
Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
First Published: 2025-06-25

Last Modified: 2025-06-25

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883





C H A P T E R 1
Feature overview

This section contains the following topics:

• Overview, on page 1
• Workflow definition features, on page 1
• States, on page 6
• Operation state overview, on page 9
• Switch state overview, on page 11
• Sleep state, on page 12
• Inject state, on page 13
• ForEach state, on page 13
• Parallel state, on page 15
• Callback state, on page 15
• State data, on page 16

Overview
Workflows help you automate business processes in a standardizedmanner, bridging the gap between expressing
and modelling business logic.

Workflow definitions are written based on the Serverless Workflow pecification. For CWM, only a subset of
the full specification is supported. This chapter describes all the supported features and gives practical examples
for many of them.

Workflow definition features
A new workflow can be defined in JSON format. The structure of the workflow definition is described in the
Serverless Workflow specification.

The supported high-level components are as follows:

• id

• name

• description

• version

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
1

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md


• start

• retries

• errors

• functions

• states

• metadata

Toplevel fields
Table 1: Toplevel fields

DescriptionParameter

Unique identifier for the workflow.id

Workflow name.name

Workflow version based on Semantic Versioning.version

Version of the Serverless Workflow specification release this definition
adheres to. The current CWM implementation corresponds to the 0.9
specification.

specVersion

Workflow description text.description

State to be executed first.start

Example:

{
"id": "MyWorkflow",
"version": "1.0.0",
"specVersion": "0.9",
"name": "My Workflow",
"description": "My Workflow Description",
"start": "SomeState",
"states": [],
"functions": [],
"retries":[]
}

Retry definitions
Retry definitions are policies that can be assigned to workflow activities to control how the workflow engine
deals with retries in the event of failure.

The following properties of retry definitions are supported.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
2

Feature overview
Toplevel fields

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#retry-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#error-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Function-Definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Workflow-States
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Workflow-Metadata
https://semver.org/


Table 2: Retry definitions

DefinitionParameter

Definition name.name

Time delay between retry attempts in ISO 8601 format, for example
"PT30S" for a 30 second delay.

delay

Maximum number of attempts. Set to 0 for infinite retries. For no retries,
set to 1.

maxAttempts

Maximum amount of delay between retry attempts. Uses ISO 8601 format.maxDelay

Used to multiply delay value, if provided before each retry attempt. This
is a float value. For example, if the initial delay is 30 seconds, and the
multiplier is 1.5, the retries will increase by 50% each time.

multiplier

Example:

"retries": [
{

"name": "Default",
"delay": "PT1M",
"maxAttempts": 5,
"multiplier": 1.2
"maxDelay": "PT3M"

}
]

Error definitions
Error definitions describe errors that can occur during workflow execution.Whilst the serverless specification
supports referencing an external file (JSON) that lists the errors, CWM will only handle errors defined in the
Workflow definition.

The following properties of error definitions are supported.

Table 3: Error definitions

DefinitionParameter

Definition name.name

Error code that could be returned. Currently, this field is not used for error
matching.

code

Should describe the error message. This description is used to match against
the error returned by activities.

description

The Serverless Workflow specification doesn't have an option to specify an error message. This means that
currently the description is being used for matching against errors.

Note

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
3

Feature overview
Error definitions



Example:

"errors": [
{

"name": "My Custom Error",
"code": 0,
"description": "Specific Error Message"

}
]

Function definitions
Function definitions describe the functions available for the workflow to execute and the name of the adapter
and activity that should be invoked by the engine when that function is invoked.While the ServerlessWorkflow
specification supports various types of functions, CWM supports only those custom type functions that map
to activities exposed via Adapters.

The following properties of function definitions are supported.

Table 4: Function definitions

DefinitionParameter

Name of function definition.name

Defines the adapter name and activity name that should be invoked by the
engine. Format is <adapter name>.<activity name>. For example: The
NSO Adapter has an activity called RestconfGet. An operation for this
would be the name of the activity as registered in the worker, such as
RestconfGet. Note that this name is case-sensitive.

operation

Allows modelling of information beyond the core definition of the
Serverless Workflow specification. The "worker" key is used to define
which Taskqueue the activities will be executed on. CWM supports the
concept of Workers that execute an Activity and are assigned Taskqueues
that they listen to. To schedule an activity to run, the workflow engine
places the activity on a Taskqueue. A worker process picks up the tasks
to execute from the Taskqueue and executes the activity.

metadata

Example:

"functions": [
{

"name": "NSO.RestconfGet",
"operation": "restconf_Get"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPut",
"operation": "restconf_Put"
"metadata": {

"worker": "defaultWorker"
}

},

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
4

Feature overview
Function definitions



{
"name": "NSO.RestconfPost",
"operation": "restconf_Post"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPatch",
"operation": "restconf_Patch"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfDelete",
"operation": "restconf_Delete"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.SyncFrom",
"operation": "device_SyncFrom"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "REST.Post",
"operation": "rest_Post"
"metadata": {

"worker": "defaultWorker"
}

} ]

SubFlowRef definitions
SubFlowRef definitions are used for invoking child workflowswithin a parent workflow.With child workflows,
you can:

• Separate the parent workflow code and workers from the child workflow code and workers.

