Cisco APIC Security Configuration Guide, Release 5.2(x)

First Published: 2021-06-04

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
Trademarks

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS REFERENCED IN THIS DOCUMENTATION ARE SUBJECT TO CHANGE WITHOUT NOTICE. EXCEPT AS MAY OTHERWISE BE AGREED BY CISCO IN WRITING, ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS DOCUMENTATION ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

The Cisco End User License Agreement and any supplemental license terms govern your use of any Cisco software, including this product documentation, and are located at:
http://www.cisco.com/go/softwareterms.Cisco product warranty information is available at
http://www.cisco.com/go/warranty. US Federal Communications Commission Notices are found here

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any products and features described herein as in development or available at a future date remain in varying stages of development and will be offered on a when-and if-available basis. Any such product or feature roadmaps are subject to change at the sole discretion of Cisco and Cisco will have no liability for delay in the delivery or failure to deliver any products or feature roadmap items that may be set forth in this document.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

The documentation set for this product strives to use bias-free language. For the purposes of this documentation set, bias-free is defined as language that does not imply discrimination based on age, disability, gender, racial identity, ethnic identity, sexual orientation, socioeconomic status, and intersectionality. Exceptions may be present in the documentation due to language that is hardcoded in the user interfaces of the product software, language used based on RFP documentation, or language that is used by a referenced third-party product.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)
CONTENTS

PREFACE
- Trademarks iii

CHAPTER 1
- New and Changed Information 1
 - New and Changed Information 1

CHAPTER 2
- Overview 3
 - Overview 3

CHAPTER 3
- Access, Authentication, and Accounting 5
 - Overview 5
 - User Access, Authorization, and Accounting 5
 - Multiple Tenant Support 5
 - User Lockout After Continuous Failed Attempts to Log in 7
 - Access Rights Workflow Dependencies 7
 - AAA RBAC Roles and Privileges 8
 - Custom Roles 13
 - Selectively Expose Physical Resources across Security Domains 14
 - Enable Sharing of Services across Security Domains 14
 - APIC Local Users 14
 - Externally Managed Authentication Server Users 17
 - Cisco AV Pair Format 19
 - Change Remote User Role 20
 - About Signature-Based Transactions 21
 - Guidelines and Limitations 22
 - Accounting 22
Configuring an AV Pair on the External Authentication Server 53

Configuring a Remote User 54
 Configuring a Remote User Using the NX-OS Style CLI 54

Changing the Default Behavior for Remote Users with Missing or Bad Cisco AV Pairs 55

Changing Default Behavior for Remote Users with Missing or Bad Cisco AV Pairs Using the NX-OS Style CLI 55

Login Domains 56
 Creating Login Domain Using the GUI 56

RADIUS Authentication 57
 Configuring APIC for RADIUS Access 58
 Configuring Radius in APIC Using REST API 59

TACACS+ Authentication 59
 Configuring APIC for TACACS+ Access 60
 Configuring TACACS in APIC Using REST API 61
 Configuring a Cisco Secure Access Control Server for RADIUS and TACACS+ Access to the APIC 61

LDAP/Active Directory Authentication 63
 Configuring LDAP 63
 Configuring Windows Server 2012 LDAP for APIC Access with Cisco AVPair 63
 Configuring APIC for LDAP Access 65
 Configuring LDAP Group Map Rules on the Cisco APIC 66
 Configuring an LDAP Group Map on the Cisco APIC 66

Multi-factor Authentication with DUO 67
 Configuring DUO RADIUS Proxy Provider 67
 Configuring DUO LDAP Proxy Provider 68
 Configuring DUO Proxy Using the REST API 69

RSA Secure ID Authentication 71
 Configuring APIC for RSA Access Using the GUI 71

SAML Authentication 72
 Basic Elements of SAML 73
 Supported IdPs and SAML Components 74
 Configuring APIC for SAML Access 76
 Configuring SAML in APIC Using REST API 77
 Setting Up a SAML Application in Okta 77
Setting Up a Relying Party Trust in AD FS 78
OAuth 2 Authorization 80
 OAuth 2.0 Authentication in Cisco ACI 80
 Configuring OAuth in Cisco APIC 81
 Creating a Provider 81
 Creating a Certificate Authority 82
 User Login using OAuth 83
 Configuring OAuth in APIC Using REST API 83

CHAPTER 6 802.1X 85
 802.1X Overview 85
 Host Support 85
 Authentication Modes 86
 Guidelines and Limitations 86
 Configuration Overview 87
 Configuring 802.1X Port Authentication Using the APIC GUI 87
 Configuring 802.1X Node Authentication Using the APIC GUI 88
 Configuring 802.1X Port Authentication Using the NX-OS Style CLI 89
 Configuring 802.1X Node Authentication Using NX-OS Style CLI 90
 Configuring 802.1X Port Authentication Using the REST API 90
 Configuring 802.1X Node Authentication Using the REST API 91

CHAPTER 7 Port Security 93
 About Port Security and ACI 93
 Port Security Guidelines and Restrictions 93
 Port Security at Port Level 94
 Configuring Port Security Using the APIC GUI 94
 Configuring Port Security Using REST API 94
 Configuring Port Security Using the CLI 95
 Port Security and Learning Behavior 97
 Protect Mode 97

CHAPTER 8 First Hop Security 99
 About First Hop Security 99
ACI FHS Deployment 100
Guidelines and Limitations 100
Configuring FHS Using the APIC GUI 101
Configuring FHS Using the NX-OS CLI 101
FHS Switch iBASH Commands 107
Configuring FHS in APIC Using REST API 112

CHAPTER 9

Protocol Authentication 113
COOP 113
 Overview 113
 Using COOP with Cisco APIC 113
 Guidelines and Limitations 114
 Configuring COOP Authentication Using the APIC GUI 114
 Configuring COOP Authentication Using the Cisco NX-OS-Style CLI 114
 Configuring COOP Authentication Using the REST API 114
EIGRP 115
 Overview 115
 Guidelines and Limitations 115
 Configuring EIGRP Authentication Using the APIC GUI 115
 Configuring EIGRP Authentication Using the NX-OS CLI 116

CHAPTER 10

Control Plane Traffic 119
About Control Plane Policing 119
 Guidelines and Limitations for CoPP 121
 Configuring CoPP Using the APIC GUI 122
 Configuring CoPP Using the Cisco NX-OS CLI 123
 Configuring CoPP Using the REST API 123
 Viewing CoPP Statistics Using the GUI 124
 Configuring Per Interface Per Protocol CoPP Policy Using the APIC GUI 124
 Configuring Per Interface Per Protocol CoPP Policy Using the NX-OS Style CLI 125
 Configuring CoPP Per Interface Per Protocol Using REST API 125
About CoPP Prefilters 126
 Supported Platforms 126
 Limitations 127
Configuring a CoPP Prefilter, Policy Group, and Profile Using the GUI 127
 Configuring a CoPP Prefilter Using the Cisco APIC GUI 127
 Configuring a Leaf Policy Group Using the GUI 128
 Configuring a Leaf Profile Using the GUI 128
Configuring a CoPP Prefilter Using the CLI 129
 Configuring the CoPP Prefilter for a Leaf Switch Using the CLI 129
 Configuring the CoPP Prefilter for a Spine Switch Using the CLI 130
Configuring a CoPP Prefilter Using the REST API 130
 Configuring a CoPP Prefilter Policy for a Leaf Switch Using the REST API 130
 Configuring a CoPP Prefilter Policy for a Spine Using the REST API 131

CHAPTER 11 Fabric Security 133
 About Federal Information Processing Standards (FIPS) 133
 Guidelines and Limitations for FIPS 133
 Configuring FIPS for Cisco APIC Using the GUI 134
 Configuring FIPS for Cisco APIC Using the NX-OS Style CLI 134
 Configuring FIPS for Cisco APIC Using REST API 135

CHAPTER 12 Endpoint Security Groups 137
 Endpoint Security Groups 137
 Traffic Filtering from ESG to ESG 139
 Traffic Filtering from Outside to ESG 140
 ESG Implementation 140
 Selectors 141
 About Selectors 141
 About Tag Selectors 142
 About EPG Selectors 144
 About IP Subnet Selectors 145
 About Service EPG Selectors 145
 Layer 2 Traffic Limitation with IP-based Selectors 157
 Precedence of Selectors 158
 Contracts 159
 vzAny 159
 Preferred Groups 160
Security Policy Enforcement 185
Multicast and EPG Security 185
Taboos 186
Enabling and Viewing ACL Contract and Deny Logs 186
About ACL Contract Permit and Deny Logs 186
Enabling ACL Contract Permit and Deny Logging Using the GUI 187
Enabling ACL Contract Permit Logging Using the NX-OS CLI 188
Enabling ACL Contract Permit Logging Using the REST API 188
Enabling Taboo Contract Deny Logging Using the GUI 189
Enabling Taboo Contract Deny Logging Using the NX-OS CLI 190
Enabling Taboo Contract Deny Logging Using the REST API 190
Viewing ACL Permit and Deny Logs Using the GUI 191
Viewing ACL Permit and Deny Logs Using the REST API 192
Viewing ACL Permit and Deny Logs Using the NX-OS CLI 193

CHAPTER 14

Data Plane Policing 195
Overview of Data Plane Policing 195
Guidelines and Limitations 196
Configuring Data Plane Policing for Layer 2 Interface Using the GUI 197
Configuring Data Plane Policing for Layer 3 Interface Using the APIC GUI 198
Configuring Data Plane Policing Using the REST API 199
Configuring Data Plane Policing Using NX-OS Style CLI 201
Data Plane Policing at the Endpoint Group Level 206
Configuring Data Plane Policing at the Endpoint Group Level Using CLI 207
Configuring Data Plane Policing at the Endpoint Group Level Using the APIC GUI 208
Configuring Data Plane Policing at the Endpoint Group Level Using Rest API 209
Accessing Statistics for the Data Plane Policer at the Endpoint Group Level in the GUI 209

CHAPTER 15

HTTPS Access 211
Overview 211
Configuring Custom Certificate Guidelines 211
Modifying the SSL Cipher Configuration 212
Mapping the Cisco APIC SSL Configuration Options to the Cipher List Formatting 212
Testing the Cipher List Format Before Modifying the Cisco APIC SSL Configuration 213
New and Changed Information

This chapter contains the following sections:

- New and Changed Information, on page 1

New and Changed Information

The following table provides an overview of the significant changes to the organization and features in this guide up to this current release. The table does not provide an exhaustive list of all changes made to the guide or of the new features up to this release.

Table 1: New Features and Changed Behavior for Cisco APIC Release 5.2(4)

<table>
<thead>
<tr>
<th>Feature or Change</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service EPG selector for endpoint security groups (ESGs)</td>
<td>Before release 5.2(4), you cannot create a contract with a service EPG created through a service graph. Beginning with release 5.2(4), the service EPG selector for endpoint security groups (ESGs) is now available. This feature allows you to map a service EPG to an ESG and create a contract with that ESG. Using this feature, even if you have a vzAny-to-vzAny permit contract that is configured, you can add a deny contract between the service ESG and other ESGs to allow specific ESGs to communicate with the service ESG.</td>
<td>Endpoint Security Groups, on page 137</td>
</tr>
<tr>
<td>Feature or Change</td>
<td>Description</td>
<td>Where Documented</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Only the local and LDAP authentication methods are supported in FIPS mode</td>
<td>You must disable the RADIUS, TACACS+, RSA, DUO, OAuth2, and SAML remote authentication methods. Only the local and LDAP authentication methods are supported in FIPS mode.</td>
<td>Guidelines and Limitations for FIPS, on page 133</td>
</tr>
</tbody>
</table>

Table 2: New Features and Changed Behavior for Cisco APIC Release 5.2(3)

<table>
<thead>
<tr>
<th>Feature or Change</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
</table>
| Endpoint security group enhancements | Endpoint security groups (ESGs) now support more features and configurations, such as:
 - Inter-VRF service graphs between ESGs
 - ESG shutdown
 - Host-based routing/host route advertisement
 - ESGs can be specified as a source or destination of the following features:
 - On Demand Atomic Counter
 - On Demand Latency Measurement | Guidelines and Limitations for Endpoint Security Groups, on page 164 |

| Support for OAuth 2 Authorization | Open Authorization (OAuth) 2.0 is an open-standard authorization protocol. OAuth 2.0 allows you to access an application that is trusted or approved by an identity provider. | OAuth 2 Authorization, on page 80 |

Table 3: New Features and Changed Behavior for Cisco APIC Release 5.2(1)

<table>
<thead>
<tr>
<th>Feature or Change</th>
<th>Description</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPG and tag selectors for ESGs</td>
<td>EPG selectors can add specific EPGs to an ESG. Tag selectors can add objects to an ESG based on policy tags.</td>
<td>About Selectors, on page 141</td>
</tr>
<tr>
<td>Simplified ESG migration</td>
<td>EPG to ESG migration is simplified using EPG selectors.</td>
<td>ESG Migration Strategy, on page 166</td>
</tr>
</tbody>
</table>
Overview

This chapter contains the following topic:

- Overview, on page 3

Overview

The Cisco ACI supports security features that can protect your network against degradation or failure and also against data loss or compromise resulting from intentional attacks and from unintended but damaging mistakes by well-meaning network users.

For information on Core Fabric Services, see http://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/2-x/basic_config/b_APIC_Basic_Config_Guide_2_x/b_APIC_Basic_Config_Guide_2_x_chapter_011.html.
Overview

User Access, Authorization, and Accounting

Application Policy Infrastructure Controller (APIC) policies manage the authentication, authorization, and accounting (AAA) functions of the Cisco Application Centric Infrastructure (ACI) fabric. The combination of user privileges, roles, and domains with access rights inheritance enables administrators to configure AAA functions at the managed object level in a granular fashion. These configurations can be implemented using the REST API, the CLI, or the GUI.

There is a known limitation where you cannot have more than 32 characters for the login domain name. In addition, the combined number of characters for the login domain name and the user name cannot exceed 64 characters.

Multiple Tenant Support

A core Application Policy Infrastructure Controller (APIC) internal data access control system provides multitenant isolation and prevents information privacy from being compromised across tenants. Read/write restrictions prevent any tenant from seeing any other tenant's configuration, statistics, faults, or event data. Unless the administrator assigns permissions to do so, tenants are restricted from reading fabric configuration, policies, statistics, faults, or events.

User Access: Roles, Privileges, and Security Domains

The APIC provides access according to a user’s role through role-based access control (RBAC). An Cisco Application Centric Infrastructure (ACI) fabric user is associated with the following:

- A predefined or custom role, which is a set of one or more privileges assigned to a user
- A set of privileges, which determine the managed objects (MOs) to which the user has access
• For each role, a privilege type: no access, read-only, or read-write

• One or more security domain tags that identify the portions of the management information tree (MIT) that a user can access

Roles and Privileges
A privilege controls access to a particular function within the system. The ACI fabric manages access privileges at the managed object (MO) level. Every object holds a list of the privileges that can read from it and a list of the privileges that can write to it. All objects that correspond to a particular function will have the privilege for that function in its read or write list. Because an object might correspond to additional functions, its lists might contain multiple privileges. When a user is assigned a role that contains a privilege, the user is given read access to the associated objects whose read list specifies read access, and write access to those whose write list specifies write access.

As an example, 'fabric-equipment' is a privilege that controls access to all objects that correspond to equipment in the physical fabric. An object corresponding to equipment in the physical fabric, such as 'eqptBoard,' will have 'fabric-equipment' in its list of privileges. The 'eqptBoard' object allows read-only access for the 'fabric-equipment' privilege. When a user is assigned a role such as 'fabric-admin' that contains the privilege 'fabric-equipment,' the user will have access to those equipment objects, including read-only access to the 'eqptBoard' object.

Some roles contain other roles. For example, '-admin' roles such as tenant-admin, fabric-admin, access-admin are groupings of roles with the same base name. For example, 'access-admin' is a grouping of 'access-connectivity', 'access-equipment', 'access-protocol', and 'access-qos.' Similarly, tenant-admin is a grouping of roles with a 'tenant' base, and fabric-admin is a grouping of roles with a 'fabric' base.

The 'admin' role contains all privileges.

For more details about roles and privileges see APIC Roles and Privileges Matrix.

Security Domains
A security domain is a tag associated with a certain subtree in the ACI MIT object hierarchy. For example, the default tenant “common” has a domain tag common. Similarly, the special domain tag all includes the entire MIT object tree. An administrator can assign custom domain tags to the MIT object hierarchy. For example, an administrator could assign the “solar” domain tag to the tenant named solar. Within the MIT, only certain objects can be tagged as security domains. For example, a tenant can be tagged as a security domain but objects within a tenant cannot.

Security Domain password strength parameters can be configured by creating Custom Conditions or by selecting Any Three Conditions that are provided.

Creating a user and assigning a role to that user does not enable access rights. It is necessary to also assign the user to one or more security domains. By default, the ACI fabric includes two special pre-created domains:

• All—allows access to the entire MIT

• Infra—allows access to fabric infrastructure objects/subtrees, such as fabric access policies
For read operations to the managed objects that a user's credentials do not allow, a "DN/Class Not Found" error is returned, not "DN/Class Unauthorized to read." For write operations to a managed object that a user's credentials do not allow, an HTTP 401 Unauthorized error is returned. In the GUI, actions that a user's credentials do not allow, either they are not presented, or they are grayed out.

A set of predefined managed object classes can be associated with domains. These classes should not have overlapping containment. Examples of classes that support domain association are as follows:

- Layer 2 and Layer 3 network managed objects
- Network profiles (such as physical, Layer 2, Layer 3, management)
- QoS policies

When an object that can be associated with a domain is created, the user must assign domain(s) to the object within the limits of the user's access rights. Domain assignment can be modified at any time.

If a virtual machine management (VMM) domain is tagged as a security domain, the users contained in the security domain can access the correspondingly tagged VMM domain. For example, if a tenant named solar is tagged with the security domain called sun and a VMM domain is also tagged with the security domain called sun, then users in the solar tenant can access the VMM domain according to their access rights.

User Lockout After Continuous Failed Attempts to Log in

Starting in the 4.2(4) release, you can block a user from being able to log in after the user fails a configured number of login attempts. You can specify how many failed login attempts the user can have within a specific time period. If the user fails to log in too many times, then that user becomes unable to log in for a specified period of time.

This feature counts the failed login attempts both for local users that are in the Cisco Application Centric Infrastructure (ACI) database and for remote users who get authenticated with external authentication servers, such as RADIUS, LDAP, TACACS+, DUO Proxy, SAML, or RSA. A remote user who is locked out due to consecutive authentication failures using one external authentication server type will be locked out from all external authentication server types. For example, a user who is locked out after failing to log in using a RADIUS server will also be locked out when using an LDAP server. Authentications failing due to a AAA server being unreachable or down, or due to a bad SSH key, is not counted toward locking out a user; this feature only takes into account incorrect password entries.

A user who gets locked out from one Cisco Application Policy Infrastructure Controller (APIC) node in the cluster will be locked out from all nodes in the cluster, including the leaf switches and spine switches. A local user that does not exist in the Cisco ACI database cannot be locked out due to this feature.

You cannot configure this feature using the CLI.

Access Rights Workflow Dependencies

The Cisco Application Centric Infrastructure (ACI) RBAC rules enable or restrict access to some or all of the fabric. For example, in order to configure a leaf switch for bare metal server access, the logged in administrator must have rights to the `infra` domain. By default, a tenant administrator does not have rights to the `infra`
domain. In this case, a tenant administrator who plans to use a bare metal server connected to a leaf switch could not complete all the necessary steps to do so. The tenant administrator would have to coordinate with a fabric administrator who has rights to the infra domain. The fabric administrator would set up the switch configuration policies that the tenant administrator would use to deploy an application policy that uses the bare metal server attached to an ACI leaf switch.

AAA RBAC Roles and Privileges

The Application Policy Infrastructure Controller (APIC) provides the following AAA roles and privileges.

Note

With Cisco APIC release 5.0(1), the number of privileges was reduced from earlier releases, as many related legacy privileges were consolidated. Earlier privileges were remapped to current privileges.

Note

For each of the defined roles in Cisco APIC, the APIC Roles and Privileges Matrix shows which managed object classes can be written and which can be read.

- Table 4: Privileges for Role: admin, on page 8
- Table 5: Privileges for Role: aaa, on page 9
- Table 6: Privileges for Role: access-admin, on page 9
- Table 7: Privileges for Role: fabric-admin, on page 9
- Table 8: Privileges for Role: nw-svc-admin, on page 10
- Table 9: Privileges for Role: nw-svc-params, on page 10
- Table 10: Privileges for Role: ops, on page 10
- Table 11: Privileges for Role: port-mgmt, on page 10
- Table 12: Privileges for Role: tenant-admin, on page 10
- Table 13: Privileges for Role: tenant-ext-admin, on page 12
- Table 14: Privileges for Role: vmm-admin, on page 13

Table 4: Privileges for Role: admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>Provides full access to all of the features of the fabric. The admin privilege can be considered to be a union of all other privileges.</td>
</tr>
</tbody>
</table>
Table 5: Privileges for Role: aaa

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>Used for configuring authentication, authorization, accounting, and import/export policies.</td>
</tr>
</tbody>
</table>

Table 6: Privileges for Role: access-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-connectivity</td>
<td>Used for Layer 1 to 3 configuration under infra, static route configurations under a tenant's L3Out, management infra policies, and tenant ERSPAN policies.</td>
</tr>
<tr>
<td>access-equipment</td>
<td>Used for access port configuration.</td>
</tr>
<tr>
<td>access-protocol</td>
<td>Used for Layer 1 to 3 protocol configurations under infra, fabric-wide policies for NTP, SNMP, DNS, and image management, and operations-related access policies such as cluster policy and firmware policies.</td>
</tr>
<tr>
<td>access-qos</td>
<td>Used for changing CoPP and QoS-related policies.</td>
</tr>
</tbody>
</table>

Table 7: Privileges for Role: fabric-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabric-connectivity</td>
<td>Used for Layer 1 to 3 configuration under the fabric, firmware and deployment policies for raising warnings for estimating policy deployment impact, and atomic counter, diagnostic, and image management policies on leaf switches and spine switches.</td>
</tr>
<tr>
<td>fabric-equipment</td>
<td>Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.</td>
</tr>
<tr>
<td>fabric-protocol</td>
<td>Used for Layer 1 to 3 protocol configurations under the fabric, fabric-wide policies for NTP, SNMP, DNS, and image management, ERSPAN and health score policies, and firmware management traceroute and endpoint tracking policies.</td>
</tr>
</tbody>
</table>
Table 8: Privileges for Role: nw-svc-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nw-svc-policy</td>
<td>Used for managing Layer 4 to Layer 7 service devices and network service</td>
</tr>
<tr>
<td></td>
<td>orchestration.</td>
</tr>
</tbody>
</table>

Table 9: Privileges for Role: nw-svc-params

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nw-svc-params</td>
<td>Used for managing Layer 4 to Layer 7</td>
</tr>
<tr>
<td></td>
<td>service policies.</td>
</tr>
</tbody>
</table>

Table 10: Privileges for Role: ops

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ops</td>
<td>Used for viewing the policies configured including troubleshooting policies.</td>
</tr>
<tr>
<td></td>
<td>Note The <code>ops</code> role cannot be used for creating new monitoring and</td>
</tr>
<tr>
<td></td>
<td>troubleshooting policies. Those policies need to be created by using the</td>
</tr>
<tr>
<td></td>
<td><code>admin</code> privilege, just like any other configurations in the Cisco APIC.</td>
</tr>
</tbody>
</table>

Table 11: Privileges for Role: port-mgmt

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-mgmt</td>
<td>Used for assigning a node to a security domain. A user in a security</td>
</tr>
<tr>
<td></td>
<td>domain with a Node Rule must also be assigned to domain <code>all</code> with the role</td>
</tr>
<tr>
<td></td>
<td>of <code>port-mgmt</code>.</td>
</tr>
</tbody>
</table>

Table 12: Privileges for Role: tenant-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>Used for configuring authentication, authorization, accounting and import/export policies.</td>
</tr>
<tr>
<td>access-connectivity</td>
<td>Used for Layer 1 to 3 configuration under infra, static route configurations under a tenant’s L3Out, management infra policies, and tenant</td>
</tr>
<tr>
<td>ERSPAN policies.</td>
<td>Note The <code>access-connectivity</code> role cannot be used for creating new monitoring and troubleshooting policies. Those policies need to be created by</td>
</tr>
<tr>
<td></td>
<td>using the <code>admin</code> privilege, just like any other configurations in the Cisco APIC.</td>
</tr>
</tbody>
</table>
Role: tenant-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-equipment</td>
<td>Used for access port configuration.</td>
</tr>
<tr>
<td>access-protocol</td>
<td>Used for Layer 1 to 3 protocol configurations under infra, fabric-wide policies for NTP, SNMP, DNS, and image management, and operations-related access policies such as cluster policy and firmware policies.</td>
</tr>
<tr>
<td>access-qos</td>
<td>Used for changing CoPP and QoS-related policies.</td>
</tr>
<tr>
<td>fabric-connectivity</td>
<td>Used for Layer 1 to 3 configuration under the fabric, firmware and deployment policies for raising warnings for estimating policy deployment impact, and atomic counter, diagnostic, and image management policies on leaf switches and spine switches.</td>
</tr>
<tr>
<td>fabric-equipment</td>
<td>Used for atomic counter, diagnostic, and image management policies on leaf switches and spine switches.</td>
</tr>
<tr>
<td>fabric-protocol</td>
<td>Used for Layer 1 to 3 protocol configurations under the fabric, fabric-wide policies for NTP, SNMP, DNS, and image management, ERSPAN and health score policies, and firmware management traceroute and endpoint tracking policies.</td>
</tr>
<tr>
<td>nw-svc-policy</td>
<td>Used for managing Layer 4 to Layer 7 service devices and network service orchestration.</td>
</tr>
<tr>
<td>ops</td>
<td>Used for viewing the policies configured including troubleshooting policies.</td>
</tr>
<tr>
<td>tenant-connectivity</td>
<td>Used for Layer 1 to 3 connectivity changes, including bridge domains, subnets, and VRFs; for atomic counter, diagnostic, and image management policies on leaf switches and spine switches; tenant in-band and out-of-band management connectivity configurations; and debugging/monitoring policies such as atomic counters and health score.</td>
</tr>
<tr>
<td>tenant-epg</td>
<td>Used for managing tenant configurations such as deleting/creating endpoint groups.</td>
</tr>
<tr>
<td>tenant-ext-connectivity</td>
<td>Used for write access firmware policies; managing tenant L2Out and L3Out configurations; and debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.</td>
</tr>
</tbody>
</table>
Role: tenant-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tenant-ext-protocol</td>
<td>Used for managing tenant external Layer 1 to 3 protocols, including BGP, OSPF, PIM, and IGMP, and for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk. Generally only used for write access for firmware policies.</td>
</tr>
<tr>
<td>tenant-network-profile</td>
<td>Used for managing tenant configurations, such as deleting and creating network profiles, and deleting and creating endpoint groups.</td>
</tr>
<tr>
<td>tenant-protocol</td>
<td>Used for managing configurations for Layer 1 to 3 protocols under a tenant, for tenant traceroute policies, and as write access for firmware policies.</td>
</tr>
<tr>
<td>tenant-qos</td>
<td>Used for QoS-related configurations for a tenant.</td>
</tr>
<tr>
<td>tenant-security</td>
<td>Used for contract-related configurations for a tenant.</td>
</tr>
<tr>
<td>vmm-policy</td>
<td>Used for managing policies for virtual machine networking, such as authentication and connectivity.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Role: tenant-ext-admin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tenant-connectivity</td>
<td>Used for Layer 1 to 3 connectivity changes, including bridge domains, subnets, and VRFs; for atomic counter, diagnostic, and image management policies on leaf switches and spine switches; tenant in-band and out-of-band management connectivity configurations; and debugging/monitoring policies such as atomic counters and health score.</td>
</tr>
<tr>
<td>tenant-epg</td>
<td>Used for managing tenant configurations such as deleting/creating endpoint groups, VRFs, and bridge domains.</td>
</tr>
<tr>
<td>tenant-ext-connectivity</td>
<td>Used for write access firmware policies; managing tenant L2Out and L3Out configurations; and debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk.</td>
</tr>
<tr>
<td>tenant-ext-protocol</td>
<td>Used for managing tenant external Layer 1 to 3 protocols, including BGP, OSPF, PIM, and IGMP, and for debugging/monitoring/observer policies such as traceroute, ping, oam, and eptrk. Generally only used for write access for firmware policies.</td>
</tr>
<tr>
<td>tenant-network-profile</td>
<td>Used for managing tenant configurations, such as deleting and creating network profiles, and deleting and creating endpoint groups.</td>
</tr>
<tr>
<td>tenant-protocol</td>
<td>Used for managing configurations for Layer 1 to 3 protocols under a tenant, for tenant traceroute policies, and as write access for firmware policies.</td>
</tr>
</tbody>
</table>
Role: tenant-ext-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tenant-qos</td>
<td>Used for QoS-related configurations for a tenant.</td>
</tr>
<tr>
<td>tenant-security</td>
<td>Used for contract-related configurations for a tenant.</td>
</tr>
<tr>
<td>vmm-policy</td>
<td>Used for managing policies for virtual machine networking, such as authentication and connectivity.</td>
</tr>
</tbody>
</table>

Table 14: Privileges for Role: vmm-admin

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vmm-policy</td>
<td>Used for managing policies for virtual machine networking, such as authentication and connectivity.</td>
</tr>
</tbody>
</table>

Custom Roles

You can create custom roles and assign privileges to the roles. The interface internally assigns one or more privileges to all managed object classes. In an XML model, privileges are assigned in an access attribute. Privilege bits are assigned at compile time and apply per class, and not per instance or object of the class.

In addition to the 45 privilege bits, the "aaa" privilege bit applies to all AAA-subsystem configuration and read operations. The following table provides a matrix of the supported privilege combinations. The rows in the table represent Cisco Application Centric Infrastructure (ACI) modules and the columns represent functionality for a given module. A value of "Yes" in a cell indicates that the functionality for the module is accessible and there exists a privilege bit to access that functionality. An empty cell indicates that the particular functionality for module is not accessible by any privilege bit. See the privilege bit descriptions to learn what each bit does.

<table>
<thead>
<tr>
<th>Service</th>
<th>Connectivity</th>
<th>QoS</th>
<th>Security</th>
<th>Application</th>
<th>Fault</th>
<th>Stats</th>
<th>Provider</th>
<th>Service Profile</th>
<th>Service Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMM</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabric</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Tenant</td>
<td>Yes</td>
<td>Yes</td>
<td>EPG, NP</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Infra</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Ops</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Storage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Service</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>
Selectively Expose Physical Resources across Security Domains

A fabric-wide administrator uses RBAC rules to selectively expose physical resources to users that otherwise are inaccessible because they are in a different security domain.

For example, if a user in tenant Solar needs access to a virtual machine management (VMM) domain, the fabric-wide admin could create an RBAC rule to allow this. The RBAC rule is comprised of these two parts: the distinguished name (DN) that locates the object to be accessed plus the name of the security domain that contains the user who will access the object. So, in this example, when designated users in the security domain Solar are logged in, this rule gives them access to the VMM domain as well as all its child objects in the tree. To give users in multiple security domains access to the VMM domain, the fabric-wide administrator would create an RBAC rule for each security domain that contains the DN for the VMM domain plus the security domain.

While an RBAC rule exposes an object to a user in a different part of the management information tree, it is not possible to use the CLI to navigate to such an object by traversing the structure of the tree. However, as long as the user knows the DN of the object included in the RBAC rule, the user can use the CLI to locate it via an MO find command.

Note

Enable Sharing of Services across Security Domains

A fabric-wide administrator uses RBAC rules to provision trans-tenant EPG communications that enable shared services across tenants.

APIC Local Users

An administrator can choose not to use external AAA servers but rather configure users on the APIC itself. These users are called APIC-local users.

At the time a user sets their password, the APIC validates it against the following criteria:

- Minimum password length is 8 characters.
- Maximum password length is 64 characters.
- Has fewer than three consecutive repeated characters.
- Must have characters from at least three of the following characters types: lowercase, uppercase, digit, symbol.
- Does not use easily guessed passwords.
- Cannot be the username or the reverse of the username.
- Cannot be any variation of cisco, isco or any permutation of these characters or variants obtained by changing the capitalization of letters therein.

Cisco ACI uses a crypt library with a SHA256 one-way hash for storing passwords. At rest hashed passwords are stored in an encrypted filesystem. The key for the encrypted filesystem is protected using the Trusted Platform Module (TPM).

The APIC also enables administrators to grant access to users configured on externally managed authentication Lightweight Directory Access Protocol (LDAP), RADIUS, TACACS+, or SAML servers. Users can belong to different authentication systems and can log in simultaneously to the APIC.
The following figure shows how the process works for configuring an admin user in the local APIC authentication database who has full access to the entire ACI fabric.

Figure 1: APIC Local User Configuration Process

The security domain "all" represents the entire Managed Information Tree (MIT). This domain includes all policies in the system and all nodes managed by the APIC. Tenant domains contain all the users and managed objects of a tenant. Tenant administrators should not be granted access to the "all" domain.

The following figure shows the access that the admin user Joe Stratus has to the system.
The user Joe Stratus with read-write "admin" privileges is assigned to the domain "all" which gives him full access to the entire system.

OTP-Based Two-Factor Authentication for Local Users

A fabric admin user can enable the one-time password (OTP) feature for a local user. A one-time password changes every 30 seconds for enhanced security. After the admin enables OTP, Cisco Application Policy Infrastructure Controller (APIC) generates a random human-readable 16 binary octet that is a base32 OTP key. This OTP key is used to generate the OTP for the user, which is used for two-factor authentication.

Cisco APIC supports the following security platforms for use with two-factor authentication:

- Duo Security, with the Duo Mobile app
- Google, with the Google Authenticator app (only with Android and Apple iOS smartphones)

Note

You must download the indicated app from the appropriate app store.

These security platforms do not act as a repository for user identities. The platforms offer two-factor authentication on top of an organization's existing authentication, which could be on-premises or cloud-based. Two-factor authentication occurs once the user has finished the authentication with the organization's primary authentication source.

The platforms support three types of two-factor authentication methods after you complete authentication with the primary authentication source:

- Notification push on mobile using the appropriate mobile app on smartphones.
- Phone call on your registered phone or mobile numbers.
- Passcode that is generated on the appropriate mobile app.

Externally Managed Authentication Server Users

The following figure shows how the process works for configuring an admin user in an external RADIUS server who has full access to the tenant Solar.

Figure 3: Process for Configuring Users on External Authentication Servers

The following figure shows the access the admin user Jane Cirrus has to the system.
In this example, the Solar tenant administrator has full access to all the objects contained in the Solar tenant as well as read-only access to the tenant Common. Tenant admin Jane Cirrus has full access to the tenant Solar, including the ability to create new users in tenant Solar. Tenant users are able to modify configuration parameters of the ACI fabric that they own and control. They also are able to read statistics and monitor faults and events for the entities (managed objects) that apply to them such as endpoints, endpoint groups (EPGs) and application profiles.

In the example above, the user Jane Cirrus was configured on an external RADIUS authentication server. To configure an AV Pair on an external authentication server, add a Cisco AV Pair to the existing user record. The Cisco AV Pair specifies the Role-Based Access Control (RBAC) roles and privileges for the user on the APIC. The RADIUS server then propagates the user privileges to the APIC controller.

In the example above, the configuration for an open radius server (/etc/raddb/users) is as follows:

```
jane cirrus Cleartext-Password := "<password>"
Cisco-avpair = "shell:domains = solar/admin,,common//read-all(16001)"
```

This example includes the following elements:

- `jane cirrus` is the tenant administrator
- `solar` is the tenant
- `admin` is the role with write privileges
• **common** is the tenant-common subtree that all users should have read-only access to

• **read-all** is the role with read privileges

Cisco AV Pair Format

The Cisco APIC requires that an administrator configure a Cisco AV Pair on an external authentication server and only looks for one AV pair string. To do so, an administrator adds a Cisco AV pair to the existing user record. The Cisco AV pair specifies the APIC required RBAC roles and privileges for the user.

In order for the AV pair string to work, it must be formatted as follows:

```shell
domains = ACI_Security_Domain_1/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2,
        ACI_Security_Domain_2/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2,
        ACI_Security_Domain_3/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2
```

- **domains** - Required so that ACI reads the string correctly. This must always prepend the shell string.

- **ACI_Security_Domain_1//admin** - Grants admin read-only access to the tenants in this security domain.

- **ACI_Security_Domain_2//admin** - Grants admin write access to the tenants in this security domain.

- **ACI_Security_Domain_3//read-all** - Grants read-all write access to the tenants in this security domain.

/’s separate the security domain, write, read sections of the string. |’s separate multiple write or read roles within the same security domain.

Note

Starting with Cisco APIC release 2.1, if no UNIX ID is provided in AV Pair, the APIC allocates the unique UNIX user ID internally.

The APIC supports the following regexes:

```shell
domains\s*=\s*ACI_Security_Domain_1/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2,
domains\s*=\s*ACI_Security_Domain_2/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2,
domains\s*=\s*ACI_Security_Domain_3/ACI_Write_Role_1|ACI_Write_Role_2|ACI_Write_Role_3/ACI_Read_Role_1|ACI_Read_Role_2
```

Examples:

- **Example 1**: A Cisco AV Pair that contains a single Login domain with only writeRoles:

  ```shell
domains=ACI_Security_Domain_1/Write_Role_1|Write_Role_2/
```

- **Example 2**: A Cisco AV Pair that contains a single Login domain with only readRoles:

  ```shell
domains=Security_Domain_1//Read_Role_1|Read_Role_2
```
Note

The "/" character is a separator between writeRoles and readRoles per Login domain and is required even if only one type of role is to be used.

The Cisco AVpair string is case sensitive. Although a fault may not be seen, using mismatching cases for the domain name or roles could lead to unexpected privileges being given.

AV Pair GUI Configuration

The security domain is defined in the ACI GUI under Admin > AAA > Security Management > Security Domains and assigned to a tenant under Tenants > Tenant_Name > Policy.

A security domain must have either a read or write role. These roles are defined in APIC > Admin > Security Management > Roles. If a role is input into the write section it automatically grants read privileges of the same level so there is no need to have ACI_Security_Domain_1/admin/admin.

Change Remote User Role

User-privileges can be modified “dynamically”, which allows the user to request for a role-change, and is allowed or denied the requested role based on information stored locally or remotely.

The role-change is only supported through the Cisco ACS server and can be done by role assignment based on explicit “request”.

The ACI fabric supports external authentication using Radius, TACACS+ and LDAP protocols. Both the above-mentioned methods assume that the remote authentication server has components to support the role-change functionality.

The Cisco Secure ACS server provides the remote authentication, authorization and accounting features for the TACACS+ protocol.

Rules are matched, either with Default Device Admin or Default Network Access Service.

In the Authorization, another set of rules are configured:

- **AVPairOps**: matches the tacacs+ username and AVPair value (cisco-av-pair*newrole). If the rule matches, the ACI_OPS shell-profile is returned
- **NoAVPair**: matches only the tacacs+ username and return ACI_ADMIN shell profile on match
- **opsuser**: matches only the protocol and returns ACI_OPS shell profile

Change the Remote User Role Using the GUI

Before you begin

Roles must first be configured on the Cisco ASC Server to match the AVPairs and selected shell-authorization-profile based on the match.

Step 1

Create an ASC Authorization Policy navigate to Access Policies > Access Services > Default Device Admin Identity and perform the following steps:

Note

Shell Profile is configured with CiscoAVPair, which is used to Authorize the User.
a) Add the condition to TACACS+:AVPair equals cisco-av-pair* and click OK.

 Note: The user is authorized with the cisco-av-pair role by default.

b) Add the condition to TACACS+:AVPair equals cisco-av-pair*readall and click OK.

 Note: The keyword readall is used in APIC to change the Role from default Role to readall Role (read-all is configured in Shell-Profile).

Step 2 Log in to the APIC GUI, click the welcome, <login_name> drop-down list and choose Change Remote User Role.

Step 3 In the Change Remote User Role dialog box, enter the information in the User Name, Password, and New Role fields and click Submit.

 The GUI will refresh with the new role applied.

 Note: To return to the parent role, open the Change Remote User Role dialog box again and enter the information for User Name and Password but leave the New Role field blank.

Change the Remote User Role Using REST API

Before you begin

Roles must first be configured on the Cisco ASC Server to match the AVPairs and selected shell-authorization-profile based on the match.

 The user logs in with the user-name apicadmin and password.

Step 1 Change to a new role:

 Example:

 <!-- api/requestNewRole/json -->
 <aaaChangeRole>
 <attributes userName="apic#tacacs" apicadmin="pwd Ins3965!" role="newrole"/>

Step 2 Return to the original role:

 Example:

 <!-- api/requestNewRole/json -->
 <aaaChangeRole>
 <attributes userName="apic#tacacs" apicadmin="pwd Ins3965!" role=""/>

About Signature-Based Transactions

 The APIC controllers in a Cisco ACI fabric offer different methods to authenticate users.

 The primary authentication method uses a username and password and the APIC REST API returns an authentication token that can be used for future access to the APIC. This may be considered insecure in a situation where HTTPS is not available or enabled.
Another form of authentication that is offered utilizes a signature that is calculated for every transaction. The calculation of that signature uses a private key that must be kept secret in a secure location. When the APIC receives a request with a signature rather than a token, the APIC utilizes an X.509 certificate to verify the signature. In signature-based authentication, every transaction to the APIC must have a newly calculated signature. This is not a task that a user should do manually for each transaction. Ideally this function should be utilized by a script or an application that communicates with the APIC. This method is the most secure as it requires an attacker to crack the RSA/DSA key to forge or impersonate the user credentials.

Note
Additionally, you must use HTTPS to prevent replay attacks.

Before you can use X.509 certificate-based signatures for authentication, verify that the following prerequisite tasks are completed:
1. Create an X.509 certificate and private key using OpenSSL or a similar tool.
2. Create a local user on the APIC. (If a local user is already available, this task is optional).
3. Add the X.509 certificate to the local user on the APIC.

Guidelines and Limitations

Follow these guidelines and limitations:

- Local users are supported. Remote AAA users are not supported.
- The APIC GUI does not support the certificate authentication method.
- WebSockets and eventchannels do not work for X.509 requests.
- Certificates signed by a third party are not supported. Use a self-signed certificate.

Accounting

ACI fabric accounting is handled by these two managed objects (MO) that are processed by the same mechanism as faults and events:

- The aaaSessionLR MO tracks user account login and logout sessions on the APIC and switches, and token refresh. The ACI fabric session alert feature stores information such as the following:
 - Username
 - IP address initiating the session
 - Type (telnet, https, REST etc.)
 - Session time and length
 - Token refresh – a user account login event generates a valid active token which is required in order for the user account to exercise its rights in the ACI fabric.
Token expiration is independent of login; a user could log out but the token expires according to the duration of the timer value it contains.

- The aaaModLR MO tracks the changes users make to objects and when the changes occurred.
- If the AAA server is not pingable, it is marked unavailable and a fault is seen.

Both the aaaSessionLR and aaaModLR event logs are stored in APIC shards. Once the data exceeds the pre-set storage allocation size, it overwrites records on a first-in first-out basis.

In the event of a destructive event such as a disk crash or a fire that destroys an APIC cluster node, the event logs are lost; event logs are not replicated across the cluster.

The aaaModLR and aaaSessionLR MOs can be queried by class or by distinguished name (DN). A class query provides all the log records for the whole fabric. All aaaModLR records for the whole fabric are available from the GUI at the Fabric > Inventory > POD > History > Audit Log section. The APIC GUI History > Audit Log options enable viewing event logs for a specific object identified in the GUI.

The standard syslog, callhome, REST query, and CLI export mechanisms are fully supported for aaaModLR and aaaSessionLR MO query data. There is no default policy to export this data.

There are no pre-configured queries in the APIC that report on aggregations of data across a set of objects or for the entire system. A fabric administrator can configure export policies that periodically export aaaModLR and aaaSessionLR query data to a syslog server. Exported data can be archived periodically and used to generate custom reports from portions of the system or across the entire set of system logs.

Routed Connectivity to External Networks as a Shared Service Billing and Statistics

The Cisco Application Policy Infrastructure Controller (APIC) can be configured to collect byte count and packet count billing statistics from a port configured for routed connectivity to external networks as a shared service. The external networks are represented as external L3Out endpoint group (l3extInstP managed object) in Cisco Application Centric Infrastructure (ACI). Any EPG in any tenant can share an external L3Out EPG for routed connectivity to external networks. Billing statistics can be collected for each EPG in any tenant that uses an external L3Out EPG as a shared service. The leaf switch where the external L3Out EPG is provisioned forwards the billing statistics to the Cisco APIC where they are aggregated. Accounting policies can be configured to export these billing statics periodically to a server.

