Performing Tasks Using REST API

* Part I: Layer 3 Configuration, on page 1
* Part II: External Routing (L30Out) Configuration, on page 26

Part I: Layer 3 Configuration

Configuring Common Pervasive Gateway Using REST API
Configuring Common Pervasive Gateway Using the REST API

Before you begin

* The tenant, VRF, and bridge domain are created.

Procedure

Configure common pervasive gateway.
In the following example REST API XML, the bolded text is relevant to configuring a common pervasive gateway.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml —-->
<polUni>
<fvTenant name="test">
<fvCtx name="test"/>

<fvBD name="test" vmac="12:34:56:78:9a:bc">
<fvRsCtx tnFvCtxName="test"/>

<!-- Primary address -->

<fvSubnet ip="192.168.15.254/24" preferred="yes"/>

<!-- Virtual address -->

<fvSubnet ip="192.168.15.1/24" virtual="yes"/>
</fvBD>

<fvAp name="test">

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring IP Aging Using REST API

<fvAEPg name="web">
<fvRsBd tnFvBDName="test"/>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[ethl/3]" encap="vlan-1002"/>
</fvAEPg>
</fvAp>
</fvTenant>
</polUni>

Configuring IP Aging Using REST API

Configuring IP Aging Using the REST API
This section explains how to enable and disable the IP aging policy using the REST APIL

Procedure

Step 1 To enable the IP aging policy:

Example:
<epIpAgingP adminSt="enabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey=""
ownerTag=""/>

Step 2 To disable the IP aging policy:

Example:
<epIpAgingP adminSt="disabled" descr="" dn="uni/infra/ipAgingP-default" name="default" ownerKey=""
ownerTag=""/>

What to do next

To specify the interval used for tracking IP addresses on endpoints, create an Endpoint Retention policy by
sending a post with XML such as the following example:

<fvEpRetPol bounceAgeIntvl="630" bounceTrig="protocol"
holdIntvl="350" lcOwn="local" localEpAgeIntvl="900" moveFreg="256"
name="EndpointPoll" remoteEpAgeIntvl1="350"/>

Configuring a Static Route on a Bridge Domain Using REST API

Configuring a Static Route on a Bridge Domain Using the REST API

* When creating the subnet for the static route, it is configured under the EPG (fvSubnet object under
fvAEPg), associated with the pervasive BD (fvBD), not the BD itself.

* The subnet mask must be /32 (/128 for IPv6) pointing to one IP address or one endpoint. It is contained
in the EPG associated with the pervasive BD.

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring IPv6 Neighbor Discovery Using REST API .

Before you begin

The tenant, VRF, BD, and EPG have been created.

Procedure

To configure a static route for the BD used in a pervasive gateway, enter a post such as the following example:

Example:

<fvAEPg name="epl">
<fvRsBd tnFvBDName="bdl"/>
<fvSubnet ip="2002:0db8:85a3:0000:0000:8a2e:0370:7344/128" ctrl="no-default-gateway" >
<fvEpReachability>
<ipNexthopEpP nhAddr="2001:0db8:85a3:0000:0000:8a2e:0370:7343/128" />
</fvEpReachability>
</fvSubnet>
</fvAEPg>

Configuring IPv6 Neighbor Discovery Using REST API

Creating the Tenant, VRF, and Bridge Domain with IPv6é Neighbor Discovery on the Bridge Domain
Using the REST API

Procedure

Create a tenant, VRF, bridge domain with a neighbor discovery interface policy and a neighbor discovery prefix policy.

Example:
<fvTenant descr="" dn="uni/tn-ExampleCorp" name="ExampleCorp" ownerKey="" ownerTag="">
<ndIfPol name="NDPol001l" ctrl="managed-cfg” descr="" hopLimit="64" mtu="1500" nsIntv1="1000"
nsRetries="3" ownerKey="" ownerTag="" ralntvl="600" ralLifetime="1800" reachableTime="0"
retransTimer="0"/>
<fvCtx descr="" knwMcastAct="permit" name="pvnl" ownerKey="" ownerTag="" pcEnfPref="enforced">
</fvCtx>
<fvBD arpFlood="no" descr="" mac="00:22:BD:F8:19:FF" multiDstPktAct="bd-flood" name="bdl"
ownerKey="" ownerTag="" unicastRoute="yes" unkMacUcastAct="proxy" unkMcastAct="flood">
<fvRsBDToNdP tnNdIfPolName="NDPol001l"/>
<fvRsCtx tnFvCtxName="pvnl"/>
<fvSubnet ctrl="nd" descr="" ip="34::1/64" name="" preferred="no" scope="private">
<fvRsNdPfxPol tnNdPfxPolName="NDPfxPol0O01"/>
</fvSubnet>
<fvSubnet ctrl="nd" descr="" ip="33::1/64" name="" preferred="no" scope="private">
<fvRsNdPfxPol tnNdPfxPolName="NDPfxPol002"/>
</fvSubnet>
</£fvBD>
<ndPfxPol ctrl="auto-cfg,on-1link" descr="" lifetime="1000" name="NDPfxPolOOl" ownerKey=""
ownerTag="" prefLifetime="1000"/>
<ndPfxPol ctrl="auto-cfg,on-1ink" descr="" lifetime="4294967295" name="NDPfxPol002" ownerKey=""
ownerTag="" preflLifetime="4294967295"/>
</fvTenant>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the REST API

Note

If you have a public subnet when you configure the routed outside, you must associate the bridge domain with the outside
configuration.

Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the
REST API

Procedure

Configure an IPv6 neighbor discovery interface policy and associate it with a Layer 3 interface:
The following example displays the configuration in a non-VPC set up.

Example:

<fvTenant dn="uni/tn-ExampleCorp" name="ExampleCorp">
<ndIfPol name="NDPol0Ol" ctrl="managed-cfg" hopLimit="64" mtu="1500" nsIntvl="1000" nsRetries="3"
ralntvl="600" ralLifetime="1800" reachableTime="0" retransTimer="0"/>
<fvCtx name="pvnl" pcEnfPref="enforced">
</fvCtx>
<1l3extOut enforceRtctrl="export" name="13extOut001">
<13extRsEctx tnFvCtxName="pvnl"/>
<1l3extLNodeP name="lnodeP001">
<13extRsNodeL30OutAtt rtrId="11.11.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2011"/>
<13extLIfP name="1ifP0OO0O1">
<13extRsPathL30utAtt addr="2001:20:21:22::2/64" ifInstT="13-port" 1lAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" tDn="topology/pod-2/paths-2011/pathep-[ethl/1]">

<ndPfxP>
<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001l"/>
</ndPfxP>
</13extRsPathL30utAtt>
<13extRsNdIfPol tnNdIfPolName="NDPol001l"/>
</13extLIfP>
</13extLNodeP>
<13extInstP name="instp"/>
</13extOut>
<ndPfxPol ctrl="auto-cfg,on-1link" descr="" lifetime="1000" name="NDPfxPol00l" ownerKey="" ownerTag=""
prefLifetime="1000"/>
</fvTenant>

Note
For VPC ports, ndPfxP must be a child of 13extMember instead of 13extRsNodeL.30OutAtt. The following code snippet
shows the configuration in a VPC setup.

<13extLNodeP name="lnodeP001">
<13extRsNodeL30utAtt rtrId="11.11.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2011"/>
<13extRsNodeL30utAtt rtrId="12.12.205.1" rtrIdLoopBack="yes" tDn="topology/pod-2/node-2012"/>
<13extLIfP name="1ifP002">
<l3extRsPathL30OutAtt addr="0.0.0.0" encap="vlan-205" ifInstT="ext-svi" 1lAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-2/protpaths-2011-2012/pathep-[vpc7]" >
<l3extMember addr="2001:20:25:1::1/64" descr="" 11Addr="::" name="" nameAlias="" side="A">
<ndPfxP >

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Neighbor Discovery Duplicate Address Detection Using the REST API .

<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001"/>
</ndPfxpP>
</13extMember>
<l3extMember addr="2001:20:25:1::2/64" descr="" 11Addr="::" name="" nameAlias="" side="B">
<ndPfxP >
<ndRsPfxPToNdPfxPol tnNdPfxPolName="NDPfxPol001"/>
</ndPfxpP>
</13extMember>
</13extRsPathL30utAtt>
<13extRsNdIfPol tnNdIfPolName="NDPolOO1l"/> </13extLIfP>
</13extLNodeP>

Configuring Neighbor Discovery Duplicate Address Detection Using the REST API

Procedure

Step 1 Disable the Neighbor Discovery Duplicate Address Detection process for a subnet by changing the value of the ipv6Dad
entry for that subnet to disabled.

The following example shows how to set the Neighbor Discovery Duplicate Address Detection entry for the
2001:DB8:A::11/64 subnet to disabled:

Note
In the following REST API example, long single lines of text are broken up with the \ character to improve readability.

Example:
<13extRsPathL30OutAtt addr="2001:DB8:A::2/64" autostate="enabled" \
childAction="" descr="" encap="vlan-1035" encapScope="local" \
ifInstT="ext-svi" ipv6Dad="enabled" 11lAddr=": :" \
mac="00:22:BD:F8:19:DD" mtu="inherit" \
rn="rspathL30utAtt-[topology/pod-1/paths-105/pathep-[ethl/1]11" \
status="" tDn="topology/pod-1/paths-105/pathep-[ethl/1]" >
<13extIp addr="2001:DB8:A::11/64" childAction="" descr="" \
ipvéDad="disabled" name="" nameAlias="" \
rn="addr-[2001:DB8:A::11/64]" status=""/>
</13extRsPathL30utAtt>
</13extLIfP>
</13extLNodeP>
Step 2 Enter the show ipv6 int command on the leaf switch to verify that the configuration was pushed out correctly to the leaf

switch. For example:

swtb23-leaf5# show ipvé int vrf icmpv6:vl
IPv6 Interface Status for VRF "icmpv6:v1"(9)

vlan2, Interface status: protocol-up/link-up/admin-up, iod: 73
if mode: ext

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring Microsoft NLB Using REST API

IPv6 address:
2001:DB8:A::2/64 [VALID] [PREFERRED]
2001:DB8:A::11/64 [VALID] [dad-disabled]
IPv6 subnet: 2001:DB8:A::/64
IPv6 link-local address: fe80::863d:c6ff:fe9f:eb8b/10 (Default) [VALID]

Configuring Microsoft NLB Using REST API

Configuring Microsoft NLB in Unicast Mode Using the REST API

Procedure

To configure Microsoft NLB in unicast mode, send a post with XML such as the following example:

Example:

https://apic-ip-address/api/node/mo/uni/.xml
<polUni>
<fvTenant name="tn2" >
<fvCtx name="ctxl"/>
<fvBD name="bd2">
<fvRsCtx tnFvCtxName="ctxl" />
</ fvBD>
<fvAp name = "apl">
<fvAEPg name = "epl">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="10.0.1.1/32" scope="public" ctrl="no-default-gateway">
<fvEpNlb mac="12:21:21:35" mode="mode-uc"/>
</fvSubnet>
</fvAEPg>
</fvAp>
</fvTenant>
</polUni>

Configuring Microsoft NLB in Multicast Mode Using the REST API

Procedure

To configure Microsoft NLB in multicast mode, send a post with XML such as the following example:

Example:

https://apic-ip-address/api/node/mo/uni/ .xml
<polUni>
<fvTenant name="tn2" >
<fvCtx name="ctx1l"/>
<fvBD name="bd2">
<fvRsCtx tnFvCtxName="ctxl" />
</fvBD>
<fvAp name = "apl">

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Microsoft NLB in IGMP Mode Using the REST API .

<fvAEPg name = "epl">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="2001:0db8:85a3:0000:0000:8a2e:0370:7344/128" scope="public"
ctrl="no-default-gateway">
<fvEpNlb mac="03:21:21:35" mode="mode-mcast--static"/>

</fvSubnet>
<fvRsPathAtt tDn="topology/pod-1/paths-101/pathep-[ethl/6]" encap="vlan-911" >
<fvNlbStaticGroup mac = "03:21:21:35" />
</fvRsPathAtt>
</fvAEPg>
</fvAp>
</fvTenant>
</polUni>

Configuring Microsoft NLB in IGMP Mode Using the REST API

Procedure

To configure Microsoft NLB in IGMP mode, send a post with XML such as the following example:

Example:

https://apic-ip-address/api/node/mo/uni/.xml
<polUni>
<fvTenant name="tn2" >
<fvCtx name="ctxl"/>
<fvBD name="bd2">
<fvRsCtx tnFvCtxName="ctxl" />
</fvBD>
<fvAp name = "apl">
<fvAEPg name = "epl">
<fvRsBd tnFvBDName = "bd2"/>
<fvSubnet ip="10.0.1.3/32" scope="public" ctrl="no-default-gateway">
<fvEpNlb group ="224.132.18.17" mode="mode-mcast-igmp" />
</fvSubnet>
</fvAEPg>
</ fvAp>
</fvTenant>
</polUni>

Configuring IGMP Snooping Using REST API

Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using the REST API

SUMMARY STEPS

1. To configure an IGMP Snooping policy and assign it to a bridge domain, send a post with XML such as
the following example:

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Enabling IGMP Snooping and Multicast on Static Ports Using the REST APl

DETAILED STEPS

Procedure

To configure an IGMP Snooping policy and assign it to a bridge domain, send a post with XML such as the following
example:
Example:

https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="mcast tenantl">

<!-- Create an IGMP snooping template, and provide the options -->
<igmpSnoopPol name="igmp snp bd 21"
ver="v2"

adminSt="enabled"
lastMbrIntvl="1"

queryIntvl="125"

rspIntvl="10"

startQueryCnt="2"
startQueryIntvl="31"

/>

<fvCtx name="ip video"/>

<fvBD name="bd 21">

<fvRsCtx tnFvCtxName="ip video"/>

<!-- Bind IGMP snooping to a BD -->
<fvRsIgmpsn tnIgmpSnoopPolName="igmp snp bd 21"/>
</£fvBD></fvTenant>

This example creates and configures the IGMP Snooping policy, igmp_snp_bd 12 with the following properties, and
binds the IGMP policy, igmp _snp _bd 21, to bridge domain, bd_21:

* Administrative state is enabled

» Last Member Query Interval is the default 1 second.
* Query Interval is the default 125.

* Query Response interval is the default 10 seconds

* The Start Query Count is the default 2 messages

* The Start Query interval is 31 seconds.

* Setting the Querier Version to v2.

Enabling IGMP Snooping and Multicast on Static Ports Using the REST API

You can enable IGMP snooping and multicast processing on ports that have been statically assigned to an
EPG. You can create and assign access groups of users that are permitted or denied access to the IGMP snoop
and multicast traffic enabled on those ports.

. Performing Tasks Using REST API



erforming Tasks Using
Performing Tasks Using REST API
Enabling Group Access to IGMP Snooping and Multicast using the REST API .

SUMMARY STEPS
1. To configure application EPGs with static ports, enable those ports to receive and process IGMP snooping
and multicast traffic, and assign groups to access or be denied access to that traffic, send a post with XML
such as the following example.
DETAILED STEPS
Procedure

To configure application EPGs with static ports, enable those ports to receive and process IGMP snooping and multicast
traffic, and assign groups to access or be denied access to that traffic, send a post with XML such as the following example.

In the following example, IGMP snooping is enabled on 1eaf 102 interface 1/10 on VLAN 202. Multicast IP addresses
224.1.1.1and 225.1.1.1 are associated with this port.

Example:

https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="tenant A">
<fvAp name="application">
<fvAEPg name="epg A">
<fvRsPathAtt encap="vlan-202" instrImedcy="immediate" mode="regular"
tDn="topology/pod-1/paths-102/pathep-[ethl/10]">
<!-- IGMP snooping static group case -->
<igmpSnoopStaticGroup group="224.1.1.1" source="0.0.0.0"/>
<igmpSnoopStaticGroup group="225.1.1.1" source="2.2.2.2"/>
</fvRsPathAtt>
</fvAEPg>
</fvAp>
</fvTenant>

Enabling Group Access to IGMP Snooping and Multicast using the REST API

After you have enabled IGMP snooping and multicast on ports that have been statically assigned to an EPG,
you can then create and assign access groups of users that are permitted or denied access to the IGMP snooping
and multicast traffic enabled on those ports.

Procedure

To define the access group, F23broker, send a post with XML such as in the following example.

The example configures access group F23broker, associated with tenant A, Rmap A, application A, epg_A, on leaf
102, interface 1/10, VLAN 202. By association with Rmap A, the access group F23broker has access to multicast traffic
received at multicast address 226.1.1.1/24 and is denied access to traffic received at multicast address 227.1.1.1/24.

Example:

<!-- api/node/mo/uni/.xml --> <fvTenant name="tenant A"><pimRouteMapPol name="Rmap A"><pimRouteMapEntry
action="permit" grp="226.1.1.1/24" order="10"/> <pimRouteMapEntry action="deny" grp="227.1.1.1/24" order="20"/>
</pimRouteMapPol> <fvAp name="application A"> <fvAEPg name="epg A"> <fvRsPathAtt encap="vlan-202"

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring MLD Snooping Using REST API

instrimedcy="immediate" mode="regular" tDn="topology/pod-1/paths-102/pathep-[eth1/10]"> <!-- IGMP snooping
access group case --> <igmpSnoopAccessGroup name="F23broker"> <igmpRsSnoopAccessGroupFilterRMap
tnPimRouteMapPolName="Rmap A"/></igmpSnoopAccessGroup> </fvRsPathAtt> </fvAEPg> </fvAp> </fvTenant>

Configuring MLD Snooping Using REST API

Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using the REST API

Procedure

To configure an MLD Snooping policy and assign it to a bridge domain, send a post with XML such as the following
example:

Example:

https://apic-ip-address/api/node/mo/uni/.xml
<fvTenant name="mldsn">
<mldSnoopPol adminSt="enabled" ctrl="fast-leave,querier" name="mldsn-it-fabric-querier-policy"
queryIntvl="125"
rspIntvl="10" startQueryCnt="2" startQueryIntvl="31" status=""/>
<fvBD name="mldsn-bd3">
<fvRsMldsn status="" tnMldSnoopPolName="mldsn-it-policy"/>
</£vBD>
</fvTenant>

This example creates and configures the MLD Snooping policy m1dsn with the following properties, and binds the MLD
policy mldsn-it-fabric-querier-policy to bridge domain ml1dsn-bd3:

* Fast leave processing is enabled

* Querier processing is enabled

* Query Interval is set at 125

* Max query response time is set at 10

» Number of initial queries to send is set at 2

* Time for sending initial queries is set at 31

Configuring IP Multicast Using REST API
Configuring Layer 3 Multicast Using REST API

Procedure

Step 1 Configure a tenant and VRF and enable multicast on a VRF.

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

Example:

<fvTenant dn="uni/tn-PIM Tenant" name="PIM Tenant">
<fvCtx knwMcastAct="permit" name="ctxl">
<pimCtxP mtu="1500">
</pimCtxP>
</fvCtx>
</fvTenant>

Step 2 Configure L3 Out and enable multicast (PIM, IGMP) on the L3 Out.

Example:

<13extOut enforceRtctrl="export" name="1l3out-pim 13outl">
<13extRsEctx tnFvCtxName="ctxl"/>
<13extLNodeP configIssues="" name="bLeaf-CTX1-101">
<13extRsNodeL30utAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
<13extLIfP name="if-PIM Tenant-CTX1" tag="yellow-green">
<igmpIfP/>
<pimIfP>
<pimRsIfPol tDn="uni/tn-PIM Tenant/pimifpol-pim poll"/>
</pimIfP>
<1l3extRsPathL30utAtt addr="131.1.1.1/24" ifInstT="13-port" mode="regular" mtu="1500"
tDn="topology/pod-1/paths-101/pathep-[ethl/46]"/>
</13extLIfP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-13outDom"/>
<13extInstP name="13out-PIM Tenant-CTXl-ltopo" >
</13extInstP>
<pimExtP enabledAf="ipv4-mcast" name="pim"/>
</13extOut>

Step 3 Configure a BD under the tenant and enable multicast and IGMP on the BD.

Example:

<fvTenant dn="uni/tn-PIM Tenant" name="PIM Tenant">
<fvBD arpFlood="yes" mcastAllow="yes" multiDstPktAct="bd-flood" name="bd2" type="regular"
unicastRoute="yes" unkMacUcastAct="flood" unkMcastAct="flood">
<igmpIfP/>
<fvRsBDToOut tnL3extOutName="13out-pim_ l3outl"/>
<fvRsCtx tnFvCtxName="ctx1l"/>
<fvRsIgmpsn/>
<fvSubnet ctrl="" ip="41.1.1.254/24" preferred="no" scope="private" virtual="no"/>
</fvBD>
</fvTenant>

Step 4 Configure an IGMP policy and assign it to the BD.