• Split the workload done by the workflow into smaller chunks for better separation of event history. This
is especially helpful when your workflow is intended to spawn large numbers of activity executions.

The following properties of subFlowRef definition are supported:

Table 5: SubFlowRef Properties

DescriptionParameter

Child workflow unique id.workflowId

Child workflow version.version

Specifies if the child workflow should be invoked sync or async. Default is
sync, which means workflow execution should wait until the child workflow
completes.

invoke

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
5

Feature overview
SubFlowRef definitions



DescriptionParameter

If invoke is async, specifies if child workflow execution should terminate or
continue when parent workflow completes. Default is terminate.

onParentComplete

Example:

"states": [
{
"end": true,
"name": "SpawnChildWorkflow",
"type": "operation",
"actions": [

{
"subFlowRef": {

"version": "1.0",
"workflowId": "subtest",
"invoke": "sync",
"onParentComplete": "terminate"

}
}

]
}

]

States
States define the building blocks of workflow execution logic. Different types of states provide control flow
logic to the Execution Engine and also allow you to define which activities to execute.

Common state properties
The following properties are common to all states.

For any given state, you can only have one transition or end object. At least one must be present.

Table 6: Common state properties

DefinitionParameter

State name.name

Supported types are: "operation", "switch", "sleep", "inject",
"foreach".

type

Next transition of workflow - see below for further details. Not
applicable to SwitchState. For switch state, the transition option is
defined on a per condition basis.

transition

If the workflow should end after this state - see below for further
details.Not applicable to SwitchState. For switch state, the end option
is defined on a per condition basis.

end

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
6

Feature overview
States



DefinitionParameter

Filter data input and output for the state - not applicable to "sleep"
state.

stateDataFilter

Defines error handling for a given state, see below for further details.
Canmatch based on Error Definition and control transition/end based
on matched error including Compensation.

onErrors

If true, this state is used to compensate another state. Default: false.usedForCompensation

Unique name of state which is responsible for compensation of this
state. State identified here, is executed if "compensate" is set to true
for transition/end property.

compensatedBy

Compensation
Compensation lets you define ways to undo the work done as part of a workflow. For each state, you can
define a compensation state. If, during execution, a condition is reached where compensation logic should be
executed, a compensate flag can be set when defining a transition or end. The flag will result in executing
states that are to be usedForCompensation. Refer to theWorkflow Serverless specification for more information:
Workflow compensation.

In CWM, each state marked for compensation is added to a LIFO (Last In First Out) queue.

Transition
The Serverless Workflow specification supports defining transition either as a string or as an objectwith
further properties. The current CWM implementation supports the object format and the nextState and
compensate properties only.

Table 7: Transition

DefinitionParameter

The name of state that workflow will transition to next.nextState

If set to true, triggers workflow compensation before next transition is
taken. Default: false.

compensate

End
The Serverless Workflow specification supports defining end either as a string or as an object with further
properties. The current CWM implementation supports the object format and the nextState property only.

Table 8: End states

DefinitionParameter

Boolean value to define if this state should terminate the workflow.terminate

If set to true, triggers workflow compensation before execution completes.
Default: false.

compensate

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
7

Feature overview
Compensation

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-compensation


stateDataFilter
State Data Filters allow you to define input and output data filters. Input Data filters allow you to select data
that is required. Output Data filters are applied before transitioning to the next state, allowing you to filter
data to be passed into the next state. More information on State Data Filters can be found in the Serverless
Workflow specification. Both the input and output filters are workflow expressions defined in jq. If no filters
are specified, then all data is passed.

Table 9: stateDataFilter

DefinitionParameter

Input filter jq expression.input

Output filter jq expression.output

Example:

"states": [
{

"name": "step1",
"type": "operation",
"stateDataFilter" : {

"input": "${ . }"
"output": "${ . }"

}
"transition": {

"nextState": "downloadImage"
}

},
{

"name": "step2",
"type": "operation",
"end": {

"terminate": "true"
}

}
]

onErrors
The onErrors property for a state defines errors that may occur during state execution and how they should
be handled. You can find more information about onErrors in the Serverless Workflow documentation.

Table 10: onErrors

DefinitionParameter

Define either a single errorDef or array of ErrorDefs to match for this
state.

errorRef or errorRefs

Next transition of workflow if the error returned in state matches any of
the error description in errorRef/errorRefs. Only transition or end can
be defined.

transition

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
8

Feature overview
stateDataFilter

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#State-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#State-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-expressions
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Error-Definition


DefinitionParameter

The workflow should end if the error returned in state matches any of
the error description in errorRef/errorRefs. Only transition or end can
be defined.

end

Example:

"onErrors": [
{

"errorRef": "My Custom Error",
"end" : {

"terminate": true
"compensate": true

}
}

]

Operation state overview
The serverless workflow specification permits operation states to define sets of actions to be executed in
sequence or parallel. CWM supports execution of actions in sequence only.

An specification defines invocation of three different types of services:

• Execution of function definition. This is the only type of service that CWM currently supports.

• Execution of another workflow definition as a child workflow. This is not supported in the current
implementation.

• Referencing events that may be "produced" or "consumed". This is not supported in the current
implementation.

