
Cisco Crosswork Workflow Manager 2.1 Administrator Guide
First Published: 2026-01-30

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883



© 2024–2026 Cisco Systems, Inc. All rights reserved.



C O N T E N T S

System 1C H A P T E R 1

Architecture overview 1

GEO High Availability 2

API 3C H A P T E R 2

CWM API Overview 3

Use the CNC Workflow Automation Postman collection 3

Events 5C H A P T E R 3

Event handling overview 5

Brokers and protocols 5

Kafka broker 5

AMQP protocol (such as the RabbitMQ broker) 6

HTTP protocol 6

Event system configuration 7

Event system configuration: secrets 8

Event system configuration: resources 8

Event type 10

Correlation attributes 10

Event message format 11

Workflow event definition and state 11

Define a Kafka event 12

Step 1: Create a Kafka secret 12

Step 2: Create a Kafka resource 12

Step 3: Add the event type 13

Step 4: Define the event in a workflow 14

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
iii



Cisco Crosswork Workflow Manager 2.1 Administrator Guide
iv

Contents



C H A P T E R 1
System

This section covers the following topics:

• Architecture overview, on page 1
• GEO High Availability, on page 2

Architecture overview
Cisco Crosswork WorkflowManager architecture is a microservice-based solution that operates on top of the
Crosswork Infrastructure. This section shows a diagram presenting its core architectural components along
with short descriptions of each.

• UI Server: Allows operators to add and instantiate workflows, enter workflow data, list runningworkflows,
monitor job progress. The Administration section of the CNC UI enables users to add workers, manage
worker processes and assign activities from adapters to workers.

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
1



• REST API: Includes all interaction with the CWM application: deploying adapters, publishing and
instantiating workflows, managing workers, resources and secrets.

• API Server: Dispatches API requests to relevant microservices.

• Engine: The core component that conducts how workflows are handled. It interprets and manages the
execution of workflow definitions.

• Engine Worker (Workflow Worker): Executes the workflow tasks. It receives the workflow tasks
from the Engine, executes them in the correct order, and sends the results back to the Engine.

• Worker Manager: Manages the Workflow Workers. It ensures that the correct number of workers are
running and that they are properly configured.

• Adapter Manager: Manages the adapters used by the system. It installs, configures, and updates adapters
("plugins") and ensures that they are compatible with the system.

• Event Manager: Manages incoming and outgoing events, dispatching them to correct event queues.
Events are signals coming from external sources with which the workflows can interact.

• Adapter SDK & XDK: Helps developers create new adapters to integrate with external systems. The
XDK application extends the capabilities of the Adapter SDK to enable developers to automatically build
interfaces and message logic for custom adapters.

• Workflow Definitions: Workflow code written in the JSON format based on the Serverless Workflow
specification.

• Crosswork Infrastructure: Runtime platform for the CWM application. It is a collection of services
that provide the necessary infrastructure to support the deployment and management of the application
within a Cluster deployment.

• PostgreSQL: The database that the system uses to store and manage its data.

• DSL Engine: Executes the Domain-Specific Language (DSL) used to define the workflows. It parses
the DSL, generates the appropriate workflow code, and compiles it for execution.

• Engine Matching:Matches incoming events with the appropriate workflow. It determineswhichworkflow
should execute based on the event data and the defined workflow constraints.

• Engine History Tracks the history of executed workflows. It stores the metadata and execution details
of all completed, running, and failed workflows.

GEO High Availability
Crosswork WorkflowManager 2.1 supports GEO High Availability (GEO HA) through the underlying Cisco
Crosswork infrastructure. To enable and configure GEOHA, refer to theGEO HA Overview and Enablement
instructions in the CNC documentation: GEO HA Overview.

CWM inherits the HA configuration from CNC; no additional CWM-specific enablement steps are required.

