
Installing OpenShift 4.19 on OpenStack 17.1

New and Changed Information 2

OpenShift 4.19 on OpenStack 2

Network Design and the Cisco ACI CNI Plug-in 2

Prerequisites for Installing OpenShift 4.19 4

Installing OpenShift 4.19 on OpenStack 17.1 6

Optional Configurations 11

Revised: October 30, 2025

New and Changed Information
The following table provides an overview of the significant changes up to this current release. The table does not provide an exhaustive
list of all changes or of the new features up to this release.

FeatureCisco ACI CNI plug-in Release Version

Cisco Application Centric Infrastructure (ACI) supports Red Hat
OpenShift 4.19 nested in Red Hat OpenStack Platform (OSP).

6.1(1)

OpenShift 4.19 on OpenStack
Cisco Application Centric Infrastructure (ACI) supports Red Hat OpenShift 4.19 nested in Red Hat OpenStack Platform (OSP) 17.1.
To enable this support, Cisco ACI provides customized Ansible modules to complement the upstream OpenShift installer. This
document provides instructions and guidance that follows the recommended OpenShift on OpenStack User-Provisioned Infrastructure
(UPI) installation process as outlined in the following documents:

• Installing a cluster on OpenStack with customizations for OpenShift 4.19 on the Red Hat OpenShift website

• Installing OpenShift on OpenStack User-Provisioned Infrastructure on GitHub

If you have an existing OpenShift 4.18 cluster installed with Cisco ACI CNI, you can upgrade to OCP 4.19 by first upgrading
the ACI CNI (refer to the Upgrading the Cisco ACI CNI Plug-in guide), and then following RedHat documentation to upgrade
from OpenShift 4.18 to 4.19.

Note

Network Design and the Cisco ACI CNI Plug-in
This section provides information about the network design that takes advantage of the Cisco ACI Container Network Interface (CNI)
plug-in.

The design separates OpenShift node traffic from the pod traffic on different Neutron networks. The separation results in the bootstrap,
control, and compute virtual machines (VMs) having two network interfaces, as shown in the following illustration:

2

One interface is for the node network and the second is for the pod network. The second interface also carries Cisco ACI control
plane traffic. A VLAN tagged subinterface is configured on the second interface to carry the pod traffic and the Cisco ACI control
plane traffic.

This network design requires some changes to the Red Hat OpenShift Installer UPI Ansible modules. These changes are implemented
in the Cisco-provided OpenShift Installer UPI Ansible modules, which are packaged in the OpenShift installer tar file
(openshift_installer-6.1.1<z>.src.tar.gz) that is made available along with the other Cisco ACI CNI 6.1.(1) release artifacts. More
specifically, the changes are to:

• Create a second Neutron network in a separate playbook.

• Modify the existing playbooks that launch the control, and compute virtual machines (VMs) to:

• Create a second port on the second Neutron network and add it as a second interface to the VM configuration.

• Add an extra attribute "nat_destination" to the Neutron floating IP address.

• Update the playbook that creates the first Neutron network to:

1. Create the Neutron address-scope to map to a predefined Cisco ACI virtual routing and forwarding (VRF) context.

2. Create a Neutron subnet-pool for the address-scope in the previous step.

3. Change the subnet creation to pick a subnet from the subnet-pool in the previous step.

4. Set the maximum transmission unit (MTU) for the neutron Network (which is picked up from the configuration file described
later).

• In addition to creating a second network interface (and subinterfaces on that interface), the stock ignition files created by the
“openshift-install create ignition-configs” step need to be updated. This is being done by additional playbooks, which are also
provided.

The configuration required to drive some of the customization in this section done through new parameters in the inventory
file.

Note

3

Prerequisites for Installing OpenShift 4.19
To successfully install OpenShift Container Platform (OCP) 4.19 on OpenStack 17.1, you must meet the following requirements:

Cisco ACI

1. Configure a Cisco ACI Layer 3 outside connection (L3Out) in an independent Cisco ACI VRF and "common" Cisco ACI tenant
so that endpoints can do the following:

• Reach outside to fetch packages and images.

