afran]n
CISCO.

L]
z
2
g
e
-]
g
"~
-]
&

.{

Installing OpenShift 4.19 on OpenStack 17.1

New and Changed Information 2

OpenShift 4.19 on OpenStack 2

Network Design and the Cisco ACI CNI Plug-in 2
Prerequisites for Installing OpenShift 4.19 4
Installing OpenShift 4.19 on OpenStack 17.1 6

Optional Configurations 11

Revised: October 30, 2025

New and Changed Information

The following table provides an overview of the significant changes up to this current release. The table does not provide an exhaustive
list of all changes or of the new features up to this release.

Cisco ACI CNI plug-in Release Version Feature

6.1(1) Cisco Application Centric Infrastructure (ACI) supports Red Hat
OpenShift 4.19 nested in Red Hat OpenStack Platform (OSP).

OpenShift 4.19 on OpenStack

Cisco Application Centric Infrastructure (ACI) supports Red Hat OpenShift 4.19 nested in Red Hat OpenStack Platform (OSP) 17.1.
To enable this support, Cisco ACI provides customized Ansible modules to complement the upstream OpenShift installer. This
document provides instructions and guidance that follows the recommended OpenShift on OpenStack User-Provisioned Infrastructure
(UP]) installation process as outlined in the following documents:

« Installing a cluster on OpenStack with customizations for OpenShift 4.19 on the Red Hat OpenShift website

* Installing OpenShift on OpenStack User-Provisioned Infrastructure on GitHub

N

Note Ifyou have an existing OpenShift 4.18 cluster installed with Cisco ACI CNI, you can upgrade to OCP 4.19 by first upgrading
the ACI CNI (refer to the Upgrading the Cisco ACI CNI Plug-in guide), and then following Red Hat documentation to upgrade
from OpensShift 4.18 to 4.19.

Network Design and the Cisco ACI CNI Plug-in

This section provides information about the network design that takes advantage of the Cisco ACI Container Network Interface (CNI)
plug-in.

The design separates OpenShift node traffic from the pod traffic on different Neutron networks. The separation results in the bootstrap,
control, and compute virtual machines (VMs) having two network interfaces, as shown in the following illustration:

OpenShift node Bootstrap Compute
network and
management] C1 L
through FIP X
\ \
\
OpenShift pod Interface for Subinterface for
network and OpenShift node Cisco ACI
Cisco ACI network and control plane g
control plane management 7

One interface is for the node network and the second is for the pod network. The second interface also carries Cisco ACI control
plane traffic. A VLAN tagged subinterface is configured on the second interface to carry the pod traffic and the Cisco ACI control
plane traffic.

This network design requires some changes to the Red Hat OpenShift Installer UPI Ansible modules. These changes are implemented
in the Cisco-provided OpenShift Installer UPI Ansible modules, which are packaged in the OpenShift installer tar file

(openshift installer-6.1.1<z>.src.tar.gz) that is made available along with the other Cisco ACI CNI 6.1.(1) release artifacts. More
specifically, the changes are to:

* Create a second Neutron network in a separate playbook.
» Modify the existing playbooks that launch the control, and compute virtual machines (VMs) to:
* Create a second port on the second Neutron network and add it as a second interface to the VM configuration.

* Add an extra attribute "nat_destination" to the Neutron floating IP address.

 Update the playbook that creates the first Neutron network to:

1. Create the Neutron address-scope to map to a predefined Cisco ACI virtual routing and forwarding (VRF) context.
2. Create a Neutron subnet-pool for the address-scope in the previous step.

3. Change the subnet creation to pick a subnet from the subnet-pool in the previous step.

4

Set the maximum transmission unit (MTU) for the neutron Network (which is picked up from the configuration file described
later).

+ In addition to creating a second network interface (and subinterfaces on that interface), the stock ignition files created by the
“openshift-install create ignition-configs” step need to be updated. This is being done by additional playbooks, which are also
provided.

)

Note The configuration required to drive some of the customization in this section done through new parameters in the inventory
file.