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
2

System
GEO High Availability

https://www.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-infrastructure/7-1/InstallGuide/b_cisco_crosswork_7_1_install_guide/m_geo-ha-overview.html


C H A P T E R 2
API

This section covers the following topics:

• CWM API Overview, on page 3
• Use the CNC Workflow Automation Postman collection, on page 3

CWM API Overview
Cisco developed the Cisco Crosswork Workflow Manager API based on Representational State Transfer
(REST) design principles. You can access the API using HTTP and data files formatted using JSON. The API
indicates the success or failure of a given request using relevant HTTP response codes. Data retrieval methods
require a GET request, while methods for adding, changing, or deleting data require POST, PUT, PATCH,
or DELETE methods, as appropriate. The API returns errors if you send requests using the wrong request
type.

You can use the CWM API using a CWM 2.1 Postman collection in Postman.

For a full API reference, see the dedicated DevNet space: https://devnetapps.cisco.com/docs/crosswork/
workflow-manager/introduction/.

Use the CNC Workflow Automation Postman collection
Follow these steps to import the collection to the Postman application and set the development environmentn.

Before you begin

Be sure that you have access to a Postman web application account or have installed the Postman desktop
app. For details, see https://www.postman.com/downloads/.

You must also download the CNC Workflow Automation Postman collection in JSON format by clicking
this link and then unzip the archive to an accessible storage resource.

Procedure

Step 1 Launch Postman and go to Collections.

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
3

https://devnetapps.cisco.com/docs/crosswork/workflow-manager/introduction/
https://devnetapps.cisco.com/docs/crosswork/workflow-manager/introduction/
https://www.postman.com/downloads/
https://devnetapps.cisco.com/docs/crosswork/7-1/crosswork-network-controller-workflow-automation-examples/
https://devnetapps.cisco.com/docs/crosswork/7-1/crosswork-network-controller-workflow-automation-examples/


Step 2 Click Import, select folders from the Drop anywhere to import screen, and point to the folder that you unzipped from
the CNC Workflow Automation Postman collection archive.

Step 3 Go to Environments and select the newly imported test environment.
Step 4 Provide current values for the baseUrl and endPoint variables to match the IP address and port of your CNCWorkflow

Automation instance. Save save the changes.

To get access to the CNC Workflow Automation API, use the baseurl/crosswork/cnc/v71/, where baseurl is the IP
address and port number of your Crosswork Network Controller (CNC) instance with CNC Workflow Automation
installed. For example: https://172.22.141.178:30603

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
4

API
Use the CNC Workflow Automation Postman collection



C H A P T E R 3
Events

This section covers the following topics:

• Event handling overview, on page 5
• Define a Kafka event, on page 12

Event handling overview
The event handling mechanism enables CWM to interact with external brokers for handling outbound and
inbound events. Workflows can act as either consumers or producers of events which can be used to initiate
a new workflow, or signal an existing workflow. For each event type that you define, you can add correlation
attributes for filtering events and routing them to the workflow waiting for the event containing specific
attribute values.

Event messages need to be defined according to Cloud Events specification. See Event message format, on
page 11 for more details.

Brokers and protocols
CWM supports the Kafka broker and the AMQP and HTTP protocols for handling events. Events can be
either consumed by a workflow running inside CWM (incoming events forwarded by a broker) or produced
by a running workflow and forwarded to an external system (outgoing events received by a broker).

It is important to remember that CWM doesn't act as an event broker itself. It provides a means to connect to
external brokers to forward messages and events.

Note

Kafka broker
For the consume event type, CWM connects to a Kafka broker and listens for a specific event type on a topic.
Once an event of the specific type registers to the right topic, CWM retrieves the event data and forwards it
to the running workflow. The workflow then executes actions defined inside the Event State and/or runs
another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right topic.

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
5

https://github.com/cloudevents/spec


The Kafka broker will accept every event message format supported by the language-specific SDK as long
as a valid content-type is sent. See this Github link for lists of supported formats:
https://github.com/cloudevents/spec?tab=readme-ov-file.