• Reach the Cisco Application Policy Infrastructure Controller (APIC).

2. Configure a separate L3Out in an independent VRF that is used by the OpenShift cluster (configured in the acc-provision input
file) so that the endpoints can do the following:

• Reach API endpoints outside the OpenShift cluster.

• Reach the OpenStack API server.

The OpenShift pod network uses this L3Out.

3. Identify the Cisco ACI infra VLAN.

4. Identify another unused VLAN that you can use for OpenShift cluster service traffic.

The service is configured in the service_vlan field in the acc_provision input file for the OpenShift cluster.

OpenStack

1. Install Red Hat OpenStack Platform (OSP) 17.1 with Cisco ACI Neutron plug-in (release 5.2(3)) in nested mode by setting the
following parameters in the Cisco ACI .yamlModular Layer 2 (ML2) configuration file:

• ACIOpflexInterfaceType: ovs

• ACIOpflexInterfaceMTU: 8000

To update an existing installation (and if the above two parameters are not configured), see Cisco ACI Installation Guide for
Red Hat OpenStack Using the OpenStack Platform 17.1 Director on Cisco.com.

2. Create an OpenStack project and the required quotas to host the OpenShift cluster and perform the other required configuration.

Follow the procedure Installing a cluster on OpenStack on your own infrastructure for OpenStack 4.19 on the Red Hat OpenStack
website.

3. Create an OpenStack Neutron external network, using the relevant Cisco ACI extensions and mapping to the OpenStack L3Out
to include the following:

• A subnet configured for Secure Network Address Translation (SNAT).

• A subnet that is configured for floating IP addresses.

Refer to the chapter "OpenStack External Network" in Cisco ACI Installation Guide for Red Hat OpenStack Using the OpenStack
Platform 17.1 Director on Cisco.com.

4

All OpenStack projects can share the OpenStack L3Out and Neutron external network.Note

4. If direct access to the OpenShift node network is required (i.e by not using the Neutron Floating IPs) from endpoints that are not
managed by the Cisco ACI fabric, identify every IP subnet from where this direct access is anticipated. These IP subnets will
later be used to create Neutron subnet pools during the installation process.

5. Follow the instructions in the section "Red Hat Enterprise Linux CoreOS (RHCOS)" of Installing OpenShift on OpenStack
User-Provisioned Infrastructure to obtain the RHCOS and create an OpenStack image:
$ openstack image create --container-format=bare --disk-format=qcow2 --file
rhcos-4.19.0-x86_64-openstack.x86_64.qcow2 rhcos-4.19

OpenShift

Identify the SNAT IP address that will be used by the Cisco ACI Container Network Interface (CNI) for source NATing the traffic
from all the pods during installation. You will use the SNAT IP addresses in the cluster_snat_policy_ip configuration in the
aci_cni section of the inventory.yaml file.

Installer Host

You need access to a Linux host to run installation scripts with access to node network and OpenStack Director API. It should have
the following installed:

• Install Ansible 6.7 or later.

Refer to Installing Ansible on the Ansible website.

• Python 3

• jq – JSON linting

• yq – YAML linting: sudo pip install yq

• python-openstackclient 5.4 or later: sudo pip install python-openstackclient==6.5.0

• openstacksdk 1.0 and later : sudo pip install openstacksdk==3.0.0

• python-swiftclient 3.9.0: sudo pip install python-swiftclient==4.5.0

• Kubernetes module for Ansible: sudo pip install openshift==0.13.2

Cisco has validated the above versions with ansible version 6.7.0 and python 3.8.10. However, subsequent minor releases are
also expected to work.