Example:

<fvTenant dn="uni/tn-PIM Tenant" name="PIM Tenant">
<igmpIfPol grpTimeout="260" lastMbrCnt="2" lastMbrRespTime="1" name="igmp pol" querierTimeout="255"
queryIntvl="125" robustFac="2" rspIntvl="10" startQueryCnt="2" startQueryIntvl="125" ver="v2">
</igmpIfPol>
<fvBD arpFlood="yes" mcastAllow="yes" name="bd2">
<igmpIfpP>
<igmpRsIfPol tDn="uni/tn-PIM Tenant/igmpIfPol-igmp pol"/>
</igmpIfpP>
</fvBD>
</fvTenant>

Step 5 Configure a route map, PIM, and RP policy on the VRF.

Note
When configuring a fabric RP using the REST API, first configure a static RP.

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
Performing Tasks Using REST API

Example:
Configuring a static RP:

<fvTenant dn="uni/tn-PIM Tenant" name="PIM Tenant">
<pimRouteMapPol name="rootMap">
<pimRouteMapEntry action="permit" grp="224.0.0.0/4" order="10" rp="0.0.0.0" src="0.0.0.0/0"/>

</pimRouteMapPol>
<fvCtx knwMcastAct="permit" name="ctxl">
<pimCtxP ctrl="" mtu="1500">
<pimStaticRPPol>
<pimStaticRPEntryPol rpIp="131.1.1.2">
<pimRPGrpRangePol>
<rtdmcRsFilterToRtMapPol tDn="uni/tn-PIM Tenant/rtmap-rootMap"/>
</pimRPGrpRangePol>
</pimStaticRPEntryPol>
</pimStaticRPPol>
</pimCtxP>
</fvCtx>
</fvTenant>

Configuring a fabric RP:

<fvTenant name="t0">
<pimRouteMapPol name="fabricrp-rtmap">
<pimRouteMapEntry grp="226.20.0.0/24" order="1" />
</pimRouteMapPol>
<fvCtx name="ctxl">
<pimCtxP ctrl="">
<pimFabricRPPol status="">
<pimStaticRPEntryPol rpIp="6.6.6.6">

<pimRPGrpRangePol>
<rtdmcRsFilterToRtMapPol tDn="uni/tn-t0/rtmap-fabricrp-rtmap" />
</pimRPGrpRangePol>
</pimStaticRPEntryPol>
</pimFabricRPPol>
</pimCtxP>

</fvCtx>
</fvTenant>

Step 6 Configure a PIM interface policy and apply it on the L3 Out.

Example:
<fvTenant dn="uni/tn-PIM Tenant" name="PIM Tenant">
<pimIfPol authKey="" authT="none" ctrl="" drDelay="60" drPrio="1" helloItv1="30000" itvl="60"

name="pim poll"/>
<13extOut enforceRtctrl="export" name="1l3out-pim 13outl" targetDscp="unspecified">
<13extRsEctx tnFvCtxName="ctx1l"/>
<l3extLNodeP name="bLeaf-CTX1-101">
<13extRsNodeL30utAtt rtrId="200.0.0.1" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101"/>
<13extLIfP name="if-SIRI VPC src recv-CTX1" tag="yellow-green">
<pimIfP>
<pimRsIfPol tDn="uni/tn-tn-PIM Tenant/pimifpol-pim poll"/>
</pimIfP>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>

Step 7 Configure inter-VRF multicast.

Example:

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Layer 3 IPv6 Multicast Using REST API .

<fvTenant name="t0">
<pimRouteMapPol name="intervrf" status="">
<pimRouteMapEntry grp="225.0.0.0/24" order="1" status=""/>
<pimRouteMapEntry grp="226.0.0.0/24" order="2" status=""/>
<pimRouteMapEntry grp="228.0.0.0/24" order="3" status="deleted"/>
</pimRouteMapPol>
<fvCtx name="ctxl">
<pimCtxP ctrl="">
<pimInterVRFPol status="">
<pimInterVRFEntryPol srcVrfDn="uni/tn-t0/ctx-stig r ctx" >
<rtdmcRsFilterToRtMapPol tDn="uni/tn-tO/rtmap-intervrf" />
</pimInterVRFEntryPol>
</pimInterVRFPol>
</pimCtxP>
</fvCtx>
</fvTenant>

Configuring Layer 3 IPv6 Multicast Using REST API

Before you begin

* The desired VRF, bridge domains, Layer 3 Out interfaces with IPv6 addresses must be configured to
enable PIM6. For Layer 3 Out, for IPv6 multicast to work, an IPv6 loopback address is configured for
the node in the logical node profile.

* Basic unicast network must be configured.

Procedure

Step 1 Enable PIM6 on the VRF.

Example:

<fvTenant name="t0">
<fvCtx name="ctxl" pcEnfPref="unenforced" >
<pimIPV6CtxP ctrl="" mtu="1500" />
</fvCtx>
</fvTenant>

Step 2 Enable PIM6 on the Layer 3 Out.

Example:

<fvTenant dn="uni/tn-t0" name="t0">
<13extOut enforceRtctrl="export" name="bl 13out 1">
<pimExtP enabledAf="ipv6-mcast" name="pim"/>
</13extOut>
</fvTenant>

Step 3 Enable PIM6 on the BD.

Example:

<fvTenant name="t0" >

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring Multicast Filtering Using the REST API

<fvBD name="BD_VPC5" ipvéMcastAllow="yes" >
<fvRsCtx tnFvCtxName="ctxl" />
<fvSubnet ip="124:1::ffff:ffff:f£ff:0/64" scope="public"/>
</fvBD>
</fvTenant>

Step 4 Configure Static Rendezvous Point.

Example:

<fvTenant name="t0">
<pimRouteMapPol dn="uni/tn-t0/rtmap-static 101 ipvé6" name="static 101 ipve">
<pimRouteMapEntry action="permit" grp="ff00::/8" order="1" rp="2001:0:2001:2001:1:1:1:1/128"
src="::"/>
</pimRouteMapPol>
<fvCtx name="ctxl" pcEnfPref="unenforced">
<pimIPV6CtxP ctrl="" mtu="1500">
<pimStaticRPPol>
<pimStaticRPEntryPol rpIp="2001:0:2001:2001:1:1:1:1">
<pimRPGrpRangePol>
<rtdmcRsFilterToRtMapPol tDn="uni/tn-t0/rtmap-static 101 ipvé"/>
</pimRPGrpRangePol>
</pimStaticRPEntryPol>
</pimStaticRPPol>
</pimIPV6CtxP>
</ fvCtx>
</fvTenant>

Step 5 Configure a PIM6 interface policy and apply it on the Layer 3 Out.

Example:

<fvTenant dn="uni/tn-t0" name="t0">
<13extOut enforceRtctrl="export" name="bl 13out 1">

<1l3extLNodeP annotation="" configlIssues="" descr="" name="common npl" nameAlias="" ownerKey=""
ownerTag="" tag="yellow-green" targetDscp="unspecified">
<13extLIfP annotation="" descr="" name="common intpl v6" nameAlias="" ownerKey="" ownerTag=""
prio="unspecified" tag="yellow-green">
<pimIPV6IfP annotation="" descr="" name="" nameAlias="">
<pimRsV6IfPol annotation="" tDn="uni/tn-common/pimifpol-pimvé policy"/>
</pimIPV6ILP>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>

Layer 3 IPv6 multicast with PIM6 is enabled.

Configuring Multicast Filtering Using the REST API

You will be configuring multicast filtering at the bridge domain level. Use the procedures in this topic to
configure either source filtering or receiver filtering, or both, at the bridge domain level.

Before you begin
* The bridge domain where you will be configuring multicast filtering is already created.

* The bridge domain is a PIM-enabled bridge domain.

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 1

Step 2

Performing Tasks Using REST API .

* Layer 3 multicast is enabled at the VRF level.

Procedure

If you want to enable multicast source filtering on the bridge domain, send a post with XML such as the following
example:

Example:

<fvBD dn="uni/tn-filter/BD-BD1520" ipv6McastAllow="no" mcastAllow="yes">

<pimBDP annotation="" descr="" name="" nameAlias="" ownerKey="" ownerTag="">
<pimBDFilterPol annotation="" descr="" name="" nameAlias="">
<pimBDSrcFilterPol annotation="" descr="" name="" nameAlias="">

<rtdmcRsFilterToRtMapPol tDn="uni/tn-filter/rtmap-test src_ filter"/>

</pimBDSrcFilterPol>
</pimBDFilterPol>

</pimBDP>

</£fvBD>

If you want to enable multicast receiver filtering on the bridge domain, send a post with XML such as the following
example:

Example:

<fvBD dn="uni/tn-filter/BD-BD1520" ipv6McastAllow="no" mcastAllow="yes">

<pimBDP annotation="" descr="" name="" nameAlias="" ownerKey="" ownerTag="">
<pimBDFilterPol annotation="" descr="" name="" nameAlias="">
<pimBDDestFilterPol annotation="" descr="" name="" nameAlias="">

<rtdmcRsFilterToRtMapPol tDn="uni/tn-filter/rtmap-Recv_filter"/>
</pimBDDestFilterPol>
</pimBDFilterPol>
</pimBDP>
</fvBD>

Note
You can also enable both source and receiver filtering on the same bridge domain by sending a post with XML such as
the following example:

<fvBD dn="uni/tn-filter/BD-BD1520" ipvéMcastAllow="no" mcastAllow="yes">

<pimBDP annotation="" descr="" name="" nameAlias="" ownerKey="" ownerTag="">
<pimBDFilterPol annotation="" descr="" name="" nameAlias="">
<pimBDSrcFilterPol annotation="" descr="" name="" nameAlias="">
<rtdmcRsFilterToRtMapPol tDn="uni/tn-filter/rtmap-test_src filter"/>
</pimBDSrcFilterPol>
<pimBDDestFilterPol annotation="" descr="" name="" nameAlias="">

<rtdmcRsFilterToRtMapPol tDn="uni/tn-filter/rtmap-Recv_filter"/>
</pimBDDestFilterPol>
</pimBDFilterPol>
</pimBDP>
</fvBD>

Performing Tasks Using REST API .



. Configuring Multi-Pod Using REST API

Configuring Multi-Pod Using REST API

Setting Up Multi-Pod Fabric Using the REST API

Step 1

Step 2

Step 3

Step 4

Procedure

Login to Cisco APIC:

Example:

http://<apic-name/ip>:80/api/aaalogin.xml
data: <aaaUser name="admin" pwd="ins3965!”/>

Configure the TEP pool:

Example:
http://<apic-name/ip>:80/api/policymgr/mo/uni/controller.xml
<fabricSetupPol status='"'>

<fabricSetupP podId="1" tepPool="10.0.0.0/16" />

<fabricSetupP podId="2" tepPool="10.1.0.0/16" status='"' />
</fabricSetupPol>

Configure the node ID policy:

Example:

http://<apic-name/ip>:80/api/node/mo/uni/controller.xml

<fabricNodeIdentPol>

Performing Tasks Using REST APl |

<fabricNodeIdentP serial="SAL1819RXP4" name="ifav4-leafl" nodeId="101" podId="1"/>
<fabricNodeIdentP serial="SAL1803L25H" name="ifav4-leaf2" nodeId="102" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNYO0" name="ifav4-leaf3" nodeId="103" podId="1"/>
<fabricNodeIdentP serial="SAL1934MNY3" name="ifav4-leaf4" nodeId="104" podId="1"/>
<fabricNodeIdentP serial="SAL1748H56D" name="ifav4-spinel" nodeId="201" podId="1"/>
<fabricNodelIdentP serial="SAL1938P7A6" name="ifav4-spine3" nodeId="202" podId="1"/>
<fabricNodeIdentP serial="SAL1938PHBB" name="ifav4-leaf5" nodeId="105" podId="2"/>
<fabricNodeIdentP serial="SAL1942R857" name="ifav4-leaf6" nodeId="106" podId="2"/>
<fabricNodelIdentP serial="SAL1931LA3B" name="ifav4-spine2" nodeId="203" podId="2"/>
<fabricNodelIdentP serial="FGE173400A9" name="ifav4-spined4" nodeId="204" podId="2"/>

</fabricNodeIdentPol>

Configure infra L30ut and external connectivity profile:

Example:

http://<apic-name/ip>:80/api/node/mo/uni.xml

<polUni>
<fvTenant descr="" dn="uni/tn-infra" name="infra" ownerKey="" ownerTag="">

<13extOut descr="" enforceRtctrl="export" name="multipod" ownerKey="" ownerTag=""
targetDscp="unspecified" status='"'>

<ospfExtP areald='0' areaType='regular' status='"'/>
<1l3extRsEctx tnFvCtxName="overlay-1"/>

<l3extProvLbl descr="" name="prov mpl" ownerKey="" ownerTag="" tag="yellow-green"/>

<13extLNodeP name="bSpine">

. Performing Tasks Using REST API



Performing Tasks Using REST API
Performing Tasks Using REST API .

<13extRsNodeL30utAtt rtrId="201.201.201.201" rtrIdLoopBack="no" tDn="topology/pod-1/node-201">

<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<1l3extLoopBackIfP addr="201::201/128" descr="" name=""/>
<1l3extLoopBackIfP addr="201.201.201.201/32" descr="" name=""/>

</13extRsNodeL30utAtt>
<13extRsNodeL30utAtt rtrId="202.202.202.202" rtrIdLoopBack="no" tDn="topology/pod-1/node-202">

<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>

<1l3extLoopBackIfP addr="202::202/128" descr="" name=""/>

<13extLoopBackIfP addr="202.202.202.202/32" descr="" name=""/>
</13extRsNodeL30OutAtt>

<13extRsNodeL30utAtt rtrId="203.203.203.203" rtrIdLoopBack="no" tDn="topology/pod-2/node-203">
<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<1l3extLoopBackIfP addr="203::203/128" descr="" name=""/>
<1l3extLoopBackIfP addr="203.203.203.203/32" descr="" name=""/>
</13extRsNodeL30utAtt>

<13extRsNodeL30utAtt rtrId="204.204.204.204" rtrIdLoopBack="no" tDn="topology/pod-2/node-204">

<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<1l3extLoopBackIfP addr="204::204/128" descr="" name=""/>
<1l3extLoopBackIfP addr="204.204.204.204/32" descr="" name=""/>

</13extRsNodeL30utAtt>

<13extLIfP name='portIf'>

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[ethl/1]"
encap='vlan-4' ifInstT='sub-interface' addr="201.1.1.1/30" />

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-1/paths-201/pathep-[ethl/2]"
encap='vlan-4' ifInstT='sub-interface' addr="201.2.1.1/30" />

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-1/paths-202/pathep-[ethl/2]"
encap='vlan-4' ifInstT='sub-interface' addr="202.1.1.1/30" />

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[ethl/1]"
encap='vlan-4' ifInstT='sub-interface' addr="203.1.1.1/30" />

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-2/paths-203/pathep-[ethl/2]"
encap='vlan-4' ifInstT='sub-interface' addr="203.2.1.1/30" />

<13extRsPathL30utAtt descr='asr' tDn="topology/pod-2/paths-204/pathep-[ethd4/31]"
encap='vlan-4' ifInstT='sub-interface' addr="204.1.1.1/30" />

<ospfIfpP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
</ospfIfP>

</13extLIfpP>
</13extLNodeP>

<13extInstP descr="" matchT="AtleastOne" name="instpl" prio="unspecified"
targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>

</13extInstP>
</13extOut>
<fvFabricExtConnP descr="" id="1" name="Fabric Ext Conn Poll" rt="extended:as2-nn4:5:16" status='"'>
<fvPodConnP descr="" id="1" name="">
<fvlp addr="100.11.1.1/32"/>
</fvPodConnP>
<fvPodConnP descr="" id="2" name="">
<fvIp addr="200.11.1.1/32"/>
</fvPodConnP>
<fvPeeringP descr="" name="" ownerKey="" ownerTag="" type="automatic with full mesh"/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |

. Configuring Remote Leaf Switches Using REST API

<l3extFabricExtRoutingP descr="" name="ext routing prof 1" ownerKey="" ownerTag="">
<1l3extSubnet aggregate="" descr="" ip="100.0.0.0/8" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="200.0.0.0/8" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="201.1.0.0/16" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="201.2.0.0/16" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="202.1.0.0/16" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="203.1.0.0/16" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="203.2.0.0/16" name="" scope="import-security"/>
<1l3extSubnet aggregate="" descr="" ip="204.1.0.0/16" name="" scope="import-security"/>

</1l3extFabricExtRoutingP>
</fvFabricExtConnP>
</fvTenant>
</polUni>

Configuring Remote Leaf Switches Using REST API

Configure Remote Leaf Switches Using the REST API

Step 1

Step 2

To enable Cisco APIC to discover and connect the IPN router and remote leaf switches, perform the steps in
this topic.

This example assumes that the remote leaf switches are connected to a pod in a multipod topology. It includes
two L3Outs configured in the infra tenant, with VRF overlay-1:

* One is configured on VLAN-4, that is required for both the remote leaf switches and the spine switch
connected to the WAN router.

* One is the multipod-internal L3Out configured on VLAN-5, that is required for the multipod and Remote
Leaf features, when they are deployed together.

Procedure

To define the TEP pool for two remote leaf switches to be connected to a pod, send a post with XML such as the following
example:

Example:

<fabricSetupPol>
<fabricSetupP tepPool="10.0.0.0/16" podId="1" >
<fabricExtSetupP tepPool="30.0.128.0/20" extPoolId="1"/>
</fabricSetupP>
<fabricSetupP tepPool="10.1.0.0/16" podId="2" >
<fabricExtSetupP tepPool="30.1.128.0/20" extPoolId="1"/>
</fabricSetupP>
</fabricSetupPol>

To define the node identity policy, send a post with XML, such as the following example:

Example:

<fabricNodeIdentPol>

<fabricNodeIdentP serial="SAL17267Z7W" name="leafl" nodeId="101" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

<fabricNodeIdentP serial="SAL17267Z7X" name="leaf2" nodeId="102" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Performing Tasks Using REST API .

