
Events

This section covers the following topics:

• Event handling overview, on page 1
• Define a Kafka event, on page 8

Event handling overview
The event handling mechanism enables CWM to interact with external brokers for handling outbound and
inbound events. Workflows can act as either consumers or producers of events which can be used to initiate
a new workflow, or signal an existing workflow. For each event type that you define, you can add correlation
attributes for filtering events and routing them to the workflow waiting for the event containing specific
attribute values.

Event messages need to be defined according to Cloud Events specification. See Event message format, on
page 7 for more details.

Brokers and protocols
CWM supports the Kafka broker and the AMQP and HTTP protocols for handling events. Events can be
either consumed by a workflow running inside CWM (incoming events forwarded by a broker) or produced
by a running workflow and forwarded to an external system (outgoing events received by a broker).

It is important to remember that CWM doesn't act as an event broker itself. It provides a means to connect to
external brokers to forward messages and events.

Note

Kafka broker
For the consume event type, CWM connects to a Kafka broker and listens for a specific event type on a topic.
Once an event of the specific type registers to the right topic, CWM retrieves the event data and forwards it
to the running workflow. The workflow then executes actions defined inside the Event State and/or runs
another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right topic.

Events
1

https://github.com/cloudevents/spec


The Kafka broker will accept every event message format supported by the language-specific SDK as long
as a valid content-type is sent. See this Github link for lists of supported formats:
https://github.com/cloudevents/spec?tab=readme-ov-file.

AMQP protocol (such as the RabbitMQ broker)
For the consume event type, CWM connects to an AMQP broker and listens for a specific event type on a
queue. Similarly to the Kafka broker, when an event of the specific type registers to the right queue, CWM
retrieves the event data and forwards it to the running workflow. The workflow then executes actions defined
inside the Event State and/or runs another workflow execution (if selected).

For the produce event type, a running workflow produces a single event or a set of events which CWM then
forwards to the broker and they get published in the right queue.

AMQP brokers will accept every event message format supported by the specific SDK as long as a valid
content-type is sent. The lists of supported event formats are available here:
https://github.com/cloudevents/spec?tab=readme-ov-file.

HTTP protocol
For the consume event type, CWM exposes an HTTP endpoint that listens for any incoming events. If an
event of a specific type comes, it is forwarded to the running workflow that waits for this event type.

When events are consumed, CWM functions as the destination HTTP server. Therefore, the URL of the CWM
server is what you effectively provide as the resource for the given HTTP event type.

Note

Events
2

Events
AMQP protocol (such as the RabbitMQ broker)

https://github.com/cloudevents/spec?tab=readme-ov-file
https://github.com/cloudevents/spec?tab=readme-ov-file


Event messages need to be HTTP POST requests, and the message body needs to be in JSON format
representing a Cloud Event:
{ "specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test=\"xml\"/>",
"contextAttrName": "contextAttrValue" }

For produce events, a workflow produces an event in the Cloud Event format and CWM forwards it as an
HTTP POST request to an HTTP endpoint exposed by an external system. The HTTP endpoint address is a
concatenation of the host URL defined in the Resource configuration in CWM and the End point field of the
Event definition inside the workflow definition. Inside the resource configuration, you can change the request
method to PUT or other, and add key and value pairs as header (in JSON format):

Event system configuration
The following topics cover the details of event configuration.

Events
3

Events
Event system configuration



Event system configuration: secrets
In event configuration, secrets store credentials needed to enable connection to a broker or endpoint exposed
by a third-party service that sends or receives events. This includes basic authentication: username and
password. The Secret ID that you provide when creating a secret will be referenced when creating a resource,
so you need to add a secret beforehand. For details, see Step 1: Create a Kafka secret, on page 8.

Event system configuration: resources
The resource is where you provide all the connection details (including the secret) needed to reach an event
broker or endpoint exposed by a third party service. Depending on the broker/protocol you want to use, you
can choose among three default event resource types

• system.event.amqp.v1.0.0

• system.event.kafka.v1.0.0

• system.event.http.v1.0.0

Notice that there is a different set of configuration fields for each of them

• For AMQP, provide the ServerDSN in the following format amqp //localhost 5723.

• For Kafka:

• KafkaVersion: Enter your Kafka version. The standard way to check the Kafka version is to run
bin/kafka topics.sh version in a terminal.

• Brokers: Enter your Kafka broker addresses in the following format ["localhost 9092",

"192.168.10.9 9092"].