Prerequisites for Installing OpenShift 4.19

To successfully install OpenShift Container Platform (OCP) 4.19 on OpenStack 17.1, you must meet the following requirements:

Cisco ACI

1. Configure a Cisco ACI Layer 3 outside connection (L3Out) in an independent Cisco ACI VRF and "common" Cisco ACI tenant
so that endpoints can do the following:

* Reach outside to fetch packages and images.
* Reach the Cisco Application Policy Infrastructure Controller (APIC).
2. Configure a separate L30ut in an independent VRF that is used by the OpenShift cluster (configured in the acc-provision input
file) so that the endpoints can do the following:
* Reach API endpoints outside the OpenShift cluster.

» Reach the OpenStack API server.

The OpenShift pod network uses this L3Out.
3. Identify the Cisco ACI infra VLAN.

4. Identify another unused VLAN that you can use for OpenShift cluster service traffic.

The service is configured in the service_vlan field in the acc_provision input file for the OpenShift cluster.

OpenStack

1. Install Red Hat OpenStack Platform (OSP) 17.1 with Cisco ACI Neutron plug-in (release 5.2(3)) in nested mode by setting the
following parameters in the Cisco ACI .yam1 Modular Layer 2 (ML2) configuration file:

® ACIOpflexInterfaceType: ovs

® ACIOpflexInterfaceMTU: 8000

To update an existing installation (and if the above two parameters are not configured), see Cisco ACI Installation Guide for
Red Hat OpenStack Using the OpenStack Platform 17.1 Director on Cisco.com.

2. Create an OpenStack project and the required quotas to host the OpenShift cluster and perform the other required configuration.

Follow the procedure Installing a cluster on OpenStack on your own infrastructure for OpenStack 4.19 on the Red Hat OpenStack
website.

3. Create an OpenStack Neutron external network, using the relevant Cisco ACI extensions and mapping to the OpenStack L.30ut
to include the following:

* A subnet configured for Secure Network Address Translation (SNAT).

* A subnet that is configured for floating IP addresses.

Refer to the chapter "OpenStack External Network" in Cisco ACI Installation Guide for Red Hat OpenStack Using the OpenStack
Platform 17.1 Director on Cisco.com.

A

Note All OpenStack projects can share the OpenStack L30ut and Neutron external network.

4. If direct access to the OpenShift node network is required (i.e by not using the Neutron Floating IPs) from endpoints that are not
managed by the Cisco ACI fabric, identify every IP subnet from where this direct access is anticipated. These IP subnets will
later be used to create Neutron subnet pools during the installation process.

5. Follow the instructions in the section "Red Hat Enterprise Linux CoreOS (RHCOS)" of Installing Openhift on OpenStack
User-Provisioned Infrastructure to obtain the RHCOS and create an OpenStack image:

S openstack image create --container-format=bare --disk-format=qcow2 --file
rhcos-4.19.0-x86_64-openstack.x86 64.qcow2 rhcos-4.19

OpenShift

Identify the SNAT IP address that will be used by the Cisco ACI Container Network Interface (CNI) for source NATing the traffic
from all the pods during installation. You will use the SNAT IP addresses in the cluster snat policy ip configuration in the
aci_cni section of the inventory.yaml file.

Installer Host

You need access to a Linux host to run installation scripts with access to node network and OpenStack Director API. It should have
the following installed:

* Install Ansible 6.7 or later.

Refer to Installing Ansible on the Ansible website.
* Python 3
* jq— JSON linting
* yq— YAML linting: sudo pip install yq
* python-openstackclient 5.4 or later: sudo pip install python-openstackclient==6.5.0
* openstacksdk 1.0 and later : sudo pip install openstacksdk==3.0.0
* python-swiftclient 3.9.0: sudo pip install python-swiftclient==4.5.0

» Kubernetes module for Ansible: sudo pip install openshift==0.13.2

\)

Note Cisco has validated the above versions with ansible version 6.7.0 and python 3.8.10. However, subsequent minor releases are
also expected to work.

