
Revised: April 5, 2024

Installing Agent-based OpenShift 4.14 on VMware
vSphere

New and Changed Information
The following table provides an overview of the significant changes up to this current release. The table does not provide an exhaustive
list of all changes or of the new features up to this release.

FeatureCisco ACI CNI plug-in Release Version

Support for Agent-based Red Hat OpenShift 4.14 on VMware
vSphere 7.

6.0(4)

Agent-based Openshift 4.14 on VMware vSphere
Cisco ACI supports Red Hat OpenShift 4.14 on VMware vSphere 7. This document provides the instructions on using Ansible
playbooks to provision OpenShift 4.14 on VMware vSphere with the Container Network Interface (CNI) plug-in.

Prerequisites for Installing OpenShift 4.14 on VMware vSphere
To install OpenShift Container Platform (OCP) 4.14 on VMware vSphere, fulfill the following prerequisites:

Cisco ACI

• Download the acc-provision tool version 6.0.4.1 or later.

Specify the “--flavor” option value as “openshift-4.14-agent-based-esx,” and use the “-z” option. The tool creates a .tar archive
file as specified by the “-z” option value. You need this archive file during installation.

Make sure that the Cisco ACI container images that are specified as input to the acc-provision tool are version 6.0.4.1 or later.

VMware vSphere

Obtain user credentials with privileges to create virtual machines (VMs).

OpenShift

Obtain the following from the Red Hat website:

• OCP4 client tools - navigate to themirror page on the OpenShift website where the installation and client tool versions are listed,
and select the required version. Download the openshift-client-linux.tar.gz and openshift-install-linux.tar.gz files.

• Pull Secret

1

Installing OpenShift 4.14 on VMware vSphere
Configuring ACI Infra and CNI

Use this procedure for configuring ACI infra and CNI using acc-provision.

Before you begin

Complete the tasks in the Prerequisites for Installing OpenShift 4.14 on VMware vSphere section.

It is recommended to see the RedHat OpenShift documentation for prerequisites and other details about Installing a Cluster on
vSphere.

Step 1 Provision the Cisco ACI fabric using the acc-provision utility. Customize the sample acc-provision input file as per your
requirements. Then, install the latest acc-provision package from here and run pip install acc-provision .

Run the acc-provision as follows:

$ ~/openupi$ pwd
/home/<user>/openupi

$ ~/openupi$ acc-provision -a -c acc_provision_input.yaml -f openshift-4.14-agent-based-esx -u <user>
-p <password> -o aci_deployment.yaml -z aci deployment.yaml.tar.gz

This generates a new aci_deployment.yaml.tar.gz file which contains the ACI CNI manifests, and is used later during
the OpenShift installation.

See Sample acc-provision-input File section.

The acc-provision tool supports RHEL8 and RHEL9 operating systems.

Note

Step 2 After the Cisco ACI fabric is provisioned, verify that a port group with the name system_id_vlan_kubeapi_vlan
is created under the distributed switch.

This document refers to this port group as api-vlan-portgroup.

api-vlan-progroup port-group in VMware Distributed Virtual Switch is created using custom VLAN ID
provided in the acc_provision_input file as kubeapi_vlan.

Note

2

https://pypi.org/project/acc-provision/

Figure 1: VMM VMware domain association with aci-containers-node EPG

Kube_api VLAN is added to the dynamic VLAN pool associated with the VMware VMM Domain. Allocation mode
will be set to Static.

Figure 2: VLAN Pool used for VMM VMware domain

Step 3 (Optional) Provision a Red Hat Enterprise orchestrator VM with the network interface that is connected to the
api-vlan-portgroup.

Configure this VM as a DNS server for the OpenShift cluster.

3

Preparing Custom Network Configuration for OpenShift Nodes
ACI CNI requires additional VLANs to be extended towards each OpenShift node. Additional VLANS are required for master and
worker nodes, but not required for the bootstrap node.

You can configure additional VLANs on the interface that will be configured with the node network subnet, or can be configured on
an additional physical interface on the hosts.