AMQP protocol (such as the RabbitMQ broker)
For the consume event type, CWM connects to an AMQP broker and listens for a specific event type on a
queue. Similarly to the Kafka broker, when an event of the specific type registers to the right queue, CWM
retrieves the event data and forwards it to the running workflow. The workflow then executes actions defined
inside the Event State and/or runs another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right queue.

AMQP brokers will accept every event message format supported by the specific SDK as long as a valid
content-type is sent. The lists of supported event formats are available here:
https://github.com/cloudevents/spec?tab=readme-ov-file.

HTTP protocol
For the consume event type, CWM exposes an HTTP endpoint that listens for any incoming events. If an
event of a specific type comes, it is forwarded to the running workflow that waits for this event type.

When events are consumed, CWM functions as the destination HTTP server. Therefore, the URL of the CWM
server is what you effectively provide as the resource for the given HTTP event type.

Note

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
6

Events
AMQP protocol (such as the RabbitMQ broker)

https://github.com/cloudevents/spec?tab=readme-ov-file
https://github.com/cloudevents/spec?tab=readme-ov-file


Event messages need to be HTTP POST requests, and the message body needs to be in JSON format
representing a Cloud Event:
{ "specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test=\"xml\"/>",
"contextAttrName": "contextAttrValue" }

For produce events, a workflow produces an event in the Cloud Event format and CWM forwards it as an
HTTP POST request to an HTTP endpoint exposed by an external system. The HTTP endpoint address is a
concatenation of the host URL defined in the Resource configuration in CWM and the End point field of the
Event definition inside the workflow definition. Inside the resource configuration, you can change the request
method to PUT or other, and add key and value pairs as header (in JSON format):

Event system configuration
The following topics cover the details of event configuration.

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
7

Events
Event system configuration



Event system configuration: secrets
In event configuration, secrets store credentials needed to enable connection to a broker or endpoint exposed
by a third-party service that sends or receives events. This includes basic authentication: username and
password. The Secret ID that you provide when creating a secret will be referenced when creating a resource,
so you need to add a secret beforehand. For details, see Step 1: Create a Kafka secret, on page 12.

Event system configuration: resources
The resource is where you provide all the connection details (including the secret) needed to reach an event
broker or endpoint exposed by a third party service. Depending on the broker/protocol you want to use, you
can choose among three default event resource types

• system.event.amqp.v1.0.0

• system.event.kafka.v1.0.0

• system.event.http.v1.0.0

Notice that there is a different set of configuration fields for each of them

• For AMQP, provide the ServerDSN in the following format amqp //localhost 5723.

• For Kafka:

• KafkaVersion: Enter your Kafka version. The standard way to check the Kafka version is to run
bin/kafka topics.sh version in a terminal.

• Brokers: Enter your Kafka broker addresses in the following format ["localhost 9092",

"192.168.10.9 9092"].

• OtherSettings: An editable list with default Kafka setting values. You can modify the values as
needed. For details, see the "Kafka Other Settings" table below.

• For HTTP:

• Produce event types: Fill in the URL field and optionally, Method and Headers (for example,
Client ID header name and value as a JSON object).

The URL needs to be the address of the destination HTTP server, but without
the URL path. You will enter the URL path as the End point when configuring
the event type.

Note

• Consume event types: Fill in theURL field with the server URL of your CWM instance, for example,
192.168.10.9 9092.

Remember to provide the URL of your CWM instance without the URL path
(/event/http). You will enter the URL path as the End point when configuring
the event type.

