Configuring Segment Routing This chapter contains information on how to configure segment routing. - About Segment Routing, on page 1 - Guidelines and Limitations for Segment Routing, on page 2 - Configuring Segment Routing, on page 3 - Segment Routing with IS-IS Protocol, on page 13 - Segment Routing with OSPFv2 Protocol, on page 14 - Configuring Prefix SID Using BGP, on page 21 - Verifying the Segment Routing Configuration, on page 28 - Additional References, on page 30 ## **About Segment Routing** Segment routing is a technique by which the path followed by a packet is encoded in the packet itself, similar to source routing. A node steers a packet through a controlled set of instructions, called segments, by prepending the packet with a segment routing header. Each segment is identified by a segment ID (SID) consisting of a flat unsigned 32-bit integer. Border Gateway Protocol (BGP) segments, a subclass of segments, identify a BGP forwarding instruction. There are two groups of BGP segments: prefix segments and adjacency segments. Prefix segments steer packets along the shortest path to the destination, using all available equal-cost multi-path (ECMP) paths. Adjacency segments steer packets onto a specific link to a neighbor. The segment routing architecture is applied directly to the MPLS data plane. ### **Segment Routing Application Module** Segment Routing Application (SR-APP) module is used to configure the segment routing functionality. Segment Routing Application (SR-APP) is a separate internal process that handles all the CLIs related to segment routing. It is responsible for reserving the SRGB range and for notifying the clients about it. It is also responsible for maintaining the prefix to SID mappings. The SR-APP support is also available for the BGP, IS-IS, and OSPF protocols. The SR-APP module maintains the following information: • Segment routing operation state - Segment routing global block label ranges - Prefix SID mappings For more information, see Configuring Segment Routing, on page 3. # **Guidelines and Limitations for Segment Routing** Segment routing has the following guidelines and limitations: - MPLS Segment Routing can be enabled on physical ethernet interfaces and port-channel bundles. It is not supported on ethernet sub-interfaces or Switchedx Virtual Interfaces (SVI). - BGP allocates a SRGB label for iBGP route-reflector clients only when next-hop-self is in effect (for example, the prefix is advertised with the next hop being one of the local IP/IPv6 addresses on RR). When you have configured next-hop-self on a RR, the next hop is changed for the routes that are being affected (subject to route-map filtering). - Static MPLS, MPLS segment routing, and MPLS stripping cannot be enabled at the same time. - Because static MPLS, MPLS segment routing, and MPLS stripping are mutually exclusive, the only segment routing underlay for multi-hop BGP is single-hop BGP. iBGP multi-hop topologies with eBGP running as an overlay are not supported. - MPLS pop followed by a forward to a specific interface is not supported. The penultimate hop pop (PHP) is avoided by installing the Explicit NULL label as the out-label in the label FIB (LFIB) even when the control plane installs an IPv4 Implicit NULL label. - BGP labeled unicast and BGP segment routing are not supported for IPv6 prefixes. - BGP labeled unicast and BGP segment routing are not supported over tunnel interfaces (including GRE and VXLAN) or with vPC access interfaces. - MTU path discovery (RFC 2923) is not supported over MPLS label switched paths (LSPs) or segment routed paths. - The BGP configuration commands **neighbor-down fib-accelerate** and **suppress-fib-pending** are not supported for MPLS prefixes. - Reconfiguration of the segment routing global block (SRGB) results in an automatic restart of the BGP process to update the existing URIB and ULIB entries. Traffic loss occurs for a few seconds, so you should not reconfigure the SRGB in production. - When the segment routing global block (SRGB) is set to a range but the route-map label-index delta value falls outside the configured range, the allocated label is dynamically generated. For example, if the SRGB is set to a range of 16000-23999 but a route-map label-index is set to 9000, the label is dynamically allocated. - For network scalability, Cisco recommends using a hierarchical routing design with multi-hop BGP for advertising the attached prefixes from a top-of-rack (TOR) or border leaf switch. - BGP sessions are not supported over MPLS LSPs or segment routed paths. - The Layer 3 forwarding consistency checker is not supported for MPLS routes. However, beginning with Cisco NX-OS Release 10.3(2)F, proactive consistency checker will be supporting IPv4/IPv6, ARP/ND adjacencies and MPLS routes for IPv4, IPv6, VPNv4, VPNv6, and PE/Deagg FEC types on Cisco Nexus 3600 platform switches (N3K-C36180YC-R and N3K-C3636C-R). - Deleting the segment routing configuration removes all the related segment routing configurations. - Layer3 VPN over Segment Routing is supported on Cisco Nexus 3600 platform switches with N3K-C3636C-R and N3K-C36180YC-R line cards. - If you downgrade the Cisco Nexus device from Cisco NX-OS Release 9.3(1) to the previous NX-OS releases by setting the boot variables and reloading the switch, all earlier configurations of the segment-routing mpls will be lost. - Before performing an ISSD from Cisco NX-OS Release 9.3(1), you must disable the segment routing configuration. Failure to do so will result in the loss of the existing segment routing configurations. # **Configuring Segment Routing** ### **Configuring Segment Routing** ### Before you begin Confirm that the following conditions are met before configuring segment routing. - The **install feature-set mpls**, **feature-set mpls** and **feature mpls segment-routing** commands should be present before configuring the **segment-routing** command. - If the global block is configured, the specified range is used. Otherwise, the default 16000 23999 range is used. - BGP now uses both **set label-index** < value > configuration and the new **connected-prefix-sid-map** CLI. In case of a conflict, the configuration in SR-APP is preferred. ### **SUMMARY STEPS** - 1. configure terminal - 2. segment-routing - 3. connected-prefix-sid-map - **4. global-block** <*min*> <*max*> - 5. connected-prefix-sid-map - 6. address-family ipv4 - **7.