

Configuring External VRF Connectivity and Route Leaking

This chapter contains the following sections:

- Configuring External VRF Connectivity, on page 1
- Configuring Route Leaking, on page 2

Configuring External VRF Connectivity

About External Layer-3 Connectivity for VXLAN BGP EVPN Fabrics

A VXLAN BGP EVPN fabric can be extended by using per-VRF IP routing to achieve external connectivity. The approach that is used for the Layer-3 extensions is commonly referred to as VRF Lite, while the functionality itself is more accurately defined as Inter-AS Option A or back-to-back VRF connectivity.

Guidelines and Limitations for External VRF Connectivity and Route Leaking

The following are the guidelines and limitations for External Layer-3 Connectivity for VXLAN BGP EVPN Fabrics:

- Support added for Cisco Nexus 3600 platform switches.
- A physical Layer-3 Interface (Parent-Interface) can be used for external Layer-3 connectivity (ie VRF default).
- The Parent-Interface to multiple Sub-Interfaces can not be used for external Layer-3 connectivity (ie Ethernet1/1 for VRF default). A Sub-Interface can be used instead.
- VTEPs do not support VXLAN encapsulated traffic over Parent-Interfaces if Sub-Interfaces are configured. This is regardless of VRF participation.
- VTEPs do not support VXLAN encapsulated traffic over Sub-Interfaces. This is regardless of VRF participation or IEEE 802.1q encapsulation.
- Mixing Sub-Interfaces for VXLAN and non-VXLAN enabled VLANs is not supported.

Configuring Route Leaking

About Centralized VRF Route-Leaking for VXLAN BGP EVPN Fabrics

VXLAN BGP EVPN uses MP-BGP and its route-policy concept to import and export prefixes. The ability of this very extensive route-policy model allows to leak routes from one VRF to another VRF and vice-versa; any combination of custom VRF or VRF default can be used. VRF route-leaking is a switch-local function at specific to a location in the network, the location where the cross-VRF route-target import/export configuration takes place (leaking point). The forwarding between the different VRFs follows the control-plane, the location of where the configuration for the route-leaking is performed - hence Centralized VRF route-leaking. With the addition of VXLAN BGP EVPN, the leaking point requires to advertise the cross-VRF imported/exported route and advertise them towards the remote VTEPs or External Routers.

The advantage of Centralized VRF route-leaking is that only the VTEP acting as leaking point requires the special capabilities needed, while all other VTEPs in the network are neutral to this function.

Guidelines and Limitations for External VRF Connectivity and Route Leaking

The following are the guidelines and limitations for External Layer-3 Connectivity for VXLAN BGP EVPN Fabrics:

- Support added for Cisco Nexus 3600 platform switches.
- A physical Layer-3 Interface (Parent-Interface) can be used for external Layer-3 connectivity (ie VRF default).
- The Parent-Interface to multiple Sub-Interfaces can not be used for external Layer-3 connectivity (ie Ethernet1/1 for VRF default). A Sub-Interface can be used instead.
- VTEPs do not support VXLAN encapsulated traffic over Parent-Interfaces if Sub-Interfaces are configured. This is regardless of VRF participation.
- VTEPs do not support VXLAN encapsulated traffic over Sub-Interfaces. This is regardless of VRF participation or IEEE 802.1q encapsulation.
- Mixing Sub-Interfaces for VXLAN and non-VXLAN enabled VLANs is not supported.

Centralized VRF Route-Leaking Brief - Shared Internet with Custom VRF

Some pointers follow:

- The Shared Internet with VRF route-leaking for VXLAN BGP EVPN fabrics is depicted in the following figure.
- The default-route is made exported from the Shared Internet VRF and re-advertisement within VRF Blue and VRF Red on the Border Node.
- Ensure the default-route in VRF Blue and VRF Red is not leaked to the Shared Internet VRF.
- The less specific prefixes for VRF Blue and VRF Red are exported for the Shared Internet VRF and re-advertised as necessary.

- Configured less specific prefixes (aggregates) that are advertised from the Border Node to the remaining VTEPs to the destination VRF (Blue or Red).
- BGP EVPN does not export prefixes that were previously imported to prevent the occurrence of routing loops.

Figure 1: Centralized VRF Route-Leaking - Shared Internet with Custom VRF

Configuring Centralized VRF Route-leaking - Specific Prefixes between Custom VRF

Configuring VRF Context on the Routing-Block VTEP

This procedure applies equally to IPv6.