Configuration

Configuring a Local User

In the initial configuration script, the admin account is configured and the admin is the only user when the system starts. The APIC supports a granular, role-based access control system where user accounts can be created with various roles including non-admin users with fewer privileges.
Configuring a Local User Using the GUI

Before you begin

• The ACI fabric is installed, APIC controllers are online, and the APIC cluster is formed and healthy.

• As appropriate, the security domain(s) that the user will access are defined. For example, if the new user account will be restricted to accessing a tenant, the tenant domain is tagged accordingly.

• An APIC user account is available that will enable the following:
 • Creating the TACACS+ provider.
 • Creating the local user account in the target security domain(s). If the target domain is all, the login account used to create the new local user must be a fabric-wide administrator that has access to all. If the target domain is a tenant, the login account used to create the new local user must be a tenant administrator that has full read write access rights to the target tenant domain.

Step 1
On the menu bar, choose Admin > AAA.

Step 2
In the Navigation pane, click Users.

In the Work pane, verify that you are in the Local Users tab.

Step 3
In the Work pane, click the task icon drop-down list and select Create Local User.

Step 4
In the STEP 1 > User Identity dialog box, perform the following actions:

a) In the Login ID field, add an ID.

 The login ID must meet the following guidelines:
 • Must be unique within APIC.
 • Must begin with a letter.
 • Can contain between 1 and 32 characters.
 • Can include alphanumeric characters, underscores, dashes, and dots.

 After creating a user account, you cannot change the login ID. You must delete the user account and create a new one.

b) In the Password field, enter the password.

 At the time a user sets their password, the APIC validates it against the following criteria:
 • Minimum password length is 8 characters.
 • Maximum password length is 64 characters.
 • Has fewer than three consecutive repeated characters.
 • Must have characters from at least three of the following characters types: lowercase, uppercase, digit, symbol.
 • Does not use easily guessed passwords.
 • Cannot be the username or the reverse of the username.
• Cannot be any variation of cisco, isco or any permutation of these characters or variants obtained by changing the capitalization of letters therein.

c) In the **Confirm Password** field, confirm the password.
d) (Optional) For Certificate based authentication, in the **User Certificate Attribute** field, enter the user identity from the authentication certificate.
e) Click **Next**.

Step 5
You can activate or deactivate the user account by using the **Account Status** control, and you can set an expiration date by using the **Account Expires** control.

Step 6
In the **STEP 2 > Security** dialog box, under **Security Domain**, choose the desired security domain for the user, and click **Next**.

Step 7
In the **STEP 3 > Roles** dialog box, perform the following actions:
a) Click the + to associate the user with a domain.
b) From the drop-down lists, choose a **Role Name** and a **Role Privilege Type** for the user.
c) Click **Update**

You can provide read-only or read/write privileges.

Step 8
click **Finish**

Configuring SSH Public Key Authentication Using the GUI

Before you begin

- Create a local user account in the target security domain(s). If the target domain is all, the login account used to create the new local user must be a fabric-wide administrator that has access to all. If the target domain is a tenant, the login account used to create the new local user must be a tenant administrator that has full read write access rights to the target tenant domain.

- Generate a public key using the Unix command `ssh-keygen`.

The default login domain must be set to `local`

Step 1
On the menu bar, choose **ADMIN > Users** and confirm you are in the **Local Users** tab.

Step 2
In the **Navigation** pane, click the name of the user that you previously created.

Step 3
In the **Work** pane, expand the **SSH Keys** table, and insert the following information:
a) In the **Name** field, enter a name for the key.
b) In the **Key** field, insert the public key previously created. Click **Update**.

Note
To create the SSH Private Key File for downloading to a remote location then in the menu bar, expand **Firmware > Download Tasks**.
Configuring a Local User Using the NX-OS Style CLI

SUMMARY STEPS

1. In the NX-OS CLI, start in configuration mode, shown as follows:
2. Create a new user, shown as follows:

DETAILED STEPS

Step 1

In the NX-OS CLI, start in configuration mode, shown as follows:

Example:

```
apic1# configure
apic1(config)#
```

Step 2

Create a new user, shown as follows:

Example:

```
apic1(config)# username
WORD User name (Max Size 28)
admin
cli-user
jigarshah
test1
testUser

apic1(config)# username test
apic1(config-username)#
```

```
account-status Set The status of the locally-authenticated user account.
certificate Create AAA user certificate in X.509 format.
clear-pwd-history Clears the password history of a locally-authenticated user
domain Create the AAA domain to which the user belongs.
email Set The email address of the locally-authenticated user.
exit Exit from current mode
expiration If expires enabled, Set expiration date of locally-authenticated user account.
expires Enable expiry for locally-authenticated user account
fabric show fabric related information
first-name Set the first name of the locally-authenticated user.
last-name Set The last name of the locally-authenticated user.
no Negate a command or set its defaults
password Set The system user password.
phone Set The phone number of the locally-authenticated user.
pwd-lifetime Set The lifetime of the locally-authenticated user password.
pwd-strength-check Enforces the strength of the user password
show Show running system information
ssh-key Update ssh key for the user for ssh authentication
where show the current mode

apic1(config-username)# exit
```
Configuring a Local User Using the REST API

SUMMARY STEPS

1. Create a local user.

DETAILED STEPS

Create a local user.

Example:

URL: https://apic-ip-address/api/node/mo/uni/userext.xml

POST CONTENT:

```
<aaaUser name="operations" phone="" pwd="<strong_password>" >
  <aaaUserDomain childAction="" descr="" name="all" rn="userdomain-all" status="">
    <aaaUserRole childAction="" descr="" name="Ops" privType="writePriv"/>
  </aaaUserDomain>
</aaaUser>
```

Generating an X.509 Certificate and a Private Key

Step 1

Enter an OpenSSL command to generate an X.509 certificate and private key.

Example:

```
$ openssl req -new -newkey rsa:1024 -days 36500 -nodes -x509 -keyout userabc.key -out userabc.crt
-subj '/CN=User ABC/O=Cisco Systems/C=US'
```

Note

- Once the X.509 certificate is generated, it will be added to the users profile on the APIC, and it is used to verify signatures. The private key is used by the client to generate the signatures.

- The certificate contains a public key but not the private key. The public key is the primary information used by the APIC to verify the calculated signature. The private key is never stored on the APIC. You must keep it secret.

Step 2

Display the fields in the certificate using OpenSSL.

Example:

```
$ openssl x509 -text -in userabc.crt
Certificate:
  Data:
    Version: 3 (0x2)
    Signature Algorithm: sha1WithRSAEncryption
    Issuer: CN=User ABC, O=Cisco Systems, C=US
    Validity
      Not Before: Jan 12 16:36:14 2015 GMT
      Not After : Dec 19 16:36:14 2114 GMT
    Subject: CN=User ABC, O=Cisco Systems, C=US
    Subject Public Key Info:
      Public Key Algorithm: rsaEncryption
```
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:92:35:12:cd:2b:78:ef:9d:ca:0e:11:77:77:3a:
cc:c4:7f:61:1d:3c:9e:ae:db:88:be:80:0a:4a:90:
3a:3f:68:0b:9c:7c:cb:70:b9:c7:3f:e8:db:85:d8:
5f:bc:35:d2:b1:07:be:ec:e1
Exponent: 65537 (0x10001)

X509v3 extensions:
X509v3 Subject Key Identifier:
X509v3 Authority Key Identifier:

DirName:/CN=User ABC/O=Cisco Systems/C=US

X509v3 Basic Constraints:
CA:TRUE
Signature Algorithm: sha1WithRSAEncryption

Creating a Local User and Adding a User Certificate Using the GUI

Step 1
On the menu bar, choose **ADMIN > AAA**.

Step 2
In the **Navigation** pane, click **Users** and **Local Users** in the **Work** pane.

Step 3
In the **Work** pane, verify that you in the **Local Users** tab.

The admin user is present by default

Step 4
In the **Work** pane, click on task icon drop-down list and select **Create Local User**.

Step 5
In the **Security** dialog box, choose the desired security domain for the user, and click **Next**.

Step 6
In the **Roles** dialog box, click the radio buttons to choose the roles for your user, and click **Next**.

You can provide read-only or read/write privileges.

Step 7
In the **User Identity** dialog box, perform the following actions:

a) In the **Login ID** field, add an ID.

b) In the **Password** field, enter the password.

c) In the **Confirm Password** field, confirm the password.

d) (Optional) For Certificate based authentication, in the **User Certificate Attribute** field, enter the user identity from the authentication certificate.

e) Click **Finish**.
Step 8 In the **Navigation** pane, click the name of the user that you created. In the **Work** pane, expand the + sign next to your user in the **Security Domains** area.

The access privileges for your user are displayed.

Step 9 In the **Work** pane, in the **User Certificates** area, click the user certificates + sign, and in the **Create X509 Certificate** dialog box, perform the following actions:

a) In the **Name** field, enter a certificate name.
b) In the **Data** field, enter the user certificate details.
c) Click **Submit**.

The X509 certificate is created for the local user.

Creating a Local User and Adding a User Certificate Using the REST API

Create a local user and add a user certificate.

Example:

```
method: POST
url: http://apic/api/node/mo/uni/userext/user-userabc.json
payload: {
   "aaaUser": {
      "attributes": {
         "name": "userabc",
         "firstName": "Adam",
         "lastName": "BC",
         "phone": "408-525-4766",
         "email": "userabc@cisco.com",
      },
      "children": [
         "aaaUserCert": {
            "attributes": {
               "name": "userabc.crt",
               "data": "-----BEGIN CERTIFICATE-----
                        
                        ------END CERTIFICATE-----",
            },
            "children": []
         },
         "aaaUserDomain": {
            "attributes": {
               "name": "all",
            },
            "children": []
         },
         "aaaUserRole": {
            "attributes": {
               "name": "aaa",
               "privType": "writePriv",
            },
            "children": []
         },
         "aaaUserRole": {
            "attributes": {
               "name": "access-admin",
               "privType": "writePriv",
            },
            "children": []
         }
      ]
   }
}
```
Creating a Local User and Adding a User Certificate Using the REST API

```json
{
  "aaaUserRole": {
    "attributes": {
      "name": "admin",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "fabric-admin",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "nw-svc-admin",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "ops",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "read-all",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "tenant-admin",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "tenant-ext-admin",
      "privType": "writePriv",
    },
    "children": []
  },
  "aaaUserRole": {
    "attributes": {
      "name": "vmm-admin",
      "privType": "writePriv",
    },
    "children": []
  }
}
```
Creating a Local User Using Python SDK

Create a local user.

Example:

```python
#!/usr/bin/env python
from cobra.model.pol import Uni as PolUni
from cobra.model.aaa import UserEp as AaaUserEp
from cobra.model.aaa import User as AaaUser
from cobra.model.aaa import UserCert as AaaUserCert
from cobra.model.aaa import UserDomain as AaaUserDomain
from cobra.model.aaa import UserRole as AaaUserRole
from cobra.mit.access import MoDirectory
from cobra.mit.session import LoginSession
from cobra.internal.codec.jsoncodec import toJSONStr

APIC = 'http://10.10.10.1'
username = 'admin'
password = 'p@$$w0rd'

session = LoginSession(APIC, username, password)
modir = MoDirectory(session)
modir.login()

def readFile(fileName=None, mode="r"):  
    if fileName is None:  
        return ""  
    fileData = ""  
    with open(fileName, mode) as aFile:  
        fileData = aFile.read()  
    return fileData

# Use a dictionary to define the domain and a list of tuples to define  
# our aaaUserRoles (roleName, privType)  
# This can further be abstracted by doing a query to get the valid  
# roles, that is what the GUI does
userRoles = {'all': [  
    ('aaa', 'writePriv'),  
    ('access-admin', 'writePriv'),  
    ('admin', 'writePriv'),  
    ('fabric-admin', 'writePriv'),  
    ('nw-svc-admin', 'writePriv'),  
    ('opm', 'writePriv'),  
    ('read-all', 'writePriv'),  
    ('tenant-admin', 'writePriv'),  
    ('tenant-ext-admin', 'writePriv'),  
    ('vmm-admin', 'writePriv'),  
],}
```
uni = PolUni('') # '' is the Dn string for topRoot
aaaUserEp = AaaUserEp(uni)
aaaUser = AaaUser(aaaUserEp, 'userabc', firstName='Adam',
 email='userabc@cisco.com')

aaaUser.lastName = 'BC'
aaaUser.phone = '555-111-2222'
aaaUserCert = AaaUserCert(aaaUser, 'userabc.crt')
aaaUserCert.data = readFile('/tmp/userabc.crt')

Now add each aaaUserRole to the aaaUserDomains which are added to the
aaaUserCert
for domain, roles in userRoles.items():
 aaaUserDomain = AaaUserDomain(aaaUser, domain)
 for roleName, privType in roles:
 aaaUserRole = AaaUserRole(aaaUserDomain, roleName,
 privType=privType)

print toJSONStr(aaaUser, prettyPrint=True)

cr = ConfigRequest()
cr.addMo(aaaUser)
modir.commit(cr)

End of Script to create a user

Using a Private Key to Calculate a Signature

Before you begin

You must have the following information available:

- **HTTP method - GET, POST, DELETE**
- **REST API URI being requested, including any query options**
- **For POST requests, the actual payload being sent to the APIC**
- **The private key used to generate the X.509 certificate for the user**
- **The distinguished name for the user X.509 certificate on the APIC**

Step 1

Concatenate the HTTP method, REST API URI, and payload together in this order and save them to a file.

This concatenated data must be saved to a file for OpenSSL to calculate the signature. In this example, we use a filename of payload.txt. Remember that the private key is in a file called userabc.key.

Example:

GET example:

GET http://10.10.10.1/api/class/fvTenant.json?rsp-subtree=children

POST example:

POST http://10.10.10.1/api/mo/tn-test.json{"fvTenant": {"attributes": {"status": "deleted", "name": "test"}}}

Step 2

Verify that the payload.txt file contains the correct information.

For example, using the GET example shown in the previous step:
GET http://10.10.10.1/api/class/fvTenant.json?rsp-subtree=children

Your payload.txt file should contain only the following information:

GET/api/class/fvTenant.json?rsp-subtree=children

Step 3 Verify that you didn't inadvertently create a new line when you created the payload file.

Example:
```
# cat -e payload.txt
```

Determine if there is a $ symbol at the end of the output, similar to the following:

GET/api/class/fvTenant.json?rsp-subtree=children$

If so, then that means that a new line was created when you created the payload file. To prevent creating a new line when generating the payload file, use a command similar to the following:

```
echo -n "GET/api/class/fvTenant.json?rsp-subtree=children" > payload.txt
```

Step 4 Calculate a signature using the private key and the payload file using OpenSSL.

Example:
```
openssl dgst -sha256 -sign userabc.key payload.txt > payload_sig.bin
```

The resulting file has the signature printed on multiple lines.

Step 5 Convert the signature to base64 format:

Example:
```
openssl base64 -A -in payload_sig.bin -out payload_sig.base64
```

Step 6 Strip the signature of the new lines using Bash.

Example:
```
$ tr -d '\n' < payload_sig.base64
```

This is the signature that will be sent to the APIC for this specific request. Other requests will require to have their own signatures calculated.

Step 7 Place the signature inside a string to enable the APIC to verify the signature against the payload.

This complete signature is sent to the APIC as a cookie in the header of the request.

Example:
```
APIC-Request-Signature=P+OTqK0CeAZjl7+Gute2R1Ww80GgtzE0wsLlx8fIXXl4V79Zl7Ou81dJH9CB4w6CevdICXqkV3KaqszCIC0+8n07o3qf//BsIp1ZmYChD6gCX3f7q
IcjGX+R6HAqGeK7k97cNhLWooobFPe/oajtPjOu3tdQOhf/9ujG6Jv6Ro=
```

Note This is the signature that will be sent to the APIC for this specific request. Other requests will require to have their own signatures calculated.

Step 8 Use the CertSession class in the Python SDK to communicate with an APIC using signatures.

The following script is an example of how to use the CertSession class in the ACI Python SDK to make requests to an APIC using signatures.
Example:

```python
#!/usr/bin/env python
# It is assumed the user has the X.509 certificate already added to
# their local user configuration on the APIC
from cobra.mit.session import CertSession
from cobra.mit.access import MoDirectory

def readFile(fileName=None, mode="r"):  
    if fileName is None:  
        return 
    fileData = 
    with open(fileName, mode) as aFile:  
        fileData = aFile.read()  
    return fileData

pkey = readFile("/tmp/userabc.key")
csession = CertSession("https://ApicIPOrHostname/",
                        "uni/userext/user-userabc/usercert-userabc", pkey)

modir = MoDirectory(csession)
resp = modir.lookupByDn('uni/fabric')
```

Note: The DN used in the earlier step must match the DN of the user certified object containing the x509 certificate in this step.

Configuring User Lockout After Continuous Failed Attempts to Log in using the GUI

You can block a user from being able to log in after the user fails a configured number of login attempts. You can specify how many failed login attempts the user can have within a specific time period. If the user fails to log in too many times, then that user becomes unable to log in for a specified period of time.

Step 1
On the menu bar, choose Admin > AAA.

Step 2
In the Navigation pane, choose Security.

Step 3
In the Work pane, choose the Management Settings > Policy tab, if it is not chosen already.

Step 4
Under Properties, fill out the fields as follows:

a) For Lockout User after multiple failed login attempts, choose Enable.

b) For Number of failed attempts before user is locked out, enter the desired value.

 The range is from 1 to 15. The default is 5.

c) For Time period in which consecutive attempts were failed (m), enter a value in minutes for the time interval during which the Cisco Application Policy Infrastructure Controller (APIC) will count the failed attempts.

 The range is from 1 to 720. The default is 5.

d) For Duration of lockout (m), enter a value in minutes for how long a user will be locked out for failing to log in too many times.
Step 5 Click **Submit**.

Configuring a Local User for OTP-Based Two-Factor Authentication Using the GUI

The following procedure configures OTP-based two-factor authentication for a local user using the Cisco APIC GUI. The procedure assumes that you are a fabric administrator.

Before you begin

You must have already created a local user for which you want to enable OTP-based two-factor authentication.

Step 1
On the menu bar, choose **Admin > AAA**.

Step 2
In the **Navigation** pane, choose **Users**.

Step 3
Double-click the user for which you want to enable OTP-based two-factor authentication.

Step 4
For **Enable OTP**, choose **Yes**.

Step 5
Click **Submit**.

Step 6
In the **Policy Usage Warning** dialog, click **Submit Changes**.

From this point, you can provide the QR code or OTP key to the user such as through an email, or the user can log into the Cisco APIC GUI to get the code and key directly.

Step 7
(Optional) If you want to provide the QR code or OTP key to the user, continue with the substeps. Otherwise, stop here.

a) Double-click the user again.

b) To the right of **OTP Key**, click the expand button.

 A dialog displays that includes the QR code and OTP key.

c) Provide the QR code or OTP key to the user.

d) In the Cisco APIC, click **Close**.

e) Click **Close**.

What to do next

The user for which you enabled OTP must complete the configuration of OTP authentication. See **Completing the Configuration of OTP-Based Two-Factor Authentication by a User Using the GUI**, on page 35.

Completing the Configuration of OTP-Based Two-Factor Authentication by a User Using the GUI

The following procedure completes the configuration of OTP-based two-factor authentication using the Cisco APIC GUI. The procedure assumes that you are a user for which a fabric administrator enabled OTP-based two-factor authentication.

Before you begin

A fabric administrator must have enabled OTP-based two-factor authentication for your account.
Step 1 On your Android or Apple iOS smartphone, download the appropriate two-factor authentication app.

Step 2 Get the QR code or OTP key from the fabric administrator or by logging in to the Cisco APIC GUI.

If you log into the GUI, the QR code and OTP key display after you enter your credentials.

Step 3 Using your smartphone, scan the QR code and follow the two-factor authentication app's directions, or enter the OTP key in the Cisco APIC GUI.
Restricting Access Using Security Domains and Node Rules

- Restricting Access by Domains, on page 37
- Assigning a Node to a Domain, on page 37
- Guidelines and Limitations for Security Domains and Node Rules, on page 38
- Creating a Security Domain, on page 38
- Creating a Node Rule to Assign Access to a Node, on page 39
- Configuring a User with a Security Domain, on page 39
- Custom Roles and Privileges, on page 40
- Use Case Example of Configuring an RBAC Node Rule, on page 42

Restricting Access by Domains

A restricted security domain allows a fabric administrator to prevent a group of users, such as Tenant A, from viewing or modifying any objects created by a group of users in a different security domain, such as Tenant B, when users in both groups have the same assigned privileges. For example, a tenant administrator in Tenant A's restricted security domain will not be able to see policies, profiles, or users configured in Tenant B's security domain. Unless Tenant B's security domain is also restricted, Tenant B will be able to see policies, profiles, or users configured in Tenant A. Note that a user will always have read-only visibility to system-created configurations for which the user has proper privileges. A user in a restricted security domain can be given a broad level of privileges within that domain without the concern that the user could inadvertently affect another tenant’s physical environment.

Assigning a Node to a Domain

Using an RBAC node rule, the fabric administrator can assign a physical node, such as a leaf switch, to a security domain. This node assignment allows a user in that security domain to access and perform operations on a node assigned as part of the node rule. Only a user with node management privileges within the security domain can configure nodes assigned to that domain. The user has no access to nodes outside of the security domain, and users in other security domains have no access to the node assigned to the security domain. To create or modify configurations on a node assigned to the security domain, a user in that domain must also be assigned to domain all with the port-mgmt role.
When configuring a local user who will manage ports on an assigned node, you must grant the user the port-mgmt role in domain all, and the admin role in the security domain to which the node is assigned. Both roles must have the Role Privilege Type configured as Write.

Guidelines and Limitations for Security Domains and Node Rules

When configuring security domains and node rules, follow these guidelines and limitations. In this section, a "restricted node user" is a user in a restricted security domain to which a node has been assigned.

- When upgrading from an earlier release to Cisco APIC Release 5.0(x), you must reconfigure any rules, policies, or roles that use the more granular earlier privileges.
- When downgrading from Cisco APIC Release 5.0(x) to an earlier release, you must manually edit and retain default roles. Roles modified under Cisco APIC Release 5.0(x) are retained.
- A spine switch can't be assigned using RBAC node rules.
- When creating RBAC node rules, you should not assign a node to more than one security domain.
- A restricted node user can configure only policies. An admin user should perform node configuration and troubleshooting.
- A restricted node user can access default system-created managed objects (MOs).
- A restricted node user can view fabric-level fault counts in the Fault Dashboard.
- A restricted node user can view node-level faults, such as those from AAA servers, NTP servers, and DNS servers.
- If an admin or nonrestricted domain user associates a relationship policy to an access policy created by a restricted node user, that policy will be visible to the restricted node user.
- You can't configure a restricted node user using the CLI.
- The port-mgmt role contains predefined access policy MOs. You can add more MOs using the procedure in Configuring a Custom Privilege, on page 41.

Creating a Security Domain

Use this procedure to create a security domain.

Step 1 On the menu bar, choose Admin > AAA.
Step 2 In the Navigation pane, click Security.
Step 3 In the Work pane, select the Security Domains tab.
Step 4 In the Work pane, click on the Actions icon drop-down list and select Create Security Domain.
Step 5 In the **Create Security Domain** dialog box, perform the following actions:

a) In the **Name** field, type a name for the security domain.

b) (Optional) Set the **Restricted Domain** control to **No** (the default) or **Yes**.

If the security domain is configured as a restricted domain (**Yes**), users who are assigned to this domain will not be able to see policies, profiles, or users configured in other security domains.

c) Click **Submit**.

Creating a Node Rule to Assign Access to a Node

Use this procedure to configure an RBAC node rule that assigns a physical node, such as a leaf switch, to a security domain.

Before you begin

Create a security domain to which the node will be assigned.

Step 1 On the menu bar, choose **Admin > AAA**.

Step 2 In the **Navigation** pane, click **Security**.

Step 3 In the **Work** pane, select the **RBAC Rules** tab and the **Node Rules** subtab.

Step 4 In the **Work** pane, click the Actions icon drop-down list and select **Create RBAC Node Rule**.

Step 5 From the **Node ID** drop-down list, select the node to be assigned.

Tip The **Node ID** drop-down list contains additional drop-down lists for sorting the nodes by ID, name, or type.

Step 6 In the **Port Rules** taskbar, click the **+** icon and perform the following actions:

a) Type a **Name** for the RBAC node rule.

b) From the **Domain** drop-down list, select the security domain to which the node will be assigned.

c) Click **Update**.

d) Click **Submit**.

What to do next

Assign users who will manage the node assigned to the security domain.

Configuring a User with a Security Domain

Use this procedure to add a local user as an **admin** in a security domain.
Tip
This procedure shows the minimum steps for this task, omitting detailed information and optional steps. For a more detailed general procedure for adding a new local user, see Configuring a Local User Using the GUI, on page 24.

Before you begin
The security domain(s) that the user will access are defined.

Step 1
On the menu bar, choose Admin > AAA.

Step 2
In the Navigation pane, click Users.
In the Work pane, verify that you are in the Local Users tab.

Step 3
In the Work pane, click the Actions icon drop-down list and select Create Local User.

Step 4
In the STEP 1 > User Identity dialog box, perform the following actions:
 a) In the Login ID field, add a user ID.
 b) In the Password fields, enter and confirm a password for the user.
 c) Click Next.

Step 5
In the STEP 2 > Security dialog box, under Security Domain, check the boxes for the domain 'all' and for the security domain that has the associated RBAC node rule, then click Next.

Step 6
In the STEP 3 > Roles dialog box, perform the following actions:
 a) In the taskbar for the domain 'all,' click the + icon to assign a role for the user in that domain.
 b) From the Role Name drop-down list, choose 'port-mgmt' and configure the Role Privilege Type as 'Write.'
 c) Click Update.
 d) In the taskbar for the security domain, click the + icon to assign a role for the user in that domain.
 e) From the Role Name drop-down list, choose 'admin' and configure the Role Privilege Type as 'Write.'
 f) Click Update.

Step 7
Click Finish.

Custom Roles and Privileges

Creating a Custom Role with Custom Privileges

Use this procedure to create a role and choose a set of privileges.

Before you begin
Refer to the set of predefined roles and privileges listed in AAA RBAC Roles and Privileges, on page 8 to determine which privileges should be available in the custom role. If you need read or write access to a managed object (MO) that is not exposed in a predefined privilege, you can configure a custom privilege, as described in Configuring a Custom Privilege, on page 41.
Step 1 On the menu bar, choose Admin > AAA.
Step 2 In the Navigation pane, click Security.
Step 3 In the Work pane, select the Roles tab.
Step 4 In the Work pane, click on the Actions icon drop-down list and select Create Role.
Step 5 In the Create Role dialog box, perform the following actions:
a) In the Name field, type a name for the role.
b) From the Privileges table, check the box or boxes of the desired privileges for this role.
c) Click Submit.

What to do next
If you selected a custom privilege, such as custom-privilege-1, follow the steps in Configuring a Custom Privilege, on page 41 to choose the managed objects (MOs) that will be exposed with this custom privilege.

Configuring a Custom Privilege
Use this procedure to configure a custom privilege, providing read or read/write access to one or more managed objects (MOs) that are not exposed in a predefined privilege.
Managed object classes are described in the Cisco APIC Management Information Model Reference. For each MO class, the reference lists the predefined roles that have read or read/write privileges for that class.
For each predefined privilege, you can see a list of MO classes and the read/write permission by using the Cisco APIC Roles and Privileges Matrix.
To configure a custom privilege with read or write access permission to an MO class, you must use the APIC REST API. For instructions on using the API, see the Cisco APIC REST API Configuration Guide.

Compose and send an APIC REST API POST in the format below to create an object of class aaa:RbacClassPriv.

Example:

POST https://<APIC-IP>/api/node/mo/uni/rbacdb/rbacclpriv-<moClassName>.json
{
 "aaaRbacClassPriv":
 {
 "attributes":
 {
 "name": "<moClassName>",
 "wPriv": "<privilege>",
 "rPriv": "<privilege>"
 }
 }
}

In the moClassName value of the URI, include the name of the object class for which you are configuring access.
In the payload, provide the following attributes:
Use Case Example of Configuring an RBAC Node Rule

This section explains a use case that has a mix of configuration options described in this document. See the other parts of this document for information about each option. The use case is based on the following scenario:

Imagine that you have multiple tenants and multiple leaf nodes in your Cisco Application Centric Infrastructure (ACI) fabric. For multi-tenancy, you want to allow a user to manage a specific tenant and a specific set of leaf nodes only. For example:

• User1 can manage only Tenant1, leaf node 101 and 102.
• User2 can manage only Tenant2, leaf node 201 and 202.

The following figure illustrates the requirements:
This can be achieved by using security domains and RBAC node rules. At a high level, the configuration steps are as follows:

1. Create security domains
2. Create RBAC node rules
3. Create users

The following figure illustrates the relationship between the configurations for User1 in this example:
User1 has three security domains:

- All with port-mgmt role: Enables User1 to manage ports related configuration on the assigned leaf nodes.
- Tenant1 with admin role: Enables User1 to manage Tenant1.
- Leaf100 with admin role: Enables User1 to manage Leaf101 and 102.

The following subsections explain the configuration steps in greater detail.

Step 1: Create Security Domains

The first step is to create the security domains: Tenant1 and Leaf100. Although you can combine these security domains, this example uses separate security domains.

To create the domains, in the GUI, go to **Admin > AAA > Security > Security Domains > Create Security Domain**.
In this example, **Restricted Domain** is set to **Yes** for security domain Leaf100, which prevents that User1 from seeing the interface policy group, VLAN pool, and other access policies created by other users in different security domains. Exceptions are the default interface policies. Regardless of the **Restricted Domain** configuration, default interface policies are visible to the leaf RBAC user. That said, if **Restricted Domain** is enabled, the user cannot make a change to the configuration of the default policies.

For the tenant RBAC, a tenant must be associated to a security domain. This example associates Tenant1 to security domain "Tenant1." To create the domains, in the GUI, go to **Tenant > Policy > Security Domains**.
Step 2: Create RBAC Node Rules

The next step is to create RBAC node rules to add Leaf101 and Leaf102 to security domain Leaf100. To create the RBAC node rules, in the GUI, go to Admin > AAA > Security > RBAC Rules > Node Rules > Create RBAC Node Rule.
Step 3: Create Users

The last step is to create a user: User1. To create the user, in the GUI, go to **Admin > AAA > Users > Create Local User**.

At the **Security** and **Roles** configuration steps, choose the following security domains and roles:

- **all**: Role **port-mgmt** with the **Write** privilege
- **Leaf100**: Role **admin** with the **Write** privilege
• Tenant1: Role admin with the Write privilege

Verifying the RBAC Node Rule
User1 can manage only Tenant1, Leaf 101 and 102. For example:

• User1 cannot see other tenants other than Tenant1 with write privilege and the common tenant with read privilege.

• User1 cannot see other leaf nodes other than Leaf101 and 102 in Leaf Selectors.
Restricting Access Using Security Domains and Node Rules

Use Case Example of Configuring an RBAC Node Rule

![Diagram of APIC interface with tenant and leaf switch configurations]

1. Navigate to the Tenants section.
2. Select the tenant you want to configure.
3. In the Fabric section, select Access Policies and then create a new leaf profile.
4. Configure the leaf profile with the desired switches and blocks.
5. Save the changes to apply the configuration to the fabric.

This example demonstrates how to restrict access using security domains and node rules within Cisco APIC.
This chapter contains the following sections:

- Overview, on page 51
- User IDs in the APIC Bash Shell, on page 52
- AV Pair on the External Authentication Server, on page 52
- Configuring a Remote User, on page 54
- Login Domains, on page 56
- RADIUS Authentication, on page 57
- TACACS+ Authentication, on page 59
- LDAP/Active Directory Authentication, on page 63
- Multi-factor Authentication with DUO, on page 67
- RSA Secure ID Authentication, on page 71
- SAML Authentication, on page 72
- OAuth 2 Authorization, on page 80

Overview

This article provides step by step instructions on how to enable RADIUS, TACACS+, LDAP, RSA, DUO, SAML, OAuth 2 users to access the APIC. It assumes the reader is thoroughly familiar with the Cisco Application Centric Infrastructure Fundamentals manual, especially the User Access, Authentication, and Accounting chapter.

In the case of a disaster scenario such as the loss of all but one APIC in the cluster, APIC disables remote authentication. In this scenario, only a local administrator account can log into the fabric devices.

Remote users for AAA Authentication with shell:domains=all/read-all/ will not be able to access Leaf switches and Spine switches in the fabric for security purposes. This pertains to all version up to 4.0(1h).
User IDs in the APIC Bash Shell

User IDs on the APIC for the Linux shell are generated within the APIC for local users. Users whose authentication credential is managed on external servers, the user ID for the Linux shell can be specified in the cisco-av-pair. Omitting the (16001) in the above cisco-av-pair is legal, in which case the remote user gets a default Linux user ID of 23999. Linux User IDs are used during bash sessions, allowing standard Linux permissions enforcement. Also, all managed objects created by a user are marked as created-by that user’s Linux user ID.

The following is an example of a user ID as seen in the APIC Bash shell:

```
admin@ifav17-ifc1:~> touch myfile
admin@ifav17-ifc1:~> ls -l myfile
-rw-rw-r-- 1 admin admin 0 Apr 13 21:43 myfile
admin@ifav17-ifc1:~> ls -ln myfile
-rw-rw-r-- 1 15374 15374 0 Apr 13 21:43 myfile
admin@ifav17-ifc1:~> id
uid=15374(admin) gid=15374(admin) groups=15374(admin)
```

AV Pair on the External Authentication Server

The Cisco APIC requires that an administrator configure a Cisco AV Pair on an external authentication server. The Cisco AV pair specifies the APIC required RBAC roles and privileges for the user. The Cisco AV Pair format is the same for RADIUS, LDAP, or TACACS+.

To configure a Cisco AV Pair on an external authentication server, an administrator adds a Cisco AV pair to the existing user record. The Cisco AV pair format is as follows:

```
shell:domains =
domainA/writeRole1|writeRole2|writeRole3/readRole1|readRole2,
domainB/writeRole1|writeRole2|writeRole3/readRole1|readRole2
shell:domains =
domainA/writeRole1|writeRole2|writeRole3/readRole1|readRole2,
domainB/writeRole1|writeRole2|writeRole3/readRole1|readRole2(16003)
```

Starting with Cisco APIC release 2.1, if no UNIX ID is provided in AV Pair, the APIC allocates the unique UNIX user ID internally.

Note

The APIC Cisco AV-pair format is compatible and can co-exist with other Cisco AV-pair formats. APIC will pick up the first matching AV-pair from all the AV-pairs.

Starting with release 3.1(x), the AV Pair shell:domains=all//admin allows you to assign Read-only privileges to users and provide them access to the switches and run commands.

The APIC supports the following regexes:

```
shell:domains\s*\[=:\]\s*((\S+?/\S*?/\S*?)(,\S+?/\S*?/\S*?){0,31})(\(\d+\))$
shell:domains\s*\[=:\]\s*((\S+?/\S*?/\S*?)(,\S+?/\S*?/\S*?){0,31})$
```

Examples:

- Example 1: A Cisco AV Pair that contains a single Security domain with only writeRoles:
shell:domains=domainA/writeRole1|writeRole2/

- Example 2: A Cisco AV Pair that contains a single Security domain with only readRoles:

shell:domains=domainA//readRole1|readRole2

Note

The "/" character is a separator between writeRoles and readRoles per Security domain and is required even if only one type of role is to be used.

The Cisco AVpair string is case sensitive. Although a fault may not be seen, using mismatching cases for the domain name or roles could lead to unexpected privileges being given.

An example configuration for an open RADIUS server (/etc/raddb/users) is as follows:

aaa-network-admin Cleartext-Password := "<password>"
Cisco-avpair = "shell:domains = all/aaa/read-all(16001)"

Best Practice for Assigning AV Pairs

As best practice, Cisco recommends that you assign unique UNIX user ids in the range of 16000 to 23999 for the AV Pairs that are assigned to users when in bash shell (using SSH, Telnet or Serial/KVM consoles). If a situation arises when the Cisco AV Pair does not provide a UNIX user id, the user is assigned a user id of 23999 or similar number from the range that also enables the user's home directories, files, and processes accessible to remote users with a UNIX ID of 23999.

To ensure that your remote authentication server does NOT explicitly assign a UNIX ID in its cisco-av-pair response, open an SSH session to the APIC and login as an administrator (using a remote user account). Once logged in, run the following commands (replace “userid” with the username you logged in with):

admin@apic1:remoteuser-userid> cd /mit/uni/userext/remoteuser-userid
admin@apic1:remoteuser-userid> cat summary

The Cisco AVpair string is case sensitive. Although a fault may not be seen, using mismatching cases for the domain name or roles could lead to unexpected privileges being given.

Configuring an AV Pair on the External Authentication Server

The numerical value within the parentheses in the attribute/value (AV) pair string is used as the UNIX user ID of the user who is logged in using Secure Shell (SSH) or Telnet.

SUMMARY STEPS

1. Configure an AV pair on the external authentication server.
DETAILED STEPS

Configure an AV pair on the external authentication server.
The Cisco AV pair definition is as follows (Cisco supports AV pairs with and without UNIX user IDs specified):

Example:

```
shell:domains = domainA/writeRole1|writeRole2|writeRole3/readRole1|readRole2,domainB/writeRole1|writeRole2|writeRole3/readRole1|readRole2
```

These are the boost regexes supported by APIC:

```
uid_regex("shell:domains\s*\[=:\]\s*(((\S+?/\S*?/\S*?)(,\S+?/\S*?/\S*?){0,31})(\(\d+\)))\$");
regex("shell:domains\s*\[=:\]\s*(((\S+?/\S*?/\S*?)(,\S+?/\S*?/\S*?){0,31})\$");
```

The following is an example:

```
shell:domains = coke/tenant-admin/read-all,pepsi//read-all
```

Configuring a Remote User

Instead of configuring local users, you can point the APIC at the centralized enterprise credential datacenter. The APIC supports Lightweight Directory Access Protocol (LDAP), active directory, RADIUS, and TACACS+.

Note

When an APIC is in minority (disconnected from the cluster), remote logins can fail because the ACI is a distributed system and the user information is distributed across APICS. Local logins, however, continue to work because they are local to the APIC.

Starting with the 3.1(1) release, **Server Monitoring** can be configured through RADIUS, TACACS+, LDAP, and RSA to determine whether the respective AAA servers are alive or not. Server monitoring feature uses the respective protocol login to check for server aliveness. For example, a LDAP server will use ldap login and a Radius server will use radius login with server monitoring to determine server aliveness.

To configure a remote user authenticated through an external authentication provider, you must meet the following prerequisites:

- The DNS configuration should have already been resolved with the hostname of the RADIUS server.
- You must configure the management subnet.

Configuring a Remote User Using the NX-OS Style CLI

Instead of configuring local users, you can point the APIC at the centralized enterprise credential datacenter. The APIC supports Lightweight Directory Access Protocol (LDAP), active directory, RADIUS, and TACACS+.

To configure a remote user authenticated through an external authentication provider, you must meet the following prerequisites:

- The DNS configuration should have already been resolved with the hostname of the RADIUS server.
Changing the Default Behavior for Remote Users with Missing or Bad Cisco AV Pairs

Step 1
On the menu bar, choose Admin > Authentication > AAA > Policy tab.

Step 2
From the Remote user login policy drop-down list, choose Assign Default Role.

The default value is No Login. The Assign Default Role option assigns the minimal read-only privileges to users that have missing or bad Cisco AV Pairs. Bad AV Pairs are those AV Pairs that fail the parsing rules.

Changing Default Behavior for Remote Users with Missing or Bad Cisco AV Pairs Using the NX-OS Style CLI

The Cisco APIC requires that an administrator configure a Cisco AV Pair on an external authentication server. To do so, an administrator adds a Cisco AV pair to the existing user record. The Cisco AV pair specifies the APIC required RBAC roles and privileges for the user. The Cisco AV Pair format is the same for RADIUS, LDAP, or TACACS+. One AV pair format contains a Cisco UNIX user ID and one does not. Both are correct if all remote users have the same role and mutual file access is acceptable. If the UNIX user ID is not specified, ID 23999 is applied by the APIC system, and more than one role/read privilege is specified to any AV Pair user. This can cause users to have higher or lower permissions than configured through the group settings. This topic explains how to change the behavior if that is not acceptable.

To change the default behavior for remote users with missing or bad Cisco AV pairs using the NX-OS CLI:

Step 1
In the NX-OS CLI, start in Configuration mode.

Example:

```
apic1# configure
```

Step 2
Configure the aaa user default role.

Example:

```
apic1(config)# aaa user default-role
assign-default-role assign-default-role
no-login no-login
```

Step 3
Configure the aaa authentication login methods.