** /<masklen> [index|absolute] <label> ### **DETAILED STEPS** ### **Procedure** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | segment-routing | Enables the MPLS segment routing functionality. The no | | | Example: | form of this command disables the MPLS segment routing feature. | | | <pre>switch(config)# segment-routing switch(config-sr)# mpls switch(config-sr-mpls)#</pre> | reature. | | Step 3 | connected-prefix-sid-map | Configures the connected prefix segment identifier | | | Example: | mappings. | | | <pre>switch(config-sr-mpls)# connected-prefix-sid-map switch(config-sr-mpls)#</pre> | | | Step 4 | global-block <min> <max></max></min> | Specifies the global block range for the segment routin | | | Example: | bindings. | | | switch(config-sr-mpls)# global-block <min> <max></max></min> | | | | switch(config-sr-mpls)# | | | Step 5 | connected-prefix-sid-map | Configures the connected prefix segment identifier | | | Example: | mappings. | | | <pre>switch(config-sr-mpls)# connected-prefix-sid-map switch(config-sr-mpls-conn-pfsid)#</pre> | | | Step 6 | address-family ipv4 | Configures the IPv4 address family. | | | Example: | | | | <pre>switch(config-sr-mpls-conn-pfsid) #address-family ipv4</pre> | | | Step 7 | <pre><pre><pre><pre><pre><pre><pre>solute] <label></label></pre></pre></pre></pre></pre></pre></pre> | The optional keywords index or absolute indicate whether | | | Example: | the label value entered should be interpreted as an index into the SRGB or as an absolute value. | | | switch(config-sr-mpls)# 2.1.1.5/32 absolute 201101 | into the SKOD of as all absolute value. | ### Example See the following configuration examples of the show commands: switch# show segment-routing mpls Segment-Routing Global info ``` Service Name: segment-routing State: Enabled Process Id: 29123 Configured SRGB: 17000 - 24999 SRGB Allocation status: Alloc-Successful Current SRGB: 17000 - 24999 Cleanup Interval: 60 Retry Interval: 180 ``` The following CLI displays the clients that are registered with SR-APP. It lists the VRFs, for which the clients have registered interest. ``` switch# show segment-routing mpls clients Segment-Routing Mpls Client Info Client: isis-1 UUID: 0x41000118 PID: 29463 MTS SAP: 412 PIB index: 1 TIBs registered: VRF: default Table: base Client: bgp-1 PIB index: 2 UUID: 0x11b PID: 18546 MTS SAP: 62252 TIBs registered: VRF: default Table: base Total Clients: 2 ``` In the **show segment-routing mpls ipv4 connected-prefix-sid-map** CLI command example, SRGB indicates whether the prefix SID is within the configured SRGB. The **Indx** field indicates that the configured label is an index into the global block. The **Abs** field indicates that the configured label is an absolute value. If the SRGB field displays N, it means that the configured prefix SID is not within the SRGB range and it is not provided to the SR-APP clients. Only the prefix SIDs that fall into the SRGB range are given to the SR-APP clients. ``` switch# show segment-routing mpls ipv4 connected-prefix-sid-map Segment-Routing Prefix-SID Mappings Prefix-SID mappings for VRF default Table base Prefix SID Type Range SRGB 13.11.2.0/24 713 Indx 1 Y
30.7.7.7/32 730 Indx 1 Y 759 59.3.24.0/30 Indx 1 Y 801 Y 150.101.1.0/24 Indx 1 802 Indx 1 Y 150.101.1.1/32 803 Indx 1 150.101.2.0/24 1.1.1.1/32 16013 Abs 1 Υ ``` The following CLI displays the **show running-config segment-routing** output. ``` switch# show running-config segment-routing ? ``` ``` > Redirect it to a file >> Redirect it to a file in append mode all Show running config with defaults | Pipe command output to filter switch# show running-config segment-routing switch# show running-config segment-routing !Command: show running-config segment-routing !Running configuration last done at: Thu Dec 12 19:39:52 2019 !Time: Thu Dec 12 20:06:07 2019 version 9.3(3) Bios:version 05.39 segment-routing mpls connected-prefix-sid-map address-family ipv4 2.1.1.1/32 absolute 100100 switch# ``` ### **Enabling MPLS on an Interface** You can enable MPLS on an interface for use with segment routing. ### Before you begin You must install and enable the MPLS feature set using the **install feature-set mpls** and **feature-set mpls** commands. ### **SUMMARY STEPS** - 1. configure terminal - 2. interface type slot/port - 3. [no] mpls ip forwarding - 4. (Optional) copy running-config startup-config ### **DETAILED STEPS** | | Command or Action | Purpose | |---|--|---| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 interface type slot/port Example: | interface type slot/port | Enters the interface configuration mode for the specified | | | Example: | interface. | | | <pre>switch(config)# interface ethernet 2/2 switch(config-if)#</pre> | | | | Command or Action | Purpose | |--------|--|--| | Step 3 | [no] mpls ip forwarding | Enables MPLS on the specified interface. The no form of | | | Example: this command disa | this command disables MPLS on the specified interface. | | | switch(config-if)# mpls ip forwarding | | | Step 4 | (Optional) copy running-config startup-config | Copies the running configuration to the startup | | | Example: | configuration. | | | <pre>switch(config-if)# copy running-config startup-config</pre> | | # **Configuring the Segment Routing Global Block** You can configure the beginning and ending MPLS labels in the segment routing global block (SRGB). ### Before you begin - You must install and enable the MPLS feature set using the **install feature-set mpls** and **feature-set mpls** commands. - You must enable the MPLS segment routing feature. - You must ensure that the Segment Routing Global Block (SRGB) is configured before setting up protocols such as BGP that utilize labels. #### **SUMMARY STEPS** - 1. configure terminal - 2. [no] segment-routing - 3. [no] global-block beginning-label ending-label - 4. (Optional) show mpls label range - 5. show