<fabricNodeIdentP serial="SAL17267Z7Y" name="leaf3" nodeId="201" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>
<fabricNodeIdentP serial="SAL17267Z7Z" name="leaf4" nodeId="201" podId="1"
extPoolId="1" nodeType="remote-leaf-wan"/>

</fabricNodeIdentPol>

To configure the Fabric External Connection Profile, send a post with XML such as the following example:

<fvFabricExtConnP dn="uni/tn-infra/fabricExtConnP-1" id="1" name="Fabric Ext Conn Poll"

<1l3extSubnet ip="150.1.0.0/16" scope="import-security"/>

scope="import-security"/>
scope="import-security"/>
scope="import-security"/>
scope="import-security"/>

scope="import-security"/>

scope="import-security"/>
scope="import-security"/>
scope="import-security"/>
scope="import-security"/>
scope="import-security"/>
scope="import-security"/>

scope="import-security"/>

scope="import-security"/>
scope="import-security"/>
scope="import-security"/>
scope="import-security"/>

Step 3
Example:
<?xml version="1.0" encoding="UTF-8"?>
<imdata totalCount="1">
rt="extended:as2-nn4:5:16" siteId="0">
<13extFabricExtRoutingP name="test">
</13extFabricExtRoutingP>
<l3extFabricExtRoutingP name="ext routing prof 1">
<13extSubnet ip="204.1.0.0/16"
<13extSubnet ip="209.2.0.0/16"
<13extSubnet ip="202.1.0.0/16"
<13extSubnet ip="207.1.0.0/16"
<1l3extSubnet ip="200.0.0.0/8"
<l3extSubnet ip="201.2.0.0/16"
<l3extSubnet ip="210.2.0.0/16"
<13extSubnet ip="209.1.0.0/16"
<l3extSubnet ip="203.2.0.0/16"
<l3extSubnet ip="208.1.0.0/16"
<l3extSubnet ip="207.2.0.0/16"
<13extSubnet ip="100.0.0.0/8"
<13extSubnet ip="201.1.0.0/16"
<l3extSubnet ip="210.1.0.0/16"
<l3extSubnet ip="203.1.0.0/16"
<l3extSubnet ip="208.2.0.0/16"
</1l3extFabricExtRoutingP>
<fvPodConnP id="1">
<fvIp addr="100.11.1.1/32"/>
</fvPodConnP>
<fvPodConnP id="2">
<fvIp addr="200.11.1.1/32"/>
</fvPodConnP>
<fvPeeringP type="automatic with full mesh"/>
</fvFabricExtConnP>
</imdata>
Step 4

To configure an L30ut on VLAN-4, that is required for both the remote leaf switches and the spine switch connected to
the WAN router, enter XML such as the following example:

Example:

<?xml version="1.0" encodin
<polUni>
<fvTenant name="infra">
<13extOut name="rleaf-wan
<ospfExtP areald="0.0.0
<bgpExXtP/>

g="UTF-8"?>

—-test">
.5"/>

<1l3extRsEctx tnFvCtxName="overlay-1"/>
<13extRsL3DomAtt tDn="uni/l3dom-13extDoml"/>
<l3extProvLbl descr="" name="prov mpl" ownerKey="" ownerTag="" tag="yellow-green"/>

<13extLNodeP name="rlea

£-101">

<13extRsNodeL30utAtt rtrId="202.202.202.202" tDn="topology/pod-1/node-101">

</13extRsNodeL30OutAtt
<13extLIfP name="port

>
If">

<13extRsPathL30utAtt ifInstT="sub-interface" tDn="topology/pod-1/paths-101/pathep-[ethl/49]"
addr="202.1.1.2/30" mac="AA:11:22:33:44:66" encap='vlan-4'/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Performing Tasks Using REST API

<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
</ospfIfP>
</13extLIfP>
</13extLNodeP>
<1l3extLNodeP name="rlSpine-201">
<13extRsNodeL30utAtt rtrId="201.201.201.201" rtrIdLoopBack="no" tDn="topology/pod-1/node-201">

<!--

<1l3extLoopBackIfP addr="201::201/128" descr="" name=""/>
<1l3extLoopBackIfP addr="201.201.201.201/32" descr="" name=""/>
-—>

<1l3extLoopBackIfP addr="::" />

</13extRsNodeL30utAtt>
<13extLIfP name="portIf">
<13extRsPathL30utAtt ifInstT="sub-interface" tDn="topology/pod-1/paths-201/pathep-[eth8/36]"
addr="201.1.1.1/30" mac="00:11:22:33:77:55" encap='vlan-4'/>
<ospfIfpP>
<ospfRsIfPol tnOspfIfPolName='ospfIfPol'/>
</ospfIfP>
</13extLIfP>
</13extLNodeP>
<13extInstP descr="" matchT="AtleastOne" name="instpl" prio="unspecified" targetDscp="unspecified">

<fvRsCustQosPol tnQosCustomPolName=""/>
</13extInstP>
</13extOut>
<ospfIfPol name="ospfIfPol" nwT="bcast"/>
</fvTenant>
</polUni>

Step 5 To configure the multipod L30Out on VLAN-5, that is required for both multipod and the remote leaf topology, send a
post such as the following example:

Example:

<?xml version="1.0" encoding="UTF-8"?>
<polUni>

<fvTenant name="infra" >
<13extOut name="ipn-multipodInternal">
<ospfExtP areaCtrl="inherit-ipsec, redistribute, summary" areald="0.0.0.5" multipodInternal="yes"
/>
<1l3extRsEctx tnFvCtxName="overlay-1" />
<1l3extLNodeP name="bLeaf">
<13extRsNodeL30utAtt rtrId="202.202.202.202" rtrIdLoopBack="no" tDn="topology/pod-2/node-202">

<1l3extLoopBackIfP addr="202.202.202.212"/>
</13extRsNodeL30OutAtt>
<13extRsNodeL30utAtt rtrId="102.102.102.102" rtrIdLoopBack="no" tDn="topology/pod-1/node-102">

<l3extLoopBackIfP addr="102.102.102.112"/>
</13extRsNodeL30OutAtt>
<13extLIfP name="portIf">
<ospfIfP authKeyId="1" authType="none">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol" />
</ospfIfpP>
<13extRsPathL30OutAtt addr="10.0.254.233/30" encap="vlan-5" ifInstT="sub-interface"
tDn="topology/pod-2/paths-202/pathep-[eth5/2]"/>
<13extRsPathL30OutAtt addr="10.0.255.229/30" encap="vlan-5" ifInstT="sub-interface"
tDn="topology/pod-1/paths-102/pathep-[eth5/2]"/>
</13extLIfP>
</13extLNodeP>
<13extInstP matchT="AtleastOne" name="ipnInstP" />
</13extOut>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring SR-MPLS Handoff Using REST API .

</fvTenant>
</polUni>

Configuring SR-MPLS Handoff Using REST API

Configuring an SR-MPLS Infra L30ut Using the REST API

» The SR-MPLS infra L3Out is configured on the border leaf switch, which is used to set up the underlay
BGP-LU and overlay MP-BGP EVPN sessions that are needed for the SR-MPLS handoff.

» An SR-MPLS infra L3Out will be scoped to a pod or a remote leaf switch site.

* Border leaf switches or remote leaf switches in one SR-MPLS infra L3Out can connect to one or more
provider edge (PE) routers in one or more routing domains.

* A pod or remote leaf switch site can have one or more SR-MPLS infra L3Outs.

» Each SR-MPLS infra L3Out should have a unique provider label and one provider label only. Each
SR-MPLS infra L3Out is identified by the provider label.
You will configure the following pieces when configuring the SR-MPLS infra L3Out:
* Nodes

* Only leaf switches are allowed to be configured as nodes in the SR-MPLS infra L3Out (border leaf
switches and remote leaf switches).

» Each SR-MPLS infra L30ut can have border leaf switches from one pod or remote leaf switch from
the same site.

* Each border leaf switch or remote leaf switch can be configured in multiple SR-MPLS infra L3Outs
if it connects to multiple SR-MPLS domains.

* You will also configure the loopback interface underneath the node, and a node SID policy underneath
the loopback interface.
* Interfaces
* Supported types of interfaces are:

* Routed interface or sub-interface

* Routed port channel or port channel sub-interface

For sub-interfaces, any VLAN tag is supported.
* You will also configure the underlay BGP peer policy underneath the interfaces area in the SR-MPLS
infra L3Out.

* QoSrules

* You can configure the MPLS ingress rule and MPLS egress rule through the MPLS QoS policy in
the SR-MPLS infra L3Out.

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
Performing Tasks Using REST API

* If you do not create an MPLS QoS policy, any ingressing MPLS traffic is assigned the default QoS
level.

You will also configure the underlay and overlay through the SR-MPLS infra L3Out:
* Underlay: BGP peer IP (BGP LU peer) configuration as part of the interface configuration.

 Overlay: MP-BGP EVPN remote IPv4 address (MP-BGP EVPN peer) configuration as part of the logical
node profile configuration.

Before you begin

» Review the SR-MPLS guidelines and limitations provided in Guidelines and Limitations for SR-MPLS,
especially the guidelines and limitations provided in Guidelines and Limitations for the SR-MPLS Infra
L3O0ut.

* (Optional) If necessary, configure an MPLS custom QoS policy using the procedures provided in Creating
SR-MPLS Custom QoS Policy Using REST API, on page 24.

Procedure

Post with information similar to the following:

<polUni>
<fvTenant name="infra">
<mplsIfPol name="default"/>
<mplsLabelPol name="default" >
<mplsSrgbLabelPol minSrgbLabel="16000" maxSrgbLabel="17000" localId="1" status=""/>
</mplsLabelPol>

<l3extOut name="mplsOut" status="" descr="bl" mplsEnabled="yes">
<1l3extRsEctx tnFvCtxName="overlay-1"/>
<13extProvLbl name="mpls" />

<mplsExtP status="" >
<mplsRsLabelPol tDn="uni/tn-infra/mplslabelpol-default"/>
</mplsExtP>

<l3extLNodeP name="mplsLNP" status="">
<13extRsNodeL3OutAtt rtrId="100.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"
status="">
<l3extLoopBackIfP addr="10.10.10.11" status="">
<mplsNodeSidP sidoffset="2" loopbackAddr="10.1.3.11" status=""/>
</13extLoopBackIfP>
</13extRsNodeL30utAtt>

<13extLIfP name="mplsLIfP1l" status="">
<mplsIfP status="">
<mplsRsIfPol tnMplsIfPolName="default" />
</mplsIfP>
<13extRsPathL30utAtt addr="34.1.2.3/30" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/8]">
<bgpPeerP addr="9.9.9.7" addrTCtrl="af-ucast,af-label-ucast" ctrl="send-ext-com"
ttl="1" status="">
<bgpAsP asn="100"/>
</bgpPeerP>
</13extRsPathL30utAtt>
</13extLIfP>

. Performing Tasks Using REST API


cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143
cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143/unique_143_Connect_42_section_dwt_r1m_vkb
cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143/unique_143_Connect_42_section_dwt_r1m_vkb

| Performing Tasks Using REST API
Configuring an SR-MPLS VRF L30ut Using the REST API .

<bgpInfraPeerP addr="20.1.1.1" ctrl="send-com, send-ext-com" peerT="sr-mpls" ttl="3" status=""

<bgpAsP asn="100"/>
</bgpInfraPeerP>
</13extLNodeP>

<13extInstP name="mplsInstP">
<1l3extSubnet aggregate="" descr="" ip="11.11.11.0/24" name="" scope="import-security"/>
</13extInstP>
<bgpExtP/>
<13extRsL3DomAtt tDn="uni/l3dom-13extDoml" />
</13extOut>

</fvTenant>
</polUni>

Configuring an SR-MPLS VRF L30ut Using the REST API

Using the procedures in this section, you will configure a SR-MPLS VRF L30Out, which will be used to
forward traffic from the SR-MPLS infra L3Out that you configured in the previous set of procedures.

» User tenant VRFs are mapped to the SR-MPLS infra L3Outs to advertise tenant bridge domain subnets
to the DC-PE routers and import the MPLS VPN routes received from the DC-PE.

* You must specify routing and security policies in the SR-MPLS VRF L3Out for each VRF. These policies
point to one or more SR-MPLS infra L3Outs.

* One SR-MPLS VRF L30ut is supported for each VRF.

* You can configure multiple consumer labels in one SR-MPLS VRF L3Out, with each consumer label
identifying one SR-MPLS infra L30ut. A consumer label identifies the entry and exit point for traffic
to and from one SR-MPLS VRF L3Out, which is a particular MPLS domain for a particular pod or remote
leaf switch.

Before you begin

* Review the SR-MPLS guidelines and limitations provided in Guidelines and Limitations for SR-MPLS,
especially the guidelines and limitations provided in Guidelines and Limitations for the SR-MPLS VRF
L3Out.

* Configure an SR-MPLS infra L3Out using the procedures provided in Configuring an SR-MPLS Infra
L3O0ut Using the REST API, on page 21.

Procedure

Post with information similar to the following:

<polUni>
<fvTenant name="tl1l">
<fvCtx name="v1">
<!-- specify bgp evpn route-target -->
<bgpRtTargetP af="ipv4-ucast">

Performing Tasks Using REST API .


cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143
cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143/unique_143_Connect_42_section_yqm_x1m_vkb
cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_143/unique_143_Connect_42_section_yqm_x1m_vkb

Performing Tasks Using REST APl |
. Creating SR-MPLS Custom QoS Policy Using REST API

<bgpRtTarget rt="route-target:as4-nn2:100:1259" type="import"/>
<bgpRtTarget rt="route-target:as4-nn2:100:1259" type="export"/>
</bgpRtTargetP>
</fvCtx>

<!-- MPLS L3out -->
<13extOut name="outl" mplsEnabled="yes">
<13extRsEctx tnFvCtxName="v1" />

<!-- MPLS consumer label -->
<1l3extConslbl name="mplsl">
<!-- route profile association -->
<13extRsLblToProfile tDn="uni/tn-tl/prof-rpl" direction="export" />
<!-- InstP association -->
<13extRsLblToInstP tDn="uni/tn-tl/out-outl/instP-epgMplsl" />
</13extConsLbl>
<!-- External-EPG -->

<13extInstP name="epgMplsl">
<fvRsProv tnVzBrCPName="cpl"/>
<1l3extSubnet ip="55.1.1.1/28"/>

</13extInstP>
<bgpExtP/>

</13extOut>

<!-- route control profile -->

<rtctrlProfile descr="" name="rpl" type="global" status="">
<rtctrlCtxP action="permit" descr="" name="ctxl" order="0">

<rtctrlRsCtxPToSubjP status="" tnRtctrlSubjPName="subjl"/>

</rtctrlCtxP>

</rtctrlProfile>

<rtctrlSubjP descr="" name="subjl" status="" >

<rtctrlMatchRtDest ip="101.1.1.1/32"/>
<rtctrlMatchRtDest ip="102.1.1.0/24" aggregate="yes"/>
</rtctrlSubjpP>

<!-- Filter and Contract (global) -->
<vzBrCP name="cpl" scope="global">
<vzSubj name="allow-all">
<vzRsSubjFiltAtt action="permit" tnVzFilterName="default" />
</vzSubj>
</vzBrCP>
</fvTenant>
</polUni>

Creating SR-MPLS Custom QoS Policy Using REST API

SR-MPLS Custom QoS policy defines the priority of the packets coming from an SR-MPLS network while
they are inside the ACI fabric based on the incoming MPLS EXP values defined in the MPLS QoS ingress
policy. It also marks the CoS and MPLS EXP values of the packets leaving the ACI fabric through an MPLS
interface based on IPv4 DSCP values defined in MPLS QoS egress policy.

If no custom ingress policy is defined, the default QoS Level (zevel3) is assigned to packets inside the fabric.
If no custom egress policy is defined, the default EXP value of 0 will be marked on packets leaving the fabric.

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 1

Step 2

Performing Tasks Using REST API .

Procedure

Create SR-MPLS QoS policy.
In the following POST:
* Replace customgosl with the name of the SR-MPLS QoS policy you want to create.
* For the qosMplsIngressRule:
* Replace from="2" to="3" with the EXP range you want the policy to match.
* Replace prio="1evel15" with the ACI QoS Level for the packet while it's inside the ACI fabric.
* Replace target="cs5" with the DSCP value you want to set on the packet when it's matched.

* Replace targetcos="4" with the CoS value you want to set on the packet when it's matched.

* For the qosMplsEgressRule:

* Replace from="cs2" to="cs4" with the DSCP range you want the policy to match.
* Replace targetExp="5" with the EXP value you want to set on the packet when it's leaving the fabric.

* Replace targetcos="3" with the CoS value you want to set on the packet when it's leaving the fabric.

<polUni>
<fvTenant name="infra">
<gosMplsCustomPol descr="" dn="uni/tn-infra/qgosmplscustom-customgosl" name="customgosl" status=""

<gosMplsIngressRule from="2" to="3" prio="level5" target="CS5" targetCos="4" status="" />
<gosMplsEgressRule from="CS2" to="CS4" targetExp="5" targetCos="3" status=""/>
</gosMplsCustomPol>
</fvTenant>
</polUni>

Applying SR-MPLS QoS policy.
In the following POST, replace customqosl with the name of the SR-MPLS QoS policy you created in the previous step.

<polUni>
<fvTenant name="infra">
<13extOut name="mplsOut" status="" descr="bl">
<l3extLNodeP name="mplsLNP" status="">
<13extRsLNodePMplsCustQosPol tDn="uni/tn-infra/qgosmplscustom-customgosl"/>
</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Part II: External Routing (L30ut) Configuration

Part Il: External Routing (L30ut) Configuration

Routed Connectivity to External Networks

Configuring an MP-BGP Route Reflector Using REST API

Configuring an MP-BGP Route Reflector Using the REST API

Procedure

Step 1 Mark the spine switches as route reflectors.

Example:
POST https://apic-ip-address/api/policymgr/mo/uni/fabric.xml

<bgpInstPol name="default">
<bgpAsP asn="1" />
<bgpRRP>
<bgpRRNodePEp id=“<spine id1>"/>
<bgpRRNodePEp id=“<spine id2>"/>
</bgpRRP>
</bgpInstPol>

Step 2 Set up the pod selector using the following post.

Example:
For the FuncP setup—

POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricFuncP>
<fabricPodPGrp name="bgpRRPodGrp”>
<fabricRsPodPGrpBGPRRP tnBgpInstPolName="default" />
</fabricPodPGrp>
</fabricFuncP>

Example:
For the PodP setup—

POST https://apic-ip-address/api/policymgr/mo/uni.xml

<fabricPodP name="default">
<fabricPodS name="default" type="ALL">
<fabricRsPodPGrp tDn="uni/fabric/funcprof/podpgrp-bgpRRPodGrp"/>
</fabricPodS>
</fabricPodP>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring the BGP Domain-Path Feature for Loop Prevention Using the REST API .

Configuring the BGP Domain-Path Feature for Loop Prevention Using the REST API

Before you begin

Become familiar with the BGP Domain-Path feature using the information provided in About the BGP
Domain-Path Feature for Loop Prevention.

Procedure

Step 1 If you want to use the BGP Domain-Path feature for loop prevention, set the global bomainIdBase.

<polUni>
<fabricInst>
<bgpInstPol name="default">
<bgpDomainIdBase domainIdBase="12346" />
</bgpInstPol>
</fabricInst>
</polUni>

Step 2 Enable send-domain-path in the appropriate L3Out.

<bgpPeerP addr="22.22.3.5" addrTCtrl="af-ucast" allowedSelfAsCnt="3" ttl="2"
ctrlExt="send-domain-path" ctrl="send-ext-com">
</bgpPeerP>

Node and Interface for L30ut

Configuring Layer 3 Routed and Sub-Interface Port Channels Using REST API

Configuring a Layer 3 Routed Port Channel Using the REST API

Before you begin

» The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

* An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

* The target leaf switches are registered in the ACI fabric and available.

* Port channels are configured when port channels are used for L3Out interfaces.

)

Note In the following REST API example, long single lines of text are broken up with the \ character to improve
readability.

Performing Tasks Using REST API .


cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_152
cisco-apic-layer-3-networking-configuration-guide-62x_chapter15.pdf#nameddest=unique_152

Performing Tasks Using REST APl |
. Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

Procedure

To configure a Layer 3 route to the port channels that you created previously using the REST API, send a post with XML
such as the following:

Example:

<polUni>

<fvTenant name=pep9>
<13extOut descr="" dn="uni/tn-pep9/out-routAccounting” enforceRtctrl="export" \
name="routAccounting" nameAlias="" ownerKey="" ownerTag="" \

targetDscp="unspecified">
<13extRsL3DomAtt tDn="uni/l3dom-Doml"/>
<l3extRsEctx tnFvCtxName="ctx9"/>
<13extLNodeP configIssues="" descr="" name="nodelOl" nameAlias="" ownerKey="" \
ownerTag="" tag="yellow-green" targetDscp="unspecified">
<13extRsNodeL30utAtt rtrId="10.1.0.101" rtrIdLoopBack="yes" \
tDn="topology/pod-1/node-101">

<1l3extInfraNodeP descr="" fabricExtCtrlPeering="no" \
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>

</13extRsNodeL30OutAtt>
<13extLIfP descr="" name="1ifpl7" nameAlias="" ownerKey="" ownerTag="" \
tag="yellow-green">

<ospfIfP authKeyId="1" authType="none" descr="" name="" nameAlias="">

<ospfRsIfPol tnOspfIfPolName=""/>

</ospfIfP>

<13extRsPathL30OutAtt addr="10.1.5.3/24" autostate="disabled" descr="" \

encap="unknown" encapScope="local" ifInstT="13-port" 11Addr="::" \

mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" \
tDn="topology/pod-1/paths-101/pathep-[pol7 PolGrp]l" \
targetDscp="unspecified"/>

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>

</13extLIfP>
</13extLNodeP>
<13extInstP descr="" floodOnEncap="disabled" matchT="AtleastOne" \
name="accountingInst" nameAlias="" prefGrMemb="exclude" prio="unspecified" \

targetDscp="unspecified">
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>

<13extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="0.0.0.0/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl, import-security"/>
<1l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="::/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl, import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</13extInstP>
<1l3extConsLbl descr="" name="golf" nameAlias="" owner="infra" ownerKey="" \
ownerTag="" tag="yellow-green"/>
</13extOut>
</fvTenant>
</polUni>

Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

Before you begin

* The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

. Performing Tasks Using REST API



Performing Tasks Using REST API
Performing Tasks Using REST API .

* An APIC fabric administrator account is available that will enable creating the necessary fabric
infrastructure configurations.

