access-group name copp-system-p-acl-ospf match access-group name copp-system-p-acl-rip6 match access-group name copp-system-p-acl-eigrp match access-group name copp-system-p-acl-ospf6 match access-group name copp-system-p-acl-ospf6 match access-group name copp-system-p-acl-eigrp6 match access-group name copp-system-p-acl-auto-rp match access-group name copp-system-p-acl-auto-rp
```

The copp-system-class-exception class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-exception
   match exception ip option
   match exception ip icmp unreachable
   match exception ipv6 option
   match exception ipv6 icmp unreachable
```

The copp-system-class-exception-diag class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-exception-diag
   match exception ttl-failure
   match exception mtu-failure
```

The copp-system-class-important class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-important
match access-group name copp-system-p-acl-hsrp
match access-group name copp-system-p-acl-vrrp
match access-group name copp-system-p-acl-hsrp6
match access-group name copp-system-p-acl-vrrp6
match access-group name copp-system-p-acl-mac-lldp
```

The copp-system-class-12-default class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-12-default
    match access-group name copp-system-p-acl-mac-undesirable
```

The copp-system-class-l2-unpoliced class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-12-unpoliced
    match access-group name copp-system-p-acl-mac-stp
    match access-group name copp-system-p-acl-mac-lacp
    match access-group name copp-system-p-acl-mac-cfsoe
    match access-group name copp-system-p-acl-mac-sdp-srp
    match access-group name copp-system-p-acl-mac-l2-tunnel
    match access-group name copp-system-p-acl-mac-cdp-udld-vtp
```

The copp-system-class-l3mc-data class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-l3mc-data
    match exception multicast rpf-failure
    match exception multicast dest-miss
```

The copp-system-class-l3uc-data class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-13uc-data
   match exception glean
```

The copp-system-class-management class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-management match access-group name copp-system-p-acl-ftp match access-group name copp-system-p-acl-ntp match access-group name copp-system-p-acl-ssh match access-group name copp-system-p-acl-http match access-group name copp-system-p-acl-ntp6 match access-group name copp-system-p-acl-sftp match access-group name copp-system-p-acl-snmp match access-group name copp-system-p-acl-ssh6 match access-group name copp-system-p-acl-tftp
```

```
match access-group name copp-system-p-acl-https
match access-group name copp-system-p-acl-snmp6
match access-group name copp-system-p-acl-tftp6
match access-group name copp-system-p-acl-radius
match access-group name copp-system-p-acl-tacacs
match access-group name copp-system-p-acl-telnet
match access-group name copp-system-p-acl-radius6
match access-group name copp-system-p-acl-tacacs6
match access-group name copp-system-p-acl-telnet6
```

The copp-system-class-monitoring class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-monitoring
   match access-group name copp-system-p-acl-icmp
   match access-group name copp-system-p-acl-icmp6
   match access-group name copp-system-p-acl-traceroute
```

The copp-system-class-multicast-host class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-multicast-host
    match access-group name copp-system-p-acl-mld
```

The copp-system-class-multicast-router class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-multicast-router
   match access-group name copp-system-p-acl-pim
   match access-group name copp-system-p-acl-msdp
   match access-group name copp-system-p-acl-pim6
   match access-group name copp-system-p-acl-pim-reg
   match access-group name copp-system-p-acl-pim6-reg
   match access-group name copp-system-p-acl-pim-mdt-join
```

The copp-system-class-nat-flow class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-nat-flow
    match exception nat-flow
```

The copp-system-class-ndp class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-ndp
    match access-group name copp-system-p-acl-ndp
```

The copp-system-class-normal class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal
    match access-group name copp-system-p-acl-mac-dot1x
    match protocol arp
```

The copp-system-class-normal-dhcp class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal-dhcp
    match access-group name copp-system-p-acl-dhcp
    match access-group name copp-system-p-acl-dhcp6
```

The copp-system-class-normal-dhcp-relay-response class has the following configuration:

```
class-map type control-plane match-any copp-system-p-class-normal-dhcp-relay-response
   match access-group name copp-system-p-acl-dhcp-relay-response
   match access-group name copp-system-p-acl-dhcp6-relay-response
```

The copp-system-class-normal-igmp class has the following configuration:

class-map type control-plane match-any copp-system-p-class-normal-igmp
 match access-group name copp-system-p-acl-igmp

The copp-system-class-redirect class has the following configuration:

class-map type control-plane match-any copp-system-p-class-redirect
 match access-group name copp-system-p-acl-ptp

The copp-system-class-undesirable class has the following configuration:

class-map type control-plane match-any copp-system-p-class-undesirable
 match access-group name copp-system-p-acl-undesirable
 match exception multicast sg-rpf-failure

The copp-system-class-fcoe class has the following configuration:

class-map type control-plane match-any copp-system-p-class-fcoe
 match access-group name copp-system-p-acl-mac-fcoe

Note

The copp-system-class-fcoe class is not supported for Cisco Nexus 9200 Series switches.

Strict Default CoPP Policy

On Cisco Nexus 9200 Series switches, the strict CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-strict
  class copp-system-p-class-13uc-data
   set cos 1
   police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
   police cir 36000 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 2500 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 2600 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
    police cir 10000 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
   police cir 1000 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-13mc-data
    set cos 1
    police cir 2400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-ndp
    set cos 6
   police cir 1400 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
   police cir 1300 kbps bc 32000 bytes conform transmit violate drop
```

```
class copp-system-p-class-normal-dhcp-relay-response
  set cos 1
 police cir 1500 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
  police cir 3000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-redirect
 set cos 1
 police cir 280 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-exception
  set cos 1
  police cir 150 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-exception-diag
  set cos 1
 police cir 150 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
  police cir 150 kbps bc 128000 bytes conform transmit violate drop
class copp-system-p-class-12-unpoliced
 set cos 7
  police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
  set cos 0
  police cir 200 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 800 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-12-default
  set cos 0
 police cir 400 kbps bc 32000 bytes conform transmit violate drop
class class-default
 set cos 0
  police cir 400 kbps bc 32000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the strict CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-strict
 class copp-system-p-class-13uc-data
   set cos 1
   police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
   police cir 19000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 3000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 3000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-management
    set cos 2
    police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
    set cos 1
   police cir 2000 pps bc 128 packets conform transmit violate drop
 class copp-system-p-class-13mc-data
   set cos 1
   police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1500 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-ndp
    set cos 6
```