Action
Action definition specifies the function that should be executed for this state. The following properties are
supported:

DescriptionParameter

Action name.name

Object which defines the name of the function to be executed, and optionally
arguments to pass into the activity the function points to. See below for
further details.

functionRef

Name of retry definition defined globally. For example, default.retryRef

Object that optionally defines time to sleep either before or after action
execution. See below for further details.

sleep

Filter to control what data should be passed to action, how to filter the results
returned by action, and where to store the filtered results in the global state
data. See below for further details.

actionDataFilter

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
9

Feature overview
Operation state overview



functionRef

DescriptionParameter

Name of function referencing the function definition.refName

Arguments to be passed to the function. This can be a JSON object with complex
structure. For Adapter activities, the structure has to be JSON, as follows:
{
"input": {
...
},
"resource": {
...
}
}

arguments

actionDataFilter
For detailed information on actionDataFilter with examples, see see this Serverless Workflow specification
section.

DescriptionParameter

Workflow expression in jq that filters data from state data to pass into
function.

fromStateData

Boolean flag to control whether data returned from function execution
should added/merged into state data output.

useResults

Workflow expression in jq that filters the data returned from function
execution. Ignored if useResults is false. Default: true.

results

Workflow expression defines state data where the results should be
added/merged. If not specified, results merged at top level.

toStateData

sleep
Sleep specifies the amount of time to to pause before or after executing a workflow function.

DescriptionParameter

Amount of time to sleep before function is executed in ISO 8601 format e.g.
"PT30S" - sleep for 30 seconds.

before

Amount of time to sleep after function is executed in ISO 8601 format e.g.
"PT30S" - sleep for 30 seconds.

after

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "step1",
"functions": [

{
"name": "NSO.RestconfPost",
"operation": "RestconfPost"

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
10

Feature overview
functionRef

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Action-data-filters
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Action-data-filters


}
],
"retries": [

{
"name": "Default",
"maxAttempts": 5,
"delay": "PT30S",
"multiplier": 1.1

}
],
"states": [

{
"name": "step1",
"type": "operation",
"sleep": {

"before": "PT1M"
},
"actions": [

{
"retryRef": "Default",
"name": "showVersion",
"functionRef": {

"refName": "NSO.RestconfPost",
"arguments": {

"input": {
"path": "restconf/operations/devices/device=${ .deviceName

}/live-status/tailf-ned-cisco-ios-stats:exec/any",
"data": "{\"input\": {\"args\": \"show version\"}}"

}
}

},
"actionDataFilter": {

"results": "${ if (.data) then .data |
fromjson.\"tailf-ned-cisco-ios-stats:output\".result else null end }",

"toStateData": "${ .showVersionPreCheck }"
}

}
],
"end": {

"terminate": "true"
}

}
]

}

Switch state overview
Switch states enable you to define decision points to route the workflow to a given path based on certain
conditions. The Serverless Workflow specification supports both data-based conditions and event-based
conditions. CWM supports data-based conditions only.

dataConditions
The data condition property of Switch state is an array of conditions that are evaluated by the Execution
engine. The Execution engine will select the first condition it matches and proceed along that path. If there
are subsequent conditions that also match, they will be ignored.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
11

Feature overview
Switch state overview

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#switch-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Switch-State-Data-Conditions


DescriptionParameter

Condition name.name

Workflow expression in jq that represents the condition. Must evaluate to
true/false.

condition

Next transition of workflow if the condition matches.transition

The workflow should end if the condition matches.end

You can provide only the transition object or the end object. At least one must be present.

defaultCondition
The default condition that is applied if none of the conditions match.

DescriptionParameter

Next transition of workflow if no conditions are matched.transition

The workflow should end if condition matches.end

You can provide only the transition object or the end object. At least one must be present.

{
"name": "ConditionName",
"type": "switch",
"dataConditions": [

{
"name": "IsTrue",
"condition": "${ true }",
"transition": {

"nextState": "TrueState"
}

},
{

"name": "IsFalse",
"condition": "${ false }",
"transition": {

"nextState": "FalseState"
}

}
],
"defaultCondition": {

"end": {
"terminate": true

}
}

}

Sleep state
Sleep state pauses workflow execution for a given duration.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
12

Feature overview
defaultCondition

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Sleep-State


DescriptionParameter

Duration the workflow should sleep for in ISO8601 format. For example,
PT1M results in workflow sleeping for 1 minute.

duration

{
"name": "Sleep3Minutes",
"type": "sleep",
"duration": "PT3M",
"transition": {

"nextState": "NextState"
}

}

Inject state
Use Inject state to inject static data into the State Data.

DescriptionParameter

JSON object added to State Data.data

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "HelloWorld",
"states": [

{
"name": "HelloWorld",
"type": "inject",
"data": {

"name": "Cisco",
"message": "Hello World"

},
"stateDataFilter":{

"output": "${ .message + \" from \" + .name + \"!\" }"
},
"end": {

"terminate": "true"
}

}
]

}

ForEach state
ForEach state allows you to define a set of actions to execute for each element in an array or list defined in
State Data. For example, for each device in device array, check that the devices are in sync.While the serverless
workflow specification defines support for Parallel and Sequential execution of actions, current implementation
only supports sequential execution of actions for each element in array.

