

Cisco Crosswork Situation Manager

8.0.x Developer Guide
(Powered by Moogsoft AIOps 8.0)

Cisco Crosswork Situation Manager 8.0.x Developer Guide

2

Developer Guide ... 7

Graze API.. 7

Stats API ... 8

Topologies API ... 8

Integrations API .. 8

Moobot modules ... 8

Programmatic LAM ... 9

Alert Rules Engine ... 9

Link Up-Link Down Example ... 10

Heartbeat Monitor .. 11

Alert Rules Engine Reference ... 15

Transitions .. 17

Action States .. 18

Clustering Algorithm Guide ... 19

Cookbook ... 19

Tempus .. 20

Situation Manager Labeler .. 20

Usage ... 20

Update Situation descriptions ... 21

Limiting the number of alerts to consider .. 22

Update other Situation fields .. 23

Example ... 23

Field Behavior in Merged Situations .. 23

Graze API.. 24

Endpoints ... 24

Before you begin .. 24

API definition .. 25

Authentication .. 25

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

3

POST parameters ... 25

Graze API EndPoint Reference.. 26

Alert Action Codes ... 247

Situation Action Codes ... 248

Situation Flags .. 249

API Update Behavior .. 250

Stats API .. 250

Integrations API .. 332

Topologies API ... 356

Introduction to Graze API .. 379

Command Line Utility .. 379

Alert Analyzer Utility ... 379

Alert Builder Reference .. 382

Archiver Utility Command Reference .. 384

Topology Loader Utility Command Reference ... 386

Component Configuration ... 387

System Configuration ... 387

System Configuration Reference .. 393

Security Configuration Reference ... 403

Service Provider Metadata Reference... 413

Moogfarmd and Core Data Processing ... 414

Services ... 415

Learn More ... 415

Moogfarmd Reference .. 415

Configure the Message Bus .. 419

Configure Search and Indexing .. 432

Cisco Crosswork Situation Manager 8.0.x Developer Guide

4

Log Levels Reference ... 435

Configure Labs Features ... 435

Enable Situation Room Plugins .. 435

Implementation... 436

Examples.. 436

Additional configuration .. 437

ServiceNow integration .. 437

MoogDb V2 .. 437

Load MoogDb v2 .. 437

Methods ... 437

MoogDb V2 API Method Reference .. 437

LAMbots ... 535

Lambot Overview ... 535

LAMbot Configuration .. 535

Moobots ... 538

Moobot Modules .. 538

Alert Builder Reference .. 623

Alert and Event Field Reference ... 625

Event and Alert Field Best Practice ... 627

Moolets .. 636

Configure Alert Behavior During a Maintenance Window .. 636

Maintenance Window Manager Reference ... 637

Empty Moolet ... 639

Enricher Moolet .. 642

Notifier Moolet .. 643

Teams Manager Moolet .. 643

Scheduler Moolet ... 645

Housekeeper Moolet .. 647

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

5

Situation Manager .. 648

Services ... 650

Workflow Engine Moolets ... 651

Alert Manager .. 655

Server Roles ... 657

UI role .. 659

Database role ... 659

Core role .. 659

Redundancy role .. 659

Data ingestion role ... 660

Load balancers ... 660

Severity Reference ... 660

Status ID Reference .. 661

Situation Manager Labeler .. 662

Usage ... 662

Update Situation descriptions ... 662

Limiting the number of alerts to consider .. 664

Update Situation columns ... 664

Update Situation fields ... 665

Example ... 665

Workflow Engine ... 665

Default Workflow Engine types ... 665

Workflows .. 666

Manage Workflow Engine Actions .. 667

Workflow Engine Moolets ... 667

Manage Workflows ... 668

Cisco Crosswork Situation Manager 8.0.x Developer Guide

6

Workflow Engine Functions Reference ... 669

Troubleshoot the Workflow Engine ... 771

Workflow Engine Strategies and Tips ... 774

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

7

Developer Guide

The Developer Guide provides resources for developers who want to perform advanced functions or

build applications that integrate with Cisco Crosswork Situation Manager.

If you want to build a new integration or create a custom reporting dashboard, this guide outlines how

you can expose API endpoints to invoke various actions and functionality.

You can use the following APIs and modules:

 Graze API: Main API that you can use to create, retrieve, and update data in Cisco Crosswork

Situation Manager.

 Stats API: API that you can use to retrieve statistics from Cisco Crosswork Situation Manager for

reporting and dashboards.

 Topologies API: API that allows you to create, modify, retrieve and delete topologies and their

nodes and links.

 Integrations API: Acts as an integration point for external services and exposes selected Cisco

Crosswork Situation Manager functionality to authorized external clients.

 Moobot modules: Allows you to create bots to perform automated tasks and expose functions in

different Moolets.

 Programmatic LAM: A custom polling LAM that you can use to accept API calls and parse the

responses into Cisco Crosswork Situation Manager events.

You can also use these APIs to perform tasks such as Situation enrichment. See Enrichment for more

information.

Graze API

You can use the Graze API to perform actions including the following:

 Assign and de-assign alerts.

 Create and close Situations.

 Add processes and services.

 Create and update SAML realms.

 Create and delete maintenance windows.

The Graze API is useful if you want to perform repeated actions. For example, sending repeated cURL

commands using a script. For example, you can create a ticketing integration to enable bi-directional

communication between Cisco Crosswork Situation Manager and a ticketing system. See Integrations

for available ticketing integrations in Cisco Crosswork Situation Manager.Integrations

An integration can raise and close Cisco Crosswork Situation Manager alerts in line with ticketing

events, assign users and replicate comments. For all available endpoints see Graze API.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
file://document/preview/24293%23UUID55f1744d8466724983245434f1c2df55

Cisco Crosswork Situation Manager 8.0.x Developer Guide

8

Stats API

You can use the Stats API to retrieve statistics about:

1. Your Cisco Crosswork Situation Manager system's performance.

2. Teams' performance.

3. Individual users' performance.

You can use this statistical data to populate dashboards. For example, you can use call

getNewEventsPerSituationsStats to see the noise reduction from events to Situations for your

Cisco Crosswork Situation Manager system.

These endpoints have been designed and optimized for Grafana. See Stats API for all available

endpoints. See the Grafana Setup Tutorial for more installation and configuration instructions.

Topologies API

You can use the Topologies API to create, configure and retrieve information about:

 Topologies

 Nodes

 Links

See Topologies API for more information.

Integrations API

You can use the Integrations API to create, configure and retrieve information about:

 Brokers

 Integrations

 Workflows

See Integrations API for more information.

Moobot modules

You can create and configure Moobot modules to perform automated tasks and expose functions

including:

 Access external databases.

 Access an external RESTful API via HTTP.

 Read configuration files within LAMbots and Moobots.

 Build a key value dictionary shared across Moobots.

 Query and manipulate entities in the Cisco Crosswork Situation Manager databases. See MoogDb

V2 for all available methods.

 Send an email in response to events occurring in Cisco Crosswork Situation Manager.

file://document/preview/24371%23UUIDcd20afda9b6200f2eb040f5145fda2c0

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

9

For more information see Moobot Modules.

Programmatic LAM

The Programmatic LAM is a custom polling LAM. It is an advanced version of the REST Client LAM. The

REST Client LAM accepts a single API call and parses the responses it receives into Cisco Crosswork

Situation Manager events. The Programmatic LAM can accept multiple calls but you must define the

processing yourself in the LAMbot using JavaScript.

For more information see Programmatic LAM.

Alert Rules Engine

The Alert Rules Engine uses business logic to process alerts based on certain conditions.

Note

Cisco recommends using Workflow Engine to enable custom logic and data processing for events,

alerts and Situations. Consider carefully if you can implement your logic with the Workflow Engine

before you implement and configure the Alert Rules Engine.Workflow Engine

The conditions that the Alert Rules Engine works with generally involve a time-based analysis so that it

can process an event in the context of events that happen later. You can define rules in the Alert Rules

Engine to hold alerts for a period of time, identify missing alerts or change the state of alerts. For

example, common uses of the Alert Rules Engine include:

 Link Up-Link Down: Delays an alert to see if a link recovers.

 Heartbeat Monitor: Detects any missing network health signals.

 Closing Events: Closes events of a particular type or severity.

 Merging: Merges the state of two distinct alerts.

 Configure Alert Rules Engine

Edit the configuration file at $MOOGSOFT_HOME/config/moolets/alert_rules_engine.conf.

Refer to Alert Rules Engine Reference to see all available properties.

Example Configuration

The following example demonstrates a simple Alert Rules Engine configuration:

{

 name : "AlertRulesEngine",

 classname : "CAlertRulesEngine",

 run_on_startup : false,

 metric_path_moolet : true,

 moobot : "AlertRulesEngine.js",

 process_output_of : "MaintenanceWindowManager"

}

Define Action States and Transitions

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

10

The Alert Rules Engine uses Action States and transitions and their properties, to process alerts through

business logic defined in the AlertRulesEngine.js Moobot. After you have configured the Alert

Rules Engine, set up Action States and transitions in the Cisco Crosswork Situation Manager UI under

Settings > Automation:

 Action States: Determine the length of time Cisco Crosswork Situation Manager retains alerts

before forwarding them to a Sigaliser or closing them.

 Transitions: Defines the set of conditions an alert must meet before it moves from one state to

another in the Alert Rules Engine. Higher priority transitions take precedence over those with lower

priorities.

See Action States and Transitions for further information on how to define them and the properties

available.

The initial state for all alerts is the 'Ground' state. After an alert enters 'Ground' state, the Alert Rules

Engine transitions it to another state or forwards it to a Sigaliser. If the Action State has a 'Remember

Alerts For' set to a positive number, the Alert Rules Engine retains an alert in that state for this period of

time.

If you enable 'Cascade on Expiry' and nothing happens to an alert within that period, the Alert Rules

Engine returns it to 'Ground' state before forwarding it to a Sigaliser. This is because the 'Ground' state

has Forward Alerts" enabled. If an alert does not match any transitions, the Alert Rules Engine does

not return it to 'Ground' state and it is closed.

Note

Action States are not enabled until you have defined a transition.

Alert Rules Engine Examples

The Alert Rules Engine can be set up to process Link Up-Link Down events. It can also be set up to act

as a Heartbeat Monitor.

Link Up-Link Down Example

This example demonstrates how to configure the Alert Rules Engine so that when a Link Down alert

arrives at Moogfarmd, the Alert Rules Engine holds it for a period of time to provide an opportunity for

the Link Up alert to arrive. If nothing arrives, the Alert Rules Engine forwards it to a Sigaliser.

If the Link Up alert arrives, the Alert Rules Engine closes and discards both alerts without sending

anything to the Sigaliser. This ensures that neither the Link Down nor the Link Up alert appear in

Situations.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

11

To try out this example, set up the following:

 Create three Action States: 'Ground' (default), 'Link Up' and 'Link Down'.

 Create two transitions: 'Link Down Transition' and 'Link Up Transition'.

In this scenario, if a 'Link Down' alert arrives at the Alert Rules Engine and no 'Link Up' alert arrives

within 120 seconds, the 'Link Down' alert returns 'Ground State' and the Alert Rules Engine passes it to

a Sigaliser.

Heartbeat Monitor

You can configure the Alert Rules Engine Moolet in Cisco Crosswork Situation Manager to detect

missing heartbeat events from monitoring tools such as CA Spectrum and Microsoft SCOM. Both of

these tools send regular heartbeats to indicate normal operation.

After you configure the Alert Rules Engine, Cisco Crosswork Situation Manager creates a Situation

when an event source does not send a heartbeat after a given time period. The Alert Rules Engine holds

each heartbeat alert for a period of time, subsequent alerts from the same heartbeat source reset the

timer. If the timer expires, a heartbeat has been missed and the alert is forwarded to a Sigaliser

(clustering algorithm).

Before You Begin

Cisco Crosswork Situation Manager 8.0.x Developer Guide

12

Before you set up the heartbeat monitor in Alert Rules Engine, ensure you have met the following

requirements:

 You have an understanding of Alert Rules Engine, Action States and transitions. See the Alert Rules

Engine Moolet, Action States and Transitions for further details.

 You can identify heartbeat alerts in the integration by description, class or another configurable

field. These must be specific, regular events that arrive at consistent intervals to indicate normal

operation. If these are not available, the Heartbeat Monitor will not work.

 You have edited the alerts so they contain the same attribute, via the integration source or through

enrichment. In the example below, 'type' is 'heartbeat' in the Alert Rules Engine trigger filter and

'class' is 'heartbeat' in the Cookbook Recipe trigger filter.

Create a Heartbeat Monitor

To create a heartbeat monitor in Alert Rules Engine, follow these steps:

 Edit $MOOGSOFT_HOME/bots/moobots/AlertRulesEngine.js and add the heartBeatSeverity

exit action. This function changes the alert severity to critical and ensures alerts that are closed are

not forwarded to the Cookbook. See Status ID Reference for a list of status IDs.function

heartBeatSeverity(alert,associated) {
 var currentAlert = moogdb.getAlert(alert.value("alert_id"));
 if (currentAlert && currentAlert.value("state") !== 9) {
 alert.set("severity",5);
 var alertDescr = currentAlert.value("description");
 // Update the description to "MISSED", a successful heartbeat will reset

this.
 if (!/^MISSED/i.test(alertDecr)) {
 alert.set("description", "MISSED: " + alertDescr)
 }
 moogdb.updateAlert(alert);
 currentAlert.forward("HeartbeatCookBook");
 }
}

 Navigate to Settings > Action States in the Cisco Crosswork Situation Manager UI.

 Create a new Action State called "Heartbeat" as follows:

Setting Name Input Value

Name String Heartbeat

Remember alerts for Integer (seconds) 30 *

Cascade on expiry Boolean True

Exit Action String heartBeatSeverity

Warning:

The Remember alerts for setting is the timer. Set this to two or three times your heartbeart interval

time.

 Go to Settings > Transitions in the Cisco Crosswork Situation Manager UI. Set up a transition to

move your heartbeat alerts to the 'Heartbeat' State. Configure the settings as follows:

Setting

Name Value

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

13

Name Heartbeat

Priority 10

Active True

Trigger

Filter

(type = "heartbeat") AND ((((agent = "SPECTRUM") OR (manager= "SCOM")) OR (agent =

"MONITOR1")) OR (agent = "MONITOR2"))

Start

State

Ground

End State Heartbeat

Edit the 'Trigger Filter' to meet your requirements. In this example, the transition is triggered by alerts

with the type of 'heartbeat' and that come from either 'SPECTRUM' or 'SCOM' or 'MONITOR1' or

'MONITOR2':

 Ensure Alert Rules Engine is enabled. To do this, edit the

$MOOGSOFT_HOME/config/moolets/alert_rules_engine.conf file and set run_on_startup

to true.

 Create a heartbeat.conf configuration file in $MOOGSOFT_HOME/config/moolets to add a

Heartbeat Cookbook for heartbeat alerts. This only works with these alerts:# Moolet

 name:"HeartbeatCookBook",
 classname:"CCookbook",
 run_on_startup:true,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

14

 metric_path_moolet : true,
 moobot:"Cookbook.js",
 process_output_of:"[]",
 # Algorithm
 membership_limit:5,
 scale_by_severity:false,
 entropy_threshold:0.0,
 single_recipe_matching:false,
 recipes:[
 # Any heartbeat class for the same agent.
 {
 chef:"CValueRecipe",
 name:"ScomHeartbeatErrors",
 description:"SCOM Heartbeat: Missing heartbeat",
 recipe_alert_threshold:0,
 exclusion:"state = 9",
 trigger:"class = 'heartbeat' AND agent = 'SCOM'",
 rate:0,
 # Given in events per minute
 min_sample_size:5,
 max_sample_size:10,
 matcher:{
 components:[
 {
 name:"agent",
 similarity:1.0
 }
]
 }
 },
 {
 chef:"CValueRecipe",
 name:"ScomHeartbeatChange",
 description:"SCOM Heartbeat: Cluster host change",
 recipe_alert_threshold:0,
 exclusion:"state = 9",
 trigger:"class = 'heartbeatRoleChange' AND agent = 'SCOM'",
 rate:0,
 # Given in events per minute
 min_sample_size:5,
 max_sample_size:10,
 matcher:{
 components:[
 {
 name:"agent",
 similarity:1.0
 }
]
 }
 }
],
 cook_for:20000
}

 Save heartbeat.conf.

 Edit the Moogfarmd configuration file $MOOGSOFT_HOME/config/moog_farmd.conf to add a new

merge group that references the HeartBeatCookbook Moolet. Configure this merge group to have

an alert_threshold of 1 to allow a single alert to create a Situation (by default, a minimum of 2

alerts are required to create a Situation):merge_groups:

 [

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

15

 {
 name: "Heartbeat",
 moolets: ["HeartbeatCookBook"],
 alert_threshold : 1,
 sig_similarity_limit : 1
 }
],

 Include the Moolet configuration by adding the following in

$MOOGSOFT_HOME/config/moog_farmd.conf:{

 include : "heartbeat.conf"
 },

 Save the changes to moog_farmd.conf.|

 Restart Moogfarmd:service moogfarmd restart

After the heartbeat monitor configuration is complete, heartbeat alerts should start to arrive in Cisco

Crosswork Situation Manager.

Heartbeat Monitor Process

The process flow for a heartbeat alert is as follows:

 Heartbeat alert arrives at the Alert Rules Engine.

 The alert is transitioned from 'Ground' to 'Heartbeat' action state and starts the timer.

 The alert sits in the 'Heartbeat' state waiting for the timer to expire.

 Any subsequent heartbeat alert resets the timer.

 If the timer expires the exit action changes the alert severity to '5' (critical) and cascades it to

'Ground' state.

 Any subsequent heartbeat updates the severity to '0' (clear) and restarts the timer.

 You could also add an entry action to close any missed heartbeat situations the event is part of.

This example also updates the alerts with the times of the missing heartbeats for an easy audit trail.

Alert Rules Engine Reference

This is a reference for the Alert Rules EngineMoolet.

Cisco recommends you do not change any properties that are not in this reference guide.

You can change the behavior of the Alert Rules Engine by editing the configuration properties in the

$MOOGSOFT_HOME/config/moolets/alert_rules_engine.conf configuration file. It contains the

following properties:

name

Name of the Alert Rules Engine Moolet. Do not change.

Type: String

Cisco Crosswork Situation Manager 8.0.x Developer Guide

16

Required: Yes

Default: "AlertRulesEngine"

classname

Moolet class name. Do not change.

Type: String

Required: Yes

Default: "CAlertRulesEngine"

run_on_startup

Determines whether the Alert Rules Engine runs when Cisco Crosswork Situation Manager starts. By

default, it is set to false, so it does not start when Moogfarmd starts. You can change this property to

true so that, when Moogfarmd starts, it automatically creates an instance of the Alert Rules Engine.

Type: Boolean

Required: Yes

Default: false

metric_path_moolet

Determines whether or not Cisco Crosswork Situation Manager includes the Alert Rules Engine in the

Event Processing metric for Self Monitoring.Self Monitoring

Type: Boolean

Required: Yes

Default: true

moobot

Specifies a JavaScript file found in $MOOGSOFT_HOME/moobots, which defines the Alert Rules Engine

Moobot. The default, AlertRulesEngine.js, provides the standard modules. You can customize it to

meet your needs.

Type: String

Required: Yes

Default: "AlertRulesEngine.js"

mooms_event_handler

Determines whether or not the Alert Rules Engine listens for messages on the message bus. If set to

true, the Alert Rules Engine processes messages on the Alerts topic on the message bus. This

property should not be included in the configuration file, or should be commented out, if the

process_output_of property is defined.

Type: Boolean

Required: No

Default: false

file://document/preview/35190%23UUID9cfcd3ad2db8f7f70534ef009f72f493

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

17

process_output_of

Defines the input source for the Alert Rules Engine. This determines the Alert Rules Engine's place in

the alert processing workflow. If this property is defined, the mooms_event_handler property should

be omitted or commented out in the configuration file.

Type: List

Required: No

One of: AlertBuilder, MaintenanceWindowManager, Enricher

Default: "MaintenanceWindowManager"

Transitions

Transitions are a user-configurable set of conditions that move an alert from one state to another within

the Alert Rules Engine (ARE). Transitions result in the following:

 Alerts move from one Moolet to the next Moolet in the chain.

 Alerts pass to a clustering algorithm which clusters them into Situations.

To create and configure different transitions go to System Settings.

Create a New Transition

Click + to create a new transition and edit the fields to meet your requirements:

Field Input Description

Name String Name of the transition. This can be up to 64 characters. Mandatory.

Description String Description of the transition.

Priority Integer Determines the priority of the transition if there are multiple transitions. The

higher the value, the higher the priority.

Active Boolean Sets the transition to active.

First Match

Only

Boolean Transition only occurs once if an alert meets the trigger conditions.

Trigger Filter Filter Filter that triggers the transition if an alert meets the defined trigger filter

parameters. Mandatory.

Inclusion

Filter

Filter Filter that passes additional alerts to the end state if they arrive after the initial

trigger and meet the defined inclusion filter parameters.

Start State - Determines the action state of the alerts in the inclusion filter. The start state and

end state must be different. Mandatory.

End State - Determines the action state of the alerts if they match the inclusion or trigger

filters. The start state and end state must be different. Mandatory.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

18

When you have configured the transition, click Save to continue.

Delete a Transition

To delete a transition from the list of available transitions:

 Select the transition to delete.

 Click - to delete the transition.

 Click Yes to confirm the deletion.

Action States

Action States are the different states which alerts are placed into as they pass from the Alert Builder

into the Alert Rules Engine. See the Alert Rules Engine for a standard link up-link down example that

uses Action States.

The different states define how long the alerts are retained in a certain state and whether they are

forwarded to any Moolets or Sigalisers. The default or base state is called 'Ground'. It is required for the

system to function correctly and cannot be deleted. This is the state that alerts have when they enter

the Alert Rules Engine.

Create an Action State

Click + to create a new Action State. The available fields are as follows:

Field Input Description

Name String

(Mandatory)

Name of the new Action State (up to a maximum of 64 characters).

Description String Description of the new Action State.

Remember

Alerts For

Integer Time in seconds that the system remembers the alerts in this state for.

Any number less than 0 (<0) means do not remember it, so the state never

retains a memory of the alert.

'Ground' has -1 because you do not want to accumulate a memory of

every alert in the system. By default, you want the alert to pass to a

Sigaliser. The purpose of the state engine is to spot specific alerts and do

different things with them.

Cascade on

Expiry

Boolean Specifies what to do if you have set a time to remember alerts for. For

example, the alert goes into the state and then after the set time of 30

seconds it is taken out of the state whether you dispose of it manually or

return it back to its original state.

Forward

Alerts

Boolean If enabled, the alerts that enter this state are forwarded to the chain

Moolet.

Close Filter Filter Defines which alerts are closed when they enter the state.

Entry Action String Moobot function that is called when an alert enters the state.

Exit Action String Moobot function that is called when an alert exits the state.

Click Save Changes to continue. Alternatively, click Revert Changes to undo any changes. The new

Action State appears on the list to the left.

file://document/preview/11731%23UUID46fdd0df23feef6890228720a5e2b4cf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

19

Delete an Action State

Select the Action State you want to delete from the list on the left.

Click - to delete the Action State. The pop-up confirmation window appears. Click Yes to confirm the

deletion.

Clustering Algorithm Guide

Sigalisers are the clustering algorithms in Cisco Crosswork Situation Manager that group alerts based

on factors such as time, language, similarity and proximity.

The clustering algorithms available include:

 Cookbook

 Tempus

You can configure and run multiple different clustering algorithms on the same instance of Cisco

Crosswork Situation Manager. The algorithms you choose depend on your specific use cases and the

type of Situations you want your operators to receive.

You can also apply entropy and Vertex Entropy calculations to add another degree of filtering to the

alerts you want to correlate. For example, you can use an entropy threshold if you want to exclude

alerts with low operational value or include alerts with high operational value. See Vertex Entropy and

Entropy for more details.

Cookbook

Cookbook is a clustering algorithm that creates clusters defined by the relationships between alerts and

their attributes. See Cookbook for more information.

Type: Attribute-based clustering.

Use cases: You can use Cookbook if you want more control in how you correlate alerts based on

patterns in the text similarity. Example use cases include:

 Grouping alerts with a similar description and from the same application or service.

 Grouping alerts from the same host or location.

 Topology-based correlation using Vertex Entropy.

Benefits: Cookbook offers the following advantages:

 Very customizable and configurable using Recipes.

 Able to create Situations when an alert exceeds a defined rate of occurrence.

 Can include and exclude alerts that meet specific criteria such as Vertex Entropy.

 Able to partition alerts into Situations using textual similarity-based comparison.

 Possible to base alert clustering on topological relationships.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
file://document/preview/11726%23UUID85f0c179ad26ab2f48e4e026e15a8eca
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID0bf6bacbc6c6aac9f16533cbf8e9c1ae

Cisco Crosswork Situation Manager 8.0.x Developer Guide

20

Configuration: To configure Cookbook Recipes and Cookbook via the Cisco Crosswork Situation

Manager UI, see Configure a Cookbook Recipe and Configure a Cookbook. You can also configure

Cookbook and its Recipes via the Graze API.

Tempus

Tempus is a time-based algorithm that clusters alerts into Situations based on the similarity of their

timestamps. See Time-Based Clustering with Tempus for more information.

Type: Time-based clustering.

Use cases: You want to match alerts based on patterns in their timestamps or on a timeline. Use

Tempus if you want your alerts to be clustered in real-time. The logic behind Tempus is that a

triggering event causes additional subsequent failures within a short timeframe. Works well in scenarios

where there is a causal chain such as:

 Cascading failures

 Performance failures

 Brownouts.

Benefits: Tempus offers the following advantages:

 No enrichment required. See Enrichment

 Good for availability alerts.

 Good for performance alerts.

Configuration: To configure Tempus via the Cisco Crosswork Situation Manager UI, see Configure

Tempus. You can also configure Tempus via the Graze API.

Situation Manager Labeler

You can use the Situation Manager Labeler to set Situation descriptions and fields dynamically, based

on the alert data in each Situation. For example, suppose you are defining a correlation based on the

custom_info.services alert field. To generate descriptions for the resulting Situations, you can

specify a label string in the description field such as:

$$COUNT(custom_info.services) services affected including

$$CITED(custom_info.services,3)

Given this string, the resulting descriptions include the three most-cited services and the number of

times each service is cited by a member alert:

5 services affected including cust-login(7), verify-login(6), update-login-

info(4), ...

Note

The Situation Manager Labeler is installed by default with Cisco Crosswork Situation Manager v7.3 and

higher. For previous releases, contact Cisco Customer Support to obtain installers and instructions.

Usage

Given a macro operation and an alert data field, the operation iterates through the relevant values in the

Situation alerts and returns a string derived from these values.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDed6eff008eba3ad3af82fb61865e673a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDed6eff008eba3ad3af82fb61865e673a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDfd8d6c95cc6c3298c4ed6d091116b16e
/document/preview/11750#UUIDa079e66cf5d05f6b29d33de8e0ea50a5.Enrichment
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDfd8d6c95cc6c3298c4ed6d091116b16e
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDfd8d6c95cc6c3298c4ed6d091116b16e

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

21

The usage for fields with single values (prefix is one $): $macro(alert-field, max-alerts-to-

include)

 $$macro(alert-field, max-alerts-to-

include)

The max-alerts-to-include field is optional. This value limits the number of alert values to include

in the description.

Consider the following example. You want to create a label with a count of all the affected services

(custom_info.services) cited in all alerts. A Situation has two alerts:

 Alert 1 - custom_info.services = [a, b, c];

 Alert 2 - custom_info.services = [d, e, f];

$COUNT treats the fields as individual values and returns a count of 2.

$$COUNT treats the fields as lists of individual values and returns a count of 6.

Update Situation descriptions

You can use the following macros to generate Situation descriptions. These macros are supported for

single values ($macro) and lists ($$macro):

 COUNT(alert-field)---- Return the count of alert-field citations, including duplicates.

 UCOUNT(alert-field) ---- Return the count of unique alert-field citations, excluding duplicates.

 CRITICAL(alert-field)---- Return the string CRITICAL : if any alerts have a severity of critical,

or 5. This macro is only useful for the severity field.

 UNIQ(alert-field)---- Return a list of all cited alert-field values.

 TOP(alert-field)---- Return the alert-field value cited by the most alerts in the Situation.

 CITED(alert-field)---- Return a list of the unique alert-field values cited by alerts in the

Situation along with the number of times they are cited -- for example, source1 (10), source5

(7), source3 (4).

 CITEDLIST(alert-field)---- Same as $CITED but returns a string instead of a JSON list.

 BOOLEAN(alert-field)---- Return false if all values are falsy: 0, null, undefined, "", and so on.

 TOLIST(alert-field)---- Creates a comma-separated string from the elements of alert-field.

Note

UI list-based filtering is now native, so $TOLIST() should no longer be required.

Numeric fields only

The following macros are supported for numeric fields only, such as time, severity, or event-

count.

 MIN(alert-field)---- Return the minimum cited value of alert-field.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

22

 MAX(alert-field)---- Return the maximum cited value of alert-field.

 AVE(alert-field)---- Return the average of all cited values of aalert-field.

 SUM(alert-field)---- Return the average of all cited values of alert-field.

 NUM(alert-field)---- Return the set of alert-field values sorted numerically from low to high,

including duplicates.

 UNUM(alert-field)---- Return the set of unique alert-field values sorted numerically from low

to high, excluding duplicates.

Text fields only

The following macros are supported for text fields only, such as service, source, or description.

 ALPHA(alert-field)---- Return the set of alert-field values sorted alphabetically, including

duplicates.

 UALPHA(alert-field) ---- Return the set of unique alert-field values sorted alphabetically,

excluding duplicates.

List values only

The following macros are supported for array values only.

 $$INTERSECT(alert-field)---- Return the list of intersections -- that is, alert-field values cited

by multiple alerts. This macro parses the alert-field array values and returns a list of the items with

multiple citations.For example, support a Situation has two alerts. The service field of alert 1 is [a,

b, c]. The service field of alert 2 is [b, c, d]. $$INTERSECT(service) would return the list

[b, c].

 $$NINTERSECT(alert-field)---- Return the number of intersections. Given the previous example,

$$NINTERSECT(service) would return the number 2.

 $$CINTERSECT(alert-field) ---- Return the list of common intersections -- that is, values cited

by all alerts in the Situation. This macro is useful for identifying a possible root cause that caused all

the alerts to get correlated together.

Limiting the number of alerts to consider

By default, each macro considers all alerts in a Situation up to a maximum of 200. You might want to

specify a lower threshold to ensure that labeling does not become a bottleneck in systems with large or

frequently-updated Situations. To lower the threshold, append the $FETCH modifier at the start of the

Labeler string:

$FETCH(max-alerts-to-consider)Labeler-string

For example, the following macro considers the first alert in each Situation based on alert ID:

$FETCH(1) Application Situation for: $UNIQ(custom_info.application) at

DataCentre $UNIQ(custom_info.location)

You should specify the maximum number of alerts needed to ensure an accurate description. If you are

correlating based on a specific field such that all alerts have the same value for that field, you only need

to fetch 1 alert.

Warning

Do not specify a fetch value higher than 20.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

23

Update other Situation fields

You can use the following macros to update columns and fields in a Situation with values contained in

its member alerts.

 $$SERVICES(alert-field)---- Update the Services Impacted column in the Situation with all

unique alert-field values cited in the member alerts.

 $$ISERVICES(alert-field) ---- Update the Services Impacted column in the Situation with all

unique alert-field values cited in 2 or more member alerts.

 $$PROCESSES(alert-field)---- Update the Processes Impacted column in the Situation with all

unique alert-field values cited in the member alerts.

You can also use the $MAP[] macro to update a custom_info field in the Situation with data from the

member alerts. The usage is as follows:

$MAP[$MACRO(source alert field, destination custom_info field)]

You can include multiple macros in the same MAP macro, as shown in the following example:

$MAP[$UNIQ(source, hosts) $UCOUNT(source, num_hosts)]

Example

For instructions on how to use the Situation Manager Labeler to automatically create services based on

custom_info data, see Create Situation using Situation Labeler.

Field Behavior in Merged Situations

When Cisco Crosswork Situation Manager merges two or more Situations, it updates the fields of the

Situations as follows:

Field Old Situations New Situation

Category Superseded. Created.

Created At No change. Time of merge.

Description No change. Merge of Situations [X, Y, Z] where X, Y, and Z represent the

Situation IDs of the superseded Situations.

First Event

Time

No change. The First Event Time for the combined Situations.

ID No change. The next sequential Situation ID.

Last Change No change. The time that the merge took place.

Last Event

Time

No change. The value of the Situation in first position in the merge list.

Owned By No change. Default (none).

Participants No change. Default (none).

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDfd8d6c95cc6c3298c4ed6d091116b16e

Cisco Crosswork Situation Manager 8.0.x Developer Guide

24

Process

Impacted

No change. Combined values.

Queue No change. The queue of the Situation in first position in the merge list.

Rating No change. Default (none).

Scope No change. Combined values.

Scope Trend No change. Combined values.

Services

Impacted

No change. Combined values.

Sev Trend No change. Combined values.

Severity No change. The highest severity of the merged Situations.

Status Dormant. Opened.

Story Adopts ID of new

Situation.

The Story ID is the same as the Situation ID of the new Situation.

Teams No change. All Teams monitoring the merged Situations.

Total Alerts No change. The sum of the Alerts of all merged Situations.

User

Comments

No change. Default (none).

Graze API

The Graze API acts as an integration point for external services and exposes selected Cisco Crosswork

Situation Manager functionality to authorized external clients.

Use caution when employing the Graze API. Excessive requests can impact overall system

performance, especially getSituationIds and getAlertIds.

Contact Cisco Support if you experience difficulties or need further guidance.

Endpoints

See Graze API EndPoint Reference for details of all the Graze API endpoints.

Before you begin

Cisco Crosswork Situation Manager implements the Graze API as a set of servlets running in the Cisco

Crosswork Situation Manager Apache Tomcat instance. This instance handles external Graze requests,

making the UI servlet calls directly via cross-contexts.

Configure Apache Tomcat

You must configure Apache Tomcat to allow cross-context calls to be made by adding the following to

the context.xml file in the Apache Tomcat $APPSERVER_HOME/conf directory:

<Context crossContext="true">

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

25

API definition

All Graze requests use the following URL format, where <server> is the hostname of the machine

running the UI :

https://<server>/graze/v1/<request_type>

For example:

https://localhost/graze/v1/authenticate

Authentication

All Graze API requests, other than authenticate, require a basic authentication header or a valid

auth_token. You must make a valid authenticate request before using any Graze API request without a

basic authentication header.

If you make regular Graze requests within a one hour timeframe, you are considered active and your

session does not expire. Inactive sessions are logged out after one hour, and you must make a new

authenticate request to get a new valid auth_token.

Authentication troubleshooting

If an error occurs during Graze login authentication, Cisco Crosswork Situation Manager returns the

following output:

{"message":"User is not authenticated","statusCode":3001}

As a security precaution, no more specific information is returned. This prevents information being

provided to potential attackers about which part of the authentication failed (for example 'Password

incorrect').

Entries in the log file catalina.out, at WARN level, provide more information on authentication errors:

 For example, the user is not assigned the Grazer role:

 User [john] does not have graze permission

 For example, no user of that name exists:

 User [NotAUser] account unknown in database

 For example, incorrect password:

 Password incorrect for user [graze]

POST parameters

You can send POST parameters as form-urlencoded or as application/json parameters.

form-urlencoded

To send POST parameters as form-urlencoded parameters, set the content type to application/x-

www-form-urlencoded. If the character set is not set, UTF-8 is assumed.

Example cURL command:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

26

"https://localhost/graze/v1/resolveSituation?auth_token=b40244fd79aa46fba76c60c5

6d538c49&sitn_id=10" --insecure -X POST -v

application/json

To supply POST parameters as JSON within the body of the request, set the content type

to application/json. If the character set is not set, UTF-8 is assumed.

Example cURL command:

"https://localhost/graze/v1/resolveSituation" -H "Content-Type:

application/json; charset=UTF-8" --insecure -X POST -v --data '{"auth_token" :

"b40244fd79aa46fba76c60c56d538c49","sitn_id" : 10}'

Graze API EndPoint Reference

This is a reference list for the Graze API endpoints. Follow the links to see the details of each endpoint.