* The target leaf switches are registered in the ACI fabric and available.

* Port channels are configured using the procedures in "Configuring Port Channels Using the REST API".

)

Note In the following REST API example, long single lines of text are broken up with the \ character to improve
readability.

Procedure

To configure a Layer 3 sub-interface route to the port channels that you created previously using the REST API, send a
post with XML such as the following:

Example:

<polUni>

<fvTenant name=pep9>
<13extOut descr="" dn="uni/tn-pep9/out-routAccounting"” enforceRtctrl="export" \
name="routAccounting" nameAlias="" ownerKey="" ownerTag="" targetDscp="unspecified">

<13extRsL3DomAtt tDn="uni/l3dom-Doml"/>
<13extRsEctx tnFvCtxName="ctx9"/>
<13extLNodeP configIssues="" descr="" name="nodel0l" nameAlias="" ownerKey="" \
ownerTag="" tag="yellow-green" targetDscp="unspecified">
<13extRsNodeL30OutAtt rtrId="10.1.0.101" rtrIdLoopBack="yes" \
tDn="topology/pod-1/node-101">

<13extInfraNodeP descr="" fabricExtCtrlPeering="no" \
fabricExtIntersiteCtrlPeering="no" name="" nameAlias="" spineRole=""/>
</13extRsNodeL30utAtt>
<13extLIfP descr="" name="1ifp27" nameAlias="" ownerKey="" ownerTag="" \
tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="" nameAlias="">
<ospfRsIfPol tnOspfIfPolName=""/>
</ospfIfP>
<13extRsPathL30OutAtt addr="11.1.5.3/24" autostate="disabled" descr="" \
encap="vlan-2001" encapScope="local" ifInstT="sub-interface" \
11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit" \

tDn="topology/pod-1/paths-101/pathep-[po27 PolGrp]" \
targetDscp="unspecified"/>
<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<l3extRsEgressQosDppPol tnQosDppPolName=""/>

</13extLIfP>
</13extLNodeP>
<13extInstP descr="" floodOnEncap="disabled" matchT="AtleastOne" \
name="accountingInst" nameAlias="" prefGrMemb="exclude" prio="unspecified" \

targetDscp="unspecified">
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>

<13extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="0.0.0.0/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl, import-security"/>
<1l3extSubnet aggregate="export-rtctrl,import-rtctrl" descr="" ip="::/0" \
name="" nameAlias="" scope="export-rtctrl,import-rtctrl, import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>

</13extInstP>

<13extConsLbl descr="" name="golf" nameAlias="" owner="infra" ownerKey="" \

ownerTag="" tag="yellow-green"/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring a Switch Virtual Interface Using REST API

</13extOut>
</fvTenant>
</polUni>

Configuring a Switch Virtual Interface Using REST API

Configuring SVI Interface Encapsulation Scope Using the REST API

Before you begin

The interface selector is configured.

Procedure

Configure the SVI interface encapsulation scope.

Example:

<?xml version="1.0" encoding="UTF-8"7?>

<!-- /api/node/mo/.xml —-->
<polUni>
<fvTenant name="coke">
<13extOut descr="" dn="uni/tn-coke/out-13outl" enforceRtctrl="export" name="13outl" nameAlias=""
ownerKey="" ownerTag="" targetDscp="unspecified">

<13extRsL3DomAtt tDn="uni/l3dom-Doml"/>
<13extRsEctx tnFvCtxName="vrf0"/>
<13extLNodeP configIssues="" descr="" name="_ui node 101" nameAlias="" ownerKey="" ownerTag=""
tag="yellow-green" targetDscp="unspecified">
<13extRsNodeL30OutAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<13extLIfP descr="" name="intl 11" nameAlias="" ownerKey="" ownerTag="" tag="yellow-green">
<13extRsPathL30utAtt addr="1.2.3.4/24" descr="" encap="vlan-2001" encapScope="ctx"
ifInstT="ext-svi" 11Addr="0.0.0.0" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[ethl/5]" targetDscp="unspecified"/>
<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>

</13extLIfP>

</13extLNodeP>

<1l3extInstP descr="" matchT="AtleastOne" name="epgl" nameAlias="" prefGrMemb="exclude"
prio="unspecified" targetDscp="unspecified">

<l3extSubnet aggregate="" descr="" ip="101.10.10.1/24" name="" nameAlias=""

scope="import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
</13extInstP>
</13extOut>
</fvTenant>
</polUni>

Configuring SVI Auto State Using the REST API

Before you begin

* The tenant and VRF configured.

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Routing Protocols Using REST API .

* A Layer 3 Out is configured and a logical node profile and a logical interface profile under the Layer 3
Out is configured.

Procedure

Enable the SVI auto state value.

Example:

<fvTenant name="tl1" >
<13extOut name="outl">

<13extLNodeP name="__ui node 101" >
<13extLIfP descr="" name="_ui ethl 10 vlan 99 af ipv4" >
<13extRsPathL30OutAtt addr="19.1.1.1/24" autostate="enabled" descr="" encap="vlan-100"
encapScope="1ocal" ifInstT="ext-svi" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[ethl/10]" targetDscp="unspecified" />
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>

To disable the autostate, you must change the value to disabled in the above example. For example, autostate="disabled".

Configuring Routing Protocols Using REST API
Configuring BGP External Routed Networks with BFD Support Using REST API

Configuring BGP External Routed Network Using the REST API

Before you begin
The tenant where you configure the BGP external routed network is already created.
The following shows how to configure the BGP external routed network using the REST API:

For Example:

Procedure

Example:

<13extOut descr="" dn="uni/tn-tl/out-13out-bgp" enforceRtctrl="export" name="13out-bgp" ownerKey=""
ownerTag="" targetDscp="unspecified">
<13extRsEctx tnFvCtxName="ctx3"/>
<1l3extLNodeP configIssues="" descr="" name="1l3extLNodeP 1" ownerKey="" ownerTag="" tag="yellow-green"
targetDscp="unspecified">
<1l3extRsNodeL30utAtt rtrId="1.1.1.1" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<13extLIfP descr="" name="13extLIfP 2" ownerKey="" ownerTag="" tag="yellow-green">
<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring BGP Max Path Using the REST API

<13extRsEgressQosDppPol tnQosDppPolName=""/>

<13extRsPathL30utAtt addr="3001::31:0:1:2/120" descr="" encap="vlan-3001" encapScope="local"
ifInstT="sub-interface" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[ethl/8]" targetDscp="unspecified">

<bgpPeerP addr="3001::31:0:1:0/120" allowedSelfAsCnt="3" ctrl="send-com, send-ext-com" descr=""
name="" peerCtrl="bfd" privateASctrl="remove-all, remove-exclusive,replace-as" ttl="1" weight="1000">

<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>

<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerp>
</13extRsPathL30utAtt>
</13extLIfP>
<13extLIfP descr="" name="13extLIfP_ 1" ownerKey="" ownerTag="" tag="yellow-green">

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>

<13extRsPathL30utAtt addr="31.0.1.2/24" descr="" encap="vlan-3001" encapScope="local"
ifInstT="sub-interface" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[ethl/8]" targetDscp="unspecified">
<bgpPeerP addr="31.0.1.0/24" allowedSelfAsCnt="3" ctrl="send-com, send-ext-com" descr="" name=""
peerCtrl="" privateASctrl="remove-all,remove-exclusive, replace-as" ttl="1" weight="100">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpLocalAsnP asnPropagate="none" descr="" localAsn="200" name=""/>
<bgpAsP asn="3001" descr="" name=""/>
</bgpPeerpP>
</13extRsPathL30utAtt>
</13extLIfP>
</13extLNodeP>

<l3extRsL3DomAtt tDn="uni/l3dom-13-dom"/>
<l3extRsDampeningPol af="ipvé6-ucast" tnRtctrlProfileName="damp rp"/>
<l3extRsDampeningPol af="ipvé4-ucast" tnRtctrlProfileName="damp rp"/>

<13extInstP descr="" matchT="AtleastOne" name="13extInstP_1" prio="unspecified"
targetDscp="unspecified">
<13extSubnet aggregate="" descr="" ip="130.130.130.0/24" name="" scope="import-rtctrl"></13extSubnet>
<1l3extSubnet aggregate="" descr="" ip="130.130.131.0/24" name="" scope="import-rtctrl"/>
<1l3extSubnet aggregate="" descr="" ip="120.120.120.120/32" name=""
scope="export-rtctrl, import-security"/>
<1l3extSubnet aggregate="" descr="" ip="3001::130:130:130:100/120" name="" scope="import-rtctrl"/>
</13extInstP>
<bgpExtP descr=""/>
</13extOut>
<rtctrlProfile descr="" dn="uni/tn-tl/prof-damp rp" name="damp rp" ownerKey="" ownerTag=""
type="combinable">
<rtctrlCtxP descr="" name="ipv4 rpc" order="0">
<rtctrlScope descr="" name="">
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="act rule"/>
</rtctrlScope>
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlAttrP descr="" dn="uni/tn-tl/attr-act rule" name="act rule">
<rtctrlSetDamp descr="" halflLife="15" maxSuppressTime="60" name="" reuse="750" suppress="2000"
type="dampening-pol"/>
</rtctrlAttrpP>

Configuring BGP Max Path Using the REST API

Refer to the Verified Scalability Guidefor Cisco APIC on the Cisco APIC documentation page for the acceptable
values for the following fields.

. Performing Tasks Using REST API


https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html

| Performing Tasks Using REST API
Configuring AS Path Prepend Using the REST API .

The two properties that enable you to configure more paths are maxEcmp and maxEcmpIbgp in the bgpCtxAfPol
object. After you configure these two properties, they are propagated to the rest of your implementation. The
ECMP policy is applied at the VRF level.

The following example provides information on how to configure the BGP Max Path feature using the REST
API:

<fvTenant descr="" dn="uni/tn-tl" name="t1">
<fvCtx name="v1">
<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPoll"/>
</fvCtx>
<bgpCtxAfPol name="bgpCtxPoll" maxEcmp="64" maxEcmpIbgp="64"/>
</fvTenant>

Configuring AS Path Prepend Using the REST API

This following example provides information on how to configure the AS Path Prepend feature using the
REST API:

<?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="coke">
<rtctrlAttrP name="attrpl">
<rtctrlSetASPath criteria="prepend">
<rtctrlSetASPathASN asn="100" order="1"/>
<rtctrlSetASPathASN asn="200" order="10"/>
<rtctrlSetASPathASN asn="300" order="5"/>
<rtctrlSetASPath/>
<rtctrlSetASPath criteria="prepend-last-as" lastnum="9" />
</rtctrlAttrP>

<1l3extOut name="outl">
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" order="1">
<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrpl"/>
</rtctrlScope>
</rtctrlCtxP>
</rtctrlProfile>
</13extOut>
</fvTenant>

Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API

SUMMARY STEPS

1. Configure the BGP External Routed Network with Autonomous override enabled.

DETAILED STEPS

Procedure

Configure the BGP External Routed Network with Autonomous override enabled.

Note

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Performing Tasks Using REST API

The line of code that is in bold displays the BGP AS override portion of the configuration. This feature was introduced
in the Cisco APIC Release 3.1(2m).

Example:

<fvTenant name="coke">

<fvCtx name="coke" status="">
<bgpRtTargetP af="ipv4-ucast">
<bgpRtTarget type="import" rt="route-target:as4-nn2:1234:1300" />
<bgpRtTarget type="export" rt="route-target:as4-nn2:1234:1300" />
</bgpRtTargetP>
<bgpRtTargetP af="ipv6-ucast">
<bgpRtTarget type="import" rt="route-target:as4-nn2:1234:1300" />
<bgpRtTarget type="export" rt="route-target:as4-nn2:1234:1300" />
</bgpRtTargetP>
</fvCtx>

<fvBD name="cokeBD">
<!-- Association from Bridge Doamin to Private Network -->
<fvRsCtx tnFvCtxName="coke" />
<fvRsBDToOut tnL3extOutName="routAccounting" />
<!-- Subnet behind the bridge domain-->
<fvSubnet ip="20.1.1.1/16" scope="public"/>
<fvSubnet ip="2000:1::1/64" scope="public"/>

</fvBD>
<fvBD name="cokeBD2">
<!-- Association from Bridge Doamin to Private Network -->

<fvRsCtx tnFvCtxName="coke" />

<fvRsBDToOut tnL3extOutName="routAccounting" />
<!-- Subnet behind the bridge domain-->
<fvSubnet ip="30.1.1.1/16" scope="public"/>

</fvBD>
<vzBrCP name="webCtrct" scope="global">
<vzSubj name="http">
<vzRsSubjFiltAtt tnVzFilterName="default"/>

</vzSubj>
</vzBrCP>
<!-- GOLF L30Out -->

<13extOut name="routAccounting">
<l3extConsLbl name="golf transit" owner="infra" status=""/>
<bgpExtP/>
<13extInstP name="accountingInst">
<l=--
<13extSubnet ip="192.2.2.0/24" scope="import-security,import-rtctrl™ />
<13extSubnet ip="192.3.2.0/24" scope="export-rtctrl"/>
<13extSubnet ip="192.5.2.0/24" scope="export-rtctrl"/>
<l3extSubnet ip="64:ff9%::c007:200/120" scope="export-rtctrl" />
-——>
<13extSubnet ip="0.0.0.0/0"
scope="export-rtctrl,import-security"
aggregate="export-rtctrl"

/>
<fvRsProv tnVzBrCPName="webCtrct"/>
</13extInstP>

<13extRsEctx tnFvCtxName="coke"/>
</13extOut>

. Performing Tasks Using REST API



Performing Tasks Using REST API

<fvAp name="cokeAp">
<fvAEPg name="cokeEPg" >
<fvRsBd tnFvBDName="cokeBD" />

Performing Tasks Using REST API .

<fvRsPathAtt tDn="topology/pod-1/paths-103/pathep-[ethl/20]" encap="vlan-100"

instrImedcy="immediate" mode="regular"/>
<fvRsCons tnVzBrCPName="webCtrct"/>
</fvAEPg>
<fvAEPg name="cokeEPg2" >
<fvRsBd tnFvBDName="cokeBD2" />

<fvRsPathAtt tDn="topology/pod-1/paths-103/pathep-[ethl/20]1" encap="vlan-110"

instrImedcy="immediate" mode="regular"/>
<fvRsCons tnVzBrCPName="webCtrct"/>

</fvAEPg>
</fvAp>
<!-- Non GOLF L30ut-->
<13extOut name="NonGolfOut">
<bgpExtP/>
<13extLNodeP name="bLeaf">
<!--

<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId="20.1.13.1"/>

-=>

<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId="20.1.13.1">

<1l3extLoopBackIfP addr="1.1.1.1"/>

<ipRouteP ip="2.2.2.2/32" >
<ipNexthopP nhAddr="20.1.12.3"/>
</ipRouteP>

</13extRsNodeL30utAtt>
<13extLIfP name='portIfv4'>

<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/17]" encap='vlan-1010"

ifInstT='sub-interface' addr="20.1.12.2/24">

</13extRsPathL30utAtt>
</13extLIfP>
<13extLIfP name='portIfVe'>

<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/17]" encap='vlan-1010"

ifInstT='sub-interface' addr="64:ff9b::1401:302/120">

<bgpPeerP addr="64:ff9b::1401:d03" ctrl="send-com, send-ext-com" />

</13extRsPathL30utAtt>
</13extLIfpP>

<bgpPeerP addr="2.2.2.2" ctrl="as-override,disable-peer-as-check, send-com,send-ext-com"

status=""/>
</13extLNodeP>
<!--

<bgpPeerP addr="2.2.2.2" ctrl="send-com,send-ext-com" status=""/>

-—=>
<13extInstP name="accountingInst">

<13extSubnet ip="192.10.0.0/16" scope="import-security,import-rtctrl" />
<1l3extSubnet ip="192.3.3.0/24" scope="import-security,import-rtctrl" />
<1l3extSubnet ip="192.4.2.0/24" scope="import-security,import-rtctrl" />
<13extSubnet ip="64:ff9b::c007:200/120" scope="import-security,import-rtctrl" />
<1l3extSubnet ip="192.2.2.0/24" scope="export-rtctrl" />

<13extSubnet ip="0.0.0.0/0"

scope="export-rtctrl,import-rtctrl, import-security"
aggregate="export-rtctrl, import-rtctrl"

/>
</13extInstP>
<13extRsEctx tnFvCtxName="coke"/>
</13extOut>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring BGP Neighbor Shutdown and Soft Reset Using the REST API

</fvTenant>

Configuring BGP Neighbor Shutdown and Soft Reset Using the REST API

Configuring BGP Neighbor Shutdown Using the REST AP/
The following procedure describes how to use the BGP neighbor shutdown feature using the REST API.

Procedure

Step 1 Configure the node and interface.

This example configures VRF v1 on node 103 (the border leaf switch), with the node profile, nodep1, and router ID
11.11.11.103. It also configures interface eth1/3 as a routed interface (Layer 3 port), with [P address 12.12.12.1/24
and Layer 3 domain dom1.

Example:

<13extOut name="13outl">
<1l3extRsEctx tnFvCtxName="v1"/>
<13extLNodeP name="nodepl">
<13extRsNodeL30utAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<13extLIfP name="ifpl"/>
<13extRsPathL30utAtt addr="12.12.12.3/24" ifInstT="13-port"
tDn="topology/pod-1/paths-103/pathep-[ethl/31"/>
</13extLIfP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
</13extOut>

Step 2 Configure the BGP routing protocol and configure the BGP neighbor shutdown feature.

This example configures BGP as the primary routing protocol, with a BGP peer with the IP address, 15.15.15.2 and
ASN 100.

The adminSt variable can be set to one of the following:

* enabled: Enables the BGP neighbor shutdown feature.
« disabled: Disables the BGP neighbor shutdown feature.

In the following example, the BGP neighbor shutdown feature is enabled.

Example:

<1l3extOut name="1l3outl">
<1l3extLNodeP name="nodepl">
<bgpPeerP addr="15.15.15.2"> adminSt="enabled"
<bgpAsP asn="100"/>
</bgpPeerp>
</13extLNodeP>
<bgpExtP/>
</13extOut>

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Configuring BGP Neighbor Soft Reset Using the REST API

Configuring BGP Neighbor Soft Reset Using the REST API .

The following procedure describes how to use the BGP neighbor soft reset feature using the REST APL

Procedure

Step 1 Configure the node and interface.

This example configures VRF 1 on node 103 (the border leaf switch), with the node profile, nodep1, and router ID
11.11.11.103. It also configures interface eth1/3 as a routed interface (Layer 3 port), with [P address 12.12.12.1/24

and Layer 3 domain dom1.

Example:

<13extOut name="13outl">
<13extRsEctx tnFvCtxName="v1"/>
<13extLNodeP name="nodepl">

<13extRsNodeL30utAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>

<13extLIfP name="ifpl"/>

<1l3extRsPathL30utAtt addr="12.12.12.3/24" ifInstT="13-port"

tDn="topology/pod-1/paths-103/pathep-[ethl/3]1"/>

</13extLIfP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
</13extOut>

Step 2 Configure the BGP routing protocol and configure the BGP neighbor soft reset feature.

This example configures BGP as the primary routing protocol, with a BGP peer with the IP address, 15.15.15.2 and

ASN 100.
The dir variable can be set to one of the following:

* in: Enables the soft dynamic inbound reset.

« out: Enables the soft outbound reset.

In the following example, the soft dynamic inbound reset is enabled.

Example:

<13extOut name="13outl">
<1l3extLNodeP name="nodepl">
<bgpPeerP addr="15.15.15.2">
<bgpAsP asn="100"/>
<bgpPeerEntryClearPeerLTask>

<attributes>
<mode>soft</mode>
<dir>in</dir>
<adminSt>start</adminSt>
</attributes>
<children/>
</bgpPeerEntryClearPeerLTask>
</bgpPeerpP>
</13extLNodeP>
<bgpExtP/>
</13extOut>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring a Per VRF Per Node BGP Timer Using the REST API

Configuring a Per VRF Per Node BGP Timer Using the REST API

The following example shows how to configure Per VRF Per node BGP timer in a node. Configure bgpProtp
under 13extLNodeP configuration. Under bgppProtP, configure a relation (bgpRsBgpNodeCtxPol) to the desired
BGP Context Policy (ogpCtxPol).

Procedure

Configure a node specific BGP timer policy on node1, and configure node2 with a BGP timer policy that is not node
specific.