- 1. configure terminal
- 2. vrf context vrf-name
- 3. vni number
- 4. rd auto
- 5. address-family ipv4 unicast
- **6.** route-target both {auto | as:vni}
- 7. route-target both {auto | as:vni }evpn
- **8. route-target import** *rt-from-different-vrf*

9. route-target import rt-from-different-vrf evpn

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
Step 2	vrf context vrf-name	Configure the VRF.
Step 3	vni number	Specify the VNI.
		The VNI associated with the VRF is often referred to as Layer-3 VNI, L3VNI or L3VPN. The L3VNI is configured as common identifier across the participating VTEPs.
Step 4	rd auto	Specify the VRFs Route Distinguisher (RD).
		The RD uniquely identifies a VTEP within a L3VNI.
Step 5	address-family ipv4 unicast	Configure the IPv4 Unicast address-family.
		Required for IPv4 over VXLAN with IPv4 underlay.
Step 6	route-target both {auto as:vni}	Configure the Route Target (RT) for import/export of IPv4 prefixes within the IPv4 unicast address-family The Route Target (RT) is used for a per-VRF prefix import/export policy. If <i>as:vni</i> is entered, the value is in the format of ASN:NN, ASN4:NN, or IPv4:NN.
Step 7	route-target both {auto as:vni }evpn	Configure the Route Target (RT) for import/export of IPv4 prefixes within the IPv4 unicast address-family The Route Target (RT) is used for a per-VRF prefix import/export policy. If <i>as:vni</i> is entered, the value is in the format of ASN:NN, ASN4:NN, or IPv4:NN.
Step 8	route-target import rt-from-different-vrf	Configure the Route Target (RT) for importing IPv4 prefixes from the leaked-from VRF (ie AS:VNI).
Step 9	route-target import rt-from-different-vrf evpn	Configure the Route Target (RT) for importing IPv4 prefixes from the leaked-from VRF (ie AS:VNI).

Configuring the BGP VRF instance on the Routing-Block

This procedure applies equally to IPv6.

- 1. configure terminal
- **2.** router bgp autonomous-system number
- **3. vrf** *vrf*-name
- 4. address-family ipv4 unicast
- 5. advertise l2vpn evpn
- 6. aggregate-address prefix/mask

- 7. maximum-paths ibgp *number*
- 8. maximum-paths number

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	router bgp autonomous-system number	Configure BGP.
Step 3	vrf vrf-name	Specify the VRF.
Step 4	address-family ipv4 unicast	Configure address family for IPv4
Step 5	advertise l2vpn evpn	Enable the advertisement of EVPN routes within IPv4 address-family.
Step 6	aggregate-address prefix/mask	Create less specific prefix aggregate into the destination VRF.
Step 7	maximum-paths ibgp number	Enabling equal cost multipathing (ECMP) for iBGP prefixes.
Step 8	maximum-paths number	Enabling equal cost multipathing (ECMP) for eBGP prefixes

Example - Configuration Centralized VRF Route-Leaking - Specific Prefixes Between Custom VRF

Configuring VXLAN BGP EVPN Routing-Block

The VXLAN BGP EVPN Routing-Block acts as centralized route-leaking point. The leaking configuration is localized such that control-plane leaking and data-path forwarding follow the same path. Most significantly is the VRF configuration of the Routing-Block and the advertisement of the less specific prefixes (aggregates) into the respective destination VRFs.

```
vrf context Blue
  vni 51010
  rd auto
  address-family ipv4 unicast
    route-target both auto
    route-target both auto evpn
    route-target import 65002:51020
    route-target import 65002:51020 evpn
vlan 2110
  vn-segment 51010
interface Vlan2110
 no shutdown
  mtu 9216
 vrf member Blue
  no ip redirects
  ip forward
vrf context Red
  vni 51020
  rd auto
```

```
address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
    route-target import 65002:51010
   route-target import 65002:51010 evpn
vlan 2120
 vn-segment 51020
interface Vlan2120
 no shutdown
 mtu 9216
 vrf member Blue
 no ip redirects
 ip forward
interface nve1
 no shutdown
 host-reachability protocol bgp
 source-interface loopback1
 member vni 51010 associate-vrf
 member vni 51020 associate-vrf
router bgp 65002
  vrf Blue
   address-family ipv4 unicast
      advertise 12vpn evpn
      aggregate-address 10.20.0.0/16
      maximum-paths ibgp 2
      Maximum-paths 2
  vrf Red
   address-family ipv4 unicast
      advertise 12vpn evpn
      aggregate-address 10.10.0.0/16
      maximum-paths ibqp 2
      Maximum-paths 2
```