All Graze API requests, other than authenticate, require a basic authentication header or a valid

auth_token. You must make a valid authenticate request before using any Graze API request without a

basic authentication header. See Authentication for more information.

Alerts

The following Graze API endpoints relate to alerts:

 addAlertCustomInfo: Adds and merges custom information for an alert.

 addAlertToSituation: Adds an alert to a Situation.

 assignAlert: Assigns a user as the owner of an alert.

 assignAndAcknowledgeAlert: Assigns and acknowledges a user as the owner of an alert.

 closeAlert: Closes one or more alerts.

 deassignAlert: Deassigns the current owner from an alert.

 getAlertActions: Returns the actions for one or more alerts.

 getAlertDetails: Returns details, such as the description or severity, of an alert.

 getAlertIds: Returns the total number of alerts, and a list of the alert IDs, for an alert filter and a

limit.

 removeAlertFromSituation: Removes an alert from a Situation.

 resolveAlerts: Resolves a list of alerts.

 setAlertAcknowledgeState: Acknowledges or unacknowledges the owner of an alert.

 setAlertSeverity: Sets the severity level of an alert.

 updateClosedAlert: Updates the description and custom info of a closed alert during the grace

period.

Algorithms

Use the following Graze API endpoints to configure Cookbooks and Recipes:

 addBotRecipe: Creates a new Cookbook Bot Recipe.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

27

 addCookbook: Creates a new Cookbook.

 addValueRecipe: Creates a new Cookbook Recipe using Value Recipe or Value Recipe v2 recipe

types.

 deleteCookbook: Deletes an existing Cookbook.

 deleteRecipe: Deletes an existing Cookbook Recipe.

 getCookbooks: Returns all the Cookbooks in Cisco Crosswork Situation Manager.

 getRecipes: Returns all the Recipes in Cisco Crosswork Situation Manager.

 updateBotRecipe: Updates a Cookbook Bot Recipe.

 updateCookbook: Updates a Cookbook.

 updateValueRecipe: Updates a Cookbook Recipe that uses either a Value Recipe or a Value Recipe

v2 recipe type.

Use the following Graze API endpoints to configure Tempus:

 addTempus: Adds a new Tempus Moolet.

 deleteTempus: Deletes an existing Tempus Moolet.

 getTempus: Returns the details of all Tempus Moolets in Cisco Crosswork Situation Manager.

 updateTempus: Updates an existing Tempus Moolet.

Use the following Graze API endpoints to update the default merge group:

 getDefaultMergeGroup: Returns details of the default merge group in Cisco Crosswork Situation

Manager.

 updateDefaultMergeGroup: Updates the default merge group in Cisco Crosswork Situation

Manager.

Use the following Graze API endpoints to configure custom merge groups:

 addMergeGroup: Adds a new custom merge group.

 deleteMergeGroup: Deletes an existing custom merge group.

 getMergeGroups: Returns details of all the custom merge groups in Cisco Crosswork Situation

Manager.

 updateMergeGroup: Updates a custom merge group.

Dashboards and reporting

See the Stats API for information on Graze API endpoints that provide statistics related to dashboards

or reporting.

Entropy thresholds and Events Analyser configuration

Use the following Graze API endpoints to set entropy thresholds:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

28

 getGlobalEntropyThresholds: Returns the global default entropy threshold and all manager-specific

entropy thresholds that have been set.

 setGlobalEntropyThreshold: Sets the global default entropy threshold or a manager-specific

entropy threshold.

 Use the following Graze API endpoints to configure the Alert Analyzer:

 getEventsAnalyserConfig: Returns the list of priority words or stop words used by the Alert

Analyzer.

 updateEventsAnalyserConfig: Updates the Alert Analyzer configuration.

If you want to set up priority word or stop word lists in the Alert Analyzer, use the following Graze API

endpoints:

 addEventsAnalyserWord: Adds a single word to a list of priority words or stop words in the Alert

Analyzer configuration.

 getEventsAnalyserWords: Returns the list of priority words or stop words used by the Alert

Analyzer.

 removeEventsAnalyserWord: Removes a single word from the list of priority words or stop words in

the Alert Analyzer configuration.

 updateEventsAnalyserWords: Updates an existing list of priority words or stop words in the Alert

Analyzer configuration.

If you want to set up partitions in the Alert Analyzer, use the following Graze API endpoints:

 getEventsAnalyserPartitionOverrides: Returns the partition override details in the Alert Analyzer

configuration.

 removeEventsAnalyserPartitionOverrides: Removes all the partition overrides from the Alert

Analyzer configuration.

 updateEventsAnalyserPartitionOverrides: Updates the partition overrides in the Alert Analyzer

configuration.

Processes and maintenance

The following Graze API endpoints relate to Cisco Crosswork Situation Manager processes and

scheduled maintenance:

 addProcess: Adds a new process to the database.

 addService: Adds a new external service to the database.

 createMaintenanceWindow: Creates a maintenance window that filters alerts caused by a known

period of maintenance.

 deleteMaintenanceWindow: Deletes a single maintenance window.

 deleteMaintenanceWindows: Deletes maintenance windows that match a filter.

 Match List Items in Recipes: Returns maintenance windows that match a filter.

 getIntegrationConfig: Exports the configuration and mapping needed for an integration in JSON

format.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

29

 getMaintenanceWindows: Returns maintenance windows based on the window ID and how many

should be fetched.

 getProcesses: Returns a list of the processes in the database.

 getServices: Returns a list of the services in the database.

 getSeverities: Returns a list of possible severities and their severity IDs.

 getStatuses: Returns a list of statuses that can apply to Situations and their IDs.

 getSystemStatus: Returns current system status information for all processes.

 getSystemSummary: Returns a summary of current alerts and Situations in Cisco Crosswork

Situation Manager.

 getToolShares: Returns the shared access for a tool.

 shareToolAccess: Shares access to a tool with other users, teams, or roles, or makes it global so

that all users can access it.

 updateMaintenanceWindow: Updates an existing maintenance window.

Situations

The following Graze API endpoints relate to Situations:

 addSigCorrelationInfo: Associates the external client with a Situation.

 addSituationCustomInfo: Adds and merges custom information for a Situation.

 addThreadEntry: Adds a new entry to an existing thread in a Situation.

 assignAndAcknowledgeSituation: Assigns and acknowledges the moderator to a Situation.

 assignSituation: Assigns the moderator to a Situation.

 assignTeamsToSituation: Assigns one or more teams to a Situation, or unassigns all teams from a

Situation.

 closeSituation: Closes a Situation which is currently open, and optionally closes alerts in the

Situation.

 createSituation: Creates a manual Situation. The Situation description is set with the description

parameter.

 createThread: Creates a new thread for a Situation.

 createThreadEntry: Creates a new entry in an existing thread in a Situation. This endpoint has been

superseded by addThreadEntry.

 deassignSituation: Deassigns the current moderator from a Situation.

 getActiveSituationIds: Returns the total number of active Situations, and a list of their Situation IDs.

 getPrcLabels: Returns probable root cause (PRC) information for all alerts or specified alerts within

a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

30

 getResolvingThreadEntries: Returns thread entries for a Situation that have been marked as

resolving steps.

 getSigCorrelationInfo: Returns all correlation information related to a Situation.

 getSimilarSituationIds: Returns a list of IDs of similar Situations, for a Situation ID and a limit.

 getSimilarSituations: Returns the details of similar Situations for a Situation and a limit.

 getSituationActions: Returns the actions for a list of Situations.

 getSituationAlertIds: Returns the total number of alerts, and a list of the alert IDs for a Situation.

 getSituationDescription: Returns the description for a Situation.

 getSituationDetails: Returns the details of a Situation.

 getSituationHosts: Returns the hosts for a Situation.

 getSituationIds: Returns the total number of Situations, and a list of their Situation IDs, for a filter

and a limit.

 getSituationPrimaryTeam: Returns the primary team on a Situation.

 getSituationProcesses: Returns a list of process names for a Situation.

 getSituationServices: Returns a list of external service names for a Situation.

 getSituationSeverityChanges: Returns the changes in severity for a Situation. It returns increases in

severity and a change to a severity of 0 (Clear).

 getSituationTopology: Retrieves the node and link details for a Situation and topology.

 getSituationVisualization: Returns information on the origin and cause of a Situation.

 getThreadEntries: Returns thread entries for a Situation.

 getThreadEntry: Returns a thread entry specified using the thread entry ID.

 getTopPrcDetails: Returns the top most likely causal alerts, based on their Probable Root Cause

value, for a Situation.

 mergeSituations: Merges multiple Situations.

 rateSituation: Applies a rating to a Situation.

 removeSigCorrelationInfo: Removes all correlation information related to a Situation.

 removeSituationPrimaryTeam: Removes the primary team from a Situation.

 resolveSituation: Resolves a Situation that is currently open.

 setPrcLabels: Sets the probable root cause (PRC) labels for specified alerts within a Situation.

 setResolvingThreadEntry: Sets or clears a thread entry in a Situation as a resolving step.

 setSituationAcknowledgeState: Acknowledges or unacknowledges the moderator who has been

assigned to a Situation..

 setSituationDescription: Sets the description for a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

31

 setSituationPrimaryTeam: Sets one of the teams already assigned to a Situation as the primary

team.

 setSituationProcesses: Applies a list of processes to a Situation.

 setSituationServices: Applies a list of external services to a Situation.

 /situation/{situationID}/topologies: Retrieves the topologies related to the alerts in a Situation.

 updateClosedSituation: Updates the description and custom info of a closed Situation during the

grace period.

Security realms

The following Graze API endpoints relate to security realms:

 createSecurityRealm: Creates a new security realm from an Identity Provider (IdP) URL.

 getSecurityRealm: Returns a JSON object containing the names and configuration details of active

security realms.

 updateSecurityRealm: Updates an existing security realm in the database.

Topologies

See Topologies API Endpoint Reference for a list of endpoints related to topologies.

User management

The following Graze API endpoints relate to the management of users, teams and roles:

 applyNewLicense: Adds a Cisco Crosswork Situation Manager license via Graze.

 createTeam: Creates a new team.

 createUser: Creates a new user.

 deleteTeam: Deletes a single team.

 getAllSessionInfo: Returns session information for all users over a period of time.

 getTeam: Returns a team's details by team ID or name.

 getTeams: Returns the details of all the teams in Cisco Crosswork Situation Manager.

 getTeamsForService: Returns all teams related to the service with the specified ID or name.

 getTeamSituationIds: Returns the total number of Situations that are assigned to a team, and a list

of their Situation IDs.

 getUserInfo: Returns information about a user.

 getUserRoles: Returns the user's roles from the database.

 getUsers: Returns a list of all users in the database.

 getUserSessionInfo: Returns session information for a single user over a period of time.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

32

 getUserTeams: Returns the team names and IDs associated with a user ID or username.

 updateTeam: Updates an existing team.

 updateUser: Updates an existing user.

Workflow Engine

The following Graze API endpoints relate to the Workflow Engine:

 createWorkflow: Creates a new workflow in the Workflow Engine.

 deleteWorkflow: Deletes a workflow from the Workflow Engine.

 getWorkflowEngineMoolets: Returns a list of all the workflows in all the Workflow Engine Moolets in

Cisco Crosswork Situation Manager.

 getWorkflows: Returns workflows for a specified Workflow Engine Moolet.

 reorderWorkflows: Reorders the sequence of workflows within a Workflow Engine Moolet.

 sendToWorkflow: Sends a Moolet Inform message to a workflow in an Inform Workflow Engine.

 updateWorkflow: Updates an existing workflow in the Workflow Engine.

addAlertCustomInfo

A Graze API POST request that adds and merges custom information for a specified alert.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addAlertCustomInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

custom_info JSON

object

Yes A JSON object containing the custom information.

Response

Endpoint addAlertCustomInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

33

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint addAlertCustomInfo:

Request example

Example cURL request to add custom info to "field1", "field2", "field3", and "field4" in alert ID 9:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/addAlertCustomInfo" -H "Content-Type:

application/json; charset=UTF-8" -d '{"alert_id" : 9, "custom_info" : { "field1"

: "value1" , "field2" : "value2" , "field3" : ["item1","item2","item3"] ,

"field4" : {"field4-1" : "value4-1","field4-2" : "value4-2"} }}'

Response example

A successful request returns the HTTP code 200 and no response text.

addAlertToSituation

A Graze API POST request that adds a specified alert to a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addAlertToSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

sitn_id Number Yes Situation ID.

Response

Endpoint addAlertToSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

34

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

This endpoint does not add the alert to the Situation if the alert has been archived to the historic

database even if the Situation is still in the active database.

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint addAlertToSituation:

Request example

Example cURL request to add alert ID 16 to Situation ID 7:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/addAlertToSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"alert_id" : 16, "sitn_id" : 7 }'

Response example

A successful request returns the HTTP code 200 and no response text.

addBotRecipe

A Graze API POST request that creates a new Cookbook Bot Recipe. To create Recipes using the Value

Recipe and Value Recipe v2 recipe types, use addValueRecipe. See Recipe Types for more information.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addBotRecipe takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

cookbooks Array of

Strings

No A list of the Cookbooks that this Recipe belongs to. You

can add Cookbooks here or, when you create a

Cookbook, you can assign the Recipes to it.

name String Yes Name of the Recipe. Use a unique and descriptive name.

description String No Description of the Recipe. Default is the Recipe name.

alert_threshold Positive

Integer

No Minimum number of alerts required before Cookbook

creates a Situation.

trigger String No A filter that determines the alerts that Cookbook

considers for Situation creation. Cookbook includes

alerts that match the trigger filter. By default Cookbook

only includes alerts with a severity of 'Critical'.

exclusion String No A filter that determines the alerts to exclude from

Situation creation. Cookbook ignores alerts that match

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

35

the exclusion filter.

seed_alert String No A filter that determines whether to create a Situation

from a seed alert. The seed alert must meet both the

trigger, exclusion and seed_alert criteria to create

a Situation. Cookbook considers subsequent alerts for

clustering if they meet the trigger and exclusion filter

criteria. Alerts that arrive prior to the seed alert that met

the trigger and exclusion filter criteria do not form

Situations.

rate Double No Rate, in number of alerts per second. Cookbook clusters

alerts if they arrive at a higher rate than is specified here.

Cookbook uses rate together with min_sample_size

and max_sample_size to determines whether to cluster

alerts into Situations. See Cookbook and Recipe

Examples. Default is 0 which means that Cookbook does

not use the rate to cluster alerts.Cookbook and Recipe

Examples

min_sample_size Positive

Integer

No Number of alerts that must arrive before the Cookbook

starts to calculate the alert rate. See Cookbook and

Recipe Examplesfor more information. Default is 5. Valid

only if rate is non-zero.Cookbook and Recipe Examples

max_sample_size Positive

Integer

No Maximum number of alerts that are considered in the

alert rate calculation. When more than this number of

alerts have arrived, Cookbook discards the oldest alerts

and calculates the alert rate based on the number of

alerts in the max_sample_size. See Cookbook and

Recipe Examplesfor more information. Default is 10.

Valid only if rate is non-zero.Cookbook and Recipe

Examples

cook_for Positive

Integer

No Minimum time period, in seconds, that the Cookbook

Recipe clusters alerts for before it resets and starts a

new cluster. See Cookbook and Recipe Examples for

more information.Cookbook and Recipe Examples

If you set a different cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for time inherit the value from the Cookbook.

cook_for_extension Positive

Integer

No Time period that the Cookbook Recipe can extend

clustering alerts for before it resets and starts a new

cluster. Setting this value enables the cook for auto-

extension feature for this Cookbook. As Cookbook

receives related alerts, it continues to extend the total

clustering time until the max_cook_for period is

reached. Used in conjunction with the max_cook_for

value, the cook_for_extension period helps to ensure

that Cookbook continues to cluster alerts together that

are related to the same failure. The

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

36

cook_for_extension period only applies to new

related alerts; it does not apply to existing alerts that are

updated with new events. See Cookbook and Recipe

Examples

If you set a different cook_for_extension time for a

Recipe, it overrides the Cookbook value. Recipes without

a cook_for_extension time inherit the value from the

Cookbook.

max_cook_for Positive

Integer

No Maximum time period that the Cookbook Recipe clusters

alerts for before it resets and starts a new cluster. It

works in conjunction with the cook_for_extension

time to help ensure that Cookbook continues to cluster

alerts together that are related to the same failure. This

value is ignored unless the cook_for_extension time

is specified. See Cookbook and Recipe Examples

If you set a different max_cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

max_cook_for value inherit the value from the

Cookbook.

cluster_by String No Determines Cookbook's clustering behavior. Set to an

empty string to use the Cookbook cluster_by setting.

Set to first_match so that Cookbook adds alerts to the

first cluster over the similarity threshold value. Set to

closest_match to add alerts to the cluster with the

highest similarity greater than the similarity threshold

value. This option may be less efficient because

Cookbook needs to compare alerts against each cluster

in a Recipe. Default is an empty string which means the

Recipe uses the Cookbook setting.

If you set a different cluster_by value for a Recipe, it

overrides the Cookbook value. Recipes without a

cluster_by value inherit the value from the Cookbook.

initialize_function JSON

Function

Name

No Default is initBuckets.

member_function JSON

Function

Name

No Default is checkBucket.

can_start_cluster JSON

Function

Name

No Default is null.

use_in_recipe JSON

Function

Name

No Name of the function that will determine whether to

consider an event for clustering (similar to a trigger

filter). Default is null.

similarity Double No Value between 0 and 1. Default is 0.8.

Response

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

37

Endpoint addBotRecipe returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

id Integer ID of the new Bot Recipe.

Examples

The following examples demonstrate typical use of endpoint addBotRecipe:

Request example

Example cURL request to create a new Bot Recipe "BotRecipe2":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addBotRecipe" -H

"Content-Type: application/json; charset=UTF-8" -d '{"cookbooks" :

["GrazeCookbook1"],"name":"BotRecipe2","alert_threshold":1}'

Response example

Successful response providing the ID of the new Bot Recipe that has been created:

{

 "id": 4

}

addCookbook

A Graze API POST request that creates a new Cookbook.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addCookbook takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

name String Yes Name of the Cookbook. Must be unique.

description String No Description of the Cookbook.

process_output_of List of

Strings

No Defines the source of the alerts that Cookbook

processes. You can specify none, one or more

Moolets. Typically Cookbook processes the output of

its direct upstream neighbor in the processing chain.

Usually this is "Alert Workflows" which are the

output from the Alert Workflow Engine.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

38

cluster_by String No Determines Cookbook's clustering behavior. Set to

first_match so that Cookbook adds alerts to the

first cluster over the similarity threshold value. Set to

closest_match to add alerts to the cluster with the

highest similarity greater than the similarity threshold

value. This option may be less efficient because

Cookbook needs to compare alerts against each

cluster in a Recipe. Default is first_match.

If you set a different cluster_by value for a Recipe,

it overrides the Cookbook value. Recipes without a

cluster_by value inherit the value from the

Cookbook.

entropy_threshold Number No Minimum entropy value an alert must have in order

for Cookbook to consider it for clustering it into a

Situation. A value between 0 and 1. Only relevant if

threshold_type is set to explicit_value. If

used, Cookbook does not cluster any alerts with an

entropy value below the threshold into Situations.

Default is 0.0 which means that Cookbook processes

all alerts.

threshold_type String No Type of entropy threshold you want Cookbook to

use. One of:global: Use the global entropy

threshold. This is a single entropy threshold that

Cookbook applies to all alerts to eliminate noisy

alerts with a lower entropy value.manager: Use

entropy thresholds set up for individual managers. If

the manager for an alert has an entropy threshold

set, Cookbook uses this value to eliminate noisy

alerts with a lower entropy value. If an alert's

manager does not have an entropy threshold,

Cookbook uses the global entropy threshold to filter

out alerts.explicit_value: Use the value set in

entropy_threshold to eliminate noisy alerts with a

lower entropy value.none: Do not use entropy

thresholds. Cookbook will not filter out any alerts

based on their entropy value.If you do not specify an

entropy threshold, the default is global. The default

global entropy threshold is 0. This means that unless

you actively set up a global threshold, Cookbook will

not filter out any alerts based on entropy values.See

Configure Entropy Thresholds for more information

on setting global and manager-specific entropy

thresholds.

cook_for Integer No Minimum time period, in seconds, that Cookbook

clusters alerts for before the Recipe resets and starts

a new cluster. See Cookbook and Recipe Examples

If you set a different cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for time inherit the value from the Cookbook.

cook_for_extension Integer No Time period that Cookbook can extend clustering

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

39

alerts for before the Recipe resets and starts a new

cluster. Setting this value enables the cook for auto-

extension feature for this Cookbook. As Cookbook

receives related alerts, it continues to extend the

total clustering time until the max_cook_for period

is reached. Used in conjunction with the

max_cook_for value, the cook_for_extension

period helps to ensure that Cookbook continues to

cluster alerts together that are related to the same

failure. The cook_for_extension period only

applies to new related alerts; it does not apply to

existing alerts that are updated with new events. See

Cookbook and Recipe Examples

If you set a different cook_for_extension time for

a Recipe, it overrides the Cookbook value. Recipes

without a cook_for_extension time inherit the

value from the Cookbook.

max_cook_for Integer No Maximum time period that Cookbook clusters alerts

for before the Recipe resets and starts a new cluster.

It works in conjunction with the

cook_for_extension time to help ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. This value is ignored

unless the cook_for_extension time is specified.

If cook_for_extension is set and this value is not

set, the default is three times the cook_for value.

See Cookbook and Recipe Examples

If you set a different max_cook_for time for a

Recipe, it overrides the Cookbook value. Recipes

without a max_cook_for value inherit the value from

the Cookbook.

scale_by_severity Boolean No Determines whether Cookbook ignores alerts with a

severity of 0 (Clear). Set to true if you want

Cookbook to ignore alerts with a severity of 0

(Clear). Set to false if you want Cookbook to

include alerts with a severity of 0 (Clear).Default is

false.

first_recipe_match_only Boolean No Defines whether Cookbook treats Recipes in priority

order. If set to true, Cookbook adds an alert to a

cluster created by the highest priority Recipe that

meets the clustering criteria. The priority order is

defined by the order of the Recipes in the recipes

list. If set to false, Cookbook adds an alert to

clusters in all the Recipes that meet the clustering

criteria. Default is false.

recipes List of Yes A list of the Recipes in this Cookbook. You must

supply at least one Recipe. If you set

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

40

Strings first_recipe_match_only to first_match,

Cookbook uses the order of the Recipes in this list to

determine their priority. The first Recipe has the

highest priority.

run_on_startup Boolean No Whether Cookbook should start when Moogfarmd

starts. Default is true.

moobot String No The Moobot you want Cookbook to use if there are

any Bot Recipes. See Recipe Types for more

information. Default is Cookbook.js.

Response

Endpoint addCookbook returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

This endpoint returns an error code if the values of entropy_threshold and threshold_type are

inconsistent. For example, if the entropy_threshold is set to 0.4 and threshold_type is set to

global.

Successful requests return a JSON object containing the following:

Name Type Description

id Integer ID of the new Cookbook.

Examples

The following examples demonstrate typical use of endpoint addCookbook:

Request examples

Example cURL request to create a new Cookbook "GrazeCookBook6" using an entropy threshold with

an explicit value for this Cookbook of 0.25:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

 "name": "GrazeCookBook6", \

 "process_output_of": ["Alert Workflows"], \

 "recipes": ["Description","Source"], \

 "run_on_startup":false, \

 "first_recipe_match_only":true}, \

 "entropy_threshold" : 0.25, \

 "threshold_type": "explicit_value" \

}'

Example cURL request to create a new Cookbook "GrazeCookBook7" using entropy thresholds set up

for individual managers.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

 "name": "GrazeCookBook7", \

 "process_output_of": ["Alert Workflows"], \

 "recipes": ["GrazeRecipe1","GrazeRecipe2","GrazeRecipe3"], \

 "run_on_startup":false, \

 "first_recipe_match_only":true}, \

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

41

 "threshold_type": "manager" \

}'

Response example

Successful response providing the ID of the new Cookbook that has been created:

{

 "id": 2

}

addEventsAnalyserWord

A Graze API POST request that adds a single word to an existing list of priority words or stop words in

the Events Analyser configuration. This endpoint adds the word to the priority word list or stop word list

depending on the argument you supply. Use updateEventsAnalyserWords to replace an entire list of

priority words or stop words, or removeEventsAnalyserWord to remove a single word from a list of

priority words or stop words.

See updateEventsAnalyserConfig to update the other fields in the Events Analyser configuration.

This endpoint adds a word to a list of priority words or stop words in the default partition only. See

updateEventsAnalyserPartitionOverrides to configure priority words or stop words in partitions.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addEventsAnalyserWord takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

type String Yes Determines whether the endpoint adds the word to the list of stop

words or priority words. Set to priority_word to add to the list of

priority words. Set to stop_word to add to the list of stop words.

word String Yes Stop word or priority word that you want to add to the list.

Response

Endpoint addEventsAnalyserWord returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint addEventsAnalyserWord:

Request examples

Example cURL request to add the word 'fail' to the list of priority words:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

42

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/addEventsAnalyserWord" \

--data-urlencode 'type=priority_word' \

--data-urlencode 'word="fail"'

Example cURL request to add the word 'maybe' to the list of stop words:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/addEventsAnalyserWord" \

--data-urlencode 'type=stop_word' \

--data-urlencode 'word="maybe"'

Response example

A successful request returns the HTTP code 200 and no response text.

addMergeGroup

A Graze API POST request that adds a new custom merge group.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addMergeGroup takes the following request arguments:

Name Type Required Description

name String Yes A unique name for the custom merge group.

moolets Array of

Strings

Yes List of clustering algorithm Moolets to include in

the custom merge group.

alert_threshold Integer No Minimum number of alerts that must be present

in a cluster before it can become a Situation.

Must be greater than or equal to 1. Enter null if

you want the custom merge group to use the

default merge group value. Default merge group

value is 2.

situation_similarity_limit Floating

Point

No Percentage of alerts two Situations must share

before they are merged for this group. Enter a

value between 0 and 1. Enter null if you want

the merge group to use the default merge group

value.

Response

Endpoint addMergeGroup returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint addMergeGroup:

Request example

Example cURL request to create a new custom merge group:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

43

curl -X POST

-u graze:graze

-k -v "https://example.com/graze/v1/addMergeGroup"

-H "Content-Type: application/json; charset=UTF-8"

-d '{"name":"Merge Group 1","moolets":["Time Based (Tempus)", "Recipe

2"],"alert_threshold":2,"situation_similarity_limit":0.6}'

Response example

A successful request returns the HTTP code 200 and no response text.

addProcess

A Graze API POST request that adds a new process to the database. Processes are external business

entities related to business activities that are affected by the incidents that Cisco Crosswork Situation

Manager captures in Situations.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addProcess takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

name String Yes Process name.

description String No Process description.

Response

Endpoint addProcess returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint addProcess:

Request example

Example cURL request to add a new process "New Proc 1" with a description:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addProcess" -H

"Content-Type: application/json; charset=UTF-8" -d '{"name" : "New Proc 1",

"description" : "This is my description 12345"}'

Response example

A successful request returns the HTTP code 200 and no response text.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

44

addService

A Graze API POST request that adds a new external service to the database. An external service is a

business entity monitored by Moogsoft AIOps via event streams.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addService takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

name String Yes Name of the external service you are adding.

description String No Service description.

Response

Endpoint addService returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint addService:

Request example

Example cURL request to add service "New Service 1" with a description:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addService" -H

"Content-Type: application/json; charset=UTF-8" -d '{"name" : "New Service 1",

"description" : "This is my description 12345"}'

Response example

A successful request returns the HTTP code 200 and no response text.

addSigCorrelationInfo

A Graze API POST request that associates the external client with a specified Situation. This allows

Cisco Crosswork Situation Manager to filter events and send only those of interest to an external

system.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addSigCorrelationInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

45

service_name String Name of the external service, for example, ServiceNow.

resource_id String ID of the external service entity to associate with this Situation.

Response

Endpoint addSigCorrelationInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint addSigCorrelationInfo:

Request example

Example cURL request to associate resource ID "my resource 7" in service "my service 7" with

Situation ID 7:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/addSigCorrelationInfo" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 3, "service_name" : "my

service 7", "resource_id" : "my resource 7"}'

Response example

A successful request returns the HTTP code 200 and no response text.

addSituationCustomInfo

A Graze API POST request that adds and merges custom information for a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addSituationCustomInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

46

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

custom_info JSON

Object

Yes A JSON object containing the custom information.

Response

Endpoint addSituationCustomInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint addSituationCustomInfo:

Request example

Example cURL request to add custom info to "field1", "field2", "field3", and "field4" in Situation ID 5:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/addSituationCustomInfo" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 5, "custom_info" : { "field1"

: "value1" , "field2" : "value2" , "field3" : ["item1","item2","item3"] ,

"field4" : {"field4-1" : "value4-1","field4-2" : "value4-2"} }}'

Response example

A successful request returns the HTTP code 200 and no response text.

addTempus

A Graze API POST request that adds a new Tempus Moolet.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addTempus takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

47

information.

name String Yes Name of the Tempus algorithm. Must be unique.

description String No Description of the Situations Tempus generates.

Default is 'A Tempus Situation'.

entropy_threshold Number No Minimum entropy value an alert must have for Tempus

to consider it for clustering into a Situation. A value

between 0 and 1. Only relevant if threshold_type is

set to explicit_value. If used, Tempus does not

cluster any alerts with an entropy value below the

threshold into Situations. Default is 0.0 which means

that Tempus processes all alerts.

threshold_type String No Type of entropy threshold you want Tempus to use.

One of:global: Use the global entropy threshold. This

is a single entropy threshold that Tempus applies to all

alerts to eliminate noisy alerts with a lower entropy

value.manager: Use entropy thresholds set up for

individual managers. Tempus uses this value to

eliminate noisy alerts with a lower entropy value. If an

alert's manager does not have an entropy threshold,

Tempus uses the global entropy threshold to filter out

alerts.explicit_value: Use the value set in

entropy_threshold to eliminate noisy alerts with a

lower entropy value.none: Do not use entropy

thresholds. Tempus will not filter out any alerts based

on their entropy value.If you do not specify an entropy

threshold, the default is global. The default global

entropy threshold is 0. This means that unless you

actively set up a global threshold, Tempus will not filter

out any alerts based on entropy values.See Configure

Entropy Thresholds for more information on setting

global and manager-specific entropy thresholds.

execution_interval Number No Executes Tempus after a defined number of seconds.

Default is 120.

window_size Number No Determines the length of time, in seconds, when

Tempus analyzes alerts and clusters them into a

Situation each time it runs. Default window size is

1200 seconds (20 minutes). The default window size

and bucket size provides 240 buckets per time period.

bucket_size Number No Determines the time span, in seconds, of each bucket

in which alerts are captured. Default bucket size is 5

seconds. The default window size and bucket size

provides 240 buckets per time period.

arrival_spread Number No Sets the acceptable latency or arrival window for each

alert, in seconds. Use this to minimise or reduce the

impact of multiple alerts arriving over a small amount

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a

Cisco Crosswork Situation Manager 8.0.x Developer Guide

48

of time and landing in separate buckets. This is a value

between 1 and 60. Default is 15.

minimum_arrival_similarity Number No How similar alerts must be for Tempus to consider

them for clustering. Default is 0.6667.

alert_threshold Number No Minimum number of alerts that match the clustering

criteria before the Tempus algorithm creates a

Situation. Default is 4.

When Tempus determines the number of alerts

required to create a Situation, it compares the alert

threshold values in Tempus and in the merge group

that Tempus belongs to, and it uses the higher value. If

you are using the default merge group which has an

alert threshold of 2, Tempus will never create a

Situation containing a single alert. If you want Cisco

Crosswork Situation Manager to create Situations with

a single alert, consider changing the alert threshold in

the default merge group to 1 or creating custom

merge groups. See Merge Groups for more

information on updating the default merge group and

setting up custom merge groups.

process_output_of Array of

Strings

Yes Defines the source of the alerts that Tempus

processes. You can specify none, one or more

Moolets. Typically Tempus processes the output of its

direct upstream neighbor in the processing chain.

Usually this is "Alert Workflows" which are the output

from the Alert Workflow Engine.

run_on_startup Boolean No Whether Tempus should start when Moogfarmd starts.

Default is true.

partition_by String No Splits clustering according to the entered component.

After alerts have been clustered and before they enter

merging and resolution, you can split clusters into sub-

clusters based on a component of the events. For

example, you can use the manager parameter to

ensure that Situations only contain events from the

same manager. The default of null means that no

partitioning occurs.

Note

Cisco does not recommend partitioning by

components.

pre_partition Boolean No Partitions event streams before clustering. You specify

a component field on which the event stream will be

partitioned before clustering occurs. The alerts in the

resulting Situations each contain a single value for the

component field chosen. The default of null means that

no pre-partitioning occurs.

significance_test String No Calculation that determines how significant a cluster of

alerts or a potential Situation must be for Tempus to

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

49

detect it. The default, Poisson1, looks at the data of a

single alert cluster to calculate how significant it is. The

default is more likely to detect all significant alert

clusters but with a higher risk of creating insignificant

alert clusters. Use this option when your alerts

originate from different networks or unrelated

topologies. Poisson2 is a more thorough test that

looks at an alert cluster and all alerts outside the

cluster with a similar event rate. It is more likely to

exclude all insignificant alert clusters but with a high

risk of excluding significant alert clusters. Use this

option if you expect all of your alerts to come from the

same connected network. See Poisson distribution for

more information.

significance_threshold Number No Sets the maximum significance score for Tempus to

create a Situation. The score is proportional to the

probability that the alert cluster or potential Situation

was coincidence. The lower the score, the more

significant the cluster and the least likely it was a

coincidence. This score ranges from 0 to 100. Default

is 1.

detection_algorithm String No Detection algorithm that Tempus uses, one of:

Louvain, LouvainMulti, or SmartLocal. Default is

Louvain.

Response

Endpoint addTempus returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

This endpoint returns an error code if the values of entropy_threshold and threshold_type are

inconsistent. For example, if the entropy_threshold is set to 0.4 and threshold_type is set to

global.

Examples

The following examples demonstrate typical use of endpoint addTempus:

Request example

Example cURL request to create a new Tempus algorithm:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addTempus" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

"name":"GrazeTempus1", \

"description":"Situation Generated by Tempus", \

"process_output_of":"Alert Workflows", \

"run_on_startup":false, \

"entropy_threshold":0.3, \

https://en.wikipedia.org/wiki/Poisson_distribution
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

50

"threshold_type":"explicit_value", \

"execution_interval":60, \

"window_size":240, \

"bucket_size":3, \

"arrival_spread":9, \

"minimum_arrival_similarity":0.5, \

"alert_threshold":5, \

"partition_by":"manager", \

"significance_test":"Poisson2", \

"significance_threshold":3, \

"detection_algorithm":"LouvainMulti" \

}'

Response example

A successful request returns the HTTP code 200 and no response text.

addThreadEntry

A Graze API POST request that adds a new entry to an existing thread in a Situation. Threads are

comments or 'story activity' on Situations.

This endpoint returns the entry ID of the newly created thread entry.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addThreadEntry takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

thread_name String Yes Name of the existing thread.

entry String Yes Description of the new entry you want to create in the thread. For

example, "And another thing...". HTML and XML tags are

stripped from the thread entry text. Reserved characters are

converted to HTML entities, for example, & is converted to

&.

resolving_step Boolean No Whether or not the thread entry you are adding is a resolving

step.

Response

Endpoint addThreadEntry returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

entry_id Number ID of the new thread entry.

API update behavior

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

51

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint addThreadEntry:

Request example

Example cURL request to add a new entry "Test Entry" to thread "Support" in Situation 3:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addThreadEntry" -H

"Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 3,

"thread_name" : "Support", "entry" : "Test Entry", "resolving_step" : true}'

Response example

Successful response providing the ID of the thread entry that has been created:

{"entry_id":27}

addValueRecipe

A Graze API POST request that creates a new Cookbook Recipe using Value Recipe or Value Recipe v2

recipe types. See Recipe Types.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint addValueRecipe takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

cookbook List of

Strings

No A list of the Cookbooks that this Recipe belongs to.

