

Configuring IPv6

Cisco MDS 9000 Family supports IP version 6 This chapter describes how to configure IPv6 addresses and other IPv6 features.

This chapter includes the following topics:

- Overview of IPv6, on page 1
- Configuring Basic Connectivity for IPv6, on page 10
- Verifying Neighbor Discovery Parameter Configuration, on page 14
- Duplicate Address Detection Attempts, on page 14
- Reachability Time, on page 14
- Retransmission Time, on page 15
- Verifying Neighbor Discovery Parameter Configuration, on page 15
- IPv6 Static Routes, on page 16
- Gigabit Ethernet IPv6-ACL Guidelines, on page 17
- Transitioning from IPv4 to IPv6, on page 18
- Displaying IPv6, on page 18
- Default Settings, on page 19

Overview of IPv6

IP version 6 (IPv6) provides extended addressing capability beyond those provided in IP version 4 (IPv4) in Cisco MDS NX-OS by quadrupling the number of network address bits from 32 bits (in IPv4) to 128 bits. The architecture of IPv6 has been designed to allow existing IPv4 users to transition easily to IPv6 while providing services such as end-to-end security, quality of service (QoS), and globally unique addresses.

IPv6 provides the following enhancements over IPv4:

- Allows networks to scale and provide global reachability.
- Reduces the need for private address and network address translation (NAT).
- Provides simpler autoconfiguration of addresses.

IPv6 provides the following enhancements over IPv4:

- Allows networks to scale and provide global reachability.
- Reduces the need for private address and network address translation (NAT).

• Provides simpler autoconfiguration of addresses.

Note

For Cisco NX-OS features that use IP addressing, refer to the chapters in this guide that describe those features for information on IPv6 addressing support.

Note

To configure IP version 4 (IPv4) on a Gigabit Ethernet interface, see Chapter 7, Configuring IPv4 for Gigabit Ethernet Interfaces.

This section describes the IPv6 features supported by Cisco MDS NX-OS and includes the following topics:

Extended IPv6 Address Space for Unique Addresses

IPv6 extends the address space by quadrupling the number of network address bits from 32 bits (in IPv4) to 128 bits, which provides many more globally unique IP addresses. By being globally unique, IPv6 addresses enable global reachability and end-to-end security for networked devices, functionality that is crucial to the applications and services that are driving the demand for more addresses.

IPv6 Address Formats

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:) in the format x:x:x:x:x:x:x:x:x. The following are examples of IPv6 addresses:

- 2001:0DB8:7654:3210:FEDC:BA98:7654:3210
- 2001:0DB8:0:0:8:800:200C:417A

It is common for IPv6 addresses to contain successive hexadecimal fields of zeros. To make IPv6 addresses easier to use, two colons (::) may be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address (the colons represent successive hexadecimal fields of zeros). Table 8-1 lists compressed IPv6 address formats.

Note

Two colons (::) can be used only once in an IPv6 address to represent the longest successive hexadecimal fields of zeros.

Note

The hexadecimal letters in IPv6 addresses are not case-sensitive.

Table 1: Compressed IPv6 Address Formats

IPv6 Address Type	Uncompressed Format	Compressed Format	
Unicast	2001:0DB8:800:200C:0:0:0:417A	2001:0DB8:800:200C::417A	

IPv6 Address Type	Uncompressed Format	Compressed Format
Multicast	FF01:0:0:0:0:0:0:101	FF01::101

IPv6 Address Prefix Format

An IPv6 address prefix, in the format ipv6-prefix/prefix-length, can be used to represent bit-wise contiguous blocks of the entire address space. The ipv6-prefix is specified in hexadecimal using 16-bit values between the colons. The prefix-length is a decimal value that indicates how many of the

high-order contiguous bits of the address comprise the prefix (the network portion of the address). For example, 2001:0DB8:8086:6502::/32 is a valid IPv6 prefix.

IPv6 Address Type-Unicast

An IPv6 unicast address is an identifier for a single interface on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. The Cisco MDS NX-OS supports the following IPv6 unicast address types:

Global Addresses

Global IPv6 addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Figure 8-1 shows the structure of a global address.

Figure 1: Global Address Format

Addresses with a prefix of 2000::/3 (001) through E000::/3 (111) are required to have 64-bit interface identifiers in the extended universal identifier (EUI)-64 format. The Internet Assigned Numbers Authority (IANA) allocates the IPv6 address space in the range of 2000::/16 to regional registries.

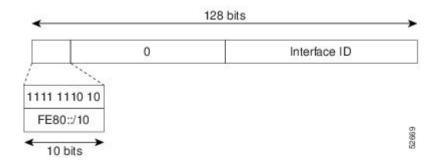
The aggregatable global address typically consists of a 48-bit global routing prefix and a 16-bit subnet ID or Site-Level Aggregator (SLA). In the IPv6 aggregatable global unicast address format document (RFC 2374), the global routing prefix included two other hierarchically structured fields named Top-Level Aggregator (TLA) and Next-Level Aggregator (NLA). The IETF decided to remove the TLS and NLA fields from the RFCs because these fields are policy-based. Some existing IPv6 networks deployed before the change might still be using networks based on the older architecture.

