afran]n
CISCO.

[]
g
-
=
(1
H-
.-
z
(-1
(1
i
&

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

First Published: 2026-01-29
Last Modified: 2026-01-29

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

CHAPTER 1

Feature overview

This section contains the following topics:

* Overview, on page 1

» Workflow definition features, on page 1
* States, on page 6

* Operation state overview, on page 9
* Switch state overview, on page 11

* Sleep state, on page 12

* Inject state, on page 13

* ForEach state, on page 13

* Parallel state, on page 15

* Callback state, on page 15

» State data, on page 16

Overview

Workflows help you automate business processes in a standardized manner, bridging the gap between expressing
and modelling business logic.

Workflow definitions are written based on the Serverless Workflow pecification. For CWM, only a subset of
the full specification is supported. This chapter describes all the supported features and gives practical examples
for many of them.

Workflow definition features

A new workflow can be defined in JSON format. The structure of the workflow definition is described in the
Serverless Workflow specification.

The supported high-level components are as follows:
*id
* name
* description

* version

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md

Feature overview |
. Toplevel fields

* start

* retries

* eITors

* functions
* states

* metadata

Toplevel fields

Table 1: Toplevel fields

Parameter Description
id Unique identifier for the workflow.
name Workflow name.
version Workflow version based on Semantic Versioning.
specVersion Version of the Serverless Workflow specification release this definition
adheres to. The current CWM implementation corresponds to the 0.9
specification.
description Workflow description text.
start State to be executed first.
Example:
{
"id": "MyWorkflow",
"version": "1.0.0",
"specVersion": "0.9",
"name": "My Workflow",
"description": "My Workflow Description",
"start": "SomeState",
"states": [],
"functions": [],
"retries":[]

}

Retry definitions

Retry definitions are policies that can be assigned to workflow activities to control how the workflow engine
deals with retries in the event of failure.

The following properties of retry definitions are supported.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#retry-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#error-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Function-Definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Workflow-States
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Workflow-Metadata
https://semver.org/

| Feature overview
Error definitions .

Table 2: Retry definitions

Parameter Definition

name Definition name.

delay Time delay between retry attempts in ISO 8601 format, for example
"PT30S" for a 30 second delay.

maxAttempts Maximum number of attempts. Set to 0 for infinite retries. For no retries,
setto 1.

maxDelay Maximum amount of delay between retry attempts. Uses ISO 8601 format.

multiplier Used to multiply delay value, if provided before each retry attempt. This

is a float value. For example, if the initial delay is 30 seconds, and the
multiplier is 1.5, the retries will increase by 50% each time.

Example:

"retries": [
{
"name": "Default",
"delay": "PT1M",
"maxAttempts": 5,
"multiplier": 1.2
"maxDelay": "PT3M"

Error definitions

Error definitions describe errors that can occur during workflow execution. Whilst the serverless specification
supports referencing an external file (JSON) that lists the errors, CWM will only handle errors defined in the
Workflow definition.

The following properties of error definitions are supported.

Table 3: Error definitions

Parameter Definition

name Definition name.

code Error code that could be returned. Currently, this field is not used for error
matching.

description Should describe the error message. This description is used to match against
the error returned by activities.

\)

Note The Serverless Workflow specification doesn't have an option to specify an error message. This means that
currently the description is being used for matching against errors.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

. Function definitions

Feature overview |

Example:
"errors": [
{
"name": "My Custom Error",
"code": O,
"description": "Specific Error Message"

Function definitions

Function definitions describe the functions available for the workflow to execute and the name of the adapter
and activity that should be invoked by the engine when that function is invoked. While the Serverless Workflow
specification supports various types of functions, CWM supports only those custom type functions that map

to activities exposed via Adapters.

The following properties of function definitions are supported.

Table 4: Function definitions

Parameter Definition
name Name of function definition.
operation Defines the adapter name and activity name that should be invoked by the
engine. Format is <adapter name>.<activity name>. For example: The
NSO Adapter has an activity called RestconfGet. An operation for this
would be the name of the activity as registered in the worker, such as
RestconfGet. Note that this name is case-sensitive.
metadata Allows modelling of information beyond the core definition of the
Serverless Workflow specification. The "worker" key is used to define
which Taskqueue the activities will be executed on. CWM supports the
concept of Workers that execute an Activity and are assigned Taskqueues
that they listen to. To schedule an activity to run, the workflow engine
places the activity on a Taskqueue. A worker process picks up the tasks
to execute from the Taskqueue and executes the activity.
Example:
"functions": [
{
"name": "NSO.RestconfGet",
"operation": "restconf Get"
"metadata": {
"worker": "defaultWorker"
}
} 4
{
"name": "NSO.RestconfPut",
"operation": "restconf Put"
"metadata": {
"worker": "defaultWorker"

}
}I

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Feature overview
SubFlowRef definitions [

"name": "NSO.RestconfPost",
"operation": "restconf Post"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfPatch",
"operation": "restconf Patch"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfDelete",
"operation": "restconf Delete"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.SyncFrom",
"operation": "device SyncFrom"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "REST.Post",
"operation": "rest Post"
"metadata": {
"worker": "defaultWorker"

SubFlowRef definitions

SubFlowRef definitions are used for invoking child workflows within a parent workflow. With child workflows,
you can:

* Separate the parent workflow code and workers from the child workflow code and workers.

* Split the workload done by the workflow into smaller chunks for better separation of event history. This
is especially helpful when your workflow is intended to spawn large numbers of activity executions.