You can add Cookbooks here or, when you create

a Cookbook, you can assign the Recipes to it.

name String Yes Name of the Recipe. Use a unique and descriptive

name.

description String No Description of the Recipe. Default is the Recipe

name.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58

Cisco Crosswork Situation Manager 8.0.x Developer Guide

52

version String No Defines whether the Recipe uses Value Recipe or

Value Recipe v2. Valid values are V1 for the Value

Recipe and V2 for Value Recipe v2. Default is V2.

See Recipe Types for more information. Use

addBotRecipe if you want to create a Bot Recipe.

alert_threshold Positive

Integer

No Minimum number of alerts required before

Cookbook creates a Situation.

When Cookbook determines the number of alerts

required to create a Situation, it compares the alert

threshold values in the Cookbook Recipe and in the

merge group that the Cookbook Recipe belongs to,

and it uses the higher value. If you are using the

default merge group which has an alert threshold of

2, Cookbook will never create a Situation

containing a single alert. If you want Cisco

Crosswork Situation Manager to create Situations

with a single alert, consider changing the alert

threshold in the default merge group to 1 or

creating custom merge groups. See Merge Groups

for more information on updating the default merge

group and setting up custom merge groups.

trigger String No A filter that determines the alerts that Cookbook

considers for Situation creation. Cookbook includes

alerts that match the trigger filter. By default

Cookbook only includes alerts with a severity of

'Critical'.

exclusion String No A filter that determines the alerts to exclude from

Situation creation. Cookbook ignores alerts that

match the exclusion filter

seed_alert String No A filter that determines whether to create a

Situation from a seed alert. The seed alert must

meet both the trigger, exclusion and

seed_alert criteria to create a Situation.

Cookbook considers subsequent alerts for

clustering if they meet the trigger and exclusion

filter criteria. Alerts that arrive prior to the seed alert

that met the trigger and exclusion filter criteria do

not form Situations.

rate Double No Rate, in number of alerts per second. Cookbook

clusters alerts if they arrive at a higher rate than is

specified here. Cookbook uses rate together with

min_sample_size and max_sample_size to

determines whether to cluster alerts into Situations.

See Cookbook and Recipe Examples.

min_sample_size Positive

Integer

No Number of alerts that must arrive before the

Cookbook starts to calculate the alert rate. See

Cookbook and Recipe Examples for more

information. Default is 5. Valid only if rate is non-

zero.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

53

max_sample_size Positive

Integer

No Maximum number of alerts that are considered in

the alert rate calculation. When more than this

number of alerts have arrived, Cookbook discards

the oldest alerts and calculates the alert rate based

on the number of alerts in the max_sample_size.

See Cookbook and Recipe Examples for more

information. Default is 10. Valid only if rate is non-

zero.

cook_for Positive

Integer

No Minimum time period, in seconds, that the

Cookbook Recipe clusters alerts for before it resets

and starts a new cluster. See Cookbook and Recipe

Examples. If you set a different cook_for time for

a Recipe, it overrides the Cookbook value. Recipes

without a cook_for time inherit the value from the

Cookbook.

Inherits value from Cookbook if omitted.

cook_for_extension Positive

Integer

No Time period that the Cookbook Recipe can extend

clustering alerts for before it resets and starts a

new cluster. Setting this value enables the cook for

auto-extension feature for this Cookbook. As

Cookbook receives related alerts, it continues to

extend the total clustering time until the

max_cook_for period is reached. Used in

conjunction with the max_cook_for value, the

cook_for_extension period helps to ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. The

cook_for_extension period only applies to new

related alerts; it does not apply to existing alerts

that are updated with new events. Cookbook and

Recipe Examples. If you set a different

cook_for_extension time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for_extension time inherit the value from

the Cookbook.

Inherits value from Cookbook if omitted.

max_cook_for Positive

Integer

No Maximum time period that the Cookbook Recipe

clusters alerts for before it resets and starts a new

cluster. It works in conjunction with the

cook_for_extension time to help ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. This value is ignored

unless the cook_for_extension time is specified.

Cookbook and Recipe Examples. If you set a

different max_cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

max_cook_for value inherit the value from the

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

54

Cookbook.

Inherits value from Cookbook if omitted.

cluster_by String No Determines Cookbook's clustering behavior. Set to

an empty string to use the Cookbook cluster_by

setting. Set to first_match so that Cookbook

adds alerts to the first cluster over the similarity

threshold value. Set to closest_match to add

alerts to the cluster with the highest similarity

greater than the similarity threshold value. This

option may be less efficient because Cookbook

needs to compare alerts against each cluster in a

Recipe. Default is an empty string which means the

Recipe uses the Cookbook setting.

If you set a different cluster_by value for a

Recipe, it overrides the Cookbook value. Recipes

without a cluster_by value inherit the value from

the Cookbook.

hop_limit Positive

Integer

No Maximum number of hops between the alert source

nodes in order for the alerts to quality for

clustering. Cisco Crosswork Situation Manager

measures hop limit from the first alert that formed

the Situation and always follows the shortest

possible route. A hop is the distance between two

directly connected nodes.

You can only set a hop limit if you have one or more

topologies in your system. For more information on

hops and hop limit see Vertex Entropy and

Configure Topology-based Clustering with Vertex

Entropy. For more information on topologies see

Topologies.

components JSON

Array

Yes Values that alerts must match for Cookbook to

include them in a Situation. You can provide values

for multiple components. See the table below for a

full description of all components.

use_dynamic_topology Boolean No Infer the topology to cluster on from the

moog_topology field in the alert's custom info. If

you use a dynamic topology you cannot set

topology_name.

alert_matching_attribute String No The alert field that specifies the topology node from

which the alert was generated. If you set an alert

matching attribute you must set

dynamic_topology to true or set the

topology_name.

topology_name String No Restrict clustering to nodes in the specified

topology. If you set a topology name you cannot set

dynamic_topology to true.

The components property is an array of JSON objects containing the following:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

55

Name Type Required Description

name String Yes Name of the component.

similarity Double Yes Similarity threshold that the component must meet for Cookbook

to cluster the alert into a Situation.

shingle_size Integer No Shingle size for Cookbook to use to determine the similarity

between different strings. The shingle size is only valid for

Recipe Value v2 recipes. Default is -1 which means that

Cookbook uses words to determine similarity. See Recipe Types.

treat_as String No Determines whether Cookbook treats the component as a string

or matches each value in the list individually. See Recipe Types

for details. Valid values are List and String. Default is String.

case_sensitive Boolean No Enables or disables case sensitive when comparing strings. Case

sensitivity is only valid for Recipe Value recipes. See Recipe

Types more details. Default is true which means that strings are

treated as case sensitive.

Response

Endpoint addValueRecipe returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

id Integer ID of the new Value Recipe.

Examples

The following examples demonstrate typical use of endpoint addValueRecipe:

Request example

Example cURL request to add a new Recipe "GrazeRecipe":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addValueRecipe" -H

"Content-Type: application/json; charset=UTF-8" -d '{"cookbook" : "GrazeCook1",

"name": "GrazeRecipe", "alert_threshold" : 1,

"hop_limit" : 0,

"dynamic_topology" : false,

"topology_name": "physical",

"components" : [{

 "name": "custom_1",

 "similarity": 0.2,

 "shingle_size": 2 }]

}'

Example cURL request to add a new Recipe "GrazeRecipe2":

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

56

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/addValueRecipe" -H

"Content-Type: application/json; charset=UTF-8" -d '{"cookbook" : "GrazeCook1",

"name": "GrazeRecipe2", "alert_threshold" : 1,

"hop_limit" : 0,

"dynamic_topology" : true,

"alert_matching_attribute" : "host",

"components" : [{

 "name": "custom_1",

 "similarity": 0.2,

 "shingle_size": 2 }]

}'

Response example

Successful response providing the ID of the new Value Recipe that has been created:

{

 "id": 6

}

applyNewLicense

A Graze API POST request that adds a Cisco Crosswork Situation Manager license via Graze.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint applyNewLicense takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

license String Yes A valid license key.

Response

Endpoint applyNewLicense returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint applyNewLicense:

Request example

Example cURL request to add a valid license:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/applyNewLicence" -

H "Content-Type: application/json; charset=UTF-8" -d '{"license" : "<your

license key>"}'

Response example

A successful request returns the HTTP code 200 and no response text.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

57

assignAlert

A Graze API POST request that assigns the specified user as the owner of the specified alert ID.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint assignAlert takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

user_id Number No, if you specify

username.

ID of the user to be assigned as the owner of the alert. You

must provide the user_id or the username.

username String No, if you specify

user_id.

Username of the user to be assigned as the owner of the

alert. You must provide the user_id or the username.

Response

Endpoint assignAlert returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint assignAlert:

Request example

Example cURL request to username "network1" to alert ID 7:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/assignAlert" -H

"Content-Type: application/json; charset=UTF-8" -d '{"alert_id" : 7, "username"

: "network1" }'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

58

Response example

A successful request returns the HTTP code 200 and no response text.

assignAndAcknowledgeAlert

A Graze API POST request that assigns and acknowledges the specified user as the owner of the

specified alert ID.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint assignAndAcknowledgeAlert takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

user_id Number No, if you specify

username.

ID of the user to be assigned as the owner of the alert. You

must provide the user_id or the username.

username String No, if you specify

user_id.

Username of the user to be assigned as the owner of the

alert. You must provide the user_id or the username.

Response

Endpoint assignAndAcknowledgeAlert returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint assignAndAcknowledgeAlert:

Request example

Example cURL request to assign user "Cloud DevOps 1" as the owner of alert 432:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/assignAndAcknowledgeAlert" -H "Content-Type:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

59

application/json; charset=UTF-8" -d '{"alert_id" : 432, "username" : "Cloud

DevOps 1" }'

Response example

A successful request returns the HTTP code 200 and no response text.

assignAndAcknowledgeSituation

A Graze API POST request that assigns and acknowledges the moderator to the Situation for a

specified situation ID and user ID.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint assignAndAcknowledgeSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

user_id Number Yes ID of the user to be assigned as the owner of the Situation.

username String No Username of the user to be assigned to the Situation.

Response

Endpoint assignAndAcknowledgeSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint assignAndAcknowledgeSituation:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

60

Example cURL request to set user ID 7 as the moderator on Situation ID 975 and acknowledge this:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/assignAndAcknowledgeSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 975, "user_id" : 7 }'

Response example

A successful request returns the HTTP code 200 and no response text.

assignSituation

A Graze API POST request that assigns the moderator to the Situation for a specified Situation ID and

user ID.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint assignSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

user_id Number Yes User ID.

username String No A valid username.

Response

Endpoint assignSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint assignSituation:

Request example

Example cURL request:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

61

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/assignSituation" -

H "Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 7, "user_id"

: 3 }'

Response example

A successful request returns the HTTP code 200 and no response text.

assignTeamsToSituation

A Graze API POST request that assigns one or more teams to a Situation. Once successfully run, Cisco

Crosswork Situation Manager marks the Situation as overridden and the Teams Manager Moolet can no

longer modify its team assignment. See Teams Manager Moolet for more information.

This endpoint replaces any teams previously assigned to the Situation. You can also use it to deassign

all teams from a Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint assignTeamsToSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

sitn_id Number Yes Situation ID.

team_ids List No, if you specify

team_names.

A list of team IDs to assign to the Situation. Specify an

empty list to deassign all teams from the Situation.

team_names List No, if you specify

team_ids.

A list of team names to assign to the Situation. Specify an

empty list to deassign all teams from the Situation.

Response

Endpoint assignTeamsToSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing one of the following, depending on the request

argument used:

Name Type Description

team_ids List A list of team IDs assigned to the Situation.

team_names List A list of team names assigned to the Situation.

API update behavior

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

62

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint assignTeamsToSituation:

Example assigning team IDs

Example cURL request to assign team IDs 1 and 2 to Situation 1:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 1 , "team_ids" : [1, 2]}'

Example response returning the team IDs (1 and 2) that have been successfully assigned to the

Situation:

{"team_ids" : [1,2]}

Example assigning team names

Example cURL request to assign teams "Network_US" and "Network_UK" to Situation 2:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 2 , "team_names" : [

"Network_US", "Network_UK"]'

Example response returning the team names ("Network_US" and "Network_UK") that have been

successfully assigned to the Situation:

{"team_names" : ["Network_US", "Network_UK"]}

Example unassigning teams

Example cURL request to unassign all teams from Situation 1:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/assignTeamsToSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 1 , "team_ids" : []}'

Example response returning an empty list showing that all the teams have been successfully

unassigned from the Situation:

{"team_ids" : []}

authenticate

A Graze API GET request that provides the auth_token required by all other Graze API requests which

do not provide the basic authentication header. Graze users can have multiple concurrent Graze

sessions with the same username and password.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

63

All requests (other than authenticate) require a valid auth_token or basic authentication header.

Therefore before any Graze API request is used, a valid authenticate request must be successfully

made unless basic authentication headers are used.

Inactive sessions will be logged out after one hour, and a new authenticate request must be made to

get a new valid auth_token.

If you make regular Graze requests within a one hour timeframe, you are considered active and your

session does not expire. Inactive sessions are logged out after one hour, and you must make a new

authenticate request to get a new valid auth_token.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint authenticate takes the following request arguments:

Name Type Required Description

username String Yes A valid Cisco Crosswork Situation Manager username.

password String Yes The username's corresponding password.

Response

Endpoint authenticate returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

auth_token String A session ID for use in subsequent requests.

Examples

The following examples demonstrate typical use of endpoint authenticate:

Request examples

Example cURL request to return an authorization token for username "JohnJones" and password

"password":

curl -k -v

"https://localhost/graze/v1/authenticate?username=JohnJones&password=password"

Example cURL request to return an authorization token for the Graze user:

curl -k -v

"https://localhost/graze/v1/authenticate?username=graze&password=graze"

Response example

Example response returning the authorization token:

{"auth_token":"878b3ec57d464aee80d09893221be8e8"}

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

64

checkSituationFlag

A Graze API GET request that checks whether a flag is associated with a Situation.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint checkSituationFlag takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation to check.

flag String Yes Name of the flag to check for the specified Situation ID.

Response

Endpoint checkSituationFlag returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

Boolean Whether or not the flag is associated with the specified Situation.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint checkSituationFlag:

Request example

Example cURL request to request a Boolean whether the specified Situation has the flag "NOTIFIED"

associated with it.

curl -X GET -u graze:graze -k -v

https://localhost/graze/v1/checkSituationFlag?sitn_id=1&flag=NOTIFIED

Response example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

65

Example response returning the Boolean value true because the Situation contains the specified flag:

true

closeAlert

A Graze API POST request that closes one or more alerts.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint closeAlert takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

alert_id Number No, if you

specify

alert_ids.

A single alert ID. You must provide a single

alert_id or a list of alert_ids.

alert_ids Array of

Numbers

No, if you

specify

alert_id.

A list of alert IDs. You must provide a single

alert_id or a list of alert_ids.

thread_entry_comment String No Thread entry comment you want to add to the

closed alert. HTML and XML tags are stripped

from the thread entry text. Reserved characters

are converted to HTML entities, for example, & is

converted to &.

Response

Endpoint closeAlert returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

66

Examples

The following examples demonstrate typical use of endpoint closeAlert:

Request example

Example cURL request to close alert IDs 78, 234, and 737:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/closeAlert" -H

"Content-Type: application/json; charset=UTF-8" -d '{"alert_ids" :

[78,234,737],"thread_entry_comment" : "Closing as agreed during team discussion

1/1/2018" }'

Response example

A successful request returns the HTTP code 200 and no response text.

closeSituation

A Graze API POST request that closes a specified Situation which is currently open, and optionally

closes alerts in the Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint closeSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

resolution Number Yes Determines what to do with the alerts in the Situation:

0 = Close no alerts.

1 = Close all alerts in this Situation.

2 = Close only alerts unique to this Situation.

Response

Endpoint closeSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

67

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint closeSituation:

Request example

Example cURL request to close Situation 7 and leave all its alerts open:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/closeSituation" -H

"Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 7, "resolution"

: 0 }'

Response example

A successful request returns the HTTP code 200 and no response text.

createMaintenanceWindow

A Graze API POST request that creates a maintenance window. A maintenance window filters alerts

caused by a known period of maintenance.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createMaintenanceWindow takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

name String Yes Name of the maintenance window.

description String Yes Description of the maintenance window.

filter String Yes SQL-like filter that alerts must match to be included in

the maintenance window.

If the filter includes a backslash in the filter string, you

need to double escape these to maintain the

backslash character in the filter string. However, if you

have \t, \n, \b, or \r followed by a backslash in the

path, you do not need to pass any extra backslashes.

See the Example of escaped characters.

start_date_time Number Yes Start time of the maintenance window. This must be in

Unix epoch time and may be up to 5 years in the

future.

duration Number Yes Duration of the maintenance window in seconds. The

minimum duration is 1 second and the maximum is

Cisco Crosswork Situation Manager 8.0.x Developer Guide

68

157784630 seconds (5 years).

forward_alerts Boolean Yes Whether or not alerts should be forwarded to the next

Moolet in the processing chain.

recurring_period Number No Whether or not this is a recurring maintenance

window. Set this to:1 for a recurring maintenance

window.0 for a one-time maintenance window.If not

specified, default is 0. If you set this property to 1, you

must specify recurring_period_units.

recurring_period_units Number No Specifies the recurring period of the maintenance

window, in days, weeks or months. Valid values are:2

= daily3 = weekly4 = monthlyDefault is 0 if

recurring_period is set to 0.

timezone String No Time zone that you want the maintenance window to

be created in. Default is the time zone of the user that

makes the request. If the user has a "SYSTEM" time

zone, Cisco Crosswork Situation Manager uses the

MoogSvr time zone. The time zone must be a valid

entry in the IANA Time Zone Database. When

scheduling recurring maintenance windows, Cisco

Crosswork Situation Manager takes into account any

daylight savings time changes for the time zone.

Response

Endpoint createMaintenanceWindow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

window_id Number ID of the new maintenance window.

Examples

The following examples demonstrate typical use of endpoint createMaintenanceWindow:

Request examples

Example cURL request to create a window, which recurs once a month (from its start_date_time), with

a filter where the source is "server1" and the external ID is one of "value1", "value2", or "value3":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/createMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"name":"window1", "description":"window1

description here", "filter": "source = \"server1\" and external_id in

(\"value1\", \"value2\", \"value3\")", "start_date_time": 1473849237,

"duration": 55800, "forward_alerts": false, "recurring_period": 1,

"recurring_period_units": 4}'

Example cURL request to create a one-time maintenance window, which is filtered where the source is

equal to "hostIsDown":

https://www.iana.org/timezones
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

69

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/createMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"name": "my_window_1", "description":

"This is my description", "filter": "source = \"hostIsDown\"",

"start_date_time": 1473849237, "duration": 55800, "forward_alerts": false}'

Example cURL request to create a daily maintenance window in the "America/New York" time zone:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/createMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"name":"window", "description":"window

with specified timezone", "filter": "source = \"server1\" and external_id in

(\"value1\", \"value2\", \"value3\")", "start_date_time": 1564566188,

"duration": 3600, "forward_alerts": false, "recurring_period": 1,

"recurring_period_units": 2, "timezone": "America/New_York"}'

Example of escaped characters

Example cURL request using multiple escaped backslash characters in the filter to maintain the correct

characters in the filter string:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/createMaintenanceWindow" -H "plication/json;

charset=UTF-8" -d '{"name":"LON Server 1", "description":"[10453] ",

"filter":"NOT (alert_id IS NULL) AND (agent_location MATCHES \"LON_S1\") AND

(custom_info.eventDetails.alert_customer MATCHES \"LON\") AND (manager MATCHES

\"LOGFILE\") AND (class MATCHES \"could not execute backup\") AND

(custom_info.eventDetails.field_1 MATCHES

\"C:\\\\\\\\\\LON_SVR1\\Backup\\2019\")", "start_date_time":1480483478,

"duration":86400, "recurring_period_units":2, "recurring_period":1,

"forward_alerts":false}'

The endpoint createMaintenanceWindow creates the correct filter:

(((((NOT (alert_id IS NULL)) AND (`Agent location` MATCHES "LON_S1")) AND

(custom_info.eventDetails.alert_customer MATCHES "LON")) AND (Manager MATCHES

"LOGFILE")) AND (Class MATCHES "could not execute backup")) AND

(custom_info.eventDetails.field_1 MATCHES "C:\\\\LON_SVR1\Backup\2019")

Response example

A successful request returns the ID of the new maintenance window:

{

 "window_id":16

}

createSecurityRealm

A Graze API POST request that creates a new SAML security realm from an Identity Provider (IdP) URL.

The request also adds the realm configuration you provide.

Warning

Warn any users who are logged into Cisco Crosswork Situation Manager using the default realm before

using this request. Cisco Crosswork Situation Manager may log out users when the new realm becomes

active.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

70

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createSecurityRealm takes the following request arguments:

Name Type

Require

d Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

name String Yes Name of the security realm.

type String Yes Security realm type. This must be "SAML2".

active Boolea

n

Yes Determines whether the new realm is active in Cisco Crosswork

Situation Manager on creation.

You can create an inactive realm for testing purposes. For example,

you can verify if a security realm with that name already exists or if it

fails.

configuratio

n
JSON

Object

Yes JSON object containing the realm configuration. For information on

the configuration properties, see Security Configuration Reference.

Upload your IdP metadata file using idpMetadata or specify the

location of the file using idpMetadataUrl. For example:

"idpMetadataUrl":"http://<location_of_idp_metadata

>"

"idpMetadata":"<raw_ipd_metadata.xml>"

Response

Endpoint createSecurityRealm returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint createSecurityRealm:

Request example

Example cURL request to create a security realm:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/createSecurityRealm" -d '{

 "name":"mySamlRealm",

 "type":"SAML2",

 "active:"true",

 "configuration":

 {

"idpMetadataUrl":"http://exampleIdP:18080/auth/realms/master/protocol/saml/descr

iptor",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

71

 "defaultGroup":"End-User",

 "existingUserMappingField":"username",

 "username":"$username",

 "email":"$email",

 "fullname":"$firstname $lastname",

 "maximumAuthenticationLifetime":60

 }

}'

Response example

A successful request returns the HTTP code 200 and no response text.

createSituation

A Graze API POST request that creates a manual Situation. The Situation description is set with the

description parameter.

The following Situation settings are pre-set and not configurable here:

1. Status: Opened

2. Moderator: none assigned

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

description String Yes Description of the new Situation.

Response

Endpoint createSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number ID of the newly created Situation.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

72

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint createSituation:

Request example

Example cURL request to create a Situation with the description "Database Outage 08/06/2019":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createSituation" -

H "Content-Type: application/json; charset=UTF-8" -d

Response example

Example response returning the ID of the newly created Situation:

{"sitn_id":2300}

createTeam

A Graze API POST request that creates a new team.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

name String Yes New team name. Must be unique.

alert_filter String No An SQL-like filter that alerts must match to be assigned to

the team.

services Array of Strings

or Numbers

No List of the team service names or IDs.

sig_filter String No An SQL-like filter that Situations must match to be

assigned to the team.

landing_page String No Team default landing page.

active Boolean No False if the team is inactive, true if the team is active.

Default is true.

description String No Team description.

users Array of

Numbers or

No Team users (either IDs or usernames).

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

73

Strings

Response

Endpoint createTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

team_id Number ID of the new team.

Examples

The following examples demonstrate typical use of endpoint createTeam:

Request example

Example cURL request to create a team called "my team name" consisting of user1, user2, and user3:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createTeam" -H

"Content-Type: application/json; charset=UTF-8" -d '{"name" : "my team name 1",

"alert_filter" : "manager = \"my_manager\" and (class = \"my_class_12345\" or

external_id = \"my_ext_12345\")", "services" : ["Identity Management","Yellow

Pages"], "sig_filter" : "description = \"my_description_12345\" or queue = 50",

"landing_page" : {"type":"situations","id":"open"}, "active" : true,

"description" : "The team description 12345", "users" :

["user1","user2","user3"]}'

Response example

Example response returning the ID of the created team:

{"team_id":16}

createThread

A Graze API POST request that creates a new thread for a specified Situation. Threads are comments

or 'story activity' on Situations.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createThread takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation you want to create a new thread for.

thread_name String Yes Name of the new thread.

Response

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

74

Endpoint createThread returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint createThread:

Request example

Example cURL request to create a new thread "Thread 0958" on Situation ID 176:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createThread" -H

"Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 176,

"thread_name" : "Thread 0958"}

Response example

A successful request returns the HTTP code 200 and no response text.

createThreadEntry

Note

This endpoint has been superseded. Use addThreadEntry instead. All new functionality will be delivered

in addThreadEntry.

A Graze API POST request that creates a new entry in an existing thread in a Situation. Threads are

comments or 'story activity' on Situations.

This endpoint returns a Boolean indicating whether or not the thread entry was created successfully.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createThreadEntry takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

75

thread_name String Yes Name of the existing thread.

entry String Yes Description of the new entry you want to create in the thread. For

example, "And another thing...". HTML and XML tags are

stripped from the thread entry text. Reserved characters are

converted to HTML entities, for example, & is converted to

&.

resolving_step Boolean No Whether or not the thread entry you are creating is a resolving

step.

Response

Endpoint createThreadEntry returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

Boolean Whether or not the new thread entry was created successfully.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint createThreadEntry:

Request example

Example cURL request to create a new entry in thread "Support" in Situation 3:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createThreadEntry"

-H "Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 3,

"thread_name" : "Support", "entry" : "Test Entry", "resolving_step" : true}'

Response example

Example response showing that the new thread entry was successfully created::

true

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

76

createUser

A Graze API POST request that creates a new user.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createUser takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

username String Yes Login username for the new user. Must be unique.

password String Yes New user password, only valid for DB realm.

active Boolean Yes true if the user is active, false if the user is inactive.

Default is true.

email String Yes User's email address.

fullname String Yes User's full name.

roles Array of Strings

or Numbers

Yes List of either the role IDs or the role names. For example,

"roles":["Super User"].

primary_group String or

Number

Yes User's primary group name or primary group ID.

department String or

Number

Yes User's department ID or department name.

joined Number Yes Time the user joined in Unix epoch time.

timezone String Yes User's timezone.

contact_num String Yes User's phone number.

session_expiry Number Yes Number of minutes after which the user's session

expires. Default is the system default.

teams Array of

Numbers or

Strings

Yes List of the user's team names or team IDs.

Response

Endpoint createUser returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

user_id Number ID of the new user.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

77

Examples

The following examples demonstrate typical use of endpoint createUser:

Request example

Example cURL request to create a new user "johndoe1":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/createUser" -H

"Content-Type: application/json; charset=UTF-8" -d '{"username" : "johndoe1",

"roles" : ["Super User", "Operator"], "password" : "johndoe1", "active" : true,

"email" : "johndoe@moogsoft.com", "fullname" : "John Doe", "primary_group" :

"Network", "department" : "Support", "joined" : 1494951621, "timezone" :

"Europe/London", "contact_num" : "555-1234", "session_expiry" : null, "teams" :

["my team 1","my team 2","my team 3"], "properties" : null}'

Response example

Example response returning the new user ID:

{"user_id":777}

createWorkflow

A Graze API POST request that creates a new workflow at the end of a Workflow Engine Moolet

sequence. The new workflow is automatically active. To move it, use reorderWorkflows.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint createWorkflow takes the following request arguments:

Name Type

Require

d Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

moolet_name String Yes Name of the Workflow Engine Moolet that the new workflow

belongs to.

workflow_name String Yes Name of the new workflow. Must be unique.

description String No Description of the new workflow.

entry_filter JSON

Object

No An SQL-like filter to determine which events, alerts or Situations

can enter the workflow. Leave empty for the workflow to accept

all events, alerts or Situations.

sweep_up_filte

r
JSON

Object

No An SQL-like filter to intake any additional events, alerts or

Situations from the database.

first_match_on

ly
Boolea

n

Yes If enabled, events, alerts, and Situations only pass through

actions on the first time they enter this workflow.

operations JSON Yes List of properties relating to each operation:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

78

List

Name Type

Require

d Description

type String Yes Type of operation.

Options are:

'action', 'decision'

and 'delay'.

operation_name String Yes, for

'action'

and

'decisio

n' types.

Name of the

operation.

function_name String Yes, for

'action'

and

'decisio

n' types.

Name of the

function.

forwarding_behavi

or

String No Forwarding

behavior for the

function. One

of:always

forward: The

function always

forwards the object

to the next

workflow.stop

this workflow:

The function stops

this workflow and

the object moves

to the next

workflow.stop

all workflows:

The function stops

all workflows for

this object.Default

is always

forward. Only

valid for 'action'

and 'decision'

types.

function_args JSON

Object

No Arguments for the

function.

duration Integer Yes, for

'delay'

type.

Length of time

before the

message goes to

the next operation.

reset Boolea

n

Yes, for

'delay'

type.

Determines

whether the timer

resets after each

occurrence. Not

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

79

available if you

have set a

workflow to

first_match_onl

y.

The timer is reset

only if an

occurrence with

the same ID is

received (alert_id

or situation_id)

within the current

'delay' timeframe.

Response

Endpoint createWorkflow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

JSON Object A JSON object containing the ID of the newly created workflow.

Examples

The following examples demonstrate typical use of endpoint createWorkflow:

Request example

Example cURL request to create a new workflow with a setCustomInfoValue action:

curl -X POST -u graze:graze -k \

 -v "https://localhost/graze/v1/createWorkflow" \

 -H "Content-Type: application/json; charset=UTF-8" \

 --data ' {

 "first_match_only": false,

 "operations": [

 {

 "duration": 0,

 "reset": false,

 "type": "delay"

 },

 {

 "operation_name": "set support team value in custom info",

 "function_name": "setCustomInfoValue",

 "forwarding_behavior": "always forward",

 "function_args": {

 "value": "NOC",

 "key": "support_team"

 },

 "type": "action"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

80

 }

],

 "moolet_name": "Alert Workflows",

 "workflow_name": "Alert Workflow Example",

 "entry_filter": "state = 9",

 "active": true,

 "description": "Alert Workflow API Example",

 "sweep_up_filter": "((agent = \"Test\") AND (significance = 0)) OR

(severity = 0)"

 }'

Response example

Example response returning the new workflow ID:

{"id":12}

deassignAlert

A Graze API POST request that deassigns the current owner from the specified alert, and leaves it

unassigned.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deassignAlert takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes ID of the alert that you want to deassign the owner from.

Response

Endpoint deassignAlert returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint deassignAlert:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

81

Request example

Example cURL request to deassign the current owner from alert ID 7:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deassignAlert" -H

"Content-Type: application/json; charset=UTF-8" -d '{"alert_id" : 7}'

Response example

A successful request returns the HTTP code 200 and no response text.

deassignSituation

A Graze API POST request that deassigns the current moderator from the Situation for a specified

Situation ID.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deassignSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint deassignSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint deassignSituation:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

82

Example cURL request to deassign the current moderator from Situation 7:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deassignSituation"

-H "Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 7}'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteCookbook

A Graze API POST request that deletes an existing Cookbook.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteCookbook takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

name String Yes Name of the Cookbook that you want to delete.

Response

Endpoint deleteCookbook returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteCookbook:

Request example

Example cURL request to delete Cookbook "GrazeCookBook1":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deleteCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d '{"name" : "GrazeCookBook1"}'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteMaintenanceWindow

A Graze API POST request that deletes a single maintenance window.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteMaintenanceWindow takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

83

id Number Yes ID of the maintenance window you want to delete.

Response

Endpoint deleteMaintenanceWindow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteMaintenanceWindow:

Request example

Example cURL request to delete maintenance window 123:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/deleteMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"id"[123]}'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteMaintenanceWindows

A Graze API POST request that deletes maintenance windows that match the specified filter.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteMaintenanceWindows takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

filter String Yes An SQL-like filter to match maintenance windows that you want to

delete.

Response

Endpoint deleteMaintenanceWindows returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteMaintenanceWindows:

Request examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

84

Example cURL request to delete maintenance windows that match the filter where the maintenance

window ID is 3 or 4:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/deleteMaintenanceWindows" -H "Content-Type:

application/json; charset=UTF-8" -d '{"filter":"id in (3,4)"}'

Example cURL request to delete maintenance windows that match the filter where the host is

"CSF_RD_243:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/deleteMaintenanceWindows" -H "Content-Type:

application/json; charset=UTF-8" -d '{"filter":"host matches \"CSF_RD_243\""}'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteMergeGroup

A Graze API POST request that deletes an existing custom merge group.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteMergeGroup takes the following request arguments:

Name Type Required Description

name String Yes Name of the merge group to delete.

Response

Endpoint deleteMergeGroup returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteMergeGroup:

Request example

Example cURL request to delete the custom merge group "Merge Group 1":

curl -X POST -u graze:graze -k "https://localhost/graze/v1/deleteMergeGroup"

-H "Content-Type: application/json; charset=UTF-8"

--data '{

 "name" : "Merge Group 1"

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteRecipe

A Graze API POST request that deletes an existing Cookbook Recipe. You can use this endpoint to

delete Recipes of all recipe types: Value Recipe, Value Recipe V2, and Bot Recipe.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

85

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteRecipe takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

name String Yes Name of the Cookbook Recipe that you want to delete.

Response

Endpoint deleteRecipe returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteRecipe:

Request example

Example cURL request to delete Recipe "GrazeRecipe1":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deleteRecipe" -H

"Content-Type: application/json; charset=UTF-8" -d '{"name" : "GrazeRecipe1"}'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteTeam

A Graze API POST request that deletes a single team.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteTeam takes the following request arguments:

Name Type Required Description

auth_token String No A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

team_id String Yes ID of the team you want to delete.

Response

Endpoint deleteTeam returns the following response:

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP status code

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

86

Code definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteTeam:

Request example

Example cURL request to delete team ID 33.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deleteTeam" --

data-urlencode 'team_id=33'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteTempus

A Graze API POST request that deletes an existing Tempus Moolet.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint deleteTempus takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

name String Yes Name of the Tempus Moolet you want to delete.

Response

Endpoint deleteTempus returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteTempus:

Request example

Example cURL request to delete Tempus algorithm "newTempus":

curl -X POST -u graze:graze -k "https://localhost/graze/v1/deleteTempus" -H

"Content-Type: application/json; charset=UTF-8" --data '{ "name" :

"newTempus" }'

Response example

A successful request returns the HTTP code 200 and no response text.

deleteWorkflow

A Graze API POST request that deletes a workflow from the Workflow Engine.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

87

Request arguments

Endpoint deleteWorkflow takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

id Integer Yes ID of the workflow you want to delete.

Response

Endpoint deleteWorkflow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint deleteWorkflow:

Request example

Example cURL request to delete workflow ID 12:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/deleteWorkflow" -H

"Content-Type: application/json; charset=UTF-8" --data "{"id":12}"

Response example

A successful request returns the HTTP code 200 and no response text.

/enrichment

A Graze API endpoint that allows you to add and delete records from the enrichment data store. To use

the Enrichment API, you must install Cisco Add-ons v1.4 or later and set up the Enrichment API.

After you load data into the enrichment data store, you can add the data to an alert's custom_info

object under the enrichment key using the Enrichment Workflow Engine getEnrichment function.

Back to Graze API EndPoint Reference.

POST

The enrichment endpoint only supports the POST HTTP method to create, update, and delete

enrichment records.

Request arguments

Endpoint enrichment takes the following request payload:

Name Type Required Description

action String yes One of post or delete.

post creates or updates enrichment records.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

88

delete removes enrichment records.

data Array yes An array of of enrichment data records represented as JSON objects.

attribute String yes Name of the alert field or other key for the enrichment data. For

example, "source".

For the delete action, accepts the * wildcard to delete all attributes.

value String yes The value for the associated attribute. For example if the attribute is

"source" for host name data, a value might be "sflinux101".