A 16-bit subnet field called the subnet ID could be used by individual organizations to create their own local addressing hierarchy and to identify subnets. A subnet ID is similar to a subnet in IPv4, except that an organization with an IPv6 subnet ID can support up to 65,535 individual subnets.

An interface ID is used to identify interfaces on a link. The interface ID must be unique to the link. They may also be unique over a broader scope. In many cases, an interface ID will be the same as, or based on, the link-layer address of an interface, which results in a globally unique interface ID. Interface IDs used in aggregatable global unicast and other IPv6 address types must be 64 bits long and constructed in the modified EUI-64 format.

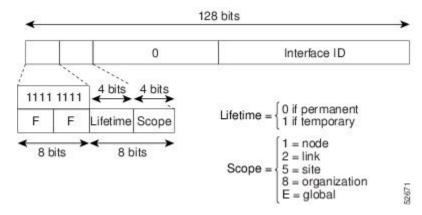
Cisco MDS NX-OS supports IEEE 802 interface types (for example, Gigabit Ethernet interfaces). The first three octets (24 bits) are taken from the Organizationally Unique Identifier (OUI) of the 48-bit link-layer address (MAC address) of the interface, the fourth and fifth octets (16 bits) are a fixed hexadecimal value of FFFE, and the last three octets (24 bits) are taken from the last three octets of the MAC address. The construction

of the interface ID is completed by setting the Universal/Local (U/L) bit—the seventh bit of the first octet—to a value of 0 or 1. A value of 0 indicates a locally administered identifier; a value of 1 indicates a globally unique IPv6 interface identifier (see Figure 8-2).


Figure 2: Interface Identifier Format

Link-Local Address

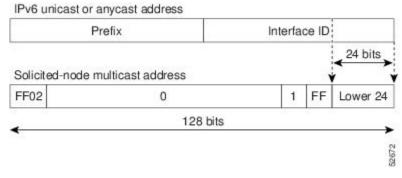
A link-local address is an IPv6 unicast address that is automatically configured on an interface using the link-local prefix FE80::/10 and the interface identifier in the modified EUI-64 format. Link-local addresses are used in the neighbor discovery protocol and the stateless autoconfiguration process. Nodes on a local link can use link-local addresses to communicate. The below image shows the structure of a link-local address.


Figure 3: Link-Local Address Format

IPv6 Address Type-Multicast

An IPv6 multicast address is an IPv6 address that has a prefix of FF00::/8 (1111 1111). An IPv6 multicast address is an identifier for a set of interfaces that typically belong to different nodes. A packet sent to a multicast address is delivered to all interfaces identified by the multicast address. The second octet following the prefix defines the lifetime and scope of the multicast address. A permanent multicast address has a lifetime parameter equal to 0; a temporary multicast address has a lifetime parameter equal to 1. A multicast address has the scope of a node, link, site, or organization, or a global scope has a scope parameter of 1, 2, 5, 8, or E, respectively. For example, a multicast address with the prefix FF02::/16 is a permanent multicast address with a link scope. The following figure shows the format of the IPv6 multicast address.

Figure 4: Figure 8-4 IPv6 Multicast Address Format



IPv6 hosts are required to join (receive packets destined for) the following multicast groups:

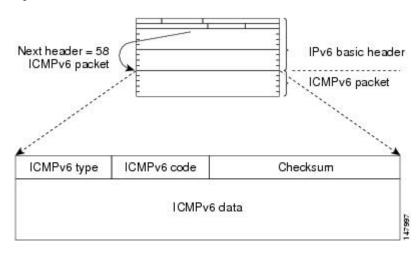
- All-node multicast group FF02::1.
- Solicited-node multicast group FF02:0:0:0:0:1:FF00:0000/104 concatenated with the low-order 24 bit of the unicast address.

The solicited-node multicast address is a multicast group that corresponds to an IPv6 unicast address. IPv6 nodes must join the associated solicited-node multicast group for every unicast address to which it is assigned. The IPv6 solicited-node multicast address has the prefix FF02:0:0:0:1:FF00:0000/104 concatenated with the 24 low-order bits of a corresponding IPv6 unicast address. (See the below figure.) For example, the solicited-node multicast address corresponding to the IPv6 address 2037::01:800:200E:8C6C is FF02::1:FF0E:8C6C. Solicited-node addresses are used in neighbor solicitation messages.

Figure 5: IPv6 Solicited-Node Multicast Address Format

Note

There are no broadcast addresses in IPv6. IPv6 multicast addresses are used instead of broadcast addresses.