The following properties of subrlowref definition are supported:

Table 5: SubFlowRef Properties

Parameter Description

workflowld Child workflow unique id.

version Child workflow version.

invoke Specifies if the child workflow should be invoked sync or async. Default is
sync, which means workflow execution should wait until the child workflow
completes.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

. States

Feature overview |

Parameter Description
onParentComplete If invoke is async, specifies if child workflow execution should terminate or
continue when parent workflow completes. Default is terminate.
Example:
"states": [

States

{
"end": true,
"name": "SpawnChildWorkflow",
"type": "operation",
"actions": [
{
"subFlowRef": {
"version": "1.0",
"workflowId": "subtest",
"invoke": "sync",
"onParentComplete": "terminate"

States define the building blocks of workflow execution logic. Different types of states provide control flow
logic to the Execution Engine and also allow you to define which activities to execute.

Common state properties

The following properties are common to all states.

For any given state, you can only have one transition or end object. At least one must be present.

Table 6: Common state properties

Parameter Definition

name State name.

type Supported types are: "operation", "switch", "sleep”, "inject",
"foreach".

transition Next transition of workflow - see below for further details. Not
applicable to SwitchSate. For switch state, the transition option is
defined on a per condition basis.

end If the workflow should end after this state - see below for further
details. Not applicableto SwitchSate. For switch state, the end option
is defined on a per condition basis.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Feature overview

Compensation

Transition

End

Compensation .

Parameter Definition

stateDataFilter Filter data input and output for the state - not applicable to "sleep”
state.

onErrors Defines error handling for a given state, see below for further details.

Can match based on Error Definition and control transition/end based
on matched error including Compensation.

usedForCompensation If t rue, this state is used to compensate another state. Default: false.

compensatedBy Unique name of state which is responsible for compensation of this
state. State identified here, is executed if "compensate" is set to true
for transition/end property.

Compensation lets you define ways to undo the work done as part of a workflow. For each state, you can
define a compensation state. If, during execution, a condition is reached where compensation logic should be
executed, a compensate flag can be set when defining a transition or end. The flag will result in executing
states that are to be usedForCompensation. Refer to the Workflow Serverless specification for more information:
Workflow compensation.

In CWM, each state marked for compensation is added to a LIFO (Last In First Out) queue.

The Serverless Workflow specification supports defining transition either as a string or as an object with
further properties. The current CWM implementation supports the object format and the nextstate and
compensate properties only.

Table 7: Transition

Parameter Definition

nextState The name of state that workflow will transition to next.

compensate If set to true, triggers workflow compensation before next transition is
taken. Default: false.

The Serverless Workflow specification supports defining end either as a string or as an object with further
properties. The current CWM implementation supports the object format and the nextstate property only.

Table 8: End states

Parameter Definition

terminate Boolean value to define if this state should terminate the workflow.

compensate If set to true, triggers workflow compensation before execution completes.
Default: false.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-compensation

. stateDataFilter

stateDataFilter

onErrors

Feature overview |

State Data Filters allow you to define input and output data filters. Input Data filters allow you to select data
that is required. Output Data filters are applied before transitioning to the next state, allowing you to filter
data to be passed into the next state. More information on State Data Filters can be found in the Serverless
Workflow specification. Both the input and output filters are workflow expressions defined in jq. If no filters
are specified, then all data is passed.

Table 9: stateDataFilter

Parameter Definition
input Input filter jq expression.
output Output filter jq expression.
Example:
"states": [
{
"name": "stepl",
"type": "operation",
"stateDataFilter" : {
"input": "${ . }"
"output": "${ . }"
}
"transition": {
"nextState": "downloadImage"
}
} 4
{
"name": "step2",
"type": "operation",
"end": {
"terminate": "true"

}

The onErrors property for a state defines errors that may occur during state execution and how they should
be handled. You can find more information about onErrors in the Serverless Workflow documentation.

Table 10: onErrors

Parameter Definition

errorRef or errorRefs Define either a single errorDef or array of ErrorDefs to match for this
state.

transition Next transition of workflow if the error returned in state matches any of
the error description in errorRef/errorRefs. Only transition or end can
be defined.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#State-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#State-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-expressions
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Error-Definition

| Feature overview
Operation state overview .

Parameter Definition
end The workflow should end if the error returned in state matches any of
the error description in errorRef/errorRefs. Only transition or end can
be defined.
Example:
"onErrors": [
{
"errorRef": "My Custom Error",
"and" {
"terminate": true
"compensate": true

Operation state overview

The serverless workflow specification permits operation states to define sets of actions to be executed in
sequence or parallel. CWM supports execution of actions in sequence only.

An specification defines invocation of three different types of services:

* Execution of function definition. This is the only type of service that CWM currently supports.

* Execution of another workflow definition as a child workflow. This is not supported in the current
implementation.

* Referencing events that may be "produced" or "consumed". This is not supported in the current
implementation.

Action
Action definition specifies the function that should be executed for this state. The following properties are
supported:
Parameter Description
name Action name.
functionRef Object which defines the name of the function to be executed, and optionally
arguments to pass into the activity the function points to. See below for
further details.
retryRef Name of retry definition defined globally. For example, default.
sleep Object that optionally defines time to sleep either before or after action
execution. See below for further details.
actionDataFilter Filter to control what data should be passed to action, how to filter the results
returned by action, and where to store the filtered results in the global state
data. See below for further details.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Feature overview |
. functionRef

functionRef
Parameter Description
refName Name of function referencing the function definition.
arguments Arguments to be passed to the function. This can be a JSON object with complex
structure. For Adapter activities, the structure has to be JSON, as follows:
{
"input": {
} 4
"resource": {
}
}
actionDataFilter
For detailed information on actionDataFilter with examples, see see this Serverless Workflow specification
section.
Parameter Description
fromStateData Workflow expression in jq that filters data from state data to pass into
function.
useResults Boolean flag to control whether data returned from function execution
should added/merged into state data output.
results Workflow expression in jq that filters the data returned from function
execution. Ignored if useResults is false. Default: true.
toStateData Workflow expression defines state data where the results should be
added/merged. If not specified, results merged at top level.
sleep

Sleep specifies the amount of time to to pause before or after executing a workflow function.