Example:

```
apic1(config)# aaa authentication login
login Configure methods for login
```

```
Login Domains

A login domain defines the authentication domain for a user. Login domains can be set to the Local, LDAP, RADIUS, TACACS+, DUO, SAML, RSA, or OAuth 2 authentication mechanisms. When accessing the system from REST, the CLI, or the GUI, the APIC enables the user to select the correct authentication domain.

For example, in the REST scenario, the username is prefixed with a string so that the full login username looks as follows:

```
apic:<domain>\<username>
```

If accessing the system from the GUI, the APIC offers a drop-down list of domains for the user to select. If no apic: domain is specified, the default authentication domain servers are used to look up the username.

Starting in ACI version 1.0(2x), the login domain fallback of the APIC defaults local. If the default authentication is set to a non-local method and the console authentication method is also set to a non-local method and both non-local methods do not automatically fall back to local authentication, the APIC can still be accessed via local authentication.

To access the APIC fallback local authentication, use the following strings:

- From the GUI, use `apic: fallback\username`.
- From the REST API, use `apic#fallback\username`.

Important: Do not change the fallback login domain. Doing so could result in being locked out of the system.

Creating Login Domain Using the GUI

Before you begin

- The ACI fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.
- The login domain name, realm, and remote server provider group are available to define the authentication domain for the user.
Step 1

In the APIC, create Login Domain.

a) On the menu bar, choose Admin > Authentication > AAA > Policy tab.

b) In the Properties pane, click the Actions icon > Create Login Domain. You can also create a login domain by clicking + displayed against Login Domains.

c) In the Create Login Domain pane, specify the following:

- The user configured domain name.
- Description of the login domain.
- The realm to verify the identity of an entity (person or device) accessing the fabric devices. The options available in the Realm drop-down list are discussed here:

1. For Release 4.2(x) and earlier, choose a security method from Local, LDAP, RADIUS, TACACS+, RSA, or SAML for processing authentication requests.

2. For Release 5.0(x) and later, choose a security method from DUO Proxy LDAP, DUO Proxy RADIUS, LDAP, RADIUS, TACACS+, RSA, SAML, OAuth 2, or Local for processing authentication requests.

   Note: If LDAP, RADIUS, or TACACS+ is specified as the default security method and the associated provider group specified in this dialog is not available to provide authentication during a user login, fallback local authentication is not executed by the APIC server unless is specifically configured to do so.

   - A RADIUS provider group for a group of remote servers supporting the RADIUS protocol for authentication.
   - A TACACS+ provider group for a group of remote servers supporting the TACACS+ protocol for authentication.
   - An LDAP provider group for a group of remote servers supporting the LDAP protocol for authentication.
   - A RSA provider group for a group of remote servers supporting the RSA protocol for authentication.
   - A SAML provider group for a group of remote servers supporting the SAML protocol for authentication.
   - An OAuth 2 provider group for a group of remote servers supporting the OAuth 2 protocol for authentication.

Step 2

Click Submit.

RADIUS Authentication

Remote Authentication Dial-In User Service (RADIUS) is a networking protocol that provides centralized authentication, authorization, and accounting (AAA) management for users who connect and use a network service.

To configure users on RADIUS servers, the APIC administrator must configure the required attributes (shell:domains) using the cisco-av-pair attribute. The default user role is network-operator.

The SNMPv3 authentication protocol options are SHA and MD5. The privacy protocol options are AES-128 and DES. If these options are not specified in the cisco-av-pair attribute, MD5 and DES are the default authentication protocols.
For example, SNMPv3 authentication and privacy protocol attributes can be specified as follows:

```
snmpv3:auth=SHA priv=AES-128
```

Similarly, the list of domains would be as follows:

```
shell:domains="domainA domainB ..."
```

## Configuring APIC for RADIUS Access

### Before you begin

- The ACI fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.
- The RADIUS server host name or IP address, port, authorization protocol, and key are available.
- The APIC management endpoint group is available.

### Step 1

In the APIC, create the RADIUS provider.

a) On the menu bar, choose **Admin > Authentication > RADIUS tab.**

b) Click the **Actions** icon > **Create RADIUS Provider**.

c) In the displayed pop-up window, specify the RADIUS host name (or IP address), description, port, protocol, key, timeout, retries, management endpoint group, and select if server monitoring needs to be enabled or not.

**Note** If the APIC is configured for in-band management connectivity, out-of-band management does not work for authentication. With the APIC release 2.1(1x), you can set a global toggle between In-band and out-of-band as the default management connectivity between the APIC server and other external management devices.

For toggling in-band or out-of-band management in the APIC GUI:

- Prior to Release 2.2(1x): In the **Navigation pane**, choose **Fabric > Fabric Policies > Global Policies > Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

- For Release 2.2(x) and 2.3(x): In the **Navigation pane**, choose **Fabric > Fabric Policies > Global Policies > APIC Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

- For Release 3.0(1x) or later: In the **Navigation pane**, choose **System > System Settings > APIC Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

### Step 2

Create the **Login Domain** for TACACS+.

For the detailed procedure, see **Creating Login Domain Using the GUI, on page 56.**

### What to do next

This completes the APIC RADIUS configuration steps. Next, configure the RADIUS server.
Configuring Radius in APIC Using REST API

HTTP POST to https://{{apichost}}/api/node/mo/.xml
<aaaRadiusProvider authPort="1812" authProtocol="pap" descr="myradius"
monitorServer="disabled"
name="server.radius.local" key="mykey"
retries="1" timeout="5"/>

To configure a login domain for RADIUS using REST API:

HTTP POST to https://{{apichost}}/api/node/mo/.xml
<aaaUserEp descr="" dn="uni/userext" name="" pwdStrengthCheck="yes" rn=""
status="modified">
  <aaaLoginDomain descr="" name="RadDom" rn="logindomain-RadDom" status="created">
    <aaaDomainAuth name="" providerGroup="RadDom" realm="radius" rn="domainauth" status="created"/>
  </aaaLoginDomain>
</aaaUserEp>

TACACS+ Authentication

Terminal Access Controller Access Control System Plus (TACACS+) is another remote AAA protocol that is supported by Cisco devices. TACACS+ has the following advantages over RADIUS authentication:

- Provides independent AAA facilities. For example, the Cisco Application Policy Infrastructure Controller (APIC) can authorize access without authenticating.

- Uses TCP to send data between the AAA client and server, enabling reliable transfers with a connection-oriented protocol.

- Encrypts the entire protocol payload between the switch and the AAA server to ensure higher data confidentiality. RADIUS encrypts passwords only.

- Uses the av-pairs that are syntactically and configurationally different than RADIUS but the Cisco APIC supports shell:domains.

The following XML example configures the Cisco Application Centric Infrastructure (ACI) fabric to work with a TACACS+ provider at IP address 10.193.208.9:

<aaaTacacsPlusProvider name="10.193.208.9" key="test123"
authProtocol="pap"/>

Note

While the examples provided here use IPv4 addresses, IPv6 addresses could also be used.
The following guidelines and limitations apply when using TACACS+:

- The TACACS server and TACACs ports must be reachable by ping.
- The TACACS server with the highest priority is considered first to be the primary server.

## Configuring APIC for TACACS+ Access

### Before you begin

- The Cisco Application Centric Infrastructure (ACI) fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.
- The TACACS+ server host name or IP address, port, and key are available.
- The APIC management endpoint group is available.

### Step 1

In the APIC, create the **TACACS+ Provider**.

a) On the menu bar, choose **Admin > Authentication > TACACS** tab.

b) Click the **Actions** icon > **Create TACACS+ Provider**.

c) In the displayed pop-up window, specify the TACACS+ host name (or IP address), description, port, authorization protocol, key, timeout, retries, management endpoint group, and select if server monitoring needs to be enabled or not.

**Note**  
If the APIC is configured for in-band management connectivity, out-of-band management does not work for authentication. With the APIC release2.1(1x), you can set a global toggle between In-band and out-of-band as the default management connectivity between the APIC server and other external management devices.

For toggling in-band or out-of-band management in the APIC GUI:

- Prior to Release 2.2(1x): In the **Navigation** pane, choose **Fabric > Fabric Policies > Global Policies > Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

- For Release 2.2(x) and 2.3(x): In the **Navigation** pane, choose **Fabric > Fabric Policies > Global Policies > APIC Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

- For Release 3.0(1x) or later: In the **Navigation** pane, choose **System > System Settings > APIC Connectivity Preferences**. In the **Work Pane** select either **inband** or **ooband**.

### Step 2

Create the **Login Domain** for TACACS+.

For the detailed procedure, see *Creating Login Domain Using the GUI, on page 56.*

### What to do next

This completes the APIC TACACS+ configuration steps. Next, if a RAIDUS server will also be used, configure the APIC for RADIUS. If only a TACACS+ server will be used, go to the ACS server configuration topic below.
Configuring TACACS in APIC Using REST API

HTTP POST to https://{apichost}/api/node/mo/.xml
<aaaTacacsPlusProvider name="server.tacacs.local"
  authProtocol="pap"
  monitorServer="enabled" monitoringUser="user1" monitoringPassword="mypwd"
  port="49" retries="1" key="mykey" timeout="15" />

To configure a login domain for TACACS using REST API:

HTTP POST to https://{apichost}/api/node/mo/.xml
<aaaUserEp descr="" dn="uni/userext" name="" pwdStrengthCheck="yes" rn=""
  status="modified">
  <aaaLoginDomain descr="" name="Tacacs" nameAlias="" rn="logindomain-Tacacs"
    status="created,modified">
    <aaaDomainAuth descr="" name="" nameAlias="" providerGroup="Tacacs"
      realm="tacacs" rn="domainauth" status="created,modified"/>
  </aaaLoginDomain>
  <aaaTacacsPlusEp descr="" name="" nameAlias="" retries="1" rn="tacacsext"
    status="created,modified" timeout="5">
    <aaaTacacsPlusProviderGroup descr="" name="Tacacs" nameAlias="" rn="tacacsprouidergroup-Tacacs"
      status="created,modified" order="1">
      <aaaProviderRef descr="testing" name="tacacs.server.com" nameAlias=""
        rn="providerref-tacacs.server.com" status="created,modified"/>
      <aaaProviderRef descr="testing" name="tacacs2.server.com" nameAlias=""
        rn="providerref-tacacs2.server.com" status="created,modified"/>
    </aaaTacacsPlusProviderGroup>
  </aaaTacacsPlusEp>
</aaaUserEp>

Configuring a Cisco Secure Access Control Server for RADIUS and TACACS+
Access to the APIC

Before you begin

• The Cisco Secure Access Control Server (ACS) version 5.5 is installed and online.

Note ACS v5.5 was used to document these steps. Other versions of ACS might support this task but the GUI procedures might vary accordingly.

• The Cisco Application Policy Infrastructure Controller (Cisco APIC) RADIUS or TACACS+ keys are available (or keys for both if both will be configured).

• The APICs are installed and online; the APIC cluster is formed and healthy.

• The RADIUS or TACACS+ port, authorization protocol, and key are available.

Step 1 Log in to the ACS server to configure the APIC as a client.
a) Navigate to Network Resources > Network Devices Groups > Network Devices and AAA Clients.
b) Specify the client name, the APIC in-band IP address, select the TACACS+ or RADIUS (or both) authentication options.
   Note If the only RADIUS or TACACS+ authentication is needed, select only the needed option.
c) Specify the authentication details such as Shared Secret (key), and port as appropriate for the authentication option(s).
   Note The Shared Secret(s) must match the APIC Provider key(s).

Step 2 Create the Identity Group.
  a) Navigate to Users and Identity Stores > Internal Groups option.
  b) Specify the Name, and Parent Group as appropriate.

Step 3 Map users to the Identity Group.
  a) In the Navigation pane, click the Users and Identity Stores > Internal Identity Stores > Users option.
  b) Specify the user Name, and Identity Group as appropriate.

Step 4 Create the Policy Element.
  a) Navigate to the Policy Elements option.
  b) For RADIUS, specify the Authorization and Permissions > Network Access > Authorization Profiles Name. For TACACS+, specify the Authorization and Permissions > Device Administration > Shell Profile Name as appropriate.
  c) For RADIUS, specify the Attribute as cisco-av-pair, Type as string, and the Value as shell:domains = <domain>/<role>/,<domain>:// role as appropriate. For TACACS+, specify the Attribute as cisco-av-pair, Requirement as Mandatory, and the Value as shell:domains = <domain>/<role>/,<domain>:// role as appropriate.

The syntax of the Value field determines whether write privileges are granted:

- For read/write privileges, the syntax is shell:domains = <domain>/<role>/.
- For read-only privileges, the syntax is shell:domains = <domain>:// <role>.

For example, if the cisco-av-pair has a value of shell:domains = solar/admin/,common// read-all, then solar is the security domain, admin is the role that gives write privileges to this user in the security domain called solar, common is the tenant common, and read-all is the role with read privileges that gives this user read privileges to all of the tenant common.

Step 5 Create a service selection rule.
  a) For RADIUS, create a service selection rule to associate the Identity Group with the Policy Element by navigating to Access Policies > Default Device Network Access Identity > Authorization and specifying the rule Name, Status, and Conditions as appropriate, and Add the Internal Users:UserIdentityGroup in ALL Groups:<identity group name>.
  b) For TACACS+, create a service selection rule to associate the Identity Group with the Shell Profile by navigating to Access Policies > Default Device Admin Identity > Authorization. Specify the rule Name, Conditions, and Select the Shell Profile as appropriate.

What to do next

Use the newly created RADIUS and TACACS+ users to log in to the APIC. Verify that the users have access to the correct APIC security domain according to the assigned RBAC roles and privileges. The users should
not have access to items that have not been explicitly permitted. Read and write access rights should match those configured for that user.

**LDAP/Active Directory Authentication**

Similar to RADIUS and TACACS+, LDAP allows a network element to retrieve AAA credentials that can be used to authenticate and then authorize the user to perform certain actions. An added certificate authority configuration can be performed by an administrator to enable LDAPS (LDAP over SSL) trust and prevent man-in-the-middle attacks.

The XML example below configures the ACI fabric to work with an LDAP provider at IP address 10.30.12.128.

```xml
<aaaLdapProvider name="10.30.12.128"
 rootdn="CN=Manager,DC=ifc,DC=com"
 basedn="DC=ifc,DC=com"
 SSLValidationLevel="strict"
 attribute="CiscoAVPair"
 enableSSL="yes"
 key="myldappwd"
 filter="cn=$userid"
 port="636" />
```

For LDAP configurations, best practice is to use **CiscoAVPair** as the attribute string. If customer faces the issue using Object ID 1.3.6.1.4.1.9.22.1, an additional Object ID 1.3.6.1.4.1.9.2742.1-5 can also be used in the LDAP server.

Instead of configuring the Cisco AVPair, you have the option to create LDAP group maps in the APIC.

**Configuring LDAP**

There are two options for LDAP configurations: you can configure a Cisco AVPair or configure LDAP group maps in the APIC. This section contains instructions for both configuration options.

**Configuring Windows Server 2012 LDAP for APIC Access with Cisco AVPair**

**Before you begin**

- First, configure the LDAP server, then configure the Cisco Application Policy Infrastructure Controller (Cisco APIC) for LDAP access.
- The Microsoft Windows Server 2012 is installed and online.
- The Microsoft Windows Server 2012 Server Manager ADSI Edit tool is installed. To install ADSI Edit, follow the instructions in the Windows Server 2012 Server Manager help.
CiscoAVPair attribute specifications:
Common Name = CiscoAVPair, LDAP Display Name = CiscoAVPair,
Unique X500 Object ID = 1.3.6.1.4.1.9.22.1, Description = CiscoAVPair,
Syntax = Case Sensitive String.

Note
For LDAP configurations, best practice is to use CiscoAVPair as the attribute string. If customer faces the issue using Object ID 1.3.6.1.4.1.9.22.1, an additional Object ID 1.3.6.1.4.1.9.2742.1-5 can also be used in the LDAP server.

A Microsoft Windows Server 2012 user account is available that will enable the following:
• Running ADSI Edit to add the CiscoAVPair attribute to the Active Directory (AD) Schema.
• Configuring an Active Directory LDAP user to have CiscoAVPair attribute permissions.
• Port 636 is required for configuring LDAP integration with SSL/TLS.

---

**Step 1**
Log in to an Active Directory (AD) server as a domain administrator.

**Step 2**
Add the CiscoAVPair attribute to the AD schema.

a) Navigate to Start > Run, type mmc and press Enter.
The Microsoft Management Console (MMC) opens.
b) Navigate to File > Add/Remove Snap-in > Add.
c) In the Add Standalone Snap-in dialog box, select the Active Directory Schema and click Add.
The MMC Console opens.
d) Right-click the Attributes folder, select the Create Attribute option.
The Create New Attribute dialog box opens.
e) Enter CiscoAVPair for the Common Name, CiscoAVPair for the LDAP Display Name, 1.3.6.1.4.1.9.22.1 for the Unique X500 Object ID, and select Case Sensitive String for the Syntax.
f) Click OK to save the attribute.

**Step 3**
Update the User Properties class to include the CiscoAVPair attribute.

a) In the MMC Console, expand the Classes folder, right-click the user class, and choose Properties.
The user Properties dialog box opens.
b) Click the Attributes tab, and click Add to open the Select Schema Object window.
c) In the Select a schema object: list, choose CiscoAVPair, and click Apply.
d) In the MMC Console, right-click the Active Directory Schema, and select Reload the Schema.

**Step 4**
Configure the CiscoAVPair attribute permissions.

Now that the LDAP includes the CiscoAVPair attributes, LDAP users need to be granted Cisco APIC permission by assigning them Cisco APIC RBAC roles.

a) In the ADSI Edit dialog box, locate a user who needs access to the Cisco APIC.
b) Right-click on the user name, and choose Properties.
The <user> Properties dialog box opens.
c) Click the Attribute Editor tab, select the CiscoAVPair attribute, and enter the Value as shell:domains = <domain>/<role>,<domain>/role.
For example, if the CiscoAVPair has a value of `shell:domains = solar/admin,,common// read-all(16001)`, then `solar` is the security domain, `admin` is the role for this user that gives write privileges to this user in the security domain called `solar`, `common` is the Cisco Application Centric Infrastructure (Cisco ACI) tenant common, and `read-all(16001)` is the role with read privileges that gives this user read privileges to all of the Cisco ACI tenant common.

d) Click OK to save the changes and close the `<user> Properties` dialog box.

---

The LDAP server is configured to access the Cisco APIC.

**What to do next**

Configure the Cisco APIC for LDAP access.

### Configuring APIC for LDAP Access

**Before you begin**

- The Cisco Application Centric Infrastructure (ACI) fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.
- The LDAP server host name or IP address, port, bind DN, Base DN, and password are available.
- The APIC management endpoint group is available.

**Step 1**

In the APIC, configure the LDAP Provider.

a) On the menu bar, choose Admin > Authentication > LDAP > Providers tab.
b) Click the Actions icon > Create LDAP Provider.
c) In the displayed pop-up window, specify the LDAP host name (or IP address), port, bind DN, Base DN, password, attribute, retries, timeout, SSL certificate validation level, filter type, management endpoint group, and select if server monitoring needs to be enabled or not.

**Note**

- The bind DN is the string that the APIC uses to log in to the LDAP server. The APIC uses this account to validate the remote user attempting to log in. The base DN is the container name and path in the LDAP server where the APIC searches for the remote user account. This is where the password is validated. Filter is used to locate the attribute that the APIC requests to use for the `cisco-av-pair`. This contains the user authorization and assigned RBAC roles for use on the APIC. The APIC requests the attribute from the LDAP server.

- **Attribute field**—Enter one of the following:
  - For LDAP server configurations with a Cisco AVPair, enter `CiscoAVPair`.
  - For LDAP server configurations with an LDAP group map, enter `memberOf`.

- If the APIC is configured for in-band management connectivity, choosing an out-of-band management endpoint group for LDAP access does not take effect. Alternatively, an out-of-band over an in-band management endpoint group can connect a LDAP server, but requires configuring a static route for the LDAP server. The sample configuration procedures in this document use an APIC in-band management endpoint group.
**Step 2**  
Create the **Login Domain** for LDAP.

For the detailed procedure, see *Creating Login Domain Using the GUI*, on page 56.

---

**What to do next**

This completes the APIC LDAP configuration steps. Next, test the APIC LDAP login access.

---

**Configuring LDAP Group Map Rules on the Cisco APIC**

Configuring an LDAP group map on the Cisco APIC requires first creating LDAP group map rules. This section explains how to create LDAP group map rules.

**Before you begin**

An LDAP server is running with a configured group mapping.

**Step 1**  
On the menu bar, choose **Admin > Authentication > LDAP > LDAP Group Map Rules** tab.

**Step 2**  
Click the **Actions** icon > **Create LDAP Group Map Rule**.

**Step 3**  
In the displayed pop-up window, specify the map rule name, description (optional), group DN, and security domain in the appropriate fields then click **Next**. The **Create LDAP Group Map Rule: Roles** dialog appears with security domain options.

**Step 4**  
Click the + to access the Role Name and Role Privilege Type fields.

**Step 5**  
Click the **Role Name** drop-down arrow to choose a role name.

**Step 6**  
Click the **Role Privilege Type** drop-down arrow to choose a role privilege type (**Read** or **Write**).

Repeat **Step 4 to 6** to add additional roles to the LDAP group map rule.

**Step 7**  
When finished, click **Finished**.

---

**What to do next**

After specifying the LDAP group map rules, create an LDAP group map.

---

**Configuring an LDAP Group Map on the Cisco APIC**

Configuring an LDAP group map on the Cisco APIC requires first creating LDAP group map rules. This section explains how to create an LDAP group map.

**Before you begin**

- A running LDAP server is configured with group mapping.
- LDAP group map rules have been configured.

**Step 1**  
On the menu bar, choose **Admin > Authentication > LDAP > LDAP Group Maps** tab.

**Step 2**  
Click the **Actions** icon > **Create LDAP Group Map**.
Multi-factor Authentication with DUO

Cisco APIC supports multi-factor authentication with Duo security. Duo security itself does not act as repository for user identities. It offers second factor (2F) authentication on top of an organization’s existing authentication, which could be on-premises or cloud-based. Second factor authentication with Duo occurs once the user has finished the authentication with the organization’s primary authentication source.

Duo supports three types of 2F authentication methods after you complete authentication with the primary authentication source:

- Notification push on mobile using the Duo mobile app on smartphones.
- Phone call on your registered phone or mobile numbers.
- Passcode that is generated on the Duo mobile app.

The user is authenticated using the following servers:

- The Duo proxy RADIUS server uses the multi-factor authentication in Cisco APIC to authenticate a distributed client/server system using RADIUS PAP primary authentication method.
- The Duo proxy LDAP server uses the multi-factor authentication in Cisco APIC to authenticate a remote server using Cisco AVPair or Group Maps authentication method.

Configuring DUO RADIUS Proxy Provider

DUO RADIUS Proxy acts as a proxy RADIUS server that forwards the incoming RADIUS authentication request to the external RADIUS server, waits for response from that server and then if the authentication is successful with the external RADIUS server, it initiates the second factor authentication on the user’s secondary device.

Before you begin

- The ACI fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.

Step 1  In the APIC, configure the DUO RADIUS proxy provider.

a) On the menu bar, choose Admin > Authentication > DUO > Radius tab.
   b) Click the Actions icon > Create DUO Radius Proxy Provider from the menu.
   c) In the displayed pop-up window, specify the following:
• The hostname or IP address of the DUO RADIUS proxy provider.
• The description of the DUO RADIUS proxy provider.
• The authentication port number for the RADIUS service. The range is from 1 to 65535. The default is 1812.
• Key is the secret text string shared between the device and a specific DUO RADIUS proxy server.
• The timeout for communication with a DUO RADIUS proxy provider server. The range is from 1 to 60 seconds. The default is 30 seconds. If set to 0, the AAA provider timeout is used.
• The number of retries when contacting the RADIUS endpoint. The range is from 0 to 5 retries. The default is 1.
• The out-of-band management EPG used to communicate with the DUO RADIUS service.
• Enabling Server Monitoring allows the connectivity of the remote AAA servers to be tested.

Step 2  Click Submit.

Configuring DUO LDAP Proxy Provider

Create DUO LDAP proxy providers, DUO LDAP proxy provider groups, and configure the default DUO LDAP proxy authentication settings. Create the global security management properties for DUO LDAP endpoints and DUO LDAP proxy provider groups.

Before you begin
• The ACI fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.

Step 1  In the APIC, configure the DUO LDAP proxy provider.

a) On the menu bar, choose Admin > Authentication > DUO > LDAP > Providers tab.
b) Click the Actions icon > Create DUO LDAP Proxy Provider.
c) In the displayed pop-up window, specify the following:

• The hostname or IP address of the DUO LDAP proxy provider.
• The description of the DUO LDAP proxy provider.
• The service port number for the LDAP service. The range is from 1 to 65535. The default is 389.
• The Bind DN is the string that the APIC uses to log in to the DUO LDAP proxy server.
• The DUO LDAP base DN to be used in a user search.
• The password for the DUO LDAP database account specified in the Bind DN field.
• The timeout for communication with an DUO LDAP proxy provider server. The range is from 0 to 60 seconds. The default is 30 seconds. If set to 0, the AAA provider timeout is used.
• The number of retries when contacting the DUO LDAP proxy endpoint.
• Enables an SSL connection with the DUO LDAP proxy provider. The default is disabled.

• The attribute to be downloaded that contains user role and domain information.
  1. For DUO LDAP proxy provider server configurations with a Cisco AVPair, enter CiscoAVPair.
  2. For DUO LDAP proxy provider server configurations with a DUO LDAP proxy group map, enter memberOf.

Note For DUO LDAP configurations, best practice is to use AciCiscoAVPair as the attribute. This avoids problems related to the limitation DUO LDAP proxy servers not allowing overlapping object identifiers (OID); that is, the ciscoAVPair OID is already in use.

• The out-of-band management EPG used to communicate with the DUO LDAP proxy server.

• The DUO LDAP proxy provider server SSL Certificate validation level. The value can be:
  1. Permissive—A debugging knob to help diagnose DUO LDAP SSL Certificate issues.
  2. Strict—A level that should be used when in production.

• The DUO LDAP filter to be used in a user search.

• Enabling Server Monitoring allows the connectivity of the remote AAA servers to be tested.

Step 2 Click Submit.

Configuring DUO Proxy Using the REST API

The URL for all XML data:
POST https://{{apichost}}/api/node/mo/.xml

The following are example configurations for Duo with proxy RADIUS and proxy LDAP servers.

RADIUS Configuration
• Add DUO RADIUS proxy provider:
  <aaaRadiusProvider authPort="1812" authProtocol="pap" descr="duoradius"
   dn="uni/userext/duoext/radiusprovider-duoproxy.host.com"
   monitorServer="disabled" monitoringUser=""
   name="duoproxy.host.com" key="mypasswd"
   retries="1" status="created" timeout="30"/>

• Add Login Domain with DUO RADIUS proxy provider:
  <aaaUserEp descr="" dn="uni/userext" name="" pwdStrengthCheck="yes" rn=""
    status="modified">
    <aaaLoginDomain descr="" name="DuoRadDom" rn="logindomain-DuoRadDom" status="created">
      <aaaDomainAuth descr="" name="" providerGroup="DuoRadDom" realm="radius"
        realmSubType="duo" rn="domainauth" status="created"/>
    </aaaLoginDomain>
    <aaaDuoEp descr="" name="" retries="1" rn="duoext" status="modified" timeout="40"/>
  </aaaUserEp>

  <aaaDuoProviderGroup name="DuoRadDom" providerType="radius"
    secFacAuthMethods="auto,push"
    rn="duoprovidergroup-DuoRadDom" status="created">
    <aaaProviderRef descr="duoradproxy" name="duoproxy.host.com" order="1"/>
LDAP Configuration

- Add DUO LDAP proxy provider with the attribute Cisco AVPair:

```xml
<aaaLdapProvider name="duoext.ldapproxy-host.com"
SSLValidationLevel="strict"
attribute="CiscoAvPair"
basedn="CN=Users,DC=host,DC=com"
dn="uni/userext/duoext/ldapprovider-duoext.ldapproxy-host.com" enableSSL="no"
filter="cn=$userid"
monitorServer="disabled"
port="389" retries="1"
rootdn="CN=admin,CN=Users,DC=host,DC=com"
timeout="60"
key="12345"/>
```

- Add DUO LDAP proxy provider with the attribute memberOf:

```xml
<aaaLdapProvider name="duoext.ldapproxy-host.com"
SSLValidationLevel="strict"
attribute="memberOf"
basedn="CN=Users,DC=host,DC=com"
dn="uni/userext/duoext/ldapprovider-duoext.ldapproxy-host.com" enableSSL="no"
filter="cn=$userid"
monitorServer="disabled"
port="389" retries="1"
rootdn="CN=admin,CN=Users,DC=host,DC=com"
timeout="60"
key="12345"/>
```

- Add LDAP GroupMap rule:

```xml
<aaaLdapGroupMapRule name="DuoEmpRule" dn="uni/userext/duoext/ldapgroupmaprule-DuoEmpRule"
groupdn="CN=Employee,CN=Users,DC=host,DC=com" status="created">
<aaaUserDomain name="all" rn="userdomain-all" status="created,modified">
<aaaUserRole name="fabric-admin" privType="writePriv" rn="role-fabric-admin"
status="created,modified"/>
</aaaUserDomain>
</aaaLdapGroupMapRule>
```

- Add LDAP GroupMap:

```xml
<aaaLdapGroupMap name="DuoEmpGroupMap" dn="uni/userext/duoext/ldapgroupmap-DuoEmpGroupMap"
status="created">
<aaaLdapGroupMapRuleRef name="DuoEmpRule" rn="ldapgroupmapruleref-DuoEmpRule"
status="created"/>
</aaaLdapGroupMap>
```

- Add DUO LDAP Login Domain using GroupMap:

```xml
<polUni>
<aaaUserEp dn="uni/userext" name="" pwdStrengthCheck="yes" rn="" status="modified">
<aaaDuoEp attribute="memberOf" basedn="" filter="sAMAccountName=$userid"
name="" retries="1" rn="duoext" status="modified" timeout="30">
<aaaDuoProviderGroup name="DuoLdapDom" authChoice="LdapGroupMap"
providerType="ldap"
RN="duo provider group-DuoLdapDom" ldapGroupMapRef="DuoEmpGroupMap"
secFacAuthMethods="auto,push" status="modified">
<aaaProviderRef name="duoext.ldapproxy-host.com" order="1"/>
```
RSA Secure ID Authentication

RSA Authentication provides a token which can be used in combination with a fixed key in many different ways to create the password. It supports both hardware and software tokens.

Configuring APIC for RSA Access Using the GUI

Before you begin

- The ACI fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.
- The RSA server host name or IP address, port, authorization protocol, and key are available.
- The APIC management endpoint group is available.

Step 1

In the APIC, create the RSA provider.
a) On the menu bar, choose Admin > Authentication > RSA tab.
b) Click the Actions icon > Create RSA Provider.
c) In the displayed pop-up window, specify the RSA host name (or IP address), port, protocol, and management endpoint group.

**Step 2**
Create the login domain for RSA.

**Step 3**
Create the Login Domain for RSA.

For the detailed procedure, see Creating Login Domain Using the GUI, on page 56.

---

**What to do next**

This completes the APIC RSA configuration steps. Next, configure the RSA server.

## SAML Authentication

SAML is an XML-based open standard data format that enables administrators to access a defined set of Cisco collaboration applications seamlessly after signing into one of those applications. SAML describes the exchange of security related information between trusted business partners. It is an authentication protocol used by service providers to authenticate a user. SAML enables exchange of security authentication information between an Identity Provider (IdP) and a service provider.

SAML SSO uses the SAML 2.0 protocol to offer cross-domain and cross-product single sign-on for Cisco collaboration solutions. SAML 2.0 enables SSO across Cisco applications and enables federation between Cisco applications and an IdP. SAML 2.0 allows Cisco administrative users to access secure web domains to exchange user authentication and authorization data, between an IdP and a Service Provider while maintaining high security levels. The feature provides secure mechanisms to use common credentials and relevant information across various applications.

The authorization for SAML SSO Admin access is based on Role-Based Access Control (RBAC) configured locally on Cisco collaboration applications.

SAML SSO establishes a Circle of Trust (CoT) by exchanging metadata and certificates as part of the provisioning process between the IdP and the Service Provider. The Service Provider trusts the IdP’s user information to provide access to the various services or applications.

---

**Note**

Service providers are no longer involved in authentication. SAML 2.0 delegates authentication away from the service providers and to the IdPs.

The client authenticates against the IdP, and the IdP grants an Assertion to the client. The client presents the Assertion to the Service Provider. Since there is a CoT established, the Service Provider trusts the Assertion and grants access to the client.

Enabling SAML SSO results in several advantages:

- It reduces password fatigue by removing the need for entering different user name and password combinations.
• It transfers the authentication from your system that hosts the applications to a third party system. Using SAML SSO, you can create a circle of trust between an IdP and a service provider. The service provider trusts and relies on the IdP to authenticate the users.

• It protects and secures authentication information. It provides encryption functions to protect authentication information passed between the IdP, service provider, and user. SAML SSO can also hide authentication messages passed between the IdP and the service provider from any external user.

• It improves productivity because you spend less time re-entering credentials for the same identity.

• It reduces costs as fewer help desk calls are made for password reset, thereby leading to more savings.

**Basic Elements of SAML**

• Client (the user’s client): This is a browser-based client or a client that can leverage a browser instance for authentication. For example, a system administrator’s browser.

• Service provider: This is the application or service that the client is trying to access.

• An Identity Provider (IdP) server: This is the entity that authenticates user credentials and issues SAML Assertions.

• Lightweight Directory Access Protocol (LDAP) users: These users are integrated with an LDAP directory, for example Microsoft Active Directory or OpenLDAP. Non-LDAP users reside locally on the Unified Communications server.

• SAML Assertion: It consists of pieces of security information that are transferred from IdPs to the service provider for user authentication. An assertion is an XML document that contains trusted statements about a subject including, for example, a username and privileges. SAML assertions are usually digitally signed to ensure their authenticity.

• SAML Request: This is an authentication request that is generated by a Unified Communications application. To authenticate the LDAP user, Unified Communications application delegates an authentication request to the IdP.

• Circle of Trust (CoT): It consists of the various service providers that share and authenticate against one IdP in common.

• Metadata: This is an XML file generated by an ACI application as well as an IdP. The exchange of SAML metadata builds a trust relationship between the IdP and the service provider.

• Assertion Consumer Service (ACS) URL: This URL instructs the IdPs where to post assertions. The ACS URL tells the IdP to post the final SAML response to a particular URL.

---

**Note**

All in-scope services requiring authentication use SAML 2.0 as the SSO mechanism.
### Supported IdPs and SAML Components

#### Supported IdPs

Identity Provider (IdP) is an authentication module that creates, maintains, and manages identity information for users, systems, or services and also provides authentication to other applications and service providers within a distributed network.

With SAML SSO, IdPs provide authentication options based on the user role or log in options for each of the Cisco collaboration applications. The IdPs store and validate the user credentials and generate a SAML response that allows the user to access the service provider protected resources.

Note: You must be familiar with your IdP service, and ensure that it is currently installed and operational.

The APIC SAML SSO feature has been tested with following IdPs:


#### SAML Components

A SAML SSO solution is based on a particular combination of assertions, protocols, bindings, and profiles. The various assertions are exchanged among applications and sites using the protocols and bindings, and those assertions authenticate the users among sites. The SAML components are as follows:

- **SAML Assertion**: It defines the structure and content of the information that is transferred from IdPs to service providers. It consists of packets of security information and contains statements that service providers use for various levels of access-control decisions. SAML SSO provides the following types of statements:
  - Authentication statements: These statements assert to the service provider about the method of authentication that occurs between the IdP and the browser at a particular time.
  - Attribute statements: These statements assert about certain attributes (name-value pairs) that are associated with the user. The attribute assertions contain specific information about the user. The service providers use attributes to make access-control decisions.

- **SAML protocol**: A SAML protocol defines how the SAML requests for and gets assertions. This protocol is responsible for the SAML request and response elements that consist of certain SAML elements or assertions. The SAML 2.0 contains the following protocols:
  - Assertion Query and Request Protocol
  - Authentication Request Protocol

- **SAML binding**: A SAML binding specifies the mapping of SAML assertion and/or protocol message exchanges with standard messaging formats or communication protocols like SOAP exchanges. ACI supports the following SAML 2.0 bindings:
• HTTP Redirect (GET) Binding
• HTTP POST Binding

• SAML profile: A SAML profile provides a detailed description of the combination of SAML assertions, protocols, and bindings to support well-defined use cases.

NTP Setup
In SAML SSO, Network Time Protocol (NTP) enables clock synchronization between the APIC and IdP. SAML is a time sensitive protocol and the IdP determines the time-based validity of a SAML assertion. If the IdP and the APIC clocks are not synchronized, the assertion becomes invalid and stops the SAML SSO feature. The maximum allowed time difference between the IdP and the APIC is 3 seconds.

For SAML SSO to work, you must install the correct NTP setup and make sure that the time difference between the IdP and the APIC does not exceed 3 seconds. If IdP and APIC clocks are not synchronized, the user will be redirected back to the APIC’s login page even after successful authentication on IdP.

DNS Setup
Domain Name System (DNS) enables the mapping of host names and network services to IP addresses within a network or networks. DNS server(s) deployed within a network provide a database that maps network services to hostnames and, in turn, hostnames to IP addresses. Devices on the network can query the DNS server and receive IP addresses for other devices in the network, thereby facilitating communication between network devices.

In summary, APIC and Idp should be able to resolve each other’s fully qualified domain names to IP addresses and should be resolvable by the client.

Certificate Authority
Cisco recommends using server certificates that are signed by one of the following types of Certificate Authority (CA):

• Public CA—A third-party company verifies the server identity and issues a trusted certificate.
• Private CA—You create and manage a local CA and issue trusted certificates.

The signing process varies for each product and can vary between server versions. It is beyond the scope of this document to provide detailed steps for every version of each server. Refer the appropriate server documentation for detailed instructions on how to get certificates signed by a CA.

If you get server certificates signed by a public CA, the public CA should already have a root certificate present in the trust store on the client computer. In this case, you do not need to import root certificates on the client computers. You should import root certificates if the certificates are signed by a CA that does not already exist in the trust store, such as a private CA. In SAML SSO, the IdP and service providers must have CA signed certificates with the correct domains in the CN or SAN. If the correct CA certificates are not validated, the browser issues a pop up warning.

If the APIC’s trust store does not include the root certificate of the IdP, a new certificate authority should be created. This Certificate Authority should be used later while configuring the SAML Provider on APIC.
Configuring APIC for SAML Access

Note
SAML based Authentication is only for APIC GUI and not for CLI/REST. Also, not applicable for LEAF Switches and SPINEs. SAML configuration cannot be done via APIC CLI.

Before you begin

• The Cisco Application Centric Infrastructure (ACI) fabric is installed, Application Policy Infrastructure Controllers (APICs) are online, and the APIC cluster is formed and healthy.

• The SAML server host name or IP address, and the IdP’s metadata URL are available.

• The APIC management endpoint group is available.

• Set up the following:

  • Configuring a DNS Service Policy to Connect with DNS Providers Using the Advanced GUI: https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/3-x/basic_config/b_APIC_Basic_Config_Guide_3_x/b_APIC_Basic_Config_Guide_3_x_chapter_011.html#task_750E077676704BFBB5B0FE74628D821E.

  • Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI: https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/3-x/basic_config/b_APIC_Basic_Config_Guide_3_x/b_APIC_Basic_Config_Guide_3_x_chapter_011.html#task_F037F1B75FF74E1B4A4F3C75A16C0FA.

Step 1

In the APIC, create the SAML Provider.

a) On the menu bar, choose Admin > Authentication > SAML > Providers tab.

b) Click the Actions icon > Create SAML Provider.

c) Specify the SAML host name (or IP address), and description (optional).

d) Select the Identity Provider.

e) Specify the Entity ID for the SAML-based service.

f) Enter the Metadata URL provided by IDP.

  • In case of AD FS, IdP Metadata URL is of the format https://<FQDN of ADFS>/FederationMetadata/2007-06/FederationMetadata.xml.

  • In case of Okta, to get the IdP Metadata URL, copy the link for Identity Provider Metadata in the Sign On section of the corresponding SAML Application from the Okta server.

g) Configure the HTTPS Proxy if it is needed to access the IdP metadata URL.

h) Select the Certificate Authority if IdP is signed by a Private CA.

i) Select the Timeout (in seconds) value.

j) Select the Signature Algorithm for Requests authentication type for the user requests from the drop-down list.
Configuring SAML in APIC Using REST API

HTTP POST to https://{{apichost}}/api/node/mo/.xml
<aaaSamlProvider dn="uni/userext/samlext/samlprovider-cisco729224.okta.com"
entityId="http://www.okta.com/exk7j6qjvkgk8hwy0696"
guiBannerMessage="" httpsProxy="proxy.server.com" idP="okta"
metadataUrl="https://mycompany.okta.com/app/exk7j6qjvkgk8hwy0696/sso/saml/metadata"
monitorServer="disabled" name="mycompany.okta.com" retries="1"
sigAlg="SIG_RSA_SHA256" status="created,modified" timeout="5" tp="oktacert"
wantAssertionsEncrypted="no" wantAssertionsSigned="yes" wantRequestsSigned="yes"
wantResponseSigned="yes"/>

Setting Up a SAML Application in Okta

To configure SAML in Okta, log in to your Okta organization as a user with administrative privileges.

If you don’t have an Okta organization, you can create a free Okta at:
https://www.okta.com/start-with-okta/

Step 1
In Okta, click on the blue Admin button.

Step 2
Click on the Add Applications shortcut.

Step 3
Click on the green Create New App button, and perform the following actions:

a) In the Create New App dialog box, select the SAML 2.0 option, then click the green Create button.
b) In the General Settings box, enter Example SAML Application in the App name field, then click the green Next button.
c) In the Configure SAML section A SAML Settings field, paste your SAML URL into the Single sign on URL, Recipient URL, and Audience Restriction fields.

The fields should be of the below format:

- https://<APIC_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name>
- Use Requestable SSO URLs to configure cluster of APICs:
  - https://<APIC1_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name>
  - https://<APIC2_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name>
Setting Up a Relying Party Trust in AD FS

Add relying party trust in AD FS Management Console:

**Step 1**

Add relying party trust:

a) Login to AD FS Management Console on your AD FS server, Navigate to ADFS > Trust Relationships > Relying Party Trusts and right-click on Add Relying Party Trust and click Start.

b) Choose Enter data about the relying party manually or Import data about relying party from a file (skip the steps d, e, f and g) by importing the metadata file generated using the Download SAML Metadata option available on the corresponding login domain setup in APIC.

c) Enter your preferred Display Name for the relying party trust and click Next.

d) Choose AD FS Profile and click Next.

e) Click Next again.

f) Select Enable support for the SAML 2.0 Web SSO Protocol and enter Relying party SAML2.0 SSO service UR as https://<APIC_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name> and click Next.

g) Enter the Relying party trust identifier – https://<APIC_hostname>/api/aaaLoginSSO.json

h) Choose I do not want to configure multi-factor authentication settings for this relying party trust at this time and click Next.
i) Choose **Permit all users to access this relying party** and click **Next**.

j) Select **Open the Edit Claim rules** dialog for this relying party trust when the wizard closes and click **Close**.

**Step 2** Add the following **Claim** rules:

a) Send LDAP Attributes as claims:

   • In the **Edit Claim Rules** window, click **Add Rule**.
   • Select the **Claim Rule Template** as **Send LDAP attributes as Claims** and click **Next**.
   • Enter a **Rule_Name** and select **Active Directory** as the Attribute Store.
   • Select the reserved User Attribute for storing CiscoAvpair (For Ex: **Department**) as LDAP attribute type and map it to Outgoing Claim Manually Type as **CiscoAvpair**.
   • Select **E-Mail-Addresses** on LDAP Attribute and map it to the Outgoing Claim Type **E-mail Address** and click **Finish**.

b) Transform an Incoming Claim:

   • Click **Add Rule again** in the **Edit Claim Rules** window, and select **Transform an Incoming Claim as Claim Rule Template** and click **Next**.
   • Select **E-Mail Address** as the Incoming claim type.
   • Select **Name ID** as Outgoing claim type.
   • Select **Transient Identifier** as Outgoing name ID format.

**Step 3** To add a cluster of APICs, one can either setup multiple **Relying Party Trusts** or setup single **Relying Party Trust** and add multiple **Relying Party Identifiers** and **SAML Assertion Consumer Endpoints** to it.

a) Adding other APICs in a cluster with same relying party trusts created above.

1. Navigate to **ADFS Management Console > ADFS > Trust Relationships > Relying Party Trusts** and right-click on **CiscoAPIC > Properties**.
2. Click on Identifiers tab and add other APICs in cluster as: https://<APIC2_hostname>/api/aaaLoginSSO.json, https://<APIC3_hostname>/api/aaaLoginSSO.json
3. Click on **Endpoints** tab and Other two APICs by clicking on **Add SAML. Add SAML Post Binding**, Index as 1 and Enter trusted URL as: https://<APIC2_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name>, and **Add SAML Post Binding** as: https://<APIC3_hostname>/api/aaaLoginSSO.json?name=<Login_domain_name>.

**Step 4** Message and Assertion need to be signed in ADFS from powershell in ADFS server. For Signing Message and Assertion in ADFS Server:

a) Open Windows Powershell (should be run as Administrator) and execute the below command:

b) Set-AdfsRelyingPartyTrust -TargetName **RelyingpartytrustnameOfCiscoAPIC** -SamlResponseSignature **MessageAndAssertion**.
OAuth 2 Authorization

Open Authorization (OAuth) 2.0 is an open-standard authorization protocol. OAuth 2.0 allows you to access an application (Service Provider or SP) that is trusted or approved by an Identity Provider (IdP). OAuth 2.0 uses authorization tokens to provide identity and authorization claims to the consumer application.

For more details about OAuth 2.0, see RFC 6749.

OAuth 2.0 has been designed to support a variety of different client types, which consume REST APIs from service provider applications. This includes both browser applications accessing web services within the enterprise, and applications running on customer mobile devices. OAuth protocol defines multiple mechanisms for getting an authorization token where different mechanisms acknowledge the client type constraints. A simple OAuth example is - when you are trying to login to a website, say “https://service.example.com”, you could be asked to identify yourself using a social media platform login or your email login. If you are logged in to these identity providers, you need not login over and over again. You are authorized (using OAuth) to login to “https://service.example.com”, as soon as you choose one of the options.

OAuth 2.0 Authentication in Cisco ACI

Type of OAuth used in ACI is the authorization grant flow. In this method, Cisco APIC first requests an authorization grant by an authenticated user, and APIC then uses the authorization grant to obtain an access token that has the authorization information. The flow is depicted in the following diagram.
• Resource owner(user)— data owner
• Web application— APIC (or Cloud APIC)
• Authorization server (AS) or Identity Provider (IdP) server— that authenticates and authorizes the user
• Resource Server— APIC

When the authorization server provides both, ID Token and access token, ID token is preferred over access token for username and CiscoAvpair claims. In case CiscoAvpair is not available in the ID token, both the username and CiscoAvpair claims are taken from the access token, if available. APIC does not combine username and CiscoAvpair claims from both the tokens i.e. it will not consider username from ID token and CiscoAvpair from access token or vice versa. If none of the tokens have CiscoAvpair claim, username from ID token is taken and tried for default authorization if configured.

Configuring OAuth in Cisco APIC

Use this procedure to configure OAuth in Cisco APIC.

Prerequisites
Perform the following actions in Okta (or any other authorization server):
• Create an OAuth application for APIC. Note the client ID and secret.
• Ensure that authorization policies are setup to allow access to APIC.
• Note the authorize and token endpoints that would be used by ACI.
• Assign users to the application who would be using APIC.
• Ensure that the CiscoAvpair is set correctly for the users for authorization in ACI.
• Save the certificate chain for the Token URL.

For details about configuring OAuth 2.0 applications on Identity Providers, see relevant documentation.

Creating a Provider

Use this procedure to create an OAuth 2 provider.

| Step 1 | On the menu bar, choose Admin > Authentication > OAuth 2 tab. |
| Step 2 | Click the Actions icon > Create OAuth 2 Provider. |
| Step 3 | In the Create OAuth 2 Provider window that is displayed, enter the following details:  
• The host name or IP address for the OAuth 2 provider.  
• Description for the provider.  
• The contents of the GUI informational banner. The information is displayed before the user is redirected to the Identity Provider login page for authentication. On the GUI Redirect Banner, you must acknowledge the terms and conditions shown in the banner and continue to log on for further access. |
• Client identifier of the APIC application on IdP.
• Client secret for the APIC application.
• Confirm the client secret for the APIC application.
• Username attribute in the token. Example: email, sub.
• List of OAuth 2 scopes. Example: "openid profile".
• IdP endpoint authorization URL.
• IdP endpoint token URL.
• The proxy HTTPS server configured here is local to this MO for accessing the metadata url and will not be configured at global level.
• Certificate authority used to contact token and authorization URLs.
  Select a Certificate Authority from the drop-down list. If you do not have one, select Creating a Certificate Authority.
• Timeout in seconds. The length of time the system should spend trying to contact the OAuth 2 endpoint before it times out. The range is from 5 to 30. The default is 5.
• The required management EPG. Example: inband, out-of-band.

**Step 4**
Click **Submit**.

---

**What to do next**
Link the created provider with a login domain. See **Creating Login Domain Using the GUI, on page 56**.

---

**Creating a Certificate Authority**
Use this procedure for creating certificate authorities using the certificate chain used for the token URL.

---

**Step 1**
On the menu bar, choose **Admin** > **Security** > **Public Key Management** > **Certificate Authorities**.

**Step 2**
Click the **Actions** icon > **Create Certificate Authority**.
A certificate authority can also be created while creating an OAuth 2 provider.

**Step 3**
Enter **Name**, **Description**, and **Certificate Chain**.
For obtaining the **Certificate Chain**, follow the procedure shown below.

a) Select the Token URL from Okta/authorization server.
b) In a browser window, enter the Token URL.
c) Right-click, and select **More Information**.
d) From the displayed pop-up window, click the **New Certificate** button.
e) The Certificate screen is displayed. Download the **PEM (chain)** certificate.
f) Select a suitable program to open the file.
g) Select the required certificate from the displayed chain of certificates.

**Note**
A maximum of eight certificate authorities can be created.
Step 4  Click Save.

User Login using OAuth

If you try to login to APIC using the created login domain for OAuth, you will be redirected to the login page of the authorization server (if not authenticated already). After the user authenticates, an authorization code is sent from the authorization server to APIC via the web browser. APIC will then exchange this code for an access token from IdP using the client ID and secret for the APIC application. Access token has the username and authorization details in the CiscoAvpair. You will then be logged-in to APIC. On APIC, the logged in user is indicated accordingly.

Configuring OAuth in APIC Using REST API

Use this procedure to configure OAuth in APIC using REST API.

Step 1  Create OAuth Provider.