ICMP for IPv6

Internet Control Message Protocol (ICMP) in IPv6 functions the same as ICMP in IPv4—ICMP generates error messages such as ICMP destination unreachable messages, and informational messages such as ICMP echo request and reply messages. Additionally, ICMP packets in IPv6 are used in the IPv6 neighbor discovery

process, path MTU discovery, and the Multicast Listener Discovery (MLD) protocol for IPv6. MLD is based on version 2 of the Internet Group Management Protocol (IGMP) for IPv4.

A value of 58 in the Next Header field of the basic IPv6 packet header identifies an IPv6 ICMP packet. ICMP packets in IPv6 resemble a transport-layer packet in the sense that the ICMP packet follows all the extension headers and is the last piece of information in the IPv6 packet. Within IPv6 ICMP packets, the ICMPv6 Type and ICMPv6 Code fields identify IPv6 ICMP packet specifics, such as the ICMP message type. The value in the Checksum field is derived (computed by the sender and checked by the receiver) from the fields in the IPv6 ICMP packet and the IPv6 pseudoheader. The ICMPv6 Data field contains error or diagnostic information relevant to IP packet processing. The following figure shows the IPv6 ICMP packet header format.

Figure 6: IPv6 ICMP Packet Header Format

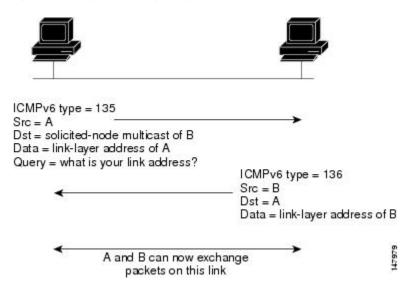
Path MTU Discovery for IPv6

As in IPv4, path MTU discovery in IPv6 allows a host to dynamically discover and adjust to differences in the MTU size of every link along a given data path. In IPv6, however, fragmentation is handled by the source of a packet when the path MTU of one link along a given data path is not large enough to accommodate the size of the packets. Having IPv6 hosts handle packet fragmentation saves IPv6 router processing resources and helps IPv6 networks run more efficiently.

Note

In IPv4, the minimum link MTU is 68 octets, which means that the MTU size of every link along a given data path must support an MTU size of at least 68 octets.

In IPv6, the minimum link MTU is 1280 octets. We recommend using MTU value of 1500 octets for IPv6 links.


IPv6 Neighbor Discovery

The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

IPv6 Neighbor Solicitation and Advertisement Messages

A value of 135 in the Type field of the ICMP packet header identifies a neighbor solicitation message. Neighbor solicitation messages are sent on the local link when a node wants to determine the link-layer address of another node on the same local link. (See the following figure.) When a node wants to determine the link-layer address of another node, the source address in a neighbor solicitation message is the IPv6 address of the node sending the neighbor solicitation message. The destination address in the neighbor solicitation message is the solicited-node multicast address that corresponds to the IPv6 address of the destination node. The neighbor solicitation message also includes the link-layer address of the source node.

Figure 7: IPv6 Neighbor Discovery—Neighbor Solicitation Message

After receiving the neighbor solicitation message, the destination node replies by sending a neighbor advertisement message, which has a value of 136 in the Type field of the ICMP packet header, on the local link. The source address in the neighbor advertisement message is the IPv6 address of the node (more specifically, the IPv6 address of the node interface) sending the neighbor advertisement message. The destination address in the neighbor advertisement message is the IPv6 address of the node that sent the neighbor solicitation message. The data portion of the neighbor advertisement message includes the link-layer address of the node sending the neighbor advertisement message.

After the source node receives the neighbor advertisement, the source node and destination node can communicate.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. When a node wants to verifying the reachability of a neighbor, the destination address in a neighbor solicitation message is the unicast address of the neighbor.

Neighbor advertisement messages are also sent when there is a change in the link-layer address of a node on a local link. When there is such a change, the destination address for the neighbor advertisement is the all-node multicast address.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. Neighbor unreachability detection identifies the failure of a neighbor or the failure of the forward path to the neighbor, and is used for all paths between hosts and neighboring nodes (hosts or routers). Neighbor unreachability detection is performed for neighbors to which only unicast packets are being sent and is not performed for neighbors to which multicast packets are being sent.

A neighbor is considered reachable when the neighbor returns a positive acknowledgment indicating that it has received and processed packets previously sent to it. A positive acknowledgment could be from an upper-layer protocol such as TCP indicating that a connection is making forward progress (reaching its destination) or the receipt of a neighbor advertisement message in response to a neighbor solicitation message. If packets are reaching the peer, they are also reaching the next-hop neighbor of the source. Therefore, forward progress is also a confirmation that the next-hop neighbor is reachable.