For the delete action, accepts the * wildcard at the beginning of the

search string,end of the search string or booth to delete all matching

values. For example "*linux*" would delete all matching values that

contain the string "linux": "SFlinux101", "SFlinux", and "linux101".

enrichment JSON

object

for post

action

JSON representation of the enrichment data to add to an alert based

upon the match attribute and value. For example if you wanted to store

store location data:

{"location":"1265 Battery St., San Francisco, CA"}

Example payload:

{"action":"post",

 "data":[

 {"attribute":"source",

 "value":"SFlinux101",

 "enrichment": {

 "location":"1265 Battery St., San Francisco, CA",

 "support_group":"SF NOC"}

 },

 {"attribute":"source",

 "value":"DENlinux102",

 "enrichment": {

 "location":"1700 Lincoln Street, Denver, CO",

 "support_group":"DENVER NOC"}

 }]

}

Endpoint enrichment takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Response

Endpoint enrichment returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint grazeApiEndpointName:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

89

Example cURL request to create enrichment data:

curl -k -X POST 'https://localhost/graze/v1/integrations/enrichment' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u graze:graze \

-d '{"action":"post", "data":[{"attribute":"source", "value":"SFlinux101",

"enrichment": { "location":"1265 Battery St., San Francisco, CA",

"support_group":"SF NOC"} }, {"attribute":"source", "value":"DENlinux102",

"enrichment": { "location":"1700 Lincoln Street, Denver, CO",

"support_group":"DENVER NOC"} }]}'

Response example

A successful request returns the HTTP code 200 and no response text.

Match List Items in Recipes

You can create Cookbook Recipes and configure clustering around the use of list-based fields in alert

custom info. You can also set whether list-based clustering of a custom field is applied. If not, the field

is treated as a string.

A list in custom info is a properly formed JavaScript array. To see if a custom info item is a list, examine

the custom info details in the UI. If the list can be expanded and has a value of x items at the top level,

then it is a list. For example:

A text field containing comma separated values is not considered a list.

Configure Match List Items for a Custom Info Field

To match list items for a custom_info field:

 On the Settings tab, select Cookbook Recipes from the Algorithms section, select the Recipe you

want to configure, and click on the Clustering tab.

 In the Cluster By field, select the custom_info attribute from the drop-down list. Enter the

custom_info field name in the box below.

 Check the Match List Items check box to match individual items in custom_info lists and use the

slider to select the similarity threshold for this custom_info field.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

90

Comparison of Match List Items

The Cookbook Recipe applies the similarity threshold that you set to compare each individual item in

the list, not all the items in the list.

For example, you have the following lists in two alerts and the similarity threshold is 100%:

Alert 1: [ABC , DEF]

Alert 2: [ABC123, DEF123, ABC, DEF]

This results in similarity comparisons between:

 ABC and ABC123

 ABC and DEF123

 ABC and ABC

 ABC and DEF

 DEF and ABC123

 DEF and DEF123

 DEF and ABC

 DEF and DEF

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

91

Since there are two identical matches, [ABC and ABC] and [DEF and DEF], the Cookbook Recipe

clusters these alerts together.

If you want to calculate the total similarity of list items, that is, how many items in list 1 appear in list 2,

you should not select Match List Items and set Language Processor to Words so that the Cookbook

Recipe treats the list as a string. In the above example, there is a 50% match of items in both lists, [

ABC and DEF], so if the similarity threshold is 100%, the Cookbook Recipe does not cluster these alerts

together.

Example

You configure your Recipe to treat the custom_info field 'cities' as a list and set the similarity threshold

to 100%, as shown above.

After configuring the Recipe, Cisco Crosswork Situation Manager receives the following four alerts:

Alert 1: custom_info.cities = ["London"]

Alert 2: custom_info.cities = ["London", "San Francisco", "Venice", "Bangalore"]

Alert 3: custom_info.cities = ["Venice", "Bangalore"]

Alert 4: custom_info.cities = ["Bangalore"]

This configuration would produce four candidate clusters:

 Cluster A: Alert 1 and alert 2 match on "London".

 Cluster B: Alert 2 matches on "San Francisco".

 Cluster C: Alert 2 and alert 3 match on "Venice".

 Cluster D: Alerts 2, 3 and 4 match on "Bangalore".

Cookbook creates two Situations because cluster D contains all the alerts in clusters B and C:

 Cluster A (alerts 1 and 2) becomes Situation X.

 Clusters B, C, and D (alerts 2, 3, and 4) become Situation Y.

You must be careful when setting the similarity threshold if you are using list-based clustering. If the

similarity threshold is low enough, you may end up with Situations containing blended list similarity. In

the above example, alert 2 is common to both Situation X (London) and Situation Y (Bangalore). If the

similarity were set to 25%, these two Situations would merge.

If the Recipe does not see 'custom_info.cities' field as a list, it treats the field as a single string. This

means that, in this example, all four alerts would end up in separate Situations with no clustering.

getActiveSituationIds

A Graze API GET request that returns the total number of active Situations, and a list of their Situation

IDs. Active Situations are those that are not Closed, Resolved or Dormant.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getActiveSituationIds takes the following request argument:

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

92

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getActiveSituationIds takes no other arguments because this endpoint returns data on all

active Situations.

Response

Endpoint getActiveSituationIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

total_situations Number Total number of active Situations.

sitn_ids Array A list of active Situation IDs.

Examples

The following examples demonstrate typical use of endpoint getActiveSituationIds:

Request example

Example cURL request to return all active Situations in Cisco Crosswork Situation Manager:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getActiveSituationIds"

Response example

Example response returning the IDs of ten Situations:

{

 "total_situations": 10,

 "sitn_ids": [4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getAlertActions

A Graze API GET request that returns the actions for one or more alerts, ordered most recent last. You

can use the from and to arguments to specify a period that you want to retrieve alert actions for. If you

do not specify these, actions for all dates and times are returned.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getAlertActions takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

alert_ids Array of

Numbers

No List of alert IDs.

start Integer Yes Starting row from which data should be included.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

93

limit Integer Yes Maximum number of actions you want to return.

actions Array of

Numbers

No List of action codes. If no action codes are specified, all action

codes are returned. See Alert Action Codes for a list of action

codes and their descriptions. Only action codes 8 (Alert Resolved)

and 9 (Alert Closed) are valid.

from Number No Start time of the period you want to retrieve alert actions for. This

is in Unix epoch time in seconds.

to Number No End time of the period you want to retrieve alert actions for. This is

in Unix epoch time in seconds.

Response

Endpoint getAlertActions returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

uid Number User ID.

action_code Number

list

Code for the action in the JSON object. See Alert Action Codes for a list of

action codes and their descriptions.

description String Description of the action.

details String Details of the action.

type String Type of action.

alert_id Integer Alert ID.

timed_at Integer Timestamp of the action.

Examples

The following examples demonstrate typical use of endpoint getAlertActions:

Request Examples

Example cURL request to return the first 50 actions for alert IDs 1, 2, 3, and 6 for action codes 8 (Alert

Resolved) and 9 (Alert Closed):

curl -G -u graze:graze -k -v

"https://docsdev.moog.cloud/graze/v1/getAlertActions" --data-urlencode

'alert_ids=[1, 2, 3, 6]' --data-urlencode 'actions=[8, 9]' --data-urlencode

'limit=50' --data-urlencode 'start=0'curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getAlertActions" --data-urlencode 'alert_ids=[1, 2,

3, 6]' --data-urlencode 'actions=[8, 9]' --data-urlencode 'limit=50' --data-

urlencode 'start=0'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

94

Example cURL request to return the first 50 actions for action codes 8 (Alert Resolved) and 9 (Alert

Closed) between Unix epoch times 1553861746 and 1553872546:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertActions" --

data-urlencode 'actions=[8, 9]' --data-urlencode 'limit=50' --data-urlencode

'start=0' --data-urlencode 'from=1553861746' --data-urlencode 'to=1553872546'

Response example

Example response returning the actions for alert ID 313:

[{

 "uid": 49,

 "action_code": 9,

 "description": "Alert Closed",

 "details": {},

 "alert_id": 313,

 "timed_at": 1557504912

 },{

 "uid": 49,

 "action_code": 8,

 "description": "Alert Resolved",

 "details": {},

 "alert_id": 313,

 "timed_at": 1557504393

 },{

 "uid": 3,

 "action_code": 10,

 "description": "Ran Tool",

 "details": {

 "tool_id": 271,

 "tool": "get data"

 },

 "alert_id": 313,

 "type": "event",

 "timed_at": 1557321088,

 "username": "admin"

}]

getAlertDetails

A Graze API GET request that returns details, such as the description or severity, of an alert.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getAlertDetails takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

Response

Endpoint getAlertDetails returns the following response:

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP status code

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

95

Code definitions for more information.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

active_sitn_list Number

list

A list of Situation IDs of the active Situations to which this alert

belongs.

agent String Agent name associated with this alert. *

agent_location String Agent location associated with this alert. *

alert_id Number Alert ID.

class String Class associated with this alert. *

count Number Number of times that this alert has occurred.

custom_info JSON

object

A JSON object containing the custom information.

description String Description associated with this alert. *

entropy Number Entropy value of the alert, the measure of probability that an alert will

arrive in the system at any given time. This is a value between 0

(very certain) and 1 (very uncertain).

external_id String External ID associated with this alert. *

first_event_time Number Timestamp (in Unix epoch time) of the first occurrence of the alert.

int_last_event_time Number Internal Cisco Crosswork Situation Manager timestamp (in Unix

epoch time) of the last occurrence of this alert.

last_event_time Number Timestamp (in Unix epoch time) of the last occurrence of this alert.

last_state_change Number Timestamp (in Unix epoch time) of the last state change of this alert.

manager String Manager name associated with this alert. *

owner Number ID of the user that this alert is assigned to.

severity Number The severity of the alert as an integer:0 = Clear1 = Indeterminate2 =

Warning3 = Minor4 = Major5 = Critical

signature String Unique alert identifier.

significance Number Significance of the alert as an integer:

0 = Collateral

1 = Related

2 = Impacting

3 = Causal

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

96

source String Source associated with this alert. *

source_id String Source ID associated with the alert. *

state Number Indicates the lifecycle state of the alert.

type String Type associated with this alert. *

* = These details are derived from the input event text field, via the LAMs.

Examples

The following examples demonstrate typical use of endpoint getAlertDetails:

Request example

Example cURL request to return the details for alert ID 3968:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertDetails" --

data-urlencode "alert_id=3968"

Response example

Example response returning the details of alert ID 3968:

{

 "active_sitn_list":[1],

 "agent":"TestBed",

 "agent_location":"localhost",

 "alert_id":3968,

 "class":"WebMon",

 "count":2,

 "custom_info":null,

 "description":"Web Server HTTPD is DOWN",

 "external_id":"12345",

 "first_event_time":1416307126,

 "int_last_event_time":1416307188,

 "last_event_time":1416307131,

 "last_state_change":1416307144,

 "manager":"WebMon",

 "owner":2,

 "severity":0,

 "signature":"SIG:Web Server Down Trap:xldn1458pap:10",

 "significance":3,

 "source":"xldn1458pap",

 "source_id":"xldn1458pap",

 "state":9,

 "type":"HTTPDDown"

}

getAlertIds

A Graze API GET request that returns the total number of alerts, and a list of the alert IDs, for a specified

alert filter and a limit.

Note

Take special care when using endpoint getAlertIds. Overuse of this endpoint can have a negative

impact on the backend datastore.

Back to Graze API EndPoint Reference.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

97

Request arguments

Endpoint getAlertIds takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

query String Yes An SQL-like filter that alerts must match to be returned.

limit Number Yes Maximum number of alert IDs to return.

Response

Endpoint getAlertIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object which contains alert details from the following:

Name Type Description

total_alerts Number Total number of alerts, or unique alerts.

alert_ids JSON Array A list of alert IDs.

Examples

The following examples demonstrate typical use of endpoint getAlertIds:

Request example

Example cURL request to return the first 20 alert IDs that satisfy the filter where the agent is not

SYSLOG and the description matches "AUTH-SERVICE":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getAlertIds" --data-

urlencode 'query=agent!=SYSLOG and description matches "AUTH-SERVICE"' --data-

urlencode 'limit=20'

Response example

Example response returning the first 20 alert IDs:

{

 "total_alerts":20,

"alert_ids":[78,234,737,1253,1459,1733,2166,2653,2855,3133,3414,3538,3729,3905,3

991,4110,4160,4536,4692,4701]

}

getAllSessionInfo

A Graze API GET request that returns session information for all users over a period of time.

Back to Graze API EndPoint Reference.

Request arguments

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

98

Endpoint getAllSessionInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

from Number No Start time of the period you want to retrieve session information for.

This is in Unix epoch time in seconds. If empty, returns all session

information for all users.

to Number No End time of the period you want to retrieve session information for.

This is in Unix epoch time in seconds. If empty, returns user records to

date.

start Number No Starting record from which data should be included. Default is 0, the

first record.

limit Number No Maximum number of records you want to return. Default is 200.

Response

Endpoint getAllSessionInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sessionId Number ID of the session.

userName String User name for the session.

startTime Number Start time of the session, in Unix epoch time.

lastAccess Number Last access time within the session, in Unix epoch time.

Examples

The following examples demonstrate typical use of endpoint getAllSessionInfo:

Request example

Example cURL request to return session information for all users:

curl -G -u graze:graze -k "https://localhost/graze/v1/getAllSessionInfo" --data-

urlencode "from=1578655174" --data-urlencode "start=1" --data-urlencode

"limit=6"

Response example

Example response returning six session information records for all users, starting at record 2:

[

 {

 "sessionId": 2,

 "userName": "user1",

 "startTime": 1571666244,

 "lastAccess": 1571666301

 },

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

99

 {

 "sessionId": 3,

 "userName": "admin",

 "startTime": 1571666307,

 "lastAccess": 1571666760

 },

 {

 "sessionId": 4,

 "userName": "user3",

 "startTime": 1571666764,

 "lastAccess": 1571673384

 },

 {

 "sessionId": 5,

 "userName": "user1",

 "startTime": 1571735292,

 "lastAccess": 1571738917

 },

 {

 "sessionId": 6,

 "userName": "graze",

 "startTime": 1571784397,

 "lastAccess": 1571784401

 },

 {

 "sessionId": 7,

 "userName": "admin",

 "startTime": 1571799980,

 "lastAccess": 1571800581

 }

]

getCookbooks

A Graze API GET request that returns all the Cookbooks in Cisco Crosswork Situation Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getCookbooks takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getCookbooks takes no other arguments because this endpoint returns data on all

Cookbooks in Cisco Crosswork Situation Manager.

Response

Endpoint getCookbooks returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

100

Successful requests return an array of JSON objects containing the following:

Type Description

List of JSON

Objects

A list of all the Cookbooks in Cisco Crosswork Situation Manager and all their

details.

Examples

The following examples demonstrate typical use of endpoint getCookbooks:

Request example

Example cURL request to return all the Cookbooks in Cisco Crosswork Situation Manager:

curl -X GET -u graze:graze -k -v "https://localhost/graze/v1/getCookbooks"

Response example

Example response returning the details of all Cookbooks in Cisco Crosswork Situation Manager:

[

 {

 "name": "Default Cookbook",

 "classname": "CCookbook",

 "metric_path_moolet": true,

 "description": null,

 "run_on_startup": true,

 "process_output_of": [

 "MaintenanceWindowManager"

],

 "id": 1,

 "scale_by_severity": false,

 "entropy_threshold": 0.0,

 "first_recipe_match_only": true,

 "cluster_by": "first_match",

 "cook_for": 900,

 "cook_for_extension": 0,

 "max_cook_for": null,

 "moobot": "Cookbook.js",

 "recipes": [

 "Criticals",

 "Description",

 "Source"

],

 "threshold_type": "global"

 },

 {

 "name": "BotCookBook1",

 "classname": "CCookbook",

 "metric_path_moolet": true,

 "description": null,

 "run_on_startup": true,

 "process_output_of": [

 "Alert Workflows"

],

 "id": 2,

 "scale_by_severity": false,

 "entropy_threshold": 0.25,

 "first_recipe_match_only": false,

 "cluster_by": "first_match",

 "cook_for": 3600,

 "cook_for_extension": 0,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

101

 "max_cook_for": 0,

 "moobot": "Cookbook.js",

 "recipes": [

 "BotRecipe1",

 "BotRecipe2"

],

 "threshold_type": "explicit_value"

 },

 {

 "name": "GrazeCookbook3",

 "classname": "CCookbook",

 "metric_path_moolet": true,

 "description": null,

 "run_on_startup": true,

 "process_output_of": [

 "Alert Workflows"

],

 "id": 3,

 "scale_by_severity": false,

 "entropy_threshold": 0.22,

 "first_recipe_match_only": false,

 "cluster_by": "first_match",

 "cook_for": 3600,

 "cook_for_extension": 0,

 "max_cook_for": 0,

 "moobot": "Cookbook.js",

 "recipes": [

 "GrazeRecipe1",

 "GrazeRecipe2",

 "GrazeRecipe3"

],

 "threshold_type": "explicit_value"

 }

]

getDefaultMergeGroup

A Graze API GET request that returns details of the default merge group in Cisco Crosswork Situation

Manager.

Clustering algorithms, such as Cookbook and Tempus, use the default values in the default merge

group unless you have set up custom merge groups with different values to merge Situations from

these clustering algorithms. You can set up merge groups using the UI (see Merge Groups for details)

or using the Graze API endpoint addMergeGroup.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getDefaultMergeGroup takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getDefaultMergeGroup takes no other arguments because this endpoint returns details of

the default merge group in Cisco Crosswork Situation Manager.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

102

Response

Endpoint getDefaultMergeGroup returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

alert_threshold Integer Minimum number of alerts that must be present in a cluster

before it can become a Situation in the merge group.

Default value is 1.

situation_similarity_limit Floating

Point

Percentage of alerts two Situations must share before they

are merged for this group. A value between 0 and 1.

Default value is 0.7.

Examples

The following examples demonstrate typical use of endpoint getDefaultMergeGroup:

Request example

Example cURL request to return the default merge group in Cisco Crosswork Situation Manager:

curl -G

-u graze:graze

-k "https://example.com/graze/v1/getDefaultMergeGroup"

Response example

Example response returning details of the default merge group in Cisco Crosswork Situation Manager:

{

 "alert_threshold": 1,

 "situation_similarity_limit": 0.7

}

getEventsAnalyserConfig

A Graze API GET request that returns the details of the Events Analyser configuration, including the

priority words and stop words.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getEventsAnalyserConfig takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getEventsAnalyserConfig takes no other arguments.

Response

Endpoint getEventsAnalyserConfig returns the following response:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

103

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

priority_words

Examples

The following examples demonstrate typical use of endpoint getEventsAnalyserConfig:

Request example

Example cURL request to return the details of the Events Analyser configuration:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getEventsAnalyserConfig"

Response examples

Example response returning an Events Analyser configuration that does not use partitioning:

{

 "priority_words": false,

 "partition_by": "",

 "stop_word_length": 0,

 "stemming_language": "english",

 "partition_overrides": null,

 "priority_words_list": [],

 "stop_words": true,

 "stop_words_list": [

 "%",

 ":",

 "=",

 ".",

 "|",

 "-",

 "~",

 "&",

 "a",

 "able",

 "about",

 "across",

 "after",

 "all",

 "almost",

 "also",

 "am",

 "among",

 "an",

 "and",

 "any",

 "are",

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

104

 "as",

 "at",

 "be",

 "because",

 "been",

 "but",

 "by",

 "can",

 "cannot",

 "could",

 "dear",

 "did",

 "do",

 "does",

 "either",

 "else",

 "ever",

 "every",

 "for",

 "from",

 "get",

 "got",

 "had",

 "has",

 "have",

 "he",

 "her",

 "hers",

 "him",

 "his",

 "how",

 "however",

 "i",

 "if",

 "in",

 "into",

 "is",

 "it",

 "its",

 "just",

 "least",

 "let",

 "like",

 "likely",

 "may",

 "me",

 "might",

 "most",

 "must",

 "my",

 "neither",

 "no",

 "nor",

 "not",

 "of",

 "off",

 "often",

 "on",

 "only",

 "or",

 "other",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

105

 "our",

 "own",

 "rather",

 "said",

 "say",

 "says",

 "she",

 "should",

 "since",

 "so",

 "some",

 "than",

 "that",

 "the",

 "their",

 "them",

 "then",

 "there",

 "these",

 "they",

 "this",

 "tis",

 "to",

 "too",

 "twas",

 "us",

 "wants",

 "was",

 "we",

 "were",

 "what",

 "when",

 "where",

 "which",

 "while",

 "who",

 "whom",

 "why",

 "will",

 "with",

 "would",

 "yet",

 "you",

 "your"

],

 "stemming": false,

 "id": 1,

 "casefold": true,

 "fields": [

 "description"

],

 "mask": {

 "path": false,

 "number": true,

 "date_time": true,

 "mac_address": false,

 "guid": false,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

106

 "hex": false,

 "oid": false,

 "ip_address": false,

 "stop_word": false,

 "word": false,

 "url": false,

 "email": false

 }

}

Example response returning an Events Analyser configuration that uses partitioning:

{

 "priority_words": true,

 "partition_by": "source",

 "stop_word_length": 0,

 "stemming_language": "english",

 "partition_overrides": {

 "SOURCE11": {

 "stop_words": false,

 "priority_words": false,

 "fields": [

 "description"

],

 "casefold": true,

 "stop_word_length": 5

 },

 "SOURCE22": {

 "priority_words_list": [

 "reboot",

 "shutdown"

],

 "stop_words": true,

 "stop_words_list": [

 "france",

 "germany",

 "italy",

 "peru",

 "india",

 "japan",

 "korea"

],

 "stemming": true,

 "priority_words": true,

 "stop_word_length": 1,

 "mask": {

 "date_time": false,

 "ip_address": true

 }

 }

 },

 "priority_words_list": [

 "down",

 "fail",

 "loss",

 "low"

],

 "stop_words": true,

 "stop_words_list": [

 "%",

 ":",

 "=",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

107

 ".",

 "|",

 "-",

 "~",

 "&",

 "a",

 "able",

 "about",

 "across",

 "after",

 "all",

 "almost",

 "also",

 "am",

 "among",

 "an",

 "and",

 "any",

 "are",

 "as",

 "at",

 "be",

 "because",

 "been",

 "but",

 "by",

 "can",

 "cannot",

 "could",

 "dear",

 "did",

 "do",

 "does",

 "either",

 "else",

 "ever",

 "every",

 "for",

 "from",

 "get",

 "got",

 "had",

 "has",

 "have",

 "he",

 "her",

 "hers",

 "him",

 "his",

 "how",

 "however",

 "i",

 "if",

 "in",

 "into",

 "is",

 "it",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

108

 "its",

 "just",

 "least",

 "let",

 "like",

 "likely",

 "may",

 "maybe",

 "me",

 "might",

 "most",

 "must",

 "my",

 "neither",

 "no",

 "nor",

 "not",

 "of",

 "off",

 "often",

 "on",

 "only",

 "or",

 "other",

 "our",

 "own",

 "rather",

 "said",

 "say",

 "says",

 "she",

 "should",

 "since",

 "so",

 "some",

 "than",

 "that",

 "the",

 "their",

 "them",

 "then",

 "there",

 "these",

 "they",

 "this",

 "tis",

 "to",

 "too",

 "twas",

 "us",

 "wants",

 "was",

 "we",

 "were",

 "what",

 "when",

 "where",

 "which",

 "while",

 "who",

 "whom",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

109

 "why",

 "will",

 "with",

 "would",

 "yet",

 "you",

 "your"

],

 "stemming": false,

 "id": 1,

 "casefold": true,

 "fields": [

 "description"

],

 "mask": {

 "path": false,

 "number": true,

 "date_time": true,

 "mac_address": false,

 "guid": false,

 "hex": false,

 "oid": false,

 "ip_address": false,

 "stop_word": false,

 "word": false,

 "url": false,

 "email": false

 }

}

getEventsAnalyserPartitionOverrides

A Graze API GET request that returns the partition override details in the Events Analyser configuration.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getEventsAnalyserPartitionOverrides takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getEventsAnalyserPartitionOverrides takes no other arguments because this endpoint

returns data on all the partition overrides in the Events Analyser configuration.

Response

Endpoint getEventsAnalyserPartitionOverrides returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

110

Type Description

JSON Object Details of the partition overrides in the Events Analyser.

Examples

The following examples demonstrate typical use of endpoint

getEventsAnalyserPartitionOverrides:

Request example

Example cURL request to return the partition overrides in the Events Analyser configuration:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getEventsAnalyserPartitionOverrides"

Response example

Example response returning the partition overrides for the Events Analyser:

{

 "SOURCE11": {

 "stop_words": false,

 "priority_words": false,

 "fields": [

 "description"

],

 "casefold": true,

 "stop_word_length": 5

 },

 "SOURCE22": {

 "priority_words_list": [

 "reboot",

 "shutdown"

],

 "stop_words": true,

 "stop_words_list": [

 "france",

 "germany",

 "italy",

 "peru",

 "india",

 "japan",

 "korea"

],

 "stemming": true,

 "priority_words": true,

 "stop_word_length": 1,

 "mask": {

 "date_time": false,

 "ip_address": true

 }

 }

}

getEventsAnalyserWords

A Graze API GET request that returns the list of priority words or stop words used by the Events

Analyser. This endpoint returns the stop words or priority words for the default partition, depending on

the argument you supply.

See getEventsAnalyserConfig to return the main Events Analyser configuration.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

111

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getEventsAnalyserWords takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

type String Yes Determines whether the endpoint returns a list of stop words or priority

words. Set to priority_word for the list of priority words. Set to

stop_word for the list of stop words.

Response

Endpoint getEventsAnalyserWords returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return the following:

Type Description

JSON Array List of priority words or stop words, depending on the request argument type.

Examples

The following examples demonstrate typical use of endpoint getEventsAnalyserWords:

Priority words example

Request example

Example cURL request to return the list of priority words:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getEventsAnalyserWords"

--data-urlencode 'type=priority_word'

Stop words example

Request example

Example cURL request to return the list of stop words:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getEventsAnalyserWords"

\

--data-urlencode 'type=stop_word'

Response example

Example response returning the list of stop words:

[

 "%",

 ":",

 "=",

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

112

 ".",

 "|",

 "-",

 "~",

 "&",

 "a",

 "able",

 "about",

 "across",

 "after",

 "all",

 "almost",

 "also",

 "am",

 "among",

 "an",

 "and",

 "any",

 "are",

 "as",

 "at",

 "be",

 "because",

 "been",

 "but",

 "by",

 "can",

 "cannot",

 "could",

 "dear",

 "did",

 "do",

 "does",

 "either",

 "else",

 "ever",

 "every",

 "for",

 "from",

 "get",

 "got",

 "had",

 "has",

 "have",

 "he",

 "her",

 "hers",

 "him",

 "his",

 "how",

 "however",

 "i",

 "if",

 "in",

 "into",

 "is",

 "it",

 "its",

 "just",

 "least",

 "let",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

113

 "like",

 "likely",

 "may",

 "me",

 "might",

 "most",

 "must",

 "my",

 "neither",

 "no",

 "nor",

 "not",

 "of",

 "off",

 "often",

 "on",

 "only",

 "or",

 "other",

 "our",

 "own",

 "rather",

 "said",

 "say",

 "says",

 "she",

 "should",

 "since",

 "so",

 "some",

 "than",

 "that",

 "the",

 "their",

 "them",

 "then",

 "there",

 "these",

 "they",

 "this",

 "tis",

 "to",

 "too",

 "twas",

 "us",

 "wants",

 "was",

 "we",

 "were",

 "what",

 "when",

 "where",

 "which",

 "while",

 "who",

 "whom",

 "why",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

114

 "will",

 "with",

 "would",

 "yet",

 "you",

 "your"

]

getGlobalEntropyThresholds

A Graze API GET request that returns the global default entropy threshold and all manager-specific

entropy thresholds that have been set.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getGlobalEntropyThresholds takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getGlobalEntropyThresholds takes no other arguments because this endpoint returns

data on all entropy thresholds.

Response

Endpoint getGlobalEntropyThresholds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Successful requests return an array of JSON objects containing the following:

Name Type Description

filter JSON

Object

Filter for a manager-specific entropy threshold; empty for the global default

entropy threshold.

name String Name of the manager or default for the global default entropy threshold.

Examples

The following examples demonstrate typical use of endpoint getGlobalEntropyThresholds:

Request example

Example cURL request to return the global default entropy threshold and any manager-specific entropy

thresholds:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getGlobalEntropyThreshold"

Response example

Example response returning the global default entropy threshold, and two manager entropy thresholds

for "rough-river" and "lingering-mountain":

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

115

[

 {

 "filter": "{\"op\": 0, \"type\": \"LEAF\", \"value\": \"rough-

river\", \"column\": \"manager\"}",

 "name": "rough-river",

 "type": "percentage_reduction",

 "value": 0.327

 },

 {

 "filter": "{\"op\": 0, \"type\": \"LEAF\", \"value\": \"lingering-

mountain\", \"column\": \"manager\"}",

 "name": "lingering-mountain",

 "type": "entropy_value",

 "value": 0.5002021249999999

 },

 {

 "filter": "{}",

 "name": "default",

 "type": "percentage_reduction",

 "value": 0.19065887902499268

 }

]

getIntegrationConfig

A Graze API GET request that exports the configuration and mapping needed for an integration in JSON

format.

The exported JSON file can be saved as a duplicate configuration of the original integration. For

example, you can modify and save the returned object as webhook_lam_custom.conf. Run it with this

command:

$MOOGSOFT_HOME/bin/webhook_lam --config=webhook_lam_custom.conf

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getIntegrationConfig takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

integration_id Number Yes A unique identifier given to each integration by Cisco Crosswork

Situation Manager.

Response

Endpoint getIntegrationConfig returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

116

Name Type Description

config Object An object containing the integration configuration details.

Examples

The following examples demonstrate typical use of endpoint getIntegrationConfig:

Request example

Example cURL request to return the configuration for the integration with ID 1:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getIntegrationConfig?integration_id=1"

Response example

Example return of a JSON object containing the integration configuration details:

{

 "config": {

 "filter": {

 "presend": "WebhookLam.js"

 },

 "process": "webhook_lam_webhook1",

 "conversions": {

 "sevConverter": {

 "output": "INTEGER",

 "lookup": "severity",

 "input": "STRING"

 },

 "stringToInt": {

 "output": "INTEGER",

 "input": "STRING"

 }

 },

 "mapping": {

 "catchAll": "overflow",

 "rules": [

 {

 "name": "signature",

 "rule": "$signature"

 },

 {

 "name": "source_id",

 "rule": "$source_id"

 },

 {

 "name": "external_id",

 "rule": "$external_id"

 },

 {

 "name": "manager",

 "rule": "$manager"

 },

 {

 "name": "source",

 "rule": "$source"

 },

 {

 "name": "class",

 "rule": "$class"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

117

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$agent_location"

 },

 {

 "name": "type",

 "rule": "$type"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

 {

 "name": "description",

 "rule": "$description"

 },

 {

 "name": "agent_time",

 "rule": "$agent_time",

 "conversion": "stringToInt"

 }

]

 },

 "agent": {

 "name": "webhook_lam_webhook1"

 },

 "monitor": {

 "address": "localhost",

 "authentication_cache": true,

 "use_ssl": false,

 "auto_port_assign": true,

 "authentication_type": "basic",

 "rpc_response_timeout": 20,

 "lists_contain_multiple_events": true,

 "proxy": "https://freida7/events/webhook_webhook1",

 "accept_all_json": true,

 "port": 51000,

 "name": "Webhook Lam Monitor (Webhook1)",

 "num_threads": 5,

 "rest_response_mode": "on_receipt",

 "class": "CRestMonitor"

 },

 "constants": {

 "severity": {

 "0": 2,

 "moog_lookup_default": 1,

 "3": 5,

 "5": 4,

 "CLEAR": 0,

 "2": 3,

 "MAJOR": 4,

 "CRITICAL": 5,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

118

 "MINOR": 3,

 "INDETERMINATE": 1,

 "1": 2

 }

 }

 }

}

getMaintenanceWindows

A Graze API GET request that returns maintenance windows based on how many should be returned.

Only returns active recurring windows and scheduled maintenance windows, not expired or deleted

maintenance windows.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getMaintenanceWindows takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

start Number Yes Number of the first maintenance window to return, 0 to start at the

first, 10 to start at the 11th.

limit Number Yes Maximum number of maintenance windows to return.

Response

Endpoint getMaintenanceWindows returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

windows Array An array of objects containing the details of the returned maintenance windows.

Examples

The following examples demonstrate typical use of endpoint getMaintenanceWindows:

Request example

Example cURL request to return the first 20 maintenance windows:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMaintenanceWindows"

--data-urlencode 'start=0' --data-urlencode 'limit=20'

Response example

Example successful response returning details of one maintenance window:

{

 "windows": [

 {

 "del_flag": false,

 "forward_alerts": false,

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

119

 "last_updated": 1574074779,

 "timezone": "Europe/London",

 "description": "This is new maintenance window",

 "recurring_period_units": 0,

 "filter": "(severity IN (0, 1, 2, 3, 4, 5)) AND (owner IN (3))",

 "duration": 3600,

 "recurring_period": 0,

 "name": "New Maintenance Window",

 "updated_by": 3,

 "id": 2,

 "start_date_time": 1574074744

 }

]

}

getMergeGroups

A Graze API GET request that returns details of all the custom merge groups in Cisco Crosswork

Situation Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getMergeGroups takes the following argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getMergeGroups takes no other arguments because this endpoint returns details of all the

custom merge group in Cisco Crosswork Situation Manager.

Response

Endpoint getMergeGroups returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String The merge group's name.

moolets Array of

Strings

List of clustering algorithm Moolets to include in the custom

merge group.

alert_threshold Integer Minimum number of alerts that must be present in a cluster

before it can become a Situation. Must be greater than or

equal to 1. Enter null if you want the custom merge group

to use the default merge group value. Default merge group

value is 2.

situation_similarity_limit Floating Percentage of alerts two Situations must share before they

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

120

Point are merged for this group. Enter a value between 0 and 1.

Entering null causes the merge group to use the same

value as the default merge group.

Examples

The following examples demonstrate typical use of endpoint getMergeGroups:

Request example

Example cURL request to return all the custom merge groups in Cisco Crosswork Situation Manager:

curl -G

-u graze:graze

-k "https://example.com/graze/v1/getMergeGroups"

Response example

Example response returning details of all the custom merge groups in Cisco Crosswork Situation

Manager:

[

{

 "name":"Default Cookbook",

 "moolets":

 [

 "Default Cookbook"

],

 "alert_threshold":2,

 "situation_similarity_limit":0.6

},

{

 "name":"Merge Group 1",

 "moolets":

 [

 "Recipe 1"

 "Recipe 2"

],

 "alert_threshold":null,

 "situation_similarity_limit":0.5

},

{

 "name":"Merge Group 2",

 "moolets":

 [

 "Recipe 2"

 "Time Based (Tempus)"

],

 "alert_threshold":2,

 "situation_similarity_limit":null

}

]

getPrcLabels

A Graze API GET request that returns probable root cause (PRC) information for all alerts or specified

alerts within a Situation.

Back to Graze API EndPoint Reference.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

121

Endpoint getPrcLabels takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Integer Yes Situation ID.

alert_ids Array of

Numbers

No List of alert IDs.

Response

Endpoint getPrcLabels returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint getPrcLabels:

Request example

Example cURL request to return the PRC labels for alerts 1, 2, 3, and 4 in Situation 157:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getPrcLabels?sitn_id=157&alert_ids=[1,2,3,4]"

Response example

Example response returning the PRC labels for alerts 1, 2, 3, and 4 in the Situation:

{

 "non_causal": [2,3],

 "unlabelled": [4],

 "causal": [1]

}

getProcesses

A Graze API GET request that returns a list of the processes in the database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getProcesses takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

limit Integer No Maximum number of processes to return. Defaults to 100.

exact_match Boolean No If true, the query performs an exact match on the process name. If

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

122

false, the query checks for contains only on the process name.

Defaults to false.

Response

Endpoint getProcesses returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

process_id Number ID of the process.

name String Name of the process.

description String Description of the process.

Examples

The following examples demonstrate typical use of endpoint getProcesses:

Request example

Example cURL request to return the first 100 processes containing "Network" in the process name:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getProcesses" --data-

urlencode 'query=Network' --data-urlencode 'exact_match=false'

Response example

Example response returning three process names containing "Network":

[

 {

 "process_id": 1,

 "name": "Network LON",

 "description": "Network London"

 },

 {

 "process_id": 2,

 "name": "NY Network A",

 "description": "Network New York A"

 },

 {

 "process_id": 3,

 "name": "NY Network B",

 "description": "Network New York B"

 }

]

getRecipes

A Graze API GET request that returns all the Recipes in Cisco Crosswork Situation Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getRecipes takes the following request arguments:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

123

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

cookbook String No Name of the Cookbook that you want to return the Recipes for. Do not

specify to return all Recipes.