Parameter Description

before Amount of time to sleep before function is executed in ISO 8601 format e.g.
"PT30S" - sleep for 30 seconds.

after Amount of time to sleep after function is executed in ISO 8601 format e.g.
"PT30S" - sleep for 30 seconds.

"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "stepl",
"functions": [
{
"name": "NSO.RestconfPost",
"operation": "RestconfPost"

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Action-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Action-data-filters

| Feature overview
Switch state overview .

] r

"retries": [

{

"name": "Default",
"maxAttempts": 5,
"delay": "PT30S",
"multiplier": 1.1

] r

"states": [
{
"name": "stepl",
"type": "operation",
"sleep": {
"before": "PTIM"
}I
"actions": [
{
"retryRef": "Default",
"name": "showVersion",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/devices/device=${ .deviceName
}/live-status/tailf-ned-cisco-ios-stats:exec/any",
"data": "{\"input\": {\"args\": \"show version\"}}"
}
}
}I
"actionDataFilter": {
"results": "${ if (.data) then .data |
fromjson.\"tailf-ned-cisco-ios-stats:output\".result else null end }",
"toStateData": "${ .showVersionPreCheck }"
}
}
]I
"end": {
"terminate": "true"

Switch state overview

Switch states enable you to define decision points to route the workflow to a given path based on certain
conditions. The Serverless Workflow specification supports both data-based conditions and event-based

conditions. CWM supports data-based conditions only.

dataConditions

The data condition property of Switch state is an array of conditions that are evaluated by the Execution
engine. The Execution engine will select the first condition it matches and proceed along that path. If there

are subsequent conditions that also match, they will be ignored.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#switch-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Switch-State-Data-Conditions

. defaultCondition

Feature overview |

Parameter Description

name Condition name.

condition Workflow expression in jq that represents the condition. Must evaluate to
true/false

transition Next transition of workflow if the condition matches.

end The workflow should end if the condition matches.

You can provide only the transition object or the end object. At least one must be present.

defaultCondition

The default condition that is applied if none of the conditions match.

Parameter Description

transition Next transition of workflow if no conditions are matched.
end The workflow should end if condition matches.

You can provide only the transition object or the end object. At least one must be present.

"name": "ConditionName",
"type": "switch",
"dataConditions": [
{
"name": "IsTrue",
"condition": "${ true }",
"transition": {
"nextState": "TrueState"
}

"name": "IsFalse",
"condition": "${ false }",
"transition": {
"nextState": "FalseState"
}
}
] 4
"defaultCondition": {
"end": {
"terminate": true

}

Sleep state

Sleep state pauses workflow execution for a given duration.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Sleep-State

| Feature overview

Inject state .

Parameter

Description

duration

Duration the workflow should sleep for in ISO8601 format. For example,
PT1M results in workflow sleeping for 1 minute.

"name":

"type" .
"duration":

"Sleep3Minutes",
"sleep",
"PT3M",

"transition": {

"nextState":

}

Inject state

"NextState"

Use Inject state to inject static data into the State Data.

Parameter Description
data JSON object added to State Data.
{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "HelloWorld",
"states": [
{
"name": "HelloWorld",
"type": "inject",
"data": {
"name": "Cisco",
"message": "Hello World"
b
"stateDataFilter":{
"output": "${ .message + \" from \" + .name + \"!\" }"
b
"and": {
"terminate": "true"

ForEach state

}

ForEach state allows you to define a set of actions to execute for each element in an array or list defined in

State Data. For example, for each device in device array, check that the devices are in sync. While the serverless
workflow specification defines support for Parallel and Sequential execution of actions, current implementation
only supports sequential execution of actions for each element in array.

Parameter

Description

inputCollection

Workflow expression in jq that points to an array in State Data.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Inject-State
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#ForEach-State

. ForEach state

Feature overview |

Parameter Description
iterationParam Name of the parameter that can be referenced in action for each data
element.
outputCollection Workflow expression in jq that points to an array in State Data that
the result will be appended to. If array doesn't exist, it will be created.
{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "InjectData",
"functions": [
{
"name": "HelloWorld",
"operation": "HelloWorld"
}
] 4
"states": [
{
"name": "InjectData",
"type": "inject",
"data": {
"people": [
{
"Firstname": "Peter",
"Surname": "Parker"
} 4
{
"Firstname": "Thor",
"Surname": "Odinson"
} 4
{
"Firstname": "Bruce",
"Surname": "Banner"
}
]
} 4
"transition": {
"nextStat": "SayHelloToEveryone"

"name": "SayHelloToEveryone",
"type": "foreach",
"inputCollection": "${ .people }",
"iterationParam": "person",
"outputCollection": "${ .messages }",
"actions": [
{
"name": "SayHello",
"functionRef": {
"refName": "HelloWorld",
"arguments": {

"name": "${ .person.Firstname + \" \" +

1,
"end": {
"terminate": "true"

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

.person.Surname }"

| Feature overview
Parallel state .

Parallel state

Parallel state allows you to define a collection of branches that are executed in parallel. Each branch in a state
can define its own set of actions. Once the execution has completed, the parallel branches are joined into
current path based on the completionType attribute.