For destinations that are not on the local link, forward progress implies that the first-hop router is reachable. When acknowledgments from an upper-layer protocol are not available, a node probes the neighbor using unicast neighbor solicitation messages to verify that the forward path is still working. The return of a solicited neighbor advertisement message from the neighbor is a positive acknowledgment that the forward path is still working (neighbor advertisement messages that have the solicited flag set to a value of 1 are sent only in response to a neighbor solicitation message). Unsolicited messages confirm only the one-way path from the source to the destination node; solicited neighbor advertisement messages indicate that a path is working in both directions.

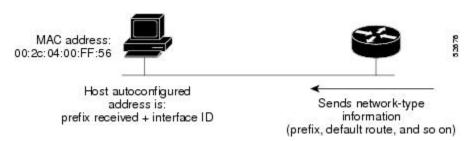
Note

A neighbor advertisement message that has the solicited flag set to a value of 0 must not be considered as a positive acknowledgment that the forward path is still working.

Neighbor solicitation messages are also used in the stateless autoconfiguration process to verify the uniqueness of unicast IPv6 addresses before the addresses are assigned to an interface. Duplicate address detection is performed first on a new, link-local IPv6 address before the address is assigned to an interface (the new address remains in a tentative state while duplicate address detection is performed). Specifically, a node sends a neighbor solicitation message with an unspecified source address and a tentative link-local address in the body of the message. If another node is already using that address, the node returns a neighbor advertisement message that contains the tentative link-local address. If another node is simultaneously verifying the uniqueness of the same address, that node also returns a neighbor solicitation message. If no neighbor advertisement messages are received in response to the neighbor solicitation message and no neighbor solicitation messages are received from other nodes that are attempting to verify the same tentative address, the node that sent the original neighbor solicitation message considers the tentative link-local address to be unique and assigns the address to the interface.

Every IPv6 unicast address (global or link-local) must be checked for uniqueness on the link; however, until the uniqueness of the link-local address is verified, duplicate address detection is not performed on any other IPv6 addresses associated with the link-local address.

Router Discovery

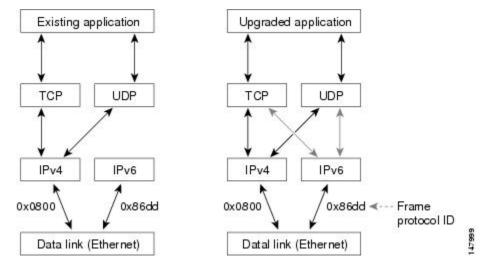

Router discovery performs both router solicitation and router advertisement. Router solicitations are sent by hosts to all-routers multicast addresses. Router advertisements are sent by routers in response to solicitations or unsolicited and contain default router information as well as additional parameters such as the MTU and hop limit.

IPv6 Stateless Autoconfiguration

All interfaces on IPv6 nodes must have a link-local address, which is automatically configured from the identifier for an interface and the link-local prefix FE80::/10. A link-local address enables a node to communicate with other nodes on the link and can be used to further configure the node.

Nodes can connect to a network and automatically generate site-local and global IPv6 address without the need for manual configuration or help of a server, such as a DHCP server. With IPv6, a router on the link advertises in router advertisement (RA) messages any site-local and global prefixes, and its willingness to function as a default router for the link. RA messages are sent periodically and in response to router solicitation messages, which are sent by hosts at system startup. (See the following figure.)

Figure 8: IPv6 Stateless Autoconfiguration

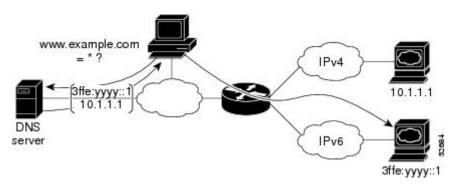


A node on the link can automatically configure site-local and global IPv6 addresses by appending its interface identifier (64 bits) to the prefixes (64 bits) included in the RA messages. The resulting 128-bit IPv6 addresses configured by the node are then subjected to duplicate address detection to ensure their uniqueness on the link. If the prefixes advertised in the RA messages are globally unique, then the IPv6 addresses configured by the node are also guaranteed to be globally unique. Router solicitation messages, which have a value of 133 in the Type field of the ICMP packet header, are sent by hosts at system startup so that the host can immediately autoconfigure without needing to wait for the next scheduled RA message.

Dual IPv4 and IPv6 Protocol Stacks

The dual IPv4 and IPv6 protocol stack technique is one technique for a transition to IPv6. It enables gradual, one-by-one upgrades to applications running on nodes. Applications running on nodes are upgraded to make use of the IPv6 protocol stack. Applications that are not upgraded—they support only the IPv4 protocol stack—can coexist with upgraded applications on the same node. New and upgraded applications simply make use of both the IPv4 and IPv6 protocol stacks. See the below image.)