• OtherSettings: An editable list with default Kafka setting values. You can modify the values as
needed. For details, see the "Kafka Other Settings" table below.

• For HTTP:

• Produce event types: Fill in the URL field and optionally, Method and Headers (for example,
Client ID header name and value as a JSON object).

The URL needs to be the address of the destination HTTP server, but without
the URL path. You will enter the URL path as the End point when configuring
the event type.

Note

• Consume event types: Fill in theURL field with the server URL of your CWM instance, for example,
192.168.10.9 9092.

Remember to provide the URL of your CWM instance without the URL path
(/event/http). You will enter the URL path as the End point when configuring
the event type.

Note

Events
4

Events
Event system configuration: secrets



Table 1: Kafka Other Settings

DescriptionField

The identifier used by Kafka brokers to track the
source of requests

ClientID

Specifies the version of Kafka the client is compatible
with (e.g., "2.0.0")

KafkaVersion

When True, fetches metadata for all topics, not just
those needed

MetadataFull

Maximum number of retries for admin requests (e.g.,
creating/deleting topics)

AdminRetryMax

Version of the SASL (Simple Authentication and
Security Layer) protocol

NetSASLVersion

Timeout in seconds for admin requests (e.g., topic
creation)

AdminTimeoutSecs

Minimum amount of data in bytes the broker should
return to the consumer

ConsumerFetchMin

Maximum number of retries to fetch metadata (e.g.,
topic and partition info)

MetadataRetryMax

When True, enables the SASL handshakemechanismNetSASLHandshake

Timeout in seconds for establishing a connection to
Kafka

NetDialTimeoutSecs

Timeout in seconds for reading data from KafkaNetReadTimeoutSecs

Timeout in seconds for writing data to KafkaNetWriteTimeoutSecs

Timeout in seconds for producing messages to KafkaProducerTimeoutSecs

Default size in bytes for the consumer fetch request
(e.g., 1MB)

ConsumerFetchDefault

Specifies the required number of acknowledgments
from brokers for a message to be considered
successful (e.g., "WaitForLocal")

ProducerRequiredAcks

When True, enables error reporting for failed produce
requests

ProducerReturnErrors

Specifies whether the consumer reads uncommitted
or committed messages ("ReadUncommitted" allows
reading in-progress transactions)

ConsumerIsolationLevel

Initial offset when there is no committed offset (-1
for the latest)

ConsumerOffsetsInitial

Events
5

Events
Event system configuration: resources



DescriptionField

Maximum time for open requests over the networkNetMaxOpenRequestsSecs

Event type
To create a new event type, you need to have a resource and secret added to CWM.

The following fields are available when adding an event type:

• Event type name: the name of your event type. It's later referred to inside the workflow definition.

• Resource: a list of resources previously added to CWM.

• Event source: a fully user-defined entry that will be referenced in the workflow definition. Required
for produce event kind.

• End point: the name of Kafka topic (event stream), AMQP endpoint (terminus), or HTTP URL
(Host) path.

For the HTTP consume event type, provide /event/http as your End point.Note

• Select kind: a list consisting of two options: consume or produce event kind.

The both option is not yet supported for CWM.Note

• Start listener (only for consume kind): check it to start listening for the defined event type.

• Run job (only for consume kind): tick this checkbox if you want to trigger a workflow upon receiving
the event. Then select the desired workflow from the list.

Correlation attributes
Optionally, you can set context attributes for your event. They apply only to the consume event kind and are
used to trigger workflows selectively. You can view them as a kind of custom filters that refine the inbound
event data and route them to the right workflows that listen on event types with specific values of correlation
attributes.

To add an attribute to your event type, click Add attribute, and provide an attribute name.

Correlation attributes are fully user-defined. They need to match the JSON key and value pair stated inside
the Cloud event message that is to be routed to a given workflow.

Note

Events
6

Events
Event type



Event message format
Event messagesmust follow the Cloud Events specification format. Aminimumviable event message following
the specification will contain the following parameters:
{
"specversion": "1.0",
"id": "00001",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts"

}

The message can carry additional parameters, such as "datacontenttype", "data", and a correlation context
attribute name (contextAttrName in this example) :
{
"specversion": "1.0",
"id": "2763482-4-324-32-4",
"type": "com.github.pull_request.opened",
"source": "/sensors/tn-1234567/alerts",
"datacontenttype": "text/xml",
"data": "<test data=\"xml\"/>",
"contextAttrName": "contextAttrValue"

}

Workflow event definition and state
In the workflow definition, there are two major syntactical elements that you use to handle the events for
which the workflow will be waiting. These are:

• The Event definition: Used to define the event type and its properties. For example:

{
"name": "applicant-info",
"type": "org.application.info",
"source": "applicationssource",
"correlation": [
{
"contextAttrName": "applicantId"

}
]

}

• The Event state: Used to define actions to be taken when the event occurs. For example:

{
"name": "MonitorVitals",
"type": "event",
"onEvents": [

{
"actions": [
{
"functionRef": {
"refName": "uppercase",
"arguments": {
"input": {
"in": "patient ${ .patient } has high temperature"

}
}

}
}

Events
7

Events
Event message format

https://github.com/cloudevents/spec
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/main/specification.md#event-state


],
"eventRefs": [
"HighBodyTemperature"

]
}

]
}

Define a Kafka event
In the following topics, we will create a Kafka event and add it to a new workflow. The only pre-requisities
are that we must have:

• A fully set-up Kafka service.

• CWM installed.

Step 1: Create a Kafka secret
To enable a secure connection to the Kafka service, you need to create a secret with Kafka credentials and a
resource with connection details.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Secrets.

Step 1

Click Add Secret.Step 2

In the New secret view, specify the following:Step 3

After selecting the secret type, a set of additional fields is
displayed under the Secret type details section. Fill in the
fields:

Step 4

Click Create Secret.Step 5

Step 2: Create a Kafka resource
You also need to create a resource with connection details.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Resources.

Step 1

Click Add Resource.Step 2

Events
8

Events
Define a Kafka event



PurposeCommand or Action

In the New resource window, specify the following:Step 3

Click Create.Step 4

Step 3: Add the event type
When you have the secret and resource in place, it's time to specify the type of event that will be consumed
or produced.

Procedure

PurposeCommand or Action

In CNC, select Administration > Workflow
Administration > Event Types.

Step 1

Click Add event type.Step 2

In theNew event typewindow, provide the required input:Step 3

Events
9

Events
Step 3: Add the event type



PurposeCommand or Action

Click Create Event type.Step 4

Step 4: Define the event in a workflow
Now that we have the event type added, we can create a workflow that registers for this event type and executes
an action when the event is received by CWM. To do so, we'll need to:

1. Define the event using an Event definition.

2. Specify the Event state

3. Define the actions to be taken when the event occurs.

As an example, let's take a scenario where a router overheating alarm (an inbound event) triggers a single
workflow event state and defines two remediation actions to be executed in response to that state.
{

"id": "HighRouterTempWorkflow",
"name": "Router Overheating Alarm Workflow",
"start": "RemediateHighTemp",
"events": [

Events
10

Events
Step 4: Define the event in a workflow

https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-definition
https://github.com/serverlessworkflow/specification/blob/0.9.x/specification.md#event-state


{
"kind": "consumed",
"name": "HighRouterTemp",
"type": "HighRouterTemp",
"source": "monitoring.app"

}
],
"states": [

{
"end": {

"terminate": true
},
"name": "RemediateHighTemp",
"type": "event",
"onEvents": [

{
"actions": [

{
"functionRef": {

"refName": "DispatchTech",
"contextAttributes": {

"RouterIP": "${ .RouterIP }"
},
"resultEventTimeout": "PT30M"

}
}

],
"eventRefs": [

"HighRouterTemp"
]

},
{

"actions": [
{

"functionRef": {
"refName": "MoveTraffic",
"contextAttributes": {

"RouterIP": "${ .RouterIP }"
},
"resultEventTimeout": "PT30M"

}
}

],
"timeouts": {

"actionExecTimeout": "PT60M"
}

}
]

}
],
"version": "1.0.0",
"description": "Remediate router overheating",
"specVersion": "0.8"

}

This example is not a complete workflow. It is an example of how to define an event inside a workflow, set
a simple state, and then define actions to take in response to that single state. A realistic workflow can define
many more states and actions to take in response to each of those states.

Note

Events
11

Events
Step 4: Define the event in a workflow



Events
12

Events
Step 4: Define the event in a workflow


	Events
	Event handling overview
	Brokers and protocols
	Kafka broker
	AMQP protocol (such as the RabbitMQ broker)
	HTTP protocol
	Event system configuration
	Event system configuration: secrets
	Event system configuration: resources
	Event type
	Correlation attributes

	Event message format
	Workflow event definition and state

	Define a Kafka event
	Step 1: Create a Kafka secret
	Step 2: Create a Kafka resource
	Step 3: Add the event type
	Step 4: Define the event in a workflow