Example:
POST https://apic-ip-address/mo.xml

<fvTenant name="tnl" >
<bgpCtxPol name="poll" staleIntvl="25" />
<bgpCtxPol name="pol2" staleIntvl="35" />
<fvCtx name="ctxl" >
<fvRsBgpCtxPol tnBgpCtxPolName="poll"/>
</fvCtx>
<l3extout name="outl" >
<l3extRsEctx toFvCtxName="ctxl" />
<1l3extLNodeP name="nodel" >
<bgpProtP name="protpl" >
<bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
</bgpProtP>
</13extLNodeP>
<1l3extLNodeP name="node2" >
</13extLNodeP>

In this example, node1 gets BGP timer values from policy po12, and node2 gets BGP timer values from po11. The timer
values are applied to the bgpbDom corresponding to VRF tn1:ctx1. This is based upon the BGP timer policy that is chosen
following the algorithm described in the Per VRF Per Node BPG Timer Values section.

Deleting a Per VRF Per Node BGP Timer Using the REST API

The following example shows how to delete an existing Per VRF Per node BGP timer in a node.

Procedure

Delete the node specific BGP timer policy on node1.

Example:
POST https://apic-ip-address/mo.xml

<fvTenant name="tnl" >
<bgpCtxPol name="poll" staleIntvl="25" />
<bgpCtxPol name="pol2" staleIntvl="35" />
<fvCtx name="ctxl" >
<fvRsBgpCtxPol tnBgpCtxPolName="poll"/>
</fvCtx>
<l3extout name="outl" >
<13extRsEctx toFvCtxName="ctxl" />
<13extLNodeP name="nodel" >

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Bidirectional Forwarding Detection on a Secondary IP Address Using the REST API .

<bgpProtP name="protpl" status="deleted" >
<bgpRsBgpNodeCtxPol tnBgpCtxPolName="pol2" />
</bgpProtP>
</13extLNodeP>
<13extLNodeP name="node2" >
</13extLNodeP>

The code phrase <bgpProtP name="protpl" status="deleted" > inthe example above, deletes the BGP timer policy.
After the deletion, node1 defaults to the BGP timer policy for the VRF with which node1 is associated, which is po11 in
the above example.

Configuring Bidirectional Forwarding Detection on a Secondary IP Address Using the REST API

The following example configures bidirectional forwarding detection (BFD) on a secondary IP address using
the REST API:

<13extLIfP
dn="uni/tn-sec-ip-bfd/out-secip-bfd-13out/lnodep-secip-bfd-13out nodeProfile/
lifp-secip-bfd-13out interfaceProfile" name="secip-bfd-13out interfaceProfile"
prio="unspecified" tag="yellow-green" userdom=":all:">
<13extRsPathL30OutAtt addr="50.50.50.200/24" autostate="disabled"
encap="vlan-2" encapScope="local" ifInstT="ext-svi" ipvéDad="enabled"
isMultiPodDirect="no" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular"
mtu="inherit" tDn="topology/pod-1/paths-101/pathep-[ethl/3]"
targetDscp="unspecified" userdom=":all:">
<13extIp addr="9.9.9.1/24" ipvé6Dad="enabled" userdom=":all:"/>
<13extIp addr="6.6.6.1/24" ipvé6Dad="enabled" userdom=":all:"/>
</13extRsPathL30utAtt>
<13extRsNdIfPol userdom="all"/>
<13extRsLIfPCustQosPol userdom="all"/>
<13extRsIngressQosDppPol userdom="all"/>
<13extRsEgressQosDppPol userdom="all"/>
<13extRsArpIfPol userdom="all"/>
</13extLIfP>
<ipRouteP aggregate="no"
dn="uni/tn-sec-ip-bfd/out-secip-bfd-13out/lnodep-secip-bfd-13out nodeProfile/
rsnodeL30utAtt-[topology/pod-1/node-101]/rt-[6.0.0.1/24]"
fromPfxLen="0" ip="6.0.0.1/24" pref="1" rtCtrl="bfd" toPfxLen="0" userdom=":all:">

<ipNexthopP nhAddr="6.6.6.2" pref="unspecified" type="prefix" userdom=":all:"/>
</ipRouteP>

Configuring BFD Globally Using the REST API

Procedure

The following REST API shows the global configuration for bidirectional forwarding detection (BFD):

Example:

<polUni>
<infralInfra>
<bfdIpv4InstPol name="default" echoSrcAddr="1.2.3.4" slowIntvl="1000" minTxIntvl1="150"
minRxIntv1="250" detectMult="5" echoRxIntvl1="200"/>

<bfdIpv6InstPol name="default" echoSrcAddr="34::1/64" slowIntvl="1000" minTxIntv1="150"
minRxIntvl1="250" detectMult="5" echoRxIntvl1="200"/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring BFD Interface Override Using the REST API

</infralnfra>
</polUni>

Configuring BFD Interface Override Using the REST API

Procedure

The following REST API shows the interface override configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name="“bfdIfPol" minTxIntv1l="400" minRxIntvl1="400" detectMult="5" echoRxIntv1="400"
echoAdminSt="disabled"/>
<1l3extOut name="13-out">
<13extLNodeP name="leafl">
<13extRsNodeL30OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<13extLIfP name='portIpv4'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/11]" ifInstT='1l3-port'
addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“shal” key=“password">
<bfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfP>
</13extLIfP>

</13extLNodeP>
</13extOut>
</fvTenant>

Configuring BFD Consumer Protocols Using the REST API

Procedure

Step 1 The following example shows the interface configuration for bidirectional forwarding detection (BFD):

Example:

<fvTenant name="ExampleCorp">
<bfdIfPol name="“bfdIfPol" minTxIntv1l="400" minRxIntvl1="400" detectMult="5" echoRxIntvl1="400"
echoAdminSt="disabled"/>
<1l3extOut name="13-out">
<1l3extLNodeP name="leafl">
<13extRsNodeL30OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<13extLIfP name='portIpv4'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/11]" ifInstT='1l3-port'
addr="10.0.0.1/24" mtu="1500"/>
<bfdIfP type=“shal” key=“password">
<pbfdRsIfPol tnBfdIfPolName=‘bfdIfPol'/>
</bfdIfpP>
</13extLIfP>

</13extLNodeP>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

</13extOut>
</fvTenant>

Step 2 The following example shows the interface configuration for enabling BFD on OSPF and EIGRP:

Example:
BFD on leaf switch

<fvTenant name=“ExampleCorp">

<ospfIfPol name="ospf intf pol" cost="10" ctrl="bfd”/>

<eigrpIfPol ctrl="nh-self,split-horizon,bfd" dn="uni/tn-Coke/eigrpIfPol-eigrp if default"
</fvTenant>

Example:
BFD on spine switch

<13extLNodeP name="bSpine">

<13extRsNodeL30utAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<l3extLoopBackIfP addr="10.10.3.1" />
<l3extInfraNodeP fabricExtCtrlPeering="false" />
</13extRsNodeL30utAtt>

<13extLIfP name='portIf'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4"'
ifInstT='sub-interface' addr="20.3.10.1/24"/>
<ospfIfP>
<ospfRsIfPol tnOspfIfPolName='ospf intf pol'/>
</ospfIlfpP>
<bfdIfP name="test" type="shal" key="hello" status="created,modified">
<bfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>
</bfdIfP>
</13extLIfP>

</13extLNodeP>

Step 3 The following example shows the interface configuration for enabling BFD on BGP:

Example:

<fvTenant name="ExampleCorp">
<13extOut name="13-out">
<l3extLNodeP name="leafl">
<13extRsNodeL30OutAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2"/>
<13extLIfP name='portIpv4'>
<13extRsPathL30OutAtt tDn="topology/pod-1/paths-101/pathep-[ethl/11]" ifInstT='1l3-port'
addr="10.0.0.1/24" mtu="1500">
<bgpPeerP addr="4.4.4.4/24" allowedSelfAsCnt="3" ctrl="bfd" descr="" name=""

peerCtrl="" ttl="1">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="3" descr="" name=""/>
</bgpPeerP>
</13extRsPathL30utAtt>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>
Step 4 The following example shows the interface configuration for enabling BFD on Static Routes:

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Performing Tasks Using REST API

Example:
BFD on leaf switch

<fvTenant name="ExampleCorp">
<13extOut name="13-out">
<13extLNodeP name="leafl">
<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId="2.2.2.2">
<ipRouteP ip="192.168.3.4" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</13extRsNodeL30OutAtt>
<13extLIfP name='portIpv4'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/3]" ifInstT='13-port’
addr="10.10.10.2/24" mtu="1500" status="created,modified" />
</13extLIfP>

</13extLNodeP>

</13extOut>
</fvTenant>

Example:
BFD on spine switch

<13extLNodeP name="bSpine">

<13extRsNodeL30OutAtt tDn="topology/pod-1/node-103" rtrId="192.3.1.8">
<ipRouteP ip="0.0.0.0" rtCtrl="bfd">
<ipNexthopP nhAddr="192.168.62.2"/>
</ipRouteP>
</13extRsNodeL30OutAtt>

<13extLIfP name='portIf'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-103/pathep-[eth5/10]" encap='vlan-4"'
ifInstT='sub-interface' addr="20.3.10.1/24"/>

<bfdIfP name="test" type="shal" key="hello" status="created,modified">
<pbfdRsIfPol tnBfdIfPolName='default' status="created,modified"/>
</bfdIfP>
</13extLIfP>

</13extLNodeP>

Step 5 The following example shows the interface configuration for enabling BFD on IS-IS:

Example:

<fabricInst>
<13IfPol name="testL3IfPol" bfdIsis="enabled"/>
<fabricLeafP name="LeNode" >
<fabricRsLePortP tDn="uni/fabric/leportp-leaf profile" />
<fabricLeafS name="spsw" type="range">
<fabricNodeBlk name="nodelO1l" to_="102" from ="101" />
</fabricLeafs>
</fabricLeafP>

<fabricSpineP name="SpNode" >
<fabricRsSpPortP tDn="uni/fabric/spportp-spine profile" />
<fabricSpineS name="spsw" type="range'">
<fabricNodeBlk name="nodelO3" to_="103" from ="103" />
</fabricSpineS>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring OSPF External Routed Networks Using REST API .

</fabricSpineP>

<fabricLePortP name="leaf profile">
<fabricLFPortS name="leafIf" type="range">
<fabricPortBlk name="spBlk" fromCard="1" fromPort="49" toCard="1" toPort="49" />
<fabricRsLePortPGrp tDn="uni/fabric/funcprof/leportgrp-LeTestPGrp" />
</fabricLFPortS>
</fabricLePortP>

<fabricSpPortP name="spine profile">

<fabricSFPortS name="spineIf" type="range">
<fabricPortBlk name="spBlk" fromCard="5" fromPort="1" toCard="5" toPort="2" />
<fabricRsSpPortPGrp tDn="uni/fabric/funcprof/spportgrp-SpTestPGrp" />

</fabricSFPortS>
</fabricSpPortP>
<fabricFuncP>
<fabricLePortPGrp name = "LeTestPGrp">
<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>
</fabricLePortPGrp>
<fabricSpPortPGrp name = "SpTestPGrp">
<fabricRsL3IfPol tnL3IfPolName="testL3IfPol"/>
</fabricSpPortPGrp>

</fabricFuncP>

</fabricInst>

Configuring OSPF External Routed Networks Using REST API

Creating OSPF External Routed Network for Management Tenant Using REST API

* You must verify that the router ID and the logical interface profile IP address are different and do not
overlap.

* The following steps are for creating an OSPF external routed network for a management tenant. To create
an OSPF external routed network for a tenant, you must choose a tenant and create a VRF for the tenant.

* For more details, see Cisco APIC and Transit Routing.

Procedure

Create an OSPF external routed network for management tenant.

Example:
POST: https://apic-ip-address/api/mo/uni/tn-mgmt.xml

<fvTenant name="mgmt">

<fvBD name="bdl">
<fvRsBDToOut tnL3extOutName="RtdOut" />
<fvSubnet ip="1.1.1.1/16" />
<fvSubnet ip="1.2.1.1/16" />
<fvSubnet ip="40.1.1.1/24" scope="public" />
<fvRsCtx tnFvCtxName="inb" />

</fvBD>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring EIGRP External Routed Networks Using REST API

<fvCtx name="inb" />

<13extOut name="RtdOout">
<13extRsL3DomAtt tDn="uni/l3dom-extdom"/>
<13extInstP name="extMgmt">
</13extInstP>
<13extLNodeP name="borderLeaf">
<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId="10.10.10.10"/>
<13extRsNodeL30utAtt tDn="topology/pod-1/node-102" rtrId="10.10.10.11"/>
<13extLIfP name='portProfile'>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/40]" ifInstT='l3-port'
addr="192.168.62.1/24"/>
<13extRsPathL30utAtt tDn="topology/pod-1/paths-102/pathep-[ethl/40]" ifInstT='l3-port'
addr="192.168.62.5/24"/>
<ospfIfP/>
</13extLIfP>
</13extLNodeP>
<13extRsEctx tnFvCtxName="inb"/>
<ospfExtP areald="57" />
</13extOut>
</fvTenant>

Configuring EIGRP External Routed Networks Using REST API

Configuring EIGRP Using the REST API

Procedure

Step 1 Configure an EIGRP context policy.

Example:
<polUni>
<fvTenant name="cisco 6">
<eigrpCtxAfPol actIntvl="3" descr="" dn="uni/tn-cisco 6/eigrpCtxAfP-eigrp default pol"

extDist="170"
intDist="90" maxPaths="8" metricStyle="narrow" name="eigrp default pol" ownerKey=""

ownerTag=""/>
</fvTenant>
</polUni>

Step 2 Configure an EIGRP interface policy.

Example:

<polUni>
<fvTenant name="cisco_6">
<eigrpIfPol bw="10" ctrl="nh-self, split-horizon" delay="10" delayUnit="tens-of-micro" descr=""
dn="uni/tn-cisco 6/eigrpIfPol-eigrp if default"
helloIntvl="5" holdIntvl="15" name="eigrp if default" ownerKey="" ownerTag=""/>
</fvTenant>
</polUni>

Step 3 Configure an EIGRP VRF.

Example:
IPv4:

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

<polUni>
<fvTenant name="cisco 6">
<fvCtx name="dev">
<fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp ctx pol v4" af="1"/>
</fvCtx>
</fvTenant>
</polUni>

IPvo6:

<polUni>
<fvTenant name="cisco 6">
<fvCtx name="dev">
<fvRsCtxToEigrpCtxAfPol tnEigrpCtxAfPolName="eigrp ctx pol v6" af="ipv6-ucast"/>
</fvCtx>
</fvTenant>
</polUni>

Step 4 Configure an EIGRP Layer3 Outside.

Example:
IPv4

<polUni>
<fvTenant name="cisco_ 6">
<13extOut name="ext">
<elgrpExtP asn="4001"/>
<13extLNodeP name="nodel">
<13extLIfP name="intf v4">
<13extRsPathL30OutAtt addr="201.1.1.1/24" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/4]"/>
<eigrpIfP name="eigrp ifp v4">
<eigrpRsIfPol tnEigrpIfPolName="eigrp if pol v4"/>
</eigrpIlfp>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

1Pv6

<polUni>
<fvTenant name="cisco_ 6">
<13extOut name="ext">
<elgrpExtP asn="4001"/>
<13extLNodeP name="nodel">
<13extLIfP name="intf ve6">
<13extRsPathL30OutAtt addr="2001::1/64" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/4]"/>
<eigrpIlfP name="eigrp ifp vé6">
<eigrpRsIfPol tnEigrpIfPolName="eigrp if pol v6"/>
</eigrpIlfp>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

IPv4 and IPv6

<polUni>
<fvTenant name="cisco_ 6">
<1l3extOut name="ext">
<elgrpExtP asn="4001"/>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring Route Summarization Using REST API

<1l3extLNodeP name="nodel">

<13extLIfP name="intf v4">

<13extRsPathL30utAtt addr="201.1.1.1/24" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/4]"/>
<eigrpIfP name="eigrp_ ifp v4">
<eigrpRsIfPol tnEigrpIfPolName="eigrp if pol v4"/>

</eigrpIlfP>

</13extLIfP>

<13extLIfP name="intf vé6">

<13extRsPathL30utAtt addr="2001::1/64" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/4]"/>
<eigrpIfP name="eigrp_ ifp v6">
<eigrpRsIfPol tnEigrpIfPolName="eigrp if pol v6"/>

</eigrpIlfP>

</13extLIfP>

</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

Step 5 (Optional) Configure the interface policy knobs.

Example:

<polUni>
<fvTenant name="cisco_ 6">
<eigrpIfPol bw="1000000" ctrl="nh-self,split-horizon" delay="10"
delayUnit="tens-of-micro" helloIntvl="5" holdIntvl="15" name="default"/>
</fvTenant>
</polUni>

The bandwidth (bw) attribute is defined in Kbps. The delayunit attribute can be "tens of micro" or "pico".

Configuring Route Summarization Using REST API
Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

Procedure

Step 1 Configure BGP route summarization using the REST API as follows:

Example:

<fvTenant name="common">
<fvCtx name="vrfl"/>
<bgpRtSummPol name=“bgp rt summ” cntrl=‘as-set'/>
<13extOut name=“13 ext pol” >
<13extLNodeP name="bLeaf">
<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId=%“20.10.1.1"/>
<13extLIfP name='portIf'>
<1l3extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/31]1" ifInstT=‘13-port’
addr="10.20.1.3/24/>
</13extLIfP>
</13extLNodeP>
<bgpExtP />

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

<13extInstP name="InstP" >
<l3extSubnet ip="10.0.0.0/8" scope=“export-rtctrl">
<l3extRsSubnetToRtSumm tDn=“uni/tn-common/bgprtsum-bgp rt summ”/>
<1l3extRsSubnetToProfile tnRtctrlProfileName=“rtprof"/>
</13extSubnet>
</13extInstP>
<13extRsEctx tnFvCtxName=“vrfl”/>
</13extOut>
</fvTenant>

Step 2 Configure OSPF inter-area and external summarization using the following REST API:

Example:

<?xml version="1.0" encoding="utf-8"?>
<fvTenant name="t20">
<!--0Ospf Inter External route summarization Policy-->
<ospfRtSummPol cost="unspecified" interAreaEnabled="no" name="ospfext"/>
<!--0Ospf Inter Area route summarization Policy-->
<ospfRtSummPol cost="16777215" interAreaEnabled="yes" name="interArea"/>
<fvCtx name="ctx0" pcEnfDir="ingress" pcEnfPref="enforced"/>
<!-- L30UT backbone Area-->
<13extOut enforceRtctrl="export" name="13 1" ownerKey="" ownerTag="" targetDscp="unspecified">
<13extRsEctx tnFvCtxName="ctx0"/>
<13extLNodeP name="node-101">
<13extRsNodeL30OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<13extLIfP name="intf-1">
<13extRsPathL30OutAtt addr="20.1.5.2/24" encap="vlan-1001" ifInstT="sub-interface"
tDn="topology/pod-1/paths-101/pathep-[ethl/33]"/>
</13extLIfP>
</13extLNodeP>
<13extInstP name="13InstP1l">
<fvRsProv tnVzBrCPName="default"/>
<!--Ospf External Area route summarization-->

<l3extSubnet aggregate="" ip="193.0.0.0/8" name="" scope="export-rtctrl">
<13extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-ospfext"/>
</13extSubnet>
</13extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areald="backbone" areaType="regular"/>
</13extOut>
<!-- L30UT Regular Area-->

<13extOut enforceRtctrl="export" name="13 2">
<13extRsEctx tnFvCtxName="ctx0"/>
<13extLNodeP name="node-101">
<13extRsNodeL30OutAtt rtrId="20.1.3.2" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>
<13extLIfP name="intf-2">
<13extRsPathL30OutAtt addr="20.1.2.2/24" encap="vlan-1014" ifInstT="sub-interface"
tDn="topology/pod-1/paths-101/pathep-[ethl/11]1"/>
</13extLIfpP>
</13extLNodeP>
<13extInstP matchT="AtleastOne" name="13InstP2">
<fvRsCons tnVzBrCPName="default"/>
<!--Ospf Inter Area route summarization-->
<l3extSubnet aggregate="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<1l3extRsSubnetToRtSumm tDn="uni/tn-t20/ospfrtsumm-interArea"/>
</13extSubnet>
</13extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areald="0.0.0.57" areaType="regular"/>
</13extOut>
</fvTenant>

Step 3 Configure EIGRP summarization using the following REST API:

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring Route Control with Route Maps and Route Profile Using REST API

Example:

<fvTenant name="exampleCorp">
<1l3extOut name="outl">
<l3extInstP name="eigrpSummInstp" >
<13extSubnet aggregate="" descr="" ip="197.0.0.0/8" name="" scope="export-rtctrl">
<1l3extRsSubnetToRtSumm/>
</13extSubnet>
</13extInstP>
</13extOut>
<eigrpRtSummPol name="poll" />

Note
There is no route summarization policy to be configured for EIGRP. The only configuration needed for enabling EIGRP
summarization is the summary subnet under the InstP.