```
police cir 1500 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp
 set cos 1
 police cir 300 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
  police cir 400 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
  police cir 6000 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-redirect
  set cos 1
  police cir 1500 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-exception
 set cos 1
 police cir 50 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-exception-diag
  set cos 1
 police cir 50 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
 police cir 300 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-12-unpoliced
 set cos 7
 police cir 20000 pps bc 8192 packets conform transmit violate drop
class copp-system-p-class-undesirable
 set cos O
 police cir 15 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-fcoe
 set cos 6
 police cir 1500 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
  police cir 100 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-12-default
 set cos 0
 police cir 50 pps bc 32 packets conform transmit violate drop
class class-default
 set cos 0
 police cir 50 pps bc 32 packets conform transmit violate drop
```

Moderate Default Copp Policy

On Cisco Nexus 9200 Series switches, the moderate CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-moderate
  class copp-system-p-class-13uc-data
    set cos 1
    police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
   police cir 36000 kbps bc 1920000 bytes conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 2500 kbps bc 1920000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 2600 kbps bc 192000 bytes conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
    police cir 10000 kbps bc 48000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 1
```

```
police cir 1000 kbps bc 192000 bytes conform transmit violate drop
class copp-system-p-class-13mc-data
  set cos 1
 police cir 2400 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-normal
  set cos 1
  police cir 1400 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-ndp
 set cos 6
  police cir 1400 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp
  set cos 1
  police cir 1300 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
  set cos 1
 police cir 1500 kbps bc 96000 bytes conform transmit violate drop
class copp-system-p-class-normal-igmp
  set cos 3
 police cir 3000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-redirect
 set cos 1
  police cir 280 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-exception
  set cos 1
 police cir 150 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-exception-diag
  set cos 1
  police cir 150 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-monitoring
 set cos 1
 police cir 150 kbps bc 192000 bytes conform transmit violate drop
class copp-system-p-class-12-unpoliced
  set cos 7
  police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
 set cos 0
 police cir 200 kbps bc 48000 bytes conform transmit violate drop
class copp-system-p-class-nat-flow
  set cos 7
  police cir 800 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-12-default
 set cos 0
 police cir 400 kbps bc 48000 bytes conform transmit violate drop
class class-default
  set cos 0
  police cir 400 kbps bc 48000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the moderate CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-moderate
  class copp-system-p-class-l3uc-data
    set cos 1
    police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
    police cir 19000 pps bc 192 packets conform transmit violate drop
  class copp-system-p-class-important
    set cos 6
    police cir 3000 pps bc 192 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
    police cir 3000 pps bc 192 packets conform transmit violate drop
  class copp-system-p-class-management
```

```
police cir 3000 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-multicast-host
  set cos 1
 police cir 2000 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-13mc-data
  set cos 1
 police cir 3000 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-normal
 set cos 1
 police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-ndp
 set cos 6
 police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp
 set cos 1
 police cir 300 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
 set cos 1
 police cir 400 pps bc 96 packets conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
  police cir 6000 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-redirect
 set cos 1
 police cir 1500 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-exception
 set cos 1
  police cir 50 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-exception-diag
 police cir 50 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-monitoring
  set cos 1
 police cir 300 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-12-unpoliced
 set cos 7
 police cir 20000 pps bc 8192 packets conform transmit violate drop
class copp-system-p-class-undesirable
  set cos 0
 police cir 15 pps bc 48 packets conform transmit violate drop
class copp-system-p-class-fcoe
 set cos 6
 police cir 1500 pps bc 192 packets conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 100 pps bc 64 packets conform transmit violate drop
class copp-system-p-class-12-default
 set cos 0
  police cir 50 pps bc 48 packets conform transmit violate drop
class class-default
 set cos 0
 police cir 50 pps bc 48 packets conform transmit violate drop
```

Lenient Default CoPP Policy

On Cisco Nexus 9200 Series switches, the lenient CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-lenient
  class copp-system-p-class-l3uc-data
   set cos 1
   police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
```

```
police cir 36000 kbps bc 2560000 bytes conform transmit violate drop
class copp-system-p-class-important
  set cos 6
 police cir 2500 kbps bc 2560000 bytes conform transmit violate drop
class copp-system-p-class-multicast-router
  set cos 6
 police cir 2600 kbps bc 256000 bytes conform transmit violate drop
class copp-system-p-class-management
  set cos 2
  police cir 10000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-multicast-host
  set cos 1
 police cir 1000 kbps bc 256000 bytes conform transmit violate drop
class copp-system-p-class-13mc-data
 set cos 1
 police cir 2400 kbps bc 32000 bytes conform transmit violate drop
class copp-system-p-class-normal
 set cos 1
 police cir 1400 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-ndp
  set cos 6
  police cir 1400 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp
  set cos 1
 police cir 1300 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-normal-dhcp-relay-response
 set cos 1
  police cir 1500 kbps bc 128000 bytes conform transmit violate drop
class copp-system-p-class-normal-igmp
 set cos 3
 police cir 3000 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-redirect
  set cos 1
 police cir 280 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-exception
  set cos 1
 police cir 150 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-exception-diag
  set cos 1
 police cir 150 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-monitoring
  set cos 1
  police cir 150 kbps bc 256000 bytes conform transmit violate drop
class copp-system-p-class-12-unpoliced
  set cos 7
 police cir 50 mbps bc 8192000 bytes conform transmit violate drop
class copp-system-p-class-undesirable
  set cos 0
  police cir 200 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-nat-flow
 set cos 7
 police cir 800 kbps bc 64000 bytes conform transmit violate drop
class copp-system-p-class-12-default
  set cos 0
  police cir 400 kbps bc 64000 bytes conform transmit violate drop
class class-default
  set cos 0
  police cir 400 kbps bc 64000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the lenient CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-lenient
  class copp-system-p-class-13uc-data
   set cos 1
   police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
    police cir 19000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 3000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
    set cos 6
    police cir 3000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-management
   set cos 2
   police cir 3000 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
    set cos 1
    police cir 2000 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
   police cir 3000 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 6
   police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
   police cir 300 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   set cos 1
    police cir 400 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-igmp
   set cos 3
   police cir 6000 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-redirect
   set cos 1
    police cir 1500 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-exception
   set cos 1
   police cir 50 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-exception-diag
   set cos 1
   police cir 50 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-monitoring
   set cos 1
   police cir 300 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-12-unpoliced
    set cos 7
   police cir 20000 pps bc 8192 packets conform transmit violate drop
  class copp-system-p-class-undesirable
   set cos 0
   police cir 15 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-fcoe
    set cos 6
   police cir 1500 pps bc 256 packets conform transmit violate drop
  class copp-system-p-class-nat-flow
   set cos 7
   police cir 100 pps bc 64 packets conform transmit violate drop
  class copp-system-p-class-12-default
   set cos 0
   police cir 50 pps bc 64 packets conform transmit violate drop
```