Centralized VRF Route-Leaking Brief - Shared Internet with Custom VRF

Some pointers follow:

- The Shared Internet with VRF route-leaking for VXLAN BGP EVPN fabrics is depicted in the following figure.
- The default-route is made exported from the Shared Internet VRF and re-advertisement within VRF Blue and VRF Red on the Border Node.
- Ensure the default-route in VRF Blue and VRF Red is not leaked to the Shared Internet VRF.
- The less specific prefixes for VRF Blue and VRF Red are exported for the Shared Internet VRF and re-advertised as necessary.
- Configured less specific prefixes (aggregates) that are advertised from the Border Node to the remaining VTEPs to the destination VRF (Blue or Red).
- BGP EVPN does not export prefixes that were previously imported to prevent the occurrence of routing loops.

Figure 2: Centralized VRF Route-Leaking - Shared Internet with Custom VRF

Configuring Centralized VRF Route-Leaking - Shared Internet with Custom VRF

Configuring Internet VRF on Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. vrf context vrf-name
- 3. vni number
- **4. ip route 0.0.0.0/0** *next-hop*
- 5. rd auto
- 6. address-family ipv4 unicast
- 7. route-target both {auto | as:vni}
- 8. route-target both shared-vrf-rt evpn

	Command or Action	Purpose
Step 1	configure terminal	Enter global configuration mode.
Step 2	vrf context vrf-name	Configure the VRF.

	Command or Action	Purpose
Step 3	vni number	Specify the VNI.
		The VNI associated with the VRF is often referred to as Layer-3 VNI, L3VNI or L3VPN. The L3VNI is configured as common identifier across the participating VTEPs.
Step 4	ip route 0.0.0/0 next-hop	Configure default-route in shared internet VRF to external router (example).
Step 5	rd auto	Specify the VRFs Route Distinguisher (RD).
		The RD uniquely identifies a VTEP within a L3VNI.
Step 6	address-family ipv4 unicast	Configure the IPv4 Unicast address-family.
		Required for IPv4 over VXLAN with IPv4 underlay.
Step 7	route-target both {auto as:vni}	Configure the Route Target (RT) for import/export of EVPN and IPv4 prefixes within the IPv4 unicast address-family.
Step 8	route-target both shared-vrf-rt evpn	Configure a special Route Target (RT) for the import/export of the shared IPv4 prefixes.
		Additional import/export map for further qualification is supported

Configuring Shared Internet BGP Instance on the Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. router bgp autonomous-system number
- 3. vrf vrf-name
- 4. address-family ipv4 unicast
- 5. advertise l2vpn evpn
- 6. aggregate-address prefix/mask
- 7. maximum-paths ibgp *number*
- 8. maximum-paths number

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	router bgp autonomous-system number	Configure BGP.
Step 3	vrf vrf-name	Specify the VRF.
Step 4	address-family ipv4 unicast	Configure address family for IPv4

	Command or Action	Purpose
Step 5	advertise l2vpn evpn	Enable the advertisement of EVPN routes within IPv4 address-family.
Step 6	aggregate-address prefix/mask	Create less specific prefix aggregate into the destination VRF.
Step 7	maximum-paths ibgp number	Enabling equal cost multipathing (ECMP) for iBGP prefixes.
Step 8	maximum-paths number	Enabling equal cost multipathing (ECMP) for eBGP prefixes.

Configuring Custom VRF Context on the Border Node - 1

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. vrf context vrf-name
- **3. vni** *number*
- 4. rd auto
- 5. ip route 0.0.0.0/0 Null0
- 6. address-family ipv4 unicast
- 7. route-target both {auto | as:vni}
- 8. route-target both {auto | as:vni} evpn
- 9. import map name

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	vrf context vrf-name	Configure the VRF.
Step 3	vni number	Specify the VNI.
		The VNI associated with the VRF is often referred to as Layer-3 VNI, L3VNI or L3VPN. The L3VNI is configured as the common identifier across the participating VTEPs.
Step 4	rd auto	Specify the VRFs Route Distinguisher (RD).
		The Route Distinguisher (RD) uniquely identifies a VTEP within a L3VNI.
Step 5	ip route 0.0.0.0/0 Null0	Configure default-route in common VRF to attract traffic towards Border Node with Shared Internet VRF.
Step 6	address-family ipv4 unicast	Configure the IPv4 Unicast address-family.