The completionType attribute can define two values:

* a110f: All branches must complete execution before state can transition/end. This is the default value.

* atLeast: State can transition/end if the number of branches specified in atLeast has completed execution.
If completionType attribute is "atLeast™, numCompleted must also be set.

Parameter Description

completionType Define how to evaluate completion of state based on branch execution.
"allof" Or "atLeast". Default: "a110£".

numCompleted If completionType is "atLeast", this value must be specified. Defines
the minimum number of branches that must be completed for the execution
to proceed.

Branches

Following is a list of branches that are to be executed in parallel state. For more information on branches, see
the Serverless Workflow Specification documention on the Parallel State Branch, https://github.com/
serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch.

Parameter Description

name Name of branch.

actions Actions to execute for this branch. A branch can support an array of actions.
The definition for each action is the same as for Operation state type.

Callback state

Callback state allows workflow designers to introduce manual tasks (human intervention points) into their
workflows. Within Callback, the action property defines a function call that triggers an external activity/service
(note that stating the function call is required for this state). Once the action executes, the callback state waits
for a CloudEvent (defined via the eventre fproperty), which indicates the completion of the manual decision
by the called service.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#parallel-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch

Feature overview |
. State data

Parameter | Description Type Required

name Unique State name. Must follow the Serverless string yes
Workflow Naming Convention

type State type string yes
action | Defines the action to be executed object yes
eventRef | References a unique callback event (Form ID) in the | string yes

defined workflow events

transition | Next transition of the workflow after callback event | string or object |yes (if end is not defined)
has been received

end Is this state an end state boolean or yes (if transition is not
object defined)

)

Note According to the Serverless workflow spec, you need to include the action parameter for the callback state,
although it is not required for triggering the task itself (the callback event).

State data

State data plays an important role during the lifecycle of the workflow. A state can filter data, inject data, and
add data. Jq plays an important role in data filtering, creation and manipulation. For more information on how
data can be handled, see the Serverless Workflow specification.

When creating workflows in CWM, the following data management rules apply:
* Initial data passed into workflow execution is passed into State data as input.
* Data output from the last executed state is workflow output.
» If no State Input Filter is specified, all the data is passed into the state.
* If no State Output Filter is specified, all the data is passed into the next state.
» Workflow expressions in jq allow you to filter and manipulate data.

* Actions also allow for filtering data and also, if return data from action should be merged back into state
data.

» Filters must return JSON objects. If a jq workflow expression results in a string literal, this will result in
an error.

» When working with jq, it is highly recommended to use https://jqplay.org/ to test the jq expressions.
Alternatively, you can download jq locally and use it for testing.

Visualize workflow logic

In CWM, choose Design > Wor kflows, click on a wor kflow name, then click the Designer tab to see a
graphical representation of a created workflow.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-data
https://jqplay.org/

| Feature overview

Visualize workflow logic .

The Designer view lets you trace the workflow's task sequences, decision points, and dependencies, helping
you to ensure that the workflow is correctly structured.

Design > Workflows
CreateL3VPN o valid Back [Run |

Details Designer

Code Split

© start
checksync NSO
checkSync NSO

«|> Sync From Or Create VPN

Should Sync From

© sync From
syncFrom NSO Should Cr. Should Create VPN

syncFrom NSO

@© Create VPN

createVPN NSO

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Feature overview |
. Visualize workflow logic

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

CHAPTER 2

Workflow Designer

This section contains the following topics:

» Workflow Designer, on page 19

Workflow Designer

Overview

Toolbhox

The Workflow Designer is a low-code visual environment for building and managing workflows using
drag-and-drop interactions. It provides a graphical representation of workflows where states, activities, and
subflows are arranged within a directed graph. The Designer supports direct manipulation of workflow elements
to define sequencing, nesting, and error-handling. Workflow definitions are created and modified through
drag-and-drop operations, context menu actions, and keyboard interactions, reducing the need for manual
configuration.

The Designer lets you:
* add states and activities,
* define how they connect,
* control sequencing and branching,

+ and adjust layout so the graph is easy to understand.

The canvas shows a background grid and uses alignment aids to help you arrange elements cleanly. You can
reposition and reorder elements at any time to refine the visual workflow without changing execution logic.

The Workflow Designer toolbox provides the set of elements that can be used to build workflows. Toolbox
items are dragged onto the design canvas and dropped into valid locations in the workflow graph.

At a high level, the toolbox includes:
States: used to define workflow structure and execution flow. The list of states supported includes eight types:

* Callback

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

. Properties drawer

Workflow Designer |

* Event

* Foreach

* Inject

* Operation

* Parallel

* Sleep

* Switch
Activities: adapter activities (workflow actions) that run within a state. The set of available activities is
populated dynamically based on the adapters installed in CWM.

Wor kflows (Subwor kflows): workflows that can be embedded within a state. Available workflows are those
already defined in CWM and can be used to modularize and reuse workflow logic.

Events: predefined event types that can be used to trigger or react to specific conditions within a workflow.
The available event types are provided by the system and depend on the configured event sources.

Properties drawer

The Workflow Designer provides a context-sensitive properties drawer on the right-hand side of the screen.
This drawer is used to configure both the workflow itself and individual workflow elements, and its contents
change based on what is currently selected in the canvas.

When the workflow is selected, the drawer displays global workflow settings. These settings align with the
Serverless Workflow specification (v0.8) and are organized into tabs such as data handling, timeouts, errors,
retries, and other workflow-level options.

