Events

This section covers the following topics:

* Event handling overview, on page 1
* Define a Kafka event, on page 8

Event handling overview

The event handling mechanism enables CWM to interact with external brokers for handling outbound and
inbound events. Workflows can act as either consumers or producers of events which can be used to initiate
a new workflow, or signal an existing workflow. For each event type that you define, you can add correlation
attributes for filtering events and routing them to the workflow waiting for the event containing specific
attribute values.

Event messages need to be defined according to Cloud Events specification. See Event message format, on
page 7 for more details.

Brokers and protocols

CWM supports the Kafka broker and the AMQP and HTTP protocols for handling events. Events can be
either consumed by a workflow running inside CWM (incoming events forwarded by a broker) or produced
by a running workflow and forwarded to an external system (outgoing events received by a broker).

\)

Note It is important to remember that CWM doesn't act as an event broker itself. It provides a means to connect to
external brokers to forward messages and events.

Kafka broker

For the consume event type, CWM connects to a Kafka broker and listens for a specific event type on a topic.
Once an event of the specific type registers to the right topic, CWM retrieves the event data and forwards it
to the running workflow. The workflow then executes actions defined inside the Event State and/or runs
another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right topic.

Events
I 1|

https://github.com/cloudevents/spec

Events |
. AMQP protocol (such as the RabbitMQ broker)

Event A

consumed
e*ecl-'l‘@ o
\isten
Topic 1
’ED, & i
U &
9 Crosswork
Kafka broker ’ Workflow
F Manager 2.1
& y
o
I) ,Q° .
SR i T forwgry

CWM - Kafka event
communication flow

The Kafka broker will accept every event message format supported by the language-specific SDK as long
as a valid content-type is sent. See this Github link for lists of supported formats:
https://github.com/cloudevents/spec?tab=readme-ov-file.

AMAQP protocol (such as the RabbitMQ broker)

For the consume event type, CWM connects to an AMQP broker and listens for a specific event type on a
queue. Similarly to the Kafka broker, when an event of the specific type registers to the right queue, CWM
retrieves the event data and forwards it to the running workflow. The workflow then executes actions defined
inside the Event State and/or runs another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right queue.

AMQP brokers will accept every event message format supported by the specific SDK as long as a valid
content-type is sent. The lists of supported event formats are available here:
https://github.com/cloudevents/spec?tab=readme-ov-file.

HTTP protocol

For the consume event type, CWM exposes an HTTP endpoint that listens for any incoming events. If an
event of a specific type comes, it is forwarded to the running workflow that waits for this event type.

)

Note When events are consumed, CWM functions as the destination HTTP server. Therefore, the URL of the CWM
server is what you effectively provide as the resource for the given HTTP event type.

Events
2| I

https://github.com/cloudevents/spec?tab=readme-ov-file
https://github.com/cloudevents/spec?tab=readme-ov-file

| Events

Event system configuration .

Event messages need to be HTTP POST requests, and the message body needs to be in JSON format

representing a Cloud Event:

{ "specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test=\"xml\"/>",
"contextAttrName": "contextAttrValue" }

For produce events, a workflow produces an event in the Cloud Event format and CWM forwards it as an
HTTP rost request to an HTTP endpoint exposed by an external system. The HTTP endpoint address is a
concatenation of the host URL defined in the Resource configuration in CWM and the End point field of the
Event definition inside the workflow definition. Inside the resource configuration, you can change the request
method to puT or other, and add key and value pairs as header (in JSON format):

Administration > Resources

New resource

General Resource name*

[httpResource

Resource type *

[system.event.http.v1.0.0

Secret ID

[

Connection url*

[http://example.com

method

[PUT

headers

{
"key1": "value1",
"key2": "value2"

}

Event system configuration

The following topics cover the details of event configuration.

Events .

Events |
. Event system configuration: secrets

Event system configuration: secrets

In event configuration, secrets store credentials needed to enable connection to a broker or endpoint exposed
by a third-party service that sends or receives events. This includes basic authentication: username and
password. The Secret ID that you provide when creating a secret will be referenced when creating a resource,
so you need to add a secret beforehand. For details, see Step 1: Create a Kafka secret, on page 8.

Event system configuration: resources

The resource is where you provide all the connection details (including the secret) needed to reach an event
broker or endpoint exposed by a third party service. Depending on the broker/protocol you want to use, you
can choose among three default event resource types

® system.event.amgp.v1.0.0
® system.event.kafka.v1.0.0

® system.event.http.v1.0.0

Notice that there is a different set of configuration fields for each of them
» For AMQP, provide the Server DSN in the following format amgp //localhost 5723.

* For Kafka:

» KafkaVersion: Enter your Kafka version. The standard way to check the Kafka version is to run
bin/kafka topics.sh version in a terminal.

* Brokers: Enter your Kafka broker addresses in the following format ["1ocalhost 9092",
"192.168.10.9 9092"].