Response

Endpoint getRecipes returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Type Description

List of JSON Objects A list of all the Recipes in Cisco Crosswork Situation Manager and all their details.

Examples

The following examples demonstrate typical use of endpoint getRecipes:

Request example

Example cURL request to return all the Recipes in Cisco Crosswork Situation Manager:

curl -X GET -u graze:graze -k -v "https://localhost/graze/v1/getRecipes"

Response example

Example response returning all the Recipes in Cisco Crosswork Situation Manager:

[

 {

 "cookbooks": [

 "Default Cookbook"

],

 "name": "Description",

 "id": 1,

 "description": "Alerts with a similar description",

 "alert_threshold": 2,

 "trigger": "severity >= 3",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": null,

 "cook_for_extension": 0,

 "max_cook_for": null,

 "cluster_by": "first_match",

 "active": true,

 "chef": "CValueRecipeV2",

 "use_dynamic_topology": false,

 "topology_name": null,

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

124

 "alert_matching_attribute": null,

 "components": [

 {

 "shingle_size": -1,

 "name": "agent",

 "treat_as": null,

 "similarity": 1.0

 },

 {

 "shingle_size": -1,

 "name": "description",

 "treat_as": null,

 "similarity": 0.75

 }

],

 "hop_limit": null,

 "version": "V2"

 },

 {

 "cookbooks": [

 "Default Cookbook"

],

 "name": "Source",

 "id": 2,

 "description": "Alerts from a similar source",

 "alert_threshold": 2,

 "trigger": "severity >= 3",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": null,

 "cook_for_extension": 0,

 "max_cook_for": null,

 "cluster_by": "first_match",

 "active": true,

 "chef": "CValueRecipeV2",

 "use_dynamic_topology": false,

 "topology_name": null,

 "alert_matching_attribute": null,

 "components": [

 {

 "shingle_size": 3,

 "name": "source",

 "treat_as": null,

 "similarity": 0.75

 },

 {

 "shingle_size": -1,

 "name": "agent",

 "treat_as": null,

 "similarity": 1.0

 }

],

 "hop_limit": null,

 "version": "V2"

 },

 {

 "cookbooks": [

 "Default Cookbook"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

125

],

 "name": "Criticals",

 "id": 3,

 "description": "Remaining critical alerts",

 "alert_threshold": 1,

 "trigger": "severity = 5",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": null,

 "cook_for_extension": 0,

 "max_cook_for": null,

 "cluster_by": "first_match",

 "active": true,

 "chef": "CValueRecipeV2",

 "use_dynamic_topology": false,

 "topology_name": null,

 "alert_matching_attribute": null,

 "components": [

 {

 "shingle_size": 3,

 "name": "source",

 "treat_as": null,

 "similarity": 0.75

 },

 {

 "shingle_size": -1,

 "name": "agent",

 "treat_as": null,

 "similarity": 1.0

 }

],

 "hop_limit": null,

 "version": "V2"

 },

 {

 "cookbooks": [

 "BotCookBook1"

],

 "name": "BotRecipe2",

 "id": 4,

 "description": null,

 "alert_threshold": 2,

 "trigger": "",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": 3600,

 "cook_for_extension": 0,

 "max_cook_for": 0,

 "cluster_by": null,

 "active": true,

 "chef": "CBotRecipe",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

126

 "use_dynamic_topology": false,

 "topology_name": null,

 "alert_matching_attribute": null,

 "initialize_function": "initBuckets",

 "member_function": "checkBucket",

 "use_in_recipe": null,

 "can_start_cluster": null,

 "similarity": 0.8

 },

 {

 "cookbooks": [

 "BotCookBook1"

],

 "name": "BotRecipe1",

 "id": 5,

 "description": null,

 "alert_threshold": 2,

 "trigger": "",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": 3600,

 "cook_for_extension": 0,

 "max_cook_for": 0,

 "cluster_by": null,

 "active": true,

 "chef": "CBotRecipe",

 "use_dynamic_topology": false,

 "topology_name": null,

 "alert_matching_attribute": null,

 "initialize_function": "initBuckets",

 "member_function": "checkBucket",

 "use_in_recipe": null,

 "can_start_cluster": null,

 "similarity": 0.8

 },

 {

 "cookbooks": null,

 "name": "GrazeRecipe1",

 "id": 6,

 "description": null,

 "alert_threshold": 2,

 "trigger": "",

 "exclusion": "",

 "seed_alert": "",

 "rate": 0,

 "min_sample_size": 5,

 "max_sample_size": 10,

 "cook_for": 3600,

 "cook_for_extension": 0,

 "max_cook_for": 0,

 "cluster_by": null,

 "active": true,

 "chef": "CValueRecipeV2",

 "use_dynamic_topology": false,

 "topology_name": null,

 "alert_matching_attribute": null,

 "components": [

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

127

 "shingle_size": -1,

 "name": "custom_1",

 "treat_as": null,

 "similarity": 0.2

 }

],

 "hop_limit": null,

 "version": "V2"

 }

]

getResolvingThreadEntries

A Graze API GET request that returns thread entries for a specified Situation that have been marked as

resolving steps. Threads are comments or 'story activity' on Situations. Operators can mark one or

more thread entries as steps that were used to resolve a Situation.

You can select specific thread entries to return using start and limit values. If not, their default

values return the first 100 thread entries. The thread entries returned are ordered by most recent first.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getResolvingThreadEntries takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

start Number No Number of the first resolving thread entry to return. Default is 0.

limit Number No Maximum number of resolving thread entries to return. Default is 100.

Response

Endpoint getResolvingThreadEntries returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sitn_id Number Situation ID.

resolving_entries Array A list of resolving thread entries in the Situation. See below.

The resolving_entries list contains the following:

Name Type Description

entry_text String Text of the resolving entry. Reserved characters are converted to HTML entities,

for example, & is converted to &.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

128

user_id Number ID of the user that created the resolving entry.

thread_name String Name of the thread that the resolving entry is in.

time Number Timestamp (in Unix epoch time) of when the resolving entry was created.

entry_id Number ID of the resolving thread entry.

Examples

The following examples demonstrate typical use of endpoint getResolvingThreadEntries:

Request example

Example cURL request to return the first 100 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getResolvingThreadEntries" \

--data-urlencode "sitn_id=358"

Example cURL request to return the first 10 resolving thread entries in Situation 358:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getResolvingThreadEntries" \

--data-urlencode "sitn_id=358" \

--data-urlencode "start=0" \

--data-urlencode "limit=10"

Response example

Example response showing the three resolving thread entries in Situation 358:

{

 "sitn_id":358,

 "resolving_entries":

 [

 {

"entry_text":"hah","user_id":3,"thread_name":"Support","time":1549387456,"entry_

id":1722 },

 {

"entry_text":"asdfdsf","user_id":3,"thread_name":"Support","time":1549385762,"en

try_id":1721 },

 {

"entry_text":"sdfsdf\n","user_id":3,"thread_name":"Support","time":1549385747,"e

ntry_id":1720 }

]

}

getSecurityRealm

A Graze API GET request that returns a JSON object containing the names and configuration details of

active SAML security realms.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSecurityRealm takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

129

authenticate endpoint for more information.

Endpoint getSecurityRealm takes no other arguments because this endpoint returns data on all

active security realms.

Response

Endpoint getSecurityRealm returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

JSON Object JSON The name of the created Security Realms followed by its configured variables.

Examples

The following examples demonstrate typical use of endpoint getSecurityRealm:

Request example

Example cURL request to return the configuration of any active security realm in Cisco Crosswork

Situation Manager:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSecurityRealms"

Response example

Successful requests return a JSON object representing the active realms. The following example shows

a test SAML realm:

{

 "Test Saml Realm":

 {

 "configuration":

 {

 "defaultGroup":"EndUser",

 "realmType":"SAML2",

 "existingUserMappingField":"username",

"spMetadataFile":"/usr/share/moogsoft/config/keycloak.my_sp_metadata.xml",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

 "fullname":"$FirstName $LastName",

 "email":"$Email",

"idpMetadataFile":"/usr/share/moogsoft/config/keycloak.my_idp_metadata.xml",

 "username":"$Email",

 "maximumAuthenticationLifetime":60

 },

 "name":"Test Saml Realm",

 "active":true,

 "type":"SAML2"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

130

 }

}

getServices

A Graze API GET request that returns a list of the services in the database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getServices takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

limit Integer No Maximum number of services to return. Defaults to 1,000.

start Integer No Number of the first service to return. Defaults to 0.

query String Yes A substring match where the service name contains the query string.

exact_match Boolean No If true, the query performs an exact match on the service name. If

false, the query checks for contains only on the service name.

Defaults to false.

Response

Endpoint getServices returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

service_id Number ID of the service.

name String Service name.

description String Description of the service.

Examples

The following examples demonstrate typical use of endpoint getServices:

Example using exact matching

Example cURL request using exact matching of the query "Network LON":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getServices" \

--data-urlencode 'query=Network LON' \

--data-urlencode 'exact_match=true'

Example response returning details of the service name "Network LON":

[{

 "service_id":3,

 "name":"Network LON",

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

131

 "description":"Network description"

}]

Example using approximate matching

Example cURL request using approximate matching of the query "Network":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getServices" --data-

urlencode 'query=Network'

Example response returning details of all service names containing "Network":

[{

 "service_id":1,

 "name":"Network LON",

 "description":"Network London"

},{

 "service_id":2,

 "name":"NY Network A",

 "description":"Network New York A"

},{

 "service_id":3,

 "name":"NY Network B",

 "description":"Network New York B"

}]

getSeverities

A Graze API GET request that returns a list of possible severities and their severity IDs.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSeverities takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getSeverities takes no other arguments because this endpoint returns data on all

severities.

Response

Endpoint getSeverities returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Severity name.

severity_id Number ID of the severity.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

132

Examples

The following examples demonstrate typical use of endpoint getSeverities:

Request example

Example cURL request to return the list of all severities:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSeverities"

Response example

Example response returning a list of all severities:

[

 {

 "name": "Clear",

 "severity_id": 0

 },

 {

 "name": "Indeterminate",

 "severity_id": 1

 },

 {

 "name": "Warning",

 "severity_id": 2

 },

 {

 "name": "Minor",

 "severity_id": 3

 },

 {

 "name": "Major",

 "severity_id": 4

 },

 {

 "name": "Critical",

 "severity_id": 5

 }

]

getSigCorrelationInfo

A Graze API GET request that returns all correlation information related to a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSigCorrelationInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint getSigCorrelationInfo returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

133

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sig_id Number Situation ID.

service_name String Service name.

external_id String External ID.

properties List of Strings Properties of the Situation.

Examples

The following examples demonstrate typical use of endpoint getSigCorrelationInfo:

Request example

Example cURL request to return the correlation information for Situation ID 5:

curl -X GET -u graze:graze -k -v

"https://localhost/graze/v1/getSigCorrelationInfo?sitn_id=5" \

-H "Content-Type: application/json; charset=UTF-8"

Response example

Example response returning :

[

 {

 "sig_id": 1,

 "service_name": "Example1",

 "external_id": "Example1",

 "properties": "{"Example1":"Example1"}

 },

 {

 "sig_id": 2,

 "service_name": "Example2",

 "external_id": "Example2",

 "properties": "{"Example2":"Example2"}

 }

]

getSimilarSituationIds

A Graze API GET request that returns a list of IDs of similar Situations, for a specified Situation ID and a

limit.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSimilarSituationIds takes the following request arguments:

Name Type Required Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

134

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation that you want to retrieve similar Situations for.

limit Number No Maximum number of Situation IDs to return. Defaults to 100.

Response

Endpoint getSimilarSituationIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

similarity_ids Array of

Numbers

List of IDs of similar Situations.

sig_id Number ID of the Situation that you requested to retrieve similar Situations

for.

Examples

The following examples demonstrate typical use of endpoint getSimilarSituationIds:

Request example

Example cURL request to return the first 10 Situation IDs that are similar to Situation ID 1043:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSimilarSituationIds"

\

--data-urlencode "sitn_id=1043" \

--data-urlencode "limit=10"

Response example

Example response returning the Situation IDs that are similar to Situation ID 1043:

{

 "similarity_ids": [43,156,177,221,576,1026,1327],

 "sig_id": 1043

}

getSimilarSituations

A Graze API GET request that returns the details of similar Situations for a specified Situation and a

limit.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSimilarSituations takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

135

sitn_id Number Yes ID of the Situation that you want to retrieve similar Situations for.

limit Number No Maximum number of Situations to return. Default is 100.

Response

Endpoint getSimilarSituations returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

similarities Array A list of Situations with similarity details. For each similar Situation:

sim_sig_id: ID of the similar situation.

similarity: Similarity value.

resolving_steps_count: Number of resolving steps that the similar

Situation has.

similar_count Number Number of similar Situations.

sig_id Number ID of the Situation that you requested to retrieve similar Situations for.

Examples

The following examples demonstrate typical use of endpoint getSimilarSituations:

Request example

Example cURL request to return Situations that are similar to Situation ID 38:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSimilarSituations" \

--data-urlencode "sitn_id=38" \

--data-urlencode "limit=20"

Response example

Example response returning details of two Situations, IDs 39 and 40, that are similar to Situation ID 38:

{

 "similarities":[

 {

 "sim_sig_id":39,

 "similarity":1.0,

 "resolving_steps_count":0

 },

 {

 "sim_sig_id":40,

 "similarity":1.0,

 "resolving_steps_count":0

 }],

 "similar_count":2,

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

136

 "sig_id":38

}

getSituationActions

A Graze API GET request that returns the actions for Situations, ordered most recent last. You can use

the from and to arguments to specify a period that you want to retrieve Situation actions for. If you do

not specify these, actions for all dates and times are returned.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationActions takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

sitn_ids Array of

Numbers

No, if you

specify from

and to.

Array of Situation IDs that the actions are requested for.

start Integer Yes Number of the first action to return.

limit Integer Yes Maximum number of actions that you want to return.

actions Array of

Numbers

No List of action codes. Returns all action codes if no action

codes are specified. See Situation Action Codes for a list of

action codes and their descriptions.

from Number No Start time of the period you want to retrieve Situation

actions for. This is a Unix epoch timestamp in seconds.

to Number No End time of the period you want to retrieve Situation

actions for. This is a Unix epoch timestamp in seconds.

Response

Endpoint getSituationActions returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

activities Array An array of objects containing the Situation action details.

Examples

The following examples demonstrate typical use of endpoint getSituationActions:

Request examples

Example cURL request to retrieve the first three actions for Situations 1, 2, 3 and 6:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationActions" \

--data-urlencode "sitn_ids=[1, 2, 3, 6]" \

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

137

--data-urlencode "actions=[1]" \

--data-urlencode "limit=3" \

--data-urlencode "start=0"

Example cURL command to retrieve the first 50 actions for Situations 1, 2, 3 and 6 between Unix epoch

times 1553861746 and 1553872546:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationActions" \

--data-urlencode "sitn_ids=[1, 2, 3, 6]" \

--data-urlencode "actions=[1]" \

--data-urlencode "limit=50" \

--data-urlencode "start=0" \

--data-urlencode "from=1553861746"

--data-urlencode "to=1553872546"

Response example

Example response returning the actions for Situation 451:

{

 "activities": [

 {

 "uid": 2,

 "action_code": 1,

 "description": "Situation Created",

 "details": {},

 "type": "event",

 "sig_id": 451,

 "timed_at": 1507039842

 },

 {

 "uid": 2,

 "action_code": 14,

 "description": "Added Alerts To Situation",

 "details": {}

 "alerts": [1, 2]

 },

 {

 "uid": 3,

 "action_code": 11,

 "description": "Ran Tool",

 "details":

 {

 "tool_id": 271,

 "tool": "get data"

 },

 "sig_id": 451,

 "type": "event",

 "timed_at": 1557321088,

 "username": "admin"

 }]

}

getSituationAlertIds

A Graze API GET request that returns the total number of alerts, and a list of the alert IDs, for a specified

Situation. This can be either all alerts or just those alerts unique to the Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

138

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationAlertIds takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

for_unique_alerts Boolean No Indicates the alerts to return from the Situation:true: Return

only alerts unique to the Situation.false: Return all alerts in

the Situation. Default.

Response

Endpoint getSituationAlertIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

total_alerts Number Total number of alerts, or unique alerts.

alert_ids Number list A list of the alert IDs.

Examples

The following examples demonstrate typical use of endpoint getSituationAlertIds:

Request example

Example cURL request to return all the alert IDs for Situation ID 362:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationAlertIds" /

--data-urlencode "sitn_id=362" \

--data-urlencode "for_unique_alerts=false"

Response example

Example response returning all the alerts for Situation ID 362:

{"total_alerts":232,"alert_ids":[6,10,17,19,22,26,27,29,32,43,44,45,47,52,67,68,

79,81,83,84,96,102,105,108,109,111,113,115,116,125,135,136,138,140,142,143,147,1

51,152,153,165,175,177,178,180,181,188,192,193,207,211,213,217,223,225,232,238,2

39,240,244,255,258,259,269,270,272,274,284,293,303,314,318,335,357,363,369,374,3

75,388,398,414,428,430,434,442,443,448,449,450,479,480,485,486,492,494,504,505,5

10,511,518,521,529,556,558,563,570,580,594,596,599,601,603,628,655,656,661,664,6

74,684,691,705,714,715,719,720,728,732,734,750,776,777,781,788,794,808,819,830,8

35,838,844,857,858,860,861,877,882,885,887,890,892,893,900,901,906,912,914,918,9

26,936,937,959,971,972,984,994,1004,1013,1016,1019,1020,1023,1033,1043,1045,1068

,1076,1082,1083,1085,1099,1119,1124,1135,1137,1143,1147,1171,1185,1201,1207,1217

,1225,1231,1238,1254,1271,1272,1274,1280,1282,1290,1292,1301,1320,1321,1322,1324

,1326,1327,1331,1332,1333,1362,1379,1402,1414,1423,1433,1443,1454,1468,1472,1473

,1481,1491,1510,1512,1517,1520,1522,1532,1534]}

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

139

getSituationDescription

A Graze API GET request that returns the description for a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationDescription takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint getSituationDescription returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number Situation ID.

description String Text in the Situation' description field.

Examples

The following examples demonstrate typical use of endpoint getSituationDescription:

Request example

Example cURL request to return the description for Situation ID 231:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getSituationDescription" \

--data-urlencode "sitn_id=231"

Response example

Example response returning the description for Situation ID 231:

{

 "sitn_id": "231",

 "description": "SyslogLamCookbook source"

}

getSituationDetails

A Graze API GET request that returns the details of a specified Situation.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

140

Request arguments

Endpoint getSituationDetails takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint getSituationDetails returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

category String Category of the alert.

created_at Number Time when Cisco Crosswork Situation Manager created the Situation.

This is a Unix epoch timestamp in seconds.

custom_info Object Object containing the custom info for the Situation; null if there is no

custom info for the Situation.

description String Description of the Situation.

first_event_time Number Time when Cisco Crosswork Situation Manager received the first

event. This is a Unix epoch timestamp in seconds.

internal_priority Number Internal priority of the Situation.

last_event_time Number Time when Cisco Crosswork Situation Manager received the latest

event. This is a Unix epoch timestamp in seconds.

last_state_change Number Time when the last state change occurred. This is a Unix epoch

timestamp in seconds.

moderator_id String Owner of the Situation.

sitn_id Number Situation ID.

status Number Status of the Situation.

story_id Number

superseded_by String The ID of the Situation that supersedes this Situation, null if the

Situation is not superseded.

total_alerts Number Total number of alerts in the Situation.

total_unique_alerts Number Total number of alerts that are unique to the Situation.

primary_team_id Number ID of the primary team assigned to the Situation. This is not returned if

there is no primary team.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

141

Examples

The following examples demonstrate typical use of endpoint getSituationDetails:

Request example

Example cURL request to the details of Situation ID 173:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationDetails" \

--data-urlencode "sitn_id=173"

Response example

Example response returning the details of Situation ID 173:

{

 "category":"Detected",

 "created_at":1415814620,

 "custom_info":null,

 "description":"Sigaliser situation",

 "first_event_time":1415814600,

 "internal_priority":0,

 "last_event_time":1415814619,

 "last_state_change":1415868947,

 "moderator_id":2,

 "sitn_id":173,

 "status":1,

 "story_id":3,

 "superseded_by":null,

 "total_alerts":1403,

 "total_unique_alerts":1403,

 "primary_team_id":2

}

getSituationFlags

A Graze API GET request that returns the flags for one or an array of Situations.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationFlags takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_ids Array of

Numbers

Yes A list of Situation IDs.

Response

Endpoint getSituationFlags returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

142

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Description

JSON List List of the states those Situations

Examples

The following examples demonstrate typical use of endpoint getSituationFlags:

Request example

Example cURL request to list an array of all flags associated with Situation 1.

curl -X GET -u graze:graze -k -v

https://localhost/graze/v1/getSituationFlags?sitn_ids=%5B1%5D

Response example

Example response returning the flags associated with Situation 1:

{

 "1":

 [

 "NOTIFIED",

 "TICKETED"

]

}

getSituationHosts

A Graze API GET request that returns the hosts for a specified Situation, either for all the alerts in the

Situation or just for the unique alerts.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationHosts takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

for_unique_alerts Boolean No Indicates the host names to return from the Situation:true:

Return only host names unique to the Situation.false: Return

all host names in the Situation. Default.

Response

Endpoint getSituationHosts returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

143

Name Type Description

hosts JSON object An array of all hosts that sent alerts contained in the specified Situation.

Examples

The following examples demonstrate typical use of endpoint getSituationHosts:

Request example

Example cURL request to return all the hosts that sent alerts to Situation ID 447:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationHosts" \

--data-urlencode "sitn_id=447"

Response example

Example response returning all the hosts that sent alerts to Situation ID 447:

{

 hosts:

 [

 "xldn1204pap",

 "xldn1215pap",

 "xldn1220pap",

 "vxldn1230pap",

 "xldn1241pap",

 "xldn1252pap",

 "xldn1271pap",

 "xldn1278pap",

 "xldn1297pap",

 "xldn1299pap"

]

}

getSituationIds

A Graze API GET request that returns the total number of Situations, and a list of their Situation IDs, for

a specified Situation filter and a limit.

Note

Take special care when using endpoint getSituationIds. Overuse of this endpoint can have a

negative impact on the backend datastore.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationIds takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

query String Yes An SQL-like filter that Situations must match to be returned.

limit Number No Maximum number of Situation IDs to return.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

144

Response

Endpoint getSituationIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

total_situations Number Total number of Situations, or unique Situations.

sitn_ids List A list of Situation IDs.

Examples

The following examples demonstrate typical use of endpoint getSituationIds:

Request example

Example cURL request to get the first 20 Situation IDs that match the query where the description is

"lon_storage_636728" or the queue is 5:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationIds" \

--data-urlencode 'query=description="lon_storage_636728" or queue = 5' \

--data-urlencode 'limit=20'

Response example

Example response returning seven Situation IDs that match the query:

{

 "total_situations":7,

 "sitn_ids":[87,121,128,278,523,1003,1519]

}

getSituationPrimaryTeam

A Graze API GET request that returns the primary team on the specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationPrimaryTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation you want to retrieve the primary team for.

Response

Endpoint getSituationPrimaryTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

145

Name Type Description

sitn_id Number ID of the Situation you wanted to retrieve the primary team for.

primary_team_id Number ID of the primary team for the Situation.

Examples

The following examples demonstrate typical use of endpoint getSituationPrimaryTeam:

Request example

Example cURL request to return the primary team for Situation 1906:

curl -G -u graze:graze -k "https://localhost/graze/v1/getSituationPrimaryTeam" \

--data-urlencode 'sitn_id=1906'

Response examples

Example response returning that team 36 is the primary team for Situation 1906:

{

 "primary_team_name": "Cloud DevOps",

 "sitn_id": 1906,

 "primary_team_id": 1

}

Example response returning that Situation 1906 does not have a primary team assigned to it:

{

 "sitn_id":1906,

}

getSituationProcesses

A Graze API GET request that returns a list of process names for a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationProcesses takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation you want to return the process names for.

Response

Endpoint getSituationProcesses returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

146

Name Type Description

processes Array A list of all the Situation's process names.

Examples

The following examples demonstrate typical use of endpoint getSituationProcesses:

Request example

Example cURL request to return all the process names for Situation 473:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationProcesses"

\

--data-urlencode "sitn_id=473"

Response example

Example response returning a list of all the Situation's process names:

{

 "processes":

 [

 "Knowledge Management",

 "Online Transaction Processing",

 "Web Content Management",

 "40GbE",

 "8-bit Unicode Transcoding Platform"

]

}

getSituationServices

A Graze API GET request that returns a list of external service names for a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationServices takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint getSituationServices returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

services Array A list of the Situation's services.

Examples

The following examples demonstrate typical use of endpoint getSituationServices:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

147

Request example

Example cURL request to return the services for Situation ID 345:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationServices" \

--data-urlencode "sitn_id=345"

Response example

Example response returning the services for the specified Situation:

{

 "services":

 [

 "Cloud Management Platform",

 "Geographic Information Systems",

 "Knowledge Management",

 "Online Transaction Processing",

 "Storage Subsystem",

 "Web Content Management",

 "0-bit Emulation","40GbE",

 "8-bit Unicode Transcoding Platform"

]

}

getSituationSeverityChanges

A Graze API GET request that returns the changes in severity for a Situation. The highest severity of any

of the alerts in a Situation determines the severity of the Situation. This endpoint returns increases in

severity and a change to a severity of 0 (Clear). If a Situation has closed, this endpoint returns a severity

of 0 (Clear) and the timestamp when the Situation was closed. The endpoint does not return any further

changes in severity after it has returned to 0 (Clear).

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationSeverityChanges takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes ID of the Situation you want to return severity changes for.

Response

Endpoint getSituationSeverityChanges returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

148

timestamp Number The time when the severity change occurred. This is a Unix epoch timestamp in

seconds.

severity Number The new severity of the Situation:

0 = Clear1 = Indeterminate2 = Warning3 = Minor4 = Major5 = Critical

Examples

The following examples demonstrate typical use of endpoint getSituationSeverityChanges:

Request example

Example cURL request to return the severity changes for Situation ID 234:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getSituationSeverityChanges" \

--data-urlencode "sitn_id=234"

Response example

Example response returning the severity changes for the Situation. The response shows increases in

severity and the change to a severity of 0 (Clear).

[

 {

 "timestamp": 1580193608,

 "severity": 4

 },

 {

 "timestamp": 1580193660,

 "severity": 5

 },

 {

 "timestamp": 1580193667,

 "severity": 0

 }

]

getSituationsWithFlag

A Graze API GET request that returns all the Situations which have the specified flag.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationsWithFlag takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

flag String Yes Name of the flag to search for.

start Number No Starting point of the result set to return. Default is 0.

limit Number No Maximum number of results to return. Default is 1000.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

149

Endpoint getSituationsWithFlag returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

JSON Array An array of the Situation IDs that have the specified flag associated with them.

Examples

The following examples demonstrate typical use of endpoint getSituationsWithFlag:

Request example

Example cURL request to retrieve all Situations that have the specified flag associated with them.

curl -X GET -u graze:graze -k -v

https://localhost/graze/v1/getSituationsWithFlag?flag=NOTIFIED

Response example

Example response returning an array of all of the Situations that have the specified flag associated with

them:

[1, 2, 5]

getSituationTopology

A Graze API endpoint that returns the topology details for a specified Situation and topology. The

request returns a JSON object that lists the links and nodes affected by the Situation in a specified

topology. It also returns the alert matching attributes for the nodes in the topology.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationTopology takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

topology_name String Yes Name of the topology for which to return the Situation's link, node

and alert matching attribute details. A Situation can impact nodes

in multiple topologies.

context Number Yes Number, between 0 and 4, of contextual hops from the nodes

directly affected within the Situation to other nodes to be

included in the returned object. See Vertex Entropy for more

information on contextual hops.Vertex Entropy0: Only nodes

directly affected by the Situation. Default.4: Nodes that are up to

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
file://document/preview/11796%23UUID8635a39b79fdd302137e104ae42562e8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

150

four hops away from the nodes directly affected by the Situation.

properties Array of

Strings

Yes List of the node properties to be returned. Valid properties are:

severity: Severity of the node.

prc: Whether this node is the probable root cause of the alert.

description: Description of the node.

vertex_entropy: Vertex Entropy of the node. See Vertex

Entropy for more information.

Response

Endpoint getSituationTopology returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

links Array of

strings

One or more links associated with the Situation, including the

following properties:

source: Source node of the link.

target: Target node of the link.

Note that links in Cisco Crosswork Situation Manager are

bidirections.

nodes Array of

strings

One or more nodes associated with the Situation and their IDs

and properties. The context request property determines

which nodes are included.

alertMatchingAttributes Array of

strings

The alert fields that specify the topology nodes from which the

alerts were generated.

See http://netjson.org/ for more information on the topology data format.

Examples

The following examples demonstrate typical use of endpoint getSituationTopology:

Request example

The following topology diagram shows the nodes affected by Situation ID 14, with a context of 1. In this

example, each node represents a host in a network and the Situation represents a network outage. It

shows six nodes directly affected by the Situation, their color depending on their severity, and one

node which is one hop away, shown in gray.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
http://netjson.org/

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

151

The following cURL request demonstrates a request to return nodes affected by the Situation and

nodes that are one hop away in the "network" topology. The returned object contain the properties of

severity, Vertex Entropy, Probable Root Cause (PRC), and description.

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSituationTopology" \

--data-urlencode "sitn_id=14" \

"topology_name=network" \

"context=1" \

"properties"= ["severity","vertex_entropy","prc","description"]

Response example

The successful response returns the following topology information for this Situation. Note that there is

no PRC value for the node that is not directly affected by the Situation. In this example, consider

investigating node "host2835" as the cause of the Situation because it has a high severity and a high

PRC.

{

 "links":

 [

 {

 "source": "host2728",

 "target": "host2736"

 },

 {

 "source": "host2728",

 "target": "host1156"

 },

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

152

 "source": "host2835",

 "target": "host2728"

 },

 {

 "source": "host2801",

 "target": "host2827"

 },

 {

 "source": "host2800",

 "target": "host2801"

 },

 {

 "source": "host2801",

 "target": "host2835"

 },

 {

 "source": "host2835",

 "target": "host2736"

 }

],

 "nodes":

 [

 {

 "id": "host2835",

 "properties": {

 "severity": 5,

 "prc": 0.9862626716344282,

 "context": 0,

 "description": "node1",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id": "host2736",

 "properties": {

 "severity": 4,

 "prc": 0.42722191049803876,

 "context": 0,

 "description": "node2",

 "vertex_entropy": 0.08976540495989357

 }

 },

 {

 "id": "host2728",

 "properties": {

 "severity": 3,

 "prc": 0.007672752075071621,

 "context": 0,

 "description": "node3",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id": "host2827",

 "properties": {

 "severity": 5,

 "prc": 0.4262762946261391,

 "context": 0,

 "description": "node4",

 "vertex_entropy": 0.05343516483103129

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

153

 },

 {

 "id": "host2801",

 "properties": {

 "severity": 5,

 "prc": 0.42722511225514104,

 "context": 0,

 "description": "node5",

 "vertex_entropy": 0.23927899629439717

 }

 },

 {

 "id": "host2800",

 "properties": {

 "severity": 5,

 "prc": 0.4269879766269776,

 "context": 0,

 "description": "node6",

 "vertex_entropy": 0.05343516483103129

 }

 },

 {

 "id": "host1156",

 "properties": {

 "severity": null,

 "prc": null,

 "context": 1,

 "description": "node7",

 "vertex_entropy": 0.05343516483103129

 }

 }

],

 "alertMatchingAttributes": ["source"]

}

getSituationVisualization

A Graze API GET request that returns the Visualize information for a Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSituationVisualization takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint getSituationVisualization returns the following response:

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP status code

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

154

Code definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sig_id Integer Situation ID.

origin String Process that caused the Situation to be created, for example, cookbook or

manual_merge.

cause Object Details of the origin of the Situation, for example the cookbook_name, recipe_id,

cookbook_id, recipe_name, reference_alert_id and reference_event_id.

thresholds Object The saved and original threshold values for the Situation, if the Recipe has

been updated.

If a threshold was removed from the Recipe after Situation creation, it is not

returned in the response. If a threshold was added to the Recipe after Situation

creation, the saved and original values are returned.

Examples

The following examples demonstrate typical use of the getSituationVisualization endpoint:

Request example

Example cURL request to return information on the origin and cause of Situation ID 358:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getSituationVisualization" --data-urlencode

"sitn_id=358"

Response examples

Example response for a Situation created by a Cookbook Recipe:

{

 "thresholds":

 {

 "agent":

 {

 saved: 1.0,

 original: 0.7

 },

 "source":

 {

 saved: 0.97,

 original: 0.6

 }

 },

 "origin": "Cookbook",

 "cause":

 {

 "cookbook_name": "Default Cookbook",

 "recipe_id": 5,

 "cookbook_id": 7,

 "recipe_name": "Source",

 "reference_alert_id": 198,

 "reference_event_id": 210

 },

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

155

 "sig_id":5

}

Example response for a manually created Situation:

{

 "origin": "Manual Creation",

 "cause": {"uid": 3},

 "sig_id": 6

}

Example response when two Situations have been merged:

{

 "origin": "Manual Merge",

 "cause":

 {

 "uid": 3,

 "merged_sigs": [8,7]

 },

 "sig_id": 9

}

If there is no Situation visualization data, the response returns the following information:

{

 "additional":

 {

 "debugMessage": "com.moogsoft.servletutils.CGeneralServerException:

com.moogsoft.services.CGeneralServiceException: No visualize data found for

Situation ID [2323]"

 },

 "message": "Internal server error",

 "statusCode": 1000

}

getStatuses

A Graze API GET request that returns a list of statuses that can apply to Situations and their IDs.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getStatuses takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

There are no other arguments because this endpoint returns data on all statuses.

Response

Endpoint getStatuses returns the following response:

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP status code

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

156

Code definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

status_id Number ID of the status.

name String Status name.

Examples

The following examples demonstrate typical use of endpoint getStatuses:

Request example

Example cURL request to return a list of statuses:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getStatuses"

Response example

Example response returning a list of statuses:

[

 {

 "status_id": 1,

 "name": "Opened"

 },

 {

 "status_id": 2,

 "name": "Unassigned"

 },

 {

 "status_id": 3,

 "name": "Assigned"

 },

 {

 "status_id": 4,

 "name": "Acknowledged"

 },

 {

 "status_id": 5,

 "name": "Unacknowledged"

 },

 {

 "status_id": 6,

 "name": "Active"

 },

 {

 "status_id": 7,

 "name": "Dormant"

 },

 {

 "status_id": 8,

 "name": "Resolved"

 },

 {

 "status_id": 9,

 "name": "Closed"

 },

 {

 "status_id": 10,

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

157

 "name": "SLA Exceeded"

 }

]

getSystemStatus

A Graze API GET request that returns current system status information for all processes.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSystemStatus takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getSystemStatus takes no other arguments because this endpoint returns data on all

processes.

Response

Endpoint getSystemStatus returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

component String Represents the name of a component within the process. May

not be present, depending on the process.

instance String Instance name.

last_heartbeat Number Timestamp, in milliseconds, of the last process heartbeat. 0 is a

special value indicating that a heartbeat has never been

received.

missed_heartbeats Number Number of missed process heartbeats. -1 is a special value

indicating that a heartbeat has never been received.

process_name String Process name.

processes Array A list of the processes, with status information.

reserved Boolean Indicates whether the process is reserved:

true = a reserved process

false = process that is not reserved

running Boolean Indicates whether the process is running:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

158

true = running

false = not running

service_name String Service name.

display_name String Name of the service in the configuration.

type String Type of service, for example, lam, servlet, Moogfarmd.

passive Boolean Indicates whether the service is passive in a HA environment:

true = passive

false = active

stoppable Boolean Indicates whether the service is passive can be stopped:

true = stoppable

false = not stoppable

ha_conf JSON

Object

A JSON blob containing the HA configuration.

additional_health_info JSON

Object

Additional health information. The pools section includes health

information for processes with an internal pool.