DescriptionParameter

Workflow expression in jq that points to an array in State Data.inputCollection

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
13

Feature overview
Inject state

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Inject-State
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#ForEach-State


DescriptionParameter

Name of the parameter that can be referenced in action for each data
element.

iterationParam

Workflow expression in jq that points to an array in State Data that
the result will be appended to. If array doesn't exist, it will be created.

outputCollection

{
"id": "example",
"version": "1.0",
"specVersion": "0.9",
"start": "InjectData",
"functions": [

{
"name": "HelloWorld",
"operation": "HelloWorld"

}
],
"states": [

{
"name": "InjectData",
"type": "inject",
"data": {

"people": [
{

"Firstname": "Peter",
"Surname": "Parker"

},
{

"Firstname": "Thor",
"Surname": "Odinson"

},
{

"Firstname": "Bruce",
"Surname": "Banner"

}
]

},
"transition":{

"nextStat": "SayHelloToEveryone"
}

},
{

"name": "SayHelloToEveryone",
"type": "foreach",
"inputCollection": "${ .people }",
"iterationParam": "person",
"outputCollection": "${ .messages }",
"actions": [

{
"name": "SayHello",
"functionRef":{

"refName": "HelloWorld",
"arguments": {

"name": "${ .person.Firstname + \" \" + .person.Surname }"
}

}
}

],
"end": {

"terminate": "true"

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
14

Feature overview
ForEach state



}
}

]
}

Parallel state
Parallel state allows you to define a collection of branches that are executed in parallel. Each branch in a state
can define its own set of actions. Once the execution has completed, the parallel branches are joined into
current path based on the completionType attribute.

The completionType attribute can define two values:

• allOf: All branches must complete execution before state can transition/end. This is the default value.

• atLeast: State can transition/end if the number of branches specified in atLeast has completed execution.
If completionType attribute is "atLeast", numCompleted must also be set.

DescriptionParameter

Define how to evaluate completion of state based on branch execution.
"allOf" or "atLeast". Default: "allOf".

completionType

If completionType is "atLeast", this value must be specified. Defines
theminimumnumber of branches that must be completed for the execution
to proceed.

numCompleted

Branches
Following is a list of branches that are to be executed in parallel state. For more information on branches, see
the Serverless Workflow Specification documention on the Parallel State Branch, https://github.com/
serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch.

DescriptionParameter

Name of branch.name

Actions to execute for this branch. A branch can support an array of actions.
The definition for each action is the same as for Operation state type.

actions

Callback state
Callback state allows workflow designers to introduce manual tasks (human intervention points) into their
workflows.WithinCallback, the action property defines a function call that triggers an external activity/service
(note that stating the function call is required for this state). Once the action executes, the callback state waits
for a CloudEvent (defined via the eventRefproperty), which indicates the completion of the manual decision
by the called service.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
15

Feature overview
Parallel state

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#parallel-state
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#Parallel-State-Branch


RequiredTypeDescriptionParameter

yesstringUnique State name. Must follow the Serverless
Workflow Naming Convention

name

yesstringState typetype

yesobjectDefines the action to be executedaction

yesstringReferences a unique callback event (Form ID) in the
defined workflow events

eventRef

yes (if end is not defined)string or objectNext transition of the workflow after callback event
has been received

transition

yes (if transition is not
defined)

boolean or
object

Is this state an end stateend

According to the Serverless workflow spec, you need to include the action parameter for the callback state,
although it is not required for triggering the task itself (the callback event).

Note

State data
State data plays an important role during the lifecycle of the workflow. A state can filter data, inject data, and
add data. Jq plays an important role in data filtering, creation and manipulation. For more information on how
data can be handled, see the Serverless Workflow specification.

When creating workflows in CWM, the following data management rules apply:

• Initial data passed into workflow execution is passed into State data as input.

• Data output from the last executed state is workflow output.

• If no State Input Filter is specified, all the data is passed into the state.

• If no State Output Filter is specified, all the data is passed into the next state.

• Workflow expressions in jq allow you to filter and manipulate data.

• Actions also allow for filtering data and also, if return data from action should be merged back into state
data.

• Filters must return JSON objects. If a jq workflow expression results in a string literal, this will result in
an error.

• When working with jq, it is highly recommended to use https://jqplay.org/ to test the jq expressions.
Alternatively, you can download jq locally and use it for testing.

Visualize workflow logic
In CWM, choose Design > Workflows, click on a workflow name, then click the Designer tab to see a
graphical representation of a created workflow.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
16

Feature overview
State data

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-data
https://jqplay.org/


The Designer view lets you trace the workflow's task sequences, decision points, and dependencies, helping
you to ensure that the workflow is correctly structured.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
17

Feature overview
Visualize workflow logic



Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
18

Feature overview
Visualize workflow logic



C H A P T E R 2
Create a workflow tutorial

This section contains the following topics:

• Create a workflow – tutorial, on page 19

Create a workflow – tutorial
This chapter shows you how you can structure a workflow based on a simple example that uses the operation
and switch states to create a VPN service in Cisco NSO for some simulated devices. We go through the
example workflow definition part by part to give you an idea how you can use different definition components
in creating your original workflows.

If you need full information on howworkflows can be defined, refer to the ServerlessWorkflow specification.