Figure 9: Dual IPv4 and IPv6 Protocol Stack Technique



A new API has been defined to support both IPv4 and IPv6 addresses and DNS requests. An application can be upgraded to the new API and still use only the IPv4 protocol stack. The Cisco MDS NX-OS supports the

dual IPv4 and IPv6 protocol stack technique. When an interface is configured with both an IPv4 and an IPv6 address, the interface will accept and process both IPv4 and IPv6 traffic.

In the above figure, an application that supports dual IPv4 and IPv6 protocol stacks requests all available addresses for the destination host name www.a.com from a DNS server. The DNS server replies with all available addresses (both IPv4 and IPv6 addresses) for www.a.com. The application chooses an address—in most cases, IPv6 addresses are the default choice—and connects the source node to the destination using the IPv6 protocol stack.

Figure 10: Dual IPv4 and IPv6 Protocol Stack Applications

Configuring Basic Connectivity for IPv6

The tasks in this section explain how to implement IPv6 basic connectivity. Each task in the list is identified as either required or optional. This section includes the following topics:

Configuring IPv6 Addressing and Enabling IPv6 Routing

About Configuring IPv6 Addressing and Enabling IPv6 Routing

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:) in the format x:x:x:x:x:x:x:x:x. It is common for IPv6 addresses to contain successive hexadecimal fields of zeros. To make IPv6 addresses easier to use, two colons (::) may be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address (the colons represent successive hexadecimal fields of zeros). By default, IPv6 addresses are not configured, and IPv6 processing is disabled. You can configure IPv6 addresses on the following interface types:

- Gigabit Ethernet
- Management
- VLAN (Gigabit Ethernet subinterface)
- VSAN

Configuring a global IPv6 address on an interface automatically configures a link-local address and activates IPv6 for that interface. Additionally, the configured interface automatically joins the following required multicast groups for that link:

 Solicited-node multicast group FF02:0:0:0:0:1:FF00::/104 for each unicast address assigned to the interface • All-node link-local multicast group FF02::1

This task explains how to assign IPv6 addresses to individual router interfaces and enable the processing of IPv6 traffic. By default, IPv6 addresses are not configured and IPv6 processing is disabled.

You can configure IPv6 addresses on the following interface types:

- · Gigabit Ethernet
- Management
- VLAN (Gigabit Ethernet subinterface)
- VSAN

Note

The IPv6 address *ipv6-address* argument in the **ipv6 address** command must be in the form documented in RFC 2373, where the address is specified in hexadecimal using 16-bit values between colons

The IPv6 prefix *ipv6-prefix* argument in the **ipv6 address** command must be in the form documented in RFC 2373, where the address is specified in hexadecimal using 16-bit values between colons.

The IPv6 prefix length *prefix-length* argument in the **ipv6 address** command is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). A slash mark must precede the decimal value.

Configuring a global IPv6 address on an interface automatically configures a link-local address and activates IPv6 for that interface. Additionally, the configured interface automatically joins the following required multicast groups for that link:

- Solicited-node multicast group FF02:0:0:0:1:FF00::/104 for each unicast address assigned to the interface
- All-node link-local multicast group FF02::1

Note

The solicited-node multicast address is used in the neighbor discovery process.

The maximum number of IPv6 addresses (static and autoconfigured) allowed on an interface is eight, except on the management (mgmt 0) interface where only one static IPv6 address can be configured.

Configuring IPv4 and IPv6 Protocol Addresses

When an interface in a Cisco networking device is configured with both an IPv4 and an IPv6 address, the interface can send and receive data on both IPv4 and IPv6 networks.

To configure an interface in a Cisco networking device to support both the IPv4 and IPv6 protocol stacks, follow these steps:

Procedure

Step 1 Enters configuration mode.

```
switch# config t
switch(config)#
```

Step 2 Specify the interface, and enter interface configuration submode.

```
switch(config) # interface gigabitethernet 1/1
switch(config-if) #
```

Step 3 Specify a primary or secondary IPv4 address for an interface.

```
switch(config-if)# ip address 192.168.99.1 255.255.255.0
```

Step 4 Specify the IPv6 network assigned to the interface and enable IPv6 processing on the interface.

```
switch(config-if)# ipv6 address 2001:0DB8:c18:1::3/64
```

Step 5 Enable the interface.

```
switch(config-if) # no shutdown
```

Step 6 Exit interface configuration submode, and return to configuration mode.

```
switch(config-if)# exit
switch(config)
```

Step 7 Enable the processing of IPv6 unicast datagrams.

```
switch(config) # ipv6 routing
```

Verifying Basic IPv6 Connectivity Configuration and Operation

You can display information to verify the configuration and operation of basic IPv6 connectivity. This section provides the following **show ipv6** command output examples:

- Example Output for the show ipv6 interface Command
- Example Output for the show ipv6 neighbours Command
- Example Output for the show ipv6 traffic Command