Configuring Route Control with Route Maps and Route Profile Using REST API

Configuring Route Control Per BGP Peer Using the REST API

The following procedure describes how to configure the route control per BGP peer feature using the REST
APL

Procedure

Configure the route control per BGP peer feature.
Where:

« direction="import" is the route import policy (routes allowed into the fabric)

« direction="export" is the route export policy (routes advertised out the external network)

Example:

<polUni>
<fvTenant name="tl1l">
<fvCtx name="v1"/>
<13extOut name="13outl">
<13extRsEctx tnFvCtxName="v1"/>
<13extLNodeP name="nodepl">
<13extRsNodeL30utAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-103"/>
<13extLIfP name="ifpl">
<13extRsPathL30utAtt addr="12.12.12.3/24" ifInstT="13-port"
tDn="topology/pod-1/paths-103/pathep-[ethl/3]"/>
</13extLIfP>
<bgpPeerP addr="15.15.15.2">
<bgpAsP asn="100"/>
<bgpRsPeerToProfile direction="export" tnRtctrlProfileName="rpl"/>
</bgpPeerpP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
<bgpExtP/>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Route Map/Profile with Explicit Prefix List Using REST API .

<ospfExtP areald="0.0.0.0" areaType="regular"/>
<13extInstP name="extnwl" >
<13extSubnet ip="20.20.20.0/24" scope="import-security"/>
</13extInstP>
</13extOut>
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="attrpl"/>
</rtctrlScope>
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rulel"/>
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlSubjP name="match-rulel">
<rtctrlMatchRtDest ip="200.3.2.0/24"/>
</rtctrlSubjpP>
<rtctrlAttrP name="attrpl">
<rtctrlSetASPath criteria="prepend">
<rtctrlSetASPathASN asn="100" order="2"/>
<rtctrlSetASPathASN asn="200" order="1"/>
</rtctrlSetASPath>
</rtctrlAttrpP>
</fvTenant>
</polUni>

Configuring Route Map/Profile with Explicit Prefix List Using REST API

Before you begin

* Tenant and VRF must be configured.

Procedure

Configure the route map/profile using explicit prefix list.

Note
The entries shown in bold below are enhancements for match prefix that are available for APIC releases 4.2(3) and later.
For more information on these fields, see Enhancements for Match Prefix.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<fvTenant name="PM" status="">
<rtctrlAttrP name="set dest">
<rtctrlSetComm community="regular:as2-nn2:5:24" />
</rtctrlAttrP>
<rtctrlSubjP name="allow dest">
<rtctrlMatchRtDest ip="192.169.0.0/24" aggregate="yes" fromPfxLen="26" toPfxLen="30" />
<rtctrlMatchCommTerm name="terml">

<rtctrlMatchCommFactor community="regular:as2-nn2:5:24" status="" />
<rtctrlMatchCommFactor community="regular:as2-nn2:5:25" status="" />
</rtctrlMatchCommTerm>
<rtctrlMatchCommRegexTerm commType="regular" regex="200:*" status="" />
</rtctrlSubjP>

<rtctrlSubjP name="deny dest">
<rtctrlMatchRtDest ip="192.168.0.0/24" />

Performing Tasks Using REST API .


cisco-apic-layer-3-networking-configuration-guide-62x_chapter22.pdf#nameddest=unique_293/unique_293_Connect_42_section_vvt_c5s_qjb

Performing Tasks Using REST APl |
. Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API

</rtctrlSubjpP>
<fvCtx name="ctx" />
<13extOut name="L30ut 1" enforceRtctrl="import,export" status="">

<13extRsEctx tnFvCtxName="ctx" />
<13extLNodeP name="bLeaf">
<13extRsNodeL30utAtt tDn="topology/pod-1/node-101" rtrId="1.2.3.4" />
<13extLIfP name="portIf">
<13extRsPathL30utAtt tDn="topology/pod-1/paths-101/pathep-[ethl/25]" ifInstT="sub-interface"
encap="vlan-1503" addr="10.11.12.11/24" />
<ospfIfP />
</13extLIfP>
<bgpPeerP addr="5.16.57.18/32" ctrl="send-com" />
<bgpPeerP addr="6.16.57.18/32" ctrl="send-com" />
</13extLNodeP>
<bgpExtP />
<ospfExtP areald="0.0.0.59" areaType="nssa" status="" />
<13extInstP name="13extInstP_ 1" status="">
<l3extSubnet ip="17.11.1.11/24" scope="import-security" />
</13extInstP>
<rtctrlProfile name="default-export" type="global" status="">
<rtctrlCtxP name="ctx deny" action="deny" order="1">

<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="deny dest" status="" />
</rtctrlCtxP>
<rtctrlCtxP name="ctx allow" order="2">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="allow dest" status="" />
</rtctrlCtxP>
<rtctrlScope name="scope" status="">
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="set dest" status="" />
</rtctrlScope>
</rtctrlProfile>
</13extOut>

<fvBD name="testBD">
<fvRsBDToOut tnL3extOutName="L3Out 1" />
<fvRsCtx tnFvCtxName="ctx" />
<fvSubnet ip="40.1.1.12/24" scope="public" />
<fvSubnet ip="40.1.1.2/24" scope="private" />
<fvSubnet ip="2003::4/64" scope="public" />

</fvBD>

</fvTenant>

Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API

This example assumes that you have configured the Layer 3 outside network connections using BGP. It is
also possible to perform these tasks for a network using OSPF.

Before you begin

* The tenant, private network, and bridge domain are created.

* The Layer 3 outside tenant network is configured.

Procedure

Configure the route control protocol using import and export controls.

Example:

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Configuring Interleak Redistribution Using the REST API .

<13extOut descr="" dn="uni/tn-Ten ND/out-L30Outl" enforceRtctrl="export" name="L30utl" ownerKey=""
ownerTag="" targetDscp="unspecified">
<13extLNodeP descr="" name="LNodePl" ownerKey="" ownerTag="" tag="yellow-green"

targetDscp="unspecified">
<13extRsNodeL30utAtt rtrId="1.2.3.4" rtrIdLoopBack="yes" tDn="topology/pod-1/node-101">

<13extLoopBackIfP addr="2000::3" descr="" name=""/>
</13extRsNodeL30OutAtt>
<13extLIfP descr="" name="IFP1" ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName=""/>
</ospfIfP>
<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsPathL30utAtt addr="10.11.12.10/24" descr="" encap="unknown" ifInstT="13-port"
11Addr="::" mac="00:22:BD:F8:19:FF" mtu="1500" tDn="topology/pod-1/paths-101/pathep-[ethl/17]"
targetDscp="unspecified"/>
</13extLIfP>
</13extLNodeP>
<13extRsEctx tnFvCtxName="PVN1"/>
<13extInstP descr="" matchT="AtleastOne" name="InstPl" prio="unspecified"

targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>

<1l3extSubnet aggregate="" descr="" ip="192.168.1.0/24" name="" scope=""/>
</13extInstP>
<ospfExtP areaCost="1" areaCtrl="redistribute,summary" areald="0.0.0.1" areaType="nssa"
descr=""/>
<rtctrlProfile descr="" name="default-export" ownerKey="" ownerTag="">
<rtctrlCtxP descr="" name="routecontrolpvtnw" order="3">
<rtctrlScope descr="" name="">
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="actionruleprofile2"/>
</rtctrlScope>
</rtctrlCtxP>
</rtctrlProfile>
</13extOut>

Configuring Interleak Redistribution Using the REST API

The following procedure describes how to configure the interleak redistribution using the REST API.

Before you begin

Create the tenant, VRF, and L3Out.

Procedure

Step 1 Configure the route-map for interleak redistribution.

Example:

The following example configures a route map INTERLEAK RP With two contexts (RouTEs_a and RouTEs arr). The first
context ROUTES A matches with an IP prefix-list 10.0.0.0/24 le 32 to set a community attribute via set rule com a. The
second context matches with all routes.

POST: https://<APIC IP>/api/mo/uni.xml

BODY:
<fvTenant dn="uni/tn-SAMPLE">

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring Transit Routing Using REST API

<!-- route map with two contexts (ROUTES A and ROUTES ALL)-->
<rtctrlProfile type="global" name="INTERLEAK RP">
<rtctrlCtxP name="ROUTES A" order="0" action="permit">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="PFX 10-0-0-0_24"/>
<rtctrlScope>
<rtctrlRsScopeToAttrP tnRtctrlAttrPName="COM A"/>
</rtctrlScope>
</rtctrlCtxP>
<rtctrlCtxP name="ROUTES ALL" order="9" action="permit">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="ALL PREFIX"/>

</rtctrlCtxP>
</rtctrlProfile>
<!-- match rule with an IP prefix-list -->

<rtctrlSubjP name="ALL PREFIX">
<rtctrlMatchRtDest ip="0.0.0.0/0" aggregate="yes"/>
</rtctrlSubjpP>

<!-- match rule with an IP prefix-list -->
<rtctrlSubjP name="PFX 10-0-0-0_24">

<rtctrlMatchRtDest ip="10.0.0.0/24" aggregate="yes"/>
</rtctrlSubjpP>

<!-- setu rule for community attribute -->
<rtctrlAttrP name="COM A">
<rtctrlSetComm type="community" setCriteria="append" community="regular:as2-nn2:100:200"/>
</rtctrlAttrpP>
</fvTenant>

Step 2 Apply the configured route map to an L3Out.

The following example applies the route map from Step 1 to L30ut 130ut1 to customize interleak redistribution of routes
from the given L3Out.

L3extRsInterleakPol is applied for dynamic routing protocol (OSPF/EIGRP) routes used by the given L3Out.
L3extRsRedistributePol is applied for static routes, as specified by the src attribute (static).

Example:
POST: https://<APIC IP>/api/mo/uni.xml
BODY:

<fvTenant dn="uni/tn-SAMPLE">
<13extOut name="13outl">
<!-- interleak redistribution for OSPF/EIGRP routes -->
<l3extRsInterleakPol tnRtctrlProfileName="INTERLEAK RP"/>
<!-- interleak redistribution for static routes -->
<l3extRsRedistributePol tnRtctrlProfileName="INTERLEAK RP" src="static"/>
</13extOut>
</fvTenant>

Configuring Transit Routing Using REST API

Configuring Transit Routing Using the REST API

These steps describe how to configure transit routing for a tenant. This example deploys two L3Outs, in one
VREF, on two border leaf switches, that are each connected to a separate router.

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 1

Step 2

Step 3

Performing Tasks Using REST API .

Before you begin

* Configure the node, port, functional profile, AEP, and Layer 3 domain.
* Create the external routed domain and associate it to the interface for the L3Out.

* Configure a BGP route reflector policy to propagate the routes within the fabric.

Procedure

Configure the tenant and VRF.
This example configures tenant +1 and VRF v1. The VRF is not yet deployed.

Example:

<fvTenant name="tl">
<fvCtx name="v1"/>
</fvTenant>

Configure the nodes and interfaces.

This example configures two L3Outs for the tenant t1 and VRF v1, on two border leaf switches. The VRF has a Layer 3
domain, dom1.

* The first L3Out is on node 101, which is named nodep1. Node 101 is configured with router ID 11.11.11.103. It
has a routed interface ifp1 at eth1/3, with the IP address 12.12.12.3/24.

* The second L3Out is on node 102, which is named nodep2. Node 102 is configured with router ID22.22.22.203.
It has a routed interface ifp2 at eth1/3, with the IP address, 23.23.23.1/24.

Example:

<13extOut name="13outl">
<13extRsEctx tnFvCtxName="v1"/>
<13extLNodeP name="nodepl">
<13extRsNodeL30utAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-101"/>
<13extLIfP name="ifpl"/>
<13extRsPathL30utAtt addr="12.12.12.3/24" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/3]"/>
</13extLIfP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
</13extOut>

<13extOut name="13out2">
<13extRsEctx tnFvCtxName="v1"/>
<13extLNodeP name="nodep2">
<13extRsNodeL30utAtt rtrId="22.22.22.203" tDn="topology/pod-1/node-102"/>
<13extLIfP name="ifp2"/>
<13extRsPathL30utAtt addr="23.23.23.3/24" ifInstT="13-port"
tDn="topology/pod-1/paths-102/pathep-[ethl/3]"/>
</13extLIfP>
</13extLNodeP>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
</13extOut>

Configure the routing protocol for both border leaf switches.

Performing Tasks Using REST API .



Performing Tasks Using REST APl |

. Performing Tasks Using REST API

Step 4

Step 5

This example configures BGP as the primary routing protocol for both the border leaf switches, both with ASN 100. It
also configures Node 101 with BGP peer 15.15.15.2 and node 102 with BGP peer 25.25.25.2.

Example:

<13extOut name="13outl">
<13extLNodeP name="nodepl">
<bgpPeerP addr="15.15.15.2/24"
<bgpAsP asn="100"/>
</bgpPeerpP>
</13extLNodeP>
</13extOut>

<13extOut name="1l3out2">
<1l3extLNodeP name="nodep2">
<bgpPeerP addr="25.25.25.2/24"
<bgpAsP asn="100"/>
</bgpPeerpP>
</13extLNodeP>
</13extOut>

Configure a connectivity routing protocol.
This example configures OSPF as the communication protocol, for both L3Outs, with regular area ID 0.0.0.0.

Example:

<13extOut name="13outl">
<ospfExtP areald="0.0.0.0" areaType="regular"/>
<13extLNodeP name="nodepl">
<13extLIfP name="ifpl">
<ospfIfP/>
<13extIfP>
<13extLNodeP>
</13extOut>
<13extOut name="1l3out2">
<ospfExtP areald="0.0.0.0" areaType="regular"/>
<13extLNodeP name="nodep2">
<13extLIfP name="ifp2">
<ospfIfP/>
<13extIfP>
<13extLNodeP>
</13extOut>

Configure the external EPGs.

This example configures the network 192.168.1.0/24 as external network extnwl onnode 101 and 192.168.2.0/24 as
external network extnw2 on node 102. It also associates the external EPGs with the route control profiles rp1 and rp2.

Example:

<13extOut name="1l3outl">
<l3extInstP name="extnwl">
<1l3extSubnet ip="192.168.1.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction="export" tnRtctrlProfileName="rpl"/>
</13extInstP>
</13extOut>
<13extOut name="1l3out2">
<l3extInstP name="extnw2">
<1l3extSubnet ip="192.168.2.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction="export" tnRtctrlProfileName="rp2"/>
</13extInstP>
</13extOut>

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

Step 6 Optional. Configure a route map.

This example configures a route map for each BGP peer in the inbound and outbound directions. For 130ut1, the route
map rp1 is applied for routes that match an import destination of 192.168.1.0/24 and the route map rp2 is applied for
routes that match an export destination of 192.168.2.0/24. For 130out2, the direction of the route maps is reversed.

Example:

<fvTenant name="tl1l">
<rtctrlSubjP name="match-rulel">
<rtctrlMatchRtDest ip="192.168.1.0/24" />
</rtctrlSubjP>
<rtctrlSubjP name="match-rule2">
<rtctrlMatchRtDest ip="192.168.2.0/24" />
</rtctrlSubjP>
<13extOut name="1l3outl">
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rulel" />
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlProfile name="rp2">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule2" />
</rtctrlCtxP>
</rtctrlProfile>
<l3extInstP name="extnwl">
<13extRsInstPToProfile direction="import" tnRtctrlProfileName="rpl" />
<13extRsInstPToProfile direction="export" tnRtctrlProfileName="rp2" />
</13extInstP>
</13extOut>
<13extOut name="1l3out2">
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rulel" />
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlProfile name="rp2">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule2" />
</rtctrlCtxP>
</rtctrlProfile>
<l13extInstP name="extnw2">
<13extRsInstPToProfile direction="import" tnRtctrlProfileName="rp2" />
<13extRsInstPToProfile direction="export" tnRtctrlProfileName="rpl" />
</13extInstP>
</13extOut>
</fvTenant>

Step 7 Create the filter and contract to enable the EPGs to communicate.

This example configures the filter http-filter and the contract httpctrct. The external EPGs and the application EPGs
are already associated with the contract httpctrct as providers and consumers respectively.

Example:

<vzFilter name="http-filter">
<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">
<vzSubj name="subjl">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>
</vzSubj>
</vzBrCP>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. REST APl Example: Transit Routing

Step 8 Associate the external EPGs with the contract.

This example associates the external EPG extnw1 as provider and external EPG extnw2 as consumer of the contract
httpCtrct.

<13extOut name="13outl">
<13extInstP name="extnwl">
<fvRsProv tnVzBrCPName="httpCtrct"/>
</13extInstP>
</13extOut>
<13extOut name="1l3out2">
<13extInstP name="extnw2">
<fvRsCons tnVzBrCPName="httpCtrct"/>
</13extInstP>
</13extOut>

REST APl Example: Transit Routing

The following example configures two L3Outs on two border leaf switches, using the REST API.

<?xml version="1.0" encoding="UTF-8"?>
<!-- api/policymgr/mo/.xml —-->
<polUni>
<fvTenant name="tl1l">
<fvCtx name="v1"/>
<l3extOut name="1l3outl">
<13extRsEctx tnFvCtxName="v1"/>
<l3extLNodeP name="nodepl">
<bgpPeerP addr="15.15.15.2/24">
<bgpAsP asn="100"/>
</bgpPeerP>
<13extRsNodeL3OutAtt rtrId="11.11.11.103" tDn="topology/pod-1/node-101"/>
<13extLIfP name="ifpl">
<13extRsPathL30utAtt addr="12.12.12.3/24" ifInstT="13-port"
tDn="topology/pod-1/paths-101/pathep-[ethl/3]" />
<ospfIfP/>
</13extLIfP>
</13extLNodeP>
<l3extInstP name="extnwl">
<1l3extSubnet ip="192.168.1.0/24" scope="import-security"/>
<13extRsInstPToProfile direction="import" tnRtctrlProfileName="rpl"/>
<13extRsInstPToProfile direction="export" tnRtctrlProfileName="rp2"/>
<fvRsProv tnVzBrCPName="httpCtrct"/>
</13extInstP>
<bgpExtP/>
<ospfExtP areald="0.0.0.0" areaType="regular"/>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rulel"/>
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlProfile name="rp2">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule2"/>
</rtctrlCtxP>
</rtctrlProfile>
</13extOut>
<13extOut name="1l3out2">
<13extRsEctx tnFvCtxName="v1"/>
<l3extLNodeP name="nodep2">

. Performing Tasks Using REST API



| Performing Tasks Using REST API

shared 130ut [

<bgpPeerP addr="25.25.25.2/24">
<bgpAsP asn="100"/>
</bgpPeerp>
<13extRsNodeL30utAtt rtrId="22.22.22.203" tDn="topology/pod-1/node-102" />
<13extLIfP name="ifp2">
<13extRsPathL30utAtt addr="23.23.23.3/24" ifInstT="13-port"

tDn="topology/pod-1/paths-102/pathep-[ethl/31" />

<ospfIfP/>
</13extLIfP>
</13extLNodeP>
<13extInstP name="extnw2">
<1l3extSubnet ip="192.168.2.0/24" scope="import-security"/>
<l3extRsInstPToProfile direction="import" tnRtctrlProfileName="rp2"/>
<13extRsInstPToProfile direction="export" tnRtctrlProfileName="rpl"/>
<fvRsCons tnVzBrCPName="httpCtrct"/>
</13extInstP>
<bgpExtP/>
<ospfExtP areald="0.0.0.0" areaType="regular"/>
<13extRsL3DomAtt tDn="uni/l3dom-doml"/>
<rtctrlProfile name="rpl">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rulel"/>
</rtctrlCtxP>
</rtctrlProfile>
<rtctrlProfile name="rp2">
<rtctrlCtxP name="ctxpl" action="permit" order="0">
<rtctrlRsCtxPToSubjP tnRtctrlSubjPName="match-rule2"/>
</rtctrlCtxP>
</rtctrlProfile>
</13extOut>
<rtctrlSubjP name="match-rulel">
<rtctrlMatchRtDest ip="192.168.1.0/24"/>
</rtctrlSubjpP>
<rtctrlSubjP name="match-rule2">
<rtctrlMatchRtDest ip="192.168.2.0/24"/>
</rtctrlSubjpP>
<vzFilter name="http-filter">
<vzEntry name="http-e" etherT="ip" prot="tcp"/>
</vzFilter>
<vzBrCP name="httpCtrct" scope="context">
<vzSubj name="subjl">
<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>
</vzSubj>
</vzBrCP>

</fvTenant>
</polUni>

Shared L30ut

Configuring Shared Services Using REST API

Configuring Two Shared Layer 3 Quts in Two VRFs Using REST API

The following REST API configuration example that displays how two shared Layer 3 Outs in two VRFs
communicate.