Example workflow overview
The goal of this example workflow is to automatically create a VPN service for Cisco NSO devices.

First, we point to the devices in the data input and then try to perform the NSO check-sync operation on them.
Then, depending on the result:

• If a device is not in sync with NSO, we push the device to perform a sync-from, and only then try to
create a VPN for it;

• If it is in sync, we don't perform sync-from but directly create a VPN for the device.

If all the steps are executed successfully, CWM reports workflow execution completion and diplays the final
data input. The results are visible in Cisco NSO, too. If the execution engine encounters errors while performing
a step, it uses the specified retry policy. If errors persist beyond the retry limits, the execution engine ends
the execution with a Failed status.

Go through the sections below to understand how data input, functions, states, actions, and data filters are
defined.

Provide data input
The workflow definition usually includes some input data at the beginning of the JSON file.While the provided
data is not part of the workflow, it is referred to within the workflow definition and can also be updated

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
19

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md


between states, if such a data update is defined. For more details, see Workflow data input in the Serverless
Workflow Specification.

In this example, we'll only need to provide two user-defined deviceName JSON object keys and values, which
are the names of the test devices in the local NSO instance, and the nsoResource key, where we specify which
CWM resource we will be using in the workflow. The workflow data input in JSON should look like this:
{
"device0Name": "ce0",
"device1Name": "ce1",
"nsoResource": "NSOLocal"
}

Define top-level parameters and functions
A workflow definition starts with the required workflow id key. Among other keys, specVersion is also
required, defining the Serverless Workflow specification release version. The start key defines the name of
the workflow starting state, but it is not required.

In the functions key, you pass in Cisco NSO adapter activity name as function name, adapter activity ID as
function operation, and provide the worker name under metadata: worker key:
{

"id": "CreateL3VPN",
"name": "Create Layer3 VPN",
"start": "start",
"version": "1.0",
"functions": [
{
"name": "NSO.RestconfPost",
"metadata": {
"worker": "cisco.nso.v1.0.1"

},
"operation": "cisco.nso.v1.0.1.restconf.Post"

}
],
"description": "Create an L3 VPN for MPLS devices",
"specVersion": "0.9"

}

Effectively, what you do under functions is you provide the workflow with the IDs of any activities as they
are defined in the Cisco NSO adapter and presented in its main.go file. Also, under metadata you provide
the name of the worker that will execute any actions that refer to the defined function.

Note

Specify retry policy
With the retries key, you define the retry policies for state actions in the event that an action fails. Multiple
retry policies can be specified under this key and they are reusable across multiple defined state actions.
"retries": [

{
"name": "Default",
"maxAttempts": 4,
"delay": "PT5S",
"multiplier": 2

},

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
20

Create a workflow tutorial
Define top-level parameters and functions

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-data-input


{
"name": "Custom",
"maxAttempts": 2,
"delay": "PT30S",
"multiplier": 1

}
],

As you can see, the Default policy assumes that a failed action will be retried up to 4 times with an increasing
delay between attempts: 5, 10, 20, 40 seconds between consecutive retries.

Note

Define states
Workflow states are the building blocks of a workflow definition. In the present quickstart example, we will
be using the operation and switch states, but others are possible. You can check them in detail in theWorkflow
states section of the Serverless specification.

Operation state
"states": [

{
"name": "start",
"type": "operation",
"stateDataFilter": {

"input": "${ . }"
},
"actions": [],
"transition": {

"nextState": "syncFromOrCreateVPN"
}

}
]

Inside the operation state, apart from state name and type, you define:

• stateDataFilter: Point to the data input defined at the beginning of the example JSON file. In the input
parameter, we state ${ . }, which is a jq expression that means: "use the whole of the data input existing
at this point of workflow execution".

For more information on how jq expressions are used in workflows, see the
Workflow expressions chapter in the Serverless Workflow specification.

Note

• actions: Specify the function to be used by the action, and two basic arguments: input and config.
Read more in the subsection below.

• transition or end: Point to the next state to which the workflow should transition after executing the
present one. If there are no more steps to be executed, use end.

Switch state
{
"name": "syncFromOrCreateVPN",

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
21

Create a workflow tutorial
Define states

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-states
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-states
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#workflow-expressions
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#End-Definition


"type": "switch",
"dataConditions": [

{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 != \"in-sync\"

else null end }",
"transition": {
"nextState": "syncFrom"

}
},
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 == \"in-sync\"

else null end }",
"transition": {

"nextState": "createVPN"
}

}
]

}

Inside the switch state, apart from state name and type, you define:

• dataConditions: Define the conditions to be met by a device to be transitioned to a specified next state.
You can view the switch state as a "gateway" for the workflow, which directs the devices to appropriate
states based on their status. Using the jq expression ${ if (.checkSyncResult0) then

.checkSyncResult0 == \"in-sync\" else null end } in the condition parameter, we create a boolean
value that, if it evaluates to true, is used to transition the device directly to the CreateVPN state.