* Other Settings: An editable list with default Kafka setting values. You can modify the values as
needed. For details, see the "Kafka Other Settings" table below.

* For HTTP:

* Produce event types: Fill in the URL field and optionally, M ethod and Header s (for example,
Client ID header name and value as a JSON object).

Note The URL needs to be the address of the destination HTTP server, but without
the URL path. You will enter the URL path as the End point when configuring
the event type.

» Consumeevent types: Fill in the URL field with the server URL of your CWM instance, for example,
192.168.10.9 9092.

A

Note Remember to provide the URL of your CWM instance without the URL path
(/event/http). You will enter the URL path as the End point when configuring
the event type.

. Events

Table 1: Kafka Other Settings

Event system configuration: resources .

Field Description

ClientID The identifier used by Kafka brokers to track the
source of requests

KafkaVersion Specifies the version of Kafka the client is compatible
with (e.g., "2.0.0")

MetadataFull When True, fetches metadata for all topics, not just
those needed

AdminRetryMax Maximum number of retries for admin requests (e.g.,
creating/deleting topics)

NetSASLVersion Version of the SASL (Simple Authentication and
Security Layer) protocol

AdminTimeoutSecs Timeout in seconds for admin requests (e.g., topic
creation)

ConsumerFetchMin Minimum amount of data in bytes the broker should
return to the consumer

MetadataRetryMax Maximum number of retries to fetch metadata (e.g.,
topic and partition info)

NetSASLHandshake When True, enables the SASL handshake mechanism

NetDialTimeoutSecs Timeout in seconds for establishing a connection to
Kafka

NetReadTimeoutSecs Timeout in seconds for reading data from Kafka

NetWriteTimeoutSecs Timeout in seconds for writing data to Kafka

ProducerTimeoutSecs Timeout in seconds for producing messages to Kafka

ConsumerFetchDefault Default size in bytes for the consumer fetch request
(e.g., IMB)

ProducerRequiredAcks Specifies the required number of acknowledgments
from brokers for a message to be considered
successful (e.g., "WaitForLocal")

ProducerReturnErrors When True, enables error reporting for failed produce

requests

ConsumerlsolationLevel

Specifies whether the consumer reads uncommitted
or committed messages ("ReadUncommitted" allows
reading in-progress transactions)

ConsumerOffsetsInitial

Initial offset when there is no committed offset (-1
for the latest)

Events .

Events |

. Event type

Field Description

NetMaxOpenRequestsSecs Maximum time for open requests over the network

Event type

To create a new event type, you need to have a resource and secret added to CWM.

The following fields are available when adding an event type:
» Event type name: the name of your event type. It's later referred to inside the workflow definition.
» Resource: a list of resources previously added to CWM.

 Event source: a fully user-defined entry that will be referenced in the workflow definition. Required
for produce event kind.

» End point: the name of Kafka topic (event stream), AMQP endpoint (terminus), or HTTP URL
(Host) path.

Note For the HTTP consume event type, provide /event /http as your End point.

* Select kind: a list consisting of two options: consume or produce event kind.

N

Note The both option is not yet supported for CWM.

* Start listener (only for consume kind): check it to start listening for the defined event type.

* Runjob (only for consume kind): tick this checkbox if you want to trigger a workflow upon receiving
the event. Then select the desired workflow from the list.

Correlation attributes

Optionally, you can set context attributes for your event. They apply only to the consume event kind and are
used to trigger workflows selectively. You can view them as a kind of custom filters that refine the inbound

event data and route them to the right workflows that listen on event types with specific values of correlation
attributes.

To add an attribute to your event type, click Add attribute, and provide an attribute name.

\}

Note Correlation attributes are fully user-defined. They need to match the JSON key and value pair stated inside
the Cloud event message that is to be routed to a given workflow.

Events
6| I

| Events
Event message format .

Event message format

Event messages must follow the Cloud Events specification format. A minimum viable event message following
the specification will contain the following parameters:

{
"specversion": "1.0",
"id": "00001",
"type": "com.github.pull request.opened",
"source": "/sensors/tn-1234567/alerts"

}

The message can carry additional parameters, such as "datacontenttype", "data", and a correlation context
attribute name (contextAttrName in this example) :

{

"specversion": "1.0",

"id": "2763482-4-324-32-4",

"type": "com.github.pull request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",

"data": "<test data=\"xml\"/>",
"contextAttrName": "contextAttrValue"

Workflow event definition and state

In the workflow definition, there are two major syntactical elements that you use to handle the events for
which the workflow will be waiting. These are:

* The Event definition: Used to define the event type and its properties. For example:

"name": "applicant-info",
"type": "org.application.info",
"source": "applicationssource",
"correlation": [
{
"contextAttrName": "applicantId"

*» The Event state: Used to define actions to be taken when the event occurs. For example:

{

"name": "MonitorVitals",
"type": "event",
"onEvents": [
{
"actions": [
{
"functionRef": {
"refName": "uppercase",
"arguments": {
"input": {
"in": "patient ${ .patient } has high temperature"

Events
I 7|

https://github.com/cloudevents/spec
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-state

Events |
. Define a Kafka event

]I
"eventRefs": [
"HighBodyTemperature"
]
}
]

Define a Kafka event

In the following topics, we will create a Kafka event and add it to a new workflow. The only pre-requisities
are that we must have:

* A fully set-up Kafka service.
* CWM installed.