	Command or Action	Purpose
		Required for IPv4 over VXLAN with IPv4 underlay.
Step 7	route-target both {auto as:vni}	Configure the Route Target (RT) for import/export of IPv4 prefixes within the IPv4 unicast address-family The Route Target (RT) is used for a per-VRF prefix import/export policy. If <i>as:vni</i> is entered, the value is in the format of ASN:NN, ASN4:NN, or IPv4:NN.
Step 8	route-target both {auto as:vni} evpn	Configure the Route Target (RT) for import/export of IPv4 prefixes within the IPv4 unicast address-family The Route Target (RT) is used for a per-VRF prefix import/export policy. If <i>as:vni</i> is entered, the value is in the format of ASN:NN, ASN4:NN, or IPv4:NN.
Step 9	import map name	Apply a route-map on routes being imported into this routing table.

Configuring Custom VRF Instance in BGP on the Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- **2.** router bgp autonomous-system-number
- 3. vrf vrf-name
- 4. address-family ipv4 unicast
- 5. advertise l2vpn evpn
- 6. network 0.0.0.0/0
- **7.** maximum-paths ibgp number
- 8. maximum-paths number

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	router bgp autonomous-system-number	Configure BGP.
Step 3	vrf vrf-name	Specify the VRF.
Step 4	address-family ipv4 unicast	Configure address family for IPv4.
Step 5	advertise 12vpn evpn	Enable the advertisement of EVPN routes within IPv4 address-family.
Step 6	network 0.0.0.0/0	Creating IPv4 default-route network statement.
Step 7	maximum-paths ibgp number	Enabling equal cost multipathing (ECMP) for iBGP prefixes.

	Command or Action	Purpose
Step 8	maximum-paths number	Enabling equal cost multipathing (ECMP) for eBGP prefixes.

Example - Configuration Centralized VRF Route-Leaking - Shared Internet with Custom VRF

An example of Centralized VRF route-leaking with Shared Internet VRF

Configuring VXLAN BGP EVPN Border Node for Shared Internet VRF

The VXLAN BGP EVPN Border Node provides a centralized Shared Internet VRF. The leaking configuration is localized such that control-plane leaking and data-path forwarding following the same path. Most significantly is the VRF configuration of the Border Node and the advertisement of the default-route and less specific prefixes (aggregates) into the respective destination VRFs.

```
vrf context Shared
  vni 51099
  ip route 0.0.0.0/0 10.9.9.1
 rd auto
  address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
   route-target both 99:99
   route-target both 99:99 evpn
vlan 2199
 vn-segment 51099
interface Vlan2199
 no shutdown
 mtu 9216
 vrf member Shared
  no ip redirects
 ip forward
ip prefix-list PL DENY EXPORT seq 5 permit 0.0.0.0/0
route-map RM_DENY_IMPORT deny 10
match ip address prefix-list PL DENY EXPORT
route-map RM_DENY_IMPORT permit 20
vrf context Blue
 vni 51010
  ip route 0.0.0.0/0 Null0
 rd auto
 address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
   route-target both 99:99
    route-target both 99:99 evpn
   import map RM DENY IMPORT
vlan 2110
 vn-segment 51010
interface Vlan2110
 no shut.down
 mtu 9216
 vrf member Blue
 no ip redirects
```

```
ip forward
vrf context Red
 vni 51020
 ip route 0.0.0.0/0 Null0
  rd auto
  address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
   route-target both 99:99
   route-target both 99:99 evpn
   import map RM DENY IMPORT
vlan 2120
 vn-segment 51020
interface Vlan2120
 no shutdown
 mtu 9216
 vrf member Blue
 no ip redirects
 ip forward
interface nve1
 no shutdown
 host-reachability protocol bgp
 source-interface loopback1
 member vni 51099 associate-vrf
 member vni 51010 associate-vrf
 member vni 51020 associate-vrf
router bgp 65002
  vrf Shared
    address-family ipv4 unicast
     advertise 12vpn evpn
      aggregate-address 10.10.0.0/16
      aggregate-address 10.20.0.0/16
      maximum-paths ibgp 2
      maximum-paths 2
  vrf Blue
   address-family ipv4 unicast
      advertise 12vpn evpn
      network 0.0.0.0/0
      maximum-paths ibgp 2
      maximum-paths 2
  vrf Red
    address-family ipv4 unicast
      advertise 12vpn evpn
      network 0.0.0.0/0
      maximum-paths ibgp 2
      maximum-paths 2
```