segment-routing - 6. show segment-routing mpls - 7. (Optional) copy running-config startup-config ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|-----------------------------------| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | | Command or Action | Purpose | |--------|--|---| | Step 2 | <pre>[no] segment-routing Example: switch(config) # segment-routing switch(config-sr) # mpls</pre> | Enters the segment routing configuration mode and enables the default SRGB of 16000 to 23999. The no form of this command unallocates that block of labels. | | | | If the configured dynamic range cannot hold the default SRGB, an error message appears, and the default SRGB will not be allocated. If desired, you can configure a different SRGB in the next step. | | Step 3 | <pre>[no] global-block beginning-label ending-label Example: switch(config-sr-mpls)# global-block 16000 471804</pre> | Specifies the MPLS label range for the SRGB. Use this command if you want to change the default SRGB label range that is configured with the segment-routing command. | | | | The permissive values for the beginning MPLS label and the ending MPLS label are from 16000 to 471804. The mpls label range command permits 16 as the minimum label, but the SRGB can start only from 16000. | | | | Note The minimum value for the global-block command starts from 16000. If you upgrading from previous releases, you should modify the SRGB so that it falls within the supported range before triggering an upgrade. | | Step 4 | (Optional) show mpls label range | Displays the SRGB, only if the SRGB allocation is | | | Example: | successful. | | | switch(config-sr-mpls)# show mpls label range | | | Step 5 | show segment-routing | Displays the configured SRGB. | | Step 6 | show segment-routing mpls | Displays the configured SRGB. | | | Example: | | | | switch(config-sr-mpls)# show segment-routing mpls | | | Step 7 | (Optional) copy running-config startup-config | Copies the running configuration to the startup | | | Example: | configuration. | | | <pre>switch(config-sr-mpls)# copy running-config startup-config</pre> | | ## **Configuration Examples for Segment Routing** The examples in this section show a common BGP prefix SID configuration between two routers. This example shows how to advertise a BGP speaker configuration of 10.10.10.10/32 and 20.20.20.20/32 with a label index of 10 and 20, respectively. It uses the default segment routing global block (SRGB) range of 16000 to 23999. hostname s1 install feature-set mpls ``` feature-set mpls feature telnet feature bash-shell feature scp-server feature bgp feature mpls segment-routing segment-routing mpls vlan 1 segment-routing mpls connected-prefix-sid-map address-family ipv4 2.1.1.1/32 absolute 100100 route-map label-index-10 permit 10 set label-index 10 route-map label-index-20 permit 10 set label-index 20 vrf context management ip route 0.0.0.0/0 10.30.108.1 interface Ethernet1/1 no switchport ip address 10.1.1.1/24 no shutdown interface mgmt0 ip address dhcp vrf member management interface loopback1 ip address 10.10.10.10/32 interface loopback2 ip address 20.20.20.20/32 line console line vty router bgp 1 address-family ipv4 unicast network 10.10.10.10/32 route-map label-index-10 network 20.20.20.20/32 route-map label-index-20 allocate-label all neighbor 10.1.1.2 remote-as 2 address-family ipv4 labeled-unicast ``` This example shows how to receive the configuration from a BGP speaker. ``` hostname s2 install feature-set mpls feature-set mpls feature telnet feature bash-shell feature scp-server feature bgp feature mpls segment-routing segment-routing mpls ``` ``` vlan 1 vrf context management ip route 0.0.0.0/0 10.30.97.1 ip route 0.0.0.0/0 10.30.108.1 interface Ethernet1/1 no switchport ip address 10.1.1.2/24 ipv6 address 10:1:1::2/64 no shutdown interface mgmt0 ip address dhcp vrf member management interface loopback1 ip address 2.2.2.2/32 line console line vty router bgp 2 address-family ipv4 unicast allocate-label all neighbor 10.1.1.1 remote-as 1 address-family ipv4 labeled-unicast ``` This example shows how to display the configuration from a BGP speaker. The **show** command in this example displays the prefix 10.10.10.10 with label index 10 mapping to label 16010 in the SRGB range of 16000 to 23999. ``` switch# show bgp ipv4 labeled-unicast 10.10.10.10/32 ``` ``` BGP routing table information for VRF default, address family IPv4 Label Unicast BGP routing table entry for 10.10.10.10/32, version 7 Paths: (1 available, best #1) Flags: (0x20c001a) on xmit-list, is in urib, is best urib route, is in HW, , has label label af: version 8, (0x100002) on xmit-list local label: 16010 Advertised path-id 1, Label AF advertised path-id 1 Path type: external, path is valid, is best path, no labeled nexthop, in rib AS-Path: 1 , path sourced external to AS 10.1.1.1 (metric 0) from 10.1.1.1 (10.10.10.10) Origin IGP, MED not set, localpref 100, weight 0 Received label 0 Prefix-SID Attribute: Length: 10 Label Index TLV: Length 7, Flags 0x0 Label Index 10 Path-id 1 not advertised to any peer Label AF advertisement Path-id 1 not advertised to any peer ``` This example shows how to configure egress peer engineering on a BGP speaker. ``` hostname epe-as-1 install feature-set mpls feature-set mpls feature telnet feature bash-shell feature scp-server ``` ``` feature bgp feature mpls segment-routing segment-routing mpls vlan 1 vrf context management ip route 0.0.0.0/0 10.30.97.1 ip route 0.0.0.0/0 10.30.108.1 interface Ethernet1/1 no switchport ip address 10.1.1.1/24 no shutdown interface Ethernet1/2 no switchport ip address 11.1.1.1/24 no shutdown interface Ethernet1/3 no switchport ip address 12.1.1.1/24 no shutdown interface Ethernet1/4 no switchport ip address 13.1.1.1/24 no shutdown interface Ethernet1/5 no switchport ip address 14.1.1.1/24 no shutdown ``` ### The following is an example of show ip route vrf 2 command. #### The following is an example of **show forwarding route vrf 2** command. | Prefix Partial | Next-hop
Install | Interface | Labels | |-------------------------------|---------------------|-----------------------|----------| | | | | | | 0.0.0.0/32