```xml
<aaaOauthProvider name="app.idpserver1.com" dn="uni/userext/oauthext/oauthprovider-app.idpserver1.com"
 status="created,modified"
 httpsProxy="https://proxy.foo.com:8080" retries="1" timeout="5"
 usernameAttr="sub"
 scope="openid"
 authzEndpoint="https://app.idpserver1.com/oauth2/abc123/v1/authorize"
 tokenEndpoint="https://app.idpserver1.com/oauth2/abc123/v1/token"
 clientId="clientId1"
 secret="secret1"
 tp="idpcertchain" />
```

Step 2  Create OAuth Login Domain.

```xml
<aaaUserEp dn="uni/userext" status="created,modified">
 <aaaPingEp dn="uni/userext/pingext" pingCheck="false" retries="1" status="modified" timeout="5"/>
 <aaaLoginDomain dn="uni/userext/logindomain-TOAUTH" name="TOAUTH" status="created,modified">
 <aaaDomainAuth dn="uni/userext/logindomain-TOAUTH/domainauth" providerGroup="TOAUTH" realm="oauth" realmSubType="default" status="created,modified"/>
 </aaaLoginDomain>
 <aaaOauthEp rn="oauthext" status="modified">
 <aaaOauthProviderGroup dn="uni/userext/oauthext/oauthprovidergroup-TOAUTH" name="TOAUTH" status="created,modified">
 <aaaProviderRef dn="uni/userext/oauthext/oauthprovidergroup-TOAUTH/providerref-app.idpserver1.com" name="app.idpserver1.com" order="1" status="created,modified"/>
 </aaaOauthProviderGroup>
 </aaaOauthEp>
</aaaUserEp>
```
802.1X

This chapter contains the following sections:

- 802.1X Overview, on page 85
- Host Support, on page 85
- Authentication Modes, on page 86
- Guidelines and Limitations, on page 86
- Configuration Overview, on page 87
- Configuring 802.1X Node Authentication Using NX-OS Style CLI, on page 90
- Configuring 802.1X Port Authentication Using the REST API, on page 90
- Configuring 802.1X Node Authentication Using the REST API, on page 91

802.1X Overview

802.1X defines a client-server based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a Cisco NX-OS device port.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

The RADIUS distributed client/server system allows you to secure networks against unauthorized access. In the Cisco ACI implementation, RADIUS clients run on the ToRs and send authentication and accounting requests to a central RADIUS server that contains all user authentication and network service access information.

Host Support

The 802.1X feature can restrict traffic on a port with the following modes:

- **Single-host Mode**—Allows traffic from only one endpoint device on the 802.1X port. Once the endpoint device is authenticated, the APIC puts the port in the authorized state. When the endpoint device leaves the port, the APIC put the port back into the unauthorized state. A security violation in 802.1X is defined as a detection of frames sourced from any MAC address other than the single MAC address authorized as a result of successful authentication. In this case, the interface on which this security association violation is detected (EAPOL frame from the other MAC address) will be disabled. Single host mode is
applicable only for host-to-switch topology and when a single host is connected to the Layer 2 (Ethernet access port) or Layer 3 port (routed port) of the APIC.

- **Multi-host Mode**—Allows multiple hosts per port but only the first one gets authenticated. The port is moved to the authorized state after the successful authorization of the first host. Subsequent hosts are not required to be authorized to gain network access once the port is in the authorized state. If the port becomes unauthorized when reauthentication fails or an EAPOL logoff message is received, all attached hosts are denied access to the network. The capability of the interface to shut down upon security association violation is disabled in multiple host mode. This mode is applicable for both switch-to-switch and host-to-switch topologies.

- **Multi-Auth Mode**—Allows multiple hosts and all hosts are authenticated separately.

  **Note**
  Each host must have the same EPG/VLAN information.

- **Multi-Domain Mode**—For separate data and voice domain. For use with IP-Phones.

### Authentication Modes

ACI 802.1X supports the following authentication modes:

- **EAP**—The authenticator then sends an EAP-request/identity frame to the supplicant to request its identity (typically, the authenticator sends an initial identity/request frame followed by one or more requests for authentication information). When the supplicant receives the frame, it responds with an EAP-response/identity frame.

- **MAB**—MAC Authentication Bypass (MAB) is supported as the fallback authentication mode. MAB enables port-based access control using the MAC address of the endpoint. A MAB-enabled port can be dynamically enabled or disabled based on the MAC address of the device that connects to it. Prior to MAB, the endpoint's identity is unknown and all traffic is blocked. The switch examines a single packet to learn and authenticate the source MAC address. After MAB succeeds, the endpoint's identity is known and all traffic from that endpoint is allowed. The switch performs source MAC address filtering to help ensure that only the MAB-authenticated endpoint is allowed to send traffic.

### Guidelines and Limitations

802.1X port-based authentication has the following configuration guidelines and limitations:

- The Cisco ACI supports 802.1X authentication only on physical ports.

- The Cisco ACI does not support 802.1X authentication on port channels or subinterfaces.

- The Cisco ACI supports 802.1X authentication on member ports of a port channel but not on the port channel itself.

- Member ports with and without 802.1X configuration can coexist in a port channel. However, you must ensure the identical 802.1X configuration on all the member ports in order for channeling to operate with 802.1X.
• When you enable 802.1X authentication, supplicants are authenticated before any other Layer 2 or Layer 3 features are enabled on an Ethernet interface.

• 802.1X is supported only on a leaf chassis that is EX or FX type.

• 802.1X is only supported Fabric Access Ports. 802.1X is not supported on Port-Channels, or Virtual-Port-Channels.

• IPv6 is not supported for dot1x clients in the 3.2(1) release.

• While downgrading to earlier releases especially in cases where certain interface config (host mode and auth type) is unsupported in that release, dot1x authentication type defaults to none. Host-mode would need to be manually re-configured to either single host/multi host depending on whatever is desired. This is to ensure that the user configures only the supported modes/auth-types in that release and doesn’t run into unsupported scenarios.

• Multi-Auth supports 1 voice client and multiple data clients (all belonging to same data vlan/epg).

• Fail-epg/vlan under 802.1X node authentication policy is a mandatory configuration.

• Multi-domain more than 1 voice and 1 data client puts the port in security disabled state.

• The following platforms are not supported for 802.1X:
  • N9K-C9396PX
  • N9K-M12PQ
  • N9K-C93128TX
  • N9K-M12PQ

Configuration Overview

The 802.1X and RADIUS processes are started only when enabled by APIC. Internally, this means dot1x process is started when 802.1X Inst MO is created and radius process is created when radius entity is created. Dot1x based authentication must be enabled on each interface for authenticating users connected on that interface otherwise the behavior is unchanged.

RADIUS server configuration is done separately from dot1x configuration. RADIUS configuration defines a list of RADIUS servers and a way to reach them. Dot1x configuration contains a reference to RADIUS group (or default group) to use for authentication.

Both 802.1X and RADIUS configuration must be done for successful authentication. Order of configuration is not important but if there is no RADIUS configuration then 802.1X authentication cannot be successful.

Configuring 802.1X Port Authentication Using the APIC GUI

Before you begin

Configure a RADIUS Provider policy.
## Configuring 802.1X Port Authentication Using the APIC GUI

**Before you begin**
Configure a RADIUS Provider policy.

### Step 1
On the menu bar, click Fabric > External Access Policies > Policies > Interface > 802.1X Port Authentication and perform the following actions:

a) Right click on **802.1X Port Authentication**, to open Create 802.1X Port Authentication Policy.

b) In the **Name** field, enter a name for the policy.

c) In the **Host Mode** field, select the policy mode. The modes are:

- **Multi Auth**—For allowing multiple hosts and all hosts are authenticated separately.

  **Note** Each host must have the same EPG/VLAN information.

- **Multi Domain**—For separate data and voice domain. For use with IP-Phones.

- **Multi Host**—For allowing multiple hosts per port but only the first one gets authenticated.

- **Single Host**—For allowing only one host per port.

d) If your device does not support 802.1X then in the **MAC Auth** field, select **EAP_FALLBACK_MAB** and click **Submit**.

### Step 2
To associate the **802.1X Port Authentication Policy** to a Fabric Access Group, navigate to Fabric > External Access Policies > Interfaces > Leaf Interfaces > Policy Groups > Leaf Access Port and perform the following actions:

a) Right click on **Leaf Access Port**, to open Create Leaf Access Port Policy Group.

b) In the **Name** field, enter a name for the policy.

c) In the **802.1X Port Authentication Policy** field, select the policy previously created and click **Submit**.

### Configuring 802.1X Node Authentication Using the APIC GUI

**Before you begin**
Configure a RADIUS Provider policy.

### Step 1
On the menu bar, click Fabric > External Access Policies > Policies > Switch > 802.1X Node Authentication and perform the following actions:

a) Right click on **802.1X Node Authentication**, to open Create 802.1X Node Authentication Policy.

b) In the **Name** field, enter a name for the policy.

c) In the **Failed-auth EPG** field, select the tenant, application profile, and EPG to deploy to in the case of failed authentication.

d) In the **Failed-auth VLAN** field, select the VLAN to deploy to in the case of failed authentication.

### Step 2
To associate the **802.1X Node Authentication Policy** to a Leaf Switch Policy Group, navigate to Fabric > External Access Policies > Switches > Leaf Switches > Policy Groups and perform the following actions:

a) Right click on **Policy Groups**, to open Create Access Switch Policy Group.

b) In the **Name** field, enter a name for the policy.

c) In the **802.1X Node Authentication Policy** field, select the policy previously created and click **Submit**.

### Step 3
To associate the **802.1X Node Authentication Policy** to a Leaf Interface Profile, navigate to Fabric > External Access Policies > Interfaces > Leaf Interfaces > Profiles and perform the following actions:
a) Right click on Profiles, to open Create Leaf Interface Profile.
b) In the Name field, enter a name for the policy.
c) Expand the Interface Selectors table, to open the Create Access Port Selector dialog box and enter the Name and Interface IDs information.
d) In the Interface Policy Group field, select the policy previously created and click OK and Submit.

---

**Configuring 802.1X Port Authentication Using the NX-OS Style CLI**

**Step 1** Configure a Policy Group:

Example:
```
apic1# configure
apic1(config)# template policy-group mypol
apic1(config)# switchport port-authentication mydot1x
apic1(config)# host-mode multi-host
apic1(config)# no shutdown
```

**Step 2** Configure the leaf interface profile:

Example:
```
apic1(config)# leaf-interface-profile myprofile
apic1(config)# leaf-interface-group mygroup
apic1(config)# interface ethernet 1/10-12
apic1(config)# policy-group mypol
```

**Step 3** Configure the leaf profile:

Example:
```
apic1(config)# leaf-profile myleafprofile
apic1(config)# leaf-group myleafgrp
apic1(config)# leaf 101
```

**Step 4** Apply an interface policy on the leaf switch profile:

Example:
```
apic1(config)# leaf-interface-profile myprofile
apic1(config)# exit
```
Configuring 802.1X Node Authentication Using NX-OS Style CLI

Step 1 Configure the radius authentication group:

Example:

```
apic1# configure
apic1(config)#
apic1(config)# aaa group server radius myradiusgrp
apic1(config-radius)#server 192.168.0.100 priority 1
apic1(config-radius)#exit
```

Step 2 Configure node level port authentication policy:

Example:

```
apic1(config)# policy-map type port-authentication mydot1x
apic1(config-pmap-port-authentication)#radius-provider-group myradiusgrp
apic1(config-pmap-port-authentication)#fail-auth-vlan 2001
apic1(config-pmap-port-authentication)#fail-auth-epg tenant tn1 application apl epg ep256
apic1(config)# exit
```

Step 3 Configure policy group and specify port authentication policy in the group:

Example:

```
apic1(config)# template leaf-policy-group lpg2
apic1(config-leaf-policy-group)# port-authentication mydot1x
apic1(config-leaf-policy-group)#exit
```

Step 4 Configure the leaf switch profile:

Example:

```
apic1(config)# leaf-profile mylp2
apic1(config-leaf-profile)# leaf-group mylg2
apic1(config-leaf-group)# leaf-policy-group lpg2
apic1(config-leaf-group)#exit
```

Configuring 802.1X Port Authentication Using the REST API

Create a 802.1X port authentication policy:

Example:

```
<polUni>
<infraInfra>
<12PortAuthPol adminSt="enabled" annotation="" descr="" dn="uni/infra/portauthpol-test21"
hostMode="multi-auth" name="test21" nameAlias="" ownerKey="" ownerTag="">
<12PortAuthCfgPol annotation="" macAuth="bypass" maxReauthReq="2" maxReq="2" reAuthPeriod="3600"
serverTimeout="30" suppTimeout="30" txPeriod="30"/>
</12PortAuthPol>
</infraInfra>
</polUni>
```
Configuring 802.1X Node Authentication Using the REST API

Configure a 802.1X node authentication policy:

Example:

```<polUni>
 <infraInfra>
 <l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"
failAuthEpg="tn-t2,ap-ap,egp-egp1" failAuthVlan="vlan-2066" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="" status="deleted">
 <l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp"/>
 </l2NodeAuthPol>
 </infraInfra>
</polUni>
```

Modify:

```<polUni>
 <infraInfra>
 <l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"
failAuthEpg="tn-t2,ap-ap,egp-egp1" failAuthVlan="vlan-2066" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="" status="deleted">
 <l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp"/>
 </l2NodeAuthPol>
 </infraInfra>
</polUni>
```

Delete:

```<polUni>
 <infraInfra>
 <l2NodeAuthPol annotation="" descr="" dn="uni/infra/nodeauthpol-802-node-2"
failAuthEpg="tn-t2,ap-ap,egp-egp1" failAuthVlan="vlan-2066" name="802-node-2" nameAlias="" ownerKey=""
ownerTag="" status="deleted">
 <l2RsAaaRadiusProviderGroup annotation="" tDn="uni/userext/radiusext/radiusprovidergroup-radius-grp" status="deleted"/>
 </l2NodeAuthPol>
 </infraInfra>
</polUni>
```
Configuring 802.1X Node Authentication Using the REST API

</12NodeAuthPol>
</infraInfra>
</polUni>
Port Security

This chapter contains the following sections:

- About Port Security and ACI, on page 93
- Port Security Guidelines and Restrictions, on page 93
- Port Security at Port Level, on page 94
- Port Security and Learning Behavior, on page 97
- Protect Mode, on page 97

About Port Security and ACI

The port security feature protects the ACI fabric from being flooded with unknown MAC addresses by limiting the number of MAC addresses learned per port. The port security feature support is available for physical ports, port channels, and virtual port channels.

Port Security Guidelines and Restrictions

The guidelines and restrictions are as follows:

- Port security is available per port.
- Port security is supported for physical ports, port channels, and virtual port channels (vPCs).
- Static and dynamic MAC addresses are supported.
- MAC address moves are supported from secured to unsecured ports and from unsecured ports to secured ports.
- The MAC address limit is enforced only on the MAC address and is not enforced on a MAC and IP address.
- Port security is not supported with the Fabric Extender (FEX).
Port Security at Port Level

In the APIC, the user can configure the port security on switch ports. Once the MAC limit has exceeded the maximum configured value on a port, all traffic from the exceeded MAC addresses is forwarded. The following attributes are supported:

- **Port Security Timeout**—The current supported range for the timeout value is from 60 to 3600 seconds.
- **Violation Action**—The violation action is available in protect mode. In the protect mode, MAC learning is disabled and MAC addresses are not added to the CAM table. Mac learning is re-enabled after the configured timeout value.
- **Maximum Endpoints**—The current supported range for the maximum endpoints configured value is from 0 to 12000. If the maximum endpoints value is 0, the port security policy is disabled on that port.

Configuring Port Security Using the APIC GUI

**Step 1**
In the menu bar, click **Fabric > Access Policies**, and in the **Navigation** pane, expand **Policies > Interface > Port Security**.

**Step 2**
Right-click **Port Security** and click **Create Port Security Policy**.

**Step 3**
In the **Create Port Security Policy** dialog box, perform the following actions:

a) In the **Name** field, enter a name for the policy.

b) In the **Port Security Timeout** field, choose the desired value for the timeout before re-enabling MAC learning on an interface.

c) In the **Maximum Endpoints** field, choose the desired value for the maximum number of endpoints that can be learned on an interface.

d) In the **Violation Action** field, the option available is **protect**. Click **Submit**. The port security policy is created.

**Step 4**
Note When configuring the interface for a leaf switch, the port security policy can be chosen from the list of available port security policies.

In the **Navigation** pane, click **Fabric > Inventory > Topology**, and navigate to the desired leaf switch. Choose the appropriate port to configure the interface, and from the port security policy drop-down list, choose the desired port security policy to associate.

This completes the configuration of port security on a port.

Configuring Port Security Using REST API

Configure the port security.

**Example:**

```xml
<polUni>
 <infraInfra>
 <l2PortSecurityPol name="testL2PortSecurityPol" maximum="10" violation="protect" timeout="300"/>
 </infraInfra>
</polUni>
```
### Configuring Port Security Using the CLI

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure</code></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td></td>
<td>apic1# configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>leaf node-id</code></td>
<td>Specifies the leaf to be configured.</td>
</tr>
<tr>
<td></td>
<td>apic1(config)# <code>leaf 101</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface type-or-range</code></td>
<td>Specifies an interface or a range of interfaces to be configured.</td>
</tr>
<tr>
<td></td>
<td>apic1(config-leaf)# <code>interface eth 1/2-4</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>[no] switchport port-security maximum number-of-addresses</code></td>
<td>Sets the maximum number of secure MAC addresses for the interface. The range is 0 to 12000 addresses. The default is 1 address.</td>
</tr>
<tr>
<td></td>
<td>apic1(config-leaf)# <code>switchport port-security maximum number-of-addresses 1</code></td>
<td></td>
</tr>
</tbody>
</table>
Port Security

### Configuring Port Security Using the CLI

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apic1(config-leaf-if)# switchport port-security maximum 1</code></td>
<td>Sets the action to be taken when a security violation is detected. The <code>protect</code> action drops packets with unknown source addresses until you remove a sufficient number of secure MAC addresses to drop below the maximum value.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td><code>[no] switchport port-security violation protect</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>apic1(config-leaf-if)# switchport port-security violation protect</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td><code>[no] switchport port-security timeout</code></td>
<td>Sets the timeout value for the interface. The range is from 60 to 3600. The default is 60 seconds.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>apic1(config-leaf-if)# switchport port-security timeout 300</code></td>
<td></td>
</tr>
</tbody>
</table>

### Example

This example shows how to configure port security on an Ethernet interface.

```
apic1# configure
apic1(config)# leaf 101
apic1(config-leaf)# interface eth 1/2
apic1(config-leaf-if)# switchport port-security maximum 10
apic1(config-leaf-if)# switchport port-security violation protect
apic1(config-leaf-if)# switchport port-security timeout 300
```

This example shows how to configure port security on a port channel.

```
apic1# configure
apic1(config)# leaf 101
apic1(config-leaf)# interface port-channel po2
apic1(config-leaf-if)# switchport port-security maximum 10
apic1(config-leaf-if)# switchport port-security violation protect
apic1(config-leaf-if)# switchport port-security timeout 300
```

This example shows how to configure port security on a virtual port channel (VPC).

```
apic1# configure
apic1(config)# vpc domain explicit 1 leaf 101 102
apic1(config-vpc)# exit
apic1(config)# template port-channel po4
apic1(config-if)# exit
apic1(config)# leaf 101-102
apic1(config-leaf)# interface eth 1/11-12
apic1(config-leaf-if)# interface port-channel po4 vpc
apic1(config-leaf-if)# exit
apic1(config-leaf)# exit
apic1(config)# vpc context leaf 101 102
apic1(config-vpc)# interface vpc po4
apic1(config-vpc-if)# switchport port-security maximum 10
apic1(config-vpc-if)# switchport port-security violation protect
apic1(config-leaf-if)# switchport port-security timeout 300
```
Port Security and Learning Behavior

For non-vPC ports or port channels, whenever a learn event comes for a new endpoint, a verification is made to see if a new learn is allowed. If the corresponding interface has a port security policy not configured or disabled, the endpoint learning behavior is unchanged with what is supported. If the policy is enabled and the limit is reached, the current supported action is as follows:

- Learn the endpoint and install it in the hardware with a drop action.
- Silently discard the learn.

If the limit is not reached, the endpoint is learned and a verification is made to see if the limit is reached because of this new endpoint. If the limit is reached, and the learn disable action is configured, learning will be disabled in the hardware on that interface (on the physical interface or on a port channel or vPC). If the limit is reached and the learn disable action is not configured, the endpoint will be installed in hardware with a drop action. Such endpoints are aged normally like any other endpoints.

When the limit is reached for the first time, the operational state of the port security policy object is updated to reflect it. A static rule is defined to raise a fault so that the user is alerted. A syslog is also raised when the limit is reached.

In case of vPC, when the MAC limit is reached, the peer leaf switch is also notified so learning can be disabled on the peer. As the vPC peer can be rebooted any time or vPC legs can become unoperational or restart, this state will be reconciled with the peer so vPC peers do not go out of sync with this state. If they get out of sync, there can be a situation where learning is enabled on one leg and disabled on the other leg.

By default, once the limit is reached and learning is disabled, it will be automatically re-enabled after the default timeout value of 60 seconds.

Protect Mode

The protect mode prevents further port security violations from occurring. Once the MAC limit exceeds the maximum configured value on a port, all traffic from excess MAC addresses will be dropped and further learning is disabled.
Port Security

Protect Mode
CHAPTER 8

First Hop Security

This chapter contains the following sections:

• About First Hop Security, on page 99
• ACI FHS Deployment, on page 100
• Guidelines and Limitations, on page 100
• Configuring FHS Using the APIC GUI, on page 101
• Configuring FHS Using the NX-OS CLI, on page 101
• FHS Switch iBASH Commands, on page 107
• Configuring FHS in APIC Using REST API, on page 112

About First Hop Security

First-Hop Security (FHS) features enable a better IPv4 and IPv6 link security and management over the layer 2 links. In a service provider environment, these features closely control address assignment and derived operations, such as Duplicate Address Detection (DAD) and Address Resolution (AR).

The following supported FHS features secure the protocols and help build a secure endpoint database on the fabric leaf switches, that are used to mitigate security threats such as MIM attacks and IP thefts:

• ARP Inspection—allows a network administrator to intercept, log, and discard ARP packets with invalid MAC address to IP address bindings.

• ND Inspection—learns and secures bindings for stateless autoconfiguration addresses in Layer 2 neighbor tables.

• DHCP Inspection—validates DHCP messages received from untrusted sources and filters out invalid messages.

• RA Guard—allows the network administrator to block or reject unwanted or rogue router advertisement (RA) guard messages.

• IPv4 and IPv6 Source Guard—blocks any data traffic from an unknown source.

• Trust Control—a trusted source is a device that is under your administrative control. These devices include the switches, routers, and servers in the Fabric. Any device beyond the firewall or outside the network is an untrusted source. Generally, host ports are treated as untrusted sources.

FHS features provide the following security measures:
• **Role Enforcement**—Prevents untrusted hosts from sending messages that are out the scope of their role.

• **Binding Enforcement**—Prevents address theft.

• **DoS Attack Mitigations**—Prevents malicious end-points to grow the end-point database to the point where the database could stop providing operation services.

• **Proxy Services**—Provides some proxy-services to increase the efficiency of address resolution.

FHS features are enabled on a per tenant bridge domain (BD) basis. As the bridge domain, may be deployed on a single or across multiple leaf switches, the FHS threat control and mitigation mechanisms cater to a single switch and multiple switch scenarios.

## ACI FHS Deployment

Most FHS features are configured in a two-step fashion: firstly you define a policy which describes the behavior of the feature, secondly you apply this policy to a "domain" (being the Tenant Bridge Domain or the Tenant Endpoint Group). Different policies that define different behaviors can be applied to different intersecting domains. The decision to use a specific policy is taken by the most specific domain to which the policy is applied.

The policy options can be defined from the Cisco APIC GUI found under the Tenant name > Networking > Protocol Policies > First Hop Security tab.

## Guidelines and Limitations

Follow these guidelines and limitations:

• Starting with release 3.1(1), FHS is supported with virtual Endpoints (AVS only).

• FHS is supported with both VLAN and VXLAN encapsulation.

• Any secured endpoint entry in the FHS Binding Table Database in **DOWN** state will get cleared after **18 Hours** of timeout. The entry moves to **DOWN** state when the front panel port where the entry is learned is link down. During this window of **18 Hours**, if the endpoint is moved to a different location and is seen on a different port, the entry will be gracefully moved out of **DOWN** state to **REACHABLE/STALE** as long as the endpoint is reachable from the other port it is moved from.

• When IP Source Guard is enabled, the IPv6 traffic that is sourced using IPv6 Link Local address as IP source address is not subject to the IP Source Guard enforcement (i.e. Enforcement of Source Mac <=> Source IP Bindings secured by IP Inspect Feature). This traffic is permitted by default irrespective of binding check failures.

• FHS is not supported on L3Out interfaces.

• FHS is not supported N9K-M12PQ based TORs.

• FHS in ACI Multi-Site is a site local capability therefore it can only be enabled in a site from the APIC cluster. Also, FHS in ACI Multi-Site only works when the BD and EPG is site local and not stretched across sites. FHS security cannot be enabled for stretched BD or EPGs.

• FHS is not supported on a Layer 2 only bridge domain.
• Enabling FHS feature can disrupt traffic for 50 seconds because the EP in the BD are flushed and EP Learning in the BD is disabled for 50 seconds.

### Configuring FHS Using the APIC GUI

#### Before you begin
- The tenant and Bridge Domain configured.

#### Step 1
On the menu bar, click Tenants > Tenant_name. In the Navigation pane, click Policies > Protocol > First Hop Security. Right click on First Hop Security to open Create Feature Policy and perform the following actions:

a) In the Name field, enter a name for the First Hop Security policy.
b) Verify that the IP Inspection, Source Guard, and Router Advertisement fields are enabled and click Submit.

#### Step 2
In the Navigation pane, expand First Hop Security and right click on Trust Control Policies to open Create Trust Control Policy and perform the following actions:

a) In the Name field, enter a name for the Trust Control policy.
b) Select the desired features to be allowed on the policy and click Submit.

#### Step 3
(Optional) To apply the Trust Control policy to an EPG, in the Navigation pane, expand Application Profiles > ApplicationProfile_name > Application EPGs and click on Application EPG_name and perform the following actions:

a) In the Work pane, click on the General tab.
b) Click on the down-arrow for FHS Trust Control Policy and select the policy you previously created and click Submit.

#### Step 4
In the Navigation pane, expand Bridge Domains > Bridge Domain_name and click on the Advanced/Troubleshooting tab and perform the following action:

a) In the First Hop Security Policy field, select the policy you just created and click Submit. This completes FHS configuration.

### Configuring FHS Using the NX-OS CLI

#### Before you begin
- The tenant and Bridge Domain configured.

#### Step 1
```
class enable
```
Enters configuration mode.

**Example:**
```
apic1# configure
```

#### Step 2
Configure FHS policy.
Example:

api1(config)# tenant coke
api1(config-tenant)# first-hop-security
api1(config-tenant-fhs)# security-policy pol1
api1(config-tenant-fhs-secpol)#
api1(config-tenant-fhs-secpol)# ip-inspection-admin-status enabled-both
api1(config-tenant-fhs-secpol)# source-guard-admin-status enabled-both
api1(config-tenant-fhs-secpol)# router-advertisement-guard-admin-status enabled
api1(config-tenant-fhs-secpol)# router-advertisement-guard
api1(config-tenant-fhs-secpol)#
api1(config-tenant-fhs-raguard)#
api1(config-tenant-fhs-raguard)# managed-config-check
api1(config-tenant-fhs-raguard)# managed-config-flag
api1(config-tenant-fhs-raguard)# other-config-check
api1(config-tenant-fhs-raguard)# other-config-flag
api1(config-tenant-fhs-raguard)#
api1(config-tenant-fhs-raguard)# maximum-router-preference low
api1(config-tenant-fhs-raguard)#
api1(config-tenant-fhs-raguard)# minimum-hop-limit 10
api1(config-tenant-fhs-raguard)#
api1(config-tenant-fhs-raguard)# maximum-hop-limit 100
api1(config-tenant-fhs-raguard)#
api1(config-tenant-fhs-raguard)# exit
api1(config-tenant-fhs-secpol)# exit
api1(config-tenant-fhs)# trust-control tcpol1
api1(config-tenant-fhs-trustctrl)# arp
api1(config-tenant-fhs-trustctrl)# dhcpv4-server
api1(config-tenant-fhs-trustctrl)# dhcpv6-server
api1(config-tenant-fhs-trustctrl)# ipv6-router
api1(config-tenant-fhs-trustctrl)# router-advertisement
api1(config-tenant-fhs-trustctrl)# neighbor-discovery
api1(config-tenant-fhs-trustctrl)# exit
api1(config-tenant-fhs)# exit
api1(config-tenant-bd)# bridge-domain bd1
api1(config-tenant-bd)# first-hop-security security-policy pol1
api1(config-tenant-bd)# exit
api1(config-tenant)# application ap1
api1(config-tenant-app)# epg epg1
api1(config-tenant-app-epg)# first-hop-security trust-control tcpol1

Step 3

Show FHS configuration example:

Example:

leaf4# show fhs bt all

Legend:

<table>
<thead>
<tr>
<th>TR</th>
<th>UNRES</th>
<th>Age</th>
<th>UNTR</th>
<th>UNDTR</th>
<th>CRTNG</th>
<th>UNKNW</th>
<th>TENTV</th>
<th>INV</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR: trusted-access</td>
<td>UNRES: unresolved</td>
<td>Age: Age since</td>
<td>UNTR: untrusted-access</td>
<td>UNDTR: undetermined-trust</td>
<td>CRTNG: creating</td>
<td>UNKNW: unknown</td>
<td>TENTV: tentative</td>
<td>INV: invalid</td>
</tr>
<tr>
<td>TimeLeft: Remaining time since last refresh</td>
<td>LM: lla-mac-match</td>
<td>DHCP: dhcp-assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BD-VNID</td>
<td>BD-Vlan</td>
<td>BD-Name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15630220</td>
<td>3</td>
<td>t0:bd200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Origin</th>
<th>IP</th>
<th>MAC</th>
<th>INTF</th>
<th>EPG(acllass)(mode)</th>
<th>Trust-lvl</th>
<th>State</th>
</tr>
</thead>
</table>

Cisco APIC Security Configuration Guide, Release 5.2(x)
### The trust levels are:

- **TR** — Trusted. Displayed when the endpoint is learned from an EPG where the trust configuration is enabled.

- **UNTR** — Untrusted. Displayed when the endpoint is learned from an EPG where the trust configuration is not enabled.

- **UNDTR** — Undetermined. Displayed in the case of a DHCP relay topology where the DHCP server bridge domain (BD) is on a remote leaf and the DHCP clients are on a local leaf. In this situation, the local leaf will not know whether the DHCP server BD has trust DHCP enabled.

### Step 4
Show violations with the different types and reasons example:

**Example:**

```bash
leaf4# show fhs violations all
```

**Violation-Type:**

<table>
<thead>
<tr>
<th>POL</th>
<th>policy</th>
<th>THR</th>
<th>address-theft-remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROLE</td>
<td>role</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT</td>
<td>internal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Violation-Reason:**

- **IP-MAC-TH** : ip-mac-theft
- **OCFG_CHK** : ra-other-cfg-check-fail
- **ANC-COL** : anchor-collision
- **PRF-LVL-CHK** : ra-rtr-pref-level-check-fail
- **INT-ERR** : internal-error
- **TRUST-CHK** : trust-check-fail
- **ST-EP-COL** : static-ep-collision
- **LCL-EP-COL** : local-ep-collision
- **MAC-TH** : mac-theft
- **EP-LIM** : ep-limit-reached
- **MCFG-CHK** : ra-managed-cfg-check-fail
- **HOP-LMT-CHK** : ra-hoplimit-check-fail
- **MOV-COL** : competing-move-collision
- **RTR-ROL-CHK** : rtr-role-check-fail
- **IP-TH** : ip-theft

**EPG-Mode:**

U	unknown
M	mac
V	vlan
I	ip

**BD-VNID** 15630220
**BD-Vlan** 3
**BD-Name** t0:bd200

---

<table>
<thead>
<tr>
<th>Type</th>
<th>Last-Reason</th>
<th>Proto</th>
<th>IP</th>
<th>MAC</th>
<th>Port</th>
<th>EPG(sclass)(mode)</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>THR</td>
<td>IP-TH</td>
<td>ARP</td>
<td>192.0.200.21</td>
<td>D0:72:DC:A0:3D:4F</td>
<td>tunnel15</td>
<td>epg300(49154)(V)</td>
<td>21</td>
</tr>
</tbody>
</table>

---

Table Count: 1
### Step 5

Show FHS configuration:

**Example:**

```
swtb23-ifcl# show tenant t0 bridge-domain bd200 first-hop-security binding-table
```

<table>
<thead>
<tr>
<th>Pod/Node State</th>
<th>Type</th>
<th>Family</th>
<th>IP Address</th>
<th>MAC Address</th>
<th>Interface</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/102 reachable</td>
<td>local</td>
<td>ipv4</td>
<td>192.0.200.1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/102 reachable</td>
<td>local</td>
<td>ipv6</td>
<td>fe80::200</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/102 reachable</td>
<td>local</td>
<td>ipv6</td>
<td>2001::0:200::1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/101 stale</td>
<td>arp</td>
<td>ipv4</td>
<td>192.0.200.23</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>lla-mac-match</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>,untrusted-access</td>
</tr>
<tr>
<td>1/101 reachable</td>
<td>local</td>
<td>ipv4</td>
<td>192.0.200.1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/101 reachable</td>
<td>nd</td>
<td>ipv6</td>
<td>fe80::d272:dcff:fe0:261</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>lla-mac-match</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>,untrusted-access</td>
</tr>
<tr>
<td>1/101 stale</td>
<td>nd</td>
<td>ipv6</td>
<td>2001::0:200::20</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>lla-mac-match</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>,untrusted-access</td>
</tr>
<tr>
<td>1/101 stale</td>
<td>nd</td>
<td>ipv6</td>
<td>2001::200:d272:dcff:fe0:261</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>lla-mac-match</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>,untrusted-access</td>
</tr>
<tr>
<td>1/101 reachable</td>
<td>local</td>
<td>ipv6</td>
<td>fe80::200</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/101 reachable</td>
<td>local</td>
<td>ipv4</td>
<td>2001::0:200::1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/103 reachable</td>
<td>local</td>
<td>ipv4</td>
<td>192.0.200.1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan4</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/103 reachable</td>
<td>local</td>
<td>ipv6</td>
<td>fe80::200</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan4</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/103 reachable</td>
<td>local</td>
<td>ipv6</td>
<td>2001::0:200::1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan4</td>
<td>static-authenticated</td>
</tr>
<tr>
<td>1/104 stale</td>
<td>arp</td>
<td>ipv4</td>
<td>192.0.200.10</td>
<td>F8:72:EA:AD:C4:7C</td>
<td>eth1/1</td>
<td>lla-mac-match</td>
</tr>
</tbody>
</table>
### First Hop Security

**Preparing to configure FHS**

First Hop Security (FHS) is a feature in Cisco APIC that provides additional security features for endpoint-to-endpoint routing. This section provides a brief overview of FHS and its configuration using the NX-OS CLI.

**Configuration Steps**

1. Enable FHS globally.
2. Configure FHS settings for specific endpoints.
3. Verify FHS configurations and statistics.

### Running the Configuration Commands

```bash
swtb23-ifc1# show tenant t0 bridge-domain bd200 first-hop-security statistics arp
```

### Statistics and Details

- **Request Received**: 4
- **Request Switched**: 2
- **Request Dropped**: 2
- **Reply Received**: 257

---

### Table: Pod/Node Type and IP Address Details

<table>
<thead>
<tr>
<th>Pod/Node Type</th>
<th>IP Address</th>
<th>Creation TS</th>
<th>Last Refresh TS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/102 local</td>
<td>192.0.200.1</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/102 local</td>
<td>fe80::200</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/102 local</td>
<td>2001::0:200:10</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/102 arp</td>
<td>192.0.200.23</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/102 local</td>
<td>fe80::d272:dcff:fe0a</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/101 nd</td>
<td>2001::0:200:20</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/101 nd</td>
<td>2001::0:200:20</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/101 fe80::200</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td></td>
</tr>
<tr>
<td>1/103 local</td>
<td>192.0.200.1</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/103 local</td>
<td>fe80::200</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/103 local</td>
<td>2001::0:200:10</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/103 arp</td>
<td>192.0.200.10</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/104 arp</td>
<td>172.29.207.222</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/104 local</td>
<td>192.0.200.1</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/104 local</td>
<td>fe80::fa72:ea7f:fead</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
<tr>
<td>1/104 local</td>
<td>2001::0:200:10</td>
<td>2017-07-20T04:22:38.000+00:00</td>
<td>2017-07-20T04:22:38.000+00:00</td>
</tr>
</tbody>
</table>

---

**Cisco APIC Security Configuration Guide, Release 5.2(x)**
swtb23-ifc1# show tenant t0 bridge-domain bd200 first-hop-security statistics dhcpv4
Pod/Node : 1/102
  Discovery Received : 5
  Discovery Switched : 5
  Discovery Dropped : 0
  Offer Received : 0
  Offer Switched : 0
  Offer Dropped : 0
  Request Received : 0
  Request Switched : 0
  Request Dropped : 0
  Ack Received : 0
  Ack Switched : 0
  Ack Dropped : 0
  Nack Received : 0
  Nack Switched : 0
  Nack Dropped : 0
  Decline Received : 0
  Decline Switched : 0
  Decline Dropped : 0
  Release Received : 0
  Release Switched : 0
  Release Dropped : 0
  Information Received : 0
  Information Switched : 0
  Information Dropped : 0
  Lease Query Received : 0
  Lease Query Switched : 0
  Lease Query Dropped : 0
  Lease Active Received : 0
  Lease Active Switched : 0
  Lease Active Dropped : 0
  Lease Unassignment Received : 0
  Lease Unassignment Switched : 0
  Lease Unassignment Dropped : 0
  Lease Unknown Received : 0
  Lease Unknown Switched : 0
  Lease Unknown Dropped : 0

swtb23-ifc1# show tenant t0 bridge-domain bd200 first-hop-security statistics neighbor-discovery
Pod/Node : 1/101
  Neighbor Solicitation Received : 125
  Neighbor Solicitation Switched : 121
  Neighbor Solicitation Dropped : 4
  Neighbor Advertisement Received : 519
  Neighbor Advertisement Switched : 519
  Neighbor Advertisement Drop : 0
  Router Solicitation Received : 4
  Router Solicitation Switched : 4
  Router Solicitation Dropped : 0
  Router Adv Received : 0
  Router Adv Switched : 0
Router Adv Dropped : 0
Redirect Received : 0
Redirect Switched : 0
Redirect Dropped : 0
Pod/Node : 1/104
Neighbor Solicitation Received : 123
Neighbor Solicitation Switched : 47
Neighbor Solicitation Dropped : 76
Neighbor Advertisement Received : 252
Neighbor Advertisement Switched : 228
Neighbor Advertisement Drop : 24
Router Solicitation Received : 0
Router Solicitation Switched : 0
Router Solicitation Dropped : 0
Router Adv Received : 53
Router Adv Switched : 6
Router Adv Dropped : 47
Redirect Received : 0
Redirect Switched : 0
Redirect Dropped : 0

---

FHS Switch iBASH Commands

**Step 1**
Show command to display the FHS feature configuration on the BD and the Trust control policy configuration on the EPG:

**Example:**
leaf4# show fhs features all

<table>
<thead>
<tr>
<th>BD-VNID</th>
<th>BD-Vlan</th>
<th>BD-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15630220</td>
<td>4</td>
<td>t0:bd200</td>
</tr>
</tbody>
</table>

**Feature Policy:**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Family</th>
<th>Protocol</th>
<th>Operational-State</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipinspect</td>
<td>IPV4</td>
<td>ARP</td>
<td>UP</td>
<td>stalelifetime: 180s</td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV4</td>
<td>DHCP</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV4</td>
<td>LOCAL</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV4</td>
<td>STATIC</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV6</td>
<td>ND</td>
<td>UP</td>
<td>stalelifetime: 180s</td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV6</td>
<td>DHCP</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV6</td>
<td>LOCAL</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ipinspect</td>
<td>IPV6</td>
<td>STATIC</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>raguard</td>
<td>IPV6</td>
<td>-</td>
<td>UP</td>
<td>ManagedCfgFlag: on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OtherCfgFlag: on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maxHopLimit: 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>minHopLimit: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>routerPref: medium</td>
</tr>
</tbody>
</table>

**Trust Policy:**

<table>
<thead>
<tr>
<th>Epg-id</th>
<th>Epg-type</th>
<th>Epg-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>49154</td>
<td>Ckt-Vlan</td>
<td>epg300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trust-Attribute</th>
<th>Operational-State</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROTO-ARP</td>
<td>UP</td>
</tr>
<tr>
<td>PROTO-ND</td>
<td>UP</td>
</tr>
<tr>
<td>DHCPV4-SERVER</td>
<td>UP</td>
</tr>
<tr>
<td>DHCPV6-SERVER</td>
<td>UP</td>
</tr>
<tr>
<td>ROUTER</td>
<td>UP</td>
</tr>
</tbody>
</table>
## Step 2

Show commands to display the FHS secured endpoint database:

**Example:**

```
leaf1# show fhs bt
all data dhcpv4 local static
arp detailed dhcpv6 nd summary

leaf1# show fhs bt all

Legend:
- **DHCP**: dhcp-assigned
- **Age**: Age since creation
- **VERFY**: verify
- **NDF**: Neighbor Discovery Protocol
- **LM**: lla-mac-match
- **TimeLeft**: Remaining time since last refresh

Legend:
- **TR**: trusted-access
- **UNRES**: unresolved
- **AGE**: Age since creation
- **CRTNG**: creating
- **TENTV**: tentative
- **UNDTR**: undetermined-trust
- **INV**: invalid
- **STA**: static-authenticated
- **REACH**: reachable
- **INTF**: Interface
- **INCMP**: incomplete
- **UNTR**: untrusted-access