Note

This document uses the name openupi for the OpenShift cluster and the directory structure: ~/openupi/openshift-env/upi.
$ cd ~/
$ mkdir -p openupi/openshift-env/upi
$ cd openupi/
$ tar xfz <path>/openshift_installer-6.1.1.<z>.src.tar.gz
$ cp openshift_installer/upi/openstack/* openshift-env/upi/

5

Installing OpenShift 4.19 on OpenStack 17.1
You initiate installation from the installer host that you prepared earlier.

Before you begin

Complete the tasks in the Prerequisites section .

Procedure

Step 1 Download and untar the oc client and openshift-install binary file:
$ cd ~/openupi/openshift-env/
$ wget
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/latest-4.19/openshift-client-linux.tar.gz
$ tar xfz openshift-client-linux.tar.gz
$ mv oc /usr/local/bin/
$ wget
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/latest-4.19/openshift-install-linux.tar.gz
$ tar xfz openshift-install-linux.tar.gz

Note
The links in the preceding text refer to the OpenShift 4.19.2 release, which Cisco has validated. However, subsequent
minor releases are also expected to work.

Step 2 Install the acc-provision package present in the Cisco ACI Container Network Interface (CNI) 6.1(1) release
artifacts.

Note
Due to Python 3 dependencies that are currently available only on RHEL8, acc-provision tool is supported to only run
on RHEL8 operating system.

Step 3 Run the acc-provision tool to configure the Cisco APIC for the OpenShift cluster, which will also generate the manifests
for installing the Cisco ACI CNI plug-in.

Example:
$ cd ~/openupi
$ acc-provision -a -c acc-provision-input.yaml -u <user> -p <password> -o aci_deployment.yaml -f
openshift-4.19-openstack

This step generates the aci_deployment.yaml file and also a tar file containing the Cisco ACI CNI manifests
with the name aci_deployment.yaml.tar.gz. Note the location of the aci_deployment.yaml.tar.gz file;
you will need to specify it later in the install-config.yaml file.

The following is an example of an acc-provision input file: (Note that the acc-provision flavor used here is
openshift-4.19-openstack.)
#
Configuration for ACI Fabric
#
aci_config:
system_id: <cluster-name> # Every opflex cluster on the same fabric must have a

distinct ID
tenant:
name: <openstack-tenant-name>

apic_hosts: # List of APIC hosts to connect to for APIC API access

6

- <apic-ip>
apic_login:
username: <username>
password: <password>

vmm_domain: # Kubernetes VMM domain configuration
encap_type: vxlan # Encap mode: vxlan or vlan
mcast_range: # Every vxlan VMM on the same fabric must use a distinct

range
start: 225.125.1.1
end: 225.125.255.255

The following resources must already exist on the APIC,
this is a reference to use them
aep: sauto-fab3-aep # The attachment profile for ports/VPCs connected to this cluster
vrf: # VRF used to create all subnets used by this Kubernetes cluster
name: l3out_2_vrf # This should exist, the provisioning tool does not create it
tenant: common # This can be tenant for this cluster (system-id) or common

l3out: # L3out to use for this kubernetes cluster (in the VRF above)
name: l3out-2 # This is used to provision external service IPs/LB
external_networks:

- l3out_2_net # This should also exist, the provisioning tool does not create it
#
Networks used by Kubernetes
#
net_config:
node_subnet: 10.11.0.1/27 # Subnet to use for nodes
pod_subnet: 10.128.0.1/16 # Subnet to use for Kubernetes Pods
extern_dynamic: 150.3.1.1/24 # Subnet to use for dynamically allocated ext svcs
extern_static: 150.4.1.1/21 # Optional: Subnet for statically allocated external services
node_svc_subnet: 10.5.168.1/21 # Subnet to use for service graph
service_vlan: 1022 # The VLAN used for external LoadBalancer services
infra_vlan: 4093
interface_mtu: 1400

Ensure that the system_id you use in the above acc-provision input file conforms to the Cisco ACI Object Naming
and Numbering: Best Practices. This will also be the case for the tenant name you choose at the time of the OpenStack
project creation (and which you will provide in the input file above).

Step 4 The install, create, wait-for OpenShift installer commands are run from the openshift-env directory.