```
class class-default
  set cos 0
  police cir 50 pps bc 64 packets conform transmit violate drop
```

Dense Default CoPP Policy

On Cisco Nexus 9200 Series switches, the dense CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-dense
  class copp-system-p-class-13uc-data
    set cos 1
    police cir 800 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-critical
    set cos 7
   police cir 4500 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-important
    set cos 6
   police cir 2500 kbps bc 1280000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
    police cir 370 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-management
    set cos 2
   police cir 2500 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 2
    police cir 300 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-13mc-data
   set cos 1
   police cir 600 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal
    set cos 1
    police cir 1400 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-ndp
   set cos 1
   police cir 350 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp
    set cos 1
    police cir 750 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   police cir 750 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-normal-igmp
    set cos 3
   police cir 1400 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-redirect
    set cos 1
    police cir 200 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-exception
    set cos 1
   police cir 200 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-exception-diag
    set cos 1
    police cir 200 kbps bc 32000 bytes conform transmit violate drop
  class copp-system-p-class-monitoring
    set cos 1
   police cir 150 kbps bc 128000 bytes conform transmit violate drop
  class copp-system-p-class-12-unpoliced
   set cos 7
    police cir 50 mbps bc 8192000 bytes conform transmit violate drop
  class copp-system-p-class-undesirable
   set cos 0
   police cir 100 kbps bc 32000 bytes conform transmit violate drop
```

```
class copp-system-p-class-12-default
  set cos 0
  police cir 200 kbps bc 32000 bytes conform transmit violate drop
class class-default
  set cos 0
  police cir 200 kbps bc 32000 bytes conform transmit violate drop
```

On Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches, the dense CoPP policy has the following configuration:

```
policy-map type control-plane copp-system-p-policy-dense
  class copp-system-p-class-13uc-data
   set cos 1
    police cir 250 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-critical
   set cos 7
   police cir 2500 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-important
   set cos 6
    police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-router
   set cos 6
   police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-management
    set cos 2
    police cir 1200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-multicast-host
   set cos 2
   police cir 1000 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-13mc-data
    set cos 1
   police cir 1200 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal
   set cos 1
   police cir 750 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-ndp
    set cos 1
   police cir 750 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp
   set cos 1
    police cir 150 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-dhcp-relay-response
   set cos 1
   police cir 200 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-normal-igmp
   set cos 3
    police cir 2500 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-redirect
   set cos 1
   police cir 1500 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-exception
   set cos 1
    police cir 50 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-exception-diag
   set cos 1
   police cir 50 pps bc 32 packets conform transmit violate drop
  class copp-system-p-class-monitoring
    set cos 1
   police cir 50 pps bc 128 packets conform transmit violate drop
  class copp-system-p-class-12-unpoliced
   set cos 7
    police cir 20000 pps bc 8192 packets conform transmit violate drop
  class copp-system-p-class-undesirable
    set cos 0
```

```
police cir 15 pps bc 32 packets conform transmit violate drop
class copp-system-p-class-fcoe
  set cos 6
  police cir 750 pps bc 128 packets conform transmit violate drop
class copp-system-p-class-12-default
  set cos 0
  police cir 25 pps bc 32 packets conform transmit violate drop
class class-default
  set cos 0
  police cir 25 pps bc 32 packets conform transmit violate drop
```

Packets Per Second Credit Limit

The aggregate packets per second (PPS) for a given policy (sum of PPS of each class part of the policy) is capped by an upper PPS Credit Limit (PCL). If an increase in PPS of a given class causes a PCL exceed, the configuration is rejected. To increase the desired PPS, the additional PPS beyond PCL should be decreased from other class(es).

Modular QoS Command-Line Interface

CoPP uses the Modular Quality of Service Command-Line Interface (MQC). MQC is a CLI structure that allows you to define a traffic class, create a traffic policy (policy map), and attach the traffic policy to an interface. The traffic policy contains the CoPP feature that will be applied to the traffic class.

Procedure

Step 1 Define a traffic class using the **class-map** command. A traffic class is used to classify traffic.

This example shows how to create a new class-map called copp-sample-class:

```
class-map type control-plane copp-sample-class
```

- Step 2 Create a traffic policy using the **policy-map** command. A traffic policy (policy map) contains a traffic class and one or more CoPP features that will be applied to the traffic class. The CoPP features in the traffic policy determine how to treat the classified traffic.
- Step 3 Attach the traffic policy (policy map) to the control plane using the **control-plane** and **service-policy** commands.

This example shows how to attach the policy map to the control plane:

```
control-plane
service-policy input copp-system-policy
```

Note

The copp-system-policy is always configured and applied. There is no need to use this command explicitly.

CoPP and the Management Interface

The Cisco NX-OS device supports only hardware-based CoPP, which does not support the management interface (mgmt0). The out-of-band mgmt0 interface connects directly to the CPU and does not pass through the in-band traffic hardware where CoPP is implemented.

On the mgmt0 interface, ACLs can be configured to give or deny access to a particular type of traffic.