EPG-Mode:
- **U**: unknown
- **M**: mac
- **V**: vlan
- **I**: ip

<table>
<thead>
<tr>
<th>BD-VNID</th>
<th>BD-Vlan</th>
<th>BD-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15630220</td>
<td>3</td>
<td>t0:bd200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Origin</th>
<th>IP</th>
<th>MAC</th>
<th>INTF</th>
<th>EPG(sclass)(mode)</th>
<th>Trust-lvl</th>
<th>State</th>
<th>Age</th>
<th>TimeLeft</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP</td>
<td>192.0.200.23</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>epg200(32770)(V)</td>
<td>LM, UNTR</td>
<td>STALE</td>
<td>00:07:47</td>
<td>00:01:33</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>192.0.200.1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>LOCAL(16387)(I)</td>
<td>STA</td>
<td>REACH</td>
<td>00:14:55</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>2001:0:0:200::20</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>epg200(32770)(V)</td>
<td>LM, UNTR</td>
<td>STALE</td>
<td>00:05:35</td>
<td>00:00:42</td>
<td></td>
</tr>
<tr>
<td>NDP</td>
<td>fe80::d272:dcff:fe00:261</td>
<td>D0:72:DC:A0:02:61</td>
<td>eth1/2</td>
<td>epg200(32770)(V)</td>
<td>LM, UNTR</td>
<td>STALE</td>
<td>00:05:35</td>
<td>00:00:42</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>fe80::200</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>LOCAL(16387)(I)</td>
<td>STA</td>
<td>REACH</td>
<td>00:14:55</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>2001:0:0:200::1</td>
<td>00:22:BD:F8:19:FF</td>
<td>vlan3</td>
<td>LOCAL(16387)(I)</td>
<td>STA</td>
<td>REACH</td>
<td>00:14:55</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

```

```
leaf1# show fhs bt summary all

FHS Binding Table Summary

<table>
<thead>
<tr>
<th>BD-Vlan: 3</th>
<th>BD-Name: t0:bd200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of ARP entries</td>
<td>1</td>
</tr>
<tr>
<td>Total number of DHCPv4 entries</td>
<td>0</td>
</tr>
<tr>
<td>Total number of ND entries</td>
<td>2</td>
</tr>
<tr>
<td>Total number of DHCPv6 entries</td>
<td>0</td>
</tr>
<tr>
<td>Total number of Data entries</td>
<td>0</td>
</tr>
<tr>
<td>Total number of Static entries</td>
<td>0</td>
</tr>
<tr>
<td>Total number of Local entries</td>
<td>3</td>
</tr>
<tr>
<td>Total number of entries</td>
<td>6</td>
</tr>
</tbody>
</table>

Total entries across all BDs matching given filters
```
Step 3  

Show command to display FHS endpoint violations:

Example:

leaf1# show fhs violations all

Violation-Type:
- POL : policy
- TH : address-theft
- INT : internal

Violation-Reason:
- IP-MAC-TH : ip-mac-theft
- THR : other-cfg-check-fail
- TH : address-theft
- INT : internal-error
- TRUST-CHK
- LCL-EP-COL
- IP-TH

Trust-Level:
- TR : trusted-access
- UNTR : untrusted-access
- UNDTR : undetermined-trust
- INV : invalid
- STA : static-authenticated
- LM : ila-mac-match
- DHCP : dhcp-assigned

EPG-Mode:
- U : unknown
- M : mac
- V : vlan
- I : ip

<table>
<thead>
<tr>
<th>Type</th>
<th>Last-Reason</th>
<th>Proto</th>
<th>IP</th>
<th>MAC</th>
<th>Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH</td>
<td>IP-TH</td>
<td>ND</td>
<td>2001:0:0:200::20</td>
<td>D0:72:DC:A0:30:4F</td>
<td>eth1/1</td>
</tr>
<tr>
<td>LM, UNTR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td>HOP-LMT-CHK</td>
<td>RD</td>
<td>fe80::fa72:0aff:fead:c47c</td>
<td>F8:72:EA:AD:C4:7C</td>
<td>eth1/1</td>
</tr>
<tr>
<td>LM, TR</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Count: 2

Step 4  

Show command to display FHS control packet forwarding counters:

Example:

leaf1# show fhs counters
all arp dhcppv4 dhcppv6 nd

leaf4# show fhs counters all

<table>
<thead>
<tr>
<th>BD-VNID</th>
<th>BD-Vlan</th>
<th>BD-Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15630220</td>
<td>4</td>
<td>t0:bd200</td>
</tr>
<tr>
<td>Counter Type</td>
<td>Received</td>
<td>Switched</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Arp Request</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Arp Reply</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Dhcpv4 Ack</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Decline</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Discover</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Inform</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Leaseactive</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Leasequery</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Leaseunassigned</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Leaseunknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Nack</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Offer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Release</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv4 Request</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Advertise</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Confirm</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Decline</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Informationreq</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Rebind</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Reconfigure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Relayforw</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Relayreply</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Release</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Renew</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Reply</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Request</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dhcpv6 Solicit</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nd Na</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Nd Ns</td>
<td>26</td>
<td>22</td>
</tr>
<tr>
<td>Nd Ra</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Nd Redirect</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nd Rs</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 5

Display FHS secured endpoint database from the NxOS memory:

Example:

leaf1# vsh -c 'show system internal fhs bt'

Binding Table has 7 entries, 4 dynamic

Codes:
L - Local  S - Static  ND - Neighbor Discovery  ARP - Address Resolution Protocol
DH4 - IPv4 DHCP  DH6 - IPv6 DHCP  PKT - Other Packet  API - API created

Preflevel flags (prlvl):
0001: MAC and LLA match  0002: Orig trunk  0004: Orig access
0008: Orig trusted trunk  0010: Orig trusted access  0020: DHCP assigned
0040: Cga authenticated  0080: Cert authenticated  0100: Statically assigned

EPG types:
V - Vlan Based EPG  M - MAC Based EPG  I - IP Based EPG

<table>
<thead>
<tr>
<th>Code</th>
<th>Network Layer Address</th>
<th>Link Layer Address</th>
<th>Interface</th>
<th>Vlan</th>
<th>Epg</th>
</tr>
</thead>
<tbody>
<tr>
<td>prlvl</td>
<td>Age</td>
<td>State</td>
<td>Time left</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco APIC Security Configuration Guide, Release 5.2(x)
Step 6  Display FHS feature configuration from the NX-OS FHS process internal memory:

Example:

```
leaf4# vsh -c 'show system internal fhs pol'
```

<table>
<thead>
<tr>
<th>Target Type Policy Feature Target-Range Sub-Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPG epg 0x40000c002 EPG vlan 4 Device-Roles: DHCPv4-Server, DHCPv6-Server, Router Protocols: ARP ND</td>
</tr>
</tbody>
</table>

Step 7  Display FHS secured endpoint database from the NX-OS shared database:

Example:

```
leaf1# vsh -c 'show system internal fhs sdb bt'
```

| Origin Zone ID L3 Address If-name Preflvl State MAC Address VLAN ID EPG ID |
|-------------------|------------------|------------------------|----------------------|------------------|
| ARP 0x4 172.29.207.222 Eth1/1 0011 STALE d0:72:dc:a0:3d:4c 4 |
L 0x4 192.0.200.1	0011	29 s	STALE	157 s
L 192.0.200.10	0022:bd:f8:19:ff	Vlan4	4	
ARP 0x40000c002 (V)	0011	156 s	STALE	30 s
ND 2001:0:0:200::1	0022:bd:f8:19:ff	Vlan4	4	
L 0x400004003 (I)	0010	55 mn	REACHABLE	
ND 2001:0:0:200::10	0022:bd:f8:19:ff	Vlan4	4	
ARP 0x40000c002 (V)	0011	143 s	STALE	47 s
ND 2001:0:0:200::10	0022:bd:f8:19:ff	Vlan4	4	
L 0x400004003 (I)	0010	55 mn	REACHABLE	
ND 2001:0:0:200::10	0022:bd:f8:19:ff	Vlan4	4	

Step 8  Display FHS feature configurations from the NxOS shared database:

Example:
leaf1# vsh -c 'show system internal fhs sdb pol'
Policies:

<table>
<thead>
<tr>
<th>IP inspect</th>
<th>Vlan 4</th>
<th>Protocols:ARP DHCPv4 ND DHCPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA guard</td>
<td>Vlan 4</td>
<td>Min-HL:3 Max-HL:15 M-Config-Flag:enable, on</td>
</tr>
<tr>
<td>O-Config-Flag:enable, on Router-Pref:medium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trustctrl</td>
<td>Epg 0x40000c002</td>
<td>Vlan:4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Device-Roles:DHCPv4-Server DHCPv6-Server Router Protocols:ARP ND</td>
</tr>
</tbody>
</table>

**Step 9** Show command to clear a secured database endpoint entry:

**Example:**
leaf1# vsh -c 'clear system internal fhs bt ipv4 172.29.207.222'

---

**Configuring FHS in APIC Using REST API**

**Before you begin**
- The tenant and bridge domain must be configured.

Configure the FHS and Trust Control policies.

**Example:**
```xml
<polUni>
 <fvTenant name="Coke">
 <fhsBDPol name="bdpol5" ipInspectAdminSt="enabled-ipv6" srcGuardAdminSt="enabled-both" raGuardAdminSt="enabled" status=""/>
 <fhsRaGuardPol name="raguard5" managedConfigCheck="true" managedConfigFlag="true" otherConfigCheck="true" otherConfigFlag="true" maxRouterPref="medium" minHopLimit="3" maxHopLimit="15" status=""/>
 <fvBD name="bd3">
 <fvRsBDToFhs tnFhsBDPolName="bdpol5" status=""/>
 </fvBD>
 </fvTenant>
</polUni>
```

```xml
<polUni>
 <fvTenant name="Coke">
 <fhsTrustCtrlPol name="trustctrl5" hasDhcpv4Server="true" hasDhcpv6Server="true" hasIpv6Router="true" trustRa="true" trustArp="true" trustNd="true" />
 <fvAp name="wwwCokecom3">
 <fvAEPg name="test966">
 <fvRsTrustCtrl tnFhsTrustCtrlPolName="trustctrl5" status=""/>
 </fvAEPg>
 </fvAp>
 </fvTenant>
</polUni>
```
Protocol Authentication

This chapter contains the following sections:

- COOP, on page 113
- EIGRP, on page 115

COOP

Overview

Council of Oracle Protocol (COOP) is used to communicate the mapping information (location and identity) to the spine proxy. A leaf switch forwards endpoint address information to the spine switch 'Oracle' using Zero Message Queue (ZMQ). COOP running on the spine nodes will ensure all spine nodes maintain a consistent copy of endpoint address and location information and additionally maintain the distributed hash table (DHT) repository of endpoint identity to location mapping database.

COOP data path communication provides high priority to transport using secured connections. COOP is enhanced to leverage the MD5 option to protect COOP messages from malicious traffic injection. The APIC controller and switches support COOP protocol authentication.

COOP protocol is enhanced to support two ZMQ authentication modes: strict and compatible.

- Strict mode: COOP allows MD5 authenticated ZMQ connections only.
- Compatible mode: COOP accepts both MD5 authenticated and non-authenticated ZMQ connections for message transportation.

Using COOP with Cisco APIC

To support COOP Zero Message Queue (ZMQ) authentication support across the Cisco Application Centric Infrastructure (ACI) fabric, the Application Policy Infrastructure Controller (APIC) supports the MD5 password and also supports the COOP secure mode.

COOP ZMQ Authentication Type Configuration—A new managed object, coop:AuthP, is added to the Data Management Engine (DME)/COOP database (coop/inst/auth). The default value for the attribute type is "compatible", and users have the option to configure the type to be "strict".
COOP ZMQ Authentication MD5 password—The APIC provides a managed object (fabric:SecurityToken), that includes an attribute to be used for the MD5 password. An attribute in this managed object, called "token", is a string that changes every hour. COOP obtains the notification from the DME to update the password for ZMQ authentication. The attribute token value is not displayed.

Guidelines and Limitations

Follow these guidelines and limitations:

- During an ACI fabric upgrade, the COOP strict mode is disallowed until all switches are upgraded. This protection prevents the unexpected rejection of a COOP connection that could be triggered by prematurely enabling the strict mode.

Configuring COOP Authentication Using the APIC GUI

Step 1
On the menu bar, choose System > System Settings.

Step 2
In the Navigation pane, click on COOP Group.

Step 3
In the Work pane, under the Policy Property area in the Type field, choose the desired type from the Compatible Type and Strict Type options.

Step 4
Click Submit.
This completes the COOP authentication policy configuration.

Configuring COOP Authentication Using the Cisco NX-OS-Style CLI

Configure the COOP authentication policy using the strict mode option.

Example:
```
apic1# configure
apic1(config)# coop-fabric
apic1(config-coop-fabric)# authentication type ?
compatible Compatible type
strict Strict type
apic101-apic1(config-coop-fabric)# authentication type strict
```

Configuring COOP Authentication Using the REST API

Configure a COOP authentication policy.

In the example, the strict mode is chosen.

Example:
```
https://172.23.53.xx/api/node/mo/uni/fabric/pol-default.xml
```
EIGRP

Overview

EIGRP combines the benefits of distance vector protocols with the features of link-state protocols. EIGRP sends out periodic Hello messages for neighbor discovery. Once EIGRP learns a new neighbor, it sends a one-time update of all the local EIGRP routes and route metrics. The receiving EIGRP router calculates the route distance based on the received metrics and the locally assigned cost of the link to that neighbor. After this initial full route table update, EIGRP sends incremental updates to only those neighbors affected by the route change. This process speeds convergence and minimizes the bandwidth used by EIGRP.

For Cisco APIC, EIGRP Authentication uses Route-map's keychain infrastructure for MD5 Authentication. It takes two parameters to configure Authentication between two EIGRP peers. The parameters are:

- Mode
- Keychain

Guidelines and Limitations

Follow these guidelines and limitations:

- Only MD5 Authentication is supported. Keychain is the Keychain name configured under RPM.
- When there is authentication mismatch between two EIGRP peers, then neighborship flaps. The reason for the flap can be verified in `show eigrp internal event-history syslog`.

Configuring EIGRP Authentication Using the APIC GUI

Step 1

On the menu bar, choose Tenant `tenant-name`.

Step 2

In the Navigation pane, expand Policies > Protocol > EIGRP.

Step 3

Expand EIGRP and right-click EIGRP KeyChains to open Create Keychain Policy and perform the following actions:

- a) In the Name field, enter a name for the policy.
- b) In the KeyID field, enter a key ID number.
- c) In the Preshared key field, enter the preshared key information.
- d) Optional. In the Start Time and End Time fields, enter a time.

Step 4

In the Navigation pane, right-click on EIGRP Interface and perform the following actions:

- a) In the Authentication field, click the box to enable.
- b) In the Key Chain Policy field, select the policy just created from the drop-down and click Submit.
Configuring EIGRP Authentication Using the NX-OS CLI

**Step 1**  Configure keychain-policy and key-policy under Tenant.

**Example:**

```
tenant T1
keychain-policy KeyChainPol
key-policy 2
```

**Step 2**  Optional. Configure Start time.

**Example:**

```
starttime 2018-11-01T08:39:27.000+00:00
exit
```

**Step 3**  Enter the leaf configuration from APIC. Enable authentication in the interface and configure the key-chain policy.

**Example:**

```
IFCl(config-leaf)# show run
Command: show running-config leaf 104
Time: Thu Nov 8 12:05:45 2018
leaf 104
interface ethernet 1/2.45
vrf member tenant T1 vrf V1 l3out L3Out
ip router eigrp authentication keychain-policy KeyChainPol
ip router eigrp authentication enable
ipv6 router eigrp authentication keychain-policy KeyChainPol
ipv6 router eigrp authentication enable
exit
```

**Step 4**  To verify EIGRP configuration:

**Example:**

```
fav-blr4-ls-leaf4# show ip eigrp interfaces eth1/2.17
EIGRP interfaces for process 1 VRF T1:V1
Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
eth1/2.17 0 0/0 207 0/0 828 0
Hello interval is 5 sec
Holdtime interval is 15 sec
Next xmit serial: 0
Un/reliable mcasts: 0/3 Un/reliable ucasts: 0/2
Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 0
Retransmissions sent: 0 Out-of-sequence rcvd: 0
Classic/wide metric peers: 0/0
Authentication mode is md5, key-chain is T1:KeyChainPol
fav-blr4-ls-leaf4#
```

**Step 5**  For troubleshooting it on a switch, following CLIs can be used. And EIGRP Auth is supported on both IPv4 and IPv6 address families.

**Example:**

```
(none)# show ip eigrp interface vrf all
EIGRP interfaces for process 100 VRF pepsi
Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
eth1/1 1 0/0 207 0/0 828 0
Hello interval is 10 sec
```
Holdtime interval is 15 sec
Next xmit serial: 0
Un/reliable mcasts: 0/7 Un/reliable ucasts: 21/18
Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 0
Retransmissions sent: 4 Out-of-sequence rcvd: 2
Classic/wide metric peers: 0/1
Authentication mode is md5, key-chain is eigrp-auth

(none)# show ipv6 eigrp interface vrf pepsi
IPv6-EIGRP interfaces for process 100 VRF pepsi
Xmit Queue Mean Pacing Time Multicast Pending
Interface Peers Un/Reliable SRTT Un/Reliable Flow Timer Routes
eth1/1 0 0/0 0 0/0 0 0
Hello interval is 10 sec
Holdtime interval is 15 sec
Next xmit serial: 0
Un/reliable mcasts: 0/0 Un/reliable ucasts: 0/0
Mcast exceptions: 0 CR packets: 0 ACKs suppressed: 0
Retransmissions sent: 0 Out-of-sequence rcvd: 0
Classic/wide metric peers: 0/0
Authentication mode is md5, key-chain is eigrp-auth
CHAPTER 10

Control Plane Traffic

• About Control Plane Policing, on page 119
• About CoPP Prefilters, on page 126

About Control Plane Policing

Control plane policing (CoPP) protects the control plane, which ensures network stability, reachability, and packet delivery.

This feature allows specification of parameters, for each protocol that can reach the control processor to be rate-limited using a policer. The policing is applied to all traffic destined to any of the IP addresses of the router or Layer 3 switch. A common attack vector for network devices is the denial-of-service (DoS) attack, where excessive traffic is directed at the device interfaces.

The Cisco Application Centric Infrastructure (ACI) leaf and spine switch NX-Os provides CoPP to prevent DoS attacks from impacting performance. Such attacks, which can be perpetrated either inadvertently or maliciously, typically involve high rates of traffic destined to the supervisor module of a Cisco ACI leaf and spine switch CPU or the CPU itself.

The supervisor module of Cisco ACI leaf and spine switch switches divides the traffic that it manages into two functional components or planes:

• **Data plane**: Handles all the data traffic. The basic functionality of a Cisco NX-Os device is to forward packets from one interface to another. The packets that are not meant for the switch itself are called the transit packets. These packets are handled by the data plane.

• **Control plane**: Handles all routing protocol control traffic. These protocols, such as the Border Gateway Protocol (BGP) and the Open Shortest Path First (OSPF) Protocol, send control packets between devices. These packets are destined to router addresses and are called control plane packets.

The Cisco ACI leaf and spine switch supervisor module has a control plane and is critical to the operation of the network. Any disruption or attacks to the supervisor module will result in serious network outages. For example, excessive traffic to the supervisor module could overload and slow down the performance of the entire Cisco ACI fabric. Another example is a DoS attack on the Cisco ACI leaf and spine switch supervisor module that could generate IP traffic streams to the control plane at a very high rate, forcing the control plane to spend a large amount of time in handling these packets and preventing the control plane from processing genuine traffic.

Examples of DoS attacks are as follows:
• Internet Control Message Protocol (ICMP) echo requests
• IP fragments
• TCP SYN flooding

These attacks can impact the device performance and have the following negative effects:
• Reduced service quality (such as poor voice, video, or critical applications traffic)
• High route processor or switch processor CPU utilization
• Route flaps due to loss of routing protocol updates or keepalives
• Processor resource exhaustion, such as the memory and buffers
• Indiscriminate drops of incoming packets

Cisco ACI leaf and spine switches are by default protected by CoPP with default settings. This feature allows for tuning the parameters on a group of nodes based on customer needs.

Control Plane Protection

To protect the control plane, the Cisco NX-OS running on Cisco ACI leaf and spine switches segregates different packets destined for the control plane into different classes. Once these classes are identified, the Cisco NX-OS device polices the packets, which ensures that the supervisor module is not overwhelmed.

Control Plane Packet Types:

Different types of packets can reach the control plane:

• Receive Packets: Packets that have the destination address of a router. The destination address can be a Layer 2 address (such as a router MAC address) or a Layer 3 address (such as the IP address of a router interface). These packets include router updates and keepalive messages. Multicast packets can also be in this category where packets are sent to multicast addresses that are used by a router.

• Exception Packets: Packets that need special handling by the supervisor module. For example, if a destination address is not present in the Forwarding Information Base (FIB) and results in a miss, the supervisor module sends an ICMP unreachable packet back to the sender. Another example is a packet with IP options set.

• Redirect Packets: Packets that are redirected to the supervisor module. Features such as Dynamic Host Configuration Protocol (DHCP) snooping or dynamic Address Resolution Protocol (ARP) inspection redirect some packets to the supervisor module.

• Glean Packets: If a Layer 2 MAC address for a destination IP address is not present in the FIB, the supervisor module receives the packet and sends an ARP request to the host.

All of these different packets could be maliciously used to attack the control plane and overwhelm the Cisco ACI fabric. CoPP classifies these packets to different classes and provides a mechanism to individually control the rate at which the Cisco ACI leaf and spine switch supervisor module receives these packets.

Classification for CoPP:
For effective protection, the Cisco ACI leaf and spine switch NX-OS classifies the packets that reach the supervisor modules to allow you to apply different rate controlling policies based on the type of the packet. For example, you might want to be less strict with a protocol packet such as Hello messages, but more strict with a packet that is sent to the supervisor module because the IP option is set.

**Available Protocols:**

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glean</td>
<td>With this protocol, when the bridge domain is in proxy mode, unknown unicast traffic received by the leaf switch is sent to the hardware proxy (the spine switch). The spine switch changes the eth-type of the packet to a special eth-type (0xfff2). When these packets reach the leaf switches through the fabric ports, the packets are classified under glean. The packets are sent to the leaf switch's CPU, and the leaf switch's CPU generates an ARP request for the connected external devices.</td>
</tr>
<tr>
<td>ToR Glean</td>
<td>ToR glean activates when an endpoint moves or is cleared because of link flap and does not update the source leaf switch's remote IP address endpoint entry. A packet egresses the source leaf switch with the destination leaf switch's TEP address. On the destination leaf switch, because of the missing local IP address entry, the packet gets sent to the leaf switch CPU to generate an ARP request for those IP addresses. These packets are classified under ToR glean.</td>
</tr>
</tbody>
</table>

**Rate Controlling Mechanisms:**

Once the packets are classified, the Cisco ACI leaf and spine switch NX-OS has different mechanisms to control the rate at which packets arrive at the supervisor module.

You can configure the following parameters for policing:

- **Committed information rate (CIR):** Desired bandwidth, specified in packets per second (PPS).
- **Committed burst (BC):** Size of a traffic burst that can exceed the CIR within a given unit of time and not impact scheduling, specified in the number of packets.

**Default Policing Policies:**

When a Cisco ACI leaf and spine switch are initially booted up, the pre-defined CoPP parameters for different protocols are based on tests done by Cisco.

**Guidelines and Limitations for CoPP**

CoPP has the following configuration guidelines and limitations:

- We recommend that you use the default CoPP policy initially and then later modify the CoPP policies based on the data center and application requirements.
Customizing CoPP is an ongoing process. CoPP must be configured according to the protocols and features used in your specific environment as well as the supervisor features that are required by the server environment. As these protocols and features change, CoPP must be modified.

We recommend that you continuously monitor CoPP. If drops occur, determine if CoPP dropped traffic unintentionally or in response to a malfunction or attack. In either event, analyze the situation and evaluate the need to modify the CoPP policies.

You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive access to the device. Filtering this traffic could prevent remote access to the Cisco ACI Leaf/Spine and require a console connection.

Do not mis-configure CoPP pre-filter entries. CoPP pre-filter entries might impact connectivity to multi-pod configurations, remote leaf switches, and Cisco ACI Multi-Site deployments.

You can use the APIC UI to be able to tune the CoPP parameters.

Per interface per protocol is only supported on Leaf switches.

FEX ports are not supported on per interface per protocol.

For per interface per protocol the supported protocols are: ARP, ICMP, CDP, LLDP, LACP, BGP, STP, BFD, and OSPF.

The TCAM entry maximum for per interface per protocol is 256. Once the threshold is exceeded a fault will be raised.

### Configuring CoPP Using the APIC GUI

**Step 1**


**Step 2**

In the Navigation pane, expand Policies > Switch > CoPP Leaf, right click Create Profiles for CoPP To Be Applied At The Leaf Level dialog box to perform the following actions in the Create Profiles for CoPP To Be Applied At The Leaf Level dialog box:

a) In the Name field, add a policy name.

b) In the Type of Profile field, select the profile type.

Note: Select CoPP has custom values if you wish to set each protocol separately. If you do not select a profile type then default values are applied.

c) Click Submit to create the policy.

**Step 3**

In the Navigation pane, expand Switches > Leaf Switches > Policy Groups, right click Create Access Switch Policy Group dialog box to perform the following actions in the Create Access Switch Policy Group dialog box:

a) In the Name field, add a policy name.

b) In the COPP Leaf Policy field, select the policy previously created.

c) Click Submit.

**Step 4**

In the Navigation pane, expand Switches > Leaf Switches > Profiles, right click Create Leaf Profile dialog box to perform the following actions in the Create Leaf Profile dialog box:

a) In the Name field, add a profile name.

b) Expand the Leaf Selectors table, add the Leaf information in the Name and Blocks fields, and select the Policy Group previously created.
c) Click **Next** and **Finish** to complete CoPP configuration.

---

### Configuring CoPP Using the Cisco NX-OS CLI

#### Step 1
Configure a CoPP leaf profile:

**Example:**

```
configure copp Leaf Profile
apic1(config)# policy-map type control-plane-leaf leafProfile
apic1(config-pmap-copp-leaf)# profile-type custom
apic1(config-pmap-copp-leaf)# set arpRate 786
create a policy group to be applied on leaves
apic1(config)# template leaf-policy-group coppForLeaves
apic1(config-leaf-policy-group)# copp-aggr leafProfile
apic1(config-leaf-policy-group)# exit
apply the leaves policy group on leaves
apic1(config)# leaf-profile applyCopp
apic1(config-leaf-profile)# leaf-group applyCopp
apic1(config-leaf-group)# leaf 101-102
apic1(config-leaf-group)# leaf-policy-group coppForLeaves
```

#### Step 2
Configure a CoPP Spine profile:

**Example:**

```
configure copp Spine Profile
apic1(config)# policy-map type control-plane-spine spineProfile
apic1(config-pmap-copp-spine)# profile-type custom
apic1(config-pmap-copp-spine)# set arpRate 786
create a policy group to be applied on spines
apic1(config)# template leaf-policy-group coppForSpines
apic1(config-spine-policy-group)# copp-aggr spineProfile
apic1(config-spine-policy-group)# exit
apply the spine policy group on spines
apic1(config)# spine-profile applyCopp
apic1(config-spine-profile)# spine-group applyCopp
apic1(config-spine-group)# spine 201-202
apic1(config-spine-group)# spine-policy-group coppForSpines
```

---

### Configuring CoPP Using the REST API

#### Step 1
Configure a CoPP leaf profile:

**Example:**

```
<!-- api/node/mo/uni/.xml -->
<infraInfra>
 <coppLeafProfile type="custom" name="mycustom"> <!-- define copp leaf profile -->
 <coppLeafGen1CustomValues bgpBurst="150" bgpRate="300"/>
 </coppLeafProfile>
</infraNodeP>
```
Step 2  Configure a CoPP spine profile:

Example:

```xml
<infraLeafS name="leafs" type="range">
 <infraNodeBlk name="leaf1" from_="101" to_="101">
 <infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-myLeafCopp"/>
 </infraNodeBlk>
 <infraNodeBlk name="leaf3" from_="103" to_="103">
 <infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-myLeafCopp"/>
 </infraNodeBlk>
</infraLeafS>

<infraFuncP>
 <infraAccNodePGrp name="myLeafCopp">
 <infraRsLeafCoppProfile tnCoppLeafProfileName="mycustom"/>
 </infraAccNodePGrp>
</infraFuncP>
</infraInfra>

Viewing CoPP Statistics Using the GUI

Fine tuning CoPP requires knowing the number of packets dropped/allowed by a given protocol on a given node. The information can be viewed in the GUI using the procedure below:

On the menu bar, click Fabric > Inventory > Podnumber > Nodename > Control Plane Statistics > default, select from the list of classes to configure the statistics display format.

You can collect statistics about the number of packets allowed or dropped by CoPP.

Configuring Per Interface Per Protocol CoPP Policy Using the APIC GUI

Step 1 On the menu bar, click Fabric > External Access Policies.

Cisco APIC Security Configuration Guide, Release 5.2(x)
Step 2 In the Navigation pane, expand Policies > Interface > CoPP Interface, right click Create Per Interface Per Protocol CoPP Policy dialog box to perform the following actions in the Create Per Interface Per Protocol CoPP Policy dialog box:
 a) In the Name field, add a policy name.
 b) Expand the CoPP policy Protocol table, and enter the protocol name, type, rate, and burst information. Click Update and Submit.

Step 3 In the Navigation pane, expand Interfaces > Leaf Interfaces > Policy Groups > Create Leaf Access Port Policy Group, right click Create Leaf Access Port Policy Group dialog box to perform the following actions in the Create Leaf Access Port Policy Group dialog box:
 a) In the Name field, add a policy name.
 b) In the COPP Leaf Policy field, select the policy previously created.
 c) Click Submit.

Step 4 In the Navigation pane, expand Interfaces > Leaf Interfaces > Profiles > Leaf Profiles, right click Create Leaf Interface Profile dialog box to perform the following actions in the Create Leaf Interface Profile dialog box:
 a) In the Name field, add a profile name.
 b) Expand the Interface Selectors table, add the interface information in the Name and Interface IDs fields, and select the Interface Policy Group previously created.
 c) Click Ok and Submit to complete Per Interface Per Protocol CoPP configuration.

Configuring Per Interface Per Protocol CoPP Policy Using the NX-OS Style CLI

Step 1
Define the CoPP class map and policy map:

Example:
```plaintext
(config)# policy-map type control-plane-if <name>
(config-pmap-copp)# protocol bgp bps <value>
(config-pmap-copp)# protocol ospf bps <value>
```

Step 2
Applying the configuration to an interface on the leaf:

Example:
```plaintext
(config)# leaf 101
(config-leaf)# int eth 1/10
(config-leaf-if)# service-policy type control-plane-if output <name>
```

Configuring CoPP Per Interface Per Protocol Using REST API

Configure a CoPP per interface per protocol:

Example:
```xml
<polUni>
  <infraInfra>
    <infraNodeP name="default">
      <infraLeafS name="default" type="range">
```

About CoPP Prefilters

To protect against DDoS attacks, a CoPP prefilter profile is used on spine and leaf switches to filter access to authentication services based on specified sources and TCP ports. When the CoPP prefilter profile is deployed on a switch, the control plane traffic is denied by default. Only the traffic specified in the CoPP prefilter profile is permitted.

Supported Platforms

This section lists the supported platforms for the CoPP prefilter feature.

Supported leaf switches:

- N9K-C93108TC-EX
- N9K-C93108TC-FX
- N9K-C93108YC-FX
- N9K-C93180LC-EX
- N9K-C93180YC-EX
- N9K-C9348GC-FXP

Supported spine switches:

- N9K-C92300YC
- N9K-C92304QC
- N9K-C9232C
• N9K-C9236C
• N9K-C9272Q
• N9K-C9364C
• N9K-C9508-FM-2
• N9K-C9516-FM-E2

Limitations

• Only Ethernet type IPv4 or IPv6 packets can be matched in the egress TCAM. ARP and ND packets are not matched.
• A total of 128 (wide key) entries can be included in the allowed list. However, some entries are reserved for internal use.

Configuring a CoPP Prefilter, Policy Group, and Profile Using the GUI

Configuring a CoPP Prefilter Using the Cisco APIC GUI

This section explains how to configure a CoPP prefilter at the leaf level and the spine level using the Cisco APIC GUI.

Before you begin
Access to the APIC GUI

Step 1
Click Fabric > External Access Policies.

Step 2
From the Navigation pane, click Policies > Switch.

Step 3
From the Navigation pane, choose between the following options:

• CoPP Pre-Filter for Leaf—To create a CoPP prefilter for a leaf switch, right-click on CoPP Pre-Filter for Leaf and choose Create Profiles for CoPP Pre-Filter To Be Applied At The Leaf Level.

• CoPP Pre-Filter for Spine—To create a CoPP prefilter for a spine switch, right-click on CoPP Pre-Filter for Spine and choose Create Profiles for CoPP Pre-Filter To Be Applied At The Spine Level

The respective CoPP prefilter dialog appears.

Step 4
Enter the appropriate values in the dialog fields.

Note For information about the fields in the dialog, click the help icon to display the Cisco APIC help file.

Step 5
When finished, click Submit.
What to do next
Configure a policy group.

Configuring a Leaf Policy Group Using the GUI
This section explains how to create a policy group.

Before you begin
Access to a Cisco APIC GUI.

Step 1 Click Fabric > External Access Policies.
Step 2 From the Navigation pane, click Switches > Leaf Switches. The Policy Groups node appears in the Navigation pane.
Step 3 From the Navigation pane, Policy Groups—To create a leaf policy group, right-click on Policy Groups and choose Create Access Switch Policy Group. The respective policy group dialog appears.
Step 4 From the policy group dialog, enter a name in the Name field and click the drop-down arrow of the policy type you want to apply. Any configured policies for the chosen policy type will appear in the drop-down list.
 Note For information about the fields in the dialog, click the help icon to display the Cisco APIC help file.
Step 5 When finished, click Submit.

What to do next
Configure a profile.

Configuring a Leaf Profile Using the GUI
This section explains how to create a profile.

Before you begin
You should have a configured policy group.

Step 1 Click Fabric > External Access Policies.
Step 2 From the Navigation pane, click Switches > Leaf Switches > Profiles. The Leaf Profiles node appears in the Navigation pane.
Step 3 From the Navigation pane, Profiles—To create a profile for a leaf switch, right-click on Profiles and choose Create Leaf Profile. The respective profile dialog appears.
Step 4 From the profile dialog, enter a name in the Name field and click the + to enter the selector information. Click Update when finished.
 After clicking Update, you return to the profile dialog.
Click **Next** to enter the interface selector profile information.

For information about the fields in the dialog, click the help icon to display the Cisco APIC help file.

When finished, click **Finish**.

Configuring a CoPP Prefilter Using the CLI

Configuring the CoPP Prefilter for a Leaf Switch Using the CLI

This section explains how to configure a CoPP prefilter policy and policy group then associate a switch policy group with a switch profile using the CLI.

Step 1

Switch# `configure terminal`

Enters global configuration mode.

Step 2

Switch(config)# `template control-plane-policing-prefilter-leaf <name>`

Creates a CoPP prefilter profile for a leaf switch.

Step 3

Switch (config-control-plane-policing-prefilter-leaf)# `permit proto { tcp | udp | eigrp | unspecified | icmp | icmpv6 | egp | igp | l2tp | ospf | pim }`

Permits the specified IP protocol.

Step 4

Switch (config-control-plane-policing-prefilter-leaf)# `exit`

Enters global configuration mode.

Step 5

Switch(config)# `template leaf-policy-group <name>`

Creates a CoPP prefilter policy group leaf switches.

Step 6

Switch(config-leaf-policy-group)# `control-plane-policing-prefilter <name>`

Associates a leaf policy group with the CoPP prefilter policy.

Step 7

Switch(config-leaf-policy-group)# `exit <name>`

Enters global configuration mode.

Step 8

Switch(config)# `leaf-profile <name>`

Creates a leaf profile.

Step 9

Switch(config-leaf-profile)# `leaf-group <name>`

Associates a leaf group with a leaf profile.

Step 10

Switch(config-leaf-group)# `leaf-policy-group <name>`

Associates a leaf policy group with a leaf group.
Configuring the CoPP Prefilter for a Spine Switch Using the CLI

This section explains how to configure a CoPP prefilter policy and policy group then associate a switch policy group with a switch profile using the CLI.

Step 1
Switch# configure terminal
Enters global configuration mode.

Step 2
Switch(config)# template control-plane-policing-prefilter-spine <name>
Creates a CoPP prefilter profile for a spine switch.

Step 3
Switch(config-control-plane-policing-prefilter-spine)# permit proto { tcp | udp | eigrp | unspecified | icmp | icmpv6 | egp | igp | l2tp | ospf | pim }
Permits the specified IP protocol.

Step 4
Switch(config-control-plane-policing-prefilter-spine)# exit
Enters global configuration mode.

Step 5
Switch(config)# template spine-policy-group <name>
Creates a CoPP prefilter policy group spine switches.

Step 6
Switch(config-spine-policy-group)# control-plane-policing-prefilter <name>
Associates a spine policy group with the CoPP prefilter policy.

Step 7
Switch(config-spine-policy-group)# exit <name>
Enters global configuration mode.

Step 8
Switch(config)# spine-profile <name>
Creates a spine profile.

Step 9
Switch(config-spine-profile)# spine-group <name>
Associates a spine group with a spine profile.

Step 10
Switch(config-spine-group)# spine-policy-group <name>
Associates a spine policy group with a spine group.

Configuring a CoPP Prefilter Using the REST API

Configuring a CoPP Prefilter Policy for a Leaf Switch Using the REST API

This section explains how to configure a CoPP prefilter policy for a leaf switch using the REST API.

Step 1
Create a switch policy for CoPP Prefilter with entries the allowed list.
Step 2 Create a switch policy group with CoPP prefilter policies.

```xml
<infraAccNodePGrp descr="" dn="uni/infra/funcprof/accnodepgrp-COPP_PreFilter_BGP_Config" name="COPP_PreFilter_BGP_Config" nameAlias="" ownerKey="" ownerTag=""/>
<infraRsIaclLeafProfile tnIaclLeafProfileName="COPP_PreFilter_BGP_Config"/>
</infraAccNodePGrp>
```

Step 3 Associate switch policy group to switch profiles.

```xml
<infraNodeP descr="" dn="uni/infra/nprof-leafP-103" name="leafP-103" nameAlias="" ownerKey="" ownerTag=""/>
<infraLeafS descr="" name="103_Sel" nameAlias="" ownerKey="" ownerTag="" type="range"/>
<infraRsAccNodePGrp tDn="uni/infra/funcprof/accnodepgrp-COPP_PreFilter_BGP_Config"/>
<infraNodeBlk descr="" from="103" name="nblk1" nameAlias="" to="103"/>
</infraLeafS>
</infraNodeP>
```

Configuring a CoPP Prefilter Policy for a Spine Using the REST API

This section explains how to configure a CoPP prefilter policy for a spine switch using the REST API.

Step 1 Create a switch policy for CoPP Prefilter with entries the allowed list.

```xml
<iaclSpineProfile descr="" dn="uni/infra/iaclspinep-spine_icmp" name="COPP_PreFilter_OSPF_Config" ownerKey="" ownerTag=""/>
<iaclEntry dstAddr="0.0.0.0/0" dstPortFrom="unspecified" dstPortTo="unspecified" ipProto="ospfigp" name="" nameAlias="" srcAddr="0.0.0.0/0" srcPortFrom="unspecified" srcPortTo="unspecified"/>
</iaclSpineProfile>
```

Step 2 Create a switch policy group with CoPP prefilter policies.

```xml
<infraSpineAccNodePGrp descr="" dn="uni/infra/funcprof/spaccnodepgrp-COPP_PreFilter_OSPF_Config" name="COPP_PreFilter_OSPF_Config" nameAlias="" ownerKey="" ownerTag=""/>
<infraRsIaclSpineProfile tnIaclSpineProfileName="COPP_PreFilter_OSPF_Config"/>
</infraSpineAccNodePGrp>
```

Step 3 Associate switch policy group to switch profiles.

```xml
<infraSpineP descr="" dn="uni/infra/spprof-204" name="204" nameAlias="" ownerKey="" ownerTag=""/>
<infraSpineS descr="" name="204" nameAlias="" ownerKey="" ownerTag="" type="range"/>
<infraRsSpineAccNodePGrp tDn="uni/infra/funcprof/spaccnodepgrp-COPP_PreFilter_OSPF_Config"/>
<infraNodeBlk descr="" from="204" name="nodeblock1" nameAlias="" to="204"/>
</infraSpineS>
<infraRsSpAccPortP tDn="uni/infra/spaccportprof-204"/>
</infraSpineP>
```
What to do next
CHAPTER 11

Fabric Security

This chapter contains the following sections:

• About Federal Information Processing Standards (FIPS), on page 133
• Guidelines and Limitations for FIPS, on page 133
• Configuring FIPS for Cisco APIC Using the GUI, on page 134
• Configuring FIPS for Cisco APIC Using the NX-OS Style CLI, on page 134
• Configuring FIPS for Cisco APIC Using REST API, on page 135

About Federal Information Processing Standards (FIPS)

The Federal Information Processing Standards (FIPS) Publication 140-2, Security Requirements for Cryptographic Modules, details the U.S. government requirements for cryptographic modules. FIPS 140-2 specifies that a cryptographic module should be a set of hardware, software, firmware, or some combination that implements cryptographic functions or processes, including cryptographic algorithms and, optionally, key generation, and is contained within a defined cryptographic boundary.

FIPS specifies certain cryptographic algorithms as secure, and it also identifies which algorithms should be used if a cryptographic module is to be called FIPS compliant.

Guidelines and Limitations for FIPS

The following guidelines and limitations apply to FIPS:

• When FIPS is enabled, FIPS is applied across the Cisco Application Policy Infrastructure Controller (APIC).

• When FIPS is enabled, you must disable FIPS before you downgrade the Cisco APIC to a release that does not support FIPS.

• Make your passwords a minimum of eight characters in length.

• Disable Telnet. Log in using only SSH.

• Delete all SSH Server RSA1 keypairs.

• Secure Shell (SSH) and SNMP are supported.
• Disable SNMP v1 and v2. Any existing user accounts on the switch that have been configured for SNMPv3 should be configured only with SHA for authentication and AES for privacy.

• Starting with the 2.3(1) release, FIPS can be configured at the switch level.

• Starting with the 3.1(1) release, when FIPS is enabled, NTP will operate in FIPS mode. Under FIPS mode, NTP supports authentication with HMAC-SHA1 and no authentication.

• In the 5.2(3) release and earlier, after enabling FIPS on the Cisco APIC, reload the dual supervisor spine switches twice for FIPS to take effect.

• In the 5.2(4) release and later, after enabling FIPS on the Cisco APIC, reload and then power cycle the dual supervisor spine switches for FIPS to take effect.

• In the 5.2(3) release and earlier, on a dual supervisor spine switch that has FIPS enabled, if all the supervisors are replaced, then the spine switch must be reloaded twice for FIPS to take effect.

• In the 5.2(4) release and later, on a dual supervisor spine switch that has FIPS enabled, if all supervisors are replaced, then the spine switch must be reloaded and then power cycled for FIPS to take effect.

• In the 5.2(3) release and earlier, disable the RADIUS and TACACS+ remote authentication methods. Only the local and LDAP authentication methods are supported in FIPS mode.

• In the 5.2(4) release and later, disable the RADIUS, TACACS+, RSA, DUO, OAuth2, and SAML remote authentication methods. Only the local and LDAP authentication methods are supported in FIPS mode.

Configuring FIPS for Cisco APIC Using the GUI

When FIPS is enabled, it is applied across the Cisco Application Policy Infrastructure Controller (APIC).

Step 1
On the menu bar, choose System > System Settings.

Step 2
In the Navigation pane, choose Fabric Security.

Step 3
In the Work pane, in the Properties area, choose the desired FIPS mode.

The options for FIPS mode are Disable and Enable. The default value is Disable.

Note
You must reboot to complete the configuration. Anytime you change the mode, you must reboot to complete the configuration.

Configuring FIPS for Cisco APIC Using the NX-OS Style CLI

When FIPS is enabled, it is applied across Cisco Application Policy Infrastructure Controller (APIC).

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter the configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>apic1# configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enable FIPS.</td>
</tr>
<tr>
<td>Example:</td>
<td>apic1(config)# fips mode enable</td>
</tr>
<tr>
<td>You must reboot to complete the configuration. Anytime you change the mode, you must reboot to complete the configuration.</td>
<td></td>
</tr>
<tr>
<td>The no fips mode enable command disables FIPS.</td>
<td></td>
</tr>
</tbody>
</table>

Configuring FIPS for Cisco APIC Using REST API

When FIPS is enabled, it is applied across Cisco APIC.