Ensure that the clouds.yaml file is either present in the current working directory or in
~/.config/openstack/clouds.yaml with the environment OS_CLOUD set to the correct cloud name.

See Configuration for python-openstackclient3.12.3.dev2 on the OpenStack website.

Step 5 Untar the aci_deployment.yaml.tar.gz file which the acc-provision tool generated earlier.
$ cd ~/openupi
$ tar xfz aci_deployment.yaml.tar.gz

Step 6 Create the install-config.yaml as described in the "Install Config" section of Installing OpenShift on OpenStack
User-Provisioned Infrastructure for release 4.19 on GitHub.
$ cd ~/openupi/openshift-env
$./openshift-install create install-config --dir=upi --log-level=debug

The following is an example of an install-config.yaml file that sets Cisco ACI Container Network Interface
(CNI) as the networkType:
apiVersion: v1
baseDomain: noiro.local
compute:
- architecture: amd64
hyperthreading: Enabled
name: worker

7

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html

platform: {}
replicas: 0

controlPlane:
architecture: amd64
hyperthreading: Enabled
name: master
platform: {}
replicas: 3

metadata:
creationTimestamp: null
name: openupi

networking:
clusterNetwork:
- cidr: 15.128.0.0/14
hostPrefix: 23

machineNetwork:
- cidr: 15.11.0.0/27
networkType: CiscoACI
serviceNetwork:
- 172.30.0.0/16

platform:
openstack:
cloud: openstack
computeFlavor: aci_rhel_huge
externalDNS: ["<ip>"]
externalNetwork: sauto_l3out-2

lbFloatingIP: 60.60.60.199
octaviaSupport: "0"
region: ""
trunkSupport: "1"
clusterOSImage: rhcos-4.19

publish: External
proxy:
httpsProxy: <proxy-ip>
httpProxy: <proxy-ip>
noProxy: "localhost,127.0.0.1,<add-more-as-relevant>,172.30.0.1,172.30.0.10,oauth-

openshift.apps.openupi.noiro.local,console-openshift-
console.apps.openupi.noiro.local,downloads-openshift-
console.apps.openupi.noiro.local,downloads-openshift-
console.apps.openupi.noiro.local,alertmanager-main-openshift-
monitoring.apps.openupi.noiro.local"

pullSecret:
sshKey:

Step 7 Edit the file generated in the previous step to match your environment.

As noted in the example, the edits must include changing the networkType as described in the "Fix the Node Subnet"
and "Empty Compute Pools" sections of Installing OpenShift on OpenStack User-Provisioned Infrastructure for Release
4.19 on GitHub.

Step 8 Edit the inventory.yaml file to match the relevant fields in the install-config.yaml and
acc-provision-input.yaml files, as shown in the following example:
all:
hosts:
localhost:
aci_cni:
acc_provision_tar: <path>/aci_deployment.yaml.tar.gz
kubeconfig: <path>/kubeconfig

ansible_connection: local
ansible_python_interpreter: "{{ansible_playbook_python}}"

User-provided values

8

os_subnet_range: '15.11.0.0/27'
os_flavor_master: 'aci_rhel_huge'
os_flavor_worker: 'aci_rhel_huge'
os_image_rhcos: 'rhcos-4.19.'
os_external_network: 'l3out-2'
OpenShift API floating IP address
os_api_fip: '60.60.60.6'
OpenShift Ingress floating IP address
os_ingress_fip: '60.60.60.8'
Subnet pool prefixes
cluster_network_cidrs: '15.128.0.0/14'

Name of the SDN.
os_networking_type: 'CiscoACI'

Number of provisioned Control Plane nodes
3 is the minimum number for a fully-functional cluster.
os_cp_nodes_number: 3
Number of provisioned Compute nodes.
3 is the minimum number for a fully-functional cluster.
os_compute_nodes_number:0
os_apiVIP: '{{ os_subnet_range | next_nth_usable(5) }}'
os_ingressVIP: '{{ os_subnet_range | next_nth_usable(7)
}}'

Note
• The inventory.yaml file is updated after you run the update_ign.py script later in this procedure.We recommend
that you make a copy of the inventory.yaml file at this stage so you can reuse it to install the same cluster again.