When a state is selected, the drawer updates to show configuration options specific to that state type. The
available tabs and fields depend on the selected state and correspond to the properties defined for that state
in the Serverless Workflow specification.

When an activity or subflow is selected, the drawer presents a different set of options relevant to that element.
For example, activity configuration may include parameters such as state data mapping or form selection for
human intervention tasks.

All fields in the drawer include inline descriptions and helper text, allowing users to understand and configure
options directly in the UI without needing to refer to external documentation.

Visual aids and layout

The designer’s grid and alignment helpers let you:
» visually align elements,
* maintain a clean layout,

» and clearly follow how workflow logic flows from one state to the next.

The canvas also supports zooming and navigation to make working with large or complex workflows easier:

* You can zoom in and out of the workflow graph to focus on details or view the overall structure.

* On macOS, zooming can be performed using a two-finger pinch gesture on the touchpad.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Workflow Designer

Designer views

Designer views .

* A center / reset view control is available to quickly return to the default view of the workflow, centering
the graph (including the start state) in the canvas.

These tools help users stay oriented and keep workflows readable as they grow.

The Workflow Designer provides three view modes, accessible from the tabs in the top-left corner:

* Graph: Displays the visual workflow graph and is used for drag-and-drop design and layout.
* Code: Displays the code of the workflow definition, allowing direct editing.

* Split: Displays the graph and code views side by side, enabling users to see visual changes reflected in
the workflow code and vice versa.

These views allow users to work visually, directly in code, or with both representations at the same time,
depending on their preference or use case.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Workflow Designer |
. Designer views

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

CHAPTER 3

Create a workflow tutorial

This section contains the following topics:

* Create a workflow — tutorial, on page 23

Create a workflow — tutorial

This chapter shows you how you can structure a workflow based on a simple example that uses the operation
and switch states to create a VPN service in Cisco NSO for some simulated devices. We go through the
example workflow definition part by part to give you an idea how you can use different definition components
in creating your original workflows.

If you need full information on how workflows can be defined, refer to the Serverless Workflow specification.

Example workflow overview

The goal of this example workflow is to automatically create a VPN service for Cisco NSO devices.

First, we point to the devices in the data input and then try to perform the NSO check-sync operation on them.
Then, depending on the result:

» If a device is not in sync with NSO, we push the device to perform a sync-from, and only then try to
create a VPN for it;

« If it is in sync, we don't perform sync-from but directly create a VPN for the device.

If all the steps are executed successfully, CWM reports workflow execution completion and diplays the final
data input. The results are visible in Cisco NSO, too. If the execution engine encounters errors while performing
a step, it uses the specified retry policy. If errors persist beyond the retry limits, the execution engine ends
the execution with a Failed status.

Go through the sections below to understand how data input, functions, states, actions, and data filters are
defined.

Provide data input

The workflow definition usually includes some input data at the beginning of the JSON file. While the provided
data is not part of the workflow, it is referred to within the workflow definition and can also be updated

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md

Create a workflow tutorial |
. Define top-level parameters and functions

between states, if such a data update is defined. For more details, see Workflow data input in the Serverless
Workflow Specification.

In this example, we'll only need to provide two user-defined devicename JSON object keys and values, which
are the names of the test devices in the local NSO instance, and the nsoresource key, where we specify which
CWM resource we will be using in the workflow. The workflow data input in JSON should look like this:

{

"deviceOName": "ceO",
"devicelName": "cel",
"nsoResource": "NSOLocal"

}

Define top-level parameters and functions

A workflow definition starts with the required workflow id key. Among other keys, specversion is also

required, defining the Serverless Workflow specification release version. The start key defines the name of
the workflow starting state, but it is not required.

In the functions key, you pass in Cisco NSO adapter activity name as function name, adapter activity ID as
function operation, and provide the worker name under metadata: worker key:

{
"id": "CreateL3VPN",
"name": "Create Layer3 VPN",
"start": "start",
"version": "1.0",
"functions": [
{
"name": "NSO.RestconfPost",
"metadata": {
"worker": "cisco.nso.v1.0.1"
}l
"operation": "cisco.nso.v1l.0.l.restconf.Post"
}
]I
"description": "Create an L3 VPN for MPLS devices",
"specVersion": "0.9"

}

\}

Note

Effectively, what you do under functions is you provide the workflow with the IDs of any activities as they
are defined in the Cisco NSO adapter and presented in its main. go file. Also, under metadata you provide
the name of the worker that will execute any actions that refer to the defined function.

Specify retry policy

With the retries key, you define the retry policies for state actions in the event that an action fails. Multiple
retry policies can be specified under this key and they are reusable across multiple defined state actions.

"retries": [
{
"name": "Default",
"maxAttempts": 4,
"delay": "PT5S",

"multiplier": 2

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-data-input

| Create a workflow tutorial
Define states .

"name": "Custom",
"maxAttempts": 2,
"delay": "PT30S",
"multiplier": 1

Note Asyou can see, the befault policy assumes that a failed action will be retried up to 4 times with an increasing

delay between attempts: 5, 10, 20, 40 seconds between consecutive retries.

Define states

Workflow states are the building blocks of a workflow definition. In the present quickstart example, we will
be using the operation and switch states, but others are possible. You can check them in detail in the Workflow
states section of the Serverless specification.

Operation state

"states": [

{

"name": "start",

"type": "operation",

"stateDataFilter": ({
"input": "${ . }"

}I

"actions": [],

"transition": {
"nextState": "syncFromOrCreateVPN"
}

]
Inside the operation state, apart from state name and type, you define:

* stateDataFilter: Point to the data input defined at the beginning of the example JSON file. In the input
parameter, we state ${ . }, which is a jq expression that means: "use the whole of the data input existing
at this point of workflow execution".