Related Topics

Configure IP ACLs
Configuring MAC ACLs

Guidelines and Limitations for CoPP

CoPP has the following configuration guidelines and limitations:

- We recommend that you use the strict default CoPP policy initially and then later modify the CoPP policies that are based on the data center and application requirements.
- First-generation Cisco Nexus 9000 Series switches (non -EX/FX/FX2), do not support source-based CoPP. This limitation does not exist for cloud scale ASIC-based Cisco Nexus switches.
- The match-all option is not supported in CoPP class-map and it always defaults to the match-any option.
- Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and features that are used in your specific environment and the supervisor features that are required by the server environment. As these protocols and features change, CoPP must be modified.
- We recommend that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic unintentionally or in response to a malfunction or attack. In either event, analyze the situation and evaluate the need to modify the CoPP policies.
- All the traffic that you do not specify in the other class maps is put into the last class, the default class.
 Monitor the drops in this class and investigate if these drops are based on traffic that you do not want or the result of a feature that was not configured and you need to add.
- All broadcast traffic is sent through CoPP logic in order to determine which packets (for example, ARP and DHCP) must be redirected through an access control list (ACL) to the router processor. Broadcast traffic that does not need to be redirected is matched against the CoPP logic, and both conforming and violated packets are counted in the hardware but not sent to the CPU. Broadcast traffic that must be sent to the CPU and broadcast traffic that does not need to be sent to the CPU must be separated into different classes.
- After you have configured CoPP, delete anything that is not being used, such as old class maps and unused routing protocols.
- You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive
 access to the device. Filtering this traffic could prevent remote access to the Cisco NX-OS device and
 require a console connection.
- The Cisco NX-OS software does not support egress CoPP or silent mode. CoPP is supported only on ingress (you cannot use the **service-policy output copp** command to the control plane interface).
- You can use the access control entry (ACE) hit counters in the hardware only for ACL logic. Use the software ACE hit counters and the show access-lists and show policy-map type control-plane commands to evaluate CPU traffic.
- The Cisco NX-OS device hardware performs CoPP on a per-forwarding-engine basis. CoPP does not support distributed policing. Therefore, you should choose rates so that the aggregate traffic does not overwhelm the supervisor module.

- If multiple flows map to the same class, individual flow statistics will not be available.
- If you upgrade from a Cisco NX-OS release that supports the CoPP feature to a Cisco NX-OS release that supports the CoPP feature with other classes for new protocols, you must either run the setup utility using the **setup** command or use the **copp profile** command for the new CoPP classes to be available.
- Before you downgrade from a Cisco NX-OS release that supports the CoPP feature to an earlier Cisco NX-OS release that supports the CoPP feature, you should verify compatibility using the **show** incompatibility nxos bootflash: *filename* command. If an incompatibility exists, disable any features that are incompatible with the downgrade image before downgrading the software.
- You cannot disable CoPP. If you attempt to disable it, packets are rate limited at 50 packets per seconds.
- Skip CoPP policy option has been removed from the Cisco NX-OS initial setup utility because using it can impact the control plane of the network.
- Cisco Nexus 9200 Series switches support CoPP policer rates only in multiples of 10 kbps. If a rate is configured that is not a multiple of 10 kbps, the rate is rounded down. For example, the switch uses 50 kbps if a rate of 55 kbps is configured. (The **show policy-map type control-plane** command shows the user configured rate. See Verifying the CoPP Configuration, on page 32 for more information.)
- For Cisco Nexus 9200 Series switches, ip icmp redirect, IPv6 icmp redirect, ip ICMP unreachable, ipv6 icmp unreachable, and mtu-failure use the same TCAM entry, and they will all be classified to the class map where the first exception is present in the policy. In the CoPP strict profile, they are classified to the class-exception class map. In a different CoPP policy, if the first exception is in a different class map (for example, class-exception-diag), the rest of the exceptions will be classified to the same class map.
- The copp-system-class-fcoe class is not supported for Cisco Nexus 9200 Series switches.
- The following guidelines and limitations apply to static CoPP ACLs:
 - Only Cisco Nexus 9200 Series switches use static CoPP ACLs.
 - Static CoPP ACLs can be remapped to a different CoPP class.
 - Access control entries (ACEs) cannot be modified or removed for static CoPP ACLs.
 - If a CoPP ACL has a static ACL substring, it maps to that type of traffic. For example, if the ACL includes the acl-mac-stp substring, STP traffic classifies to the class map for that ACL.
 - Static CoPP ACLs take priority over dynamic CoPP ACLs, regardless of their position in the CoPP
 policy, the order in which they are configured, and how they appear in the output of the show
 policy-map type control-plane command.
 - You must have static CoPP ACLs in the CoPP policy. Otherwise, the CoPP policy is rejected.
- Beginning with Cisco Nexus Release 9.2(2), Cisco Nexus 9300-EX, Cisco Nexus 9300-FX Series switches and Cisco Nexus 9500 platform switches support protocol ACL filtering. In this release, IPv6 ACL is not supported.
- Beginning with Cisco NX-OS Release 9.2(3), IPv6 ACL is supported for dynamic CoPP on the Cisco Nexus 9300-EX, Cisco Nexus 9300-FX Series switches, and Cisco Nexus 9500 platform switches.
- The protocol ACL filtering feature has the following limitations:
 - Once the dynamic CoPP ACL is defined, you cannot add or remove an existing rule. This is applicable for all class-maps and policy-maps attached to the dynamic CoPP ACLs.

- You cannot override the existing dynamic CoPP with a new policy. You must remove the existing dynamic CoPP before you add a new policy.
- The deny action is not applicable.
- Every entry is programmed in TCAM and uses a different TCAM space if two MAC or IP ACLs with the same entries are created and bound to either the same or a different class-map.
- The maximum TCAM carving supported for the egress CoPP is 128 entries, which are either 128 MAC entries or 128 IPv4 entries. The device automatically applies 128 entries for egress CoPP when you carve TCAM for 256 entries.
- Policer actions are not supported.
- SNMP MIB support is not required.
- IPv6 ACL not supported for dynamic CoPP.
- When a packet meets multiple exception conditions, CoPP matches the packet based on the order in which the CoPP ACLs are configured and matches it only against a single class. This is an expected CoPP behavior.

Beginning with Cisco NX-OS Release 9.3(4), the UC FIB MISS exception is counted against the CoPP class (copp-system-p-class-exception). Therefore, if a packet has both, the TTL (accounted user class copp-system-p-class-exception-diag) and the UC FIM MISS exceptions, it is accounted against the UC FIB MISS exception. This behavior occurs because the order of the CoPP classes where the copp-system-p-class-exception class has an order higher than the copp-system-p-class-exception-diag class. For NX-OS releases earlier to NX-OS Release 9.3(4), the UC FIB MISS exception was not explicitly handled by the CoPP rules.