Note

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
8

Events
Event system configuration: secrets



Table 1: Kafka Other Settings

DescriptionField

The identifier used by Kafka brokers to track the
source of requests

ClientID

Specifies the version of Kafka the client is compatible
with (e.g., "2.0.0")

KafkaVersion

When True, fetches metadata for all topics, not just
those needed

MetadataFull

Maximum number of retries for admin requests (e.g.,
creating/deleting topics)

AdminRetryMax

Version of the SASL (Simple Authentication and
Security Layer) protocol

NetSASLVersion

Timeout in seconds for admin requests (e.g., topic
creation)

AdminTimeoutSecs

Minimum amount of data in bytes the broker should
return to the consumer

ConsumerFetchMin

Maximum number of retries to fetch metadata (e.g.,
topic and partition info)

MetadataRetryMax

When True, enables the SASL handshakemechanismNetSASLHandshake

Timeout in seconds for establishing a connection to
Kafka

NetDialTimeoutSecs

Timeout in seconds for reading data from KafkaNetReadTimeoutSecs

Timeout in seconds for writing data to KafkaNetWriteTimeoutSecs

Timeout in seconds for producing messages to KafkaProducerTimeoutSecs

Default size in bytes for the consumer fetch request
(e.g., 1MB)

ConsumerFetchDefault

Specifies the required number of acknowledgments
from brokers for a message to be considered
successful (e.g., "WaitForLocal")

ProducerRequiredAcks

When True, enables error reporting for failed produce
requests

ProducerReturnErrors

Specifies whether the consumer reads uncommitted
or committed messages ("ReadUncommitted" allows
reading in-progress transactions)

ConsumerIsolationLevel

Initial offset when there is no committed offset (-1
for the latest)

ConsumerOffsetsInitial

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
9

Events
Event system configuration: resources



DescriptionField

Maximum time for open requests over the networkNetMaxOpenRequestsSecs

Event type
To create a new event type, you need to have a resource and secret added to CWM.

The following fields are available when adding an event type:

• Event type name: the name of your event type. It's later referred to inside the workflow definition.

• Resource: a list of resources previously added to CWM.

• Event source: a fully user-defined entry that will be referenced in the workflow definition. Required
for produce event kind.

• End point: the name of Kafka topic (event stream), AMQP endpoint (terminus), or HTTP URL
(Host) path.

For the HTTP consume event type, provide /event/http as your End point.Note

• Select kind: a list consisting of two options: consume or produce event kind.

The both option is not yet supported for CWM.Note

• Start listener (only for consume kind): check it to start listening for the defined event type.

• Run job (only for consume kind): tick this checkbox if you want to trigger a workflow upon receiving
the event. Then select the desired workflow from the list.

Correlation attributes
Optionally, you can set context attributes for your event. They apply only to the consume event kind and are
used to trigger workflows selectively. You can view them as a kind of custom filters that refine the inbound
event data and route them to the right workflows that listen on event types with specific values of correlation
attributes.

To add an attribute to your event type, click Add attribute, and provide an attribute name.

Correlation attributes are fully user-defined. They need to match the JSON key and value pair stated inside
the Cloud event message that is to be routed to a given workflow.

Note

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
10

Events
Event type



Event message format
Event messagesmust follow the Cloud Events specification format. Aminimumviable event message following
the specification will contain the following parameters:
{
"specversion": "1.0",
"id": "00001",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts"

}

The message can carry additional parameters, such as "datacontenttype", "data", and a correlation context
attribute name (contextAttrName in this example) :
{
"specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test data=\"xml\"/>",
"contextAttrName": "contextAttrValue"

}

Workflow event definition and state
In the workflow definition, there are two major syntactical elements that you use to handle the events for
which the workflow will be waiting. These are:

• The Event definition: Used to define the event type and its properties. For example:

{
"name": "applicant-info",
"type": "org.application.info",
"source": "applicationssource",
"correlation": [
{
"contextAttrName": "applicantId"

}
]

}

• The Event state: Used to define actions to be taken when the event occurs. For example:

{
"name": "MonitorVitals",
"type": "event",
"onEvents": [

{
"actions": [
{
"functionRef": {
"refName": "uppercase",
"arguments": {
"input": {
"in": "patient ${ .patient } has high temperature"

}
}

}
}

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
11

Events
Event message format

https://github.com/cloudevents/spec
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-state


],
"eventRefs": [
"HighBodyTemperature"

]
}

]
}

Define a Kafka event
In the following topics, we will create a Kafka event and add it to a new workflow. The only pre-requisities
are that we must have:

• A fully set-up Kafka service.