Specify actions
Let's analyse actions on the basis of the checkSync action of the operation state for device ce0.
{

"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .device0Name

}/check-sync"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null end

}",
"toStateData": "${ .checkSyncResult0 }"

}
}

Among the possible parameters, two are especially useful to consider:

• functionRef: Refer to the function (aka an activity, from the NSO adapter perspective) to be used in
action execution. Here, you need to pass in some arguments:

• input:

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
22

Create a workflow tutorial
Specify actions



• path: Point to a path for the adapter to send the request to.

• data: Forward any data to be included in the request (not applicable for the checkSync action).

• config:

• resourceId: Provide the ID of the resource you created for an external service. In the example
workflow, the local host and the default port of the Cisco NSO instance is provided. The
resource also points to the secret ID, which is used to provide authentication data for an external
service. In this case, that will be the username and password to the Cisco NSO instance.

• actionDataFilter: Define how to process the data passed on in the checkSync response from NSO:

• results: Use the jq expression "${ if (.data) then .data | .\"tailf-ncs:output\".result

else null end }" to handle incoming NSO data. Using the .result you cherrypick the result
key value. In this case (if the device is in the in-sync state), the output of the expression would be
"in-sync".

• toStateData: Take the output of the expression defined in the results parameter above and save
it as a key and value pair inside the workflow input data under any name that you pick. In this case,
.checkSyncResult0.

Example workflow definition
The following example workflow definition is the end result of the workflow creation process presented in
this chapter.

For a complete procedure on how to execute the example workflow in CWM and get tangible results in Cisco
NSO, see the CWM Getting Started guide.
{
"id": "CreateL3VPN-1.0",
"name": "CreateL3VPN",
"start": "start",
"states": [
{
"name": "start",
"type": "operation",
"actions": [
{
"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .device0Name

}/check-sync"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null

end }",

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
23

Create a workflow tutorial
Example workflow definition



"toStateData": "${ .checkSyncResult0 }"
}

},
{
"name": "checkSync",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .device1Name

}/check-sync"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null

end }",
"toStateData": "${ .checkSyncResult1 }"

}
}

],
"transition": {
"nextState": "syncFromOrCreateVPN"

},
"stateDataFilter": {
"input": "${ . }"

}
},
{
"name": "syncFromOrCreateVPN",
"type": "switch",
"dataConditions": [
{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 != \"in-sync\"

else null end }",
"transition": {
"nextState": "syncFrom"

}
},
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResult0) then .checkSyncResult0 == \"in-sync\"

else null end }",
"transition": {
"nextState": "createVPN"

}
},
{
"name": "shouldSyncFrom",
"condition": "${ if (.checkSyncResult1) then .checkSyncResult1 != \"in-sync\"

else null end }",
"transition": {
"nextState": "syncFrom"

}
},
{
"name": "shouldCreateVPN",
"condition": "${ if (.checkSyncResult1) then .checkSyncResult1 == \"in-sync\"

else null end }",

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
24

Create a workflow tutorial
Example workflow definition



"transition": {
"nextState": "createVPN"

}
}

],
"defaultCondition": {
"end": {
"terminate": true

}
}

},
{
"name": "syncFrom",
"type": "operation",
"actions": [
{
"name": "syncFrom",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .device0Name

}/sync-from"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null

end }",
"toStateData": "${ .syncFromResult0 }"

}
},
{
"name": "syncFrom",
"retryRef": "Default",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"path": "restconf/operations/tailf-ncs:devices/device=${ .device1Name

}/sync-from"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.data) then .data | .\"tailf-ncs:output\".result else null

end }",
"toStateData": "${ .syncFromResult1 }"

}
}

],
"transition": {
"nextState": "createVPN"

}
},
{
"end": {

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
25

Create a workflow tutorial
Example workflow definition



"terminate": true
},
"name": "createVPN",
"type": "operation",
"actions": [
{
"name": "createVPN",
"retryRef": "Custom",
"functionRef": {
"refName": "NSO.RestconfPost",
"arguments": {
"input": {
"data":

"{\"l3vpn\":[{\"name\":\"testnetwork\",\"route-distinguisher\":250,\"endpoint\":[{\"id\":\"boffice\",\"ce-device\":\"ce0\",\"ce-interface\":\"GigabitEthernet0/5\",\"ip-network\":\"10.8.9.0/24\",\"bandwidth\":4500000},{\"id\":\"hoffice\",\"ce-device\":\"ce1\",\"ce-interface\":\"GigabitEthernet0/5\",\"ip-network\":\"192.168.9.0/32\",\"bandwidth\":4500000}]}]}
",

"path": "restconf/data/l3vpn:vpn"
},
"config": {
"resourceId": "${ .nsoResource }"

}
}

},
"actionDataFilter": {
"results": "${ if (.status) then .status else null end }",
"toStateData": "${ .createServiceResult }"

}
}

]
}

],
"retries": [
{
"name": "Default",
"delay": "PT30S",
"multiplier": 2,
"maxAttempts": 4

},
{
"name": "Custom",
"delay": "PT10S",
"multiplier": 1,
"maxAttempts": 2

}
],
"version": "1.0",
"functions": [
{
"name": "NSO.RestconfPost",
"metadata": {
"worker": "cisco.nso.v1.0.3"

},
"operation": "cisco.nso.v1.0.3.restconf.Post"

}
],
"description": "",
"specVersion": "0.9"

}

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
26

Create a workflow tutorial
Example workflow definition



C H A P T E R 3
Utilities

This section contains the following topics:

• System-defined utilities, on page 27
• Expression functions, on page 29
• Input schema validation, on page 30

System-defined utilities
System-defined utilities are functions that expose activities to be used by a workflow creator. Invoking them
as actions inside a workflow helps fulfill basic tasks without the need to create custom adapters. They come
pre-packaged and are ready-to-use in any workflow definition.