- CoPP processing comprises of 2 stages: In the first stage, the actual packet size is reused in each class
 policy, however when the packet enters the second stage, an internal header of 44 bytes is added. This
 causes an alteration in the conform or violation policies of all the CoPP classes. This limitation is applicable
 to Cisco Nexus 9300-FX, Nexus 9300-FX2, Nexus 9364C, Nexus 9332C, and 9300-GX platform switches.
- Beginning with Cisco NX-OS Release 10.1(2), CoPP is supported on the Cisco Nexus X9624D-R2 line cards and 9508-FM-R2 switches.
- Cloudscale IPv6 link-local BGP support requires carving > 512 ing-sup TCAM region (this requires a reload to take effect).

CoPP guidelines and limitations for Cisco Nexus N9364E-SG2 switches

Default Settings for CoPP

This table lists the default settings for CoPP parameters.

Table 1: Default CoPP Parameters Settings

Parameters	Default
Default policy	Strict

Parameters	Default
Default policy	9 policy entries
	Note The maximum number of supported policies with associated class maps is 128.
Scale factor value	1.00

Configuring CoPP

This section describes how to configure CoPP.

Configuring a Control Plane Class Map

You must configure control plane class maps for control plane policies.

You can classify traffic by matching packets based on existing ACLs. The permit and deny ACL keywords are ignored in the matching.

You can configure policies for IP version 4 (IPv4) and IP version 6 (IPv6) packets.

Before you begin

Ensure that you have configured the IP ACLs if you want to use ACE hit counters in the class maps.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	<pre>Example: switch# configure terminal switch(config)#</pre>	
Step 2	<pre>class-map type control-plane [match-all match-any] class-map-name Example: switch(config) # class-map type control-plane ClassMapA switch(config-cmap) #</pre>	Specifies a control plane class map and enters class map configuration mode. The default class matching is match-any. The name can be a maximum of 64 characters long and is case sensitive. Note You cannot use class-default, match-all, or match-any as class map names.
Step 3	(Optional) match access-group name access-list-name Example:	Specifies matching for an IP ACL. Note The permit and deny ACL keywords are ignored in the CoPP matching.

	Command or Action	Purpose
	<pre>switch(config-cmap)# match access-group name MyAccessList</pre>	
Step 4	(Optional) match exception {ip ipv6} icmp redirect	Specifies matching for IPv4 or IPv6 ICMP redirect exception packets.
	Example:	
	<pre>switch(config-cmap)# match exception ip icmp redirect</pre>	
Step 5	(Optional) match exception {ip ipv6} icmp unreachable	Specifies matching for IPv4 or IPv6 ICMP unreachable exception packets.
	Example:	
	<pre>switch(config-cmap)# match exception ip icmp unreachable</pre>	
Step 6	(Optional) match exception {ip ipv6} option	Specifies matching for IPv4 or IPv6 option exception packets.
	<pre>Example: switch(config-cmap)# match exception ip option</pre>	
Step 7	match protocol arp	Specifies matching for IP Address Resolution
	Example:	Protocol (ARP) and Reverse Address
	switch(config-cmap)# match protocol arp	Resolution Protocol (RARP) packets.
Step 8	exit	Exits class map configuration mode.
	Example:	
	<pre>switch(config-cmap)# exit switch(config)#</pre>	
Step 9	(Optional) show class-map type control-plane [class-map-name]	Displays the control plane class map configuration.
	Example:	
	<pre>switch(config)# show class-map type control-plane</pre>	
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Configuring a Control Plane Policy Map

You must configure a policy map for CoPP, which includes policing parameters. If you do not configure a policer for a class, the following default is configured:

• 50 packets per second (pps) with a burst of 32 packets (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches)

• 150 kilobits per second (kbps) with a burst of 32,000 bytes (for Cisco Nexus 9200 Series switches)

Before you begin

Ensure that you have configured a control plane class map.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	policy-map type control-plane policy-map-name	Specifies a control plane policy map and enters policy map configuration mode. The policy
	Example:	map name can have a maximum of 64 characters and is case sensitive.
	<pre>switch(config)# policy-map type control-plane ClassMapA switch(config-pmap)#</pre>	characters and is case sensitive.
Step 3	class {class-map-name [insert-before class-map-name2] class-default}	Specifies a control plane class map name or the class default and enters control plane class configuration mode.
	Example:	
	<pre>switch(config-pmap)# class ClassMapA switch(config-pmap-c)#</pre>	The class-default class map is always at the end of the class map list for a policy map.
Step 4	Enter one of the following commands:	Specifies the committed information rate (CIR). The rate range is as follows:
	 police [cir] {cir-rate [rate-type]} police [cir] {cir-rate [rate-type]} [bc] burst-size [burst-size-type] police [cir] {cir-rate [rate-type]]} 	• 0 to 268435456 pps (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches)
	conform transmit [violate drop] Example:	Note
	switch(config-pmap-c)# police cir 52000 bc 1000 packets	
	Example:	The CIR rate range starts with 0. In previous releases, the CIR rate range starts with 1. A
	switch(config-pmap-c)# police cir 3400 kbps bc 200 kbytes	value of 0 drops the packet.
		The committed burst (BC) range is as follows:
		• 1 to 1073741 packets (for Cisco Nexus 9300 and 9500 Series and 3164Q, 31128PQ, 3232C, and 3264Q switches)
		• 1 to 512000000 bytes/kbytes/mbytes (for Cisco Nexus 9200 Series switches)

	Command or Action	Purpose
		The conform transmit action transmits the packet.
		Note You can specify the BC and conform action for the same CIR.
Step 5	(Optional) logging drop threshold [drop-count [level syslog-level]] Example: switch (config-pmap-c) # logging drop threshold 100	Specifies the threshold value for dropped packets and generates a syslog if the drop count exceeds the configured threshold. The range for the <i>drop-count</i> argument is from 1 to 8000000000 bytes. The range for the <i>syslog-level</i> argument is from 1 to 7, and the
		default level is 4.
Step 6	(Optional) set cos cos-value Example: switch(config-pmap-c) # set cos 1	Specifies the 802.1Q class of service (CoS) value. The range is from 0 to 7. The default value is 0.
Step 7	exit	Exits policy map class configuration mode.
	<pre>Example: switch(config-pmap-c)# exit switch(config-pmap)#</pre>	
Step 8	exit	Exits policy map configuration mode.
	<pre>Example: switch(config-pmap)# exit switch(config)#</pre>	
Step 9	(Optional) show policy-map type control-plane [expand] [name class-map-name]	Displays the control plane policy map configuration.
	Example:	
	<pre>switch(config)# show policy-map type control-plane</pre>	
Step 10	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Related Topics

Configuring a Control Plane Class Map, on page 21

Configuring the Control Plane Service Policy

You can configure one or more policy maps for the CoPP service policy.