A

Note For more information on how jq expressions are used in workflows, see the
Workflow expressions chapter in the Serverless Workflow specification.

* actions: Specify the function to be used by the action, and two basic arguments: input and config.
Read more in the subsection below.

* transition Or end: Point to the next state to which the workflow should transition after executing the
present one. If there are no more steps to be executed, use end.

Switch state
{

"name": "syncFromOrCreateVPN",

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-states
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-states
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-expressions
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#End-Definition

Create a workflow tutorial |
. Specify actions

"type": "switch",
"dataConditions": [
{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 != \"in-sync\"
else null end }",
"transition": {
"nextState": "syncFrom"
}
}I
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 == \"in-sync\"
else null end }",
"transition": {
"nextState": "createVPN"

}
Inside the swi tch state, apart from state name and type, you define:

* dataConditions: Define the conditions to be met by a device to be transitioned to a specified next state.
You can view the switch state as a "gateway" for the workflow, which directs the devices to appropriate
states based on their status. Using the jq expression ${ if (.checkSyncResult0) then
.checkSyncResult0 == \"in-sync\" else null end } inthe condition parameter, we create a boolean
value that, if it evaluates to true, is used to transition the device directly to the createvpn state.

Specify actions

Let's analyse actions on the basis of the checksSync action of the operation state for device ceo.

{

"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .deviceOName

}/check-sync"
}l

"config": {
"resourceId": "${ .nsoResource }"
}
}
}l
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null end
}"l
"toStateData": "${ .checkSyncResult0O }"

}
Among the possible parameters, two are especially useful to consider:

* functionref: Refer to the function (aka an activity, from the NSO adapter perspective) to be used in
action execution. Here, you need to pass in some arguments:

® input:

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Create a workflow tutorial
Example workflow definition .

* path: Point to a path for the adapter to send the request to.

* data: Forward any data to be included in the request (not applicable for the checksync action).

® config:

* resourceId: Provide the ID of the resource you created for an external service. In the example
workflow, the local host and the default port of the Cisco NSO instance is provided. The
resource also points to the secret ID, which is used to provide authentication data for an external
service. In this case, that will be the username and password to the Cisco NSO instance.

* actionDataFilter: Define how to process the data passed on in the checksync response from NSO:

* results: Use the jq expression "s{ if (.data) then .data | .\"tailf-ncs:output\".result
else null end }" to handle incoming NSO data. Using the . result you cherrypick the result
key value. In this case (if the device is in the in-sync state), the output of the expression would be

"in-sync".

* tostateData: Take the output of the expression defined in the results parameter above and save
it as a key and value pair inside the workflow input data under any name that you pick. In this case,
.checkSyncResultO.

Example workflow definition

The following example workflow definition is the end result of the workflow creation process presented in
this chapter.

For a complete procedure on how to execute the example workflow in CWM and get tangible results in Cisco
NSO, see the CWM Getting Started guide.

{

"id": "CreateL3VPN-1.0",
"name": "CreateL3VPN",
"start": "start",
"states": [
{
"name": "start",
"type": "operation",
"actions": [
{
"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .deviceOName

}/check-sync"
}l

"config": {
"resourceId": "${ .nsoResource }"
}
}
}l
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null

end }",

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Create a workflow tutorial |
Example workflow definition

"toStateData": "${ .checkSyncResultO }"
}
}I
{
"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .devicelName
}/check-sync"
}I
"config": {
"resourceId": "${ .nsoResource }"
}
}
}I
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null
end }",
"toStateData": "${ .checkSyncResultl }"
}
}
]I
"transition": {
"nextState": "syncFromOrCreateVPN"
}I
"stateDataFilter": {
"input": "${ . }"
}
}I
{
"name": "syncFromOrCreateVPN",
"type": "switch",
"dataConditions": [
{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 != \"in-sync\"
else null end }",
"transition": {
"nextState": "syncFrom"
}
}I
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 == \"in-sync\"
else null end }",
"transition": {
"nextState": "createVPN"
}
}I
{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResultl) then .checkSyncResultl != \"in-sync\"
else null end }",
"transition": {
"nextState": "syncFrom"
}
}I
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResultl) then .checkSyncResultl == \"in-sync\"

else null end }",

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

Create a workflow tutorial
Example workflow definition .

"transition": {
"nextState": "createVPN"
}
}
]I
"defaultCondition": {
"end": {
"terminate": true
}
}
}I
{
"name": "syncFrom",
"type": "operation",
"actions": [
{
"name": "syncFrom",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .deviceOName

}/sync-from"

}I

"config": {
"resourceId": "${ .nsoResource }"
}
}
}I
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null
end }",
"toStateData": "${ .syncFromResultO }"
}
}I
{
"name": "syncFrom",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .devicelName
}/sync-from"
}I
"config": {
"resourceId": "${ .nsoResource }"
}
}
}I
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null
end }",
"toStateData": "${ .syncFromResultl }"
}
}
]I
"transition": {
"nextState": "createVPN"

}
}I
{

"end": {

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Example workflow definition

"terminate":

}I

"name":

"type":

"actions":
{

"name":

"retryRef":

true

"createVPN",
"operation",

[

"createVPN",
"Custom",

"functionRef": {

"refName":

"NSO.RestconfPost",

"arguments": {
"input": {
"data":

"N e) ety) it O i N et i3, et S CECZ e I, VY e N Nt et et 2B it IO

’