• The Cisco ACI CNI-specific configuration is added to the aci_cni section of the inventory.yaml file. The example
in this step captures the required fields; however, more optional configurations are available. For a list of the
options see the Optional Configurations section in this guide.

Note that after you run update_ign.py as described in Step 12, some default and derived values are added to the
inventory file. For example, to see the configuration with all optional and derived values that are populated, see
openshift_installer/upi/openstack/inventory.yaml on GitHub.

Step 9 Generate the OpenShift manifests and copy the Cisco ACI CNI manifests:
$ cd ~/openupi/openshift-env
$./openshift-install create manifests --log-level debug --dir=upi
Copy the ACI CNI manifests obtained earlier in Step 5
$ cp ../cluster-network-* upi/manifests/
Update control-plane machines and machine-set manifests to manage control-plane machines through
ControlPlaneMachineSet resource.
$ cd upi
$ python update_master_manifests.py

Step 10 Disable the creation of the OpenStack Octavia load balancer for Cisco ACI network type.

$ cd ~/openupi/openshift-env/upi
$ ansible-playbook -i inventory.yaml disable-octavia.yaml

Step 11 Make control-plane nodes unschedulable.

Follow the instructions in the "Make control-plane nodes unschedulable" section of Installing OpenShift on OpenStack
User-Provisioned Infrastructure for Release 4.19 on GitHub.

Step 12 Update the ignition files:

9

$ cd ~/openupi/openshift-env
$./openshift-install create ignition-configs --log-level debug --dir=upi
$ cd upi
$ export INFRA_ID=$(jq -r .infraID metadata.json)
$ echo "{\"os_net_id\": \"$INFRA_ID\"}" | tee netid.json
$ source ~/openupi/overcloudrc
Run the update_ign.py from the Cisco OpenShift installer package
$ python update_ign.py # This assumes that the inventory file is already configured

$ swift upload bootstrap bootstrap.ign
(To be executed in undercloud after copying the ignition file or host having connectivity to openstack
controller with overcloudrc)

$ swift post bootstrap --read-acl ".r:*,.rlistings"

(To be executed in undercloud after copying the ignition file host having connectivity to openstack
controller with overcloudrc)

The commands in this step create the ignition files and update them according to Cisco ACI CNI and upload the
bootstrap.ign file to swift storage. It also generates the bootstrap-ignition-shim as described in the
"Bootstrap Ignition Shim" section of Installing OpenShift on OpenStack User-Provisioned Infrastructure for Release
4.19 on GitHub.

Step 13 Complete the following tasks by running Ansible playbooks obtained from the Cisco OpenShift installer package:
a) Create security groups and networks:

ansible-playbook -i inventory.yaml security-groups.yaml
ansible-playbook -i inventory.yaml network.yaml
ansible-playbook -i inventory.yaml update-network-resources.yaml
ansible-playbook -i inventory.yaml 021_network.yaml

b) For direct access to the OpenShift node network from endpoints that are not managed by the Cisco ACI fabric,
create a Neutron subnet pool for every IP subnet from where this direct access is anticipated, as shown in the
following example:
$ neutron subnetpool-create --pool-prefix <direct_access_src_subnet> --address-scope
node_network_address_scope <subnetpool_name>

In the preceding example, node_network_address_scope is the name of the Neutron address-scope that is
created by the network.yaml file.

c) Install the control plane:
ansible-playbook -i inventory.yaml bootstrap.yaml
ansible-playbook -i inventory.yaml control-plane.yaml

d) Check that the bootstrap/control plane installation is complete:
./openshift-install wait-for bootstrap-complete --dir=upi --log-level=debug

e) After the control plane is installed, remove the bootstrap node:
ansible-playbook -i inventory.yaml down-bootstrap.yaml

f) (Optional) After the control plane is up, configure cluster Source IP Network Address Translation (SNAT) policy:
ansible-playbook -i inventory.yaml cluster_snat_policy.yaml

g) Launch the compute nodes by scaling the worker machinesets as described below:

$ oc get machineset -A
NAMESPACE NAME DESIRED CURRENT READY AVAILABLE AGE

10

openshift-machine-api openupi-vkkn6-worker 0 0 5h10m
$ oc scale machineset -n openshift-machine-api openupi-vkkn6-worker --replicas=1

Note
When the control-plane.yaml playbook is running, it automatically updates the machineset configuration to
support multiple network interfaces which enables scaling the replicas as shown above, when non-zero
os_compute_nodes_number is mentioned in the inventory file.

Step 14 If you created the compute nodes through Ansible playbooks, approve the pending Certificate Signing Requests.
oc get csr -ojson | jq -r '.items[] | select(.status == {}) | .metadata.name' | xargs oc adm
certificate approve

Step 15 Update the default IngressController publish strategy to use the LoadBalancerService:
ansible-playbook -i inventory.yaml post-install.yaml

Step 16 Check the status of the installation:
./openshift-install wait-for install-complete --dir=upi --log-level=debug

Step 17 Destroy the cluster:
ansible-playbook -i inventory.yaml down-compute-nodes.yaml
ansible-playbook -i inventory.yaml down-control-plane.yaml
ansible-playbook -i inventory.yaml down-network.yaml
ansible-playbook -i inventory.yaml down-security-groups.yaml

After your run the playbooks in this step, the Cisco ACI BridgeDomain corresponding to the node network will also
be deleted. To reinstall the cluster, run acc-provision again with the -a as described earlier in this document.

Optional Configurations
This section provides instructions for making several optional configurations.

Enabling Multus CNI Plug-in in OpenShift 4.x Cluster with ACI CNI
You can enable Multus in a new cluster or in an already-installed cluster.

Enabling Multus in a new cluster installation

When running acc-provision, set the disable-multus argument to False.

$ acc-provision -a -c acc_provision_input.yaml -f openshift-4.19-openstack -u <username> -p <password> -o
aci_deployment.yaml --disable-multus false

The procedure below, is for enabling Multus in an already-installed cluster.

Procedure

Step 1 Generate a new ACI CNI deployment configuration.
$ acc-provision -c acc_provision_input.yaml -f openshift-4.19-openstack -u <username> -p <password>
-o aci_deployment.yaml --disable-multus false

11

Note
The above command does not use the -a flag.

Step 2 Delete acicontainersoperator CR.
$ oc delete acicontainersoperator acicnioperator -n aci-containers-system

Step 3 Apply the new aci_deployment.yaml file.
$ oc apply -f aci_deployment.yaml

Step 4 Remove “disableMultiNetwork: true” from current OpenShift Network Object by editing
cluster-network-03-config.yaml.
$ oc edit -f cluster-network-03-config.yaml

Enable CPMS to manage control plane nodes
You can leverage the Control Plane Machine Set (CPMS) resource to auto-manage the control plane nodes.

These steps will be useful in the scenario where an OpenShift cluster is upgraded from version 4.18 to 4.19 and CPMS is not
configured in 4.18.

Note

Follow these steps to enable CPMS:

Procedure

Step 1 Create machine objects for the existing control plane nodes.