Centralized VRF Route-Leaking Brief - Shared Internet with VRF Default

Some pointers are given below:

- The Shared Internet with VRF route-leaking for VXLAN BGP EVPN fabrics is depicted within Figure
 4.
- The default-route is made exported from VRF default and re-advertisement within VRF Blue and VRF Red on the Border Node.
- Ensure the default-route in VRF Blue and VRF Red is not leaked to the Shared Internet VRF

- The less specific prefixes for VRF Blue and VRF Red are exported to VRF default and re-advertised as necessary.
- Configured less specific prefixes (aggregates) that are advertised from the Border Node to the remaining VTEPs to the destination VRF (Blue or Red).
- BGP EVPN does not export prefixes that were previously imported to prevent the occurrence of routing loops.

VRF A VRF B

VXLAN EVPN

VXF A VRF B

VXF A VRF B

VXF A VRF B

VXF A VRF B

VX LAN EVPN

VX LAN EVPN

VX LAN EVPN

Figure 3: Centralized VRF Route-Leaking - Shared Internet with VRF Default

Configuring Centralized VRF Route-Leaking - Shared Internet with VRF Default

Configuring VRF Default on Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- **2. ip route 0.0.0/0** *next-hop*

1.1.1.1/32

2.2.2.2/32

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	ip route 0.0.0/0 next-hop	Configure default-route in VRF default to external router (example)

Configuring BGP Instance for VRF Default on the Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. router bgp autonomous-system number
- 3. address-family ipv4 unicast
- 4. aggregate-address prefix/mask
- **5.** maximum-paths number

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	router bgp autonomous-system number	Configure BGP.
Step 3	address-family ipv4 unicast	Configure address family for IPv4.
Step 4	aggregate-address prefix/mask	Create less specific prefix aggregate in VRF default.
Step 5	maximum-paths number	Enabling equal cost multipathing (ECMP) for eBGP prefixes.

Configuring Custom VRF on Border Node

This procedure applies equally to IPv6

- 1. configure terminal
- 2. ip prefix-list name seq 5 permit 0.0.0.0/0
- 3. route-map name deny 10
- 4. match ip address prefix-list name
- 5. route-map name permit 20

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	ip prefix-list name seq 5 permit 0.0.0.0/0	Configure IPv4 prefix-list for default-route filtering.
Step 3	route-map name deny 10	Create route-map with leading deny statement to prevent the default-route of being leaked.
Step 4	match ip address prefix-list name	Match against the IPv4 prefix-list that contains the default-route.
Step 5	route-map name permit 20	Create route-map with trailing allow statement to advertise non-matching routes via route-leaking.

Configuring Filter for Permitted Prefixes from VRF Default on the Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. route-map name permit 10

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	route-map name permit 10	Create route-map with allow statement to advertise routes via route-leaking to the customer VRF and subsequently remote VTEPs.

Configuring Custom VRF Context on the Border Node - 2

This procedure applies equally to IPv6.

- 1. configure terminal
- 2. vrf context vrf-name
- 3. vni number
- 4. rd auto
- 5. ip route 0.0.0.0/0 Null0
- 6. address-family ipv4 unicast
- 7. route-target both auto | AS:VNI
- 8. route-target both auto |AS:VNI| evpn
- 9. route-target both shared-vrf-rt
- 10. route-target both shared-vrf-rt evpn