This document uses the name openupi for the OpenShift cluster and the directory structure: ~/openupi/openshift-env/upi.

cd ~/

mkdir -p openupi/openshift-env/upi

cd openupi/

tar xfz <path>/openshift installer-6.1.1.<z>.src.tar.gz
cp openshift installer/upi/openstack/* openshift-env/upi/

Uy »r »r »r

Installing OpenShift 4.19 on OpenStack 17.1

You initiate installation from the installer host that you prepared earlier.

Before you begin

Complete the tasks in the Prerequisites section .

Procedure

Step 1

Step 2

Step 3

Download and untar the oc client and openshift-install binary file:

$ cd ~/openupi/openshift-env/

$ wget
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/latest-4.19/openshift-client-linux.tar.gz
$ tar xfz openshift-client-linux.tar.gz

S mv oc /usr/local/bin/

$ wget
https://mirror.openshift.com/pub/openshift-v4/clients/ocp/latest-4.19/openshift-install-linux.tar.gz
$ tar xfz openshift-install-linux.tar.gz

Note
The links in the preceding text refer to the OpenShift 4.19.2 release, which Cisco has validated. However, subsequent
minor releases are also expected to work.

Install the acc-provision package present in the Cisco ACI Container Network Interface (CNI) 6.1(1) release
artifacts.

Note
Due to Python 3 dependencies that are currently available only on RHELS, acc-provision tool is supported to only run
on RHELS operating system.

Run the acc-provision tool to configure the Cisco APIC for the OpenShift cluster, which will also generate the manifests
for installing the Cisco ACI CNI plug-in.

Example:

$ cd ~/openupi

$ acc-provision -a -c acc-provision-input.yaml -u <user> -p <password> -o aci deployment.yaml -f
openshift-4.19-openstack

This step generates the aci deployment.yaml file and also a tar file containing the Cisco ACI CNI manifests
with the name aci deployment.yaml.tar.gz. Note the location of the aci_deployment.yaml.tar.gz file;
you will need to specify it later in the install-config. yaml file.

The following is an example of an acc-provision input file: (Note that the acc-provision flavor used here is
openshift—4.19—openstack)

#
Configuration for ACI Fabric
#
aci config:

system id: <cluster-name> # Every opflex cluster on the same fabric must have a
distinct ID

tenant:

name: <openstack-tenant-name>
apic_hosts: # List of APIC hosts to connect to for APIC API access

Step 4

Step 5

Step 6

- <apic-ip>
apic_login:

username: <username>

password: <password>

vmm_domain: # Kubernetes VMM domain configuration
encap_type: vxlan # Encap mode: vxlan or vlan
mcast_range: # Every vxlan VMM on the same fabric must use a distinct
range

start: 225.125.1.1
end: 225.125.255.255
The following resources must already exist on the APIC,
this is a reference to use them
aep: sauto-fab3-aep The attachment profile for ports/VPCs connected to this cluster
vrf: VRF used to create all subnets used by this Kubernetes cluster
name: l13out 2 vrf This should exist, the provisioning tool does not create it
tenant: common This can be tenant for this cluster (system-id) or common
13out: L3out to use for this kubernetes cluster (in the VRF above)
name: 1l3out-2 This is used to provision external service IPs/LB
external networks:

#
#
#
#
#
#

- 13out_2 net # This should also exist, the provisioning tool does not create it
#
Networks used by Kubernetes
#

net config:
node subnet: 10.11.0.1/27
pod subnet: 10.128.0.1/16
extern dynamic: 150.3.1.1/24
extern static: 150.4.1.1/21
node_svc_subnet: 10.5.168.1/21
service vlan: 1022
infra vlan: 4093
interface mtu: 1400

Subnet to use for nodes

Subnet to use for Kubernetes Pods

Subnet to use for dynamically allocated ext svcs

Optional: Subnet for statically allocated external services
Subnet to use for service graph

The VLAN used for external LoadBalancer services

H= = = FH I

Ensure that the system id you use in the above acc-provision input file conforms to the Cisco ACI Object Naming
and Numbering: Best Practices. This will also be the case for the tenant name you choose at the time of the OpenStack
project creation (and which you will provide in the input file above).