Examples

The following examples demonstrate typical use of endpoint getSystemStatus:

Request example

Example cURL request to return the system status:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSystemStatus"

Response example

Example response returning the system status:

{

 "processes": [{

 "running": true,

 "sub_components": {

 "moogpoller": {

 "run_on_startup": true,

 "instance": "",

 "service_name": "apache-tomcat",

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385834300,

 "passive": false,

 "running": true,

 "component": "moogpoller",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 0,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

159

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 }

 },

 "moogsvr": {

 "run_on_startup": true,

 "instance": "",

 "service_name": "apache-tomcat",

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385825246,

 "passive": false,

 "running": true,

 "component": "moogsvr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 0,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 }

 }

 },

 "instance": "",

 "reserved": true,

 "service_name": "apache-tomcat",

 "stoppable": true,

 "missed_heartbeats": 0,

 "display_name": "servlets",

 "type": "servlets",

 "last_heartbeat": 1491385834300,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": false,

 "group": "servlets"

 },

 "passive": false

 }, {

 "running": false,

 "instance": "",

 "last_missed_heartbeat": 1491385820601,

 "reserved": false,

 "stoppable": false,

 "missed_heartbeats": 10,

 "display_name": "test_lam",

 "type": "lam",

 "last_heartbeat": 1491382820601,

 "additional_health_info": {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

160

 "thread_pool_queue_size": 0,

 "published_events": {

 "last_5_minutes": 130,

 "last_10_minutes": 130,

 "last_minute": 130

 }

 },

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "test_lam"

 },

 "passive": false

 "sub_components": {

 "SituationMgr": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "SituationMgr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 },

 "AlertBuilder": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "AlertBuilder",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

161

 }

 },

 "TeamsMgr": {

 "run_on_startup": true,

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "passive": false,

 "running": false,

 "component": "TeamsMgr",

 "reserved": true,

 "stoppable": true,

 "missed_heartbeats": 10,

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 }

 },

 "instance": "",

 "last_missed_heartbeat": 1491385821669,

 "service_name": "moogfarmd",

 "display_name": "moog_farmd",

 "type": "moog_farmd",

 "last_heartbeat": 1491382821669,

 "additional_health_info": {

 "event_processing_metric": 0.65

 },

"passive": false,

"running": false,

"reserved": true,

"stoppable": true,

"missed_heartbeats": 10,

"ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "default_leader": true,

 "start_as_passive": false,

 "only_leader_active": true,

 "group": "moog_farmd"

 }

 },

{

 "running": false,

 "instance": "",

 "reserved": false,

 "service_name": "restclientlamd",

 "stoppable": true,

 "display_name": "rest_client_lam",

 "type": "lam",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

162

 "ha_conf": {

 "cluster": "MOO",

 "instance": "",

 "group": "rest_client_lam"

 }

 "additional_health_info": {

 "pools": {

 "MoogPoller": [{

 "removed": 0,

 "ration": 0.0,

 "busy": 0,

 "resource_type": "com.mysql.jdbc.JDBC4Connection",

 "checkout_per_second": 0.0,

 "free": 10,

 "avg_checkedout_seconds": 0.0,

 "capacity": 10

 }],

 "Message sender pool": [{

 "removed": 0,

 "ration": 0.0,

 "busy": 0,

 "resource_type": "com.moogsoft.mooms.CMoomsMessageSender",

 "checkout_per_second": 0.09997000899730081,

 "free": 10,

 "avg_checkedout_seconds": 0.002,

 "capacity": 10

 }]

 }

 }]

}

getSystemSummary

A Graze API GET request that returns a summary of current alerts and Situations in Cisco Crosswork

Situation Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getSystemSummary takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getSystemSummary takes no other arguments because this endpoint returns data on all alerts

and Situations.

Response

Endpoint getSystemSummary returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object system_summary, containing the following statistics:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

163

total_events Number Total number of events in Cisco Crosswork Situation Manager.

open_sitns Number Number of open Situations in Cisco Crosswork Situation Manager.

open_sitns_up Number Number of open Situations that are trending up.

open_sitns_down Number Number of open Situations that are trending down.

avg_events_per_sitn Number Average number of events per Situation.

avg_alerts_per_sitn Number Average number of events per Situation.

service_count Number Number of services in Cisco Crosswork Situation Manager.

open_sigs_unassigned Number Number of unassigned Situations.

Examples

The following examples demonstrate typical use of endpoint getSystemSummary:

Request example

Example cURL request to return a summary of alerts and Situations in Cisco Crosswork Situation

Manager:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getSystemSummary"

Response example

Example response returning a summary of alerts and Situations in Cisco Crosswork Situation Manager:

{

 "system_summary":

 {

 "total_events":61676,

 "open_sitns":571,

 "avg_events_per_sitn":305,

 "open_sitns_up":565,

 "open_sitns_down":2,

 "avg_alerts_per_sitn":16,

 "open_sigs_unassigned":310,

 "timestamp":1499425056

 }

}

getTeam

A Graze API GET request that returns a team's details by team ID or name.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

Cisco Crosswork Situation Manager 8.0.x Developer Guide

164

the authenticate endpoint for more information.

team_id Integer Yes Unique ID of the team to retrieve information about.

name String Yes Name of a valid team to retrieve information about.

Response

Endpoint getTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

JSON Object A JSON object containing details of the specified team.

Examples

The following examples demonstrate typical use of endpoint getTeam:

Request examples

Example cURL request to return details of the team ID 1:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeam?team_id=1"

Example cURL request to return details of the team "Cloud DevOps:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeam?name=Cloud

DevOps"

Response example

Example response returning details of the team:

{

 "room_id": 1,

 "alert_filter": "((severity = 0) OR (severity = 1)) AND (agent_location =

\"Test\")",

 "user_ids": [

 3

],

 "sig_filter": "((internal_priority = 0) AND (internal_priority = 1)) OR

(description = \"Test\")",

 "landing_page": "",

 "description": "",

 "active": true,

 "team_id": 1,

 "services": [],

 "users": [

 "admin"

],

 "deleted": false,

 "name": "Cloud DevOps",

 "service_ids": []

}

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

165

getTeams

A Graze API GET request that returns information on all the teams in Cisco Crosswork Situation

Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTeams takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getTeams takes no other arguments because this endpoint returns data on all the teams in

Cisco Crosswork Situation Manager.

Response

Endpoint getTeams returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Type Description

JSON Object Details of each team in Cisco Crosswork Situation Manager.

Examples

The following examples demonstrate typical use of endpoint getTeams:

Request example

Example cURL request to return all the teams in Cisco Crosswork Situation Manager:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeams"

Response example

Example response returning details of all the teams in Cisco Crosswork Situation Manager:

[

 {

 "room_id": 1,

 "alert_filter": "",

 "user_ids": [3],

 "sig_filter": "",

 "landing_page": "",

 "description": "Example Team",

 "active": true,

 "team_id": 1,

 "services": ["Commerce","Compute","CRM","Database"],

 "users": ["admin"],

 "name": "Cloud DevOps",

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

166

 "service_ids": [1,2,3,4]

 },

 {

 "room_id": 2,

 "alert_filter": "(description = \"Test\") AND ((severity = 0) OR

(severity = 2))",

 "user_ids": [5,6],

 "sig_filter": "((internal_priority = 0) OR (internal_priority = 1)) AND

(description = \"Test\")",

 "landing_page": "",

 "description": "Team based in Kingston",

 "active": true,

 "team_id": 2,

 "services": ["Kingston::AD::Server","Kingston::Application::Server"],

 "users": ["AnnaMatthews1","JorgeHowell2"],

 "deleted": false,

 "name": "Team Kingston",

 "service_ids": [1,2]

 }

]

getTeamsForService

A Graze API GET request to return all teams related to a service with the specified ID or name.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTeamsForService takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

service_id String No, if you specify

name.

ID of the service.

name String No, if you specify

service_id.

Name of the service.

Response

Endpoint getTeamsForService returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Type Description

JSON Object A JSON object containing details of each team related to the specified service.

Examples

The following examples demonstrate typical use of endpoint getTeamsForService:

Request examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

167

Example cURL requests to return the teams related to service ID 1:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getTeamsForService?service_id=1"

Example cURL requests to return the teams related to service "web":

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getTeamsForService?service_name=web"

Response example

Example response returning details of a team related to service "web":

[

 {

 "room_id": 1,

 "alert_filter": "((severity = 0) OR (severity = 1)) AND (agent_location

= \"Test\")",

 "user_ids": [3],

 "sig_filter": "((internal_priority = 0) AND (internal_priority = 1)) OR

(description = \"Test\")",

 "name": "Cloud DevOps",

 "landing_page": "",

 "description": "Example Team",

 "active": true,

 "service_ids": [1,2,3,4],

 "team_id": 1,

 "services": ["Commerce","Compute","CRM","Database"],

 "users": ["admin"]

 }

]

getTeamSituationIds

Request that returns the total number of Situations that are assigned to a team, and a list of their

Situation IDs.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTeamSituationIds takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

team_name String Yes Name of an existing team.

Response

Endpoint getTeamSituationIds returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

168

Successful requests return a JSON object containing the following:

Name Type Description

total_situation Number The total number of Situations assigned to a team.

sitn_ids Number list A list of Situation IDs of the Situations assigned to a team.

Examples

The following examples demonstrate typical use of endpoint getTeamSituationIds:

Request example

Example cURL request to return the Situations assigned to team "Cloud Devops":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeamSituationIds" \

--data-urlencode "team_name=Cloud Devops"

Response example

Example response returning the total number of Situations followed by the ID of each situation.

{

 "total_situations": 7,"sitn_ids": [20,21,39,55,85,119,145]

}

getTempus

A Graze API GET request that returns the details of all Tempus Moolets in Cisco Crosswork Situation

Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTempus takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getTempus takes no other arguments because this endpoint returns data on all Tempus

Moolets in Cisco Crosswork Situation Manager.

Response

Endpoint getTempus returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Type Description

JSON Object Names and configurations of all Tempus Moolets in Cisco Crosswork Situation Manager.

Examples

The following examples demonstrate typical use of endpoint getTempus:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

169

Example cURL request to return the details of all Tempus Moolets:

curl -G -u graze:graze -k "https://localhost/graze/v1/getTempus"

Response example

Example response returning the details of Tempus algorithm "Time Based (Tempus)":

[

 {

 "detection_algorithm": "Louvain",

 "minimum_arrival_similarity": 0.6667,

 "run_on_startup": true,

 "arrival_spread": 15,

 "execution_interval": 120,

 "description": "A Tempus Situation",

 "alert_threshold": 4,

 "pre_partition": null,

 "partition_by": null,

 "window_size": 1200,

 "edge_weight": false,

 "significance_threshold": 1,

 "name": "Time Based (Tempus)",

 "entropy_threshold": 0.0,

 "threshold_type": "global",

 "process_output_of": "Alert Workflows",

 "significance_test": "Poisson1",

 "bucket_size": 5

 }

]

getThreadEntries

A Graze API GET request that returns thread entries for a specified thread and Situation. Threads are

comments or 'story activity' on Situations.

You can request to return specific thread entries using start and limit values. If not, their default

values return the first 100 entries. The entries returned are ordered by most recent first.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getThreadEntries takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

thread_name String Yes Name of the thread to get entries from.

start Number No Number of the first thread entry to return. Default is 0.

limit Number No Maximum number of thread entries to return. Default is 100.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

170

Endpoint getThreadEntries returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

entries List A list of thread entries. See below.

sitn_id Number Situation ID.

thread_name String Name of the thread that the entries are from.

The entries list contains the following information:

Name Type Description

entry_text String Text of the thread entry. Reserved characters are converted to HTML entities, for

example, & is converted to &.

user_id Number User ID of the user that created the thread entry.

time Number Time when the thread entry was created. This is a Unix epoch timestamp in

seconds.

entry_id Number ID of the thread entry.

Examples

The following examples demonstrate typical use of endpoint getThreadEntries:

Request example

Example cURL request to return the first 10 thread entries on thread "Support" in Situation 358:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getThreadEntries" \

--data-urlencode "sitn_id=358" \

--data-urlencode "thread_name=Support" \

--data-urlencode "start=0" \

--data-urlencode "limit=10"

Response example

Example response returning the two thread entries on thread "Support" in Situation 358:

{

 "entries":

 [

 {

 "entry_text":"Test Entry",

 "user_id":4,

 "time":1549455051,

 "entry_id":2

 },

 {

 "entry_text":"Test Entry",

 "user_id":4,

 "time":1549455053,

 "entry_id":1

 }

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

171

],

 "sitn_id":358,"thread_name":"Support"

}

getThreadEntry

A Graze API GET request that returns a thread entry specified using the thread entry ID. Threads are

comments or 'story activity' on Situations.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getThreadEntry takes the following request arguments:

Name Type Required Description

auth_token String No A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

entry_id Number Yes Thread entry ID.

Response

Endpoint getThreadEntry returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

entry_id Number Thread entry unique ID.

sig_id Number Situation ID.

thread_id String Thread identifier. Can be either support or end user.

standard_thread String Standard thread.

status Number Situation status.

timed_at Number Timestamp of the thread entry.

uid Number User ID.

did Number Department ID of the user.

entry String Text of the thread entry.

mmid Number Multimedia database reference of embedded resource.

Examples

The following examples demonstrate typical use of endpoint getThreadEntry:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

172

Example cURL request to return thread entry with entry ID "1":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getThreadEntry" \

--data-urlencode "entry_id=1"

Response example

Example response returning thread entry with ID "1" on thread "Support":

{

 "entry_id": 1,

 "sig_id": 1,

 "thread_id": "Support",

 "standard_thread": "Support",

 "status": 1,

 "timed_at": 1586874842,

 "uid": 3,

 "did": 1,

 "entry": "My thread entry",

 "mmid": -1

}

getToolShares

A Graze API GET request that returns the shared access for a specified tool.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getToolShares takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

tool_id Number Yes ID of the tool that you want to retrieve its shared access for.

Response

Endpoint getToolShares returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

tool_id Number ID of the tool you requested to return its shared access for.

domain_ids Array An array of all the IDs within the domain that can access the tool. If the domain is

global, no domain IDs are returned.

domain String Domain that can access the tool. One of: user, team, role, or global.

Examples

The following examples demonstrate typical use of endpoint getToolShares:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

173

Example cURL request to retrieve all the domain IDs that have access to tool 15:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/getToolShares" \

-H "Content-Type: application/json; charset=UTF-8" \

-d '{ "tool_id":15 }'

Response example

Example response returning that tool ID 15 can be accessed by team ID 3:

{

 "tool_id": 15,

 "domain_ids": [3],

 "domain": "team"

}

getTopPrcDetails

A Graze API GET request that returns the top most likely causal alerts, based on their Probable Root

Cause value, for a specified Situation.

You can select the maximum number of causal alerts to return using a limit value. If not specified, the

endpoint only returns the alert with the highest root cause probability.

The entries returned are ordered with the highest root cause probability first, for the specified Situation,

irrespective of whether they have been labeled causal or are unlabeled. Alerts marked as symptoms are

excluded from the return.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getTopPrcDetails takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Integer Yes ID of the Situation you want to retrieve the Probable Root Cause details

for.

limit Integer No Maximum number of causal or unlabeled alerts to return. Default is 1, if

not specified, returning one alert with the highest root cause

probability.

Response

Endpoint getTopPrcDetails returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

174

rc_probability Number Root cause probability of the alert.

description String Description of the alert.

rc_label Integer Label defining whether the alert is causal or unlabeled. Alerts marked as

symptoms are excluded from the return.

1 = causal

0 = unlabeled

-1 = symptom

alert_id Integer Alert ID.

Examples

The following examples demonstrate typical use of endpoint getTopPrcDetails:

Request example

Example cURL request to return the top three causal alerts with the highest root cause probability in

Situation 145:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTopPrcDetails" --

data-urlencode 'sitn_id=145' --data-urlencode 'limit=3'

Response example

Example response returning the top three causal or unlabeled alerts for Situation ID 145:

{

 "alerts":

 [

 {

 "rc_probability":0.9933107459030244,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":53

 },

 {

 "rc_probability":0.9933092393241993,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":8

 },

 {

 "rc_probability":0.22480057080448923,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":0,

 "alert_id":39

 }

]

}

getUserInfo

A Graze API GET request that returns information about a specified user.

Back to Graze API EndPoint Reference.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

175

Endpoint getUserInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

user_id Number Yes ID of the the user to return information about.

username String Yes A valid username.

Response

Endpoint getUserInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

user_id Number User ID.

full_name String Full name of the user.

Examples

The following examples demonstrate typical use of endpoint getUserInfo:

Request example

Example cURL request to return the information associated with user ID 57:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserInfo" \

--data-urlencode "user_id=57"

Response example

Example response returning the user information related to user ID 57:

{ "full_name":"Lonnie Holmes","user_id":57 }

getUserRoles

A Graze API GET request that returns the specified user's roles from the database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getUserRoles takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

user_id Number No, if you specify User ID.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

176

username.

username String No, if you specify

user_id.

A valid username.

Response

Endpoint getUserRoles returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

JSON

Object

JSON An array javascript object containing the role IDs, the role names and the role

descriptions assigned to the user.

Examples

The following examples demonstrate typical use of endpoint getUserRoles:

Request example

Example cURL request to return the assigned roles for user "bigfish917":

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserRoles" \

--data-urlencode "username=bigfish917"

Response example

Example response returning the roles assigned to the user:

[

 {

 "id" : 2,

 "name" : "Administrator",

 "description" : "Administrator"

 },

 {

 "id" : 4,

 "name" : "Operator",

 "description" : "Operator"

 },

 {

 "id" : 5,

 "name" : "Customer",

 "description" : "Customer"

 }

]

getUsers

A Graze API GET request that returns a list of all users in the database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getUsers takes the following request arguments:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

177

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

limit Integer No Maximum number of results to return. Default is 1,000.

Response

Endpoint getUsers returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

JSON

Object

JSON A JSON list of all users, displaying the user ID, teams, full name and username of

each user.

Examples

The following examples demonstrate typical use of endpoint getUsers:

Request example

Example cURL request to return a maximum of three users:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUsers" \

--data-urlencode "limit=3"

Response example

Example response returning a maximum of three users:

[

 {

 "uid": 3,

 "teams": ["Cloud DevOps"],

 "fullname": "Administrator",

 "username": "admin"

 },

 {

 "uid": 6,

 "teams": ["Network"],

 "fullname": "Nagios",

 "username": "Nagios"

 },

 {

 "uid": 5,

 "teams": ["Application Support"],

 "fullname": "Webhook",

 "username": "Webhook"

 }

]

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

178

getUserSessionInfo

A Graze API GET request that returns session information for a single user over a period of time.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getUserSessionInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

username String Yes Name of the user.

from Number No Start time of the period you want to retrieve session information for.

This is in Unix epoch time in seconds. If empty, returns all session

information for the user.

to Number No End time of the period you want to retrieve session information for.

This is in Unix epoch time in seconds. If empty, returns user records to

date.

start Number No Starting record from which data should be included. Default is 0, the

first record.

limit Number No Maximum number of records you want to return. Default is 200.

Response

Endpoint getUserSessionInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sessionId Number ID of the session.

startTime Number Start time of the session, in Unix epoch time.

lastAccess Number Last access time within the session, in Unix epoch time.

Examples

The following examples demonstrate typical use of endpoint getUserSessionInfo:

Request example

Example cURL request to return the session information for user "admin:

curl -G -u graze:graze -k

"https://localhost/graze/v1/getUserSessionInfo?username=admin" \

-H "accept: application/json"

Response example

Example response returning the session information for user "admin":

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

179

[

 {

 "sessionId": 1,

 "startTime": 1571665580,

 "lastAccess": 1571665582

 },

 {

 "sessionId": 3,

 "startTime": 1571666307,

 "lastAccess": 1571666760

 }

]

getUserTeams

A Graze API GET request that returns the team names and IDs associated with the specified user ID or

username.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getUserTeams takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

user_id Number No, if you specify

username.

A valid user ID.

username String No if you specify

user_id.

A valid username.

Response

Endpoint getUserTeams returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

JSON Object JSON A Javascript object containing the user ID and the teams that the user belongs to.

Examples

The following examples demonstrate typical use of endpoint getUserTeams:

Request example

Example cURL request to return the teams that user "admin" belongs to.

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getUserTeams" \

--data-urlencode "username=admin"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

180

Response example

Example response returning the teams associated with username "admin":

[

 {

 "id" : 11,

 "name" : "Cloud DevOps"

 },

 {

 "id" : 12,

 "name" : "Network"

 },

 {

 "id" : 2,

 "name" : "Application Support"

 }

]

getWorkflowEngineMoolets

A Graze API GET request that returns a list of Workflow Engine Moolets and the functions available in

each. This endpoint returns an empty list if Moogfarmd is not running.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getWorkflowEngineMoolets takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getWorkflowEngineMoolets takes no other arguments because this endpoint returns data on

all the Workflow Engine Moolets and the workflows associated with them.

Response

Endpoint getWorkflowEngineMoolets returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Type Description

List of JSON Objects A list of Workflow Engine Moolets and information about them.

Examples

The following examples demonstrate typical use of endpoint getWorkflowEngineMoolets:

Request example

Example cURL request to return information on all the workflows in all the Workflow Engine Moolets in

Cisco Crosswork Situation Manager:

curl -X GET -u graze:graze -k -v

"https://localhost/graze/v1/getWorkflowEngineMoolets"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

181

Response example

Example response returning information on all the Workflow Engine Moolets in Cisco Crosswork

Situation Manager:

[

 {

 "active": true,

 "last_updated": 1567420771,

 "moolet_name": "Alert Workflows",

 "functions": {

 "alertInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertInSituation",

 "description": "Check if the alert is in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "alertNotInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertNotInSituation",

 "description": "Check if the alert is not in an active

Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "between": {

 "decision": true,

 "validators": null,

 "name": "between",

 "description": "Check to see if the trigger falls between two

times, and optionally on specific days.",

 "arguments": [

 {

 "name": "from",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'from' time in hh:mm:ss 24hr

format",

 "type": "string",

 "required": true

 },

 {

 "name": "to",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'to' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

182

 "name": "days",

 "description": "The optional list of days in short form

(Mon,Tue,Wed...), for all days use a blank list []",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": false,

 "type": ["alert","situation"]

 },

 "contains": {

 "decision": true,

 "validators": null,

 "name": "contains",

 "description": "Check whether the specified object field

contains any of the listed values. Define values as an array, for example [a]

or [a, b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check

values in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, any

intersection is valid.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

 },

 "containsAll": {

 "decision": true,

 "validators": null,

 "name": "containsAll",

 "description": "Check whether the specified object field

contains all of the listed values. Define values as an array, for example [a]

or [a, b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check

values in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, all

must be included to be valid.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

183

 },

 "doesNotContain": {

 "decision": true,

 "validators": null,

 "name": "doesNotContain",

 "description": "Check whether the specified object field does

not contain any of the listed values. Define values as an array, for example [a

] or [a, b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check

values in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, any

intersection will count.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

 }

 },

 "moolet_type": "alert"

 },

 {

 "active": true,

 "last_updated": 1567420777,

 "moolet_name": "Enrichment Workflows",

 "functions": {

 "alertInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertInSituation",

 "description": "Check if the alert is in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "alertNotInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertNotInSituation",

 "description": "Check if the alert is not in an active

Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "between": {

 "decision": true,

 "validators": null,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

184

 "name": "between",

 "description": "Check to see if the trigger falls between two

times, and optionally on specific days.",

 "arguments": [

 {

 "name": "from"

, "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'from' time in hh:mm:ss 24hr

format",

 "type": "string",

 "required": true

 },

 {

 "name": "to",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'to' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

 "name": "days",

 "description": "The optional list of days in short form

(Mon,Tue,Wed...), for all days use a blank list []",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": false,

 "type": ["alert","situation"]

 },

 "moolet_type": "alert"

 },

]

getWorkflows

A Graze API GET request that returns workflows for a Workflow Engine Moolet.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint getWorkflows takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

moolet_name String Yes Name of the Workflow Engine Moolet that you want to return the

workflows for.

Response

Endpoint getWorkflows returns the following response:

Type Description

HTTP HTTP status or error code indicating request success or failure. See HTTP status code

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

185

Code definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

id Integer Unique ID of the workflow.

moolet_name String Name of the Workflow Engine Moolet.

workflow_name String Name of the workflow.

description String Description of the workflow.

sequence Integer Sequence number of the workflow.

active Boolean Indicates whether or not the Moolet's associated Workflow Engine is

active.

entry_filter String An SQL-like filter to determine which events, alerts, or Situations can

enter the workflow. If empty, the workflow accepts all events, alerts or

Situations.

sweep_up_filter String An SQL-like filter to intake any additional alerts or Situations from the

database. Not relevant for event workflows.

first_match_only Boolean If enabled, alerts and Situations only pass through actions on the first

time they enter the Workflow Engine. Not relevant for event workflows.

operations JSON

List

List of properties relating to each operation:

Name Type Description

type String Type of operation. Options are: 'action',

'decision' and 'delay'.

operation_name String Name of the operation. Only relevant

for 'action' and 'decision' types.

function_name String Name of the function. Only relevant for

'action' and 'decision' types.

function_args JSON

Object

Arguments for the function.

duration Integer Length of time before the message

goes to the next operation. Only

relevant for 'delay' type.

reset Boolean Determines whether the timer resets

after each occurrence. Only relevant for

'delay' type.

Examples

The following examples demonstrate typical use of endpoint getWorkflows:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

186

Request example

Example cURL request to return workflows associated with the "Alert Workflows" Moolet:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getWorkflows" -H

"Content-Type: application/json; charset=UTF-8" --data-urlencode

"moolet_name=Alert Workflows"

Response example

Example response returning information on the workflows associated with the "Alert Workflows"

Moolet:

[

 {

 "first_match_only": false,

 "sequence": 1,

 "operations": [

 {

 "duration": 0,

 "reset": false,

 "type": "delay"

 },

 {

 "operation_name": "Stop Alert",

 "function_name": "stop",

 "forwarding_behavior": "stop all workflows",

 "type": "action"

 }],

 "moolet_name": "Alert Workflows",

 "workflow_name": "Closed Alerts Filter",

 "entry_filter": "state = 9",

 "active": true,

 "description": "You can optionally use this workflow to prevent closed

alerts from processing.",

 "sweep_up_filter": "((agent = \"Test\") AND (significance = 0)) OR

(severity = 0)",

 "id": 3

 }

]

mergeSituations

A Graze API POST request that merges multiple specified Situations. You can configure whether or not

the new Situation supersedes the original Situations using the supersede_original parameter.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint mergeSituations takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

situations Array of

Numbers

Yes An array of the Situation IDs you want to merge.

Specify using Situation IDs, separating each item with a

comma.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

187

supersede_original Boolean Yes Determines whether or not the original merged

Situations are superseded by the new Situation.

Response

Endpoint mergeSituations returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number ID of the new merged Situation.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint mergeSituations:

Request example

Example cURL request to merge Situations 31, 32, and 33 without superseding the original Situations

by the new one:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/mergeSituations?auth_token=c4316d2cac524b96a1e4c787b

68f7e3f&situations=%5B31%2C32%2C33%5D&supersede_original=false"

Response example

Example response returning the ID of the new merged Situation:

{"sitn_id":30}

rateSituation

A Graze API POST request that applies a rating to a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

188

Endpoint rateSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sig_id Long Yes ID of the Situation you want to rate.

rating Integer Yes Rating that you want to apply to the Situation. This is equivalent to the

number of stars that you can assign to a Situation in the UI. One of:0 =

Not yet rated1 = Bad2 = Poor3 = Adequate4 = Good5 = Excellent

comment String No A comment about the rating you are applying to the Situation.

Response

Endpoint rateSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

rating Number Rating number applied to the Situation.

comment String Comment applied to the Situation.

sitn_id Number ID of the Situation that the rating was applied to.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint rateSituation:

Request example

Example cURL request to apply a rating of 4 to Situation ID 18 with a comment "Rating 4":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/rateSituation" -H

"Content-Type: application/json; charset=UTF-8" -d '{"sig_id" : 18, "rating" :

"4", "comment" : "Rating 4"}'

Response example

Example response returning the rating, comment and Situation ID:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

189

{"rating":4,"comment":"Rating 4","sitn_id":18}

removeAlertFromSituation

A Graze API POST request that removes a specified alert from a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint removeAlertFromSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes ID of the alert you want to remove from the Situation.

sitn_id Number Yes Situation ID.

Response

Endpoint removeAlertFromSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

This endpoint does not remove the alert from the Situation if the alert has been archived to the historic

database even if the Situation is still in the active database.

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint removeAlertFromSituation:

Request example

Example cURL request to remove alert 16 from Situation 7:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/removeAlertFromSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{"alert_id" : 16, "sitn_id" : 7 }'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

190

Response example

A successful request returns the HTTP code 200 and no response text.

removeEventsAnalyserPartitionOverrides

A Graze API POST request that removes all the partition overrides in the Events Analyser configuration.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint removeEventsAnalyserPartitionOverrides takes the following request argument:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint removeEventsAnalyserPartitionOverrides takes no other arguments because it

removes all the partition overrides information in the Events Analyser configuration.

Response

Endpoint removeEventsAnalyserPartitionOverrides returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint

removeEventsAnalyserPartitionOverrides:

Request example

Example cURL request to remove all the partition overrides in the Events Analyser:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/removeEventsAnalyserPartitionOverrides" -H "Content-

Type: application/json; charset=UTF-8"

Response example

A successful request returns the HTTP code 200 and no response text.

removeEventsAnalyserWord

A Graze API POST request that removes a single word from the list of priority words or stop words in

the Events Analyser configuration. This endpoint removes the word from the list of priority words or

stop words depending on the argument you supply. Use updateEventsAnalyserWords to replace an

entire list of priority words or stop words, or addEventsAnalyserWord to add a single word to a list of

priority words or stop words.

See updateEventsAnalyserConfig for updating the other fields in the Events Analyser configuration.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint removeEventsAnalyserWord takes the following request arguments:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

191

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

type String Yes Determines whether the endpoint removes the word from the list of

priority words or stop words. Set to priority_word to remove the

word from the list of priority words. Set to stop_word to remove the

word from the list of stop words.

Response

Endpoint removeEventsAnalyserWord returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint removeEventsAnalyserWord:

Request examples

Example cURL request to remove the word 'fail' from the list of priority words in the Events Analyser

configuration:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/removeEventsAnalyserWord" \

--data-urlencode 'type=priority_word' \

--data-urlencode 'word="fail"'

Example cURL request to remove the word 'then' from the list of stop words in the Events Analyser

configuration:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/removeEventsAnalyserWord" \

--data-urlencode 'type=stop_word' \

--data-urlencode 'word="then"'

Response example

A successful request returns the HTTP code 200 and no response text.

removeSigCorrelationInfo

A Graze API DELETE request that removes all correlation information related to a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint removeSigCorrelationInfo takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

192

sitn_id Number Yes Situation ID.

service_name String No Service name.

external_id String No External ID.

Response

Endpoint removeSigCorrelationInfo returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint removeSigCorrelationInfo:

Request example

Example cURL request to remove the correlation information from Situation ID 3 for service name "my

service 7" and external ID "my resource 7":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/removeSigCorrelationInfo" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 3, "service_name" : "my

service 7", "external_id" : "my resource 7"}'

Response example

A successful request returns the HTTP code 200 and no response text.

removeSituationPrimaryTeam

A Graze API POST request that removes the primary team from a Situation. The team remains assigned

to the Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint removeSituationPrimaryTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

193

sitn_id Number Yes ID of the Situation that you want to remove the primary team from.

Response

Endpoint removeSituationPrimaryTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number ID of the Situation that the primary team has been removed from.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint removeSituationPrimaryTeam:

Request example

Example cURL request to remove the primary team from Situation 1906:

curl -G -u graze:graze -k

"https://localhost/graze/v1/removeSituationPrimaryTeam" --data-urlencode

'sitn_id=1906'

Response example

Example response returning the Situation ID that the primary team has been removed from:

{

 "sitn_id": 1906

}

reorderWorkflows

A Graze API POST request that reorders the sequence of workflows within a Workflow Engine Moolet.

Back to Graze API EndPoint Reference.

Request arguments

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

194

Endpoint reorderWorkflows takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

moolet_name String Yes Name of the Workflow Engine Moolet.

workflow_sequence Array of

Integers

Yes An ordered array of all the workflow IDs within the

Workflow Engine Moolet. The position of each workflow ID

is its position within the Workflow Engine Moolet.

Response

Endpoint reorderWorkflows returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint reorderWorkflows:

Request example

Example cURL request to order the workflows within the "Alert Workflows" Workflow Engine as

workflow ID 3 then workflow ID 1:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/reorderWorkflows"

\

-H "Content-Type: application/json; charset=UTF-8" \

--data '{ "moolet_name" : "Alert Workflows","workflow_sequences" : [3,1] }'

Response example

A successful request returns the HTTP code 200 and no response text.

resolveAlerts

A Graze API POST request that resolves a list of alerts.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint resolveAlerts takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

alert_ids Array of

Numbers

Yes List of IDs of the alerts you want to resolve.

thread_entry_comment String No Thread entry comment you want to add to the

resolved alerts. HTML and XML tags are stripped from

the thread entry text. Reserved characters are

converted to HTML entities, for example, & is

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

195

converted to &.

Response

Endpoint resolveAlerts returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

status Boolean Whether or not the alerts were resolved.

resolved_alerts Number list List of IDs of alerts that were resolved.

failed_alerts Number list List of IDs of alerts that failed to be resolved.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint resolveAlerts:

Request example

Example cURL request to set alerts 45, 76, and 352 as resolved with the comment "Resolved'":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/resolveAlerts" -H

"Content-Type: application/json; charset=UTF-8" -d '{"alert_ids" : [45,76,352],

"thread_entry_comment" : "Resolved"}'

Response example

Example response showing that alerts 45, 76 and 352 were successfully resolved and no alerts failed:

{"status":true,"resolved_alerts":[45,76,352],"failed_alerts":[]}

resolveSituation

A Graze API POST request that resolves a specified Situation that is currently open.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

196

Request arguments

Endpoint resolveSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

Response

Endpoint resolveSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint resolveSituation:

Request example

Example cURL request to mark Situation ID 5 as resolved:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/resolveSituation"

-H "Content-Type: application/json; charset=UTF-8" -d '{"sitn_id" : 5}'

Response example

A successful request returns the HTTP code 200 and no response text.

sendToWorkflow

A Graze API POST request that sends a Moolet Inform message to a workflow in an Inform Workflow

Engine.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint sendToWorkflow takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

197

See the authenticate endpoint for more information.

engine_name String Yes Name of an active Inform Workflow Engine.

workflow_name String Yes Name of an active workflow within the specified Inform Workflow

Engine.

sitn_id Number No ID of the Situation you want to send to the workflow.

alert_id Number No ID of the alert you want to send to the workflow.

context Map No Additional context to send with the message. This must be

available as an action in the workflow as

getWorkflowContext().

Response

Endpoint sendToWorkflow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint sendToWorkflow:

Request examples

Example cURL request to send a message to a Situation Inform Workflow Engine about Situation ID 12:

curl -X POST -u graze:graze -k "https://localhost/graze/v1/sendToWorkflow" \

-H "Content-Type: application/json; charset=UTF-8" \

--data '{

 "engine_name" : "Situation Inform Engine",

 "workflow_name": "Workflow name",

 "sitn_id": 12,

 "context": {"hello": "world"}

 }'

Example cURL request to send a message to an alert Inform Workflow Engine about alert ID 35:

curl -X POST -u graze:graze -k "https://localhost/graze/v1/sendToWorkflow" \

-H "Content-Type: application/json; charset=UTF-8" \

--data '{

 "engine_name" : "Alert Inform Engine",

 "workflow_name": "Workflow name",

 "alert_id": 35,

 "context": {"hello": "world"}

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

setAlertAcknowledgeState

A Graze API POST request that acknowledges or unacknowledges the owner of the specified alert ID.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

198

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setAlertAcknowledgeState takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes ID of the alert that you want to acknowledge or not acknowledge.

acknowledged Number Yes The acknowledge state you want to apply to the alert: 0 for

unacknowledged, 1 for acknowledged.