Invoke a system utility in a workflow
To use a system utility function in a workflow execution, you must first define it under the functions key in
the workflow. Let’s take the NoOp function as an example.
"functions": [
{
"name": "noop",
"metadata": {
"worker": "default"

},
"operation": "system.function.@latest.common.NoOp"

}
],

• name: A user-defined name for the utility function referred to inside the workflow definition.

• operation: This is where you provide the utility function name (name of activity as with an adapter
activity).

• worker: Defining a worker is mandatory for all utility functions. Use the default worker for this.

Make sure to define the worker key with the value default for each utility function.
"states": [

{
"name": "start",
"type": "callback",
"action": {

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
27



"name": "no operation",
"functionRef": {
"refName": "noop",
"arguments": {}

}
},
"eventRef": "cwm.forms.Check_applicant_age",
"metadata": {
"formData": "${ {user : .user} }",
"taskName": "Provide applicant age"

},
"timeouts": {
"eventTimeout": "PT15S",
"stateExecTimeout": "PT15M",
"actionExecTimeout": "PT15S"

},
"transition": "evaluate"

},
...

]

Note that the callback state requires the action parameter to be stated. The name and functionRef keys need
to have values provided even if no action is expected to happen during this state. Therefore, a mock action
needs to be provided. For this, you can use a CWM utility function, like noOp, or any activity of your custom
adapter, but keep in mind that the action needs to complete successfully for the workflow to pass to another
step.

See the descriptions of utilities below to learn more about them.

FailJob
system.function.@latest.common.FailJob

The FailJob function allows a workflow creator to explicitly fail a workflow with a code and message when
certain conditions are met, which currently is not provided for in the Serverless workflow specification.

GetResourceType
system.function.@latest.resource.GetResourceType

GetResourceType returns the Resource type for a given resource ID. You provide the resource ID using the
resourceId parameter inside the input key under arguments. You can provide it explicitly or use a variable
that you will pass as the input data for the workflow.

Example:
"name": "begin",
"type": "operation",
"action": {
"name": "getResType",
"functionRef": {
"refName": "GetResourceType",
"arguments": {
"input": {

"resourceId": "${ .resID }"
}

}
}

},

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
28

Utilities
FailJob



NoOp
system.function.@latest.common.NoOp

NoOp is used to perform a mock action during workflow execution. A great example of a use case for NoOp is
the Callback state, which mandates that an action be invoked before the callback state waits for an event. It
is perfectly valid for a Callback state to execute a mock action and just wait for an event which is capturing
data from the user. The NoOp function will help bypass the action and just wait for the defined event.

WaitUntil
system.function.@latest.common.WaitUntil

WaitUntil introduces a pause in workflow execution based on a user-provided timestamp. The timestamp is
the time until which the workflow should wait provided in the RFC 3339 standard format using the timestamp
parameter inside arguments.

Example:
"name": "begin",
"type": "operation",
"action": {
"name": "WaitUntil",
"functionRef": {
"refName": "WaitUntil",
"arguments": {
"timestamp": "2024-09-19T16:32:37+02:00"

}
}

},

Expression functions
Expression functions are reusable logic blocks defined in a workflow. They evaluate specific conditions or
expressions using workflow or state data. You can reference them in different workflow states by their name.

Defining an expression function
Inside a workflow definition, functions are defined with a type: expression parameter and an operation that
specifies the logic in the form of a jq expression.

For example:
"functions": [
{
"name": "is-adult",
"operation": ".applicant | .age >= 18",
"type": "expression"

},
]

Workflow states can call these functions to make decisions. For instance, a switch state can use "is-adult"
to decide if the application should be approved or rejected based on age. Expression functions can also be
used in state actions to perform calculations. For instance, an action increments a counter by 1 using the
"increment-count-function". The workflow starts with a count of 0, and after the function runs, the count
becomes 1.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
29

Utilities
NoOp

https://jqlang.github.io/jq/manual/


Example workflow
{
"id": "fillglassofwater",
"name": "Fill glass of water workflow",
"version": "1.0",
"specVersion": "0.8",
"start": "Check if full",
"functions": [
{
"name": "Increment Current Count Function",
"type": "expression",
"operation": "${.counts.current += 1 | .counts.current}"
}
],
"states": [
{
"name": "Check if full",
"type": "switch",
"dataConditions": [
{
"name": "Need to fill more",
"condition": "${ .counts.current < .counts.max }",
"transition": "Add Water"
},
{
"name": "Glass full",
"condition": "${ .counts.current >= .counts.max }",
"end": true
}
],
"defaultCondition": {
"end": true
}
},
{
"name": "Add Water",
"type": "operation",
"actions": [
{
"functionRef": "Increment Current Count Function",
"actionDataFilter": {
"toStateData": "${ .counts.current }"
}
}
],
"transition": "Check if full"
}
]
}

The expression function in this workflow increments the current count of water added to the glass and checks
it against the maximum count, ensuring the process of filling is controlled and stops once the glass is full.