The install, create, wait-for OpenShift installer commands are run from the openshift-env directory.

Ensure that the clouds . yaml file is either present in the current working directory or in
~/.config/openstack/clouds.yaml with the environment OS_CLOUD set to the correct cloud name.

See Configuration for python-openstackclient3.12.3.dev2 on the OpenStack website.

Untar the aci_deployment.yaml.tar.gz file which the acc-provision tool generated earlier.

$ cd ~/openupi
$ tar xfz aci deployment.yaml.tar.gz

Createthe install-config.yaml asdescribed in the "Install Config" section of Installing OpenShift on OpenStack
User-Provisioned Infrastructure for release 4.19 on GitHub.

$ cd ~/openupi/openshift-env
$./openshift-install create install-config --dir=upi --log-level=debug

The following is an example of an install-config.yaml file that sets Cisco ACI Container Network Interface
(CNI) as the networkType:

apiVersion: vl

baseDomain: noiro.local

compute:

- architecture: amdeé4
hyperthreading: Enabled
name: worker

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b-Cisco-ACI-Naming-and-Numbering.html

Step 7

Step 8

platform: {}
replicas: 0
controlPlane:
architecture: amd64
hyperthreading: Enabled
name: master
platform: {}
replicas: 3
metadata:
creationTimestamp: null
name: openupi
networking:
clusterNetwork:
- cidr: 15.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 15.11.0.0/27
networkType: CiscoACI
serviceNetwork:
- 172.30.0.0/16
platform:
openstack:
cloud: openstack
computeFlavor: aci_rhel huge
externalDNS: ["<ip>"]
externalNetwork: sauto_13out-2
1bFloatingIP: 60.60.60.199
octaviaSupport: "0"
region: ""
trunkSupport: "1"
clusterOSImage: rhcos-4.19
publish: External
Proxy:
httpsProxy: <proxy-ip>
httpProxy: <proxy-ip>
noProxy: "localhost,127.0.0.1,<add-more-as-relevant>,172.30.0.1,172.30.0.10,0auth-
openshift.apps.openupi.noiro.local,console-openshift-
console.apps.openupi.noiro.local,downloads-openshift-
console.apps.openupi.noiro.local,downloads-openshift-
console.apps.openupi.noiro.local,alertmanager-main-openshift-
monitoring.apps.openupi.noiro.local”
pullSecret:
sshKey:

Edit the file generated in the previous step to match your environment.

As noted in the example, the edits must include changing the networkType as described in the "Fix the Node Subnet"
and "Empty Compute Pools" sections of Installing OpenShift on OpenStack User-Provisioned Infrastructure for Release
4.19 on GitHub.

Edit the inventory.yaml file to match the relevant fields in the install-config.yaml and
acc-provision-input.yaml files, as shown in the following example:

all:
hosts:
localhost:

aci cni:
acc_provision tar: <path>/aci deployment.yaml.tar.gz
kubeconfig: <path>/kubeconfig

ansible connection: local

ansible python interpreter: "{{ansible playbook python}}"

User-provided values

Step 9

Step 10

Step 11

Step 12

os_subnet range: '15.11.0.0/27"'

os_flavor master: 'aci_ rhel huge'
os_flavor worker: 'aci rhel huge'
os_image rhcos: 'rhcos-4.19."'

os_external network: 'l3out-2'

OpenShift API floating IP address
os_api fip: '60.60.60.6"

OpenShift Ingress floating IP address
os_ingress_ fip: '60.60.60.8"'

Subnet pool prefixes

cluster network cidrs: '15.128.0.0/14"'

Name of the SDN.
os_networking type: 'CiscoACI'

Number of provisioned Control Plane nodes
3 is the minimum number for a fully-functional cluster.
os_cp_nodes_number: 3
Number of provisioned Compute nodes.
3 is the minimum number for a fully-functional cluster.
os_compute nodes_number:0
os_apiVIP: '{{ os_subnet range | next nth usable(5) }}'
os_ingressVIP: '{{ os_subnet range | next nth usable(7)
P

Note

* The inventory.yaml file is updated after you run the update_ign.py script later in this procedure. We recommend

that you make a copy of the inventory.yaml file at this stage so you can reuse it to install the same cluster again.