Response

Endpoint setAlertAcknowledgeState returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setAlertAcknowledgeState:

Request example

Example cURL request to set the acknowledge state of alert ID 7 to "acknowledged":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setAlertAcknowledgeState" -H "Content-Type:

application/json; charset=UTF-8" -d '{"alert_id" : 7, "acknowledged" : 1 }'

Response example

A successful request returns the HTTP code 200 and no response text.

setAlertSeverity

A Graze API POST request that sets the severity level of an alert.

Back to Graze API EndPoint Reference.

Request arguments

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

199

Endpoint setAlertSeverity takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

alert_id Number Yes Alert ID.

severity Number Yes The severity of the alert as an integer:0 = Clear1 = Indeterminate2 =

Warning3 = Minor4 = Major5 = Critical

Response

Endpoint setAlertSeverity returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setAlertSeverity:

Request example

Example cURL request to set the alert with ID 7 as "Critical":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/setAlertSeverity"

-H "Content-Type: application/json; charset=UTF-8" -d '{"alert_id" : 7,

"severity" : 5 }'

Response example

A successful request returns the HTTP code 200 and no response text.

setGlobalEntropyThreshold

A Graze API POST request that sets the global default entropy threshold or a manager-specific entropy

threshold, either as a value or as a percentage.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

200

Request arguments

Endpoint setGlobalEntropyThreshold takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

type String Yes Either:

entropy_value: Indicates that you want to set a global entropy

threshold value.

percentage_reduction: Indicates that you want to set a percentage

that you want to reduce the current global entropy threshold by.

value Number Yes Entropy threshold. A number between 0.0 and 1.0 for both an entropy

value and a percentage.

name String No Name of the entropy threshold.

filter String No An SQL-like filter of the manager.

Response

Endpoint setGlobalEntropyThreshold returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint setGlobalEntropyThreshold:

Request example

Example cURL request to set an entropy threshold as a percentage of 50% for manager "manager1":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setGlobalEntropyThreshold" -H "Content-Type:

application/json; charset=UTF-8" -d '{ \

"type" : "percentage_reduction", \

"value" : 0.5, \

"name" : "manager1", \

"filter" : "manager='manager1'" \

}'

Response example

A successful request returns the HTTP code 200 and no response text.

setPrcLabels

A Graze API POST request that sets the probable root cause (PRC) labels for specified alerts within a

Situation. You must specify at least one PRC level and an alert ID for that level.

You can mark alerts as causal, non-causal or unlabeled within a Situation. An alert can have different

PRC levels within different Situations.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

201

Request arguments

Endpoint setPrcLabels takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

sitn_id Number Yes Situation ID.

causal Array of

Numbers

No, if you specify

non_causal or

unlabelled.

A list of alert IDs that you want to be marked as

causal.

non_causal Array of

Numbers

No, if you specify

causal or unlabelled.

A list of alert IDs that you want to be marked as

non-causal.

unlabelled Array of

Numbers

No, if you specify

causal or non_causal.

A list of alert IDs that you want to be marked as

unlabeled.

Response

Endpoint setPrcLabels returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setPrcLabels:

Request example

Example cURL request to set alert ID 1 as causal, alert IDs 2 and 3 as non-causal, and alert 4 as

unlabeled:

curl -POST -u graze:graze -k -v "https://localhost/graze/v1/setPrcLabels" --

data-urlencode "sitn_id=1" --data-urlencode "causal=[1]" --data-urlencode

"non_causal=[2,3]" --data-urlencode "unlabelled=[4]"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

202

Response example

A successful request returns the HTTP code 200 and no response text.

setResolvingThreadEntry

A Graze API POST request that sets or clears a thread entry in a Situation as a resolving step. Threads

are comments or 'story activity' on Situations.

This endpoint returns a Boolean indicating whether the thread entry was successfully set or cleared as a

resolving step.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setResolvingThreadEntry takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

entry_id Number Yes ID of the thread entry.

resolving_step Boolean Yes Whether you are setting or clearing the thread entry as a

resolving step.

Response

Endpoint setResolvingThreadEntry returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

Boolean Whether or not the thread entry was successfully set or cleared as a resolving step.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setResolvingThreadEntry:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

203

Example cURL request to set thread entry 28 as a resolving step:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setResolvingThreadEntry" -H "Content-Type:

application/json; charset=UTF-8" -d '{"entry_id" : 28, "resolving_step" : true}'

Response example

Example response returning that the thread entry was successfully set as a resolving step:

true

setSituationAcknowledgeState

A Graze API POST request that acknowledges or unacknowledges the moderator who has been

assigned to a Situation. The Situation must be assigned for this request to be successful.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationAcknowledgeState takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

acknowledged Number Yes The acknowledge state:

0 = unacknowledged

1 = acknowledged

Response

Endpoint setSituationAcknowledgeState returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

204

Examples

The following examples demonstrate typical use of endpoint setSituationAcknowledgeState:

Request example

Example cURL request to set the moderator on Situation ID 64 as acknowledged:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setSituationAcknowledgeState" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 64, "acknowledged" : 1 }'

Response example

A successful request returns the HTTP code 200 and no response text.

setSituationDescription

A Graze API POST request that sets the description for a specified Situation.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationDescription takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

description String Yes Description for the Situation ID.

Response

Endpoint setSituationDescription returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setSituationDescription:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

205

Example cURL request to set the description for Situation ID 6 as "This is my description 12345":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setSituationDescription" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 6, "description" : "This is my

description 12345"}'

Response example

A successful request returns the HTTP code 200 and no response text.

setSituationFlags

A Graze API POST request that updates the flags associated with a specified Situation. You can add

flags to or remove them from a Situation.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationFlags takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_ids Array of

Numbers

Yes An array of IDs for the Situations you want to update.

to_add Array of

Strings

Yes Flags to be added to those Situations. If this is an empty list, no

flags are added to the Situation.

to_remove Array of

Strings

Yes Flags you want to remove from the Situation. If this is an empty

list, no flags are removed from the Situation.

Response

Endpoint setSituationFlags returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

206

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setSituationFlags:

Request example

Example cURL request to change the flags assigned to a situation. This change can include adding

and/or removing flags. If one of the change arguments is left empty, nothing will change for that action.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/setSituationFlags"

-H "Content-Type: application/json; charset=UTF-8" -d '{"sitn_ids":[1],

"to_add": ["NOTIFIED","TICKETED"],"to_remove": [] }'

Response example

A successful request returns the HTTP code 200 and no response text.

setSituationPrimaryTeam

A Graze API POST request that sets one of the teams already assigned to a Situation as the primary

team.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationPrimaryTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

sitn_id Number Yes ID of the Situation.

team_id Number No, if you specify

team_name.

ID of the team that you want to make the primary team.

team_name String No, if you specify

team_id.

Name of the team that you want to make the primary team.

Response

Endpoint setSituationPrimaryTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

sitn_id Number ID of the Situation.

primary_team_id Number ID of the primary team.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

207

primary_team_name String Name of the primary team.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setSituationPrimaryTeam:

Request example

Example cURL request to set the team "Database Management System" as the primary team on

Situation 1906:

curl -X POST -u graze:graze -k

"https://localhost/graze/v1/setSituationPrimaryTeam" -H "Content-Type:

application/json; charset=UTF-8" --data '{

 "sitn_id" : 1906,

 "team_name" : "Database Management System"

}'

Response example

Example response returning that team "Database Management System" is the primary team on

Situation 1906:

{

 "sitn_id": 1906,

 "primary_team_id": 12,

 "primary_team_name": "Database Management System"

}

setSituationProcesses

A Graze API POST request that applies a list of processes to a specified Situation. Any other processes

already associated with the Situation are removed.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationProcesses takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

208

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

process_list Array of

Strings

Yes A Javascript array of process names as text strings. If any

processes supplied do not exist in the database, the request

creates them and assigns them to the Situation.

Response

Endpoint setSituationProcesses returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setSituationProcesses:

Request example

Example cURL request to set the processes for Situation ID as "Knowledge Management" and "90nm

Manufacturing":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setSituationProcesses" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 7, "process_list" :

["Knowledge Management", "90nm Manufacturing"]}

Response example

A successful request returns the HTTP code 200 and no response text.

setSituationServices

A Graze API POST request that applies a list of external services to a specified Situation. Any other

services already associated with the Situation are removed.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint setSituationServices takes the following request arguments:

Name Type Required Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

209

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Number Yes Situation ID.

service_list Array of

Strings

Yes A Javascript array of service names as text strings. If any

services supplied do not exist in the database, the request

creates them and assigns them to the Situation.

Response

Endpoint setSituationServices returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint setSituationServices:

Request example

Example cURL request to [complete]:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/setSituationServices" -H "Content-Type:

application/json; charset=UTF-8" -d '{"sitn_id" : 8, "service_list" :

["Knowledge Management", "90nm Manufacturing"]}'

Response example

A successful request returns the HTTP code 200 and no response text.

shareToolAccess

A Graze API POST request that shares access to a tool with other users, teams, or roles, or makes it

global so that all users can access it. When a user creates a tool, it is automatically shared globally. You

can use this endpoint to restrict its availability and ensure that tools are only available to users who

need them. Using this endpoint to share access to a tool overwrites any existing shares.

Back to Graze API EndPoint Reference.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

210

Request arguments

Endpoint shareToolAccess takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

tool_id Number Yes ID of the tool that you want to share access for.

domain String Yes Domain to share access with. One of: user, team, role, or global.

domain_ids Array Yes/No An array of one or more IDs within the domain. Optional for the

global domain.

Response

Endpoint shareToolAccess returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

domain_ids Array An array of the IDs for the domain that you requested to share tool access with.

domain String Domain that you requested to share access with. One of: user, team, role, or

global.

tool_id Number ID of the tool you requested to share access with.

Examples

The following examples demonstrate typical use of endpoint shareToolAccess:

Request example

Example cURL request to share access of tool ID 15 with team ID 3:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/shareToolAccess" -

H "Content-Type: application/json; charset=UTF-8" -d '{"tool_id":15,

"domain":"team", "domain_ids":[3]}'

Response example

Example response returning that the request to share access of tool ID 15 with team ID 3 was

successful:

{

 "domain_ids": [

 3

],

 "domain": "team",

 "tool_id": 15

}

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

211

/situation/{situationID}/topologies

The /situation/{situationID}/topologies endpoint allows you to retrieve the topologies related

to the alerts in a specified Situation.

To retrieve the node and link details for a specified Situation and topology see getSituationTopology.

Back to Topologies API Endpoint Reference.

GET

Retrieves the topologies related to a specified Situation.

Path parameters

The GET request takes the following path parameter:

Name Type Required Description

 sitn_id Number Yes ID of the Situation for which to retrieve topologies.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

causal Boolean Flag indicating whether this topology caused the Situation to be created.

Example

The following example demonstrates making a GET request to the

situation/{situationID}/topologies endpoint.

Request example

Example cURL request for topologies related to the alerts in Situation with ID 12:

curl \

https://example.com/api/v1/situation/12/topologies \

-u phil:password123 \

Response example

Example response returning the details of two topologies:

[

 {

 },

 {

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

212

 }

]

updateBotRecipe

A Graze API POST request that updates a Cookbook Bot Recipe.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateBotRecipe takes the following request arguments. You must supply the name of the

Bot Recipe plus at least one other argument that you want to change.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

name String Yes Name of the Recipe that you want to update.

cookbooks Array of

Strings

No A list of the Cookbooks that this Recipe belongs to.

description String No Description of the Recipe.

alert_threshold Positive

Integer

No Minimum number of alerts required before Cookbook

creates a Situation.

trigger String No A filter that determines the alerts that Cookbook

considers for Situation creation. Cookbook includes

alerts that match the trigger filter. By default Cookbook

only includes alerts with a severity of 'Critical'.

exclusion String No A filter that determines the alerts to exclude from

Situation creation. Cookbook ignores alerts that match

the exclusion filter. For details on creating a filter, see

seed_alert String No A filter that determines whether to create a Situation

from a seed alert. The seed alert must meet both the

trigger, exclusion and seed_alert criteria to create

a Situation. Cookbook considers subsequent alerts for

clustering if they meet the trigger and exclusion filter

criteria. Alerts that arrive prior to the seed alert that met

the trigger and exclusion filter criteria do not form

Situations.

rate Positive

Integer

No Rate, in number of alerts per second. Cookbook clusters

alerts if they arrive at a higher rate than is specified here.

Cookbook uses rate together with min_sample_size

and max_sample_size to determines whether to cluster

alerts into Situations. See Cookbook and Recipe

Examples.

min_sample_size Positive

Integer

No Number of alerts that must arrive before the Cookbook

starts to calculate the alert rate. See Cookbook and

Recipe Examples. Valid only if rate is non-

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

213

zero.Cookbook and Recipe Examples

max_sample_size Positive

Integer

No Maximum number of alerts that are considered in the

alert rate calculation. When more than this number of

alerts have arrived, Cookbook discards the oldest alerts

and calculates the alert rate based on the number of

alerts in the max_sample_size. See Cookbook and

Recipe Examples for more information. Valid only if rate

is non-zero.Cookbook and Recipe Examples

cook_for Positive

Integer

No Minimum time period, in seconds, that the Cookbook

Recipe clusters alerts for before it resets and starts a

new cluster. See Cookbook and Recipe Examples for

more information.Cookbook and Recipe Examples

If you set a different cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for time inherit the value from the Cookbook.

cook_for_extension Positive

Integer

No Time period that the Cookbook Recipe can extend

clustering alerts for before it resets and starts a new

cluster. Setting this value enables the cook for auto-

extension feature for this Cookbook. As Cookbook

receives related alerts, it continues to extend the total

clustering time until the max_cook_for period is

reached. Used in conjunction with the max_cook_for

value, the cook_for_extension period helps to ensure

that Cookbook continues to cluster alerts together that

are related to the same failure. The

cook_for_extension period only applies to new

related alerts; it does not apply to existing alerts that are

updated with new events. See Cookbook and Recipe

Examples for more information.

If you set a different cook_for_extension time for a

Recipe, it overrides the Cookbook value. Recipes without

a cook_for_extension time inherit the value from the

Cookbook.

max_cook_for Positive

Integer

No Maximum time period that the Cookbook Recipe clusters

alerts for before it resets and starts a new cluster. It

works in conjunction with the cook_for_extension

time to help ensure that Cookbook continues to cluster

alerts together that are related to the same failure. This

value is ignored unless the cook_for_extension time

is specified. See Cookbook and Recipe Examples for

more information.Cookbook and Recipe Examples

If you set a different max_cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

max_cook_for value inherit the value from the

Cookbook.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

214

cluster_by String No Determines Cookbook's clustering behavior. Set to an

empty string to use the Cookbook cluster_by setting.

Set to first_match so that Cookbook adds alerts to the

first cluster over the similarity threshold value. Set to

closest_match to add alerts to the cluster with the

highest similarity greater than the similarity threshold

value. This option may be less efficient because

Cookbook needs to compare alerts against each cluster

in a Recipe. Set to an empty string to use the Cookbook

setting.

If you set a different cluster_by value for a Recipe, it

overrides the Cookbook value. Recipes without a

cluster_by value inherit the value from the Cookbook.

initialize_function JSON

Function

Name

No Default is initBuckets.

member_function JSON

Function

Name

No Default is checkBucket.

can_start_cluster JSON

Function

Name

No Default is null.

use_in_recipe JSON

Function

Name

No Default is null.

similarity Double No Value between 0 and 1. Default is 0.8.

Response

Endpoint updateBotRecipe returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateBotRecipe:

Request example

Example cURL request to update the alert threshold to 4 in Bot Recipe "BotRecipe2":

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateBotRecipe" -

H "Content-Type: application/json; charset=UTF-8" -d

'{"name":"BotRecipe2","alert_threshold":4}'

Response example

A successful request returns the HTTP code 200 and no response text.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

215

updateClosedAlert

A Graze API POST request that updates the description and custom info of a closed alert during the

grace period. The grace period is when an alert is closed and in the active database, before it is

archived to the historic database. If a custom info field already exists, this endpoint replaces the

previous value; if the custom info field does not exist, this endpoint adds it.

The updateClosedAlert endpoint returns an error if the alert is open, or if it is closed and has been

archived to the historic database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateClosedAlert takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

alert_id Number Yes ID of the closed alert that you want to update.

description String No New description of the alert.

custom_info JSON

Object

No A JSON object containing the custom info values that you want to

update. If the key already exists, the endpoint replaces the existing

value. If the key does not exist, the endpoint adds it.

Response

Endpoint updateClosedAlert returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation No

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint updateClosedAlert:

Request examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

216

Request example to replace description

Example cURL request to update the description for alert ID 21. The description value "new_desc"

replaces the previous value.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateClosedAlert"

-H "Content-Type: application/json; charset=UTF-8" -d '{

"alert_id" : 21, \

"description": "new_desc" \

}'

Request example to replace description and custom info

Example cURL request to update the description and custom info for alert ID 21. The description

value "new_desc" replaces the previous value. If the custom info fields field1 and field2 did not

exist, the endpoint adds them. If the custom info fields field1 and field2 did previously exist, the

endpoint overwrites them with the values "value1" and "value2".

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateClosedAlert"

-H "Content-Type: application/json; charset=UTF-8" -d '{ \

"alert_id" : 21, \

"description":"new_desc", \

"custom_info": { \

 "field1": "value1", \

 "field2": "value2" \

 }

}'

Request example to update custom info

Example cURL request to update the custom info for alert ID 21.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateClosedAlert"

-H "Content-Type: application/json; charset=UTF-8" -d '{ \

"alert_id" : 21, \

"custom_info": { \

 "field1": "new_value1", \

 "field3": "value3" \

 } \

}'

If the alert custom info contained the following fields before the cURL request:

 field1: value1

 field2: value2

After the cURL request, the alert custom info contains the following fields. field1 has been

overwritten, field2 is unchanged, and field3 has been added.

 field1: new_value1

 field2: value2

 field3: value3

Response example

A successful request returns the HTTP code 200 and no response text.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

217

updateClosedSituation

A Graze API POST request that updates the description and custom info of a closed Situation during the

grace period. The grace period is when a Situation is closed and in the active database, before it is

archived to the historic database. If a custom info field already exists, this endpoint replaces the

previous value; if a custom info field does not exist, this endpoint adds it.

The updateClosedSituation endpoint returns an error if the Situation is open, or if it is closed and

has been archived to the historic database.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateClosedSituation takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

sitn_id Number Yes ID of the closed Situation that you want to update.

description String No New description of the Situation.

custom_info JSON

Object

No A JSON object containing the custom info values that you want to

update. If the key already exists, the endpoint replaces the existing

value. If the key does not exist, the endpoint adds it.

Response

Endpoint updateClosedSituation returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

API update behavior

The behavior of this endpoint depends on whether the relevant alert or Situation is open, closed and

still in the active database, or closed and archived to the historic database. This endpoint updates the

alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation No

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of endpoint updateClosedSituation:

Request examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

218

Request example to replace description and custom info

Example cURL request to update the description and custom info for Situation ID 555. The

description value "new_desc" replaces the previous value. If the custom info fields field1 and

field2 did not exist, the endpoint adds them. If the custom info fields field1 and field2 did

previously exist, the endpoint overwrites them with the values "value1" and "value2".

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateClosedSituation" -H "Content-Type:

application/json; charset=UTF-8" -d '{ \

"sitn_id" : 555, \

"description":"new_desc", \

"custom_info": { \

 "field1": "value1", \

 "field2": "value2" \

 } \

}'

Request example to update custom info

Example cURL request to update the custom info for Situation ID 555.

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateClosedAlert"

-H "Content-Type: application/json; charset=UTF-8" -d '{ \

"sitn_id" : 555, \

"custom_info": { \

 "field1": "new_value1", \

 "field3": "value3" \

 } \

}'

If the Situation custom info contained the following fields before the cURL request:

 field1: value1

 field2: value2

After the cURL request, the Situation custom info contains the following fields. field1 has been

overwritten, field2 is unchanged, and field3 has been added.

 field1: new_value1

 field2: value2

 field3: value3

Response example

A successful request returns the HTTP code 200 and no response text.

updateCookbook

A Graze API POST request that updates a Cookbook.

If you change a Cookbook, see Cookbook Configuration Changes for information on how these changes

affect the clusters that Cookbook creates.

Back to Graze API EndPoint Reference.

Request arguments

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID658cdf6b371bfc4272c3bcf98c5db4bb

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

219

Endpoint updateCookbook takes the following request arguments. You must supply the name of the

Cookbook plus at least one other argument that you want to change.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

name String Yes Name of the Cookbook that you want to update.

description String No Description of the Cookbook.

process_output_of Array of

Strings

No Defines the source of the alerts that Cookbook

processes. You can specify none, one or more

Moolets. Typically Cookbook processes the output of

its direct upstream neighbor in the processing chain.

Usually this is "Alert Workflows" which are the

output from the Alert Workflow Engine.si

cluster_by String No Determines Cookbook's clustering behavior. Set to

first_match so that Cookbook adds alerts to the

first cluster over the similarity threshold value. Set to

closest_match to add alerts to the cluster with the

highest similarity greater than the similarity threshold

value. This option may be less efficient because

Cookbook needs to compare alerts against each

cluster in a Recipe.

If you set a different cluster_by value for a Recipe,

it overrides the Cookbook value. Recipes without a

cluster_by value inherit the value from the

Cookbook.

entropy_threshold Number No Minimum entropy value an alert must have in order

for Cookbook to consider it for clustering it into a

Situation. Cookbook does not include any alerts with

an entropy value below the threshold in Situations.

threshold_type String No Type of entropy threshold you want Cookbook to

use. One of:global: Use the global entropy

threshold. This is a single entropy threshold that

Cookbook applies to all alerts to eliminate noisy

alerts with a lower entropy value.manager: Use

entropy thresholds set up for individual managers. If

the manager for an alert has an entropy threshold

set, Cookbook uses this value to eliminate noisy

alerts with a lower entropy value. If an alert's

manager does not have an entropy threshold,

Cookbook uses the global entropy threshold to filter

out alerts.explicit_value: Use the value set in

entropy_threshold to eliminate noisy alerts with a

lower entropy value.none: Do not use entropy

thresholds. Cookbook will not filter out any alerts

Cisco Crosswork Situation Manager 8.0.x Developer Guide

220

based on their entropy value.If you do not specify an

entropy threshold, the default is global. The default

global entropy threshold is 0. This means that unless

you actively set up a global threshold, Cookbook will

not filter out any alerts based on entropy values.See

Configure Entropy Thresholds for more information

on setting global and manager-specific entropy

thresholds.

cook_for Integer No Minimum time period, in seconds, that Cookbook

clusters alerts for before the Recipe resets and starts

a new cluster. See Cookbook and Recipe Examples

If you set a different cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for time inherit the value from the Cookbook.

cook_for_extension Integer No Time period that Cookbook can extend clustering

alerts for before the Recipe resets and starts a new

cluster. Setting this value enables the cook for auto-

extension feature for this Cookbook. As Cookbook

receives related alerts, it continues to extend the

total clustering time until the max_cook_for period

is reached. Used in conjunction with the

max_cook_for value, the cook_for_extension

period helps to ensure that Cookbook continues to

cluster alerts together that are related to the same

failure. The cook_for_extension period only

applies to new related alerts; it does not apply to

existing alerts that are updated with new events. See

Cookbook and Recipe Examples

If you set a different cook_for_extension time for

a Recipe, it overrides the Cookbook value. Recipes

without a cook_for_extension time inherit the

value from the Cookbook.

max_cook_for Integer No Maximum time period that Cookbook clusters alerts

for before the Recipe resets and starts a new cluster.

It works in conjunction with the

cook_for_extension time to help ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. This value is ignored

unless the cook_for_extension time is specified.

If cook_for_extension is set and this value is not

set, the default is three times the cook_for value.

See Cookbook and Recipe Examples

If you set a different max_cook_for time for a

Recipe, it overrides the Cookbook value. Recipes

without a max_cook_for value inherit the value from

the Cookbook.

scale_by_severity Boolean No Determines whether Cookbook ignores alerts with a

severity of 0 (Clear). Set to true if you want

Cookbook to ignore alerts with a severity of 0

(Clear). Set to false if you want Cookbook to

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

221

include alerts with a severity of 0 (Clear).

first_recipe_match_only Boolean No Defines whether Cookbook treats Recipes in priority

order. If set to true, Cookbook adds an alert to a

cluster created by the highest priority Recipe that

meets the clustering criteria. The priority order is

defined by the order of the Recipes in the recipes

list. If set to false, Cookbook adds an alert to

clusters in all the Recipes that meet the clustering

criteria.

recipes Array of

Strings

No A list of the Recipes in this Cookbook. You must

supply at least one Recipe. If you set

first_recipe_match_only to first_match,

Cookbook uses the order of the Recipes in this list to

determine their priority. The first Recipe has the

highest priority.

run_on_startup Boolean No Whether Cookbook should start when Moogfarmd

starts.

moobot String No The Moobot you want Cookbook to use if there are

any Bot Recipes. See Recipe Types for more

information.

Response

Endpoint updateCookbook returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

This endpoint returns an error code if the values of entropy_threshold and threshold_type are

inconsistent. For example, if the entropy_threshold is set to 0.4 and threshold_type is set to

global.

Examples

The following examples demonstrate typical use of endpoint updateCookbook:

Request examples

Example cURL request to update the run_on_startup and cook for auto-extension arguments for

Cookbook 'GrazeCookBook1':

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

"name" : "GrazeCookBook1", \

"run_on_startup":true, \

"cook_for_extension":7200, \

"max_cook_for":14400 \

}'

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

222

Example cURL request to update Cookbook 'Default Cookbook' to use entropy thresholds set up for

individual managers:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

"name" : "Default Cookbook", \

"threshold_type": "manager" \

}'

Example cURL request to update Cookbook 'GrazeCookbook1' to use an explicit entropy threshold for

this Cookbook of 0.15:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateCookbook" -H

"Content-Type: application/json; charset=UTF-8" -d \

'{ \

"name" : "Default Cookbook", \

"entropy_threshold": 0.15, \

"threshold_type": "explicit_value" \

}'

Response example

A successful request returns the HTTP code 200 and no response text.

updateDefaultMergeGroup

A Graze API POST request that updates the default merge group in Cisco Crosswork Situation Manager.

Clustering algorithms, such as Cookbook and Tempus, use the default values in the default merge

group unless you have set up custom merge groups with different values to merge Situations from

these clustering algorithms. You can set up merge groups using the UI (see Merge Groups for details)

or using the Graze API endpoint addMergeGroup.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateDefaultMergeGroup takes the following request arguments:

Name Type Required Description

alert_threshold Integer No Minimum number of alerts that must be present

in a cluster before it can become a Situation in

the merge group. Must be greater than or equal

to 1. Default value is 1.

situation_similarity_limit Floating

Point

No Percentage of alerts two Situations must share

before they are merged. A value between 0 and

1. Default value is 0.7.

Response

Endpoint updateDefaultMergeGroup returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateDefaultMergeGroup:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

223

Request example

Example cURL request to set the default merge group's alert_threshold to 2:

curl -X POST

-u graze:graze -

k -v "https://example.com/graze/v1/updateDefaultMergeGroup"

-H "Content-Type: application/json; charset=UTF-8"

-d '{

 "alert_threshold":2

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

updateEventsAnalyserConfig

A Graze API POST request that updates the Events Analyser configuration.

You cannot use this endpoint to update the lists of priority words and stop words in the Events Analyser

configuration. Use updateEventsAnalyserWords to replace an existing list of priority words or stop

words. Use addEventsAnalyserWord to add a single word to a list of priority words or stop words, or

removeEventsAnalyserWord to remove a single word.

If you use partitions in the entropy calculations, use updateEventsAnalyserPartitionOverrides to update

the Events Analyser configuration with any partition overrides you want to implement.

Back to Graze API EndPoint Reference.

Request arguments

The updateEventsAnalyserConfig endpoints accepts the following request arguments. Authenticate

the endpoint and provide at least one of the following arguments. The endpoint only updates the

properties provided.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

mask JSON

Object

No Defines which token types the Events Analyser includes or

excludes from its entropy calculation. If a token type is set to

false, the entropy calculation includes it. If it is set to true,

the entropy calculation excludes the token type. Masking

token types, such as dates or numbers, ensures that tokens

are not given a higher entropy value than they should have

because of unique numbers or dates.

The mask argument contains the following options:path: Set

to true to exclude file paths from the entropy

calculation.ip_address: Set to true to exclude IP

addresses from the entropy calculation.mac_address: Set

to true to exclude MAC addresses from the entropy

calculation.url: Set to true to exclude URLs from the

entropy calculation.email: Set to true to exclude email

addresses from the entropy calculation.date_time: Set to

Cisco Crosswork Situation Manager 8.0.x Developer Guide

224

true to exclude date and time values from the entropy

calculation.number: Set to true to exclude ordinary

numbers from the entropy calculation.hex: Set to true to

exclude hex numbers from the entropy calculation.oid: Set

to true to exclude object identifiers from the entropy

calculation.guid: Set to true to exclude globally unique

identifiers, also know as universally unique identifiers

(UUIDs), from the entropy calculation.word: Set to true to

exclude words from the entropy calculation.

Default is:

{
 "path" : false,
 "ip_address" : false,
 "mac_address" : false,
 "url" : false,
 "email" : false,
 "date_time" : true,
 "number" : true,
 "hex" : false,
 "oid" : false,
 "guid" : false,
 "word" : false
 }

stop_words Boolean No Indicates whether or not the Events Analyser uses stop

words. Stop words are small common words such as

'about', 'at', or 'the'. The Events Analyser automatically

excludes stop words from its entropy calculation. Set to

true to use stop words. Set to false if you do not want to

use stop words. Default is true.

stop_word_length Number No Maximum length of words that are automatically excluded

by the Events Analyser from its entropy calculation. For

example, a value of 3 means the Events Analyser excludes

any words of three or less characters. Default is 0 meaning

that no words are excluded from its entropy calculation.

priority_words Boolean No Indicates whether or not the Events Analyser uses priority

words. The Events Analyser automatically gives alerts

containing any priority words an entropy value of 1. Set to

true to use priority words. Set to false if you do not want

to use priority words. Default is false.

partition_by String No If you want the Events Analyser to partition the data, enter

the property that you want to partition by, for example,

source. Default is NULL so the Events Analyser does not

use partitioning. If you want to use partitioning, you must

enter any relevant information in partition_overrides

below.

fields Array of

Strings

No Properties in each event that contribute to the entropy value

calculation. Default is ["description"]. Cisco

recommends providing a single field only.

casefold Boolean No Indicates whether the Events Analyser should consider

tokens that differ only by case in its entropy calculation. Set

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

225

to true to consider tokens in a different case as the same.

Set to false to consider tokens in a different case as

different. Default is true.

stemming Boolean No Indicates whether the Events Analyser considers words with

the same word stem as the same word in entropy

calculations. For example, should the Events Analyser

consider 'fail', 'failed' and 'failing' as the same word. Set to

true to consider words with the same word stem as the

same. Set to false to consider consider words with the

same word stem as different. Default is false.

stemming_language String No Language used in the events. Default is english.

Response

Endpoint updateEventsAnalyserConfig returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateEventsAnalyserConfig:

Request examples

Example cURL request to enable priority words in the Events Analyser. Use

updateEventsAnalyserWords to add a list of priority words to the Events Analyser configuration.

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/updateEventsAnalyserConfig" \

--data-urlencode 'priority_words=true'

Example cURL request to enable partitioning in the Events Analyser:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/updateEventsAnalyserConfig" \

--data-urlencode 'partition_by=source'

Response example

A successful request returns the HTTP code 200 and no response text.

updateEventsAnalyserPartitionOverrides

A Graze API POST request that updates the Events Analyser with the supplied partition overrides

information. This endpoint overwrites any existing partition overrides.

If you use partitions in the Events Analyser configuration, the endpoint enables you to specify overrides

for specific partitions. These settings override the default configuration you have specified in the

arguments in the endpoint updateEventsAnalyserConfig or in the Cisco Crosswork Situation Manager

UI. For example, the default Events Analyser configuration may not use priority words but for one

partition, London, you might want to enable priority words and set the priority word list to 'NEW_YORK'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
file://document/preview/169170%23UUID545f17fcba1f68cc309d0027b2820dbf
file://document/preview/169170%23UUID545f17fcba1f68cc309d0027b2820dbf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

226

and 'LONDON'. If a partition does not have any overrides, or a property is not set for a partition, the

Events Analyser uses the values in the default configuration.

Use updateEventsAnalyserConfig to set the partition_by parameter to enable the Events Analyser to

calculate entropy by partitions.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateEventsAnalyserPartitionOverrides takes the following request arguments. If an

argument is empty or set to null it is set to null in the database.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more

information.

partition_overrides JSON

Object

Yes A JSON object containing all the partition override

information that you want to create.

The partition_overrides object has the following format. For any partitions, define the arguments

where you want to override the default Events Analyser configuration.

Name Type Required Description

mask JSON

Object

No Defines which token types the Events Analyser includes

or excludes from its entropy calculation for this partition.

If a token type is set to false, the entropy calculation

includes it. If it is set to true, the entropy calculation

excludes the token type. Masking token types, such as

dates or numbers, ensures that tokens are not given a

higher entropy value than they should have because of

unique numbers or dates.

The mask argument contains the following options:path:

Set to true to exclude file paths from the entropy

calculation.ip_address: Set to true to exclude IP

addresses from the entropy calculation.mac_address:

Set to true to exclude MAC addresses from the entropy

calculation.url: Set to true to exclude URLs from the

entropy calculation.email: Set to true to exclude email

addresses from the entropy calculation.date_time: Set

to true to exclude date and time values from the entropy

calculation.number: Set to true to exclude ordinary

numbers from the entropy calculation.hex: Set to true to

exclude hex numbers from the entropy calculation.oid:

Set to true to exclude object identifiers from the entropy

calculation.guid: Set to true to exclude globally unique

identifiers, also know as universally unique identifiers

(UUIDs), from the entropy calculation.word: Set to true

to exclude words from the entropy calculation.

stop_words Boolean No Indicates whether or not the Events Analyser uses stop

words for this partition. Stop words are small common

words such as 'about', 'at', or 'the'. The Events Analyser

automatically excludes stop words from its entropy

calculation. Set to true to use stop words. Set to false

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

227

if you do not want to use stop words.

stop_words_list JSON

Array of

Strings

No List of stop words that you want the Events Analyser to

ignore in its entropy calculation for this partition.

stop_word_length Number No Maximum length of words that are automatically

excluded by the Events Analyser from its entropy

calculation for this partition. For example, a value of 3

means the Events Analyser excludes any words of three

or less characters.

priority_words Boolean No Indicates whether or not the Events Analyser uses priority

words in its entropy calculation for this partition. The

Events Analyser automatically gives alerts containing any

priority words an entropy value of 1. Set to true to use

priority words. Set to false if you do not want to use

priority words.

priority_words_list JSON

Array of

Strings

No List of priority words that you want the Events Analyser to

automatically assign an entropy value of 1 in its entropy

calculation for this partition.

fields JSON

Array of

Strings

No Properties in each event that contribute to the entropy

calculation for this partition. Cisco recommends

specifying a single field only.

casefold JSON

Object

No Indicates whether the Events Analyser should consider

tokens that differ only by case in its entropy calculation

for this partition. Set to true to consider tokens in a

different case as the same. Set to false to consider

tokens in a different case as different.

stemming Boolean No Indicates whether the Events Analyser considers words

with the same word stem as the same word in its entropy

calculation for this partition. For example, should the

Events Analyser consider 'fail', 'failed' and 'failing' as the

same word. Set to true to consider words with the same

word stem as the same. Set to false to consider words

with the same word stem as different.

stemming_language String No Language used in the events.

Response

Endpoint updateEventsAnalyserPartitionOverrides returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

228

The following examples demonstrate typical use of endpoint

updateEventsAnalyserPartitionOverrides:

Request example

Example cURL request to update the Events Analyser with partition overrides for two partitions,

'NEW_YORK' and 'LONDON':

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateEventsAnalyserPartitionOverrides" -H "Content-

Type: application/json; charset=UTF-8" -d \

'{ \

 "partition_overrides": "{ \

 "NEW_YORK": { \

 "fields": ["description"], \

 "casefold": true, \

 "stop_words": false, \

 "priority_words": false, \

 "stop_word_length": 3 \

 }, \

 "LONDON": { \

 "mask": { \

 "date_time": false, \

 "ip_address": true \

 }, \

 "stemming": true, \

 "stop_words": true, \

 "priority_words": true, \

 "stop_words_list":

["france","germany","italy","peru","india","japan","korea"], \

 "stop_word_length": 1, \

 "priority_words_list": ["reboot","shutdown"] \

 } \

 }" \

}'

Response example

A successful request returns the HTTP code 200 and no response text.

updateEventsAnalyserWords

A Graze API POST request that replaces an existing list of priority words or stop words in the Events

Analyser configuration. This endpoint replaces the list of priority words or stop words depending on the

argument you supply. Use addEventsAnalyserWord to add a single word to an existing list of priority

words or stop words, or use removeEventsAnalyserWord to remove a single word.