Configure FIPS for all tenants.

Example:

```
https://apic1.cisco.com/api/node/mo/uni/userext.xml
<aaaFabricSec fipsMode="enable" />
```

Note You must reboot to complete the configuration. Anytime you change the mode, you must reboot to complete the configuration.
Endpoint Security Groups

This chapter contains the following topic:

- Endpoint Security Groups, on page 137
- Selectors, on page 141
- Contracts, on page 159
- ESG Shared Service (ESG VRF route leaking), on page 161
- Layer 4 to Layer 7 Services, on page 163
- Operational Tools, on page 164
- Guidelines and Limitations for Endpoint Security Groups, on page 164
- ESG Migration Strategy, on page 166
- Configuring Endpoint Security Groups, on page 169
- Configuring Route Leaking with Endpoint Security Groups, on page 177
- Configuring Layer 4 to Layer 7 with Endpoint Security Groups, on page 179

Endpoint Security Groups

Endpoint Security Groups (ESGs) are the new network security component in Cisco Application Centric Infrastructure (Cisco ACI). Although the endpoint groups (EPGs) have been providing the network security in Cisco ACI, EPGs have to be associated to a single bridge domain (BD) and used to define security zones within a BD. This is because the EPGs define both forwarding and security segmentation at the same time. The direct relationship between the BD and an EPG limits the possibility of an EPG to spanning more than one BD. This limitation of EPGs is resolved by using the new ESG constructs.
The Application endpoint group (fvAEPg) object that represents an EPG has a direct relationship with the bridge domain object (fvBD) that represents the Layer 2 broadcast domain. This is illustrated in the above figure, in the first three columns.

An ESG is a logical entity that contains a collection of physical or virtual network endpoints. In addition, an ESG is associated to a single VRF (Virtual Routing and Forwarding) instead of BD. This allows the definition of a security zone that is independent of the BDs (the fourth column of Figure 1, illustrates this point). Just as the EPGs divide a BD into security zones, the ESGs divide the VRF into security zones.

The EPG policy embeds both forwarding and security logic. For example, an EPG provides not only a security zone based on VLAN, but also a VLAN binding on leaf node interfaces. Also, a contract on the EPG is used to enforce the security and determine which leaf nodes the BD subnet should be deployed on, and which subnets to be leaked to which VRF in the case of VRF route leaking (i.e. shared service). On the contrary, an ESG is used only to enforce security using the contracts while the forwarding logics are handled by other components. With an ESG, the routing logic such as BD subnets deployment and VRF route leaking are moved to VRF level. The VLAN binding on leaf node interfaces are still handled at EPG level.

An ESG is a security construct that has certain match criteria to define which endpoint belongs to the ESG, and uses contracts or policies to define the security stance. The match criteria are called the ESG selectors that are based on attributes such as an IPv4 or IPv6 address spanning across BDs in the associated VRF, or a tag associated to endpoint MAC address. For details about these and other supported selector types, see About Selectors, on page 141.

The contract usage in the ESGs is the same as the EPGs. Endpoints that belong to the same ESG can communicate without the need for a contract. To enable communication between endpoints that belong to
different ESGs, you need to configure contracts between the ESGs. For the communication with devices outside of the Cisco ACI fabric, you need to configure a contract between the L3Out external EPG (l3extInstP) and the ESG. You can also use a Layer 4 to Layer 7 service graph in conjunction with a contract between the ESGs. However, contracts between an EPG and an ESG are not supported.

Traffic Filtering from ESG to ESG

In the figure below, there are four bridge domains associated with one EPG each. The administrator uses the EPG configuration to ensure that traffic from virtual machines or from physical servers is associated with the appropriate bridge domain connected to the appropriate VLAN. For instance, EPG1 defines the mapping of the traffic from VLAN 10 with BD1, the EPG2 maps VLAN 20 to BD2, and so on.

Figure 6: ESGs can be used to aggregate endpoints of different subnets

- 192.168.1.11 on VLAN 10 and 192.168.2.11 on VLAN 20 belong to different subnets and different bridge domains.
- The administrator defines 192.168.1.11 and 192.168.2.11 as belonging to the same ESG.
- Similarly, 192.168.3.11 and 192.168.4.11 are associated to BD3 and BD4 (via EPG3-1 and EPG4-1) respectively, and they both belong to the same ESG.
- With the above configuration, 192.168.1.11 can freely communicate with 192.168.2.11.
- Similarly, 192.168.3.11 can communicate with 192.168.4.11. However, 192.168.1.11 (or 192.168.2.11) cannot communicate with either 192.168.3.11 or 192.168.4.11 without a contract.

Note

The contracts that are used by the EPGs cannot be re-used by the ESGs, and vice versa.
Traffic Filtering from Outside to ESG

The configuration to allow outside to ESG communication is performed by a contract between an L3Out external EPG (l3extInstP) and the ESG as illustrated in the figure below. From the L3Out perspective, there is nothing different between contracts with the ESGs and contracts with the EPGs.

Figure 7: ESG to outside connectivity is implemented using the L3 External EPG

ESG Implementation

This section summarizes how the Cisco APIC programs leaf nodes, when an administrator configures the ESGs.

- Each ESG is associated with a VRF, and the ESG selectors define which endpoints within the VRF belongs to the ESG.
- The VRF (where an ESG is configured) can be configured either in ingress or egress policy enforcement mode.
- Cisco ACI instantiates the ESG configuration on all of the leaf nodes where the associated VRF is deployed.
- When an ESG is configured, all of the BD subnets in the associated VRF are present as static routes to the spine proxy on all of the leaf nodes where that VRF is present.
- ESGs are always deployed with the deployment immediacy of on-demand, and the associated contract rules are programmed only after an endpoint that matches the ESG selectors are learned on the given leaf node.
The contracts between ESGs are programmed as policy-cam rules in the leaf node TCAM just as with the EPGs.

The Class ID used by the ESG is a global pcTag. In some contexts, it is referred to as sclass.

Unlike the EPGs, contracts between ESGs create only security rules. ESGs are not used for network deployment such as subnet deployment, or route leaking.

EPGs, BDs, and VRF constructs must be configured as usual for network forwarding constructs. However, the security definition is moved from an EPG to the ESG where you want to enforce application-centric security. In such scenarios, the functionality of the EPG is to bind a VLAN to interfaces.

Cisco APIC generates a unique number to identify each ESG, just as it does for EPGs. This number is called a pcTag or Class ID. In some contexts, it is referred to as sclass, S-Class, or source class.

Global pcTags are numbers that are unique in the entire fabric regardless of which VRF the ESG (or EPG) belongs to. ESGs are always assigned a global pcTag. Global pcTag numbers range from 16 to 16385.

Local pcTags are numbers that are unique within a VRF scope, which means that Cisco APIC can generate the same number to identify another EPG in a different VRF. Local pcTag numbers range from 16386 to 65535.

pcTag numbers from 1 to 15 are reserved for system internal use.

Selectors

About Selectors

Selectors are configured under each ESG with a variety of matching criteria to classify endpoints to the ESG. Unlike EPGs, which use VLANs to classify endpoints, ESGs can classify endpoints using much more flexible criteria. This concept is similar to micro segmentation EPG (or useg EPG); however, useg EPGs are still tied to one bridge domain while ESGs can contain endpoints across bridge domains.

The supported ESG selectors are:

- **Tag Selector**: Matches endpoints based on policy tags that are assigned to a variety of attributes such as MAC and IP addresses, virtual machine (VM) tags, virtual machine names [vm name], subnet tags, and static endpoint tags. ESG tag selectors can match only policy tags in the same tenant as the ESG. The tag selector is introduced in Cisco APIC Release 5.2(1).

- **EPG Selector**: Matches all endpoints in a specific EPG, and the ESG will inherit all contracts configured under the EPG. This selector allows users to migrate security configurations from EPG to ESG seamlessly. ESGs can use EPG selectors only for EPGs in the same VRF as the ESG. The EPG selector is introduced in Cisco APIC Release 5.2(1).

- **IP Subnet Selector**: Matches endpoints based on the host IP address or IP subnet. Tag selectors provide the same capability via policy tags. The IP subnet selector is introduced in Cisco APIC Release 5.0(1).

- **Service EPG Selector**: Matches a service EPG based on the connector of the device selection policy that represents a service EPG. This selector allows users to map a service EPG to an ESG. The service EPG selector is introduced in Cisco APIC Release 5.2(4).
About Tag Selectors

A tag selector uses policy tags to classify endpoints to a given ESG. A policy tag consists of a key and a value, such as “key: owner, value: john.” Policy tags can be assigned to a variety of user configurable objects, and ACI features can act upon those tags. Security classification using policy tags provides an easy and intuitive operation to add multiple endpoints to the security group (ESG). With policy tags and ESG tag selectors, you can classify your choice of multiple endpoints to an ESG without having to specify each endpoint individually.

ESG tag selectors match only policy tags in the same tenant as the ESG. This isolation ensures that each tenant manages its own resources, and it prevents any unintended policy tag match across tenants. Note, though, that if a user tenant is using a bridge domain or a VRF from the tenant 'common,' the user tenant may not have visibility of some configurations.

Although similar in configuration, policy tags (such as the user-definable tagTag) differ in purpose and usage from annotations (tagAnnotation). For details regarding the differences, see the "Alias, Annotations, and Tags" chapter of the Cisco APIC System Management Configuration Guide, 5.2(x).

ESG tag selectors can match policy tags assigned to the following objects.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>BD Subnet</td>
<td>Subnet under a bridge domain</td>
<td>fvSubnet</td>
</tr>
<tr>
<td>IP Endpoint Tags</td>
<td>Metadata for a host IP address of an endpoint</td>
<td>fvEpIpTag</td>
</tr>
<tr>
<td>MAC Endpoint Tags</td>
<td>Metadata for a MAC address of an endpoint</td>
<td>fvEpMacTag</td>
</tr>
<tr>
<td>VMM MAC Endpoint Tags</td>
<td>Metadata derived via VMM integration</td>
<td>fvEpVmmMacTagDef</td>
</tr>
<tr>
<td>Static Endpoint</td>
<td>Static endpoint</td>
<td>fvStCEp</td>
</tr>
</tbody>
</table>

The following sections describe the use of policy tags for each type of supported object.

Policy Tags for BD Subnets

By matching a policy tag assigned to a bridge domain subnet, a tag selector can classify all IP endpoints within the subnet to a given ESG. Although similar to an IP subnet selector, a policy tag and tag selector allow you to group multiple IP subnets, in addition to different types of parameters, such as specific MAC addresses.

You can also match a subset of a BD subnet by creating a smaller BD subnet with the No Default SVI Gateway option and assigning the policy tag to the smaller subnet. This option allows you to configure a subnet under a BD without deploying the corresponding SVI.

When configuring a tag selector matching a policy tag for BD subnets, consider the following guidelines:

• A tag selector cannot match a policy tag for a BD subnet in another tenant. For instance, if an ESG is in tenant "A" while a BD is configured in tenant "common," a tag selector in tenant "A" cannot match a policy tag for that BD. If subnet-based classification is required in such cases, use an IP subnet selector instead.

• Policy tags under an EPG subnet are not supported for ESG tag selectors. With ESG, there is no need to configure a subnet under an EPG. ESGs are intended to simplify the configuration by decoupling network and security configurations that were formerly combined under EPGs.
A tag selector matching a policy tag for BD subnets classifies only IP addresses of endpoints to the ESG, not MAC addresses. For this reason, the layer 2 traffic limitation with IP-based selectors applies here. See Layer 2 Traffic Limitation with IP-based Selectors, on page 157 for details.

Policy Tags for IP Endpoint Tags

Because the objects representing endpoints (fvCEp, fvIp) are dynamically created and deleted based on the endpoint learning status on ACI switches, it is not practical to assign policy tags directly to such objects. For that reason, a new user-configurable object, an IP endpoint tag, is introduced with Cisco APIC Release 5.2(1) to represent an IP address of an endpoint. The IP endpoint tag object can be created and maintained even before the IP address is learned as an endpoint. Using this object, you can assign policy tags to an IP address of an endpoint at any given time.

An IP endpoint tag has a scope of VRF and represents the host IP address you configured in the given VRF. The tag is simply a metadata or descriptor of an IP address. Configuring an IP endpoint tag does not deploy an endpoint or the specified IP address. If you need to statically deploy an endpoint and its IP address before the endpoint is learned, configure a static endpoint.

When configuring a tag selector matching a policy tag for an IP endpoint tag, consider the following guidelines:

- A tag selector matching a policy tag for an IP endpoint tag classifies only IP addresses of endpoints to the ESG, not MAC addresses. For this reason, the layer 2 traffic limitation with IP-based selectors applies here. See Layer 2 Traffic Limitation with IP-based Selectors, on page 157 for details.

Policy Tags for MAC Endpoint Tags

Because the objects representing endpoints (fvCEp, fvIp) are dynamically created and deleted based on the endpoint learning status on ACI switches, it is not practical to assign policy tags directly to such objects. For that reason, a new user-configurable object, a MAC endpoint tag, is introduced with Cisco APIC Release 5.2(1) to represent a MAC address of an endpoint. The MAC endpoint tag object can be created and maintained even before the MAC address is learned as an endpoint. Using this object, you can assign policy tags to a MAC address of an endpoint at any given time.

A MAC endpoint tag has a scope of BD and represents the MAC address you configured in the given BD. If the MAC address is unique across BDs, you can specify the scope of BD as "any" ("*") and instead provide a VRF as its scope. The tag is simply a metadata or descriptor of a MAC address. Configuring a MAC endpoint tag does not deploy an endpoint or the specified MAC address. If you need to statically deploy an endpoint and its MAC address before the endpoint is learned, configure a static endpoint.

Policy Tags for VMM MAC Endpoint Tags

APIC automatically populates a read-only VMM MAC endpoint policy tag (fvEpVmmMacTagDef) based on information learned through VMM integration. APIC retrieves information about endpoints through VMM integration and then maps that information to policy tags for each endpoint. Similar to a MAC endpoint tag object that you manually create, a VMM MAC endpoint tag object is simply a metadata or descriptor of a MAC address to maintain policy tags even when the corresponding endpoint is not learned in the data-plane yet. ESG tag selectors can use these policy tags to classify the endpoints to ESGs.

The following VMM information is supported by ESG tag selectors.
VMM MAC endpoint tags and the policy tags translated from the VM's name are automatically populated on APIC under Tenant > Policies > Endpoint Tags > Endpoint MAC. To enable this, you must enable Allow Micro-Segmentation when associating a VMM domain to EPGs. These tags are displayed with a suffix "(VMM)" to distinguish them from manually configured MAC endpoint tags. Translated policy tags other than a VM's name, such as a VMware tag, are not generated on VMM MAC endpoint tags until matched by an ESG tag selector. You must also enable Tag Collection under corresponding VMM domains. Each translated policy tag is assigned to the MAC address of an endpoint.

If a MAC endpoint tag is configured with the same MAC address in the same BD as the VMM MAC endpoint tag, only the policy tags from the MAC endpoint tag are used. In this case, the translated policy tags from the VMM MAC endpoint tags are ignored.

Policy Tags for Static Endpoint

By matching a policy tag assigned to a static endpoint that is configured under an EPG, a tag selector can classify the MAC address of the static endpoint to a given ESG. Policy tag support for static endpoints avoids the need for configuring a MAC endpoint tag for the same MAC address as the static endpoint. In fact, these two configurations are incompatible with each other. In other words:

- If policy tags are assigned to the static endpoint, a MAC endpoint tag with the same MAC address in the same BD cannot be configured.
- If a MAC endpoint tag is assigned to a MAC address, policy tags cannot be assigned to a static endpoint with the same MAC address in the same BD.

The static endpoint tag is supported only for static endpoints of type silent-host.

About EPG Selectors

An EPG selector matches an entire EPG to an ESG. Multiple EPGs can be matched to an ESG using EPG selectors, but only if the EPGs are in the same tenant and the same VRF as the ESG. The EPG selector is ideal for grouping multiple VLANs across bridge domains as a single security group (ESG) to simplify the configuration of contracts.

When an EPG is matched to an ESG by an EPG selector, all endpoints in the EPG belong to the ESG and all security configurations are now handled by the ESG.

EPG selectors have the following characteristics:

- Existing contracts under the EPG are inherited by the ESG.
- The EPG cannot consume or provide new contracts
- Intra-EPG isolation is overwritten by intra-ESG isolation within the ESG.
- Preferred Group Membership in the EPG is overwritten by the ESG.
When an EPG is matched to an ESG via an EPG selector, intra-EPG/ESG isolation and Preferred Group Membership configuration under the EPG and ESG must be the same. After the match, the ESG settings overwrite the EPG settings.

The contract inheritance from EPG to ESG enables a seamless migration from the existing EPG security design to the new ESG security design. To simplify the configuration and to fully take advantage of ESG, we recommend that you complete the migration and do not retain EPG inherited contracts for EPG to ESG communication as a permanent configuration. When an ESG has contracts inherited by EPG selectors, APIC raises a fault as a warning and a reminder that the EPG to ESG migration has yet to be completed. See the "ESG Migration Strategy" section for details on migration using EPG selectors.

When an EPG is matched to an ESG by an EPG selector, the EPG's policy control tag (pcTag) is replaced by the ESG's pcTag. The pcTag replacement operation may cause a small transient traffic disruption for endpoints in the EPG. This is the same impact as other pcTag update events that occur with other features such as when configuring shared services (route leaking) with EPGs. Note that the pcTag is not specific to ESGs and is not related to policy tags (tagTag) used by tag selectors. The pcTag is an EPG/ESG identifier for applying contracts in the data-plane.

About IP Subnet Selectors

An IP subnet selector classifies endpoints to an ESG based on IP address. You can configure a host IP address to match a specific endpoint or you can configure a subnet to match multiple IP addresses within the subnet.

An IP endpoint tag selector classifies only IP addresses of endpoints to the ESG, not MAC addresses. For this reason, the layer 2 traffic limitation with IP-based selectors applies here. See [Layer 2 Traffic Limitation with IP-based Selectors](#) for details.

About Service EPG Selectors

Prior to release 5.2(4), you cannot create a contract with a service EPG created through a service graph. There are certain challenges that come with this limitation, such as:

- You can use the **Direct Connect** option to add a permit rule for the traffic from the service EPG to a consumer or provider EPG. However, an EPG that is not a consumer or provider EPG can't communicate with the service EPG unless you also configure a vzAny contract or a preferred group.

- As vzAny includes the service EPG, a vzAny-to-vzAny contract can permit traffic between the service EPG and other EPGs in the VRF. However, this also means that all of the other EPGs in the VRF are able to communicate with the service EPG, whereas you might want to limit only specific EPGs in the VRF to be able to communicate with the service EPGs.

Beginning with release 5.2(4), the service EPG selector for endpoint security groups (ESGs) is now available. This feature allows you to map a service EPG to an ESG and create a contract with that ESG. Using this feature, even if you have a vzAny-to-vzAny permit contract that is configured, you can add a deny contract between the service ESG and other ESGs to allow specific ESGs to communicate with the service ESG.

The following sections provide more information on example configurations with and without using service EPG selectors, and additional information on using service EPG selectors:

- Example Configurations Without Using Service EPG Selectors, on page 146
- Example Configurations Using Service EPG Selectors, on page 150
- Supported and Unsupported Locations for ESGs and Service EPGs, on page 152
- Guidelines and Limitations for Service EPG Selectors, on page 156
Example Configurations Without Using Service EPG Selectors

In order to enable the necessary configurations without using the service EPG selector option introduced in release 5.2(4), you could use the Direct Connect option. The following figure shows an example configuration where the Direct Connect option is in the default (disabled) setting.

The following figure shows an example where the Direct Connect option is enabled. A permit rule is added for the traffic from the service EPG to a consumer or provider EPG.
However, even with the Direct Connect option enabled, an EPG that is not a consumer or provider EPG doesn't have the permit rule with the service EPG, and you cannot add a contract manually.
One possible workaround to this restriction would be to configure a vzAny contract, where the service EPGs are part of the vzAny configuration, as shown in the following graphic.

<table>
<thead>
<tr>
<th>Source EPG</th>
<th>Destination EPG</th>
<th>action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>200</td>
<td>Redirect</td>
</tr>
<tr>
<td>201</td>
<td>200</td>
<td>permit</td>
</tr>
<tr>
<td>200</td>
<td>201</td>
<td>permit</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>Redirect</td>
</tr>
<tr>
<td>101</td>
<td>100</td>
<td>permit</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>permit</td>
</tr>
</tbody>
</table>
However, one consideration with this workaround is that the EPG (class ID 300 in the previous example) can also communicate with other EPGs in the VRF.

A second possible workaround is to configure a preferred group, as shown in the following graphic.
However, one consideration with this second workaround is that other EPGs in the preferred group can communicate with each other without a contract. It could also consume more TCAM resources.

If neither of those workarounds provide a workable solution for your situation, you can use the service EPG selector option available beginning in release 5.2(4), as described in the following section.

Example Configurations Using Service EPG Selectors

Using the service EPG selector, available beginning with release 5.2(4), a service device connector representing the service EPG (LIFCtx) can be mapped to an ESG, which allows you to add a contract with the ESG. In addition, zoning rules that involve service EPGs are inherited when you use the service EPG selector.

The following figure shows an example configuration using the service EPG selector.
Another way that you might use the service EPG selector feature would be to exclude the service device interface in a vzAny-to-vzAny permit contract. In this scenario, vzAny-to-vzAny is used to permit all traffic within a VRF, but you also want to prevent communication with the service device interface, as shown in the following figure.
This section provides information on the supported and unsupported location for ESGs and service EPGs.

Note

A service EPG is internally created in the tenant where the Layer 4 to Layer 7 device is defined.
• **Supported**: The Layer 4 to Layer 7 device and the service EPG-to-ESG mapping are defined in the same tenant.

![Diagram showing EPG consumer, Contract1, EPG provider, Device Selection Policy, L4-L7 Device, Service-EPG Class ID: 101, Service-ESG, and Class ID: 400]

- **Supported**: The Layer 4 to Layer 7 device is in the common tenant and the service EPG-to-ESG mapping is defined in a user tenant. In the example graphic below, the Layer 4 to Layer 7 device in the common tenant is exported to the user tenant `tenant1`, where the service graph is configured.
Unsupported: The Layer 4 to Layer 7 device is in the common tenant and it's shared across multiple tenants, which means that the service EPG-to-ESG mapping is done in multiple user tenants.
Endpoint Security Groups

About Service EPG Selectors

Because it could map the service EPG to different ESGs, which causes conflict, this design is not supported.
Guidelines and Limitations for Service EPG Selectors

Following are the guidelines and limitations for the service EPG selector feature that is introduced in release 5.2(4):

- Although zoning rules that involve service EPGs are inherited, the class ID of the service EPG will be changed to a global class ID because it’s mapped to an ESG that uses a global class ID. Traffic loss will occur when the class ID gets changed for the service EPG.

- All the service device connectors (LifCTX) in the same device using the same bridge domain must be mapped to the same ESG.

For example, assume that you have configured a one-arm mode firewall with PBR service graph, as shown in the following graphic.

In this example, the consumer and provider connectors are in the same bridge domain, using the same service EPG. In this case, both connectors must be mapped to the same ESG. If the connectors using the same service EPG are not mapped to the same ESG, a fault is raised and the service graph deployment will fail.

Note that you can reuse the service device interface for multiple service graph deployments.

- The service EPG and the ESG must be in the same VRF.

- NDO does not support ESGs at this time, so this feature is not supported with NDO.

- Support is available only for Layer 3 PBR with PBR destination in a bridge domain.
 - PBR destination in an L3Out is not supported (contracts can be manually configured with an L3Out EPG)
 - Layer 1/Layer 2 PBR is not supported (Layer 1/Layer 2 device interfaces are not supposed to communicate with servers directly)
Layer 2 Traffic Limitation with IP-based Selectors

With various classification methods in ESG, it is important to understand the difference in classification of IP addresses and MAC addresses. This difference is essentially the same as microsegment (uSeg) EPG criteria.

When a packet is routed by a switch, the forwarding lookup is based on the IP address. When a packet is switched by a switch, the forwarding lookup is based on the MAC address even when the packet has an IP header. Similarly, when a packet is routed by a switch, the contract lookup is based on the IP address. When a packet is switched by a switch, the contract lookup is based on the MAC address even when the packet has an IP header. This behavior affects the contract application based on ESG as follows.

IP-based selectors (such as IP subnet selectors, tag selectors matching policy tags for BD subnets or IP endpoint tag objects) classify only the IP addresses. Such classifications do not take effect for switching traffic. On the other hand, other selectors classify MAC addresses, and such classifications take effect for both switching and routing traffic. This means that a MAC-based selector applies also to an IP address associated to the MAC address, unless a separate IP-based selector overrides it. This behavior is demonstrated in the following three scenarios.

In these scenarios, endpoint EP_A is a member of EPG_A and does not initially belong to any ESG. EP_A’s MAC address is MAC_A and its IP address is IP_A.

Scenario 1:
- MAC_A is matched by a selector of ESG_1
- IP_A is _not_ matched by any ESG
Result: Both MAC_A and IP_A are classified to ESG_1

Scenario 2:
- MAC_A is matched by a selector of ESG_1
- IP_A is matched by a selector of ESG_2
Result: MAC_A is classified to ESG_1
- IP_A is classified to ESG_2

Scenario 3:
- MAC_A is _not_ matched by any ESG
- IP_A is matched by a selector of ESG_2
Result: MAC_A is _not_ classified to any ESG, and still belongs to EPG_A.
- IP_A is classified to ESG_2

This behavior may cause switching traffic (layer 2 traffic) to bypass ESG contracts when IP-based selectors are used, even if the source and destination IP addresses of the traffic belong to different ESGs. To prevent this issue with IP-based selectors, you must use the proxy ARP feature in ACI so that all traffic is handled as routed traffic on ACI switches, even if the source and destination IP addresses are in the same subnet. There are three options for using proxy ARP for this purpose:

- Enable intra-EPG isolation along with proxy ARP on all of the EPGs that provide VLAN-to-interface binding for the ESG endpoints.

- Enable an intra-EPG contract with a permit-all filter, such as the common default contract, on all of the EPGs that provide VLAN-to-interface binding for the ESG endpoints. An intra-EPG contract enables proxy ARP automatically. The reason for a permit-all filter is to ensure that endpoints that are not classified to any ESGs can still communicate with each other within the same EPG. You can use any filters as a default behavior for endpoints that have yet to be classified to ESGs.
- Enable the **Allow Micro-Segmentation** option when associating a VMM domain to the EPGs that provide VLAN-to-interface binding for the ESG endpoints if VMM integration is used. This option automatically enables proxy ARP.

In the case of layer 2 traffic when endpoints in the same subnet (or VLAN) are classified to different ESGs, you may need private VLAN configuration regardless of the layer 2 traffic limitation with IP-based selectors. Private VLAN configuration may be needed when non-ACI switches exist between the endpoints and ACI switches. This is because non-ACI switches may switch the traffic before ACI switches can enforce contracts based on ESGs.

Precedence of Selectors

When choosing selector types, consider whether the traffic will be switched or routed. The tables below show the order of precedence of selectors for each type of traffic.

Table 15: Precedence Order for Switching Traffic

<table>
<thead>
<tr>
<th>Precedence Order</th>
<th>Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tag Selector (Endpoint MAC Tag)</td>
</tr>
<tr>
<td></td>
<td>Tag Selector (Static Endpoint)</td>
</tr>
<tr>
<td>2</td>
<td>Tag Selector (Endpoint VMM MAC Tag)</td>
</tr>
<tr>
<td>3</td>
<td>EPG Selector</td>
</tr>
</tbody>
</table>

Table 16: Precedence Order for Routing Traffic

<table>
<thead>
<tr>
<th>Precedence Order</th>
<th>Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tag Selector (Endpoint IP Tag)</td>
</tr>
<tr>
<td></td>
<td>IP Subnet Selector (host IP)</td>
</tr>
<tr>
<td>2</td>
<td>Tag Selector (BD Subnet)</td>
</tr>
<tr>
<td></td>
<td>IP Subnet Selector (subnet)</td>
</tr>
<tr>
<td>3</td>
<td>Tag Selector (Endpoint MAC Tag)</td>
</tr>
<tr>
<td></td>
<td>Tag Selector (Static Endpoint)</td>
</tr>
<tr>
<td>4</td>
<td>Tag Selector (Endpoint VMM MAC Tag)</td>
</tr>
<tr>
<td>5</td>
<td>EPG Selector</td>
</tr>
</tbody>
</table>

If an object is matched by multiple tag selectors via the same or different policy tags, the object is associated to the tag selector that matched first. Subsequent tag selectors are then ignored. If an object is matched by multiple tag selectors when no tag selector had matched the object previously, no tag selectors take effect until the conflict match is resolved. A fault is raised under the ESG and under the object that is matched by multiple tag selectors.
Contracts

Contracts are the Cisco ACI equivalent of access control lists (ACLs). ESGs can only communicate with other ESGs according to the contract rules. The administrator uses a contract to select the types of traffic that can pass between ESGs, including the protocols and ports allowed. An ESG can be a provider, consumer, or both provider and consumer of a contract, and can consume multiple contracts simultaneously. ESGs can also be part of a preferred group so that multiple ESGs can talk freely with other ESGs that are part of the preferred group.

Supported Contracts relationship:

1. ESG ⇔ ESG
2. ESG ⇔ L3Out EPG
3. ESG ⇔ inband-EPG
4. ESG ⇔ vzAny

Contracts between the ESGs and the EPGs (or uSeg EPGs) are not supported. When an endpoint in an ESG needs to communicate with other endpoints in the EPG, the other endpoints need to be migrated to the ESGs first. vzAny or preferred group can be used as an alternative during the migration. Other contract-related features that are supported in a uSeg EPG, such as contract inheritance, an intra ESG contract, or intra ESG isolation, are also supported in an ESG. The exception is the Taboo Contract, which is not supported in an ESG.

vzAny

In alternative to using specific contracts between ESGs, you can also allow traffic between ESGs using a construct called vzAny.

vzAny represents all of the ESGs and EPGs in the given VRF instance. This also includes the L3Out external EPG (l3extInstP) within a VRF instance. The vzAny construct provides a shorthand way to refer to all the EPGs and ESGs within that VRF instance. The vzAny referral eases management by allowing for a single point of contract configuration for all EPGs and ESGs within a VRF instance, and optimizes hardware resource consumption by applying the contract to this one group rather than to each EPG or ESG individually.
Figure 4 provides an example. If the administrator configures a contract between vzAny and EPG 4-1, in the topology from Figure 2, endpoints 192.168.1.11, 192.168.2.11 (ESG1) and 192.168.3.11 (EPG3-1) can communicate with 192.168.4.11 (EPG4-1).

This does not mean that ESG1 and EPG3-1 belong to the same security zone and 192.168.11 (or 192.168.2.11) can communicate with 192.168.3.11 without a contract. If the desired configuration is to allow any-to-any communication within the VRF instance regardless of an ESG, an EPG, L3Out EPG etc., the user can configure vzAny to provide and consume a contract to allow all traffic instead of disabling Policy Enforcement (Unenforced) in the VRF instance.

In summary, the vzAny construct can be used for providing and (or) consuming a contract in order to enable an ESG to communicate with anybody in the VRF instance using the contract just as it does for an EPG. Even though the contracts between ESGs and the EPGs are not allowed, vzAny contracts can be used to allow traffic between the ESGs and EPGs.

Preferred Groups

A preferred group is an alternative to using explicit contracts between ESGs or using vzAny contracts. The user can also configure the preferred group to enable the communication between ESGs in a VRF instance. Any endpoints in the preferred group can communicate with each other freely.

The user can also use preferred groups to enable ESGs to EPGs communication which can be useful in a migration between an EPG-based security configuration to an ESG-based security configuration.
In the example of the figure above, ESG1 and EPG3-1 are configured to be part of the preferred group of VRF A and the following communications are allowed:

1. ESG 1 and EPG 3-1 can communicate each other since both are included in the preferred group.
2. ESG 1 and EPG 4-1 cannot communicate each other because:
 - EPG 4-1 is not included in the preferred group.
 - Contracts between EPGs and ESGs are not supported.

Refer to the Cisco APIC Basic Configuration Guide for information on configuring preferred groups.

ESG Shared Service (ESG VRF route leaking)

When an endpoint needs a service that is shared by another VRF, there are two things required for the communication to happen. The first thing is the routing reachability. The second thing is security permission. In an EPG, these two are coupled closely in one set of configurations, such as the EPG subnet and contracts. In ESG, these two are decoupled in two different configurations:

1. The configuration of route leaking at the VRF level, which is independent of the ESG contract configuration.
2. The configuration of contracts between the ESGs.

With these two configurations completely decoupled, you do not need to configure a subnet or a subset of the subnet under the ESG as you must do for an EPG.

The following sections explain how to configure route leaking for the bridge domain subnets and external prefixes learned from external routers. After you finish configuring route leaking, you can configure a contract between two ESGs, or an ESG and L3Out EPG, to allow the communication. You must use a contract with a scope larger than VRF, such as global.
The route leaking configuration at the VRF level is supported only for ESGs.

Route Leaking for Internal Bridge Domain Subnets

This section explains how to configure route leaking between VRF instances for a bridge domain subnet to which the ESG endpoints belong to. This is performed simply by specifying a subnet to leak and the target VRF instance in the source VRF instance at the VRF level (instead of at the EPG level like it is done if you do not use ESGs). The subnet that you enter in the route leaking configuration needs to match the bridge domain subnet or be a subset of a configured bridge domain subnet. The route leaked by this configuration is only the subnet with the specified subnet mask. You cannot specify a range of subnets to leak multiple bridge domain subnets in one configuration.

The subnet that you configure under the VRF route leaking configuration can also match subnets used under the EPGs. This can be useful for migration purposes.

Figure 10: Route Leaking with ESGs
The figure above provides an example of VRF leaking between two VRF instances: VRF A and VRF B, where the administrator has configured two ESGs: ESG1 and ESG2.

In addition to having a contract between ESG1 and ESG2 (to allow the traffic), the administrator needs to configure route leaking in the VRF instance as described in the section, Configuring Route Leaking of Internal Bridge Domain Subnets using the GUI.

The configuration of the bridge domain subnet scopes, Advertised Externally and Shared between VRFs, is not required with VRF level route leaking for an ESG. When a leaked bridge domain subnet needs to be advertised by L3Outs in the target VRF instance, you can set Allow L3Out Advertisement to True in the VRF level route leaking configuration. Note that the subnet scopes under a bridge domain are ignored when leaking the subnet to the target VRF instance specified in the VRF level route leaking, and the configuration in the VRF level route leaking takes precedence. Those scopes under a bridge domain are still honored at the same time for other configurations like advertising the subnet from an L3Out in the same VRF instance, route leaking to another VRF instance through a traditional configuration that is through EPG contracts, or both.

Route Leaking for External Prefixes

The configuration of route leaking for the purpose of allowing traffic from a L3Out of a VRF to ESGs of another VRF is referred to as ESG shared L3Out to differentiate from the shared L3Out for EPGs.

In order to leak routes that are learned from a L3Out for an ESG communication, the administrator must configure the route leaking for external prefixes in VRF level. This is done by using IP prefix-list style configuration. The user can configure a specific prefix or can specify a range of prefixes by using the “le” (less than or equal to) or “ge” (greater than or equal to) as you can with an IP prefix-list in a normal router. Unlike bridge domain subnets, there is no restriction that the leaked prefix must be equal to or smaller than an actual route, because external routes are dynamically learned and are not often predictable. Because of the lack of the restriction, a leaked external prefix can specify a range to leak multiple prefixes with one configuration. In the configuration, you must also specify the target VRF.

Please refer to Configuring Route Leaking of External Prefixes Using the GUI for the configuration details.

For an ESG shared L3Out configuration, along with configuring route leaking in the VRF and applying a contract with L3Out EPG, you need to define which prefix belongs to which L3Out EPG. To specify which prefix belongs to which L3Out EPG, you must configure an L3Out subnet with the External Subnets for the External EPG and Shared Security Import Subnet scopes.

Layer 4 to Layer 7 Services

All the Layer 4 to Layer 7 service graph features that are available for the EPGs are supported for the ESGs. The use of service graph between ESGs of different VRFs is not supported.

Note

This note is an implementation detail for advanced user information. If a service graph is attached to a contract between ESGs, the Cisco APIC automatically creates hidden service EPGs where the Layer 4 to Layer 7 service device attaches, just as Cisco APIC does for a service graph between EPGs. Unlike a service graph between EPGs, in the case of ESGs, the hidden service EPGs get a global pcTag.

Beginning with Cisco APIC release 5.0(1), all new service EPGs that are created for Layer 4 to Layer 7 Service deployments with vzAny-to-vzAny contracts will get a global pcTag.
For more information on Layer 4 to Layer 7 services deployment, refer to Cisco APIC Layer 4 to Layer 7 Services Deployment Guide.

Operational Tools

Capacity Dashboard

The **Capacity Dashboard** tab can be used to get a summary of critical fabric resource thresholds. This allows you to see quickly how close you are to reaching the approved scalability limits. Per leaf node usage is also shown, allowing you to see quickly which leaf node may be hitting resource constraints.

1. In the menu bar, choose **Operations > Capacity Dashboard** to launch the Capacity Dashboard troubleshooting tool.

2. In the **Capacity Dashboard** page, choose **Fabric Capacity** for the fabric resources. Scroll down for the **Endpoint Security Groups** tile and the **Global pcTag** tile to determine the available resources.

3. In the **Capacity Dashboard** page, choose **Leaf Capacity** for the leaf usage. Check the **ESG** tab for details on the resource usage for Endpoint Security Groups.

Endpoint Tracker

The **Endpoint Tracker** tab allows you to enter a fabric-attached endpoint IP or MAC address and quickly see the location of this endpoint, the endpoint group to which the endpoint belongs, the VLAN encapsulation used, and if any transitions (flaps) have occurred for this endpoint.

1. In the menu bar, click **Operations > EP Tracker** to launch the Endpoint Tracker troubleshooting tool.

2. In the **End Point Search** field, enter the IP address or MAC address of the endpoint and click **Search**.

3. Click on the endpoint after it is displayed.

The Endpoint Tracker tool displays the date and time of each state transition along with the IP address, MAC address, owning endpoint group, action (attached or detached), physical node, interface, and VLAN encapsulation during the event.

The Endpoint Tracker tool uses an object called the fvCEp to find the endpoints that are learned in the fabric, for an ESG and as well as an EPG. An endpoint that belongs to an ESG is represented by two fvCEp objects, one for the EPG that provides VLAN binding, another for the ESG that provides security. Therefore, the Endpoint Tracker tool shows two entries (one for an EPG, another for an ESG) when used for the ESG endpoints.

Guidelines and Limitations for Endpoint Security Groups

The following guidelines and limitations apply when using endpoint security groups (ESGs):

- Contracts between ESGs and EPGs are not supported.

- The ESG feature is not integrated with Cisco ACI Multi-Site. Other topologies such as Multi-Pod, Multi-Tier, and Remote Leaf are supported.
• An ESG contract can be applied only for routed traffic when IP-based selectors are used. See details in Layer 2 Traffic Limitation with IP-based Selectors, on page 157.

• When using policy tags that are derived through VMM integrations, such as tags from VMware vCenter, you must have a full VMM integration. A read-only VMM integration is not sufficient.

• Taboo contracts are not supported with ESGs.

• ESGs cannot be specified as a source or destination for SPAN.

• Only the -EX and newer generation of leaf nodes are supported for ESG deployment.

• When classifying endpoints from the same VLAN into different ESGs, a private VLAN with an isolated port must be configured in the intermediate non-Cisco ACI switches (if any) to prevent those switches from switching traffic before the traffic reaches Cisco ACI. If the EPG is used for VMM VMware DVS integration, enable the Allow Micro-Segmentation option that automatically enables private VLAN on the VMware port group.

Note

This note explains the differences between an intra EPG contract with a permit-all rule and intra EPG isolation with proxy ARP. The main purpose of both features is the same, which is to enforce all traffic to be routed on Cisco ACI leaf switches by using proxy ARP. Proxy ARP is enabled implicitly for the EPG when an intra EPG contract is used. The difference is when there are two or more endpoints that do not belong to ESGs, but are learned in an EPG. With an intra EPG contract with a permit-all rule, such endpoints can still communicate freely within the same EPG due to the permit-all rule. However, with intra EPG isolation with proxy ARP, such endpoints can no longer communicate even though they are in the same EPG.

• Label configurations are not supported when you add contracts to an ESG.

Beginning with the 5.2(3) release, the following features or configurations are supported:

• Inter-VRF service graphs between ESGs

• ESG shutdown

• Host-based routing/host route advertisement

• ESGs can be specified as a source or destination of the following features:

 • On Demand Atomic Counter

 • On Demand Latency Measurement

• The following features configured at the bridge domain or EPG level are supported with the specified limitations when endpoints in the bridge domain or EPG are classified to an ESG:

 • Endpoint reachability (static routes on bridge domain/EPG)

 • The MAC or IP address specified by this feature can be classified to an ESG only by using an EPG selector.
• The static IP address (static route) and its next hop IP address must belong to the same ESG.

• Anycast service
 • The MAC or IP address specified by this feature can be classified to an ESG only by using an EPG selector.

• Microsoft NLB
 • The MAC or IP address specified by this feature can be classified to an ESG only by using an EPG selector.
 • When leaking the IP address specified by this feature to another VRF instance using VRF-level route leaking, the /32 or /128 route for the IP address must be explicitly leaked using route leaking for internal bridge domain subnets. For more information, see Configuring Route Leaking of Internal Bridge Domain Subnets using the GUI, on page 177.

• First hop security (FHS)
 • FHS is not supported on uSeg EPGs that match an ESG by using EPG selectors. If FHS is required for endpoints that need to move to an ESG from a uSeg EPG, classify those endpoints to an ESG by using other selectors, such as an IP subnet or tag selector, and remove matching criteria from the uSeg EPG. Then, configure FHS on the base EPG.
 • When EPGs are matched to an ESG by using EPG selectors, the FHS binding table and corresponding endpoints are flushed. Traffic will not work until the binding table is refreshed using ARP, DHCP, and so on.

ESG Migration Strategy

Beginning with Cisco Application Policy Infrastructure Controller (APIC) release 5.2(1), EPG selectors allow endpoint security groups (ESGs) to inherit contracts from EPG, simplifying EPG-to-ESG migration. The contract inheritance with EPG selectors enables a seamless and flexible migration by allowing endpoints to keep communicating with other endpoints using inherited contracts even though the other endpoints are not yet migrated to ESGs.

In the following example, we will focus on the EPG to ESG migration of EPG A1 in the following figure. The current communication from EPG A1 is done through contract C1 with EPGs B1, B2, and B3.

Figure 11: Prepare to begin EPG-to-ESG migration

The first step is to create an ESG (ESG A1 in the following figure) and match EPG A1 to it using the EPG selector.
After EPG A1 has been matched to ESG A1, endpoints that belonged to EPG A1 now belong to ESG A1 and contract C1 provided by EPG A1 is inherited by ESG A1. All of the migrated endpoints can still communicate with EPGs B1, B2, and B3 even though these EPGs are not migrated to ESG yet. Remember that without the contract inheritance with EPG selectors, Cisco Application Centric Infrastructure (ACI) does not allow contracts between ESG and EPG. Note that when an ESG inherits contracts via EPG selectors, the original pcTags of the EPGs are replaced by the pcTag of the ESG. This operation may result in a small transient disruption of traffic for endpoints in the EPGs.

At this point, depending on your project schedule, instead of completing the migration of EPG A1, you could configure new contracts between ESG A1 and other ESGs or L3Out external EPGs. However, no more new contracts can be added to EPG A1 because all security configurations should be managed by the ESG. To keep the configuration simple and maintainable, we recommend that you complete the EPG to ESG migration at your earliest convenience. Until EPG A1 stops providing (or consuming) contracts, a fault F3602 is raised as a warning to make you aware of an incomplete migration.

To continue the migration, create ESGs for the EPGs on the other side of contract C1. In this example, EPG A1 is providing contract C1, so those EPGs (EPGs B1, B2, and B3) are consuming contract C1. Migrate these EPGs to new ESGs (ESGs B1, B2, and B3) using EPG selectors. In this example in the following figure, each EPG is mapped to an ESG.
Alternatively, you could combine multiple EPGs into one ESG. For example, you could create one ESG and then configure an EPG selector for both EPG B1 and B2 on the same ESG.