* The Cisco ACI CNI-specific configuration is added to the aci cni section of the inventory.yaml file. The example
in this step captures the required fields; however, more optional configurations are available. For a list of the
options see the Optional Configurations section in this guide.

Note that after you run update ign.py as described in Step 12, some default and derived values are added to the
inventory file. For example, to see the configuration with all optional and derived values that are populated, see
openshiftiinstaller/upi/openstack/inventory.yaml(nl(}ﬁ}{ub.

Generate the OpenShift manifests and copy the Cisco ACI CNI manifests:

$ cd ~/openupi/openshift-env

$./openshift-install create manifests --log-level debug --dir=upi
Copy the ACI CNI manifests obtained earlier in Step 5
$ cp ../cluster-network-* upi/manifests/

Update control-plane machines and machine-set manifests to manage control-plane machines through
ControlPlaneMachineSet resource.

$ cd upi

$ python update master manifests.py

Disable the creation of the OpenStack Octavia load balancer for Cisco ACI network type.

$ cd ~/openupi/openshift-env/upi
$ ansible-playbook -i inventory.yaml disable-octavia.yaml

Make control-plane nodes unschedulable.

Follow the instructions in the "Make control-plane nodes unschedulable" section of Installing Openshift on OpenStack
User-Provisioned Infrastructure for Release 4.19 on GitHub.

Update the ignition files:

Step 13

10

cd ~/openupi/openshift-env

./openshift-install create ignition-configs --log-level debug --dir=upi

cd upi

export INFRA ID=$(jg -r .infraID metadata.json)

echo "{\"os_net id\": \"S$INFRA ID\"}" | tee netid.json

source ~/openupi/overcloudrc

Run the update ign.py from the Cisco OpenShift installer package

python update _ign.py # This assumes that the inventory file is already configured

v #H= O U r

$ swift upload bootstrap bootstrap.ign
(To be executed in undercloud after copying the ignition file or host having connectivity to openstack
controller with overcloudrc)

$ swift post bootstrap --read-acl ".r:*,.rlistings"

(To be executed in undercloud after copying the ignition file host having connectivity to openstack
controller with overcloudrc)

The commands in this step create the ignition files and update them according to Cisco ACI CNI and upload the
bootstrap. ign file to swift storage. It also generates the bootstrap-ignition-shim as described in the
"Bootstrap Ignition Shim" section of Installing OpenShift on OpenStack User-Provisioned Infrastructure for Release
4.19 on GitHub.

Complete the following tasks by running Ansible playbooks obtained from the Cisco OpenShift installer package:

a) Create security groups and networks:

ansible-playbook -i inventory.yaml security-groups.yaml
ansible-playbook -i inventory.yaml network.yaml

ansible-playbook -i inventory.yaml update-network-resources.yaml
ansible-playbook -i inventory.yaml 021 network.yaml

b) For direct access to the OpenShift node network from endpoints that are not managed by the Cisco ACI fabric,
create a Neutron subnet pool for every IP subnet from where this direct access is anticipated, as shown in the
following example:

$ neutron subnetpool-create --pool-prefix <direct access_src_subnet> --address-scope
node network address_scope <subnetpool name>

In the preceding example, node network address_scope is the name of the Neutron address-scope that is
created by the network. yaml file.

c) Install the control plane:

ansible-playbook -i inventory.yaml bootstrap.yaml
ansible-playbook -i inventory.yaml control-plane.yaml

d) Check that the bootstrap/control plane installation is complete:
./openshift-install wait-for bootstrap-complete --dir=upi --log-level=debug

e) After the control plane is installed, remove the bootstrap node:

ansible-playbook -i inventory.yaml down-bootstrap.yaml

f) (Optional) After the control plane is up, configure cluster Source IP Network Address Translation (SNAT) policy:

ansible-playbook -i inventory.yaml cluster snat policy.yaml

g) Launch the compute nodes by scaling the worker machinesets as described below:

$ oc get machineset -A
NAMESPACE NAME DESIRED CURRENT READY AVAILABLE AGE

openshift-machine-api openupi-vkkné-worker 0 0O 5hlOm
$ oc scale machineset -n openshift-machine-api openupi-vkkn6-worker --replicas=1

Note

When the control-plane.yaml playbook is running, it automatically updates the machineset configuration to
support multiple network interfaces which enables scaling the replicas as shown above, when non-zero
0s_compute _nodes number is mentioned in the inventory file.

Step 14 If you created the compute nodes through Ansible playbooks, approve the pending Certificate Signing Requests.

oc get csr -ojson | jg -r '.items[] | select(.status == {}) | .metadata.name' | xargs oc adm
certificate approve

Step 15 Update the default IngressController publish strategy to use the LoadBalancerService:

ansible-playbook -i inventory.yaml post-install.yaml

Step 16 Check the status of the installation:

./openshift-install wait-for install-complete --dir=upi --log-level=debug

Step 17 Destroy the cluster:

ansible-playbook -i inventory.yaml down-compute-nodes.yaml
ansible-playbook -i inventory.yaml down-control-plane.yaml
ansible-playbook -i inventory.yaml down-network.yaml
ansible-playbook -i inventory.yaml down-security-groups.yaml

After your run the playbooks in this step, the Cisco ACI BridgeDomain corresponding to the node network will also
be deleted. To reinstall the cluster, run acc-provision again with the -a as described earlier in this document.

Optional Configurations

This section provides instructions for making several optional configurations.

Enabling Multus CNI Plug-in in OpenShift 4.x Cluster with ACI CNI
You can enable Multus in a new cluster or in an already-installed cluster.
Enabling Multusin a new cluster installation

When running acc-provision, set the disable-multus argument to False.

$ acc-provision -a -c acc_provision input.yaml -f openshift-4.19-openstack -u <username> -p <password> -o
aci_deployment.yaml --disable-multus false

The procedure below, is for enabling Multus in an already-installed cluster.

Procedure

Step 1 Generate a new ACI CNI deployment configuration.

$ acc-provision -c acc _provision input.yaml -f openshift-4.19-openstack -u <username> -p <password>
-0 aci deployment.yaml --disable-multus false

11

Note
The above command does not use the -a flag.

Step 2 Delete acicontainersoperator CR.

$ oc delete acicontainersoperator acicnioperator -n aci-containers-system

Step 3 Apply the new aci_deployment.yaml file.

$ oc apply -f aci deployment.yaml

Step 4 Remove “disableMultiNetwork: true” from current OpenShift Network Object by editing

cluster-network-03-config.yaml.

$ oc edit -f cluster-network-03-config.yaml

Enable CPMS to manage control plane nodes

You can leverage the Control Plane Machine Set (CPMS) resource to auto-manage the control plane nodes.

\}

Note These steps will be useful in the scenario where an OpenShift cluster is upgraded from version 4.18 to 4.19 and CPMS is not
configured in 4.18.

Follow these steps to enable CPMS:

Procedure

Step 1 Create machine objects for the existing control plane nodes.