This is an example of a machine config for the control-plane node.
apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
labels:
machine.openshift.io/cluster-api-cluster: openupi-tvqjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master

name: openupi-tvqjc-master-0
namespace: openshift-machine-api
annotations:
machine.openshift.io/instance-id: 6c578563-f295-487a-a1c1-e81a942bfd28

spec:
lifecycleHooks: {}
metadata: {}
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/v1alpha1
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api

flavor: aci_rhel_medium
image: rhcos-4.19

12

kind: OpenstackProviderSpec
metadata:
creationTimestamp: null

networks:
- filter: {}
subnets:
- filter:

name: openupi-tvqjc-nodes
uuid:
- ec2413e7-2b02-46ef-9a2f-bf308eeb5a0c

uuid: c5f49c1d-3e78-47ff-af4e-3c89d47e4ae5
- filter: {}
subnets:
- filter:

name: openupi-tvqjc-acicontainers-nodes
uuid:
- d577cf9d-0920-4b60-bf2c-ae76b24e42e6

uuid: a29eb31a-c590-47f1-a592-4a35e265c2b3
securityGroups:
- filter: {}
name: openupi-tvqjc-master

serverGroupName: openupi-tvqjc-master
serverMetadata:
Name: openupi-tvqjc-master
openshiftClusterID: openupi-tvqjc

tags:
- openshiftClusterID=openupi-tvqjc
trunk: true
userDataSecret:
name: master-user-data

providerID: openstack:///6c578563-f295-487a-a1c1-e81a942bfd28

Use the manifest to create a machine object for each of the existing master nodes. Update these fields from the template:

• Replace openupi-tvqjc with OpenShift cluster ID of your cluster.

• metadata.name: Set this field with name of master node.

• metadata.annotations.machine.openshift.io/instance-id: Set this field with openstack server ID corresponds
to this master node.

• spec.providerSpec.value.flavor: Set this field with openstack flavor name used for creating master nodes.

• spec.providerSpec.value.image: Set this field with openstack image name that corresponds to RHCOS image
used for creating master nodes.

• spec.providerSpec.value.networks: Update this config section with openstack network/subnet details that will
be used for creating master nodes.

• spec.providerID: Update UUID from this field with openstack server ID corresponds to this master node.

After you apply these manifests for each of the master nodes, verify that machines are created and show as "Running"
by issuing the following command:

$ oc get machines -n openshift-machine-api

Step 2 Create a Control Plane Machine Set (CPMS) resource.

This is an example of a CPMS resource:
apiVersion: machine.openshift.io/v1
kind: ControlPlaneMachineSet
metadata:

13

name: cluster
namespace: openshift-machine-api

spec:
replicas: 3
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: openupi-tvqjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master

state: Active
strategy:
type: RollingUpdate

template:
machineType: machines_v1beta1_machine_openshift_io
machines_v1beta1_machine_openshift_io:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: openupi-tvqjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master

spec:
lifecycleHooks: {}
metadata: {}
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/v1alpha1
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api

flavor: aci_rhel_medium
image: rhcos-4.19
kind: OpenstackProviderSpec
metadata:
creationTimestamp: null

networks:
- filter: {}
subnets:
- filter:

name: openupi-tvqjc-nodes
- filter: {}
subnets:
- filter:

name: openupi-tvqjc-acicontainers-nodes
securityGroups:
- filter: {}
name: openupi-tvqjc-master

serverGroupName: openupi-tvqjc-master
serverMetadata:
Name: openupi-tvqjc-master
openshiftClusterID: openupi-tvqjc

tags:
- openshiftClusterID=openupi-tvqjc
trunk: true
userDataSecret:
name: master-user-data

Update these fields before applying the cofiguration:

• Replace openupi-tvqjc with OpenShift cluster ID of your cluster.

• spec.template.spec.providerSpec.value.flavor: Set this field with openstack flavor name used for creating
master nodes.

14

• spec.template.spec.providerSpec.value.image: Set this field with openstack image name that corresponds to
RHCOS image used for creating master nodes.

• spec.template.spec.providerSpec.value.networks: Update this config section with openstack network/subnet
details that will be used for creating master nodes.

Note
For the ControlPlaneMachineSet to be in operation, you must set spec.state to active.

network/subnet UUIDs are not supported in ControlPlaneMachineSet.