The available option to configure network interface of a host is to provide the configuration in agent-config.yaml in NMState format.
See Sample agent-config file section.

Modifying the agent-config file
Use this procedure to modify the agent-config.yaml file.

Before you begin

The agent-config file, with additional NIC configuration, needs to extend the Cisco ACI internal network (Infra VLAN) up to the
server level. This interface is used to carry VxLAN traffic from OVS towards the ACI leaf switch with an appropriate tag for the pod
network. To achieve the separation between the OpenShift node traffic and pod traffic, use the Single Sub interface for both node
and infra networks approach.

Node network is configured as VLAN subinterface of either bond0 or Virtual machine NIC. You can configure the server with
additional VLAN(s) for management purpose or use the node network for management network. The design might be dependent on
the server provisioning method (PXE or manual ISO boot).

The sample YAML snippet below, outlines an AgentConfig for OpenShift deployment on VMware. It includes essential details like
rendezvous IP, host configurations, and network interface settings for a streamlined deployment.

4

apiVersion: v1alpha1
kind: AgentConfig
metadata:
name: ocpvmw11

rendezvousIP: 192.168.12.3. -> A
AdditionalNTPSources:
- time.cisco.com

hosts: -> B
- hostname: ocpvmw11-master1 -> C
role: master
interfaces:
- name: ens192
macAddress: 00:50:56:97:2a:d6

networkConfig: -> D
interfaces:
- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 131

ipv4:
enabled: true
address:
- ip: 192.168.12.3
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens160
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 3301
ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:

5

- 192.168.12.2
routes:
config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

In the above sample, sections have been marked as A, B, C, D. Here are the details for better understanding.

• A: This IP address is used to determine which node performs the bootstrapping process as well as running the assisted-service
component. You must provide the rendezvous IP address when you do not specify at least one host’s IP address in the
networkConfig parameter. If this address is not provided, one IP address is selected from the provided hosts' networkConfig.

• B: Host configuration. The number of hosts definedmust not exceed the total number of hosts defined in the install-config.yaml
file, which is the sum of the values of the compute.replicas and controlPlane.replicas parameters.

• C: Overrides the hostname obtained from either the Dynamic Host Configuration Protocol (DHCP) or a reverse DNS lookup.
Each host must have a unique hostname supplied by one of these methods.

• D: Configures the network interface of a host in NMState format.

Step 1 Create a root folder for your cluster.

cd /home/<user>/openupi
mkdir upi

Step 2 Copy the install-config.yaml, agent-config.yaml in the newly created upi folder.

See the sample install-config and agent-config sections.

Step 3 Create the openshift directory.
mkdir -p /home/<user>/openupi/upi/opensfhit

Step 4 Extract all the ACI manifest files in upi/openshift/.
Tar -xvf aci_deployment.yaml.tar.gz -C upi/openshift/

Step 5 Create the iso image.
openshift-install agent create image -dir=upi -log-level debug

Step 6 Boot the agent.x86_64.iso image on the bare metal machines

The agent.x86_64.iso is now ready and can be copied to your HTTP server, so they can be served to your nodes. The
agent.x86_64.iso file will be consumed by every node and the network configuration for each node will be recognized
based on the mac-address mentioned in the NMState configuration for each node.

Step 7 Create the VMs (see the Sample agent-config file for naming reference).

• Provide the name of the host (master/worker) as mentioned in the agent-config.yaml hostname field.

• Select system_id_vlan_kubeapi_vlan as the network. Edit the mac address to match with the mac address mentioned
for the VM in the agent-config.yaml.

• To enable UUID, follow these steps:

6

a. Click the VM Options tab.

b. Select the Advanced option.

c. Click Edit Configuration > Add Parameter under Configuration Parameters.

d. In the Key column, type disk.EnableUUID.

e. In the Value column, type TRUE.

f. Click OK , and then Save.

• Select the uploaded image agent.x86_64.iso in the associated datastore.