127.0.0.0/8 | Drop
Drop | NullO
NullO | | | 255.255.255.255/32 | Receive | | | | | | sup-eth1 | | | *41.11.2.0/24
30002 492529 | 27.1.31.4 | Ethernet1/3 | PUSH | |
20000 400500 | 27.1.32.4 | Ethernet1/21 | PUSH | | 30002 492529 | 0.7 4 0.0 4 | | | | 20002 402520 | 27.1.33.4 | port-channel23 | PUSH | | 30002 492529 | 07 11 21 4 | Fib 1 / 2 11 | DHAH | | 00000 400500 | 27.11.31.4 | Ethernet1/3.11 | PUSH | | 30002 492529 | 27.11.33.4 | port-channel23.11 | PUSH | | 30002 492529 | 2,.11.33.1 | pore chamicizo.ir | 1 0011 | | 30002 132323 | 37.1.53.4 | Ethernet1/53/1 | PUSH | | 29002 492529 | | | | | | 37.1.54.4 | Ethernet1/54/1 | PUSH | | 29002 492529 | | | | | | 37.2.53.4 | Ethernet1/53/2 | PUSH | | 29002 492529 | | | | | 23002 132323 | 37.2.54.4 | Ethernet1/54/2 | PUSH | | 29002 492529 | 0,12,01,1 | 2011021110027, 0 17 2 | 10011 | | 23002 132323 | 80.211.11.1 | Vlan801 | PUSH | | 30002 492529 | 00.211.11.1 | VIGILOUI | 1 0 0 11 | | 30002 432323 | | | | ### The following is an example of **show bgp l2vpn evpn summary** command. ``` show bgp 12vpn evpn summary BGP summary information for VRF default, address family L2VPN EVPN BGP router identifier 2.2.2.3, local AS number 2 BGP table version is 17370542, L2VPN EVPN config peers 4, capable peers 1 1428 network entries and 1428 paths using 268464 bytes of memory BGP attribute entries [476/76160], BGP AS path entries [1/6] BGP community entries [0/0], BGP clusterlist entries [0/0] 476 received paths for inbound soft reconfiguration 476 identical, 0 modified, 0 filtered received paths using 0 bytes AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd Neighbor 0 1.1.1.1 4 11 0 0 0 0 23:01:53 Shut (Admin) 4 11 1836 17370542 0 0 23:01:40 476 4637 1.1.1.10 1.1.1.11 0 0 0 0 23:01:53 Shut (Admin) 0 0 0 0 23:01:52 Shut (Admin) 4 11 0 0 4 11 ``` #### The following is an example of **show bgp l2vpn evpn** command. # **Segment Routing with IS-IS Protocol** ### **About IS-IS** IS-IS is an Interior Gateway Protocol (IGP) based on Standardization (ISO)/International Engineering Consortium (IEC) 10589 and RFC 1995. Cisco NX-OS supports Internet Protocol version 4 (IPv4) and IPv6. IS-IS is a dynamic link-state routing protocol that can detect changes in the network topology and calculate loop-free routes to other nodes in the network. Each router maintains a link-state database that describes the state of the network and sends packets on every configured link to discover neighbors. IS-IS floods the link-state information across the network to each neighbor. The router also sends advertisements and updates on the link-state database through all the existing neighbors Segment routing on the IS-IS protocol supports the following: - IPv4 - Level 1, level 2, and multi-level routing - Prefix SIDs - Multiple IS-IS instances on the same loopback interface for domain border nodes - Adjacency SIDs for adjacencies ## **Configuring Segment Routing with IS-IS Protocol** You can configure segment routing with IS-IS protocol. ### Before you begin IS-IS segment routing is fully enabled when the following conditions are met: - The mpls segment-routing feature is enabled. - The IS-IS feature is enabled. • Segment routing is enabled for at least one address family under IS-IS. ### **SUMMARY STEPS** - 1. configure terminal - 2. router isis instance-tag - **3. net** *network-entity-title* - 4. address-family ipv4 unicast - 5. segment-routing mpls ### **DETAILED STEPS** ### **Procedure** | | Command or Action | Purpose | |--------|-----------------------------|---| | Step 1 | configure terminal | Enters global configuration mode. | | Step 2 | router isis instance-tag | Creates a new IS-IS instance with the configured instance tag. | | Step 3 | net network-entity-title | Configures the NET for this IS-IS instance. | | Step 4 | address-family ipv4 unicast | Enters address family configuration mode. | | Step 5 | segment-routing mpls | Configures segment routing with IS-IS protocol. | | | | Note The IS-IS command is supported only on the IPv4 address family. It is not supported on the IPv6 address family. Redistribution is not supported from any other protocol to ISIS for the SR prefixes. You need to enable ip router isis command on all the prefix SID interfaces. | # **Segment Routing with OSPFv2 Protocol** ### **About OSPF** Open Shortest Path First (OSPF) is an Interior Gateway Protocol (IGP) developed by the OSPF working group of the Internet Engineering Task Force (IETF). Designed expressly for IP networks, OSPF supports IP subnetting and tagging of externally derived routing information. OSPF also allows packet authentication and uses IP multicast when sending and receiving packets. Segment routing configuration on the OSPF protocol can be applied at the process or the area level. If you configure segment routing at the process level, it is enabled for all the areas. However, you can enable ore disable it per area level. Segment routing on the OSPF protocol supports the following: - OSPFv2 control plane - Multi-area - IPv4 prefix SIDs for host prefixes on loopback interfaces - · Adjacency SIDs for adjacencies ### **Adjacency SID Advertisement** OSPF supports the advertisement of segment routing adjacency SID. An Adjacency Segment Identifier (Adj-SID) represents a router adjacency in Segment Routing. A segment routing-capable router may allocate an Adj-SID for each of its adjacencies and an Adj-SID sub-TLV is defined to carry this SID in the Extended Opaque Link LSA. OSPF allocates the adjacency SID for each OSPF neighbor if the OSPF adjacency which are in two way or in FULL state. OSPF allocates the adjacency SID only if the segment routing is enabled. The label for adjacency SID is dynamically allocated by the system. This eliminates the chances of misconfiguration, as this has got only the local significance. ### **Connected Prefix-SID** OSPFv2 supports the advertisement of prefix SID for address associated with the loopback interfaces. In order to achieve this, OSPF uses Extended Prefix Sub TLV in its opaque Extended prefix LSA. When OSPF receives this LSA from its neighbor, SR label is added to the RIB corresponding to received prefix