Step 3 After you create the Create a Control Plane Machine Set (CPMS) resource, the existing master nodes will be replaced
with new ones. You can monitor its progress using these commands:

$ oc get controlplanemachineset -n openshift-machine-api # To check CPMS status

$ oc get machines -n openshift-machine-api # To check machines status

$ oc get nodes -l node-role.kubernetes.io/master # To check nodes status

Enable IP forwarding on worker nodes
To test the service with a node-port configuration, you must enable IP forwarding on the worker nodes.

Use this procedure to enable IP forwarding on the worker nodes.

Procedure

Step 1 Assign a floating IP to the worker VM.
Step 2 Allow SSH traffic by adding a security rule to permit SSH access in the security group associated with the worker nodes.
Step 3 Enable IP Forwarding on each worker node by SSHing into them and running this command:

sudo sysctl -w net.ipv4.ip_forward=1

Optional Inventory Configurations
In the section Installing OpenShift 4.19 on OpenStack , Step 8 we noted the required fields for Cisco ACI Container Network Interface
(CNI) configuration in the aci_cni section of the inventory.yaml file. This section provides optional configurations and the default
values.

Description and Default ValuesOption

By default, this value is not set.

The Source IP Network Address Translation (SNAT) IP address is used
to create a Cisco ACI-CNI SNAT policy that applies to the whole
cluster. This SNAT policy is created by running the
cluster_snat_policy.yaml Ansible playbook as described in
Installing OpenShift 4.19 on Openstack section in this guide. (If this
value is not set, do not run this playbook.)

cluster_snat_policy_ip

15

Description and Default ValuesOption

By default, this value is not set.

Set this field if you do not follow the procedure that is described in the
section "Subnet DNS (optional)" in Installing OpenShift on OpenStack
User-Provisioned Infrastructure on GitHub. The procedure controls
the default resolvers that your Nova servers use.

Use the value to set the dns_nameservers field of the subnet associated
with the *-primaryClusterNetwork network. You can specify one or
more DNS server IPs.

dns_ip

The name of the node network interface as set by the RHCOS image.

The default value is “enp3s0”.

namenodenetwork_interfaces

The MTU set for the *-primaryClusterNetwork Neutron network.

The default value is 1500.

mtu

The name of the node network interface as set by the RHCOS image.

The default value is “enp4s0”.

nameopflex

The MTU set for the *-secondaryClusterAciNetwork Neutron
network.

The default value is 1500.

mtu

The default value is 192.168.208.0/20.

This is the CIDR used for the subnet that is associated with the
*-secondaryClusterAciNetwork Neutron network. The size of this
subnet should at least be as large as that of the one used for the
*-primaryClusterNetworkNeutron network. It should also not overlap
any other CIDR in the OpenShift project’s address scope.

subnet

In a fresh installation of OSP 17.1, network interface names on the nodes may differ from what is observed with earlier
versions of OSP. Interfaces may appear as enp*s instead of ens*. This naming variation is controlled by the hw_machine_type
parameter in Nova's configuration on compute nodes. To prevent installation issues, ensure the correct interface names are
updated in the inventory.yaml file, as outlined in this section.

Caution

16

© 2025 Cisco Systems, Inc. All rights reserved.

Europe HeadquartersAsia Pacific HeadquartersAmericas Headquarters
CiscoSystemsInternationalBV
Amsterdam,TheNetherlands

CiscoSystems(USA)Pte.Ltd.
Singapore

Cisco Systems, Inc.
San Jose, CA 95134-1706
USA

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the
Cisco Website at www.cisco.com/go/offices.

	Installing OpenShift 4.19 on OpenStack 17.1
	New and Changed Information
	OpenShift 4.19 on OpenStack
	Network Design and the Cisco ACI CNI Plug-in
	Prerequisites for Installing OpenShift 4.19
	Installing OpenShift 4.19 on OpenStack 17.1
	Optional Configurations
	Enabling Multus CNI Plug-in in OpenShift 4.x Cluster with ACI CNI
	Enable CPMS to manage control plane nodes
	Enable IP forwarding on worker nodes
	Optional Inventory Configurations