Note

When you try to change the CoPP policy and apply a custom CoPP policy, it is configured in the hardware as non-atomic, and the following system message appears:

```
This operation can cause disruption of control traffic. Proceed (y/n)? [no] y 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT24-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT23-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT21-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT25-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT26-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT26-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT22-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT22-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP 2013 Nov 13 23:16:46 switch %ACLQOS-SLOT4-5-ACLQOS_NON_ATOMIC: Non atomic ACL/QoS policy update done for CoPP
```

Before you begin

Ensure that you have configured a control plane policy map.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	control-plane	Enters control plane configuration mode.
	<pre>Example: switch(config) # control-plane switch(config-cp) #</pre>	
Step 3	<pre>[no] service-policy input policy-map-name Example: switch(config-cp)# service-policy input PolicyMapA</pre>	Specifies a policy map for the input traffic. Repeat this step if you have more than one policy map. You cannot disable CoPP. If you enter the no form of this command, packets are rate limited at 50 packets per seconds.
Step 4	<pre>exit Example: switch(config-cp)# exit switch(config)#</pre>	Exits control plane configuration mode.

	Command or Action	Purpose
Step 5	(Optional) show running-config copp [all]	Displays the CoPP configuration.
	Example:	
	switch(config)# show running-config copp	
Step 6	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config)# copy running-config startup-config</pre>	

Related Topics

Configuring a Control Plane Policy Map, on page 22

Configuring the CoPP Scale Factor Per Line Card

You can configure the CoPP scale factor per line card.

The scale factor configuration is used to scale the policer rate of the applied CoPP policy for a particular line card. The accepted value is from 0.10 to 2.00. You can increase or reduce the policer rate for a particular line card without changing the current CoPP policy. The changes are effective immediately, so you do not need to reapply the CoPP policy.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	control-plane	Enters control plane configuration mode.
	<pre>Example: switch(config) # control-plane switch(config-cp) #</pre>	
Step 3	<pre>scale-factor value module multiple-module-range Example: switch(config-cp)# scale-factor 1.10 module 1-2</pre>	Configures the policer rate per line card. The allowed scale factor value is from 0.10 to 2.00. When the scale factor value is configured, the policing values are multiplied by the corresponding scale factor value of the module, and it is programmed in the particular module.
		To revert to the default scale factor value of 1.00, use the no scale-factor <i>value</i> module <i>multiple-module-range</i> command, or explicitly set the default scale factor value to 1.00 using

	Command or Action	Purpose
		the scale-factor 1 module multiple-module-range command.
Step 4	(Optional) show policy-map interface control-plane	Displays the applied scale factor values when a CoPP policy is applied.
	Example:	
	<pre>switch(config-cp)# show policy-map interface control-plane</pre>	
Step 5	(Optional) copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	
	<pre>switch(config) # copy running-config startup-config</pre>	

Changing or Reapplying the Default CoPP Policy

You can change to a different default CoPP policy, or you can reapply the same default CoPP policy.

Procedure

	Command or Action	Purpose
Step 1	<pre>[no] copp profile [strict moderate lenient dense] Example: switch(config) # copp profile moderate</pre>	Applies the CoPP best practice policy. You cannot disable CoPP. If you enter the no form of this command, packets are rate limited at 50 packets per seconds.
Step 2	(Optional) show copp status Example: switch(config) # show copp status	Displays the CoPP status, including the last configuration operation and its status. This command also enables you to verify that the CoPP best practice policy is attached to the control plane.
Step 3	(Optional) show running-config copp Example: switch(config) # show running-config copp	Displays the CoPP configuration in the running configuration.

Related Topics

Changing or Reapplying the Default CoPP Policy Using the Setup Utility, on page 37

Copying the CoPP Best Practice Policy

The CoPP best practice policy is read-only. If you want to modify its configuration, you must copy it.

Procedure

	Command or Action	Purpose
Step 1	<pre>copp copy profile {strict moderate lenient dense} {prefix suffix} string Example: switch# copp copy profile strict prefix abc</pre>	CoPP renames all class maps and policy maps with the specified prefix or suffix.
Step 2	(Optional) show copp status Example: switch# show copp status	Displays the CoPP status, including the last configuration operation and its status. This command also enables you to verify that the copied policy is not attached to the control plane.
Step 3	(Optional) show running-config copp Example: switch# show running-config copp	Displays the CoPP configuration in the running configuration, including the copied policy configuration.

Protocol ACL Filtering

Configuring ARP ACL Filtering for CoPP

You can configure MAC ACL filtering at CoPP.

Before you begin

Ensure that you have configured a control plane policy map.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] hardware access-list tcam region erg-copp size	Configures the size of the CoPP TCAM region.
	Example:	
	<pre>switch(config)# hardware access-list tcam region erg-copp 128</pre>	

	Command or Action	Purpose
Step 3	<pre>copy running-config startup-config Example: switch(config) # copy running-config startup-config</pre>	Copies the running configuration to the startup configuration.
Step 4	reload Example: switch(config) # reload	Reloads the device. Note The new size values are effective only after you enter copy running-config startup-config + reload or reload all line card modules.
Step 5	<pre>configure terminal Example: switch# configure terminal switch(config)#</pre>	Enters global configuration mode.
Step 6	<pre>mac access-list mac-foo-1 Example: switch# mac access-list mac-foo-1 switch(config-mac-acl)#</pre>	
Step 7	<pre>class-map type control-plane [match-all match-any] class-map-name Example: switch(config) # class-map type control-plane match-any c-map2 switch(config-cmap) #</pre>	Specifies a control plane class map and enters class map configuration mode. The default class matching is match-any. The name can be a maximum of 64 characters long and is case-sensitive.
Step 8	(Optional) match access-group name access-list-name Example: switch(config-cmap) # match access-group name IP-foo-1	
Step 9	<pre>policy-map type control-plane policy-map-name Example: switch(config) # policy-map type control-plane ClassMapA switch(config-pmap) #</pre>	Specifies a control plane policy map and enters policy map configuration mode. The policy map name can have a maximum of 64 characters and is case-sensitive.
Step 10	<pre>class {class-map-name [insert-before class-map-name2] class-default} Example: switch(config-pmap) # class ClassMap2 switch(config-pmap-c) #</pre>	Specifies a control plane class map name or the class default and enters control plane class configuration mode. The class-default class map is always at the end of the class map list for a policy map.