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring QoS for L30uts Using REST API

Procedure

Step 1 Configure the provider Layer 3 Out.

Example:

<tenant name=“tl provider”>

<fvCtx name=“VRF1">

<13extOut name="T0-0l-L30UT-1">
<1l3extRsEctx tnFvCtxName="ol"/>
<ospfExtP areald='60'/>
<13extInstP name="13extInstP-1">
<fvRsProv tnVzBrCPName="vzBrCP-1">

</fvRsProv>
<1l3extSubnet ip="192.168.2.0/24" scope=“shared-rtctrl, shared-security" aggregate=""/>
</13extInstP>
</13extOut>
</tenant>

Step 2 Configure the consumer Layer 3 Out.

Example:

<tenant name="tl consumer”>

<fvCtx name=“VRF2">

<13extOut name="T0-0l-L30UT-1">
<1l3extRsEctx tnFvCtxName="ol"/>
<ospfExtP areald=‘70'/>
<13extInstP name="13extInstP-2">
<fvRsCons tnVzBrCPName="vzBrCP-1">
</fvRsCons>
<13extSubnet 1ip="199.16.2.0/24" scope=“shared-rtctrl, shared-security"

aggregate=""/>
</13extInstP>

</13extOut>

</tenant>

Configuring QoS for L30uts Using REST API

Configuring QoS Directly on L30ut Using REST API

This section describes how to configure QoS directly on an L3Out. This is the preferred way of configuring
L30ut QoS starting with Cisco APIC Release 4.0(1).

You can configure QoS for L30ut on one of the following objects:

* Switch Virtual Interface (SVI)
* Sub Interface

* Routed Outside

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 1

Step 2

Step 3

Configuring QoS Contract for L30ut Using REST API .

Procedure

Configure QoS priorities for a L30ut SVI.

Example:
<13extLIfP descr="" dn="uni/tn-DT/out-L3 4 2 24 SVI17/lnodep-L3 4 E2 24/1ifp-L3 4 E2 24 SVI 19"

name="L3 4 E2 24 SVI 19" prio="level6" tag="yellow-green">
<l3extRsPathL30OutAtt addr="0.0.0.0" autostate="disabled" descr="SVI19" encap="vlan-19"
encapScope="1local" ifInstT="ext-svi" ipvéDad="enabled" 1l1Addr="::
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/protpaths-103-104/pathep-[V_L3 14 2-24]"
targetDscp="unspecified">
<l3extMember addr="107.2.1.253/24" ipvé6Dad="enabled" 11Addr="::" side="B"/>
<1l3extMember addr="107.2.1.252/24" ipvé6Dad="enabled" 11Addr="::" side="A"/>
</13extRsPathL30OutAtt>
<13extRsLIfPCustQosPol tnQosCustomPolName="VrfQos006"/>
</13extLIfP>

"

Configure QoS priorities for a sub-interface.

Example:

<13extLIfP dn="uni/tn-DT/out-L4E48 inter tenant/lnodep-L4E48 inter tenant/lifp-L4E48"
name="L4E48" prio="leveld4" tag="yellow-green">
<13extRsPathL30utAtt addr="210.1.0.254/16" autostate="disabled" encap="vlan-20"
encapScope="1local" ifInstT="sub-interface" ipvéDad="enabled" 1lAddr="::"
mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-104/pathep-[ethl/48]" targetDscp="unspecified"/>

<13extRsNdIfPol annotation="" tnNdIfPolName=""/>
<13extRsLIfPCustQosPol annotation="" tnQosCustomPolName=" vrfQos002"/>
</13extLIfP>

Configure QoS priorities for a routed outside.

Example:

<13extLIfP dn="uni/tn-DT/out-L2E37/1lnodep-L2E37/1ifp-L2E370UT"
name="L2E370UT" prio="level5" tag="yellow-green">
<13extRsPathL30utAtt addr="30.1.1.1/24" autostate="disabled" encap="unknown"
encapScope="1local" ifInstT="13-port" ipvéDad="enabled"
11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular"
mtu="inherit" targetDscp="unspecified"
tDn="topology/pod-1/paths-102/pathep-[ethl/37]"/>

<13extRsNdIfPol annotation="" tnNdIfPolName=""/>
<13extRsLIfPCustQosPol tnQosCustomPolName="vrfQos002"/>
</13extLIfP>

Configuring QoS Contract for L30ut Using REST API

This section describes how to configure QoS for L3Outs using Contracts.

\)

Note Starting with Release 4.0(1), we recommend using custom QoS policies for L30ut QoS as described in
Configuring QoS Directly on L30ut Using REST API, on page 58 instead.

Performing Tasks Using REST API .



Performing Tasks Using REST APl |

. Creating SR-MPLS Custom QoS Policy Using REST API

Step 1

Step 2

Procedure

When configuring the tenant, VRF, and bridge domain, configure the VRF for egress mode (pcEnfDir="egress") with
policy enforcement enabled (pcEnfPref="enforced"). Send a post with XML similar to the following example:

Example:

<fvTenant name="tl">
<fvCtx name="v1" pcEnfPref="enforced" pcEnfDir="egress"/>
<fvBD name="bdl">
<fvRsCtx tnFvCtxName="v1"/>
<fvSubnet ip="44.44.44.1/24" scope="public"/>
<fvRsBDToOut tnL3extOutName="13outl"/>
</fvBD>"/>
</fvTenant>

When creating the filters and contracts to enable the EPGs participating in the L30ut to communicate, configure the QoS
priority.

The contract in this example includes the QoS priority, 1eve11, for traffic ingressing on the L30ut. Alternatively, it could
define a target DSCP value. QoS policies are supported on either the contract or the subject.

The filter also has the matchpscp="EF" criteria, so that traffic with this specific TAG received by the L3out processes
through the queue specified in the contract subject.

Note
VREF enforcement should be ingress, for QOS or custom QOS on L3out interface, VRF enforcement need be egress, only
when the QOS classification is going to be done in the contract for traffic between EPG and L3out or L3out to L3out.

Note
If QOS classification is set in the contract and VRF enforcement is egress, then contract QOS classification would override
the L3out interface QOS or Custom QOS classification, So either we need to configure this one or the new one.

Example:

<vzFilter name="http-filter">

<vzEntry name="http-e" etherT="ip" prot="tcp" matchDscp="EF"/>
</vzFilter>
<vzBrCP name="httpCtrct" prio="levell" scope="context">

<vzSubj name="subjl">

<vzRsSubjFiltAtt tnVzFilterName="http-filter"/>

</vzSubj>

</vzBrCP>

Creating SR-MPLS Custom QoS Policy Using REST API

SR-MPLS Custom QoS policy defines the priority of the packets coming from an SR-MPLS network while
they are inside the ACI fabric based on the incoming MPLS EXP values defined in the MPLS QoS ingress
policy. It also marks the CoS and MPLS EXP values of the packets leaving the ACI fabric through an MPLS
interface based on [Pv4 DSCP values defined in MPLS QoS egress policy.

If no custom ingress policy is defined, the default QoS Level (1eve13) is assigned to packets inside the fabric.
If no custom egress policy is defined, the default EXP value of 0 will be marked on packets leaving the fabric.

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 1

Step 2

Performing Tasks Using REST API .

Procedure

Create SR-MPLS QoS policy.
In the following POST:
* Replace customgosl with the name of the SR-MPLS QoS policy you want to create.
* For the qosMplsIngressRule:
* Replace from="2" to="3" with the EXP range you want the policy to match.
* Replace prio="1evel15" with the ACI QoS Level for the packet while it's inside the ACI fabric.
* Replace target="cs5" with the DSCP value you want to set on the packet when it's matched.

* Replace targetcos="4" with the CoS value you want to set on the packet when it's matched.

* For the qosMplsEgressRule:

* Replace from="cs2" to="cs4" with the DSCP range you want the policy to match.
* Replace targetExp="5" with the EXP value you want to set on the packet when it's leaving the fabric.

* Replace targetcos="3" with the CoS value you want to set on the packet when it's leaving the fabric.

<polUni>
<fvTenant name="infra">
<gosMplsCustomPol descr="" dn="uni/tn-infra/qgosmplscustom-customgosl" name="customgosl" status=""

<gosMplsIngressRule from="2" to="3" prio="level5" target="CS5" targetCos="4" status="" />
<gosMplsEgressRule from="CS2" to="CS4" targetExp="5" targetCos="3" status=""/>
</gosMplsCustomPol>
</fvTenant>
</polUni>

Applying SR-MPLS QoS policy.
In the following POST, replace customqosl with the name of the SR-MPLS QoS policy you created in the previous step.

<polUni>
<fvTenant name="infra">
<13extOut name="mplsOut" status="" descr="bl">
<l3extLNodeP name="mplsLNP" status="">
<13extRsLNodePMplsCustQosPol tDn="uni/tn-infra/qgosmplscustom-customgosl"/>
</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring ACI IP SLAs Using REST APl

Configuring ACI IP SLAs Using REST API

Configuring an IP SLA Monitoring Policy Using the REST API

To enable Cisco APIC to send monitoring probes for a specific SLA type using REST API, perform the
following steps:

Procedure

Configure an IP SLA monitoring policy.

Example:

<?xml version="1.0" encoding="utf-8"?>
<imdata totalCount="1">

<fvIPSLAMonitoringPol annotation="" descr=""
dn="uni/tn-t8/ipslaMonitoringPol-ICMP-Probe"
name="ICMP-Probe" nameAlias="" ownerKey="" ownerTag="" slaDetectMultiplier="3"

slaFrequency="5"
slaPort="0" slaType="icmp"/>
</imdata>

Configuring an IP-SLA Track Member Using the REST API
To configure an IP SLA track member using REST API, perform the following steps:

Procedure

Configure an IP SLA track member.

Example:

<?xml version="1.0" encoding="utf-8"?>
<imdata totalCount="1">

<fvTrackMember annotation="" descr="" dn="uni/tn-t8/trackmember-TM pc sub"
dstIpAddr="52.52.52.1" name="TM pc sub" nameAlias="" ownerKey="" ownerTag=""
scopeDn="uni/tn-t8/out-t8 13">

<fvRsIpslaMonPol annotation="" tDn="uni/tn-t8/ipslaMonitoringPol-TCP-Telnet"/>
</fvTrackMember>

</imdata>

Configuring an IP-SLA Track List Using the REST API
To configure an IP SLA track list using REST API, perform the following steps:

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Associating a Track List with a Static Route Using the REST API .

Procedure

Configure an IP SLA track list.

Example:

<?xml version="1.0" encoding="utf-8"7?>
<imdata totalCount="1">

<fvTrackList annotation="" descr="" dn="uni/tn-t8/tracklist-T8 pc subl"
name="T8 pc_subl" nameAlias="" ownerKey="" ownerTag="" percentageDown="0"
percentageUp="1" type="weight" weightDown="5" weightUp="10">
<fvRsOtmListMember annotation="" tDn="uni/tn-t8/trackmember-TM pc_sub"
weight="10"/>
</fvTrackList>

</imdata>

Associating a Track List with a Static Route Using the REST API

To associate an IP SLA track list with a static route using REST API, perform the following steps:

Procedure

Associate an IP SLA track list with a static route.

Example:

<?xml version="1.0" encoding="utf-8"?>
<imdata totalCount="1">
<ipRouteP aggregate="no" annotation="" descr=""

dn="uni/tn-t8/out-t8 13/1lnodep-t8 13 vpcl/rsnodeL30utAtt-[topology/pod-2/node-108]/rt-[88.88.88.2/24]"

ip="88.88.88.2/24" name="" nameAlias="" pref="1" rtCtrl="">
<ipRsRouteTrack annotation="" tDn="uni/tn-t8/tracklist-T8 TL1_ Static"/>
<ipNexthopP annotation="" descr="" name="" nameAlias="" nhAddr="23.23.2.3"

pref="1" type="prefix"/>
</ipRouteP>
</imdata>

Associating a Track List with a Next Hop Profile Using the REST API

To associate an IP SLA track list with a next hop profile using REST API, perform the following steps:

Procedure

Associate an I[P SLA track list with a next hop profile.

Example:

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Configuring HSRP Using REST API

<?xml version="1.0" encoding="utf-8"?>
<imdata totalCount="1">
<ipRouteP aggregate="no" annotation="" descr=""

dn="uni/tn-t8/out-t8 13/1lnodep-t8 13 vpcl/rsnodeL30utAtt-[topology/pod-2/node-109]/rt-[86.86.86.2/24]"

ip="86.86.86.2/24" name="" nameAlias="" pref="1" rtCtrl="">
<ipNexthopP annotation="" descr="" name="" nameAlias="" nhAddr="25.25.25.3"
pref="1" type="prefix">
<ipRsNexthopRouteTrack annotation=""
tDn="uni/tn-t8/tracklist-ctx0 25.25.25.3"/>
<ipRsNHTrackMember annotation=""
tDn="uni/tn-t8/trackmember-ctx0 25.25.25.3"/>
</ipNexthopP>
</ipRouteP>
</imdata>

Configuring HSRP Using REST API
Configuring HSRP in APIC Using REST API

HSRP is enabled when the leaf switch is configured.

Before you begin

* The tenant and VRF must be configured.

* VLAN pools must be configured with the appropriate VLAN range defined and the appropriate Layer
3 domain created and attached to the VLAN pool.

 The Attach Entity Profile must also be associated with the Layer 3 domain.

* The interface profile for the leaf switches must be configured as required.

Procedure

Step 1 Create port selectors.

Example:

<polUni>
<infraInfra dn="uni/infra">
<infraNodeP name="TenantNode 101">
<infralLeafS name="leafselector" type="range">
<infraNodeBlk name="nodeblk" from ="101" to ="101">
</infraNodeBlk>
</infraleafS>
<infraRsAccPortP tDn="uni/infra/accportprof-TenantPorts 101"/>
</infraNodeP>
<infraAccPortP name="TenantPorts 101">
<infraHPortS name="portselector" type="range">
<infraPortBlk name="portblk" fromCard="1" toCard="1" fromPort="41" toPort="41">
</infraPortBlk>
<infraRsAccBaseGrp tDn="uni/infra/funcprof/accportgrp-TenantPortGrp 101"/>
</infraHPortS>

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 2

Step 3

Step 4

Step 5

Performing Tasks Using REST API .

</infraAccPortP>
<infraFuncP>
<infraAccPortGrp name="TenantPortGrp 101">
<infraRsAttEntP tDn="uni/infra/attentp-AttEntityProfTenant"/>
<infraRsHIfPol tnFabricHIfPolName="default"/>
</infraAccPortGrp>
</infraFuncP>
</infralInfra>
</polUni>

Create a tenant policy.

Example:

<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">

<fvCtx name="t9 ctxl" pcEnfPref="unenforced">

</ fvCtx>

<fvBD name="t9 bdl" unkMacUcastAct="flood" arpFlood="yes">
<fvRsCtx tnFvCtxName="t9 ctxl"/>
<fvSubnet ip="101.9.1.1/24" scope="shared"/>

</fvBD>

<13extOut dn="uni/tn-t9/out-13extOutl"” enforceRtctrl="export" name="13extOutl">
<13extLNodeP name="Nodel(QOl">
<13extRsNodeL30OutAtt rtrId="210.210.121.121" rtrIdLoopBack="no" tDn="topology/pod-1/node-101"/>

</13extLNodeP>

<l3extRsEctx tnFvCtxName="t9 ctxl"/>

<13extRsL3DomAtt tDn="uni/l3dom-doml"/>

<13extInstP matchT="AtleastOne" name="extEpg" prio="unspecified" targetDscp="unspecified">
<13extSubnet aggregate="" descr="" ip="176.21.21.21/21" name="" scope="import-security"/>

</13extInstP>

</13extOut>
</fvTenant>
</polUni>

Create an HSRP interface policy.

Example:

<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>
</fvTenant>
</polUni>

Create an HSRP group policy.

Example:

<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<hsrpIfPol name="hsrpIfPol" ctrl="bfd" delay="4" reloadDelay="11"/>
</fvTenant>
</polUni>

Create an HSRP interface profile and an HSRP group profile.

Example:

<polUni>
<fvTenant name="t9" dn="uni/tn-t9" descr="">
<13extOut dn="uni/tn-t9/out-13extOutl" enforceRtctrl="export" name="13extOutl">
<13extLNodeP name="NodelO1l">

Performing Tasks Using REST API .



Performing Tasks Using REST APl |

. Configuring Cisco ACI GOLF Using REST APl

<13extLIfP name="ethl-41-v6" ownerKey="" ownerTag="" tag="yellow-green">
<hsrpIfP name="ethl-41-v6" version="v2">
<hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>

<hsrpGroupP descr="" name="HSRPV6-2" groupId="330" groupAf="ipve" ip="fe80::3"
mac="00:00:0C:18:AC:01" ipObtainMode="admin">
<hsrpRsGroupPol tnHsrpGroupPolName="G1"/>
</hsrpGroupP>
</hsrpIfP>
<13extRsPathL30utAtt addr="2002::100/64" descr="" encap="unknown" encapScope="local"
1ifInstT="13-port" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"
tDn="topology/pod-1/paths-101/pathep-[ethl/41]" targetDscp="unspecified">
<13extIp addr="2004::100/64"/>
</13extRsPathL30OutAtt>
</13extLIfP>
<13extLIfP name="ethl-41-v4" ownerKey="" ownerTag="" tag="yellow-green">
<hsrpIfP name="ethl-41-v4" version="v1">
<hsrpRsIfPol tnHsrpIfPolName="hsrpIfPol"/>
<hsrpGroupP descr="" name="HSRPV4-2" groupId="51" groupAf="ipv4" ip="177.21.21.21"
mac="00:00:0C:18:AC:01" ipObtainMode="admin">
<hsrpRsGroupPol tnHsrpGroupPolName="G1"/>
</hsrpGroupP>
</hsrpIfP>
<13extRsPathL30utAtt addr="177.21.21.11/24" descr="" encap="unknown" encapScope="local"
1ifInstT="13-port" 11Addr="::" mac="00:22:BD:F8:19:FF" mode="regular" mtu="inherit"

tDn="topology/pod-1/paths-101/pathep-[ethl/41]" targetDscp="unspecified">
<13extIp addr="177.21.23.11/24"/>
</13extRsPathL30utAtt>
</13extLIfP>
</13extLNodeP>
</13extOut>
</fvTenant>
</polUni>

Configuring Cisco ACI GOLF Using REST API
Configuring GOLF Using the REST API

SUMMARY STEPS
1. The following example shows how to deploy nodes and spine switch interfaces for GOLF, using the REST
API:
2. The XML below configures the spine switch interfaces and infra tenant provider of the GOLF service.
Include this XML structure in the body of the POST message.
3. The XML below configures the tenant consumer of the infra part of the GOLF service. Include this XML
structure in the body of the POST message.
DETAILED STEPS
Procedure

Step 1 The following example shows how to deploy nodes and spine switch interfaces for GOLF, using the REST API:

Example:

. Performing Tasks Using REST API



| Performing Tasks Using REST API

Step 2

Performing Tasks Using REST API .

POST
https://192.0.20.123/api/mo/uni/golf.xml

The XML below configures the spine switch interfaces and infra tenant provider of the GOLF service. Include this XML
structure in the body of the POST message.