Example Output for the show ipv6 interface Command

In the following example, the **show ipv6 interface** command is used to verify that IPv6 addresses are configured correctly for the Gigabit Ethernet 6/1 interface:

```
switch# show ipv6 interface mgmt 0
mgmt0 is up
IPv6 is enabled
Global address(es):
2172:22::180/64
Link-local address(es):
fe80::b8db:adff:feba:d074
```

```
ND DAD is disabled
ND reachable time is 30000 milliseconds
ND retransmission time is 1000 milliseconds
Stateless autoconfig for addresses disabled
MTU is 1500 bytes
```

Example Output for the show ipv6 neighbours Command

In the following example, the **show ipv6 neighbours** command displays IPv6 neighbor discovery cache information for all interfaces:

```
switch# show ipv6 neighbours
R - Reachable, I - Incomplete, S - Stale, F - Failed, P - Probe, D - Delay
IPv6 Address Age State Link-layer Addr Interface
fe80::211:5dff:fe53:500a 0 S 0011.5d53.500a GigE6/1
fe80::211:5dff:fe53:500a 0 S 0011.5d53.500a GigE6/2
5000:1::250 0 S 0011.5d53.500a po 4
fe80::211:5dff:fe53:500a 0 S 0011.5d53.500a po 4
fe80::211:5dff:fe53:500a 0 S 0011.5d53.500a po 4
fe80::200:3ff:fe61:4800 184 S 0000.0361.4800 mgmt0
```

In the following example, the **show ipv6 neighbours interface** command displays IPv6 neighbor discovery cache information for the Gigabit Ethernet 6/1 interface:

```
switch# show ipv6 neighbours interface gigabitethernet 6/1
R - Reachable, I - Incomplete, S - Stale, F - Failed, P - Probe, D - Delay
IPv6 Address Age State Link-layer Addr Interface
fe80::211:5dff:fe53:500a 0 S 0011.5d53.500a GigE6/1
```

Example Output for the show ipv6 traffic Command

The **show ipv6 traffic** command displays IPv6 and ICMP statistics:

```
switch# show ipv6 traffic
IPv6 Statistics:
Rcvd: 100 total, 0 local destination
0 errors, 0 truncated, 0 too big
0 unknown protocol, 0 dropped
0 fragments, 0 reassembled
O couldn't reassemble, O reassembly timeouts
Sent: 0 generated, 0 forwarded 0 dropped
O fragmented, O fragments created, O couldn't fragment
ICMPv6 Statistics:
Rcvd: 100 total, 0 errors, 0 unreachables, 0 time exceeded
0 too big, 0 param probs, 0 admin prohibs
0 echos, 0 echo reply, 0 redirects
0 group query, 0 group report, 0 group reduce
O router solicit, 69 router advert
O neighbor solicit, 31 neighbor advert
Sent: 55 total, 0 errors, 0 unreachables, 0 time exceeded
0 too big, 0 param probs, 0 admin prohibs
0 echos, 0 echo reply, 0 redirects
0 group query, 20 group report, 2 group reduce
O router solicit, O router advert
O neighbor solicit, 33 neighbor advert
```

Clearing IPv6 Neighbor Discovery Cache

You can clear the IPv6 neighbor discovery cache using the **clear ipv6 neighbor** command in EXEC mode:

```
switch# clear ipv6 neighbor
```

Verifying Neighbor Discovery Parameter Configuration

The **show ipv6 interface** command displays the configuration of the neighbor discovery parameters:

```
switch# show ipv6 interface mgmt 0
mgmt0 is up
IPv6 is enabled
Global address(es):
2003::1/64
Link-local address(es):
fe80::205:30ff:fe00:533e
ND DAD is enabled, number of DAD attempts: 5
ND reachable time is 50000 milliseconds
ND retransmission time is 3000 milliseconds
Stateless autoconfig for addresses disabled
```

Duplicate Address Detection Attempts

To configure the number of duplicate address detection attempts, follow these steps:

Procedure

Step 1 Enter configuration mode.

```
switch# config t
switch(config)#
```

Step 2 Specify an interface and enter the interface configuration submode

```
switch(config) # interface gigabitethernet 3/1
switch(config-if) #
```

Step 3 Set the duplicate address detection attempts count to 3. The range is 0 to 15.

```
switch(config-if) \# ipv6 nd dad attempts 3
```

Step 4 Revert to the default value (0).

```
\verb|switch(config-if)| \# \ \verb|no ipv6| \ \verb|nd dad attempts||
```

Reachability Time

To configure the reachability time, follow these steps:

Procedure

Step 1 Enter configuration mode.

```
switch# config t
switch(config)#
```

Step 2 Specify an interface and enter the interface configuration submode.

```
switch(config) # interface gigabitethernet 3/1
switch(config-if) #
```

Step 3 Set the retransmission time to 10000 milliseconds. The range is 1000 to 3600000 millisecond.

```
switch(config-if) # ipv6 nd reachability-time 10000
```