	Command or Action	Purpose
Step 11	 e police [cir] {cir-rate [rate-type]} e police [cir] {cir-rate [rate-type]} [bc] burst-size [burst-size-type] e police [cir] {cir-rate [rate-type]]} conform transmit [violate drop] 	Specifies the committed information rate (CIR). The rate range is as follows: The committed burst (BC) range is as follows:
	<pre>Example: switch(config-pmap-c)# police cir 52000 bc 1000 packets</pre>	
Step 12	<pre>control-plane Dynamic mode Example: switch(config) # control-plane dynamic switch(config-cp-dyn) #</pre>	Enters the control plane dynamic configuration mode.
Step 13	<pre>service-policy-dynamic input policy-map-name Example: switch(config-cp-dyn)# service-policy-dynamic input PolicyMap1</pre>	Specifies a policy map for the input traffic.

Configuring IP ACL Filtering for CoPP

You can configure IP ACL filtering at CoPP.

Before you begin

Ensure that you have configured a control plane policy map.

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 2	[no] hardware access-list tcam region erg-copp size	Configures the size of the egress CoPP TCAM region.
	Example:	
	<pre>switch(config)# hardware access-list tcam region erg-copp 128</pre>	
Step 3	copy running-config startup-config	Copies the running configuration to the startup configuration.
	Example:	Configuration.

	Command or Action	Purpose
	<pre>switch(config)# copy running-config startup-config</pre>	
Step 4	reload	Reloads the device.
	Example:	Note
	switch(config)# reload	The new size values are effective only after you enter copy running-config startup-config + reload or reload all line card modules.
Step 5	configure terminal	Enters global configuration mode.
	Example:	
	<pre>switch# configure terminal switch(config)#</pre>	
Step 6	ip access-list IP-foo-1	
	Example:	
	<pre>switch# ip access-list mac-foo-1 switch(config-acl)#</pre>	
Step 7	permit tcp access-list IP-foo-1 eq bgp	
	Example:	
	switch(config-acl)# 10 permit tcp 10.1.1.1/32 10.1.1.2/32 eq bgp	
Step 8	class-map type control-plane [match-all match-any] class-map-name	Specifies a control plane class map and enters class map configuration mode. The default
	Example:	class matching is match-any. The name can be
	<pre>switch(config)# class-map type control-plane match-any c-map2 switch(config-cmap)#</pre>	a maximum of 64 characters long and is case sensitive.
Step 9	match access-group name access-list-name	
	Example:	
	<pre>switch(config-cmap)# match access-group name IP-foo-1</pre>	
Step 10	policy-map type control-plane policy-map-name	Specifies a control plane policy map and enters policy map configuration mode. The policy
	Example:	map name can have a maximum of 64 characters and is case sensitive.
	<pre>switch(config) # policy-map type control-plane ClassMapA switch(config-pmap) #</pre>	characters and is ease sensitive.
Step 11	class {class-map-name [insert-before class-map-name2] class-default}	Specifies a control plane class map name or the class default and enters control plane class configuration mode.
	Example: switch(config-pmap) # class ClassMap2 switch(config-pmap-c) #	The class-default class map is always at the end of the class map list for a policy map.

	Command or Action	Purpose
Step 12	 e police [cir] {cir-rate [rate-type]} e police [cir] {cir-rate [rate-type]} [bc] burst-size [burst-size-type] e police [cir] {cir-rate [rate-type]]} conform transmit [violate drop] 	Specifies the committed information rate (CIR). The rate range is as follows: The committed burst (BC) range is as follows:
	<pre>Example: switch(config-pmap-c)# police cir 52000 bc 1000 packets Example: switch(config-pmap-c)# police cir 3400 kbps bc 200 kbytes</pre>	
Step 13	<pre>control-plane Dynamic mode Example: switch(config) # control-plane dynamic switch(config-cp-dyn) #</pre>	Enters the control plane dynamic configuration mode.
Step 14	<pre>service-policy-dynamic input policy-map-name Example: switch(config-cp-dyn) # service-policy-dynamic input PolicyMap1</pre>	Specifies a policy map for the input traffic. ENd

Verifying the CoPP Configuration

To display CoPP configuration information, perform one of the following tasks:

Command	Purpose
show policy-map type control-plane [expand] [name policy-map-name]	Displays the control plane policy map with associated class maps and CIR and BC values.

Command	Purpose
show policy-map interface control-plane	Displays the policy values with associated class maps and drops per policy or class map. It also displays the scale factor values when a CoPP policy is applied. When the scale factor value is the default (1.00), it is not displayed.
	Note The scale factor changes the CIR and BC values internally on each module, but the display shows the configured CIR and BC values only. The actual applied value on a module is the scale factor multiplied by the configured value.
show class-map type control-plane [class-map-name]	Displays the control plane class map configuration, including the ACLs that are bound to this class map.
show copp diff profile {strict moderate lenient dense} [prior-ver] profile {strict moderate lenient dense} show copp diff profile	Displays the difference between two CoPP best practice policies.
	When you do not include the prior-ver option, this command displays the difference between two currently applied default CoPP best practice policies (such as the currently applied strict and currently applied moderate policies).
	When you include the prior-ver option, this command displays the difference between a currently applied default CoPP best practice policy and a previously applied default CoPP best practice policy (such as the currently applied strict and the previously applied lenient policies).
show copp profile {strict moderate lenient dense}	Displays the details of the CoPP best practice policy, along with the classes and policer values.