Input schema validation
The Input schema forms a contract between workflows and the entities that interact with them. If data that
is provided to a workflow does not conform to the input schema, this could potentially result in catastrophic
errors during execution. Validating the workflow upfront means the operator can be informed beforehand and
get immediate feedback and ability to rectify any potential issues due to invalid data input.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
30

Utilities
Example workflow



The Serverless workflow specification 0.9 allows a workflow definition to specify the dataInputSchema
parameter. The schema uses JSON Schema specification to define what inputs are required for the workflow
to execute. CWM 1.2 supports the input schema validation for a workflow definition to ensure that when a
new job is created, input data is validated against the dataInputSchema. If input data for a job is not valid,
an error is returned.

Here is how you define an input schema inside a workflow definition.

Define input schema for workflow validation
To use an input schema to validate a workflow, simply include a valid JSON schema in a workflow using the
dataInputSchema parameter. For example:
{
"dataInputSchema": {
"schema": {
"title": "MyJSONSchema",
"properties": {
"firstName": {
"type": "string"

},
"lastName": {
"type": "string"

}
}

},
"failOnValidationErrors": true

}
}

The dataInputSchema itself is validated when a workflow is added or modified. This applies to both creating
and importing workflow definitions. On the other hand, the input data for a job is validated before the job is
run. This applies to both immediate and scheduled job execution.

You can turn off the validation while leaving the input schema in the workflow definition by setting the
failOnValidationErrors parameter to false.

Tip

Required keys
In the schema specification, all the keys and values are optional by default. To make them mandatory, you
need to specify them under the required key. For exampl3e:
"dataInputSchema": {

"schema": {
"title": "MyJSONSchema",
"required": [
"deviceName"

],
"properties": {
"deviceName": {
"type": "string"

},
"nsoResource": {
"type": "string"

}
}

},

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
31

Utilities
Define input schema for workflow validation



"failOnValidationErrors": true
}

In this example, the deviceName key is now required. If the input data does not contain it, the job won't start
and a validation error will be returned.

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
32

Utilities
Required keys



C H A P T E R 4
Function definitions

This section contains the following topics:

• Function definitions, on page 33

Function definitions
Function definitions describe the functions available for the workflow to execute and the name of the adapter
and activity that should be invoked by the engine when that function is invoked.While the ServerlessWorkflow
specification supports various types of functions, CWM supports only those custom type functions that map
to activities exposed via Adapters.

The following properties of function definitions are supported.

Table 11: Function definitions

DefinitionParameter

Name of function definition.name

Defines the adapter name and activity name that should be invoked by the
engine. Format is <adapter name>.<activity name>. For example: The
NSO Adapter has an activity called RestconfGet. An operation for this
would be the name of the activity as registered in the worker, such as
RestconfGet. Note that this name is case-sensitive.

operation

Allows modelling of information beyond the core definition of the
Serverless Workflow specification. The "worker" key is used to define
which Taskqueue the activities will be executed on. CWM supports the
concept of Workers that execute an Activity and are assigned Taskqueues
that they listen to. To schedule an activity to run, the workflow engine
places the activity on a Taskqueue. A worker process picks up the tasks
to execute from the Taskqueue and executes the activity.

metadata

Example:

"functions": [
{

"name": "NSO.RestconfGet",
"operation": "restconf_Get"

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
33



"metadata": {
"worker": "defaultWorker"

}
},
{

"name": "NSO.RestconfPut",
"operation": "restconf_Put"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPost",
"operation": "restconf_Post"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfPatch",
"operation": "restconf_Patch"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.RestconfDelete",
"operation": "restconf_Delete"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "NSO.SyncFrom",
"operation": "device_SyncFrom"
"metadata": {

"worker": "defaultWorker"
}

},
{

"name": "REST.Post",
"operation": "rest_Post"
"metadata": {

"worker": "defaultWorker"
}

} ]

Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
34

Function definitions
Function definitions


	Cisco Crosswork Workflow Manager 2.0 Workflow Creator Guide
	Feature overview
	Overview
	Workflow definition features
	Toplevel fields
	Retry definitions
	Error definitions
	Function definitions
	SubFlowRef definitions

	States
	Common state properties
	Compensation
	Transition
	End
	stateDataFilter
	onErrors


	Operation state overview
	Action
	functionRef
	actionDataFilter
	sleep


	Switch state overview
	dataConditions
	defaultCondition

	Sleep state
	Inject state
	ForEach state
	Parallel state
	Branches

	Callback state
	State data
	Visualize workflow logic


	Create a workflow tutorial
	Create a workflow – tutorial
	Example workflow overview
	Provide data input
	Define top-level parameters and functions
	Specify retry policy
	Define states
	Operation state
	Switch state

	Specify actions
	Example workflow definition


	Utilities
	System-defined utilities
	Invoke a system utility in a workflow
	FailJob
	GetResourceType
	NoOp
	WaitUntil

	Expression functions
	Defining an expression function
	Example workflow


	Input schema validation
	Define input schema for workflow validation
	Required keys



	Function definitions
	Function definitions