Step 4 Revert to the default value (30000 milliseconds).

```
switch(config-if)# no ipv6 nd reachability-time
```

Retransmission Time

To configure the retransmission time, follow these steps:

Procedure

Step 1 Enter configuration mode.

```
switch# config t
switch(config)#
```

Step 2 Specify an interface and enter the interface configuration submode.

```
switch(config) # interface gigabitethernet 3/1
switch(config-if) #
```

Step 3 Set the retransmission time to 20000 milliseconds. The range is 1000 to 3600000 millisecond.

```
\verb|switch(config-if) # ipv6 nd retransmission-timer 20000|\\
```

Step 4 Revert to the default value (1000 milliseconds).

```
switch(config-if)# no ipv6 nd retransmission-timer
```

Verifying Neighbor Discovery Parameter Configuration

The show ipv6 interface command displays the configuration of the neighbor discovery parameters:

```
switch# show ipv6 interface mgmt 0
mgmt0 is up
IPv6 is enabled
Global address(es):
2003::1/64
Link-local address(es):
fe80::205:30ff:fe00:533e
ND DAD is enabled, number of DAD attempts: 5
```

```
ND reachable time is 50000 milliseconds
ND retransmission time is 3000 milliseconds
Stateless autoconfig for addresses disabled
```

IPv6 Static Routes

Cisco MDS NX-OS supports static routes for IPv6. This section includes the following topics:

- Configuring an IPv6 Static Route
- Verifying IPv6 Static Route Configuration and Operation

Configuring an IPv6 Static Route

To configure a IPv6 static route, follow these steps:

Before you begin

You must manually configure IPv6 static routes and define an explicit path between two networking devices. IPv6 static routes are not automatically updated and must be reconfigured manually if the network topology changes.

You must manually configure IPv6 static routes and define an explicit path between two networking devices. IPv6 static routes are not automatically updated and must be manually reconfigured if the network topology changes.

Procedure

Step 1 Enter configuration mode.

```
switch# config t
switch(config)#
```

Step 2 Configure a static default IPv6 route on a Gigabit Ethernet interface.

```
switch(config)# ipv6 route ::/0 gigabitethernet 3/1
```

Step 3 Configure a fully specified IPv6 static route on a Gigabit Ethernet interface.

```
switch(config)# ipv6 route 2001:0DB8::/32 gigabitethernet 3/2
```

Verifying IPv6 Static Route Configuration and Operation

The **show ipv6 route** command displays the IPv6 route table for the switch:

```
switch# show ipv6 route
IPv6 Routing Table
Codes: C - Connected, L - Local, S - Static G - Gateway
G ::/0
via fe80::211:5dff:fe53:500a, GigabitEthernet6/1, distance 2
```

```
G ::/0
via fe80::2d0:3ff:fe61:4800, mgmt0, distance 2
C 2000::/64
via ::, mgmt0
C 2172:22::/64
via ::, mgmt0, distance 2
C 3000:3::/64
via fe80::205:30ff:fe01:7ed6, GigabitEthernet4/1
C 3000:4::/64
via fe80::205:30ff:fe01:7ed6, GigabitEthernet4/1.250
C 3000:5::/64
via fe80::213:1aff:fee5:e69b, GigabitEthernet5/4
C 3000:6::/64
via fe80::213:1aff:fee5:e69b, GigabitEthernet5/4.250
C 3000:7::/64
via fe80::205:30ff:fe01:7ed7, GigabitEthernet4/2
C 3000:8::/64
via fe80::205:30ff:fe01:7ed7, GigabitEthernet4/2.250
C 3000:9::/64
via fe80::213:1aff:fee5:e69e, port-channel 3
C 3000:10::/64
via fe80::213:1aff:fee5:e69e, port-channel 3.250
C 5000:1::/64
via fe80::205:30ff:fe01:3917, GigabitEthernet6/2
C 5000:1::/64
via fe80::205:30ff:fe01:3918, port-channel 4
C 6000:1:1:1::/64
via fe80::205:30ff:fe01:3916, GigabitEthernet6/1
C 7000:1::/64
via fe80::205:30ff:fe01:3917, GigabitEthernet6/2.250
C 7000:1::/64
via fe80::205:30ff:fe01:3918, port-channel 4.250
C 7000:1:1:1::/64
via fe80::205:30ff:fe01:3917, GigabitEthernet6/2, distance 2
L fe80::/10
via ::
L ff00::/8
via ::
```

Gigabit Ethernet IPv6-ACL Guidelines

Follow these guidelines when configuring IPv6-ACLs for Gigabit Ethernet interfaces:

Only use Transmission Control Protocol (TCP) or Internet Control Message Protocol (ICMP).