"path": "restconf/data/13vpn:vpn"
}I
"config": {
"resourceId": "${ .nsoResource }"
}
}
}I
"actionDataFilter": {
"results": "${ if (.status) then .status else
"toStateData": "${ .createServiceResult }"
}
}
1
}
]I
"retries": [
{
"name": "Default",
"delay": "PT30S",
"multiplier": 2,

"maxAttempts": 4

"name": "Custom",
"delay": "PT10S",
"multiplier": 1,

"maxAttempts": 2

}

] 4
"version":
"functions": [

{
"name":
"metadata":
"worker":

}I

"operation"

}
] 4
"description":
"specVersion":

"1.0",

"NSO.RestconfPost",

{

"cisco.nso.v1.0.3"

: "cisco.nso.v1.0.3.restconf.Post"

wn
’

"p.on"

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

null end

}"I

Create a workflow tutorial |

CHAPTER 4
Utilities

This section contains the following topics:

* System-defined utilities, on page 31
* Expression functions, on page 33
* Input schema validation, on page 34

System-defined utilities

System-defined utilities are functions that expose activities to be used by a workflow creator. Invoking them
as actions inside a workflow helps fulfill basic tasks without the need to create custom adapters. They come
pre-packaged and are ready-to-use in any workflow definition.

Invoke a system utility in a workflow

To use a system utility function in a workflow execution, you must first define it under the functions key in
the workflow. Let’s take the noop function as an example.

"functions": [
{
"name": "noop",
"metadata": {
"worker": "default"
by
"operation": "system.function.@latest.common.NoOp"

}
1y

* name: A user-defined name for the utility function referred to inside the workflow definition.

* operation: This is where you provide the utility function name (name of activity as with an adapter
activity).

* worker: Defining a worker is mandatory for all utility functions. Use the default worker for this.

Make sure to define the worker key with the value default for each utility function.

"states": [
{
"name": "start",
"type": "callback",
"action": {

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Utilities |

B reiluos

"name": "no operation",
"functionRef": {
"refName": "noop",
"arguments": {}
}
}I
"eventRef": "cwm.forms.Check applicant age",
"metadata": {
"formData": "${ {user : .user} }",
"taskName": "Provide applicant age"
}I
"timeouts": {
"eventTimeout": "PT15S",
"stateExecTimeout": "PT15M",
"actionExecTimeout": "PT153"

}I

"transition": "evaluate"

]

Note that the callback state requires the action parameter to be stated. The name and functionref keys need
to have values provided even if no action is expected to happen during this state. Therefore, a mock action
needs to be provided. For this, you can use a CWM utility function, like noop, or any activity of your custom
adapter, but keep in mind that the action needs to complete successfully for the workflow to pass to another
step.

See the descriptions of utilities below to learn more about them.

Faildob

system. function.@latest.common.FailJob

The FailJob function allows a workflow creator to explicitly fail a workflow with a code and message when
certain conditions are met, which currently is not provided for in the Serverless workflow specification.

GetResourceType

system. function.@latest.resource.GetResourceType

GetResourceType returns the Resource type for a given resource ID. You provide the resource ID using the
resourceId parameter inside the input key under arguments. You can provide it explicitly or use a variable
that you will pass as the input data for the workflow.

Example:

"name": "begin",
"type": "operation",
"action": {
"name": "getResType",
"functionRef": {
"refName": "GetResourceType",
"arguments": {
"input": {
"resourceId": "${ .resID }"

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Utilities

NoOp .

NoOp

system. function.@latest.common.NoOp

Noop is used to perform a mock action during workflow execution. A great example of a use case for Noop is
the callback state, which mandates that an action be invoked before the callback state waits for an event. It
is perfectly valid for a ca11back state to execute a mock action and just wait for an event which is capturing
data from the user. The noop function will help bypass the action and just wait for the defined event.

WaitUntil

system. function.@latest.common.WaitUntil

WwaitUntil introduces a pause in workflow execution based on a user-provided timestamp. The timestamp is
the time until which the workflow should wait provided in the RFC 3339 standard format using the t imestamp
parameter inside arguments.

Example:

"name": "begin",
"type": "operation",
"action": {
"name": "WaitUntil",
"functionRef": {
"refName": "WaitUntil",
"arguments": {
"timestamp": "2024-09-19T16:32:37+02:00"
}
}
}l

Expression functions

Expression functions are reusable logic blocks defined in a workflow. They evaluate specific conditions or
expressions using workflow or state data. You can reference them in different workflow states by their name.

Defining an expression function

Inside a workflow definition, functions are defined with a type: expression parameter and an operation that
specifies the logic in the form of a jq expression.

For example:

"functions": [
{
"name": "is-adult",
"operation": ".applicant | .age >= 18",
"type": "expression"

s
]
Workflow states can call these functions to make decisions. For instance, a switch state can use "is-adult"
to decide if the application should be approved or rejected based on age. Expression functions can also be
used in state actions to perform calculations. For instance, an action increments a counter by 1 using the
"increment-count-function". The workflow starts with a count of 0, and after the function runs, the count
becomes 1.

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

https://jqlang.github.io/jq/manual/

Utilities |
. Example workflow

Example workflow
{

"id": "fillglassofwater",
"name": "Fill glass of water workflow",
"version": "1.0",
"specVersion": "0.8",
"start": "Check if full",
"functions": [
{
"name": "Increment Current Count Function",
"type": "expression",
"operation": "${.counts.current += 1 | .counts.current}"
}
]7
"states": [
{
"name": "Check if full",
"type": "switch",
"dataConditions": [
{
"name": "Need to fill more",
"condition": "${ .counts.current < .counts.max }",
"transition": "Add Water"
}7
{
"name": "Glass full",
"condition": "${ .counts.current >= .counts.max }",
"end": true
}
]7
"defaultCondition": {
"end": true
}
}7
{
"name": "Add Water",
"type": "operation",
"actions": [
{
"functionRef": "Increment Current Count Function",
"actionDataFilter": {
"toStateData": "${ .counts.current }"
}
}
]7
"transition": "Check if full"
}
]
}

The expression function in this workflow increments the current count of water added to the glass and checks
it against the maximum count, ensuring the process of filling is controlled and stops once the glass is full.