based upon the information present in extended prefix sub TLV. For configuration, segment-routing has to be enabled under OSPF and corresponding to loopback interface that is configured with OSPF, prefix-sid mapping is required under the segment routing module. Note SID will only be advertised for loopback addresses and only for intra-area and inter-area prefix types. No SID value will be advertised for external or NSSA prefixes. ### **Prefix Propagation Between Areas** To provide segment routing support across the area boundary, OSPF is required to propagate SID values between areas. When OSPF advertises the prefix reachability between areas, it checks if the SID has been advertised for the prefix. In a typical case, the SID value come from the router, which contributes to the best path to the prefix in the source area. In this case, OSPF uses such SID and advertises it between the areas. If the SID value is not advertised by the router which contributes to the best path inside the area, OSPF will use the SID value coming from any other router inside the source area. ### **Segment Routing Global Range Changes** OSPF advertises it's segment routing capability in terms of advertising the SID/Label Range TLV. In OSPFv2, SID/Label Range TLV is a carried in Router Information LSA. The segment routing global range configuration will be under the "segment-routing mpls" configuration. When the OSPF process comes, it will get the global range values from segment-routing and subsequent changes should be propagated to it. When OSPF segment routing is configured, OSPF must request an interaction with the segment routing module before OSPF segment routing operational state can be enabled. If the SRGB range is not created, OSPF will not be enabled. When an SRGB change event occurs, OSPF makes the corresponding changes in it's sub-block entries. ### **Conflict Handling of SID Entries** In an ideal situation, each prefix should have unique SID entries assigned. When there is a conflict between the SID entries and the associated prefix entries use any of the following methods to resolve the conflict: - Multiple SIDs for a single prefix If the same prefix is advertised by multiple sources with different SIDs, OSPF will install the unlabeled path for the prefix. The OSPF takes into consideration only those SIDs that are from reachable routers and ignores those from unreachable routers. When multiple SIDs are advertised for a prefix, which is considered as a conflict, no SID will be advertised to the attached-areas for the prefix. Similar logic will be used when propagating the inter-area prefixes between the backbone and the non-backbone areas. - Out of Range SID For SIDs that do not fit in our SID range, labels are not used while updating the RIB. ### **MPLS** Forwarding on an Interface MPLS forwarding must be enabled before segment routing can use an interface. OSPF is responsible for enabling MPLS forwarding on an interface. When segment routing is enabled for a OSPF topology, or OSPF segment routing operational state is enabled, it enables MPLS for any interface on which the OSPF topology is active. Similarly, when segment routing is disabled for a OSPF topology, it disables the MPLS forwarding on all interfaces for that topology. MPLS forwarding is not supported on an interface which terminates at the IPIP/GRE tunnel. ### Configuring Segment Routing with OSPFv2 Configure segment routing with OSPFv2 protocol. ### Before you begin Confirm that the following conditions are met before configuring segment routing with OSPFv2: - The OSPFv2 feature is enabled. - The segment-routing feature is enabled.
- Segment routing is enabled under OSPF. ### **SUMMARY STEPS** - 1. configure terminal - 2. [no]router ospf process - 3. segment-routing ### **DETAILED STEPS** ### **Procedure** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | [no]router ospf process | Enables the OSPF mode. | | | Example: | | | | switch(config)# router ospf test | | | Step 3 | segment-routing | Configures the segment routing functionality under OSPF. | | | Example: | | | | switch(config-router)# segment-routing mpls | | ## **Configuring Segment Routing on OSPF Network- Area Level** ### Before you begin Before you configure segment routing on OSPF network, OSPF must be enabled on your network. ### **SUMMARY STEPS** - 1. router ospf process - 2. area <area id> segment-routing [mpls | disable] - 3. [no]area < area id> segment-routing [mpls | disable] - 4. show ip ospf process segment-routing ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|----------------------------------|------------------------| | Step 1 | router ospf process | Enables the OSPF mode. | | | Example: | | | | switch(config)# router ospf test | | | | Command or Action | Purpose | |--------|---|--| | Step 2 | area <area id=""/> segment-routing [mpls disable] | Configures segment routing mpls mode in a specific area. | | | Example: | | | | <pre>switch(config-router)# area 1 segment-routing mpls</pre> | | | Step 3 | [no]area <area id=""/> segment-routing [mpls disable] | Disables segment routing mpls mode for the specified area. | | | Example: | | | | <pre>switch(config-router)#area 1 segment-routing disable</pre> | | | Step 4 | show ip ospf process segment-routing | Shows the output for configuring segment routing under | | | Example: | OSPF. | | | <pre>switch(config-router)# show ip ospf test segment-routing</pre> | | ## **Configuring Prefix-SID for OSPF** This task explains how to configure prefix segment identifier (SID) index under each interface. ### Before you begin Segment routing must be enabled on the corresponding address family. ### **SUMMARY STEPS** - 1. configure terminal - 2. [no]router ospf process - 3. segment-routing - **4. interface loopback** *interface_number* - 5. ip address 1.1.1.1/32 - 6. ip router ospf 1 area 0 - 7. segment-routing - 8. connected-prefix-sid-map - 9. address-family ipv4 - **10**. 