Step 1: Create a Kafka secret

To enable a secure connection to the Kafka service, you need to create a secret with Kafka credentials and a
resource with connection details.

Procedure

Command or Action Purpose

Step 1 In CNC, select Administration > Wor kflow
Administration > Secrets.

Step2 | Click Add Secret.

Step 3 In the New secret view, specify the following:

Step 4 After selecting the secret type, a set of additional fields is
displayed under the Secret type details section. Fill in the
fields:

Step 5 Click Create Secret.

Step 2: Create a Kafka resource

You also need to create a resource with connection details.

Procedure

Command or Action Purpose

Step 1 In CNC, select Administration > Wor kflow
Administration > Resour ces.

Step 2 Click Add Resource.

. Events

| Events
Step 3: Add the event type .

Command or Action Purpose

Step 3 In the New resour ce window, specify the following:

Step 4 Click Create.

Administration > Resources

New resource

General Resource name*

[KafkaResource]

Resource type *

[system.event.kafka.v1.0.0 ® v]

Secret ID

[KafkaSecret ® v]

Connection KafkaVersion*

[2.0.0]

Brokers*

["localhost: 9092"]

OtherSettings

{
"ClientID": "sarama",
"MetadataFull": true,
"AdminRetryMax": 5,
"NetSASI Version": 0 2

Step 3: Add the event type

When you have the secret and resource in place, it's time to specify the type of event that will be consumed
or produced.

Procedure

Command or Action Purpose

Step 1 In CNC, select Administration > Wor kflow
Administration > Event Types.

Step 2 Click Add event type.

Step 3 In the New event type window, provide the required input:

Events
I |9 |

Events |
. Step 4: Define the event in a workflow

Command or Action Purpose
Step 4 Click Create Event type' Administration > Event types
New event type Cancel
Details Event type name*
[HighRouterTemp]
Resource *
[KafkaResource v]

Resource type

Event source

[monitoring.app]
End point*

[KafkaTopic]
Select kind *

[consumed v]
D Run job

Correlation attributes*

TestAttri... X

+ NextAttribute|

Step 4: Define the event in a workflow

Now that we have the event type added, we can create a workflow that registers for this event type and executes
an action when the event is received by CWM. To do so, we'll need to:

1. Define the event using an Event definition.
2. Specify the Event state

3. Define the actions to be taken when the event occurs.

As an example, let's take a scenario where a router overheating alarm (an inbound event) triggers a single
workflow event state and defines two remediation actions to be executed in response to that state.

{

"id": "HighRouterTempWorkflow",

"name": "Router Overheating Alarm Workflow",
"start": "RemediateHighTemp",

"events": [

Events
10| I

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-state

| Events
Step 4: Define the event in a workflow .

"kind": "consumed",
"name": "HighRouterTemp",
"type": "HighRouterTemp",
"source": "monitoring.app"
}
]I
"states": [
{
"end": {
"terminate": true
}I
"name": "RemediateHighTemp",
"type": "event",
"onEvents": [
{
"actions": [
{
"functionRef": {
"refName": "DispatchTech",
"contextAttributes": {
"RouterIP": "${ .RouterIP }"
}I
"resultEventTimeout": "PT30M"
}
}
]I
"eventRefs": [
"HighRouterTemp"
1
}I
{
"actions": [
{
"functionRef": {
"refName": "MoveTraffic",
"contextAttributes": {
"RouterIP": "${ .RouterIP }"
}I
"resultEventTimeout": "PT30M"
}
}
]I
"timeouts": {
"actionExecTimeout": "PT60OM"
}
}
1
}
]I
"version": "1.0.0",
"description": "Remediate router overheating",
"specVersion": "0.8"

\)

Note This example is not a complete workflow. It is an example of how to define an event inside a workflow, set
a simple state, and then define actions to take in response to that single state. A realistic workflow can define
many more states and actions to take in response to each of those states.

Events
I 1|

Events |
. Step 4: Define the event in a workflow

. Events

	Events
	Event handling overview
	Brokers and protocols
	Kafka broker
	AMQP protocol (such as the RabbitMQ broker)
	HTTP protocol
	Event system configuration
	Event system configuration: secrets
	Event system configuration: resources
	Event type
	Correlation attributes

	Event message format
	Workflow event definition and state

	Define a Kafka event
	Step 1: Create a Kafka secret
	Step 2: Create a Kafka resource
	Step 3: Add the event type
	Step 4: Define the event in a workflow