Input schema validation

The Input schema forms a contract between workflows and the entities that interact with them. If data that
is provided to a workflow does not conform to the input schema, this could potentially result in catastrophic
errors during execution. Validating the workflow upfront means the operator can be informed beforehand and
get immediate feedback and ability to rectify any potential issues due to invalid data input.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

| Utilities
Define input schema for workflow validation .

The Serverless workflow specification 0.9 allows a workflow definition to specify the dataInputSchema
parameter. The schema uses JSON Schema specification to define what inputs are required for the workflow
to execute. CWM 1.2 supports the input schema validation for a workflow definition to ensure that when a
new job is created, input data is validated against the dataTInputschema. If input data for a job is not valid,
an error is returned.

Here is how you define an input schema inside a workflow definition.

Define input schema for workflow validation

To use an input schema to validate a workflow, simply include a valid JSON schema in a workflow using the
dataTInputSchema parameter. For example:

{
"dataInputSchema": {
"schema": {
"title": "MyJSONSchema",
"properties": ({
"firstName": {
"type": "string"
}l
"lastName": {
"type": "string"
}
}
}l

"failOnValidationErrors": true
}

The dataInputschema itself is validated when a workflow is added or modified. This applies to both creating
and importing workflow definitions. On the other hand, the input data for a job is validated before the job is
run. This applies to both immediate and scheduled job execution.

Je

Tip You can turn off the validation while leaving the input schema in the workflow definition by setting the
failOnvValidationErrors parameter to false.

Required keys

In the schema specification, all the keys and values are optional by default. To make them mandatory, you
need to specify them under the required key. For exampl3e:

"dataInputSchema": {
"schema": {
"title": "MyJSONSchema",
"required": [
"deviceName"
1,
"properties": {
"deviceName": {
"type": "string"
by
"nsoResource": {
"type": "string"
}

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

Utilities |
. Required keys

"failOnValidationErrors": true

}

In this example, the deviceName key is now required. If the input data does not contain it, the job won't start
and a validation error will be returned.

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

CHAPTER 5

Function definitions

This section contains the following topics:

* Function definitions, on page 37

Function definitions

Function definitions describe the functions available for the workflow to execute and the name of the adapter
and activity that should be invoked by the engine when that function is invoked. While the Serverless Workflow
specification supports various types of functions, CWM supports only those custom type functions that map
to activities exposed via Adapters.

The following properties of function definitions are supported.

Table 11: Function definitions

Parameter Definition
name Name of function definition.
operation Defines the adapter name and activity name that should be invoked by the

engine. Format is <adapter name>.<activity name>. For example: The
NSO Adapter has an activity called RestconfGet. An operation for this
would be the name of the activity as registered in the worker, such as
RestconfGet. Note that this name is case-sensitive.

metadata Allows modelling of information beyond the core definition of the
Serverless Workflow specification. The "worker" key is used to define
which Taskqueue the activities will be executed on. CWM supports the
concept of Workers that execute an Activity and are assigned Taskqueues
that they listen to. To schedule an activity to run, the workflow engine
places the activity on a Taskqueue. A worker process picks up the tasks
to execute from the Taskqueue and executes the activity.

Example:

"functions": [
{
"name": "NSO.RestconfGet",
"operation": "restconf Get"

Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide .

. Function definitions

"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfPut",
"operation": "restconf Put"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfPost",
"operation": "restconf Post"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfPatch",
"operation": "restconf Patch"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.RestconfDelete",
"operation": "restconf Delete"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "NSO.SyncFrom",
"operation": "device SyncFrom"
"metadata": {
"worker": "defaultWorker"
}
}I
{
"name": "REST.Post",
"operation": "rest Post"
"metadata": {
"worker": "defaultWorker"

. Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide

Function definitions |

	Cisco Crosswork Workflow Manager 2.1 Workflow Creator Guide
	Feature overview
	Overview
	Workflow definition features
	Toplevel fields
	Retry definitions
	Error definitions
	Function definitions
	SubFlowRef definitions

	States
	Common state properties
	Compensation
	Transition
	End
	stateDataFilter
	onErrors

	Operation state overview
	Action
	functionRef
	actionDataFilter
	sleep

	Switch state overview
	dataConditions
	defaultCondition

	Sleep state
	Inject state
	ForEach state
	Parallel state
	Branches

	Callback state
	State data
	Visualize workflow logic

	Workflow Designer
	Workflow Designer
	Overview
	Toolbox
	Properties drawer
	Visual aids and layout
	Designer views

	Create a workflow tutorial
	Create a workflow – tutorial
	Example workflow overview
	Provide data input
	Define top-level parameters and functions
	Specify retry policy
	Define states
	Operation state
	Switch state

	Specify actions
	Example workflow definition

	Utilities
	System-defined utilities
	Invoke a system utility in a workflow
	FailJob
	GetResourceType
	NoOp
	WaitUntil

	Expression functions
	Defining an expression function
	Example workflow

	Input schema validation
	Define input schema for workflow validation
	Required keys

	Function definitions
	Function definitions