1.1.1.1/32 index 10 - **11**. exit ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|--------------------|-----------------------------------| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | Command or Action | Purpose | |---------|---|---| | | switch# configure terminal | | | Step 2 | [no]router ospf process | Configures OSPF. | | | Example: | | | | switch(config)# router ospf test | | | Step 3 | segment-routing | Configures the segment routing functionality under OSPF. | | | Example: | | | | <pre>switch(config-router)# segment-routing switch(config-sr)#mpls switch(config-sr-mpls)#</pre> | | | Step 4 | interface loopback interface_number | Specifies the interface where OSPF is enabled. | | | Example: | | | | <pre>switch(config-sr-mpls)# Interface loopback 0</pre> | | | Step 5 | ip address 1.1.1.1/32 | Specifies the IP address configured on the ospf interface. | | | Example: | | | | switch(config-sr-mpls)# ip address 1.1.1.1/32 | | | Step 6 | ip router ospf 1 area 0 | Specifies the OSPF enabled on the interface in area. | | | Example: | | | | <pre>switch(config-sr-mpls)# ip router ospf 1 area 0</pre> | | | Step 7 | segment-routing | Configures prefix-sid mapping under SR module. | | | Example: | | | | <pre>switch(config-router) #segment-routing (config-sr) #mpls</pre> | | | Step 8 | connected-prefix-sid-map | Configures the prefix SID mapping under the segment routing module. | | | Example: | | | | <pre>switch(config-sr-mpls) # connected-prefix-sid-map
switch(config-sr-mpls-conn-pfxsid) #</pre> | | | Step 9 | address-family ipv4 | Specifies the IPv4 address family configured on the OSPF | | | Example: | interface. | | | switch(config-sr-mpls-conn-pfxsid) # address-family | , | | | <pre>ipv4 switch(config-sr-mpls-conn-pfxsid-af)#</pre> | | | Step 10 | 1.1.1.1/32 index 10 | Associates SID 10 with the address 1.1.1.1/32. | | | Example: | | | | <pre>switch(config-sr-mpls-conn-af)# 1.1.1.1/32 index 10</pre> | | | Step 11 | exit | Exits segment routing mode and returns to the | | | Example: | configuration terminal mode. | | Command or Action | Purpose | |--------------------------------------|---------| | switch(config-sr-mpls-conn-af)# exit | | ## **Configuring Prefix Attribute N-flag-clear** OSPF advertises prefix SIDs via Extended Prefix TLV in its opaque LSAs. It carries flags for the prefix and one of them is N flag (Node) indicating that any traffic sent along to the prefix is destined to the router originating the LSA. This flag typically marks host routes of router's loopback. ### **SUMMARY STEPS** - 1. configure terminal - 2. interface loopback3 - 3. ip ospf prefix-attributes n-flag-clear ### **DETAILED STEPS** #### **Procedure** | | Command or Action | Purpose | |--------|---|-----------------------------------| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | interface loopback3 | Specifies the interface loopback. | | | Example: | | | | switch(config)# interface loopback3 | | | Step 3 | ip ospf prefix-attributes n-flag-clear | Clears the prefix N-flag. | | | Example: | | | | <pre>switch#(config-if)# ip ospf prefix-attributes n-flag-clear</pre> | | ## **Configuration Examples for Prefix SID for OSPF** This example shows the configuration for prefix SID for OSPF. ``` Router ospf 10 Segment-routing mpls Interface loop 0 Ip address 1.1.1.1/32 Ip router ospf 10 area 0 Segment-routing Mpls connected-prefix-sid-m address-family ipv4 1.1.1.1/32 index 10 ``` # **Configuring Prefix SID Using BGP** You can set the label index for routes that match the **network** command. Doing so causes the BGP prefix SID to be advertised for local prefixes that are configured with a route map that includes the **set label-index** command, provided the route map is specified in the **network** command that specifies the local prefix. (For more information on the **network** command, see the "Configuring Basic BGP" chapter in the Cisco Nexus 3600 Series NX-OS Unicast Routing Configuration Guide.) Note Route-map label indexes are ignored when the route map is specified in a context other than the **network** command. Also, labels are allocated for prefixes with a route-map label index independent of whether the prefix has been configured by the **allocate-label route-map** *route-map-name* command. ### **BGP Prefix SID** In order to support segment routing, BGP requires the ability to advertise a segment identifier (SID) for a BGP prefix. A BGP prefix SID is always global within the segment routing BGP domain and identifies an instruction to forward the packet over the ECMP-aware best path computed by BGP to the related prefix. The BGP prefix SID identifies the BGP prefix segment. ### **BGP Prefix SID Deployment Example** In the simple example below, all three routers are running iBGP and advertising Network Layer Reachability Information (NRLI) to one another. The routers are also advertising their loopback interface as the next hop, which provides the ECMP between routers 2.2.2.2 and 3.3.3.3. Figure 1: BGP Prefix SID Simple Example ## **Adjacency SID** The adjacency segment Identifier (SID) is a local label that points to a specific interface and a next hop out of that interface. No specific configuration is required to enable adjacency SIDs. Once segment routing is enabled over BGP for an address family, for any interface that BGP runs over, the address family automatically allocates an adjacency SID toward every neighbor out of that interface. ## **High Availability for Segment Routing** In-service software upgrades (ISSUs) are minimally supported with BGP graceful restart. All states (including the segment routing state) must be relearned from the BGP router's peers. During the graceful restart period, the previously learned route and label state are retained. ## **Configuring the Label Index** ### **SUMMARY STEPS** - 1. configure terminal - 2. route-map map-name - 3. [no] set label-index index - 4. exit - **5. router bgp** *autonomous-system-number* - 6. address-family ipv4 unicast - **7. network** *ip-prefix* [**route-map** *map-name*] - **8.** (Optional) **show route-map** [*map-name*] - **9.** (Optional) copy running-config startup-config ### **DETAILED STEPS** | | Command or Action | Purpose | |--------------------------------|--|--| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | route-map map-name | Creates a route map or enters route-map configuration mode | | Example: for an existin | for an existing route map. | | | | <pre>switch(config) # route-map SRmap switch(config-route-map) #</pre> | | | Evample: command. The | Sets the label index for routes that match the network | | | | Example: |