11. import vrf default map name

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	vrf context vrf-name	Configure the VRF.
Step 3	vni number	Specify the VNI.
		The VNI associated with the VRF is often referred to as Layer-3 VNI, L3VNI or L3VPN. The L3VNI is configured as common identifier across the participating VTEPs.
Step 4	rd auto	Specify the VRFs Route Distinguisher (RD).
		The Route Distinguisher (RD) uniquely identifies a VTEP within a L3VNI.
Step 5	ip route 0.0.0.0/0 Null0	Configure default-route in common VRF to attract traffic towards Border Node with Shared Internet VRF.
Step 6	address-family ipv4 unicast	Configure the IPv4 Unicast address-family.
		Required for IPv4 over VXLAN with IPv4 underlay.
Step 7	route-target both auto AS:VNI	Configure the Route Target (RT) for import/export of EVPN and IPv4 prefixes within the IPv4 unicast address-family.
Step 8	route-target both auto AS: VNI evpn	Configure the Route Target (RT) for import/export of EVPN and IPv4 prefixes within the IPv4 unicast address-family.
Step 9	route-target both shared-vrf-rt	Configure a special Route Target (RT) for the import/export of the Shared IPv4 prefixes.
		Additional import/export map for further qualification is supported
Step 10	route-target both shared-vrf-rt evpn	Configure a special Route Target (RT) for the import/export of the Shared IPv4 prefixes.
		Additional import/export map for further qualification is supported
Step 11	import vrf default map name	Permits all routes, from VRF default, from being imported into the custom VRF according to the specific route-map.

Configuring Custom VRF Instance in BGP on the Border Node

This procedure applies equally to IPv6.

SUMMARY STEPS

- 1. configure terminal
- 2. router bgp autonomous-system-number
- 3. vrf vrf-name
- 4. address-family ipv4 unicast
- 5. advertise l2vpn evpn
- 6. network 0.0.0.0/0
- 7. maximum-paths ibgp number
- 8. maximum-paths number

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure terminal	Enters global configuration mode.
Step 2	router bgp autonomous-system-number	Configure BGP.
Step 3	vrf vrf-name	Specify the VRF.
Step 4	address-family ipv4 unicast	Configure address family for IPv4.
Step 5	advertise l2vpn evpn	Enable the advertisement of EVPN routes within IPv4 address-family.
Step 6	network 0.0.0.0/0	Creating IPv4 default-route network statement.
Step 7	maximum-paths ibgp number	Enabling equal cost multipathing (ECMP) for iBGP prefixes.
Step 8	maximum-paths number	Enabling equal cost multipathing (ECMP) for eBGP prefixes.

Example - Configuration Centralized VRF Route-Leaking - VRF Default with Custom VRF

An example of Centralized VRF route-leaking with VRF default

Configuring VXLAN BGP EVPN Border Node for VRF Default

The VXLAN BGP EVPN Border Node provides centralized access to VRF default. The leaking configuration is localized such that control-plane leaking and data-path forwarding following the same path. Most significantly is the VRF configuration of the Border Node and the advertisement of the default-route and less specific prefixes (aggregates) into the respective destination VRFs.

```
ip route 0.0.0.0/0 10.9.9.1
!
ip prefix-list PL_DENY_EXPORT seq 5 permit 0.0.0.0/0
!
route-map permit 10
match ip address prefix-list PL_DENY_EXPORT
route-map RM_DENY_EXPORT permit 20
route-map RM_PERMIT_IMPORT permit 10
!
vrf context Blue
```

```
vni 51010
 ip route 0.0.0.0/0 Null0
  rd auto
  address-family ipv4 unicast
   route-target both auto
    route-target both auto evpn
    import vrf default map RM_PERMIT_IMPORT
    export vrf default 100 map RM DENY EXPORT allow-vpn
vlan 2110
 vn-segment 51010
interface Vlan2110
 no shutdown
 mtu 9216
 vrf member Blue
 no ip redirects
  ip forward
vrf context Red
 vni 51020
  ip route 0.0.0.0/0 Null0
  rd auto
 address-family ipv4 unicast
   route-target both auto
   route-target both auto evpn
   import vrf default map RM PERMIT IMPORT
   export vrf default 100 map RM DENY EXPORT allow-vpn
vlan 2120
 vn-segment 51020
interface Vlan2120
 no shutdown
 mtu 9216
 vrf member Blue
 no ip redirects
 ip forward
interface nve1
 no shutdown
 host-reachability protocol bgp
 source-interface loopback1
 member vni 51010 associate-vrf
 member vni 51020 associate-vrf
router bgp 65002
  address-family ipv4 unicast
      aggregate-address 10.10.0.0/16
      aggregate-address 10.20.0.0/16
      maximum-paths 2
      {\tt maximum-paths} ibgp 2
  vrf Blue
   address-family ipv4 unicast
      advertise 12vpn evpn
      network 0.0.0.0/0
      maximum-paths ibgp 2
      maximum-paths 2
  vrf Red
   address-family ipv4 unicast
      advertise 12vpn evpn
      network 0.0.0.0/0
      maximum-paths ibgp 2
      maximum-paths 2
```