Note

Other protocols such as User Datagram Protocol (UDP) and HTTP are not supported in Gigabit Ethernet interfaces. Applying an ACL that contains rules for these protocols to a Gigabit Ethernet interface is allowed but those rules have no effect.

- Apply IPv6-ACLs to the interface before you enable an interface. This ensures that the filters are in place before traffic starts flowing.
- Be aware of the following conditions:
 - If you use the **log-deny** option, a maximum of 50 messages are logged per second.

- The **established** option is ignored when you apply IPv6-ACLs containing this option to Gigabit Ethernet interfaces.
- If an IPv6-ACL rule applies to a preexisting TCP connection, that rule is ignored. For example, if there is an existing TCP connection between A and B and an IPv6-ACL that specifies dropping all packets whose source is A and destination is B is subsequently applied, it will have no effect.

Note

If IPv6-ACLs are already configured in a Gigabit Ethernet interface, you cannot add this interface to a Ethernet PortChannel group. See the Cisco Fabric Manager Security Configuration GuideCisco MDS 9000 Family NX-OS Security Configuration Guide for information on configuring IPv6-ACLs.

See the Cisco Fabric Manager Security Configuration GuideCisco MDS 9000 Family NX-OS Security Configuration Guide for information on applying IPv6-ACLs to an interface.

Transitioning from IPv4 to IPv6

Cisco MDS NX-OS does not support any transitioning mechanisms from IPv4 to IPv6. However, you can use the transitioning schemes in the Cisco router products for this purpose. For information on configuring Cisco routers to transition your network, refer to the Implementing Tunneling for IPv6 chapter.

Displaying IPv6

Use the **show ips ipv6 neighbours interface** command for information about IPv6 neighbors for an interface:

```
switch# show ips ipv6 neighbours interface gigabitethernet 6/1
IPv6 Address Age (min) Link-layer Addr State Interface
fe80::211:5dff:fe53:500a 0 0011.5d53.500a S Gigabi tEthernet6/1
```

Use the **show ips ipv6 prefix-list interface** command for information about IPv6 prefixes for an interface:

```
switch# show ips ipv6 prefix-list interface gigabitethernet 6/1
Prefix Prefix-len Addr
Valid Preferred
6000:1:1:1:: 64 ::
2592000 604800
```

Use the **show ips ipv6 interface** command for information about the IPv6 routes for an interface:

```
switch# show ips ipv6 route interface gigabitethernet 6/1
IPv6 Routing Table - 4 entries
Codes: C - Connected, L - Local, S - Static, G - Gateway, M - Multicast
C 6000:1:1:1::/64 is directly connected, GigabitEthernet6/1
C 6000:1:44 is directly connected, GigabitEthernet6/1
C fe80::/64 is directly connected, GigabitEthernet6/1
M ff02::/32 is multicast, GigabitEthernet6/1
G ::/0 via fe80::211:5dff:fe53:500a, GigabitEthernet6/1
```

Use the **show ips ipv6 routers interface** command for information about IPv6 routers for an interface:

```
switch# show ips ipv6 routers interface gigabitethernet 6/1
Addr Lifetime Expire
fe80::211:5dff:fe53:500a 1800 1781
```

Use the **show ips ipv6 traffic interface** command for information about IPv6 traffic statistics for an interface:

```
switch# show ips ipv6 traffic interface gigabitethernet 6/1
IPv6 statistics:
Rcvd: 5094 total
0 bad header, 0 unknown option, 0 unknown protocol
0 fragments, 0 total reassembled
O reassembly timeouts, O reassembly failures
Sent: 13625 generated
0 fragmented into 0 fragments, 0 failed
2 no route
ICMP statistics:
Rcvd: 1264 input, 0 checksum errors, 0 too short
0 unknown info type, 0 unknown error type
unreach: 0 routing, 0 admin, 0 neighbor, 0 address, 0 port
parameter: 0 error, 0 header, 0 option
O hopcount expired, O reassembly timeout, O too big
0 echo request, 0 echo reply
734 group query, 0 group report, 0 group reduce
O router solicit, 528 router advert, O redirects
O neighbor solicit, 2 neighbor advert
Sent: 6045 output, 0 rate-limited
unreach: 0 routing, 0 admin, 0 neighbor, 1160 address, 0 port
parameter: 0 error, 0 header, 0 option
O hopcount expired, O reassembly timeout, O too big
0 echo request, 0 echo reply
0 group query, 1466 group report, 0 group reduce
1 router solicit, 0 router advert, 0 redirects
3412 neighbor solicit, 6 neighbor advert
```

Default Settings

The following table lists the default settings for IPv6 parameters.

Table 2: Default IPv6 Parameters

Parameters	Default
IPv6 processing	Disabled
Duplicate address detection attempts	0 (neighbor discovery disabled)
Reachability time	1000 milliseconds
Retransmission time	30000 milliseconds
IPv6-ACLs	None

Default Settings