Next, create a new contract (C1’ in the following figure) with the same filters as contract C1. Configure the new ESGs as provider and consumer. This is in preparation to stop providing contract C1 from EPG A1, which is the last step of EPG to ESG migration for EPG A1.

Because contract C1 with the same filters was already inherited by all four ESGs (A1, B1, B2, and B3), the new contract configuration does not deploy any new rules in hardware, so no additional policy TCAM is consumed by creating the new contract.
ESG A1 now has contract C1’ that allows the same communication as C1 with ESG B1, B2, and B3. At this point, we can stop providing contract C1 on EPG A1, allowing the ESG A1 to handle all security, as shown in the following figure.

Figure 15: Remove EPG as provider for the old contract

Keep in mind that EPGs B1, B2, and B3 cannot stop consuming contract C1 yet because contract C1 is also provided by EPGs A2 and A3, which are not yet migrated to ESGs. After EPGs A2 and A3 are migrated to ESGs and are providing contract C1’, all EPGs (A2, A3, B1, B2, and B3) can stop using contract C1 without traffic disruption.

To complete the migration of EPG to ESG, follow the same procedure for contract C2 and any other contracts on an EPG level.

Configuring Endpoint Security Groups

Creating an Endpoint Security Group Using the GUI

In Cisco APIC Release 5.2(1) and later releases, ESG selectors can be policy tags, EPGs, and IP subnets. In earlier releases, only IP subnets are supported.

Step 1
On the menu bar, choose **Tenants** and select the applicable Tenant.

Step 2
In the Navigation pane, choose `tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups`.

Step 3
Right click **Endpoint Security Groups** and select **Create Endpoint Security Group**.

Step 4
In the **STEP 1 > Identity** page of the **Create Endpoint Security Group** dialog box, enter the following information:

a) **Name**: Enter a name for the ESG.

b) (Optional) **Description**: Enter the description of the ESG.
c) VRF: Enter the VRF that will be associated with the ESG.

 d) Click Next.

 The STEP 2 > Selectors page of the Create Endpoint Security Group dialog box opens.

 Note In the following steps, you can create selectors based on policy tags, EPGs, and IP subnets. Alternatively, you can click Next and configure selectors later as described in Configuring Selectors and Tags, on page 171.

Step 5

In the STEP 2 > Selectors page, click the + sign in the Tag Selectors bar if you want to use policy tags as an endpoint selector.

The Create a Tag Selector dialog box opens. Follow the procedure in Creating a Tag Selector, on page 171.

Step 6

In the STEP 2 > Selectors page, click the + sign in the EPG Selectors bar if you want to specify an EPG as an endpoint selector.

The Create an EPG Selector dialog box opens. Follow the procedure in Creating an EPG Selector, on page 171.

Step 7

In the STEP 2 > Selectors page, click the + sign in the IP Subnet Selectors bar if you want to specify an IP subnet as an endpoint selector.

The Create an IP Subnet Selector dialog box opens. Follow the procedure in Creating an IP Subnet Selector, on page 172.

Step 8

Click Next.

The STEP 3 > Advanced (Optional) page of the Create Endpoint Security Group dialog box opens.

Step 9

In the STEP 3 > Advanced (Optional) page, you can configure the following options:

 a) (Optional) To block communication within the ESG, choose Enforced in the Intra ESG Isolation field. The default is Unenforced.

 Unenforced allows all endpoints within the same ESG to communicate freely. Alternatively, if you want to allow only a certain type of communications within the same ESG, you can use an intra-ESG contract instead. See Applying a Contract to an Endpoint Security Group Using the GUI, on page 174 for intra-ESG contract configuration.

 b) (Optional) To include the ESGs as preferred group members, choose Include in the Preferred Group Member field. The default is Exclude.

 Before you select Include, ensure that the Preferred Group is enabled at the VRF level.

 Refer to the Cisco APIC Basic Configuration Guide for more information on Preferred Groups.

 c) (Optional) To inherit contracts from another ESG, click the + sign in the ESG Contract Master bar and choose ESGs from which to inherit contracts.

 If you choose an ESG contract master, the ESG that you are creating will inherit all of the contracts of the chosen ESG. Add an ESG contract master if you want the new ESG to have the same security configuration as an existing ESG.

Step 10

Click Finish.
Configuring Selectors and Tags

Creating a Tag Selector

Use this procedure to create a tag selector for an endpoint security group (ESG).

Step 1
On the menu bar, choose Tenants and select the applicable Tenant.

Step 2
In the Navigation pane, expand tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups > esg_name > Selectors.

Step 3
Right click Tag Selectors and select Create a Tag Selector.

Step 4
In the Create a Tag Selector dialog box, enter the following information:

a) **Tag Key**: Type a tag key or choose an existing tag key from the drop-down list.

b) **Value Operator**: Choose the condition for matching the tag value of an entity for inclusion in the ESG.

The operator choices are:

- **Contains**: Selects an entity whose tag value contains, but might not fully match, the Tag Value.
- **Equals**: Selects an entity whose tag value equals the Tag Value.
- **Regex**: Selects an entity whose tag value matches the regular expression entered in the Tag Value field.

c) **Tag Value**: Type a value or a regular expression, or choose an existing value from the drop-down list.

When composing a regular expression, use the following guidelines:

- The allowed characters are: a-z A-Z 0-9 _,.: ^ $ [] () {} | + * -
- These characters are not allowed: / \ ?
- [0-9]+ matches any number (equivalent to \d+)
- a{0,1} matches zero or one of a (equivalent to ?)
- [0-9]{3} matches exactly a 3 digit number
- dev(1)(2) matches value of dev1 or dev2

d) **Description**: (Optional) A description of the selector.

e) Click Submit.

Creating an EPG Selector

Use this procedure to create an EPG selector for an endpoint security group (ESG).

Step 1
On the menu bar, choose Tenants and select the applicable Tenant.

Step 2
In the Navigation pane, expand tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups > esg_name > Selectors.

Step 3
Right click EPG Selectors and select Create an EPG Selector.
Creating an IP Subnet Selector

Use this procedure to create an IP subnet selector for an endpoint security group (ESG).

Step 1
On the menu bar, choose **Tenants** and select the applicable Tenant.

Step 2
In the Navigation pane, expand `tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups > esg_name > Selectors`.

Step 3
Right click **IP Subnet Selectors** and select **Create an IP Subnet Selector**.

Step 4
In the **Create an IP Subnet Selector** dialog box, enter the following information:

a) **IP Subnet**: This field is set to `IP`.

b) **IP Subnet: operator**: This field is set to `equals`. The selector matches only an IP subnet that exactly matches the specified subnet.

c) **IP Subnet: value**: Type the IP subnet of the endpoints to be included in the ESG.

 You can enter a specific IP (/32, /128, or without a subnet mask) or a subnet match with any mask length.

d) **Description**: (Optional)

e) Click **Submit**.

Creating a Service EPG Selector

Use this procedure to create a service EPG selector for an endpoint security group (ESG).

Step 1
On the menu bar, choose **Tenants** and select the applicable Tenant.

Step 2
In the Navigation pane, expand `tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups > esg_name > Selectors`.

Step 3
Right click **Service EPG Selectors** and select **Create a Service EPG Selector**.

Step 4
In the **Create a Service EPG Selector** dialog box, enter the following information:

a) **Service EPG**: For the service EPG to be included in the ESG, choose from the list of provided service device connectors.

A service device connector (LifCtx), which represents a service EPG, can be mapped to an ESG. The list of service device connectors shown is derived from the connectors defined in the device selection policies, located here:

Tenants > tenant_name > Services > L4-L7 > Device Selection Policies

The service device connectors are presented in the following format:

```
customer or provider

TENANT_NAME/c-CONTRACT_NAME=g-GRAPH_NAME=n-NODE_NAME
```
Creating an Endpoint MAC Tag

Use this procedure to add a policy tag to an endpoint MAC address. The tag can then be used by a tag selector to associate the endpoint MAC address to an endpoint security group (ESG).

Step 1
On the menu bar, choose Tenants and select the applicable Tenant.

Step 2
In the Navigation pane, expand `tenant_name` > Application Profiles > `application_profile_name` > Application EPGs > `epg_name`.

Step 3
In the Work pane, choose the Operational > Client Endpoints tab.

The Client Endpoints table displays the MAC address of each available endpoint along with the IP address associated with it. If an address is already assigned policy tags, those policy tags are displayed in the Policy Tags column for the MAC or IP address.

Step 4
Right-click the row with the desired MAC address and select Configure an Endpoint MAC Tag.

If the MAC address does not appear in the table, it is not yet learned or visible through VMM integration. In this case, expand `tenant_name` > Policies > Endpoint Tags, right-click Endpoint MAC and select Create an Endpoint MAC Tag.

Step 5
In the Create an Endpoint MAC Tag dialog box, enter the following information:

- **Note**: If you selected a MAC address from the Client Endpoints table, the MAC address and BD fields are already populated.

a) **Endpoint MAC Address**: Enter the MAC address to which the tag will be added.

b) **BD Name**: Select an existing bridge domain or create a new bridge domain.

 If you select *, the endpoint MAC tag represents the MAC address in any BDs in the given VRF. In this case, you are also asked to choose the VRF.

c) **Annotations**: (Optional) Click the + symbol to add an annotation key and value, then click the ✓ symbol.

 You can add more than one annotation.

d) **Policy Tags**: Click the + symbol to add a policy tag key and value, then click the ✓ symbol.

 You can add more than one policy tag.

e) **Click Submit**
Creating an Endpoint IP Tag

Use this procedure to add a policy tag to an endpoint IP address. The tag can then be used by a tag selector to associate the endpoint IP address to an endpoint security group (ESG).

Step 1 On the menu bar, choose Tenants and select the applicable Tenant.

Step 2 In the Navigation pane, expand tenant_name > Application Profiles > application_profile_name > Application EPGs > epg_name.

Step 3 In the Work pane, choose the Operational > Client Endpoints tab.

The Client Endpoints table displays the MAC address of each available endpoint along with the IP address associated with it. If an address has already been assigned policy tags, those policy tags are displayed in the Policy Tags column for the MAC or IP address.

Step 4 Right-click the row with the desired IP address and select Configure an Endpoint IP Tag.

If the IP address does not appear in the table, it is not yet learned or visible through VMM integration. In this case, expand tenant_name > Policies > Endpoint Tags, right-click Endpoint IP and select Create an Endpoint IP Tag.

Step 5 In the Create an Endpoint IP Tag dialog box, enter the following information:

If you selected an endpoint from the Client Endpoints table, the IP address and VRF fields are already populated.
a) IP: Enter the IP address to which the tag will be added.
b) Annotations: (Optional) Click the + symbol to add an annotation key and value, then click the ✓ symbol.

You can add more than one annotation.
c) VRF Name: Choose or create the VRF that will contain the endpoint.
d) Policy Tags: Click the + symbol to add a policy tag key and value, then click the ✓ symbol.

You can add more than one policy tag.
e) Click Submit

Applying a Contract to an Endpoint Security Group Using the GUI

Step 1 On the menu bar, choose Tenants and select the applicable Tenant.

Step 2 In the Navigation pane, choose tenant_name > Application Profiles > application_profile_name > Endpoint Security Groups > esg_name.

Step 3 Right click on Contracts and choose the action depending on how the contract is to be deployed.

The options are:

• Add Provided Contract
• Add Consumed Contract
• Add Consumed Contract Interface
• Add Intra-ESG Contract
Note A contract that is consumed or provided by an application EPG cannot be used here for an ESG.

Step 4 In the Add Contract dialog box, perform the following actions:
 a) Enter or select a Contract Name.
 b) (Optional) Choose a QOS policy.
 c) (Optional) Choose a Label.

Step 5 Click Submit.

Creating Endpoint Security Groups and Applying a Contract Using the REST API

Procedure:
<polUni>
 <fvTenant name="t0">
 <fvAp name="ap0">
 <!-- ESG with the name ESG1 and Preferred Group as Exclude -->
 <fvESg name="ESG1" prefGrMemb="exclude">
 <!-- The ESG is associated to VRFA -->
 <fvRsScope tnFvCtxName="VRFA" />
 <!-- provided and consumed contracts -->
 <fvRsProv tnVzBrCPName="provided_contract1" />
 <fvRsCons tnVzBrCPName="consumed_contract2" />
 <!-- Tag Selectors for the ESG -->
 <fvTagSelector matchKey="stage" valueOperator="equals" matchValue="production"/>
 <fvTagSelector matchKey="owner" valueOperator="contains" matchValue="teamA"/>
 <fvTagSelector matchKey="__vmm::vmname" valueOperator="regex" matchValue="web_[0-9]+"/>
 <!-- EPG Selectors for the ESG -->
 <fvEPgSelector matchEpgDn="uni/tn-TK/ap-AP1/epg-EPG1-1"/>
 <fvEPgSelector matchEpgDn="uni/tn-TK/ap-AP1/epg-EPG1-2"/>
 <!-- IP Subnet Selectors for the ESG -->
 <fvEPSelector matchExpression="ip=='192.168.0.1/32'" />
 <fvEPSelector matchExpression="ip=='192.168.1.0/28'" />
 <fvEPSelector matchExpression="ip=='2001:23:45::0:0/64'" />
 </fvESg>
 </fvAp>
 </fvTenant>
</polUni>

Creating Tags and Selectors Using the REST API

Creating an EPG Selector
The EPG selector object (fvEPgSelector) matches the DN of a specific EPG.

<polUni>
The EPG selector can only match an EPG that belongs to the same tenant and VRF as the ESG.

Creating Tags and a Tag Selector

The tag selector object (fvTagSelector) matches tag objects (tagTag) discovered under the following objects:

- fvEpIpTag
- fvEpMacTag
- fvSubnet
- fvStCEp

Note

The tag selector object also matches tag objects under fvEpVmmMacTagDef. However, policy tags under this object are populated through VMM integration, and are not configurable.

This example shows the location of a tagTag object and the fvTagSelector object that will find and match the tag.

As an alternative to matching a tag exactly, a tag can be partially matched or matched using a regular expression using the valueOperator property of the fvTagSelector:

- If the valueOperator property is missing or if it is "equals," then only a tagTag whose value is an exact match is recognized.
- If the valueOperator property is "contains," a match is recognized if the tagTag's value field contains, but might not fully match, the fvTagSelector's matchValue field.
• If the `valueOperator` property is "regex," a match is recognized if the `tagTag`'s value satisfies a regular expression contained in the `fvTagSelector`'s `matchValue` field.

This example shows various matching conditions:

```xml
<fvTagSelector matchKey="name" matchValue="Blue"/>
<fvTagSelector matchKey="name" matchValue="Blue" valueOperator = "equals"/>
<fvTagSelector matchKey="name" matchValue="prod" valueOperator = "contains"/>
<fvTagSelector matchKey="name" matchValue="prod[0-4]" valueOperator = "regex"/>
```

Special Tag Selector for VMM Endpoints

Using a special key, the tag selector object (`fvTagSelector`) matches VMM endpoints by name. The special `matchKey` is "__vmm::vmname" and the `matchValue` is the name of the VM.

This example shows a tag selector that matches the VM named "vmName-Dev" using an exact match:

```xml
<polUni>
  <fvTenant name="ExampleCorp">
    <fvAp name="AP">
      <fvEsg name="esg1">
        <fvTagSelector matchKey="type" matchValue="dev"/>
        <fvTagSelector matchKey="__vmm::vmname" matchValue="vmName-Dev"/>
        <fvRsScope tnFvCtxName="testctx0"/>
      </fvEsg>
    </fvAp>
  </fvTenant>
</polUni>
```

Configuring Route Leaking with Endpoint Security Groups

Configuring Route Leaking of Internal Bridge Domain Subnets using the GUI

Use this procedure to configure route leaking of internal bridge domain subnets.

Before you begin

You must have created the tenant, VRF, bridge domain, and the subnet to be leaked.

1. **Step 1**
 In the Navigation pane, navigate to the Tenant name > Networking > VRFs > Inter- VRF Leaked Routes for ESG > EPG/BD Subnets.

2. **Step 2**
 Right click on the EPG/BD Subnets and select Configure EPG/BD Subnet to leak.

3. **Step 3**
 In the Configure EPG/BD Subnet to leak dialog box, perform the following functions:
 a) **IP**: Enter the bridge domain subnet and its mask to be leaked.
 b) (Optional) **Description**: Enter the description of the EPG or bridge domain subnet.
 c) (Optional) **Allow L3Out Advertisement**: Set to True when this subnet needs to be advertised by L3Outs on another VRF.

4. **Step 4**
 In the Tenant and VRF destinations field, navigate to the far right and click on the + sign.
Step 5

In the **Create Tenant and VRF destination** dialog box, perform the following functions:

a) **Tenant and VRF**: Enter or select the tenant and VRF name.

b) (Optional) **Description**: Enter the description of the destination.

c) **Allow L3Out Advertisement**: Set to **True** or **False**, when you need to change the permission per target VRF. By default, this option is set to **inherit** to retain the same configuration as **Allow L3Out Advertisement** in Step 3.

d) Click **OK**.

Step 6

Click **Submit**.

Configuring Route Leaking of Internal Bridge Domain Subnets using the REST API

Before you begin:

You must have configured the BD subnet to be leaked or the BD subnet that includes the leaked subnet.

Procedure:

```xml
<polUni>
  <fvTenant name="t0">
    <fvCtx name="VRFA">
      <leakRoutes>
        <!-- leak the BD subnet 192.168.1.0/24 with the Allow L3Out Advertisement False (i.e. scope private) -->
        <leakInternalSubnet ip="192.168.1.0/24" scope="private">
          <!-- leak the BD subnet to Tenant t1 VRF VRFB with the Allow L3Out Advertisement configured in the parent scope (i.e. scope inherit) -->
          <leakTo ctxName="VRFB" tenantName="t1" scope="inherit" />
        </leakInternalSubnet>
      </leakRoutes>
    </fvCtx>
  </fvTenant>
</polUni>
```

Configuring Route Leaking of External Prefixes Using the GUI

Use this procedure to configure route leaking of external prefixes.

Before you begin

You must have configured an L3Out in the source VRF and the external prefixes are learned.

Step 1

In the Navigation pane, navigate to the **Tenant name > Networking > VRFs > Inter- VRF Leaked Routes for ESG > External Prefixes**.

Step 2

Right click on the **External Prefixes** and select **Create Leaked External Prefix**.
Step 3 In the **Create Leaked External Prefix** dialog box, perform the following functions:

a) **IP**: Enter prefix to be leaked.

b) (Optional) **Description**: Enter the description of the leaked external prefix.

c) (Optional) **Greater than or Equal (Prefix)**: Enter the minimum prefix length to be matched. This is equivalent to “ge” in IP prefix-lists in a normal router.

d) (Optional) **Less than or Equal (Prefix)**: Enter the maximum prefix length to be matched. This is equivalent to “le” in IP prefix-lists in a normal router.

Step 4 In the **Tenant and VRF destinations** field, navigate to the far right and click on the + sign.

Step 5 In the **Create Tenant and VRF destination** dialog box, perform the following functions:

a) **Tenant and VRF**: Enter or select the tenant and VRF name.

b) (Optional) **Description**: Enter the description of the destination.

c) Click **OK**.

Step 6 Click **Submit**.

Configuring Route Leaking of External Prefixes Using the REST API

Before you begin:

You must have configured an L3Out in the source VRF “VRFA” and external prefixes are learned.

Procedure:

```xml
<polUni>
  <fvTenant name="t0">
    <fvCtx name="VRFA">
      <leakRoutes>
        <!-- leak the external prefixes in the range of 10.20.0.0/17 and 10.20.0.0/30 -->
        <leakExternalPrefix ip="10.20.0.0/16" ge="17" le="30">
          <!-- leak the external prefixes to Tenant t1 VRF VRFB -->
          <leakTo ctxName="VRFB" tenantName="t1" />
        </leakExternalPrefix>
      </leakRoutes>
    </fvCtx>
  </fvTenant>
</polUni>
```

Configuring Layer 4 to Layer 7 with Endpoint Security Groups

Applying Layer 4 to Layer 7 Services to an Endpoint Security Group Using the GUI

All the configurations provided for the deployment of a service graph with EPGs equally apply to the ESGs, the only change required is that instead of associating the contract to EPGs the contract is associated to ESGs. Use this procedure to apply a service graph template for a Layer 4 to Layer 7 service device in unmanaged mode to a contract used by endpoint security groups:
Before you begin

You must have created the following things:

- ESGs
- A service graph template

Step 1
On the menu bar, choose **Tenants > All Tenants**.

Step 2
In the Work pane, double click the tenant's name.

Step 3
In the Navigation pane, expand **Tenant > Services > L4-L7 > Service Graph Templates**.

Step 4
In the Navigation pane, right-click on the **Service Graph Template Name** that you want to apply to the ESGs and choose **Apply L4-L7 Service Graph Template**.

The **Apply L4-L7 Service Graph Template To EPGs** dialog box appears. You will be associating a Layer 4 to Layer 7 service graph template to a contract between the endpoint security groups.

Step 5
Configure a contract in the **Apply L4-L7 Service Graph Template To EPGs** **STEP 1 > Contract** dialog box by entering the appropriate values:

a) Select **Endpoint Security Group** as the endpoint group type.

b) If you are configuring an intra-ESG contract, place a check in the **Configure an Intra-Endpoint Contract** check-box and choose the ESG from the **ESG / Network** drop-down list.

c) If you are using a normal contract instead of intra-ESG contract, select the ESG and network combination for consumer and provider.

d) Create a new contract or choose an existing one by clicking the appropriate radio button in the **Contract Type** field. If you select **Create A New Contract** and want to configure the filters for it, remove the check from the **No Filter (Allow All Traffic)** check-box. Click + to add filter entries and **Update** when complete.

Step 6
Click **Next**.

The **STEP 2 > Graph** dialog appears.

Step 7
In the **your device name Information** section, configure the required fields represented with a red box.

Step 8
Click **Finish**.

You now have applied a service graph template to a contract used by ESGs.

Note
To configure vzAny, select **AnyEPG** as provider and the ESG of interest as consumer, or vice versa in Step 5.c above.

To apply a service graph to a vzAny-to-vzAny contract vzAny-vzAny, select **Endpoint Policy Group (EPG)** as the endpoint group type and select **AnyEPG** as provider and consumer.

Applying Layer 4 to Layer 7 Services to Endpoint Security Groups Using the REST APIs

All the REST API’s provided for the deployment of service graph with the EPGs equally apply to ESGs. However, the contract must be associated to the ESGs.

Please refer to **Layer 4 to Layer 7 REST API examples** for more information.
Security Policies

This chapter contains the following sections:

- ACI Fabric Network Access Security Policy Model (Contracts), on page 181
- Enabling and Viewing ACL Contract and Deny Logs, on page 186

ACI Fabric Network Access Security Policy Model (Contracts)

The ACI fabric security policy model is based on contracts. This approach addresses limitations of traditional access control lists (ACLs). Contracts contain the specifications for security policies that are enforced on traffic between endpoint groups.

The following figure shows the components of a contract.

Figure 16: Contract Components

![Contract Components Diagram]

EPG communications require a contract; EPG to EPG communication is not allowed without a contract. The APIC renders the entire policy model, including contracts and their associated EPGs, into the concrete model in each switch. Upon ingress, every packet entering the fabric is marked with the required policy details. Because contracts are required to select what types of traffic can pass between EPGs, contracts enforce security policies. While contracts satisfy the security requirements handled by access control lists (ACLs) in conventional network settings, they are a more flexible, manageable, and comprehensive security policy solution.
Access Control List Limitations

Traditional access control lists (ACLs) have a number of limitations that the ACI fabric security model addresses. The traditional ACL is very tightly coupled with the network topology. They are typically configured per router or switch ingress and egress interface and are customized to that interface and the traffic that is expected to flow through those interfaces. Due to this customization, they often cannot be reused across interfaces, much less across routers or switches.

Traditional ACLs can be very complicated and cryptic because they contain lists of specific IP addresses, subnets, and protocols that are allowed as well as many that are specifically not allowed. This complexity means that they are difficult to maintain and often simply just grow as administrators are reluctant to remove any ACL rules for fear of creating a problem. Their complexity means that they are generally only deployed at specific demarcation points in the network such as the demarcation between the WAN and the enterprise or the WAN and the data center. In this case, the security benefits of ACLs are not exploited inside the enterprise or for traffic that is contained within the data center.

Another issue is the possible huge increase in the number of entries in a single ACL. Users often want to create an ACL that allows a set of sources to communicate with a set of destinations by using a set of protocols. In the worst case, if N sources are talking to M destinations using K protocols, there might be $N*M*K$ lines in the ACL. The ACL must list each source that communicates with each destination for each protocol. It does not take many devices or protocols before the ACL gets very large.

The ACI fabric security model addresses these ACL issues. The ACI fabric security model directly expresses the intent of the administrator. Administrators use contract, filter, and label managed objects to specify how groups of endpoints are allowed to communicate. These managed objects are not tied to the topology of the network because they are not applied to a specific interface. They are simply rules that the network must enforce irrespective of where these groups of endpoints are connected. This topology independence means that these managed objects can easily be deployed and reused throughout the data center not just as specific demarcation points.

The ACI fabric security model uses the endpoint grouping construct directly so the idea of allowing groups of servers to communicate with one another is simple. A single rule can allow an arbitrary number of sources to communicate with an equally arbitrary number of destinations. This simplification dramatically improves their scale and maintainability which also means they are easier to use throughout the data center.

Contracts Contain Security Policy Specifications

In the ACI security model, contracts contain the policies that govern the communication between EPGs. The contract specifies what can be communicated and the EPGs specify the source and destination of the communications. Contracts link EPGs, as shown below.

`EPG 1 ---------- CONTRACT ---------- EPG 2`

Endpoints in EPG 1 can communicate with endpoints in EPG 2 and vice versa if the contract allows it. This policy construct is very flexible. There can be many contracts between EPG 1 and EPG 2, there can be more than two EPGs that use a contract, and contracts can be reused across multiple sets of EPGs, and more.

There is also directionality in the relationship between EPGs and contracts. EPGs can either provide or consume a contract. An EPG that provides a contract is typically a set of endpoints that provide a service to a set of client devices. The protocols used by that service are defined in the contract. An EPG that consumes a contract is typically a set of endpoints that are clients of that service. When the client endpoint (consumer) tries to connect to a server endpoint (provider), the contract checks to see if that connection is allowed. Unless otherwise specified, that contract would not allow a server to initiate a connection to a client. However, another contract between the EPGs could easily allow a connection in that direction.
This providing/consuming relationship is typically shown graphically with arrows between the EPGs and the contract. Note the direction of the arrows shown below.

EPG 1 \(<------\text{consumes}------->\) CONTRACT \(<------\text{provides}------->\) EPG 2

The contract is constructed in a hierarchical manner. It consists of one or more subjects, each subject contains one or more filters, and each filter can define one or more protocols.

Figure 17: Contract Filters

The following figure shows how contracts govern EPG communications.

Figure 18: Contracts Determine EPG to EPG Communications

For example, you may define a filter called HTTP that specifies TCP port 80 and port 8080 and another filter called HTTPS that specifies TCP port 443. You might then create a contract called webCtct that has two sets of subjects. openProv and openCons are the subjects that contain the HTTP filter. secureProv and secureCons are the subjects that contain the HTTPS filter. This webCtct contract can be used to allow both secure and non-secure web traffic between EPGs that provide the web service and EPGs that contain endpoints that want to consume that service.
These same constructs also apply for policies that govern virtual machine hypervisors. When an EPG is placed in a virtual machine manager (VMM) domain, the APIC downloads all of the policies that are associated with the EPG to the leaf switches with interfaces connecting to the VMM domain. For a full explanation of VMM domains, see the Virtual Machine Manager Domains chapter of Application Centric Infrastructure Fundamentals. When this policy is created, the APIC pushes it (pre-populates it) to a VMM domain that specifies which switches allow connectivity for the endpoints in the EPGs. The VMM domain defines the set of switches and ports that allow endpoints in an EPG to connect to. When an endpoint comes on-line, it is associated with the appropriate EPGs. When it sends a packet, the source EPG and destination EPG are derived from the packet and the policy defined by the corresponding contract is checked to see if the packet is allowed. If yes, the packet is forwarded. If no, the packet is dropped.

Contracts consist of 1 or more subjects. Each subject contains 1 or more filters. Each filter contains 1 or more entries. Each entry is equivalent to a line in an Access Control List (ACL) that is applied on the Leaf switch to which the endpoint within the endpoint group is attached.

In detail, contracts are comprised of the following items:

- **Name**—All contracts that are consumed by a tenant must have different names (including contracts created under the common tenant or the tenant itself).
- **Subjects**—A group of filters for a specific application or service.
- **Filters**—Used to classify traffic based upon layer 2 to layer 4 attributes (such as Ethernet type, protocol type, TCP flags and ports).
- **Actions**—Action to be taken on the filtered traffic. The following actions are supported:
 - Permit the traffic (regular contracts, only)
 - Mark the traffic (DSCP/CoS) (regular contracts, only)
 - Redirect the traffic (regular contracts, only, through a service graph)
 - Copy the traffic (regular contracts, only, through a service graph or SPAN)
 - Block the traffic (taboo contracts)
 - Log the traffic (taboo contracts and regular contracts)
- **Aliases**—(Optional) A changeable name for an object. Although the name of an object, once created, cannot be changed, the Alias is a property that can be changed.

Thus, the contract allows more complex actions than just allow or deny. The contract can specify that traffic that matches a given subject can be re-directed to a service, can be copied, or can have its QoS level modified. With pre-population of the access policy in the concrete model, endpoints can move, new ones can come on-line, and communication can occur even if the APIC is off-line or otherwise inaccessible. The APIC is removed from being a single point of failure for the network. Upon packet ingress to the ACI fabric, security policies are enforced by the concrete model running in the switch.
Security Policy Enforcement

As traffic enters the leaf switch from the front panel interfaces, the packets are marked with the EPG of the source EPG. The leaf switch then performs a forwarding lookup on the packet destination IP address within the tenant space. A hit can result in any of the following scenarios:

1. A unicast (/32) hit provides the EPG of the destination endpoint and either the local interface or the remote leaf switch VTEP IP address where the destination endpoint is present.
2. A unicast hit of a subnet prefix (not /32) provides the EPG of the destination subnet prefix and either the local interface or the remote leaf switch VTEP IP address where the destination subnet prefix is present.
3. A multicast hit provides the local interfaces of local receivers and the outer destination IP address to use in the VXLAN encapsulation across the fabric and the EPG of the multicast group.

Note

Multicast and external router subnets always result in a hit on the ingress leaf switch. Security policy enforcement occurs as soon as the destination EPG is known by the ingress leaf switch.

A miss result in the forwarding table causes the packet to be sent to the forwarding proxy in the spine switch. The forwarding proxy then performs a forwarding table lookup. If it is a miss, the packet is dropped. If it is a hit, the packet is sent to the egress leaf switch that contains the destination endpoint. Because the egress leaf switch knows the EPG of the destination, it performs the security policy enforcement. The egress leaf switch must also know the EPG of the packet source. The fabric header enables this process because it carries the EPG from the ingress leaf switch to the egress leaf switch. The spine switch preserves the original EPG in the packet when it performs the forwarding proxy function.

On the egress leaf switch, the source IP address, source VTEP, and source EPG information are stored in the local forwarding table through learning. Because most flows are bidirectional, a return packet populates the forwarding table on both sides of the flow, which enables the traffic to be ingress filtered in both directions.

Multicast and EPG Security

Multicast traffic introduces an interesting problem. With unicast traffic, the destination EPG is clearly known from examining the packet’s destination. However, with multicast traffic, the destination is an abstract entity: the multicast group. Because the source of a packet is never a multicast address, the source EPG is determined in the same manner as in the previous unicast examples. The derivation of the destination group is where multicast differs.

Because multicast groups are somewhat independent of the network topology, static configuration of the (S, G) and (*, G) to group binding is acceptable. When the multicast group is placed in the forwarding table, the EPG that corresponds to the multicast group is also put in the forwarding table.

Note

This document refers to multicast stream as a multicast group.

The leaf switch always views the group that corresponds to the multicast stream as the destination EPG and never the source EPG. In the access control matrix shown previously, the row contents are invalid where the multicast EPG is the source. The traffic is sent to the multicast stream from either the source of the multicast stream or the destination that wants to join the multicast stream. Because the multicast stream must be in the
forwarding table and there is no hierarchical addressing within the stream, multicast traffic is access controlled at the ingress fabric edge. As a result, IPv4 multicast is always enforced as ingress filtering.

The receiver of the multicast stream must first join the multicast stream before it receives traffic. When sending the IGMP Join request, the multicast receiver is actually the source of the IGMP packet. The destination is defined as the multicast group and the destination EPG is retrieved from the forwarding table. At the ingress point where the router receives the IGMP Join request, access control is applied. If the Join request is denied, the receiver does not receive any traffic from that particular multicast stream.

The policy enforcement for multicast EPGs occurs on the ingress by the leaf switch according to contract rules as described earlier. Also, the multicast group to EPG binding is pushed by the APIC to all leaf switches that contain the particular tenant (VRF).

Taboos

While the normal processes for ensuring security still apply, the ACI policy model aids in assuring the integrity of whatever security practices are employed. In the ACI policy model approach, all communications must conform to these conditions:

- Communication is allowed only based on contracts, which are managed objects in the model. If there is no contract, inter-EPG communication is disabled by default.
- No direct access to the hardware; all interaction is managed through the policy model.

Taboo contracts can be used to deny specific traffic that is otherwise allowed by contracts. The traffic to be dropped matches a pattern (such as, any EPG, a specific EPG, or traffic matching a filter). Taboo rules are unidirectional, denying any matching traffic coming toward an EPG that provides the contract.

With Cisco APIC Release 3.2(x) and switches with names that end in EX or FX, you can alternatively use a subject Deny action or Contract or Subject Exception in a standard contract to block traffic with specified patterns.

Enabling and Viewing ACL Contract and Deny Logs

About ACL Contract Permit and Deny Logs

To log and/or monitor the traffic flow for a contract rule, you can enable and view the logging of packets or flows that were allowed to be sent because of contract permit rules or the logging of packets or flows that were dropped because of:

- Taboo contract deny rules
- Deny actions in contract subjects
- Contract or subject exceptions

- ACL contract permit in the ACI fabric is only supported on Nexus 9000 Series switches with names that end in EX or FX, and all later models. For example, N9K-C93180LC-EX or N9K-C9336C-FX.
- Deny logging in the ACI fabric is supported on all platforms.
Using log directive on filters in management contracts is not supported. Setting the log directive will cause zoning-rule deployment failure.

For information on standard and taboo contracts and subjects, see *Cisco Application Centric Infrastructure Fundamentals* and *Cisco APIC Basic Configuration Guide*.

EPG Data Included in ACL Permit and Deny Log Output

Up to Cisco APIC, Release 3.2(1), the ACL permit and deny logs did not identify the EPGs associated with the contracts being logged. In release 3.2(1) the source EPG and destination EPG are added to the output of ACI permit and deny logs. ACL permit and deny logs include the relevant EPGs with the following limitations:

- Depending on the position of the EPG in the network, EPG data may not be available for the logs.
- When configuration changes occur, log data may be out of date. In steady state, log data is accurate.

The most accurate EPG data in the permit and deny logs results when the logs are focussed on:

- Flows from EPG to EPG, where the ingress policy is installed at the ingress TOR and the egress policy is installed at the egress TOR.
- Flows from EPG to L3Out, where one policy is applied on the border leaf TOR and the other policy is applied on a non-BL TOR.

EPGs in the log output are not supported for uSeg EPGs or for EPGs used in shared services (including shared L3Outs).

Enabling ACL Contract Permit and Deny Logging Using the GUI

The following steps show how to enable contract permit and deny logging using the GUI:

Note
The tenant that contains the permit logging is the tenant that contains the VRF that the EPG is associated to. This will not necessarily be the same tenant as the EPG or its associated contracts.

Step 1
On the menu bar, choose **Tenants > <tenant name>**.

Step 2
In the **Navigation** pane, expand **Contracts**, right-click **Standard**, and choose **Create Contract**.

Step 3
In the **Create Contract** dialog box, perform the following actions:

- **a)** In the **Name** field, type the name for the contract.
- **b)** In the **Scope** field, choose the scope for it (VRF, Tenant, or Global).
- **c)** Optional. Set the target DSCP or QoS class to be applied to the contract.
- **d)** Click the + icon to expand **Subjects**.

Step 4
In the **Create Contract Subject** dialog box, perform the following actions:

Step 5
Enter the name of the subject and an optional description.

Step 6
Optional. From the drop-down list for the target DSCP, select the DSCP to be applied to the subject.

Step 7
Leave **Apply Both Directions** checked, unless you want the contract to only be applied from the consumer to the provider, instead of in both directions.
Step 8 Leave Reverse Filter Ports checked if you unchecked Apply Both Directions to swap the Layer 4 source and destination ports so that the rule is applied from the provider to the consumer.

Step 9 Click the + icon to expand Filters.

Step 10 In the Name drop-down list, choose an option; for example, click arp, default, est, or icmp, or choose a previously configured filter.

Step 11 In the Directives drop-down list, click log.

Step 12 (Optional) Change the Action to be taken with this subject to Deny (or leave the action to the default, Permit).

With Directive: log enabled, if the action for this subject is Permit, ACL permit logs track the flows and packets that are controlled by the subject and contract. If the action for this subject is Deny, ACL deny logs track the flows and packets.

Step 13 (Optional) Set the priority for the subject.

Step 14 Click Update.

Step 15 Click OK.

Step 16 Click Submit.

Logging is enabled for this contract.

Enabling ACL Contract Permit Logging Using the NX-OS CLI

The following example shows how to enable Contract permit logging using the NX-OS CLI.

Step 1 To enable logging of packets or flows that were allowed to be sent because of Contract permit rules, use the following commands:

```bash
configure
tenant <tenantName>
contract <contractName> type <permit>
subject <subject Name>
access-group <access-list> <in/out/both> log
```

Example:

For example:

```bash
apic1# configure
apic1(config)# tenant BDMode1
apic1(config-tenant)# contract Logicmp type permit
apic1(config-tenant-contract)# subject icmp
apic1(config-tenant-contract-subj)# access-group arp both log
```

Step 2 To disable the permit logging use the no form of the access-group command; for example, use the no access-group arp both log command.

Enabling ACL Contract Permit Logging Using the REST API

The following example shows you how to enable permit and deny logging using the REST API. This example configures ACL permit and deny logging for a contract with subjects that have Permit and Deny actions configured.
Security Policies

For this configuration, send a post with XML similar to the following example:

Example:

```
<vzBrCP dn="uni/tn-Tenant64/brc-C64" name="C64" scope="context">
  <vzSubj consMatchT="AtleastOne" name="HTTPSsbj" provMatchT="AtleastOne" revFltPorts="yes" rn="subj-HTTPSsbj">
    <vzRsSubjFiltAtt action="permit" directives="log" forceResolve="yes" priorityOverride="default" rn="rssubjFiltAtt-PerHTTPS" tDn="uni/tn-Tenant64/flt-PerHTTPS" tRn="flt-PerHTTPS" tnVzFilterName="PerHTTPS"/>
  </vzSubj>
  <vzSubj consMatchT="AtleastOne" name="httpSbj" provMatchT="AtleastOne" revFltPorts="yes" rn="subj-httpSbj">
    <vzRsSubjFiltAtt action="deny" directives="log" forceResolve="yes" priorityOverride="default" rn="rssubjFiltAtt-httpFilter" tDn="uni/tn-Tenant64/flt-httpFilter" tRn="flt-httpFilter" tnVzFilterName="httpFilter"/>
  </vzSubj>
  <vzSubj consMatchT="AtleastOne" name="subj64" provMatchT="AtleastOne" revFltPorts="yes" rn="subj-subj64">
    <vzRsSubjFiltAtt action="permit" directives="log" forceResolve="yes" priorityOverride="default" rn="rssubjFiltAtt-icmp" tDn="uni/tn-common/flt-icmp" tRn="flt-icmp" tnVzFilterName="icmp"/>
  </vzSubj>
</vzBrCP>
```

Enabling Taboo Contract Deny Logging Using the GUI

The following steps show how to enable Taboo Contract deny logging using the GUI.

Step 1
On the menu bar, choose Tenants > `<tenant name>`.

Step 2
In the Navigation pane, expand Contracts.

Step 3
Right-click Taboos and choose Create Taboo Contract.

Step 4
In the Create Taboo Contract dialog box, perform the following actions to specify the Taboo contract:

a) In the Name field, type the name for the contract.

b) Optional. In the Description field, type a description of the Taboo contract.

c) Click the + icon to expand Subjects.

Step 5
In the Create Taboo Contract Subject dialog box, perform the following actions:

a) In the Specify Identity of Subject area, type a name and optional description.

b) Click the + icon to expand Filters.

c) From the Name drop-down list, choose one of the default values, such as `<tenant_name>/arp`, `<tenant_name>/default`, `<tenant_name>/est`, `<tenant_name>/icmp`, choose a previously created filter, or Create Filter.
If you chose Create Filter, in the Specify Filter Identity Area, perform the following actions to specify criteria for the ACL Deny rule:

a. Type a name and optional description.

b. Expand Entries, type a name for the rule, and choose the criteria to define the traffic you want to deny.

c. In the Directives drop-down list, choose log.

d. Click Update.

e. Click OK.

Step 6

Click Submit.

Logging is enabled for this Taboo contract.

Enabling Taboo Contract Deny Logging Using the NX-OS CLI

The following example shows how to enable Taboo Contract deny logging using the NX-OS CLI.

Step 1

To enable logging of packets or flows dropped because of Taboo Contract deny rules, use the following commands:

```plaintext
configure
tenant <tenantName>
contract <contractName> type <deny>
subject <subject Name>
access-group <access-list> <both> log
```

Example:

For example:

```plaintext
apic1# configure
apic1(config)# tenant BDMode1
apic1(config-tenant)# contract dropFTP type deny
apic1(config-tenant-contract)# subject dropftp
apic1(config-tenant-contract-subj)# access-group ftp both log
```

Step 2

To disable the deny logging use the no form of the access-group command; for example, use the `no access-group https both log` command.

Enabling Taboo Contract Deny Logging Using the REST API

The following example shows you how to enable Taboo Contract deny logging using the REST API.

To configure taboo contract deny logging, send a post with XML similar to the following example.

Example:

```xml
<vzTaboo dn="uni/tn-Tenant64/taboo-TCttrctPrefix" name="TCttrctPrefix" scope="context">
  <vzTSubj name="PrefSubj" rn="tsubj-PrefSubj"">
    <vzRsDenyRule directives="log" forceResolve="yes" rn="rsdenyRule-default" tCl="vzFilter" tDn="uni/tn-common/flt-default" tRn="flt-default"/>
  </vzTSubj>
</vzTaboo>
```

Viewing ACL Permit and Deny Logs Using the GUI

The following steps show how to view ACL permit and deny logs (if they are enabled) for traffic flows, using the GUI:

Step 1
On the menu bar, choose Tenants > <tenant name>.

Step 2
In the Navigation pane, click on Tenant <tenant name>.

Step 3
In the Tenants <tenant name> Work pane, click the Operational tab.

Step 4
Under the Operational tab, click the Flows tab.
Under the Flows tab, click one of the tabs to view log data for Layer 2 permit logs (L2 Permit) Layer 3 permit logs (L3 Permit), Layer 2 deny logs (L2 Drop), or Layer 3 deny logs (L3 Drop). On each tab, you can view ACL logging data, if traffic is flowing. The data points differ according to the log type and ACL rule; for example, the following data points are included for L3 Permit and L3 Deny logs:

- VRF
- Alias
- Source IP address
- Destination IP address
- Protocol
- Source port
- Destination port
- Source MAC address
- Destination MAC address
- Node
- Source interface
- VRF Encap
- Source EPG
- Destination EPG
- Source PC Tag
- Destination PC Tag
You can also use the Packets tab (next to the Flows tab) to access ACL logs for groups of packets (up to 10) with the same signature, source and destination. You can see what type of packets are being sent and which are being dropped.

Viewing ACL Permit and Deny Logs Using the REST API

The following example shows how to view Layer 2 deny log data for traffic flows, using the REST API. You can send queries using the following MOs:

- acllogDropL2Flow
- acllogPermitL2Flow
- acllogDropL3Flow
- acllogPermitL3Flow
- acllogDropL2Pkt
- acllogPermitL2Pkt
- acllogDropL3Pkt
- acllogPermitL3Pkt

Before you begin

You must enable permit or deny logging, before you can view ACL contract permit and deny log data.