Command	Purpose
show running-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the running configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the running configuration.
show running-config copp [all]	Displays the CoPP configuration in the running configuration.
show startup-config aclmgr [all]	Displays the user-configured access control lists (ACLs) in the startup configuration. The all option displays both the default (CoPP-configured) and user-configured ACLs in the startup configuration.

Displaying the CoPP Configuration Status

Procedure

	Command or Action	Purpose
Step 1	switch# show copp status	Displays the configuration status for the CoPP feature.

Example

This example shows how to display the CoPP configuration status:

switch# show copp status

Monitoring CoPP

	Command or Action	Purpose
Step 1	switch# show policy-map interface control-plane	Displays packet-level statistics for all classes that are part of the applied CoPP policy.

Command or Action	Purpose
	Statistics are specified in terms of OutPackets (packets admitted to the control plane) and DropPackets (packets dropped because of rate limiting).

Example

This example shows how to monitor CoPP:

```
switch# show policy-map interface control-plane
Control Plane

Service-policy input: copp-system-p-policy-strict

class-map copp-system-p-class-critical (match-any)
   set cos 7
   police cir 19000 pps , bc 128 packets
   module 4 :
        transmitted 373977 packets;
        dropped 0 packets;
```

Monitoring CoPP with SNMP

Beginning with Cisco Nexus Release 9.2(3), CoPP supports the Cisco class-based QoS MIB (cbQoSMIB). All CoPP elements can now be monitored (but not modified) using SNMP. This feature applies only to policies and their subelements (such as classes, match rules, and set actions) that are attached to the control plane. Elements of policies that are not in service on the control plane are not visible through SNMP.

The following cbQoSMIB tables are supported:

- ccbQosServicePolicy
- cbQosInterfacePolicy
- cbQosObjects
- cbQosPolicyMapCfg
- cbQosClassMapCfg
- · cbQosMatchStmtCfg
- cbQosPoliceCfg
- cbQosSetCfg

Note

SNMP MIB is not supported for Dynamic CoPP.

Clearing the CoPP Statistics

Procedure

	Command or Action	Purpose
Step 1	(Optional) switch# show policy-map interface control-plane	Displays the currently applied CoPP policy and per-class statistics.
Step 2	switch# clear copp statistics	Clears the CoPP statistics.

Example

This example shows how to clear the CoPP statistics for your installation:

```
switch# show policy-map interface control-plane
switch# clear copp statistics
```

Configuration Examples for CoPP

This section includes example CoPP configurations.

CoPP Configuration Example

The following example shows how to configure CoPP using IP ACLs and MAC ACLs:

```
configure terminal
ip access-list copp-system-p-acl-igmp
permit igmp any 10.0.0.0/24
ip access-list copp-system-p-acl-msdp \,
permit tcp any any eq 639
mac access-list copp-system-p-acl-arp
permit any any 0x0806
ip access-list copp-system-p-acl-tacas
permit udp any any eq 49
ip access-list copp-system-p-acl-ntp
permit udp any 10.0.1.1/23 eq 123
ip access-list copp-system-p-acl-icmp
permit icmp any any
class-map type control-plane match-any copp-system-p-class-critical
match access-group name copp-system-p-acl-igmp
match access-group name copp-system-p-acl-msdp
class-map type control-plane match-any copp-system-p-class-normal
match access-group name copp-system-p-acl-icmp
```

```
match exception ip icmp redirect
match exception ip icmp unreachable
match exception ip option

policy-map type control-plane copp-system-p-policy

class copp-system-p-class-critical
police cir 19000 pps bc 128 packets conform transmit violate drop

class copp-system-p-class-important
police cir 500 pps bc 128 packets conform transmit violate drop

class copp-system-p-class-normal
police cir 300 pps bc 32 packets conform transmit violate drop

class class-default
police cir 50 pps bc 32 packets conform transmit violate drop

control-plane
service-policy input copp-system-p-policy
```

Create CoPP class and associate ACL:

class-map type control-plane copp-arp-class
match access-group name copp-arp-acl

Add the class to the CoPP policy:

policy-map type control-plane copp-system-policy
class copp-arp-class
police pps 500

Changing or Reapplying the Default CoPP Policy Using the Setup Utility

The following example shows how to change or reapply the default CoPP policy using the setup utility.

```
switch# setup
```

```
---- Basic System Configuration Dialog ----
```

This setup utility will guide you through the basic configuration of the system. Setup configures only enough connectivity for management of the system.

*Note: setup is mainly used for configuring the system initially, when no configuration is present. So setup always assumes system defaults and not the current system configuration values.

Press Enter at anytime to skip a dialog. Use ctrl-c at anytime to skip the remaining dialogs.

Would you like to enter the basic configuration dialog (yes/no): yes

Do you want to enforce secure password standard (yes/no)[y]: <CR>

Create another login account (yes/no) [n]: n

Configure read-only SNMP community string (yes/no) [n]: n

```
Configure read-write SNMP community string (yes/no) [n]: n
  Enter the switch name : <CR>
  Enable license grace period? (yes/no) [n]: n
  Continue with Out-of-band (mgmt0) management configuration? (yes/no) [y]: n
  Configure the default gateway? (yes/no) [y]: n
  Configure advanced IP options? (yes/no) [n]: <CR>
  Enable the telnet service? (yes/no) [n]: y
  Enable the ssh service? (yes/no) [y]: <CR>
   Type of ssh key you would like to generate (dsa/rsa) : <CR>
  Configure the ntp server? (yes/no) [n]: n
  Configure default interface layer (L3/L2) [L3]: <CR>
  Configure default switchport interface state (shut/noshut) [shut]: <CR>
  Configure best practices CoPP profile (strict/moderate/lenient/dense/skip) [strict]:
The following configuration will be applied:
 password strength-check
 no license grace-period
 no telnet server enable
 no system default switchport
  system default switchport shutdown
 policy-map type control-plane copp-system-p-policy
Would you like to edit the configuration? (yes/no) [n]: <CR>
Use this configuration and save it? (yes/no) [y]: y
switch#
```

Additional References for CoPP

This section provides additional information related to implementing CoPP.

Related Documents

Related Topic	Document Title
Licensing	Cisco NX-OS Licensing Guide

Standards

Standards	Title
RFC 2698	A Two Rate Three Color Marker