• CWM installed.

Step 1: Create a Kafka secret
To enable a secure connection to the Kafka service, you need to create a secret with Kafka credentials and a
resource with connection details.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Secrets.

Step 1

Click Add Secret.Step 2

In the New secret view, specify the following:Step 3

After selecting the secret type, a set of additional fields is
displayed under the Secret type details section. Fill in the
fields:

Step 4

Click Create Secret.Step 5

Step 2: Create a Kafka resource
You also need to create a resource with connection details.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Resources.

Step 1

Click Add Resource.Step 2

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
12

Events
Define a Kafka event



PurposeCommand or Action

In the New resource window, specify the following:Step 3

Click Create.Step 4

Step 3: Add the event type
When you have the secret and resource in place, it's time to specify the type of event that will be consumed
or produced.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Event Types.

Step 1

Click Add event type.Step 2

In theNew event typewindow, provide the required input:Step 3

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
13

Events
Step 3: Add the event type



PurposeCommand or Action

Click Create Event type.Step 4

Step 4: Define the event in a workflow
Now that we have the event type added, we can create a workflow that registers for this event type and executes
an action when the event is received by CWM. To do so, we'll need to:

1. Define the event using an Event definition.

2. Specify the Event state

3. Define the actions to be taken when the event occurs.

As an example, let's take a scenario where a router overheating alarm (an inbound event) triggers a single
workflow event state and defines two remediation actions to be executed in response to that state.
{

"id": "HighRouterTempWorkflow",
"name": "Router Overheating Alarm Workflow",
"start": "RemediateHighTemp",
"events": [

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
14

Events
Step 4: Define the event in a workflow

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-state


{
"kind": "consumed",
"name": "HighRouterTemp",
"type": "HighRouterTemp",
"source": "monitoring.app"

}
],
"states": [

{
"end": {

"terminate": true
},
"name": "RemediateHighTemp",
"type": "event",
"onEvents": [

{
"actions": [

{
"functionRef": {

"refName": "DispatchTech",
"contextAttributes": {

"RouterIP": "${ .RouterIP }"
},
"resultEventTimeout": "PT30M"

}
}

],
"eventRefs": [

"HighRouterTemp"
]

},
{

"actions": [
{

"functionRef": {
"refName": "MoveTraffic",
"contextAttributes": {

"RouterIP": "${ .RouterIP }"
},
"resultEventTimeout": "PT30M"

}
}

],
"timeouts": {

"actionExecTimeout": "PT60M"
}

}
]

}
],
"version": "1.0.0",
"description": "Remediate router overheating",
"specVersion": "0.8"

}

This example is not a complete workflow. It is an example of how to define an event inside a workflow, set
a simple state, and then define actions to take in response to that single state. A realistic workflow can define
many more states and actions to take in response to each of those states.

Note

Cisco Crosswork Workflow Manager 2.1 Administrator Guide
15

Events
Step 4: Define the event in a workflow



Cisco Crosswork Workflow Manager 2.1 Administrator Guide
16

Events
Step 4: Define the event in a workflow


	Cisco Crosswork Workflow Manager 2.1 Administrator Guide
	Contents
	System
	Architecture overview
	GEO High Availability

	API
	CWM API Overview
	Use the CNC Workflow Automation Postman collection

	Events
	Event handling overview
	Brokers and protocols
	Kafka broker
	AMQP protocol (such as the RabbitMQ broker)
	HTTP protocol
	Event system configuration
	Event system configuration: secrets
	Event system configuration: resources
	Event type
	Correlation attributes

	Event message format
	Workflow event definition and state

	Define a Kafka event
	Step 1: Create a Kafka secret
	Step 2: Create a Kafka resource
	Step 3: Add the event type
	Step 4: Define the event in a workflow