This is an example of a machine config for the control-plane node.

apiVersion: machine.openshift.io/vlbetal
kind: Machine
metadata:
labels:
machine.openshift.io/cluster-api-cluster: openupi-tvgjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master
name: openupi-tvgjc-master-0
namespace: openshift-machine-api
annotations:
machine.openshift.io/instance-id: 6c578563-£295-487a-alcl-e81a9%942bfd28
spec:
lifecycleHooks: {}
metadata: {}
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/vlalphal
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api
flavor: aci rhel medium
image: rhcos-4.19

12

kind: OpenstackProviderSpec
metadata:
creationTimestamp: null
networks:
- filter: {}
subnets:
- filter:
name: openupi-tvgjc-nodes
uuid:
- ec2413e7-2b02-46ef-9a2f-bf308eeb5alc
uuid: c5f49cld-3e78-47ff-af4e-3c89d47e4aeb
- filter: {}
subnets:
- filter:
name: openupi-tvgjc-acicontainers-nodes
uuid:
- d577cf9d-0920-4b60-bf2c-ae76b24e42e6
uuid: a29%eb31a-c590-47£f1-a592-4a35e265c2b3
securityGroups:
- filter: {}
name: openupi-tvgjc-master
serverGroupName: openupi-tvgjc-master
serverMetadata:
Name: openupi-tvgjc-master
openshiftClusterID: openupi-tvgjc
tags:
- openshiftClusterID=openupi-tvgjc
trunk: true
userDataSecret:
name: master-user-data
providerID: openstack:///6c578563-£295-487a-alcl-e81a942bfd28

Use the manifest to create a machine object for each of the existing master nodes. Update these fields from the template:

* Replace openupi-tvgjc with OpenShift cluster ID of your cluster.

metadata.name: Set this field with name of master node.

metadata.annotations.machine.openshift.io/instance-id: Set this field with openstack server ID corresponds
to this master node.

spec.providerSpec.value. flavor: Set this field with openstack flavor name used for creating master nodes.

spec.providerSpec.value.image: Set this field with openstack image name that corresponds to RHCOS image
used for creating master nodes.

spec.providerSpec.value.networks: Update this config section with openstack network/subnet details that will
be used for creating master nodes.

spec.providerID: Update UUID from this field with openstack server ID corresponds to this master node.

After you apply these manifests for each of the master nodes, verify that machines are created and show as "Running"
by issuing the following command:

$ oc get machines -n openshift-machine-api

Step 2 Create a Control Plane Machine Set (CPMS) resource.

This is an example of a CPMS resource:

apiVersion: machine.openshift.io/vl
kind: ControlPlaneMachineSet
metadata:

13

14

name: cluster
namespace: openshift-machine-api

spec:
replicas: 3
selector:
matchLabels:

machine.openshift.io/cluster-api-cluster: openupi-tvgjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master
state: Active
strategy:
type: RollingUpdate
template:
machineType: machines vlbetal machine openshift io
machines vlbetal machine openshift io:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: openupi-tvgjc
machine.openshift.io/cluster-api-machine-role: master
machine.openshift.io/cluster-api-machine-type: master
spec:
lifecycleHooks: {}
metadata: {}
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/vlalphal
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api
flavor: aci_rhel medium
image: rhcos-4.19
kind: OpenstackProviderSpec
metadata:
creationTimestamp: null
networks:
- filter: {}
subnets:
- filter:
name: openupi-tvgjc-nodes
- filter: {}
subnets:
- filter:
name: openupi-tvgjc-acicontainers-nodes
securityGroups:
- filter: {}
name: openupi-tvgjc-master
serverGroupName: openupi-tvgjc-master
serverMetadata:
Name: openupi-tvgjc-master
openshiftClusterID: openupi-tvgjc
tags:
- openshiftClusterID=openupi-tvgjc
trunk: true
userDataSecret:
name: master-user-data

Update these fields before applying the cofiguration:

* Replace openupi-tvgjc with OpenShift cluster ID of your cluster.

* spec.template.spec.providerSpec.value.flavor: Set this field with openstack flavor name used for creating
master nodes.

* spec.template.spec.providerSpec.value.image: Set this field with openstack image name that corresponds to
RHCOS image used for creating master nodes.

* spec.template.spec.providerSpec.value.networks: Update this config section with openstack network/subnet
details that will be used for creating master nodes.

Note

For the ControlPlaneMachineSet to be in operation, you must set spec.state to active.

network/subnet UUIDs are not supported in ControlPlaneMachineSet.