Example:
<13extOut descr="" dn="uni/tn-infra/out-golf" enforceRtctrl="export, import"
name="golf"
ownerKey="" ownerTag="" targetDscp="unspecified">
<1l3extRsEctx tnFvCtxName="overlay-1"/>
<13extProvlbl descr="" name="golf"
ownerKey="" ownerTag="" tag="yellow-green"/>
<13extLNodeP configIssues="" descr=""
name="bLeaf" ownerKey="" ownerTag=""

tag="yellow-green" targetDscp="unspecified">
<1l3extRsNodeL30OutAtt rtrId="10.10.3.3" rtrIdLoopBack="no"
tDn="topology/pod-1/node-111">
<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<13extLoopBackIfP addr="10.10.3.3" descr="" name=""/>
</13extRsNodeL30utAtt>
<l3extRsNodeL30utAtt rtrId="10.10.3.4" rtrIdLoopBack="no"
tDn="topology/pod-1/node-112">
<13extInfraNodeP descr="" fabricExtCtrlPeering="yes" name=""/>
<13extLoopBackIfP addr="10.10.3.4" descr="" name=""/>
</13extRsNodeL30utAtt>
<13extLIfP descr="" name="portIf-spinel-3"
ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospfIfP>
<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>
<13extRsPathL30OutAtt addr="7.2.1.1/24" descr=""
encap="vlan-4"
encapScope="1local"
ifInstT="sub-interface"

11Addr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="1500"

tDn="topology/pod-1/paths-111/pathep-[ethl/12]"
targetDscp="unspecified"/>
</13extLIfP>
<13extLIfP descr="" name="portIf-spine2-1"
ownerKey=""
ownerTag=""
tag="yellow-green">
<ospfIfP authKeyId="1"
authType="none"

descr=""

name="">

<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospflfpP>

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>
<13extRsPathL30OutAtt addr="7.1.0.1/24" descr=""

encap="vlan-4"

encapScope="1local"

ifInstT="sub-interface"

11Addr="::" mac="00:22:BD:F8:19:FF"

mode="regular"

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Performing Tasks Using REST API

mtu="9000"
tDn="topology/pod-1/paths-112/pathep-[ethl/11]"
targetDscp="unspecified"/>
</13extLIfP>
<13extLIfP descr="" name="portif-spine2-2"
ownerKey=""
ownerTag=""
tag="yellow-green">
<ospfIfP authKeyId="1"
authType="none" descr=""

name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospfIfP>

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>
<13extRsPathL30utAtt addr="7.2.2.1/24" descr=""
encap="vlan-4"
encapScope="1local"
ifInstT="sub-interface"

11Addr="::" mac="00:22:BD:F8:19:FF"
mode="reqgular"
mtu="1500"

tDn="topology/pod-1/paths-112/pathep-[ethl/12]"
targetDscp="unspecified"/>

</13extLIfP>
<13extLIfP descr="" name="portIf-spinel-2"
ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospflfpP>

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>
<1l3extRsPathL30utAtt addr="9.0.0.1/24" descr=""
encap="vlan-4"

encapScope="1local"

ifInstT="sub-interface"

11Addr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="9000"

tDn="topology/pod-1/paths-111/pathep-[ethl/11]"
targetDscp="unspecified"/>

</13extLIfP>
<13extLIfP descr="" name="portIf-spinel-1"
ownerKey="" ownerTag="" tag="yellow-green">
<ospfIfP authKeyId="1" authType="none" descr="" name="">
<ospfRsIfPol tnOspfIfPolName="ospfIfPol"/>
</ospfIfpP>

<13extRsNdIfPol tnNdIfPolName=""/>
<13extRsIngressQosDppPol tnQosDppPolName=""/>
<13extRsEgressQosDppPol tnQosDppPolName=""/>
<13extRsPathL30utAtt addr="7.0.0.1/24" descr=""

encap="vlan-4"

encapScope="1local"

ifInstT="sub-interface"

11Addr="::" mac="00:22:BD:F8:19:FF"
mode="regular"
mtu="1500"

tDn="topology/pod-1/paths-111/pathep-[ethl/10]"
targetDscp="unspecified"/>
</13extLIfP>
<bgpInfraPeerP addr="10.10.3.2"
allowedSelfAsCnt="3"

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

ctrl="send-com, send-ext-com"

descr="" name="" peerCtrl=""

peerT="wan"

privateASctrl="" ttl="2" weight="0">

<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>

<bgpAsP asn="150" descr="" name="aspn"/>
</bgpInfraPeerpP>

<bgpInfraPeerP addr="10.10.4.1"
allowedSelfAsCnt="3"

ctrl="send-com, send-ext-com" descr="" name="" peerCtrl=""
peerT="wan"
privateASctrl="" ttl="1" weight="0">
<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>
<bgpAsP asn="100" descr="" name=""/>
</bgpInfraPeerpP>

<bgpInfraPeerP addr="10.10.3.1"
allowedSelfAsCnt="3"

ctrl="send-com, send-ext-com" descr="" name="" peerCtrl=""

peerT="wan"

privateASctrl="" ttl="1" weight="0">

<bgpRsPeerPfxPol tnBgpPeerPfxPolName=""/>

<bgpAsP asn="100" descr="" name=""/>

</bgpInfraPeerP>

</13extLNodeP>
<bgpRtTargetInstrP descr="" name="" ownerKey="" ownerTag="" rtTargetT="explicit"/>
<13extRsL3DomAtt tDn="uni/l3dom-13dom"/>
<l3extInstP descr="" matchT="AtleastOne" name="golfInstP"

prio="unspecified"
targetDscp="unspecified">
<fvRsCustQosPol tnQosCustomPolName=""/>
</13extInstP>
<bgpExtP descr=""/>
<ospfExtP areaCost="1"
areaCtrl="redistribute, summary"
arealId="0.0.0.1"
areaType="regular" descr=""/>
</13extOut>

Step 3 The XML below configures the tenant consumer of the infra part of the GOLF service. Include this XML structure in the

body of the POST message.
Example:
<fvTenant descr="" dn="uni/tn-pep6" name="pep6t" ownerKey="" ownerTag="">
<vzBrCP descr="" name="webCtrct"
ownerKey="" ownerTag="" prio="unspecified"”

scope="global" targetDscp="unspecified">

<vzSubj consMatchT="AtleastOne" descr=""
name="http" prio="unspecified" provMatchT="AtleastOne"
revFltPorts="yes" targetDscp="unspecified">

<vzRsSubjFiltAtt directives="" tnVzFilterName="default"/>
</vzSubj>
</vzBrCP>
<vzBrCP descr="" name="webCtrct-pod2"
ownerKey="" ownerTag="" prio="unspecified"

scope="global" targetDscp="unspecified">
<vzSubj consMatchT="AtleastOne" descr=""
name="http" prio="unspecified"
provMatchT="AtleastOne" revFltPorts="yes"
targetDscp="unspecified">
<vzRsSubjFiltAtt directives=""
tnvVzFilterName="default"/>
</vzSubj>

Performing Tasks Using REST API .



. Performing Tasks Using REST API

</vzBrCP>
<fvCtx descr="" knwMcastAct="permit"
name="ctx6" ownerKey="" ownerTag=""

pcEnfDir="ingress" pcEnfPref="enforced">
<bgpRtTargetP af="ipv6-ucast"
descr="" name="" ownerKey="" ownerTag="">
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
rt="route-target:as4-nn2:100:1256"
type="export"/>
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""
rt="route-target:as4-nn2:100:1256"
type="import" />

</bgpRtTargetP>

<bgpRtTargetP af="ipv4-ucast"
descr="" name="" ownerKey="" ownerTag="">
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""

rt="route-target:as4-nn2:100:1256"
type="export"/>
<bgpRtTarget descr="" name="" ownerKey="" ownerTag=""

rt="route-target:as4-nn2:100:1256"
type="import"/>

</bgpRtTargetP>

<fvRsCtxToExtRouteTagPol tnL3extRouteTagPolName=""/>

<fvRsBgpCtxPol tnBgpCtxPolName=""/>

<vzAny descr="" matchT="AtleastOne" name=""/>

<fvRsOspfCtxPol tnOspfCtxPolName=""/>

<fvRsCtxToEpRet tnFvEpRetPolName=""/>

<1l3extGlobalCtxName descr="" name="dci-pep6"/>
</fvCtx>
<fvBD arpFlood="no" descr="" epMoveDetectMode=""

ipLearning="yes"
limitIpLearnToSubnets="no"
11Addr="::" mac="00:22:BD:F8:19:FF"
mcastAllow="no"
multiDstPktAct="bd-flood"
name="bd1l07" ownerKey="" ownerTag="" type="regular"
unicastRoute="yes"
unkMacUcastAct="proxy"
unkMcastAct="flood"
vmac="not-applicable">
<fvRsBDToNdP tnNdIfPolName=""/>
<fvRsBDToOut tnL3extOutName="routAccounting-pod2"/>
<fvRsCtx tnFvCtxName="ctx6"/>
<fvRsIgmpsn tnIgmpSnoopPolName=""/>
<fvSubnet ctrl="" descr="" ip="27.6.1.1/24"
name="" preferred="no"
scope="public"
virtual="no"/>
<fvSubnet ctrl="nd" descr="" ip="2001:27:6:1::1/64"
name="" preferred="no"
scope="public"
virtual="no">
<fvRsNdPfxPol tnNdPfxPolName=""/>

</fvSubnet>

<fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>
</fvBD>
<fvBD arpFlood="no" descr="" epMoveDetectMode=""

ipLearning="yes"

limitIpLearnToSubnets="no"

11Addr="::" mac="00:22:BD:F8:19:FF"

mcastAllow="no"

multiDstPktAct="bd-flood"

name="bd1l03" ownerKey="" ownerTag="" type="regular"
unicastRoute="yes"

. Performing Tasks Using REST API

Performing Tasks Using REST APl |



| Performing Tasks Using REST API

unkMacUcastAct="proxy"

unkMcastAct="flood"

vmac="not-applicable">

<fvRsBDToNdP tnNdIfPolName=""/>

<fvRsBDToOut tnL3extOutName="routAccounting"/>
<fvRsCtx tnFvCtxName="ctx6"/>

<fvRsIgmpsn tnIgmpSnoopPolName=""/>

<fvSubnet ctrl="" descr="" ip="23.6.1.1/24"

—_nun

name= preferred="no"
scope="public"
virtual="no"/>

<fvSubnet ctrl="nd" descr="" ip="2001:23:6:1::1/64"

</fvSubnet>
<fvRsBdToEpRet resolveAct="resolve" tnFvEpRetPolName=""/>
</fvBD>
<vnsSvcCont/>
<fvRsTenantMonPol tnMonEPGPolName=""/>
<fvAp descr="" name="APL"
ownerKey="" ownerTag="" prio="unspecified">

name="" preferred="no"
scope="public" virtual="no">
<fvRsNdPfxPol tnNdPfxPolName=""/>

<fvAEPg descr=""

isAttrBasedEPg="no"

matchT="AtleastOne"

name="epgl07"

pcEnfPref="unenforced" prio="unspecified">

<fvRsCons prio="unspecified"
tnVzBrCPName="webCtrct-pod2"/>

<fvRsPathAtt descr=""
encap="vlan-1256"
instrImedcy="immediate"
mode="regular" primaryEncap="unknown"

tDn="topology/pod-2/paths-107/pathep-[ethl/48]"/>

<fvRsDomAtt classPref="encap" delimiter=""
encap="unknown"
instrImedcy="immediate"
primaryEncap="unknown"
resImedcy="1lazy" tDn="uni/phys-phys"/>

<fvRsCustQosPol tnQosCustomPolName=""/>

<fvRsBd tnFvBDName="bd1l07"/>

<fvRsProv matchT="AtleastOne"
prio="unspecified"
tnVzBrCPName="default"/>

</fvAEPg>
<fvAEPg descr=""

isAttrBasedEPg="no"

matchT="AtleastOne"

name="epgl03"

pcEnfPref="unenforced" prio="unspecified">

<fvRsCons prio="unspecified" tnVzBrCPName="default"/>
<fvRsCons prio="unspecified" tnVzBrCPName="webCtrct"/>

<fvRsPathAtt descr="" encap="vlan-1256"
instrImedcy="immediate"
mode="regular" primaryEncap="unknown"

tDn="topology/pod-1/paths-103/pathep-[ethl/48]"/>

<fvRsDomAtt classPref="encap" delimiter=""
encap="unknown"
instrImedcy="immediate"
primaryEncap="unknown"
resImedcy="1lazy" tDn="uni/phys-phys"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsBd tnFvBDName="bd1l03"/>

</fvAEPg>

Performing Tasks Using REST API .

Performing Tasks Using REST API .




Performing Tasks Using REST APl |
. Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API

</fvAp>
<13extOut descr=""
enforceRtctrl="export"
name="routAccounting-pod2"
ownerKey="" ownerTag="" targetDscp="unspecified">
<13extRsEctx tnFvCtxName="ctx6"/>
<13extInstP descr=""
matchT="AtleastOne"
name="accountingInst-pod2"
prio="unspecified" targetDscp="unspecified">
<l3extSubnet aggregate="export-rtctrl, import-rtctrl"
descr="" ip="::/0" name=""
scope="export-rtctrl, import-rtctrl, import-security"/>
<l3extSubnet aggregate="export-rtctrl, import-rtctrl"
descr=""
ip="0.0.0.0/0" name=""
scope="export-rtctrl, import-rtctrl, import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsProv matchT="AtleastOne"
prio="unspecified" tnVzBrCPName="webCtrct-pod2"/>
</13extInstP>
<1l3extConsLbl descr=""
name="golf2"
owner="infra"
ownerKey="" ownerTag="" tag="yellow-green"/>
</13extOut>
<1l3extOut descr=""
enforceRtctrl="export"
name="routAccounting"
ownerKey="" ownerTag="" targetDscp="unspecified">
<13extRsEctx tnFvCtxName="ctx6"/>
<l3extInstP descr=""
matchT="AtleastOne"
name="accountingInst"
prio="unspecified" targetDscp="unspecified">
<13extSubnet aggregate="export-rtctrl,import-rtctrl"™ descr=""
ip="0.0.0.0/0" name=""
scope="export-rtctrl,import-rtctrl, import-security"/>
<fvRsCustQosPol tnQosCustomPolName=""/>
<fvRsProv matchT="AtleastOne" prio="unspecified" tnVzBrCPName="webCtrct"/>
</13extInstP>
<13extConsLbl descr=""
name="golf"
owner="infra"
ownerKey="" ownerTag="" tag="yellow-green"/>
</13extOut>
</fvTenant>

Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API

Enable distributing BGP EVPN type-2 host routes using the REST API, as follows:

Before you begin

EVPN services must be configured.

. Performing Tasks Using REST API



| Performing Tasks Using REST API
Performing Tasks Using REST API .

Procedure

Step 1 Configure the Host Route Leak policy, with a POST containing XML such as in the following example:

Example:
<bgpCtxAfPol descr="" ctrl="host-rt-leak" name="bgpCtxPol 0 status=""/>

Step 2 Apply the policy to the VRF BGP Address Family Context Policy for one or both of the address families using a POST
containing XML such as in the following example:

Example:

<fvCtx name="vni-10001">

<fvRsCtxToBgpCtxAfPol af="ipv4-ucast" tnBgpCtxAfPolName="bgpCtxPol 0"/>
<fvRsCtxToBgpCtxAfPol af="ipvé6-ucast" tnBgpCtxAfPolName="bgpCtxPol 0"/>
</fvCtx>

Performing Tasks Using REST API .



Performing Tasks Using REST APl |
. Performing Tasks Using REST API

. Performing Tasks Using REST API



	Performing Tasks Using REST API
	Part I: Layer 3 Configuration
	Configuring Common Pervasive Gateway Using REST API
	Configuring Common Pervasive Gateway Using the REST API

	Configuring IP Aging Using REST API
	Configuring IP Aging Using the REST API

	Configuring a Static Route on a Bridge Domain Using REST API
	Configuring a Static Route on a Bridge Domain Using the REST API

	Configuring IPv6 Neighbor Discovery Using REST API
	Creating the Tenant, VRF, and Bridge Domain with IPv6 Neighbor Discovery on the Bridge Domain Using the REST API
	Configuring an IPv6 Neighbor Discovery Interface Policy with RA on a Layer 3 Interface Using the REST API
	Configuring Neighbor Discovery Duplicate Address Detection Using the REST API

	Configuring Microsoft NLB Using REST API
	Configuring Microsoft NLB in Unicast Mode Using the REST API
	Configuring Microsoft NLB in Multicast Mode Using the REST API
	Configuring Microsoft NLB in IGMP Mode Using the REST API

	Configuring IGMP Snooping Using REST API
	Configuring and Assigning an IGMP Snooping Policy to a Bridge Domain using the REST API
	Enabling IGMP Snooping and Multicast on Static Ports Using the REST API
	Enabling Group Access to IGMP Snooping and Multicast using the REST API

	Configuring MLD Snooping Using REST API
	Configuring and Assigning an MLD Snooping Policy to a Bridge Domain using the REST API

	Configuring IP Multicast Using REST API
	Configuring Layer 3 Multicast Using REST API
	Configuring Layer 3 IPv6 Multicast Using REST API
	Configuring Multicast Filtering Using the REST API

	Configuring Multi-Pod Using REST API
	Setting Up Multi-Pod Fabric Using the REST API

	Configuring Remote Leaf Switches Using REST API
	Configure Remote Leaf Switches Using the REST API

	Configuring SR-MPLS Handoff Using REST API
	Configuring an SR-MPLS Infra L3Out Using the REST API
	Configuring an SR-MPLS VRF L3Out Using the REST API
	Creating SR-MPLS Custom QoS Policy Using REST API


	Part II: External Routing (L3Out) Configuration
	Routed Connectivity to External Networks
	Configuring an MP-BGP Route Reflector Using REST API
	Configuring an MP-BGP Route Reflector Using the REST API

	Configuring the BGP Domain-Path Feature for Loop Prevention Using the REST API

	Node and Interface for L3Out
	Configuring Layer 3 Routed and Sub-Interface Port Channels Using REST API
	Configuring a Layer 3 Routed Port Channel Using the REST API
	Configuring a Layer 3 Sub-Interface Port Channel Using the REST API

	Configuring a Switch Virtual Interface Using REST API
	Configuring SVI Interface Encapsulation Scope Using the REST API
	Configuring SVI Auto State Using the REST API


	Configuring Routing Protocols Using REST API
	Configuring BGP External Routed Networks with BFD Support Using REST API
	Configuring BGP External Routed Network Using the REST API
	Configuring BGP Max Path Using the REST API
	Configuring AS Path Prepend Using the REST API
	Configuring BGP External Routed Network with Autonomous System Override Enabled Using the REST API
	Configuring BGP Neighbor Shutdown and Soft Reset Using the REST API
	Configuring BGP Neighbor Shutdown Using the REST API
	Configuring BGP Neighbor Soft Reset Using the REST API

	Configuring a Per VRF Per Node BGP Timer Using the REST API
	Deleting a Per VRF Per Node BGP Timer Using the REST API
	Configuring Bidirectional Forwarding Detection on a Secondary IP Address Using the REST API
	Configuring BFD Globally Using the REST API
	Configuring BFD Interface Override Using the REST API
	Configuring BFD Consumer Protocols Using the REST API

	Configuring OSPF External Routed Networks Using REST API
	Creating OSPF External Routed Network for Management Tenant Using REST API

	Configuring EIGRP External Routed Networks Using REST API
	Configuring EIGRP Using the REST API


	Configuring Route Summarization Using REST API
	Configuring Route Summarization for BGP, OSPF, and EIGRP Using the REST API

	Configuring Route Control with Route Maps and Route Profile Using REST API
	Configuring Route Control Per BGP Peer Using the REST API
	Configuring Route Map/Profile with Explicit Prefix List Using REST API
	Configuring a Route Control Protocol to Use Import and Export Controls, With the REST API
	Configuring Interleak Redistribution Using the REST API

	Configuring Transit Routing Using REST API
	Configuring Transit Routing Using the REST API
	REST API Example: Transit Routing

	Shared L3Out
	Configuring Shared Services Using REST API
	Configuring Two Shared Layer 3 Outs in Two VRFs Using REST API

	Configuring QoS for L3Outs Using REST API
	Configuring QoS Directly on L3Out Using REST API
	Configuring QoS Contract for L3Out Using REST API

	Creating SR-MPLS Custom QoS Policy Using REST API
	Configuring ACI IP SLAs Using REST API
	Configuring an IP SLA Monitoring Policy Using the REST API
	Configuring an IP-SLA Track Member Using the REST API
	Configuring an IP-SLA Track List Using the REST API
	Associating a Track List with a Static Route Using the REST API
	Associating a Track List with a Next Hop Profile Using the REST API

	Configuring HSRP Using REST API
	Configuring HSRP in APIC Using REST API

	Configuring Cisco ACI GOLF Using REST API
	Configuring GOLF Using the REST API
	Enabling Distributing BGP EVPN Type-2 Host Routes to a DCIG Using the REST API