To view Layer 3 drop log data, send the following query using the REST API:

GET https://apic-ip-address/api/class/acllogDropL3Flow

Example:

The following example shows sample output:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<imdata totalCount="2">
    <acllogPermitL3Flow childAction="" dn="topology/pod-1/node-101/ndbgs/acllog/tn-common/ctx-inb/permitl3flow-spctag-333-dpctag-444-sepgname-unknown-depgname-unknown-sip-[100:c000:a00:700:b00:0:f00:0]-dip-[19.0.2.10]-proto-udp-sport-17459-dport-8721-smac-00:00:15:00:00:28-dmac-00:00:12:00:00:25-sintf-[port-channel5]-vrfencap-VXLAN: 2097153" dstEpgName="unknown" dstIp="19.0.2.10" dstMacAddr="00:00:12:00:00:25" dstPcTag="444" dstPort="8721" lcOwn="local" modTs="never" monPolDn="" protocol="udp" srcEpgName="unknown" srcIntf="port-channel5" srcIp="100:c000:a00:700:b00:0:f00:0" srcMacAddr="00:00:15:00:00:28" srcPcTag="333" srcPort="17459" status="" vrfEncap="VXLAN: 2097153"/>
</imdata>
```
Viewing ACL Permit and Deny Logs Using the NX-OS CLI

The following steps show how to view ACL log details using the NX-OS-style CLI `show acllog` command.

The syntax for the Layer 3 command is:
```
show acllog {permit | deny} l3 {pkt | flow} tenant <tenant_name>
vrf <vrf_name> srcip <source_ip> dstip <destination_ip> srcport <source_port>
dstport <destination_port> protocol <protocol> srcintf <source_interface> start-time <startTime>
dest-time <endTime> detail
```

The syntax for the Layer 2 command is:
```
show acllog {permit | deny} l2 {flow | pkt} tenant <tenant_name>
vrf <VRF_name> srcintf <source_interface> vlan <VLAN_number> detail
```

Note

The full syntax of the `show acllog` command is only available on Generation 2 Cisco Nexus 9000 series switches (with names that end in EX or FX or later, such as N9K-C93180LC-EX) and Cisco APIC Release 3.2 or later. With Generation 1 switches (with names that do not end in EX or FX) or Cisco APIC releases before 3.2, the available syntax is as above.

In Cisco APIC 3.2 and later, additional keywords are added to both versions of the command, with the `detail` keyword:
```
[dstEpgName <destination_EPG_name>| dstmac <destination_MAC_address> | dstPcTag <destination_PCTag> | srcEpgName <source_EPG_name> | srcmac <source_MAC_address> | srcPcTag <source_PCTag>]
```

Step 1

The following example shows how to use the `show acllog drop l3 flow tenant common vrf default detail` command to display detailed information about Layer 3 deny logs for the common tenant:

Example:
```
apic1# show acllog deny l3 flow tenant common vrf default detail
SrcPcTag : 49153
DstPcTag : 32773
SrcEpg : uni/tn-TSW_Tenant0/ap-psw0AP0/epg-psw0ctx0BD0epg6
DstEpg : uni/tn-TSW_Tenant0/ap-psw0AP0/epg-psw0ctx0BD0epg5
SrcIp : 16.0.2.10
DstIp : 19.0.2.10
Protocol : udp
SrcPort : 17459
DstPort : 8721
SrcMAC : 00:00:15:00:00:28
DstMAC : 00:00:12:00:00:25
Node : 101
```
Step 2

The following example shows how to use the `show acllog deny l2 flow tenant common vrf tsw0connctx0 detail` command to display detailed information about Layer 3 deny logs for the common tenant:

Example:

```
apic1# show acllog deny l2 flow tenant common vrf tsw0connctx0 detail
```

```
SrcPcTag DstPcTag SrcEPG DstEPG SrcMAC DstMAC Node SrcIntf
  vlan
  32773 49153 uni/tn-TSW uni/tn-TSW 00:00:11:00:00:11 11:00:32:00:00:33 101 port-
  channel8
```

This example shows the output on Generation 2 switches, with Cisco APIC Release 3.2 or later.

Step 3

The following example shows how to use the `show acllog permit l3 pkt tenant <tenant name> vrf <vrf name> [detail]` command to display detailed information about the common VRF ACL Layer 3 permit packets that were sent:

```
apic1# show acllog permit l3 pkt tenant common vrf default detail
```

```
srcIp : 10.2.0.19
dstIp : 10.2.0.16
protocol : udp
srcPort : 13124
dstPort : 4386
srcIntf : port-channel15
vrfEncap : VXLAN: 2097153
pktLen : 112
srcMacAddr : 00:00:15:00:00:28
dstMacAddr : 00:00:12:00:00:25
timeStamp : 2015-03-17T21:31:14.383+00:00
```

This example shows the output on Generation 1 switches, or with Cisco APIC releases before 3.2.

Step 4

The following example shows how to use the `show acllog permit l2 pkt tenant <tenant name> vrf <vrf name> srcintf <s interface>` command to view information about default VRF Layer 2 packets sent from interface port-channel15:

```
apic1# show acllog permit l2 pkt tenant common vrf default srcintf port-channel15
```

```
Node srcIntf pktLen timeStamp
  port-channel15 1 2015-03-17T21:31:14.383+00:00
```

This example shows the output on Generation 1 switches, or with Cisco APIC releases before 3.2.
Data Plane Policing

This chapter contains the following sections:

- Overview of Data Plane Policing, on page 195
- Guidelines and Limitations, on page 196
- Configuring Data Plane Policing for Layer 2 Interface Using the GUI, on page 197
- Configuring Data Plane Policing for Layer 3 Interface Using the APIC GUI, on page 198
- Configuring Data Plane Policing Using the REST API, on page 199
- Configuring Data Plane Policing Using NX-OS Style CLI, on page 201
- Data Plane Policing at the Endpoint Group Level, on page 206

Overview of Data Plane Policing

Use data plane policing (DPP) to manage bandwidth consumption on Cisco Application Centric Infrastructure (ACI) fabric access interfaces. DPP policies can apply to egress traffic, ingress traffic, or both. DPP monitors the data rates for a particular interface. When the data rate exceeds user-configured values, marking or dropping of packets occurs immediately. Policing does not buffer the traffic; therefore, the transmission delay is not affected. When traffic exceeds the data rate, the Cisco ACI fabric can either drop the packets or mark QoS fields in them.

Before the 3.2 release, the standard behavior for the policer was to be per-EPG member in the case of DPP policy being applied to the EPG, while the same policer was allocated on the leaf switch for the Layer 2 and Layer 3 case. This distinction was done because the DPP policer for Layer 2/Layer 3 case was assumed to be per-interface already, hence it was assumed different interfaces might get different ones. While the per-EPG DPP policy was introduced, it was clear that on a given leaf switch, several members could be present and therefore the policer it made sense to be per-member in order to avoid unwanted drops.

Starting with release 3.2, a clear semantic is given to the Data Plane Policer policy itself, as well as a new flag introducing the sharing-mode setting as presented in the CLI. Essentially, there is no longer an implicit behavior, which is different if the Data Plane Policer is applied to Layer 2/Layer 3 or to per-EPG case. Now the user has the control of the behavior. If the sharing-mode is set to shared, then all the entities on the leaf switch referring to the same Data Plane Policer, will share the same hardware policer. If the sharing-mode is set to dedicated then there would be a different HW policer allocated for each Layer 2 or Layer 3 or EPG member on the leaf switch. The policer is then dedicated to the entity that needs to be policed.

DPP policies can be single-rate, dual-rate, and color-aware. Single-rate policies monitor the committed information rate (CIR) of traffic. Dual-rate policers monitor both CIR and peak information rate (PIR) of traffic. In addition, the system monitors associated burst sizes. Three colors, or conditions, are determined by
the policer for each packet depending on the data rate parameters supplied: conform (green), exceed (yellow), or violate (red).

Typically, DPP policies are applied to physical or virtual layer 2 connections for virtual or physical devices such as servers or hypervisors, and on layer 3 connections for routers. DPP policies applied to leaf switch access ports are configured in the fabric access (infra) portion of the Cisco ACI fabric, and must be configured by a fabric administrator. DPP policies applied to interfaces on border leaf switch access ports (l3extOut or l2extOut) are configured in the tenant (fvTenant) portion of the Cisco ACI fabric, and can be configured by a tenant administrator.

The data plane policer can also be applied on an EPG so that traffic that enters the Cisco ACI fabric from a group of endpoints are limited per member access interface of the EPG. This is useful to prevent monopolization of any single EPG where access links are shared by various EPGs.

Only one action can be configured for each condition. For example, a DPP policy can to conform to the data rate of 256000 bits per second, with up to 200 millisecond bursts. The system applies the conform action to traffic that falls within this rate, and it would apply the violate action to traffic that exceeds this rate. Color-aware policies assume that traffic has been previously marked with a color. This information is then used in the actions taken by this type of policer.

For information about traffic storm control, see the Cisco APIC Layer 2 Networking Configuration Guide.

Guidelines and Limitations

The following are the guidelines and limitations for configuring data plane policing:

- The data plane does not police the packets transmitted from CPU and CPU bound packets on ACI fabric access interfaces.

- The Dedicated Policer sharing mode is not supported for Layer 2 interfaces.

The following are guidelines and limitations for EPG policing:

- Feature support begins with switch models ending in EX/FX (example: N9K-C93180YC-EX) and subsequent models.

- Egress traffic policing is not supported on the EPG level policer.

- Policer mode packet-per-second is not supported.

- Policer type 2R3C is not supported.

- Policer is not supported when intra-EPG isolation is enforced in EPG.

- Statistics and considerations for tuning include:

 - Awareness of packets that are dropped/allowed is important to know to mitigate issues or for overuse of resources.

 - Statistics are provided in the GUI using the statistics infrastructure. Statistics are exported through the REST API as for any statistic in the Cisco ACI fabric.

 - Statistics are available on per-EPG member, and are useful if the Data Plane Policer policy is of type dedicated, otherwise the statistics reflect the statistics of all the ports using it on the leaf switch.
• In certain cases, such as when frames goes through FCoE supported devices, these get classified into the no drop FCoE class. In FCoE devices, this can cause drop off packets when the packet length is higher than the allowed 2184 bytes.

Configuring Data Plane Policing for Layer 2 Interface Using the GUI

Before you begin

The tenant, VRF, and external routed network where you configure the Data Plane Policing policy must be already created.

To apply the Layer 2 Data Plane Policing policy, the policy must be added to a policy group and the policy group must be mapped to an interface profile.

Step 1

On the menu bar, choose **Fabric > Access Policies**.

In only the 3.2(1) release, the menu bar path is **Fabric > External Access Policies**

Step 2

In the Navigation pane, choose **Policies > Interface > Data Plane Policing**.

Step 3

Right-click **Data Plane Policing Policing**, and click **Create a Data Plane Policing Policy**.

Step 4

In the **Create a Data Plane Policing Policy** dialog box, in the **Name** field, enter a name for the policy.

Step 5

For **Administrative State**, choose **enabled**.

Step 6

For **BGP Domain Policer Mode**, choose either **Bit Policer** or **Packet Policer**.

Step 7

For **Type**, choose **1 Rate 2 Color** or **2 Rate 3 Color**.

Switch models ending in EX/FX (for example: N9K-C93180YC-EX) and subsequent models do not support **2 Rate 3 Color**.

Step 8

For **Conform Action**, choose an action.

This choice defines an actions for traffic that conforms with certain conditions.

- **Drop**: Drops the packets if the conditions are met.
- **Mark**: Marks the packets if the conditions are met.
- **Transmit**: Transmits the packets if the conditions are met.

Step 9

If for **Conform Action** you chose **Mark**, perform the following substeps:

a) For **Conform mark CoS**, enter the class of service for packets that conformed with the conditions.

b) For **Conform mark dscp**, enter the differentiated services code point (DSCP) for packets that conformed with the conditions.

Step 10

The administrator can configure the CoS and DSCP values in the **Conform** and **Violate** fields.

Step 11

If for **Type** you chose **2 Rate 3 Color**, then for **Exceed Action**, choose an action.

This choice defines an actions for traffic that exceeds certain conditions.

- **Drop**: Drops the packets if the conditions are met.
• **Mark**: Marks the packets if the conditions are met.
• **Transmit**: Transmits the packets if the conditions are met.

Step 12
If for **Exceed Action** you chose **Mark**, perform the following substeps:
 a) For **Exceed mark CoS**, enter the class of service for packets that exceeded the conditions.
 b) For **Exceed mark dscp**, enter the differentiated services code point (DSCP) for packets that exceeded the conditions.

Step 13
For **Violate Action**, choose an action.

This choice defines an actions for traffic that violates to certain conditions.
 • **Drop**: Drops the packets if the conditions are met.
 • **Mark**: Marks the packets if the conditions are met.
 • **Transmit**: Transmits the packets if the conditions are met.

Step 14
If for **Violate Action** you chose **Mark**, perform the following substeps:
 a) For **Violate mark CoS**, enter the class of service for packets that violated the conditions.
 b) For **Violate mark dscp**, enter the differentiated services code point (DSCP) for packets that violated the conditions.

Step 15
For **Sharing Mode**, choose **Shared Policer**.

Shared Policer mode allows you to apply the same policing parameters to several interfaces simultaneously. The **Dedicated Policer** mode is not supported for Layer 2 interfaces.

Step 16
For **Rate**, enter the rate at which to allow packets are allowed into the system and choose the unit per packet.

Step 17
For **Burst**, enter the number of packets allowed at the line rate during a burst and choose the unit per packet.

Step 18
If for **Type** you chose **2 Rate 3 Color**, perform the following substeps:
 a) For **Peak Rate**, enter the peak information rate, which is the rate above which data traffic is negatively affected, and choose the unit per packet.
 b) For **Excessive Burst**, enter the size that a traffic burst can reach before all traffic exceeds the peak information rate, and choose the unit per packet.

Step 19
Click **Submit**.

Configuring Data Plane Policing for Layer 3 Interface Using the APIC GUI

Before you begin

The tenant, VRF, and external routed network where you configure the Data Plane Policing policy is already created.

The Data Plane Policing policy must be added to a policy group and the policy group mapped to an interface profile to apply the L3 DPP policy.
Step 1
In the Navigation pane, click on Tenant_name > Networking > External Routed Network > Network_name > Logical Node Profiles > Logical Node Profile_name > Logical Interface Profiles, and perform the following actions.

a) Right-click on Logical Interface Profiles, and select Create Interface Profile.
b) In the Create Interface Profile dialog box, in the Name field, enter a name for the profile.
c) Next to Ingress Data Plane Policing Policy, select Create Data Plane Policing Policy.
d) In the Name field, enter a name for the policy.
e) In the Administrative State field, click enabled.
f) Next to Policer Mode, select a button for either Bit Policer or Packet Policer.
g) Next to Type, select a button for 1 Rate 2 Color or 2 Rate 3 Color.

Switch models ending in EX/FX (for example: N9K-C93180YC-EX) and subsequent models don't support 2 Rate 3 Color).

a) The administrator can configure the CoS and DSCP values in the Conform and Violate fields.
b) In the Sharing Mode field, select the policer mode.

Note: Shared Policer Mode allows you to apply the same policing parameters to several interfaces simultaneously.

c) Next to the Burst, Excessive Burst and Rate fields, select the drop down arrow to set the per packet rate for 1 Rate 2 Color policy type.

Note: For 2 Rate 3 Color policy type, the Peak Rate field is added.

d) Click Submit.

Step 2
Expand the Routed Interfaces table, in the Path field navigate to the interface to apply the policy and perform the following actions:

a) Next to IPv4/Ipv6 Preferred Address, enter a subnet IP address.
b) Click OK.
c) Click on the SVI tab and expand, in the Path field navigate to the interface to apply the policy.
d) Next to Encap, enter the VLAN name.
e) Next to IPv4/Ipv6 Preferred Address, enter a subnet IP address.
f) Click OK.
g) Expand the Routed Sub-Interfaces tab, and follow the same configuration steps as for the Routed Interfaces.
h) Click OK. This completes DPP configuration for L3.

Configuring Data Plane Policing Using the REST API

To police the Layer 2 traffic coming in to the leaf switch:

<!-- api/node/mo/uni/.xml -->
<infraInfra>
 <qosDppPol name="infradpp5" burst="2000" rate="2000" be="400" sharingMode="shared"/>
<!--
List of nodes. Contains leaf selectors. Each leaf selector contains list of node blocks -->
 <infraNodeP name="leaf1">
 <infraLeafS name="leaf1" type="range">
 <infraNodeBlk name="leaf1" from_="101" to_="101"/>
 </infraLeafS>
 </infraNodeP>
</infraInfra>
PortP contains port selectors. Each port selector contains list of ports. It also has association to port group policies

```
<!-- FuncP contains access bundle group policies -->
</infraInfra>
```

To police the Layer 2 traffic going out of the leaf switch:

```
<!-- api/node/mo/uni/.xml -->
infraInfra
qosDppPol name="infradpp2" burst="4000" rate="4000"/>
</infraInfra>
```

```
<!-- api/node/mo/uni/.xml -->
infraInfra
qosDppPol name="infradpp2" burst="4000" rate="4000"/>
</infraInfra>
```

To police the Layer 3 traffic coming in to the leaf switch:

```
<!-- api/node/mo/uni/.xml -->
fvTenant name="dppTenant">
qosDppPol name="gmeo" burst="2000" rate="2000"/>
</fvTenant>
```

```
<!-- api/node/mo/uni/.xml -->
fvTenant name="dppTenant">
qosDppPol name="gmeo" burst="2000" rate="2000"/>
</fvTenant>
```
Configuring Data Plane Policing Using NX-OS Style CLI

Step 1 Configure a Layer 2 port to carry one EPG.

Example:

 apic1# conf t
 apic1(config)# vlan-domain test
 apic1(config-vlan)# vlan 1000-2000
 apic1(config-vlan)# exit
 apic1(config)# leaf 101
 apic1(config-leaf)# interface ethernet 1/10
 apic1(config-leaf-if)# vlan-domain member test
 apic1(config-leaf-if)# exit
 apic1(config-leaf)# exit
 apic1(config)# tenant test1
 apic1(config-tenant)# vrf context v1
 apic1(config-tenant-vrf)# exit
 apic1(config-tenant)# bridge-domain bd1
 apic1(config-tenant-bd)# vrf member v1
 apic1(config-tenant-bd)# exit
 apic1(config-tenant)# application apl
 apic1(config-tenant-app)# epg el
 apic1(config-tenant-app-epg)# bridge-domain member bd1
a) Create a policy-map to apply to the interface.

Example:

```yaml
apic1(config)# policy-map type data-plane qosTest
apic1(config-pmap-dpp)# set burst 2400 mega
apic1(config-pmap-dpp)# set cir 70 mega

apic1(config-pmap-dpp)# set sharing-mode shared
apic1(config-pmap-dpp)# exit
apic1(config)# leaf 101
apic1(config-leaf)# interface ethernet 1/10
apic1(config-leaf-if)# service-policy type data-plane input qosTest
apic1(config-leaf-if)# exit
apic1(config-leaf)# exit
apic1(config)# policy-map type data-plane qosTest2
apic1(config-pmap-dpp)# set cir 78 mega
apic1(config-pmap-dpp)# exit
apic1(config)# leaf 101
apic1(config-leaf)# interface ethernet 1/10
apic1(config-leaf-if)# service-policy type data-plane output qosTest2
apic1(config-leaf-if)# end
```

b) Visualize the policy configured.

Example:

```bash
apic1# show policy-map type data-plane infra
Type data-plane policy-maps
--------------------------
Global Policy
policy-map type data-plane default
  set burst unspecified
  set conform-cos-transmit unspecified
  set conform-dscp-transmit unspecified
  set conform transmit
  set excessive-burst unspecified
  set exceed-cos-transmit unspecified
  set exceed-dscp-transmit unspecified
  set exceed drop
  set mode byte
  set pir 0
  set cir 78 mega
  set type 1R2C
  set violate-cos-transmit unspecified
  set violate-dscp-transmit unspecified
  set violate drop
Global Policy
policy-map type data-plane qosTest
  set burst 2400 mega
  set cir 78 mega
  set conform-cos-transmit unspecified
  set conform-dscp-transmit unspecified
  set conform transmit
```
set excessive-burst unspecified
set exceed-cos-transmit unspecified
set exceed-dscp-transmit unspecified
set exceed drop
set mode byte
set pir 0
set type 1R2C
set violate-cos-transmit unspecified
set violate-dscp-transmit unspecified
set violate drop

Global Policy
policy-map type data-plane qosTest2
 set burst unspecified
 set conform-cos-transmit unspecified
 set conform-dscp-transmit unspecified
 set conform transmit
 set excessive-burst unspecified
 set exceed-cos-transmit unspecified
 set exceed-dscp-transmit unspecified
 set exceed drop
 set mode byte
 set cir 78 mega
 set type 1R2C
 set violate-cos-transmit unspecified
 set violate-dscp-transmit unspecified
 set violate drop

Step 2 Preparation to configure Layer 3 ports.

Example:

apic1# conf t
apic1(config)# vlan-domain l3ports
apic1(config-vlan)# vlan 3000-3001
apic1(config-vlan)# exit
apic1(config)# tenant l3test1
apic1(config-tenant)# vrf context v1
apic1(config-tenant-vrf)# exit
apic1(config-tenant)# leaf 102
apic1(config-leaf)# vrf context tenant l3test1 vrf v1
apic1(config-leaf-vrf)# exit

Configure a physical Layer 3 port
apic1(config-leaf)# interface ethernet 1/20
apic1(config-leaf-if)# no switchport
apic1(config-leaf-if)# vlan-domain member l3ports
apic1(config-leaf-if)# vrf member tenant l3test1 vrf v1
apic1(config-leaf-if)# ip address 56.1.1.1/24
apic1(config-leaf-if)# ipv6 address 2000::1/64 preferred
apic1(config-leaf-if)# exit

Configure base interface for L3 subinterfaces
apic1(config-leaf)# interface ethernet 1/21
apic1(config-leaf-if)# vlan-domain member l3ports
apic1(config-leaf-if)# no switchport
apic1(config-leaf-if)# exit

Configure a Switched Vlan Interface
apic1(config-leaf)# interface vlan 3000
apic1(config-leaf-if)# vrf member tenant l3test1 vrf v1
apic1(config-leaf-if)# ip address 70.1.1.1/24
apic1(config-leaf-if)# ipv6 address 3000::1/64 preferred
apic1(config-leaf-if)# exit
apic1(config-leaf)# exit

a) Configure the policer in the tenant for Layer 3 usage.

Example:

apic1(config)# tenant l3test1
apic1(config-tenant)# policy-map type data-plane iPol
apic1(config-tenant-pmap-dpp)# set cir 56 mega
apic1(config-tenant-pmap-dpp)# set burst 2000 kilo
apic1(config-tenant-pmap-dpp)# exit
apic1(config-tenant)# policy-map type data-plane ePol
apic1(config-tenant-pmap-dpp)# set burst 2000 kilo
apic1(config-tenant-pmap-dpp)# set cir 56 mega
apic1(config-tenant-pmap-dpp)# exit
apic1(config-tenant)# exit

b) Apply policer on a Layer 3 interface

Example:

apic1(config)# leaf 102
apic1(config-leaf)# interface ethernet 1/20
apic1(config-leaf-if)# service-policy type data-plane input iPol
apic1(config-leaf-if)# service-policy type data-plane output ePol
apic1(config-leaf-if)# exit
apic1(config-leaf)# interface ethernet 1/21.3001
apic1(config-leaf-if)# service-policy type data-plane input iPol
apic1(config-leaf-if)# service-policy type data-plane output ePol
apic1(config-leaf-if)# exit
apic1(config-leaf)# interface vlan 3000
c) Show commands for policers used on a Layer 3 interface.

Example:

```
apic1# show tenant l3test1 policy-map type data-plane
Policy in Tenant: l3test1
policy-map type data-plane ePol
  set burst 2000 kilo
  set conform-cos-transmit unspecified
  set conform-dscp-transmit unspecified
  set conform transmit
  set excessive-burst unspecified
  set exceed-cos-transmit unspecified
  set exceed-dscp-transmit unspecified
  set exceed drop
  set mode byte
  set pir 0
  set cir 56 mega
  set type 1R2C
  set violate-cos-transmit unspecified
  set violate-dscp-transmit unspecified
  set violate drop
Policy in Tenant: l3test1
policy-map type data-plane iPol
  set burst 2000 kilo
  set burst unspecified
  set conform-cos-transmit unspecified
  set conform-dscp-transmit unspecified
  set conform transmit
  set excessive-burst unspecified
  set exceed-cos-transmit unspecified
  set exceed-dscp-transmit unspecified
  set exceed drop
  set mode byte
  set pir 0
  set cir 56 mega
  set type 1R2C
  set violate-cos-transmit unspecified
  set violate-dscp-transmit unspecified
  set violate drop
```

d) Show running-config for policers used for Layer 3.

Example:

```
apic1# show runn tenant l3test1
# Command: show running-config tenant l3test1
tenant l3test1
  vrf context v1
  exit
policy-map type data-plane ePol
  set burst 2000 kilo
  set cir 56 mega
  no shutdown
  exit
policy-map type data-plane iPol
  set burst 2000 kilo
  set cir 56 mega
```
Data Plane Policing at the Endpoint Group Level

Data Plane Policing (DPP) can be applied to an endpoint group (EPG). The policing of the traffic is applied to all the EPG members on every leaf switch where the EPG is deployed.

Prior to the 3.2(1) release, each EPG member had its own policer. Beginning in the 3.2(1) release, the behavior is dependent on the sharing-mode property (if configured through the CLI or GUI) on the Data Plane Policer. If that is set to dedicated, then the situation is similar to before the 3.2(1) release. If the sharing-mode is set to shared, then all the members in the same slice using the same Data Plane Policer policy use the hardware policer on the leaf switch.
For example, an EPG has the following members:

- Leaf 101, Eth1/1, vlan-300
- Leaf 101, Eth1/2, vlan-301
- Leaf 102, Eth1/2, vlan-500

In this case, each member will limit the traffic according to the policer, independent from the other members. If the Data Plane Policer has the sharing-mode set to `shared`, then all the members in the same slice above use only one policer on the leaf switch.

The Data Plane Policer works independently on Leaf 101 and Leaf 102 if the sharing-mode is set to `dedicated`. For example:

- Policer-A (100Mbps policing) is applied to EPG1 (Leaf101 e1/1 vlan-300 and e1/2 vlan-301. Leaf 102 e1/2 vlan-500)
- Leaf 101: police traffic at the EPG1 level, which is applied to traffic through E1/1 vlan-300 and E1/2 vlan-301 (100Mbps for each interface).
- Leaf 102: police traffic at the EPG1 level, which is applied to traffic through E1/2 vlan-500 (another 100Mbps for each interface).

The total is up to 300Mbps for EPG1.

If the sharing-mode is set to `shared`, 100Mbps is shared across EPGs using the same policer if the interfaces are in the same slice. For example:

- Policer-A (100Mbps policing) applied to EPG1 and EPG2.
- Leaf 101: police traffic at EPG1 and EPG2 in total.
- Leaf 102: police traffic at EPG1 and EPG2 in total.

The total is up to 200Mbps for EPG1 and EPG2 if the interfaces are in the same slice.

The following are limitations for Data Plane Policing at the EPG level:

- EPG policer feature is supported with switch models that have -EX, -FX, or later suffixes in the product ID.
- Egress traffic policing is not supported for the EPG level policer.
- Policer mode `Packet-per-second` is not supported.
- Policer type 2R3C is not supported in EPG policer.
- Policer is not supported when `intra-EPG isolation-enforced` is applied to the EPG.
- The scale limit allows for 128 EPG policers supported per node.

Configuring Data Plane Policing at the Endpoint Group Level Using CLI

SUMMARY STEPS

1. Define the policer:
DETAILED STEPS

Define the policer:

Example:
```
apic1# conf t
apic1(config)# vlan-domain test
apic1(config-vlan)# vlan 1000-2000
apic1(config-vlan)# exit
apic1(config)# leaf 101
apic1(config-leaf)# interface ethernet 1/10
apic1(config-leaf-if)# vlan-domain member test
apic1(config-leaf-if)# exit
apic1(config-leaf)# exit
apic1(config)# tenant test1
apic1(config-tenant)# vrf context v1
apic1(config-tenant-vrf)# exit
apic1(config-tenant-bd)# vrf member v1
apic1(config-tenant-bd)# exit
apic1(config)# policy-map type data-plane pol1
apic1(config-pmap-dpp)# set burst 2400 mega
apic1(config-pmap-dpp)# set cir 78 mega
apic1(config-pmap-dpp)# exit
apic1(config-tenant)# application ap1
apic1(config-tenant-app)# epg e1
apic1(config-tenant-app-epg)# bridge-domain db1
apic1(config-tenant-app-epg)# service-policy type data-plane poll
apic1(config-tenant-app)# exit
apic1(config-tenant)# exit
apic1(config)# leaf 101
apic1(config-leaf)# interface ethernet 1/10
apic1(config-leaf-if)# switchport trunk allowed vlan 1001 tenant test1 application ap1 epg e1
apic1(config-leaf-if)# exit
apic1(config-leaf)# exit
```

Configuring Data Plane Policing at the Endpoint Group Level Using the APIC GUI

In the **Tenants** pane, click on **Tenant_name > Policies > Protocol > Data Plane Policing**. Right-click on **Data Plane Policing** to Create **Data Plane Policing Policy**.

a) In the **Name** field, enter a name for the policy.
b) In the **Administrative State** field, click **enabled**.
c) Next to **Policer Mode**, select a button for either **Bit Policer** or **Packet Policer**.
d) Next to **Type**, select a button for **1 Rate 2 Color**.
e) For **Conform Action**, select **Drop**, **Mark**, or **Transmit**.
f) The administrator can configure the CoS and DSCP values in the **Conform** and **Violate** fields.
g) Next to the **Burst**, **Excessive Burst** and **Rate** fields, click the drop down arrow to select from the following:

* Bytes/Packets
• Kilo Bytes/Packets
• Mega Bytes/Packets
• Giga Bytes/Packets
• Milli Seconds
• Micro Seconds

Configuring Data Plane Policing at the Endpoint Group Level Using Rest API

To police the traffic coming into the leaf switch:

```xml
<!-- api/node/mo/.xml -->
<polUni>
  <fvTenant name="t1">
    <qosDppPol name="gmeo" burst="2000" rate="2000"/>
    <fvAp name="apl">
      <fvAEPg name="ep1">
        <fvRsDppPol tnQosDppPolName="gmeo"/>
      </fvAEPg>
    </fvAp>
  </fvTenant>
</polUni>
```

Accessing Statistics for the Data Plane Policer at the Endpoint Group Level in the GUI

DPP at the EPG level is used to police traffic at the EPG member level. As such, statistics are integral in ensuring the policer is dropping substantial traffic. Statistics are reported at the EPG member level for fine granularity.

Step 1 In the **Tenants** pane, click on **Tenant_name > Application EPGs > EPG Members > Static EPG Members**.

Step 2 Select a node.

Step 3 Click **Select Stats**.

a) Select a **Sampling Interval** unit of time.

b) From the **Available** policer attributes, use the arrows to choose the attributes. You can select up to two attributes.

c) Click **Submit**.

What to do next

You will see a graphical representation of the DPP statistics.
CHAPTER 15

HTTPS Access

This chapter contains the following sections:

• Overview, on page 211
• Configuring Custom Certificate Guidelines, on page 211
• Modifying the SSL Cipher Configuration, on page 212
• Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI, on page 213
• Enabling Certificate Based Authentication Using the NX-OS CLI, on page 215

Overview

This article provides an example of how to configure a custom certificate for HTTPS access when using Cisco ACI.

Configuring Custom Certificate Guidelines

• Exporting a private key that is used to generate a Certificate Signing Request (CSR) on the Cisco Application Policy Infrastructure Controller (APIC) is not supported. If you want to use the same certificate on multiple servers through a wildcard in the Subject Alternative Name (SAN) field, such as "*cisco.com," by sharing the private key that was used to generate the CSR for the certificate, generate the private key outside of Cisco Application Centric Infrastructure (ACI) fabric and import it to the Cisco ACI fabric.

• You must download and install the public intermediate and root CA certificates before generating a Certificate Signing Request (CSR). Although a root CA Certificate is not technically required to generate a CSR, Cisco requires the root CA certificate before generating the CSR to prevent mismatches between the intended CA authority and the actual one used to sign the CSR. The Cisco APIC verifies that the certificate submitted is signed by the configured CA.

• To use the same public and private keys for a renewed certificate generation, you must satisfy the following guidelines:
 • You must preserve the originating CSR as it contains the public key that pairs with the private key in the key ring.
 • The same CSR used for the originating certificate must be resubmitted for the renewed certificate if you want to re-use the public and private keys on the Cisco APIC.
Do not delete the original key ring when using the same public and private keys for the renewed certificate. Deleting the key ring will automatically delete the associated private key used with CSRs.

- Cisco ACI Multi-Site, VCPlugin, VRA, and SCVMM are not supported for certificate-based authentication.
- Only one SSL certificate is allowed per Cisco APIC cluster.
- You must disable certificate-based authentication before downgrading to release 4.0(1) from any later release.
- To terminate the certificate-based authentication session, you must log out and then remove the CAC card.
- The custom certificate configured for the Cisco APIC will be deployed to the leaf and spine switches. If the URL or DN that is used to connect to the fabric node is within the Subject or Subject Alternative Name field, the fabric node will be covered under the certificate.
- The Cisco APIC GUI can accept a certificate with a maximum size of 4k bytes.

Modifying the SSL Cipher Configuration

SSL ciphers can be enabled, disabled, or removed entirely. Depending on the desired cipher settings, you should understand which exact combination is required. Disabling and enabling ciphers in a manner that results in no ciphers remaining is a misconfiguration and will result in NGINX failing validation.

NGINX uses the OpenSSL cipher list format. For information about the format, go to the OpenSSL website.

Mapping the Cisco APIC SSL Configuration Options to the Cipher List Formatting

Enabling a cipher results in the cipher being written to the NGINX configuration file. Disabling a cipher results in the cipher being written in the NGINX configuration file with a preceding exclamation mark (!). For example, disabling "EEDCH" will cause it to be written as "!EEDCH". Removing a cipher will result in the cipher not being written the NGINX configuration file at all.

As stated in the OpenSSL cipher list format document, "If ! is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reappear in the list even if they are explicitly stated." This can result in the removal of combination ciphers referencing the one that was set to "Disabled," regardless of the ciphers' "Enabled" state.

Example: Disabling "EEDCH," but enabling "EECDH+aRSA+SHA384." This will cause the following to be written to the NGINX configuration file: "!EEDCH:EECDH+aRSA+SHA384". The "!EEDCH" will prevent "EECDH+aRSA+SHA384" from ever being added. This will result in no ciphers being used, which will fail NGINX validation and prevent NGINX updates from succeeding, such as applying custom HTTPS certificates.
Testing the Cipher List Format Before Modifying the Cisco APIC SSL Configuration

Before making any cipher modifications to the Cisco Application Policy Infrastructure Controller (APIC), validate the results of the planned cipher combination using the `openssl ciphers -V 'cipher_list'` command and ensure that the cipher output matches your desired result.

Example:

```
apic# openssl ciphers -V 'EECDH+aRSA+SHA256:EECDH+aRSA+SHA384'
0xC0,0x27 - ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128)
Mac=SHA256
0xC0,0x28 - ECDHE-RSA-AES256-SHA384 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(256)
Mac=SHA384
```

If your tested cipher list results in an error or "no cipher match," do not apply this configuration to the Cisco APIC. Doing so can result in NGINX issues with symptoms including making the Cisco APIC GUI inaccessible and breaking custom certificate application.

Example:

```
apic# openssl ciphers -V '!EECDH:EECDH+aRSA+SHA256:EECDH+aRSA+SHA384'
Error in cipher list
```

Configuring a Custom Certificate for Cisco ACI HTTPS Access Using the GUI

CAUTION: PERFORM THIS TASK ONLY DURING A MAINTENANCE WINDOW AS THERE IS A POTENTIAL FOR DOWNTIME. The downtime affects access to the Cisco Application Policy Infrastructure Controller (APIC) cluster and switches from external users or systems and not the Cisco APIC to switch connectivity. The NGINX process on the switches will also be impacted, but that will be only for external connectivity and not for the fabric data plane. Access to the Cisco APIC, configuration, management, troubleshooting, and such will be impacted. The NGINX web server running on the Cisco APIC and switches will be restarted during this operation.

Before you begin

Determine from which authority you will obtain the trusted certification so that you can create the appropriate Certificate Authority.

Step 1
On the menu bar, choose Admin > AAA.

Step 2
In the Navigation pane, choose Security.

Step 3
In the Work pane, choose Public Key Management > Certificate Authorities > Create Certificate Authority.

Step 4
In the Create Certificate Authority dialog box, in the Name field, enter a name for the certificate authority.

Step 5
In the Certificate Chain field, copy the intermediate and root certificates for the certificate authority that will sign the Certificate Signing Request (CSR) for the Cisco APIC.

The certificate should be in Base64 encoded X.509 (CER) format. The intermediate certificate is placed before the root CA certificate. It should look similar to the following example:
Step 6 Click **Submit**.

Step 7 In the **Navigation** pane, choose **Public Key Management > Key Rings**.

Step 8 In the **Work** pane, choose **Actions > Create Key Ring**.

The key ring enables you to manage a private key (imported from external device or internally generated on APIC), a CSR generated by the private key, and the certificate signed via the CSR.

Step 9 In the **Create Key Ring** dialog box, in the **Name** field, enter a name.

Step 10 In the **Certificate** field, do not add any content if you will generate a CSR using the Cisco APIC through the key ring. Alternately, add the signed certificate content if you already have one that was signed by the CA from the previous steps by generating a private key and CSR outside of the Cisco APIC.

Step 11 In the **Modulus** field, click the radio button for the desired key strength.

Step 12 In the **Certificate Authority** field, from the drop-down list, choose the certificate authority that you created earlier, then click **Submit**.

Step 13 In the **Private Key** field, do not add any content if you will generate a CSR using the Cisco APIC through the key ring. Alternately, add the private key used to generate the CSR for the signed certificate that you entered in step 10.

Note Do not delete the key ring. Deleting the key ring will automatically delete the associated private key used with CSRs.

If you have not entered the signed certificate and the private key, in the **Work** pane, in the **Key Rings** area, the **Admin State** for the key ring created displays **Started**, waiting for you to generate a CSR. Proceed to step 14.

If you entered both the signed certificate and the private key, in the **Key Rings** area, the **Admin State** for the key ring created displays **Completed**. Proceed to step 23.

Step 14 In the **Navigation** pane, choose **Public Key Management > Key Rings > key_ring_name**.

Step 15 In the **Work** pane, choose **Actions > Create Certificate Request**.

Step 16 In the **Subject** field, enter the common name (CN) of the CSR.

You can enter the fully qualified domain name (FQDN) of the Cisco APICs using a wildcard, but in a modern certificate, we generally recommend that you enter an identifiable name of the certificate and enter the FQDN of all Cisco APICs in the **Alternate Subject Name** field (also known as the SAN – Subject Alternative Name) because many modern browsers expect the FQDN in the SAN field.

Step 17 In the **Alternate Subject Name** field, enter the FQDN of all Cisco APICs, such as "DNS:apic1.example.com,DNS:apic2.example.com,DNS:apic3.example.com" or "DNS:*example.com".

Step 18 Fill in the remaining fields as appropriate.

Note Check the online help information available in the **Create Certificate Request** dialog box for a description of the available parameters.

Step 19 Click **Submit**.

Inside the same key ring, the **Associated Certificate Request** area is now displayed with the **Subject**, **Alternate Subject Name** and other fields you entered in the previous steps along with the new field **Request**, which contains the
content of the CSR that is tied to this key ring. Copy the content from the Request field to submit the content to the same certificate authority that is tied to this key ring for signing.

Step 20 In the Navigation pane, choose Public Key Management > Key Rings > key_ring_name.

Step 21 In the Work pane, in the Certificate field, paste the signed certificate that you received from the certificate authority.

Step 22 Click Submit.

Note If the CSR was not signed by the Certificate Authority indicated in the key ring, or if the certificate has MS-DOS line endings, an error message is displayed and the certificate is not accepted. Remove the MS-DOS line endings.

The key is verified, and in the Work pane, the Admin State changes to Completed and is now ready for use in the HTTP policy.

Step 23 On the menu bar, choose Fabric > Fabric Policies.

Step 24 In the Navigation pane, choose Pod Policies > Policies > Management Access > default.

Step 25 In the Work pane, in the Admin Key Ring drop-down list, choose the desired key ring.

Step 26 (Optional) For Certificate based authentication, in the Client Certificate TP drop-down list, choose the previously created Local User policy and click Enabled for Client Certificate Authentication state.

Step 27 Click Submit. All web servers restart. The certificate is activated, and the non-default key ring is associated with HTTPS access.

What to do next

You must remain aware of the expiration date of the certificate and take action before it expires. To preserve the same key pair for the renewed certificate, you must preserve the CSR as it contains the public key that pairs with the private key in the key ring. Before the certificate expires, the same CSR must be resubmitted. Do not delete or create a new key ring as deleting the key ring will delete the private key stored internally on the Cisco APIC.

Enabling Certificate Based Authentication Using the NX-OS CLI

To enable Certificate Based authentication:

Example:

```
To enable CAC for https access:
configure terminal
comm-policy default
https
client-cert-ca <ca name>
client-cert-state-enable
To disable:
configure terminal
comm-policy default
https
no client-cert-state-enable
no client-cert-ca
```

Additional ACI Security Features

This chapter contains the following sections:

- Additional Security Features, on page 217
- Restricting Infra VLAN Traffic, on page 217
- Turning Off Generated Session Log Files in APIC, on page 218

Additional Security Features

The following are a list of security features currently supported in ACI but documented in other configuration guides found at https://www.cisco.com/c/en/us/support/cloud-systems-management/application-policy-infrastructure-controller-apic/tsd-products-support-series-home.html:

- For **Contract** configuration see the *Cisco APIC Basic Configuration Guide, Release 3.x* and the *Operating Cisco Application Centric Infrastructure*.

- For **EPG Communication Rules** see the *Use vzAny to Automatically Apply Communication Rules to all EPGs in a VRF* Knowledge-Based article.

- For **In-Band and Out-of-Band Management Access** see the *Cisco APIC and Static Management Access* Knowledge-Based article, and the *Cisco APIC Layer 4 to Layer 7 Services Deployment Guide, Release 2.2(3)*.

- For **Intra-EPG Isolation Enforcement** see the *Cisco ACI Virtualization Guide, Release 3.0(1)*.

- For **Traffic Storm Control** see the *Cisco APIC Layer 2 Networking Configuration Guide*.

Restricting Infra VLAN Traffic

For stronger isolation between hypervisors in the fabric, you can restrict Infra VLAN traffic to only network paths specified by Infra security entry policies. When you enable this feature, each leaf switch limits Infra VLAN traffic from compute nodes to allow only VXLAN traffic. The switch also limits traffic to leaf nodes to allow only OpFlex, DHCP/ARP/ICMP, and iVXLAN/VXLAN traffic. APIC management traffic is allowed on front panel ports on the Infra VLAN.

This feature is disabled by default. To enable the feature, perform the following steps:
Turning Off Generated Session Log Files in APIC

This section describes how turn off the generated logs in APIC. If you have configured any sort of monitoring for your fabric, you will see the following log file:

Body of session record log example:
From-127.0.0.1-client-type-REST-Success

To turn off the generated session log files in APIC, perform the following steps:

Step 1 On the menu bar, choose ADMIN > AAA.
Step 2 In the AAA pane, click Security.
Step 3 In the User Management – Security pane, verify that the default Management Settings pane is chosen.
Step 4 In the Include Refresh in Session Records field, uncheck the box to disable the generated session log files.
Step 5 Click Submit.
Step 6 Click Submit Changes.
INDEX

A
ACL deny logging 189–190
ACL permit and deny logs 192
ACL permit logging 187–188
assign 53
 AV Pairs 53
 AV pair 52–53

B
bad Cisco AV pairs 55
best practice 53
 AV Pairs 53

C
certificate authority 213
configuring 24, 26–27, 29, 67–68, 213
 custom certificate 213
 DUO LDAP Proxy Provider 68
 DUO RADIUS Proxy Provider 67
 local user 24, 26–27, 29
Contract permit logging 187–188
Contract permit logs 192
creating 56, 58, 60–61, 63, 65
 ACS 61
 APIC 58, 60–61, 65
cisco-av-pair 63
 LDAP 63, 65
 Login Domain 56
 RADIUS 58, 61
 TACACS+ 60–61
 Windows Server 63

E
external authentication server 52–53

L
local user 23

M
missing Cisco AV pairs 55

N
node rule 39

P
permit logging 191, 193

R
remote user 54
remote user role 20–21

T
Taboo Contract deny logging 189–190
Taboo Contract deny logs 192
Taboo Contract drop logging 190