Step 3 After you create the Create a Control Plane Machine Set (CPMS) resource, the existing master nodes will be replaced
with new ones. You can monitor its progress using these commands:

$ oc get controlplanemachineset -n openshift-machine-api # To check CPMS status

$ oc get machines -n openshift-machine-api # To check machines status

$ oc get nodes -1 node-role.kubernetes.io/master # To check nodes status

Enable IP forwarding on worker nodes

To test the service with a node-port configuration, you must enable IP forwarding on the worker nodes.

Use this procedure to enable IP forwarding on the worker nodes.

Procedure

Step 1 Assign a floating IP to the worker VM.

Step 2 Allow SSH traffic by adding a security rule to permit SSH access in the security group associated with the worker nodes.

Step 3 Enable IP Forwarding on each worker node by SSHing into them and running this command:

sudo sysctl -w net.ipvd.ip forward=1l

Optional Inventory Configurations

In the section Installing OpenShift 4.19 on OpenStack , Step 8 we noted the required fields for Cisco ACI Container Network Interface
(CNI) configuration in the aci_cni section of the inventory.yaml file. This section provides optional configurations and the default

values.

Option

Description and Default Values

cluster snat policy ip

By default, this value is not set.

The Source IP Network Address Translation (SNAT) IP address is used
to create a Cisco ACI-CNI SNAT policy that applies to the whole
cluster. This SNAT policy is created by running the

cluster snat policy.yaml Ansible playbook as described in
Installing Openshift 4.19 on Openstack section in this guide. (If this
value is not set, do not run this playbook.)

15

Option Description and Default Values

dns_ip By default, this value is not set.

Set this field if you do not follow the procedure that is described in the
section "Subnet DNS (optional)" in Installing OpenShift on OpenStack
User-Provisioned Infrastructure on GitHub. The procedure controls
the default resolvers that your Nova servers use.

Use the value to set the dns_nameservers field of the subnet associated
with the *-primaryClusterNetwork network. You can specify one or
more DNS server IPs.

network interfaces node name The name of the node network interface as set by the RHCOS image.

The default value is “enp3s0”.

mtu The MTU set for the *-primaryClusterNetwork Neutron network.

The default value is 1500.

opflex name The name of the node network interface as set by the RHCOS image.

The default value is “enp4s0”.

mtu The MTU set for the *-secondaryClusterAciNetwork Neutron
network.

The default value is 1500.

subnet The default value is 192.168.208.0/20.

This is the CIDR used for the subnet that is associated with the
*-secondaryClusterAciNetwork Neutron network. The size of this
subnet should at least be as large as that of the one used for the
*-primaryClusterNetwork Neutron network. It should also not overlap
any other CIDR in the OpenShift project’s address scope.

A

Caution In a fresh installation of OSP 17.1, network interface names on the nodes may differ from what is observed with earlier
versions of OSP. Interfaces may appear as enp*s instead of ens*. This naming variation is controlled by the hw_machine type
parameter in Nova's configuration on compute nodes. To prevent installation issues, ensure the correct interface names are
updated in the inventory.yaml file, as outlined in this section.

16

©2025 Cisco Systems, Inc. All rights reserved.

ol I 1l l I| Americas Headquarters Asia Pacific Headquarters Europe Headquarters

Cisco Systems, Inc. CiscoSystems(USA)Pte.Ltd. CiscoSystemsinternationalBV
CiscCoO. San Jose, CA 95134-1706 Singapore Amsterdam,TheNetherlands
USA

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the
Cisco Website at www.cisco.com/go/offices.

	Installing OpenShift 4.19 on OpenStack 17.1
	New and Changed Information
	OpenShift 4.19 on OpenStack
	Network Design and the Cisco ACI CNI Plug-in
	Prerequisites for Installing OpenShift 4.19
	Installing OpenShift 4.19 on OpenStack 17.1
	Optional Configurations
	Enabling Multus CNI Plug-in in OpenShift 4.x Cluster with ACI CNI
	Enable CPMS to manage control plane nodes
	Enable IP forwarding on worker nodes
	Optional Inventory Configurations