command. The range is from 0 to 471788. By default, a label index is not added to the route. | | | <pre>switch(config-route-map)# set label-index 10</pre> | label mack is not added to the route. | | Step 4 | exit | Exits route-map configuration mode. | | | Example: | | | | <pre>switch(config-route-map)# exit switch(config)#</pre> | | | Step 5 | router bgp autonomous-system-number | Enables BGP and assigns the AS number to the local BGP | | | Example: | speaker. The AS number can be a 16-bit integer or a 32-bit | | | Command or Action | Purpose | |--------|---|--| | | <pre>switch(config)# router bgp 64496 switch(config-router)#</pre> | integer in the form of a higher 16-bit decimal number and a lower 16-bit decimal number in xx.xx format. | | Step 6 | Required: address-family ipv4 unicast Example: switch(config-router) # address-family ipv4 unicast switch(config-router-af) # | Enters global address family configuration mode for the IPv4 address family. | | Step 7 | <pre>network ip-prefix [route-map map-name] Example: switch(config-router-af) # network 10.10.10.10/32 route-map SRmap</pre> | Specifies a network as local to this autonomous system and adds it to the BGP routing table. | | Step 8 | (Optional) show route-map [map-name] Example: switch(config-router-af) # show route-map | Displays information about route maps, including the label index. | | Step 9 | (Optional) copy running-config startup-config Example: switch(config-router-af) # copy running-config startup-config | Copies the running configuration to the startup configuration. | ## **Configuring the MPLS Label Allocation** You can configure MPLS label allocation for the IPv4 unicast address family. ### Before you begin You must install and enable the MPLS feature set using the **install feature-set mpls** and **feature-set mpls** commands. You must enable the MPLS segment routing feature. ### **SUMMARY STEPS** - 1. configure terminal - 2. [no] router bgp autonomous-system-number - 3. address-family ipv4 unicast - 4. [no] allocate-label {all | route-map route-map-name} - 5. exit - **6. neighbor** *ipv4-address* **remote-as** *autonomous-system-number* - 7. address-family ipv4 labeled-unicast - **8.** (Optional) **show bgp ipv4 labeled-unicast** *prefix* - 9. (Optional) copy running-config startup-config ### **DETAILED STEPS** | | Command or Action | Purpose | |--------|---|---| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | [no] router bgp autonomous-system-number | Enables BGP and assigns the AS number to the local BGP speaker. The AS number can be a 16-bit integer or a 32-bit | | | Example: switch(config) # router bgp 64496 switch(config-router) # | integer in the form of a higher 16-bit decimal number and a lower 16-bit decimal number in xx.xx format. | | | | Use the no option with this command to remove the BGP process and the associated configuration. | | Step 3 | Required: address-family ipv4 unicast | Enters global address family configuration mode for the | | | Example: | IPv4 address family. | | | <pre>switch(config-router)# address-family ipv4 unicast switch(config-router-af)#</pre> | | | Step 4 | [no] allocate-label {all route-map route-map-name} | Configures local label allocation for routes matching the | | | Example: | specified route map or for all routes advertised in this address family. | | | <pre>switch(config-router-af)# allocate-label route-map map1</pre> | | | Step 5 | Required: exit | Exits global address family configuration mode. | | | Example: | | | | <pre>switch(config-router-af)# exit switch(config-router)#</pre> | | | Step 6 | neighbor ipv4-address remote-as | Configures the IPv4 address and AS number for a remote | | | autonomous-system-number | BGP peer. | | | Example: | | | | switch(config-router) # neighbor 10.1.1.1 remote-as 64497 | | | | switch(config-router-neighbor)# | | | Step 7 | address-family ipv4 labeled-unicast | Advertises the labeled IPv4 unicast routes as specified in | | | Example: | RFC 3107. | | | <pre>switch(config-router-neighbor)# address-family ipv4 labeled-unicast switch(config-router-neighbor-af)#</pre> | | | Step 8 | (Optional) show bgp ipv4 labeled-unicast prefix | Displays the advertised label index and the selected local | | - | Example: | label for the specified IPv4 prefix. | | | Command or Action | Purpose | |--|--|----------------| | | <pre>switch(config-router-neighbor-af)# show bgp ipv4 labeled-unicast 10.10.10.10/32</pre> | | | | Copies the running configuration to the startup | | | | Example: | configuration. | | | <pre>switch(config-router-neighbor-af)# copy running-config startup-config</pre> | | ## **Configuration Example for BGP Prefix SID** The examples in this section show a common BGP prefix SID configuration between two routers. This example shows how to advertise a BGP speaker configuration of 10.10.10.10/32 and 20.20.20.20/32 with a label index of 10 and 20, respectively. It uses the default segment routing global block (SRGB) range of 16000 to 23999. ``` hostname s1 install feature-set mpls feature-set mpls feature telnet feature bash-shell feature scp-server feature bgp feature mpls segment-routing segment-routing mpls vlan 1 route-map label-index-10 permit 10 set label-index 10 route-map label-index-20 permit 10 set label-index 20 vrf context management ip route 0.0.0.0/0 10.30.108.1 interface Ethernet1/1 no switchport ip address 10.1.1.1/24 no shutdown interface mgmt0 ip address dhcp vrf member management interface loopback1 ip address 10.10.10.10/32 interface loopback2 ip address 20.20.20.20/32 line console line vty router bgp 1 address-family ipv4 unicast network 10.10.10.10/32 route-map label-index-10 ``` ``` network 20.20.20.20/32 route-map label-index-20 allocate-label all neighbor 10.1.1.2 remote-as 2 address-family ipv4 labeled-unicast ``` This example shows how to receive the configuration from a BGP speaker. ``` install feature-set mpls feature-set mpls