What to do next

You can use the commands, openshift-install agent wait-for bootstrap-complete and openshift-install agent wait-for
install-complete to check the progress of the installation. Execute the commands from the bootstrap directory.

Sample Files for Installing Agent-based OpenShift 4.14 on VMware vSphere
This section contains sample files that you need for installing agent-based OpenShift 4.14 on VMware vSphere.

Sample acc-provision-input File
The following is a sample acc-provision-input.yaml.
#
Configuration for ACI Fabric
#
aci_config:
system_id: ocp4aci
#apic-refreshtime: 1200
apic_hosts:
- 1.1.1.1
vmm_domain:
encap_type: vxlan
mcast_range: # Every opflex VMM must use a distinct range
start: 225.28.1.1
end: 225.28.255.255

nested_inside:
type: vmware
name: my-vswitch

elag_name: <eLAG_name> # Beginning Cisco APIC 5.0(1), you can configure VMware teaming policy
when link aggregation groups (LAGs) are used.

The following resources must already exist on the APIC.
They are used, but not created, by the provisioning tool.
aep: my-aep
vrf: # This VRF used to create all kubernetes EPs
name: myl3out_vrf
tenant: common

l3out:
name: myl3out
external_networks:

7

- myl3out_net
agent_based_installer:
enable: true

#
Networks used by ACI containers
#
net_config:
node_subnet: 192.168.18.1/24
pod_subnet: 10.128.0.1/16 # Subnet to use for Kubernetes # Pods/CloudFoundry containers
extern_dynamic: 10.3.0.1/24 # Subnet to use for dynamic external IPs
extern_static: 10.4.0.1/24 # Subnet to use for static external IPs
node_svc_subnet: 10.5.0.1/24 # Subnet to use for service graph
kubeapi_vlan: 131
service_vlan: 132
infra_vlan: 3301

#interface_mtu: 1600
#service_monitor_interval: 5 # IPSLA interval probe time for PBR tracking

default is 0, set to > 0 to enable, max: 65535
#pbr_tracking_non_snat: true # Default is false, set to true for IPSLA to

be effective with non-snat services

#
Configuration for container registry
Update if a custom container registry has been setup
#
kube-config:
image_pull_policy: Always
ovs_memory_limit: 1Gi

registry:
image_prefix: quay.io/noiro

Sample agent-config File
The following is a sample agent-config.yaml.

apiVersion: v1alpha1
kind: AgentConfig
metadata:
name: ocpvmw11

rendezvousIP: 192.168.12.3
AdditionalNTPSources:
- time.cisco.com

hosts:
- hostname: ocpvmw11-master1
role: master
interfaces:
- name: ens192
macAddress: 00:50:56:97:2a:d6

networkConfig:
interfaces:
- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192

8

id: 131
ipv4:
enabled: true
address:
- ip: 192.168.12.3
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:
- 192.168.12.2

routes:
config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

- hostname: ocpvmw11-master2
role: master
interfaces:
- name: ens192
macAddress: 00:50:56:97:f6:65

networkConfig:
interfaces:
- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 131

ipv4:
enabled: true
address:
- ip: 192.168.12.4
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up

9

vlan:
base-iface: ens192
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:
- 192.168.12.2

routes:
config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

- hostname: ocpvmw11-master3
role: master
interfaces:
- name: ens192
macAddress: 00:50:56:97:07:42

networkConfig:
interfaces:
- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 131

ipv4:
enabled: true
address:
- ip: 192.168.12.5
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:
- 192.168.12.2

routes:

10

config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

- hostname: ocpvmw11-worker1
role: worker
interfaces:
- name: ens192
macAddress: 00:50:56:97:b5:07

networkConfig:
interfaces:
- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 131

ipv4:
enabled: true
address:
- ip: 192.168.12.6
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:
- 192.168.12.2

routes:
config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

- hostname: ocpvmw11-worker2
role: worker
interfaces:
- name: ens192
macAddress: 00:50:56:97:44:9b

networkConfig:
interfaces:

11

- name: ens192
mtu: 9000
ipv4:
enabled: false

ipv6:
enabled: false

- name: node
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 131

ipv4:
enabled: true
address:
- ip: 192.168.12.7
prefix-length: 24

dhcp: false
ipv6:
enabled: false

- name: infra
type: vlan
mtu: 9000
state: up
vlan:
base-iface: ens192
id: 3301

ipv4:
enabled: true
dhcp: true

ipv6:
enabled: false

dns-resolver:
config:
server:
- 192.168.12.2

routes:
config:
- destination: 0.0.0.0/0
next-hop-address: 192.168.12.1
next-hop-interface: node

- destination: 224.0.0.0/4
next-hop-interface: infra

Sample install-config File
The following is a sample install-config.yaml.

apiVersion: v1
baseDomain: ocplab.local
proxy:
httpsProxy: <http-proxy>
httpProxy: <https-proxy>
noProxy: <no-proxy>

compute:
- name: worker
replicas: 2

controlPlane:
name: master
replicas: 3

metadata:
name: ocpvmw11

12

networking:
machineNetwork:
- cidr: 192.168.12.0/24
clusterNetwork:
- cidr: 10.2.0.0/16
hostPrefix: 23

networkType: CiscoACI
serviceNetwork:
- 172.30.0.0/16

platform:
vsphere:
failureDomains:
- topology:

datacenter: k8s-scale
datastore: "/k8s-scale/datastore/k8s-scale-ds-esxi-3-raid5"

vcenters:
- datacenters:
- k8s-scale
password: xxx
port: 443
server: myvsphere.local.lab
user: administrator@vsphere.local

apiVIPs:
- 192.168.12.30
ingressVIPs:
- 192.168.12.29

fips: false
pullSecret: <RH-account-pull-secret>
sshKey: <host-ssh-key>

Decommissioning OpenShift
Use this procedure to decommission OpenShift and remove the ACI-provisioned configuration from ACI.

Starting with Cisco APIC release 5.2, VMMdomains for OpenShift cannot be removed from the APICGUI. It is only possible
using REST API, therefore, it is convenient to use the acc-provision tool to remove the VMM domain, and other related
objects used by the decommissioned OpenShift cluster. Ensure you have the acc-input-config.yaml file and certificates
used by the acc-provision tool to access APIC.

Note

Before you begin

In case of decommissioning or removing Openshift cluster, ACI configuration provisioned for that cluster should be removed from
ACI. The acc-provision tool can be used to remove that configuration.

Use the following command from the machine and folder which was used to provision the ACI infrastructure, to delete
the pre-provisioned configurations and the VMM domain.

acc-provision -d -f openshift-4.14-agent-based-esx -c acc-input-file -u user -p password

Example:
acc-provision -d -f openshift-4.14-agent-based-esx -c acc-input-config.yaml -u admin -p password

13

Known Issues
Known issues which could impact the installation process:

• Installation is hindered due to node taints - see case number: 03682671 on the RedHat support cases website.

• Storage Cluster Operator Degraded – Solution in progress - see case number: 5926951 on the RedHat solutions cases website.

• Modify vSphere configuration of the OCP cluster - When utilizing the Assisted Installer with platform integration enabled,
updating the vSphere configuration for the installed cluster must be done manually. This action should occur only after the
installation is completed entirely and the cluster is linked to console.redhat.com. Refer solution number 6677901 on the RedHat
solutions website.

14

© 2024 Cisco Systems, Inc. All rights reserved.

	Installing Agent-based OpenShift 4.14 on VMware vSphere
	New and Changed Information
	Agent-based Openshift 4.14 on VMware vSphere
	Prerequisites for Installing OpenShift 4.14 on VMware vSphere
	Installing OpenShift 4.14 on VMware vSphere
	Preparing Custom Network Configuration for OpenShift Nodes
	Modifying the agent-config file

	Sample Files for Installing Agent-based OpenShift 4.14 on VMware vSphere
	Sample acc-provision-input File
	Sample agent-config File
	Sample install-config File

	Decommissioning OpenShift
	Known Issues