feature telnet feature bash-shell feature scp-server feature bgp feature mpls segment-routing segment-routing mpls vlan 1 vrf context management ip route 0.0.0.0/0 10.30.97.1 ip route 0.0.0.0/0 10.30.108.1 interface Ethernet1/1 no switchport ip address 10.1.1.2/24 ipv6 address 10:1:1::2/64 no shutdown interface mgmt0 ip address dhcp vrf member management interface loopback1 ip address 2.2.2.2/32 line console line vty router bgp 2 address-family ipv4 unicast allocate-label all neighbor 10.1.1.1 remote-as 1 address-family ipv4 labeled-unicast ``` ### **Configuring the BGP Link State Address Family** You can configure the BGP link state address family for a neighbor session with a controller to advertise the corresponding SIDs. You can configure this feature in global configuration mode and neighbor address family configuration mode. ### Before you begin You must enable BGP. #### **SUMMARY STEPS** #### 1. configure terminal - **2.** router bgp
bgp autonomous number> - 3. [no] address-family link-state - **4. neighbor** <*IP* address> - 5. [no] address-family link-state ### **DETAILED STEPS** ### **Procedure** | | Command or Action | Purpose | |--------|---|--| | Step 1 | configure terminal | Enters global configuration mode. | | | Example: | | | | <pre>switch# configure terminal switch(config)#</pre> | | | Step 2 | router bgp
bgp autonomous number> | Specifies the autonomous router BGP number. | | Step 3 | [no] address-family link-state | Enters address-family interface configuration mode. | | | Example: | Note | | | <pre>switch(config)# router bgp 64497 switch (config-router af)# address-family link-state</pre> | This command can also be configured in neighbor address-family configuration mode. | | Step 4 | neighbor <ip address=""></ip> | Configures the IP address for the neighbor. | | Step 5 | [no] address-family link-state | Enters address-family interface configuration mode. | | | Example: | Note | | | <pre>switch(config)#router bgp 1 switch(config-router)#address-family link-state switch(config-router)#neighbor 20.20.20.20 switch(config-router)#address-family link-state</pre> | This command can also be configured in neighbor address-family configuration mode. | # **Verifying the Segment Routing Configuration** To display the segment routing configuration, perform one of the following tasks: | Command | Purpose | |--------------------------------------|---| | show bgp ipv4 labeled-unicast prefix | Displays the advertised label index and the selected local label for the specified IPv4 prefix. | | show bgp paths | Displays the BGP path information, including the advertised label index. | | show mpls label range | Displays the configured SRGB range of labels. | | show route-map [map-name] | Displays information about a route map, including the label index. | | show running-config rpmDisplays information about Route Policy Mana (RPM).show running-config inc 'feature segment-routing'Displays the status of the MPLS segment routing feature.show ip ospf neighbors detailDisplays the list of OSPFv2 neighbors and the
adjacency SID allocated, along with the correspondiags.show ip ospf database opaque-areaDisplays the LSAs for the adjacency SID.show ip ospf segment-routing adj-sid-databaseDisplays all locally allocated adjacency SIDs.show running-config segment-routingDisplays the status of the segment routing feature.show srte policyDisplays only the authorized policies. | |---| | show ip ospf neighbors detail Displays the list of OSPFv2 neighbors and the adjacency SID allocated, along with the corresportlags. show ip ospf database opaque-area Displays the LSAs for the adjacency SID. show ip ospf segment-routing adj-sid-database Displays all locally allocated adjacency SIDs. show running-config segment-routing Displays the status of the segment routing feature. | | adjacency SID allocated, along with the correspondages. show ip ospf database opaque-area bisplays the LSAs for the adjacency SID. show ip ospf segment-routing adj-sid-database bisplays all locally allocated adjacency SIDs. show running-config segment-routing bisplays the status of the segment routing feature. | | show ip ospf segment-routing adj-sid-database Displays all locally allocated adjacency SIDs. show running-config segment-routing Displays the status of the segment routing feature. | | show running-config segment-routing Displays the status of the segment routing feature. | | | | show srte policy Displays only the authorized policies. | | | | show srte policy [all] Displays the list of all policies available in the SI | | show srte policy [detail] Displays the detailed view of all the requested policies. | | show srte policy < name > Filters the SR-TE policy with the name and dis the list of all policies available with that name SR-TE. | | Note This command has the autocomplete feature fo policy-name. To use this feature, add a question or press TAB. | | show srte policy color < color> endpoint < endpoint> Displays the SR-TE policy for the color and end some state of the color and endpoint Note This command has the autocomplete feature for and endpoint. To use this feature, add a question or press TAB. | | show srte policy fh Displays the set of first hops. | | show segment-routing mpls clients Displays the clients registered with the SR-API | | show segment-routing mpls details Displays detailed information. | | show segment-routing ipv4 Displays the information for the IPv4 address fa | | show segment-routing mpls Displays segment routing mpls information | | Command | Purpose | |---|--| | show segment-routing ipv4 connected-prefix-sid | Displays the MPLS label range for the SRGB. | | | Note This command is only available in Cisco NX-OS Release 9.3(1). | | show ip ospf process | Displays the OSPF mode. | | show ip ospf process segment-routing sid-database | Displays the segment routing database details. | | show ip ospf process segment-routing global block | Displays the segment routing global block information. | # **Additional References** ## **Related Documents** | Related Topic | Document Title | |---------------|--| | | Cisco Nexus 3600 Series Unicast Routing
Configuration Guide |