See updateEventsAnalyserConfig for updating the other fields in the Events Analyser configuration.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateEventsAnalyserWords takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See

the authenticate endpoint for more information.

type String Yes Determines whether the endpoint replaces the list of priority words

or stop words. Set to priority_word to replace the list of priority

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

229

words. Set to stop_word to replace the list of stop words.

words Array of

Strings

Yes List of priority words or stop words that you want to replace the

existing list.

Response

Endpoint updateEventsAnalyserWords returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateEventsAnalyserWords:

Request examples

Example cURL request to replace the existing list of priority words with the list provided:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/updateEventsAnalyserWords" \

--data-urlencode 'type=priority_word' \

--data-urlencode 'words=["fail", "down", "loss", "low"]'

Example cURL request to replace the existing list of stop words with the list provided:

curl -POST -u graze:graze -k -v

"https://localhost/graze/v1/updateEventsAnalyserWords" \

--data-urlencode 'type=stop_word' \

--data-urlencode 'words=["the", "and","an","if","at","on"]'

Response example

A successful request returns the HTTP code 200 and no response text.

updateMaintenanceWindow

A Graze API POST request that updates an existing maintenance window.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateMaintenanceWindow takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

window_id String Yes ID of the maintenance window you want to update.

name String No Name of the maintenance window.

description String No Description of the maintenance window.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

230

filter String No SQL-like filter that alerts must match to be included

in the maintenance window.

start_date_time Unix epoch

time in

seconds

(Number)

No Start time of the maintenance window. This must

be in Unix epoch time in seconds and may be up to

5 years in the future.

duration Seconds

(Number)

No Duration of the maintenance window in seconds.

The minimum duration is 1 second and the

maximum is 157784630 seconds (5 years).

forward_alerts Boolean No Determines whether or not alerts should be

forwarded to the next Moolet in the processing

chain.

recurring_period Number No Whether or not this is a recurring maintenance

window. Set this to:1 for a recurring maintenance

window.0 for a one-time maintenance window.If

not specified, default is 0. If you set this property to

1, you must specify recurring_period_units.

recurring_period_units Number No Specifies the recurring period of the maintenance

window, in days, weeks or months. Valid values

are:2 = daily3 = weekly4 = monthlyDefault is 0 if

recurring_period is set to 0.

timezone String No Time zone that you want the maintenance window

to be in. You can only change the time zone if the

maintenance window is inactive when you make the

request. The time zone must be a valid entry in the

IANA Time Zone Database. When scheduling

recurring maintenance windows, Cisco Crosswork

Situation Manager takes into account any daylight

savings time changes for the time zone.

Response

Endpoint updateMaintenanceWindow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Type Description

Array An array of objects containing details of the returned maintenance windows.

Examples

The following examples demonstrate typical use of endpoint updateMaintenanceWindow:

Request examples

Example cURL request to update a number of parameters in the existing maintenance window ID 351:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateMaintenanceWindow" -H "Content-Type:

https://www.iana.org/timezones
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

231

application/json; charset=UTF-8" -d '{"window_id":351, "name":"Updated name",

"description":"Updated Description", "filter":"source = \"server1\"",

"start_date_time":1546433400, "duration":3600, "forward_alerts":false,

"recurring_period":1, "recurring_period_units":3}'

Example cURL request to update the existing maintenance window ID 27 so that it will not occur again:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"window_id":27, "recurring_period":0,

"recurring_period_units":0}'

Example cURL request to update the existing maintenance window ID 144 to be in time zone

"Europe/London":

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateMaintenanceWindow" -H "Content-Type:

application/json; charset=UTF-8" -d '{"window_id":144, "timezone" :

"Europe/London"}'

Response example

Example successful response returning details of the updated maintenance window:

{

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1574076632,

 "timezone": "Europe/London",

 "description": "Updated Description",

 "recurring_period_units": 3,

 "filter": "source IN (\"server4\", \"server5\")",

 "duration": 3600,

 "recurring_period": 1,

 "name": "Updated name",

 "updated_by": 4,

 "window_id": 144,

 "start_date_time": 1674076188

}

updateMergeGroup

A Graze API POST request that updates a custom merge group in Cisco Crosswork Situation Manager.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateMergeGroup takes the following request arguments:

Name Type Required Description

name String Yes, along

with at least

one other

argument.

The custom merge group's name.

moolets Array of No List of clustering algorithm Moolets to

Cisco Crosswork Situation Manager 8.0.x Developer Guide

232

Strings include in the custom merge group.

alert_threshold Integer No Minimum number of alerts that must be

present in a cluster before it can become a

Situation. Must be greater than or equal to

1. Enter null if you want the custom

merge group to use the default merge

group value. Default merge group value is

2.

situation_similarity_limit Floating

Point

No Percentage of alerts that two Situations in

this merge group must share before they

are merged. A value between 0 and 1.

Enter null if you want the merge group to

use the default merge group value. Default

merge group value is 0.7.

Response

Endpoint updateMergeGroup returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateMergeGroup:

Request example

Example cURL request to update a custom merge group's situation_similarity_limit:

curl -X POST

-u graze:graze -

k -v "https://example.com/graze/v1/updateMergeGroup"

-H "Content-Type: application/json; charset=UTF-8"

-d '{

 "name":"Merge Group 1",

 "situation_similarity_limit":0.6

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

updateSecurityRealm

A Graze API POST request that updates an existing SAML security realm in the database.

Warning

Warn any users who are logged into Cisco Crosswork Situation Manager using the default realm before

using this request. The system may log out users when the updated realm becomes active.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateSecurityRealm takes the following request arguments:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

233

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request.

See the authenticate endpoint for more information.

name String Yes Name of the security realm.

type String Yes Security realm type. This must be "SAML2".

active Boolean Yes Determines whether the new realm is active or not.

configuration JSON

Object

Yes JSON object containing the realm configuration. You must

include all mandatory configuration properties; otherwise the

request returns an error. For information on the configuration

properties, see Security Configuration Reference.

Response

Endpoint updateSecurityRealm returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateSecurityRealm:

Request example

Example cURL command to update a SAML realm with a new X509 certificate:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateSecurityRealm" -d '{

 "name":"mySamlRealm",

 "configuration": {

 "idpMetadata":"<?xml version=\"1.0\" encoding=\"UTF-

8\"?>\r\n<EntitiesDescriptor Name=\"urn:keycloak\"

xmlns=\"urn:oasis:names:tc:SAML:2.0:metadata\"\r\nxmlns:dsig=\"http:\/\/www.w3.o

rg\/2000\/09\/xmldsig#\">\r\n<EntityDescriptor

entityID=\"http:\/\/moogsaml:18080\/auth\/realms\/master\">\r\n<IDPSSODescriptor

WantAuthnRequestsSigned=\"true\"\r\nprotocolSupportEnumeration=\"urn:oasis:names

:tc:SAML:2.0:protocol\">\r\n<KeyDescriptor

use=\"signing\">\r\n<dsig:KeyInfo>\r\n<dsig:KeyName>l8ddhI8SroeNnlq0TkTxIj2VI-

0bvr2QfG_o32jWeKI<\/dsig:KeyName>\r\n<dsig:X509Data>\r\n<dsig:X509Certificate>MI

ICmzCCAYMCBgFk8A9vMjANBgkqhkiG9w0BAQsFADARMQ8wDQYDVQQDDAZtYXN0ZXIwHhcNMTgwNzMxMT

ExNjQwWhcNMjgwNzMxMTExODIwWjARMQ8wDQYDVQQDDAZtYXN0ZXIwggEiMA0GCSqGSIb3DQEBAQUAA4

IBDwAwggEKAoIBAQCOliZ3dBu696slYduAb1BMuvR1bMdTKVBMICWaEEcS8Rzw8gWthPQpw2e202LjOe

u4VkTVmEEAUa2IrLS4QpYgyhOuzapcIGF4kB0ARebalWa7C9od9%2BeTqWgvXPrDOkzp7g%2B%2Ba5yv

tKxE3ieUORPpACvLWcbkMwyb%2Be5V8%2Bz8n4263Uol8srSaxLsm\/oTozJNwbG%2BbzV8JQHU3xFV5

nFbyNySvc%2B\/B7tDFZuJC5BMu6bwi\/rPqp5OMcuB1W%2BxCcX7IYPphnBjRWNyQJD3gRCkjrujISk

TEcqpZEjR79isbofQaPDi5TSjglPD5rr0OWMVqv91a1\/pVN2y0y%2BRlT8HAgMBAAEwDQYJKoZIhvcN

AQELBQADggEBAAgRhWYKESVsTRAUVYzHYptd3\/eX47%2BTVXhjPO0ORLUJbHtfhgohtyejd6ohazkcS

gMy6%2BwaeVojqq4Q\/tzCOW2EAqO9QOQdaBWOPxDXhJ9TGQJE2E28SS2Gg6paAMfRmtA7c6xXii%2BY

fLo3PG1SSc\/sGe4KIPKflkqqDEqEeaY1olPZU2bLnpMSIui2nK1crE2%2Bt9apLWAGosah6scMGZ9vT

rtOVrNuhB2LuU3cvRQWrUBaQuXQsBV7Q6a8lkrrZ6rjAIbO4vcEL4yjQpnA%2BhetuhBlGPQj6ntuhdn

moKmWYY97wk8eXwblhQxg8GUyfqabfOAKwiGAklxgkexm20M=<\/dsig:X509Certificate>\r\n<\/

dsig:X509Data>\r\n<\/dsig:KeyInfo>\r\n<\/KeyDescriptor>\r\n\r\n<SingleLogoutServ

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

234

ice\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protocol\/sa

ml\"

\/>\r\n<SingleLogoutService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HT

TP-

Redirect\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protocol

\/saml\" \/>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:2.0:n

ameid-

format:transient<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:1.1:na

meid-

format:unspecified<\/NameIDFormat>\r\n<NameIDFormat>urn:oasis:names:tc:SAML:1.1:

nameid-format:emailAddress<\/NameIDFormat>\r\n<SingleSignOnService

Binding=\"urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protocol\/sa

ml\"

\/>\r\n<SingleSignOnService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:HT

TP-

Redirect\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protocol

\/saml\"

\/>\r\n<SingleSignOnService\r\nBinding=\"urn:oasis:names:tc:SAML:2.0:bindings:SO

AP\"\r\nLocation=\"http:\/\/moogsaml:18080\/auth\/realms\/master\/protocol\/saml

\"

\/>\r\n<\/IDPSSODescriptor>\r\n<\/EntityDescriptor>\r\n<\/EntitiesDescriptor>",

 "defaultRoles":["Operator"],

 "defaultTeams":["Cloud DevOps"],

 "existingUserMappingField":"username",

 "username":"$username",

 "fullname":"$firstname $lastname",

 "maximumAuthenticationLifetime":60

 }

}'

cURL command to deactivate an active SAML realm:

curl -X POST -u graze:graze -k -v

"https://localhost/graze/v1/updateSecurityRealm" \

-d "name:mySamlRealm" \

-d "active:false"

Response example

A successful request returns the HTTP code 200 and no response text.

updateTeam

A Graze API POST request that updates an existing team.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateTeam takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

team_id Number Yes Team ID.

name String No Team name. Exclude this attribute to leave Cisco Crosswork

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

235

Situation Manager as it is.

alert_filter String No An SQL-like filter that alerts must match to be assigned to

the team. Exclude this attribute to leave Cisco Crosswork

Situation Manager as it is.

services Array of

Strings or

Numbers

No List of the team service names or IDs. Exclude this attribute

to leave Cisco Crosswork Situation Manager as it is.

sig_filter String No An SQL-like filter that Situations must match to be assigned

to the team. Exclude this attribute to leave Cisco Crosswork

Situation Manager as it is.

landing_page String No Default landing page for the team. Exclude this attribute to

leave Cisco Crosswork Situation Manager as it is.

active Boolean No Set to true if the team is active; set to false if the team is

inactive. Default is true. Exclude this attribute to leave

Cisco Crosswork Situation Manager as is.

description String No Team description. Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

users Array of

Strings or

Numbers

No List of users in the team, either IDs or usernames. Exclude

this attribute to leave Cisco Crosswork Situation Manager as

it is.

Response

Endpoint updateTeam returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateTeam:

Request example

Example cURL request to update the information for team ID 16:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateTeam" \

-H "Content-Type: application/json; charset=UTF-8" \

-d '{"team_id" : 16, "name" : "my team name RENAMED", "active" : true,

"description" : "The team description", "users" : []}'

Response example

A successful request returns the HTTP code 200 and no response text.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

236

updateTempus

A Graze API POST request that updates an existing Tempus Moolet.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateTempus takes the following request arguments. You must supply the name of the

Tempus algorithm plus at least one other argument that you want to change.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

name String Yes Name of the Tempus algorithm. Must be unique.

description String No Description of the Situations Tempus generates.

entropy_threshold Number No Minimum entropy value for an alert to be

clustered into a Situation. Tempus does not

cluster any alerts with an entropy value below the

threshold into Situations.

threshold_type String No Type of entropy threshold you want Tempus to

use. One of:global: Use the global entropy

threshold. This is a single entropy threshold that

Tempus applies to all alerts to eliminate noisy

alerts with a lower entropy value.manager: Use

entropy thresholds set up for individual

managers. Tempus uses this value to eliminate

noisy alerts with a lower entropy value. If an

alert's manager does not have an entropy

threshold, Tempus uses the global entropy

threshold to filter out alerts.explicit_value:

Use the value set in entropy_threshold to

eliminate noisy alerts with a lower entropy

value.none: Do not use entropy thresholds.

Tempus will not filter out any alerts based on their

entropy value.If you do not specify an entropy

threshold, the default is global. The default global

entropy threshold is 0. This means that unless

you actively set up a global threshold, Tempus

will not filter out any alerts based on entropy

values.See Configure Entropy Thresholds for

more information on setting global and manager-

specific entropy thresholds.

execution_interval Number No Executes Tempus after a defined number of

seconds.

window_size Number No Determines the length of time when Tempus

analyzes alerts and clusters them into a Situation

each time it runs.

bucket_size Number No Determines the time span of each bucket in

which alerts are captured. Default bucket size is 5

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

237

seconds.

minimum_arrival_similarity Number No How similar alerts must be to be considered for

clustering.

alert_threshold Number No Minimum number of alerts that match the

clustering criteria before the Tempus algorithm

creates a Situation.

When Tempus determines the number of alerts

required to create a Situation, it compares the

alert threshold values in Tempus and in the

merge group that Tempus belongs to, and it uses

the higher value. If you are using the default

merge group which has an alert threshold of 2,

Tempus will never create a Situation containing a

single alert. If you want Cisco Crosswork

Situation Manager to create Situations with a

single alert, consider changing the alert threshold

in the default merge group to 1 or creating

custom merge groups. See Merge Groups for

more information on updating the default merge

group and setting up custom merge groups.

process_output_of List Yes Defines the source of the alerts that Tempus

processes. You can specify none, one or more

Moolets. Typically Tempus processes the output

of its direct upstream neighbor in the processing

chain. Usually this is "Alert Workflows" which are

the output from the Alert Workflow Engine.

run_on_startup Boolean No Whether this Tempus algorithm should start when

Moogfarmd starts.

partition_by String No Splits clustering according to the entered

component. After alerts have been clustered and

before they enter merging and resolution, you

can split clusters into sub-clusters based on a

component of the events. For example, you can

use the manager parameter to ensure that

Situations only contain events from the same

manager.

Note

Cisco does not recommend partitioning by

components.

pre_partition Boolean No Partitions event streams before clustering. You

specify a component field on which the event

stream will be partitioned before clustering

occurs. The alerts in the resulting Situations each

contain a single value for the component field

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

238

chosen.

significance_test String No Calculation that determines how significant a

cluster of alerts or a potential Situation must be

for Tempus to detect it. Poisson1, looks at the

data of a single alert cluster to calculate how

significant it is. This more likely to detect all

significant alert clusters but with a higher risk of

creating insignificant alert clusters. Use this

option when your alerts originate from different

networks or unrelated topologies. Poisson2 is a

more thorough test that looks at an alert cluster

and all alerts outside the cluster with a similar

event rate. It is more likely to exclude all

insignificant alert clusters but with a high risk of

excluding significant alert clusters. Use this

option if you expect all of your alerts to come

from the same connected network. See Poisson

distribution for more information.

significance_threshold Number No Sets the maximum significance score for Tempus

to create a Situation. The score is proportional to

the probability that the alert cluster or potential

Situation was coincidence. The lower the score,

the more significant the cluster and the least

likely it was a coincidence. This score ranges

from 0 to 100.

detection_algorithm String No Detection algorithm that Tempus uses, one of:

Louvain, LouvainMulti, or SmartLocal.

Response

Endpoint updateTempus returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

This endpoint returns an error code if the values of entropy_threshold and threshold_type are

inconsistent. For example, if the entropy_threshold is set to 0.4 and threshold_type is set to

global.

Examples

The following examples demonstrate typical use of endpoint updateTempus:

Request examples

Example cURL request to update the detection algorithm on Tempus algorithm 'newTempus':

curl -X POST -u graze:graze -k "https://localhost/graze/v1/updateTempus" -H

"Content-Type: application/json; charset=UTF-8" --data \

'{ \

"name": "newTempus", \

"detection_algorithm": "LouvainMulti" \

}'

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

239

Example cURL request to update Tempus algorithm 'newTempus' to use the global entropy threshold in

Cisco Crosswork Situation Manager:

curl -X POST -u graze:graze -k "https://localhost/graze/v1/updateTempus" -H

"Content-Type: application/json; charset=UTF-8" --data \

'{ \

"name": "newTempus", \

"threshold_type": "global" \

}'

Example cURL request to update Tempus algorithm 'newTempus' to use an explicit entropy threshold of

0.22:

curl -X POST -u graze:graze -k "https://localhost/graze/v1/updateTempus" -H

"Content-Type: application/json; charset=UTF-8" --data \

'{ \

"name": "newTempus", \

"entropy_threshold": 0.22, \

"threshold_type": "explicit_value" \

}'

Response example

A successful request returns the HTTP code 200 and no response text.

updateUser

A Graze API POST request that updates an existing user.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateUser takes the following request arguments:

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

username String No, you use if

uid.

Username of the user to be updated.

uid Long No, if you use

username.

User ID of the user to be updated.

password String No New user password, only valid for DB realm.

active Boolean No Set to true if the user is active, false if the user

is inactive. Default is true.

email String No User's email address.

fullname String No User's full name.

roles JSON list No List of either the role IDs or the role names. For

Cisco Crosswork Situation Manager 8.0.x Developer Guide

240

example, "roles":["Super User"].

primary_group String or

Number

No User's primary group name or primary group ID.

department String or

Number

No User's department ID or department name.

timezone String No User's timezone.

contact_num String No User's phone number.

session_expiry Number No Number of minutes after which the user's session

expires. Default is the system default.

competencies JSON list No A list with the user competencies. Each

competency should have have name or cid and

ranking. For example:

[
 {"name":"SunOS", "ranking": 40},
 {"name":"SAP", "ranking": 50},
 {"name":"EMC", "ranking": 60}
]

teams JSON list of

Numbers or

Strings

No List of the user's team names or team IDs.

Response

Endpoint updateUser returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateUser:

Request example

Example cURL request to update user ID 5:

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateUser" \

-H "Content-Type: application/json; charset=UTF-8" \

-d '{"uid" : 5, "active" : true, "password" : "test", "roles" : ["Super User",

"Operator"], "teams" : ["my team 1"], "session_expiry" : null, "properties" :

null, "contact_num" : "555-123456", "timezone" : "Europe/London", "fullname" :

"John Doe", "department" : "Support", "primary_group" : "Network", "email" :

"test@test.com"}'

Response example

A successful request returns the HTTP code 200 and no response text.

updateValueRecipe

A Graze API POST request that updates a Cookbook Recipe that uses either a Value Recipe or a Value

Recipe v2 recipe type. See Recipe Types.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

241

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateValueRecipe takes the following request arguments. You must supply the name of

the Cookbook Recipe plus at least one other argument that you want to change.

Name Type Required Description

auth_token String Yes A valid auth_token returned from the

authenticate request. See the authenticate

endpoint for more information.

name String Yes Name of the Recipe that you want to update.

cookbook List of

Strings

No A list of the Cookbooks that this Recipe belongs to.

description String No Description of the Recipe.

version String No Defines whether the Recipe uses Value Recipe or

Value Recipe v2. Valid values are V1 for the Value

Recipe and V2 for Value Recipe v2. Default is V2.

See Recipe Types for more information. Use

updateBotRecipe if you want to update a Bot

Recipe.

alert_threshold Positive

Integer

No Minimum number of alerts required before

Cookbook creates a Situation.

When Cookbook determines the number of alerts

required to create a Situation, it compares the alert

threshold values in the Cookbook Recipe and in the

merge group that the Cookbook Recipe belongs to,

and it uses the higher value. If you are using the

default merge group which has an alert threshold of

2, Cookbook will never create a Situation

containing a single alert. If you want Cisco

Crosswork Situation Manager to create Situations

with a single alert, consider changing the alert

threshold in the default merge group to 1 or

creating custom merge groups. See Merge

Groupsfor more information on updating the default

merge group and setting up custom merge groups.

trigger String No A filter that determines the alerts that Cookbook

considers for Situation creation. Cookbook includes

alerts that match the trigger filter. By default

Cookbook only includes alerts with a severity of

'Critical'.

exclusion String No A filter that determines the alerts to exclude from

Situation creation. Cookbook ignores alerts that

match the exclusion filter.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

242

seed_alert String No A filter that determines whether to create a

Situation from a seed alert. The seed alert must

meet both the trigger, exclusion and

seed_alert criteria to create a Situation.

Cookbook considers subsequent alerts for

clustering if they meet the trigger and exclusion

filter criteria. Alerts that arrive prior to the seed alert

that met the trigger and exclusion filter criteria do

not form Situations.

rate Positive

Integer

No Rate, in number of alerts per second. Cookbook

clusters alerts if they arrive at a higher rate than is

specified here. Cookbook uses rate together with

min_sample_size and max_sample_size to

determines whether to cluster alerts into Situations.

See Cookbook and Recipe Examples.

min_sample_size Positive

Integer

No Number of alerts that must arrive before the

Cookbook starts to calculate the alert rate. See

Cookbook and Recipe Examples.

max_sample_size Positive

Integer

No Maximum number of alerts that are considered in

the alert rate calculation. When more than this

number of alerts have arrived, Cookbook discards

the oldest alerts and calculates the alert rate based

on the number of alerts in the max_sample_size.

See Cookbook and Recipe Examples. Valid only if

rate is non-zero.

cook_for Positive

Integer

No Minimum time period, in seconds, that the

Cookbook Recipe clusters alerts for before it resets

and starts a new cluster. See Cookbook and Recipe

Examples.

If you set a different cook_for time for a Recipe, it

overrides the Cookbook value. Recipes without a

cook_for time inherit the value from the

Cookbook.

Inherits value from Cookbook if omitted.

cook_for_extension Positive

Integer

No Time period that the Cookbook Recipe can extend

clustering alerts for before it resets and starts a

new cluster. Setting this value enables the cook for

auto-extension feature for this Cookbook. As

Cookbook receives related alerts, it continues to

extend the total clustering time until the

max_cook_for period is reached. Used in

conjunction with the max_cook_for value, the

cook_for_extension period helps to ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. The

cook_for_extension period only applies to new

related alerts; it does not apply to existing alerts

that are updated with new events. See Cookbook

and Recipe Examples.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

243

If you set a different cook_for_extension time

for a Recipe, it overrides the Cookbook value.

Recipes without a cook_for_extension time

inherit the value from the Cookbook.

Inherits value from Cookbook if omitted.

max_cook_for Positive

Integer

No Maximum time period that the Cookbook Recipe

clusters alerts for before it resets and starts a new

cluster. It works in conjunction with the

cook_for_extension time to help ensure that

Cookbook continues to cluster alerts together that

are related to the same failure. This value is ignored

unless the cook_for_extension time is specified.

See Cookbook and Recipe Examples.

If you set a different max_cook_for time for a

Recipe, it overrides the Cookbook value. Recipes

without a max_cook_for value inherit the value

from the Cookbook.

Inherits value from Cookbook if omitted.

cluster_by String No Determines Cookbook's clustering behavior. Set to

an empty string to use the Cookbook cluster_by

setting. Set to first_match so that Cookbook

adds alerts to the first cluster over the similarity

threshold value. Set to closest_match to add

alerts to the cluster with the highest similarity

greater than the similarity threshold value. This

option may be less efficient because Cookbook

needs to compare alerts against each cluster in a

Recipe. Set to an empty string to use the Cookbook

setting.

If you set a different cluster_by value for a

Recipe, it overrides the Cookbook value. Recipes

without a cluster_by value inherit the value from

the Cookbook.

hop_limit Positive

Integer

No Maximum number of hops between the alert source

nodes in order for the alerts to quality for

clustering. Cisco Crosswork Situation Manager

measures hop limit from the first alert that formed

the Situation and always follows the shortest

possible route. A hop is the distance between two

directly connected nodes.

You can only set a hop limit if you have one or more

topologies in your system. For more information on

hops and hop limit see Vertex Entropy and

Configure Topology-based Clustering with Vertex

Entropy. For more information on topologies see

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

244

Topologies.

components JSON

Array

No Values that alerts must match for Cookbook to

include them in a Situation. You can provide values

for multiple components. See the table below for a

full description of all components.

use_dynamic_topology Boolean No Infer the topology to cluster on from the

moog_topology field in the alert's custom info. If

you use a dynamic topology you cannot set

topology_name.

alert_matching_attribute String No The alert field that specifies the topology node from

which the alert was generated. If you set an alert

matching attribute you must set

dynamic_topology to true or set the

topology_name.

topology_name String No Restrict clustering to nodes in the specified

topology. If you set a topology name you cannot set

dynamic_topology to true.

The components property is an array of JSON objects containing the following:

Name Type Required Description

name String Yes Name of the component.

similarity Double Yes Similarity threshold that the component must meet for Cookbook

to cluster the alert into a Situation.

shingle_size Integer No Shingle size for Cookbook to use to determine the similarity

between different strings. The shingle size is only valid for

Recipe Value v2 recipes. Default is -1 which means that

Cookbook uses words to determine similarity. See Recipe Types.

treat_as String No Determines whether Cookbook treats the component as a string

or matches each value in the list individually. See Recipe Types

for details. Valid values are List and String. Default is String.

case_sensitive Boolean No Enables or disables case sensitive when comparing strings. Case

sensitivity is only valid for Recipe Value recipes. See Recipe

Types for more details. Default is true which means that strings

are treated as case sensitive.

Response

Endpoint updateValueRecipe returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateValueRecipe:

Request example

Example cURL request to update Value Recipe "GrazeRecipe":

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf4f379862be332053bea0b2722cafa58
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

245

curl -X POST -u graze:graze -k -v "https://localhost/graze/v1/updateValueRecipe"

-H "Content-Type: application/json; charset=UTF-8" --data '{

 "name" : "GrazeRecipe",

 "dynamic_topology" : false,

 "topology_name" : "physical",

 "hop_limit" : 2,

 "components" : [{"name": "component_name", "similarity":0.8, "shingle_size"

: 3}]

}'

Response example

A successful request returns the HTTP code 200 and no response text.

updateWorkflow

A Graze API POST request that updates an existing workflow in the Workflow Engine.

Back to Graze API EndPoint Reference.

Request arguments

Endpoint updateWorkflow takes the following request arguments:

Name Type

Require

d Description

auth_token String Yes A valid auth_token returned from the authenticate

request. See the authenticate endpoint for more information.

id String Yes ID of the workflow that you want to update.

workflow_name String No Name of the workflow.

active Boolea

n

No Determines whether the workflow is active or not. If true, the

workflow is active.

description String No Description of the workflow.

entry_filter String No An SQL-like filter to determine which events, alerts or

Situations can enter the workflow. If empty, the workflow

accepts all events, alerts or Situations.

sweep_up_filter String No An SQL-like filter to intake any additional events, alerts or

Situations from the database.

first_match_onl

y
Boolea

n

No If enabled, events, alerts, and Situations only pass through

actions on the first time they enter the Workflow Engine.

operations JSON

Array

No List of properties relating to each operation:

Name Type Required Description

type String Yes Type of

operation.

Options are:

'action',

'decision' and

Cisco Crosswork Situation Manager 8.0.x Developer Guide

246

'delay'.

operation_name String Yes, for

'action'

and

'decision

' types.

Name of the

operation.

function_name String Yes, for

'action'

and

'decision

' types.

Name of the

function.

forwarding_behavio

r

String No Forwarding

behavior for

the function.

One

of:always

forward: The

function

always

forwards the

object to the

next

workflow.sto

p this

workflow:

The function

stops this

workflow and

the object

moves to the

next

workflow.sto

p all

workflows:

The function

stops all

workflows for

this

object.Default

is always

forward. Only

valid for

'action' and

'decision'

types.

function_args JSON

Object

No Arguments for

the function.

duration Integer Yes, for

'delay'

type.

Length of time

before the

message goes

to the next

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

247

operation.

reset Boolea

n

Yes, for

'delay'

type.

Determines

whether the

timer resets

after each

occurrence.

Response

Endpoint updateWorkflow returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint updateWorkflow:

Request examples

Example cURL request to deactivate workflow ID 14:

curl -X POST -u graze:graze -k \

-v "https://localhost/graze/v1/updateWorkflow" \

-H "Content-Type: application/json; charset=UTF-8" \

--data '{ "id" : 14,"active" :false }'

Example cURL request to rename workflow ID 14:

curl -X POST -u graze:graze -k \

-v "https://localhost/graze/v1/updateWorkflow" \

-H "Content-Type: application/json; charset=UTF-8" \

--data '{ "id" : 14, "workflow_name" : "Deactivated Example" }'

Example cURL request to update the entry filter and sweep-up filter for workflow ID 3:

curl -X POST -u graze:graze -k \

-v "<https://192.168.56.10/graze/v1/updateWorkflow"> \

-H "Content-Type: application/json; charset=UTF-8" \

--data '{

 "id" : 3,

 "entry_filter": "state = 8",

 "sweep_up_filter": "state = 8"

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

Alert Action Codes

The Graze API endpoint and MoogDb V2 method getAlertActions can retrieve actions that

happened on a given alert.

The table below shows the list of IDs and the matching description for each action:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

248

Event ID Description

0 Alert Created

2 Event Added to Alert

3 Alert Assigned

4 Alert Updated

5 Alert Updated Custom Info

6 Alert Added to Situation

7 Team Updated

8 Alert Resolved

9 Alert Closed

10 Ran Tool

Situation Action Codes

The getSituationActions Graze API endpoint and MoogDb V2 method can retrieve actions that

happened on a given Situation.

The table below shows the list of IDs and the matching description for each action:

Event Id Description

1 Situation Created

2 Assigned Moderator

3 Situation Resolved

4 Situation Revived

5 Situation Closed

6 Assigned Queue

7 Created By Merge

8 Used In Merge

9 Created By Split

10 Used For Split

11 Ran Tool

12 Acknowledged Situation Moderator

13 Deacknowledged Situation Moderator

14 Added Alerts To Situation

15 Added Entry To Thread

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

249

16 Changed Situation Processes

17 Changed Situation Services

18 Created Thread

19 Agreed With Thread Entry

21 Commented On Thread Entry

22 Disagreed With Thread Entry

23 Changed Situation Custom Info

24 Described Situation

25 Excluded User

26 Invited User

27 Moved Alerts To Situation

28 Removed Alerts From Situation

29 Situation Updated

30 Situation Teams Changes

31 Marked Thread Entry As Resolving

32 Unmarked Thread Entry As Resolving

33 Situation Rated

34 Situation Rating Removed

35 Situation Internal Severity Changed

36 Situation Superseding Others

37 Updated Comment On Thread Entry

38 Updated Entry Of Thread

Situation Flags

You can use Situation flags to determine actions that users have performed on Situations, such as

adding a manual description to a Situation or manually assigning a Situation to a team.

The table below shows the list of codes and the matching description for each Situation flag available in

Cisco Crosswork Situation Manager:

Flag Code Description

1 LEAVE_MANUAL_DESCRIPTION

Cisco Crosswork Situation Manager 8.0.x Developer Guide

250

2 MANUALLY_ASSIGNED_TO_TEAM

You can use the following Graze API endpoints and MoogDb V2 methods to create more Situation flags

and associate them with Situations. For example, you may want to set up a flag for "TICKETED" when a

ticket has been raised for a Situation.

 checkSituationFlag: Checks whether a flag is associated with a Situation, in Graze API and

MoogDb V2.

 getSituationFlags: Returns the flags for one or an array of Situations, in Graze API and MoogDb

V2.

 getSituationsWithFlag: Returns all the Situations which have the specified flag, in Graze API

and MoogDb V2.

 setSituationFlags: Updates the flags associated with a specified Situation, in Graze API and

MoogDb V2.

API Update Behavior

The behavior of the Graze API endpoints and MoogDb V2 methods depends on the status of the

Situation they are acting on. The three relevant statuses are:

 Open Situation: The Situation is open.

 Closed Situation in active database: For a period of time after the Situation has been closed, it

remains in the active database. This period of time is known as the "grace period".

 Closed Situation in historic database: After the grace period has expired, the Situation is moved to

the historic database.

Each API endpoint/method topic describes its behavior in these three Situation statuses.

See Configure Historic Data Retention for more information on the active and historic databases.

Stats API

You can use the Stats API endpoints to report on Cisco Crosswork Situation Manager data. These

endpoints return various statistics about teams, Situations and services.

You can also fetch information on the Mean Time to Acknowledge (MTTA), Mean Time to Detect

(MTTD) and Mean Time to Resolve (MTTR).

System Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager

system:

 getAlertsInNewSituationsStats: Returns the number of alerts that belong to new Situations in the

specified time range.

 getMTTAStats: Returns the Mean Time To Acknowledge (MTTA) Situations in the specified time

range.

 getMTTDStats: Returns the Mean Time To Detect (MTTD) Situations in the specified time range.

 getMTTRStats: Returns the Mean Time To Resolve (MTTR) for Situations in the specified time

range.

 getNewAlertsStats: Returns the number of new alerts in the specified time range.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf7ccf703cf1e43129d63505e3ce8c6f8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

251

 getNewAlertsPerSituationsStats: Returns the percentage of noise reduction from alerts-to-

Situations clustering in the specified time range.

 getNewEventsPerAlertsStats: Returns the percentage of noise reduction from events-to-alerts

aggregation and deduplication in the specified time range.

 getNewEventsPerSituationsStats: Returns the percentage of noise reduction from events-to-

Situations aggregation, deduplication, and clustering in the specified time range.

 getNewSituationsStats: Returns the number of new Situations created in the specified time range.

 getReassignedSituationStats: Returns the number of Situations reassigned in the specified time

range.

 getReoccurringSituationStats: Returns the percentage of reoccurring situations in the specified time

range.

 getServiceSituationStats: Returns the number of active Situations impacting a service in the

specified time range.

 getSeveritySituationStats: Returns the number of Situations by severity in the specified time range.

 getStats: Returns all available Stats API endpoints along with their description and request

parameters.

 getStatusSituationStats: Returns the number of Situations by status.

 getSystemSituationStats: Returns the number of active Situations in the specified time range.

 getTopServiceSituationStats: Returns the number of active Situations impacting a top service in the

specified time range.

Team Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager

teams:

 getCommentCountPerTeamStats: Returns the total number of comments each hour for a specific

team or teams in the specified time range.

 getMTTAPerTeamStats: Returns the mean time to acknowledge (MTTA) a Situation per team in the

specified time range.

 getMTTRPerTeamStats: Returns the mean time to resolve (MTTR) a Situation per team in the

specified time range.

 getReassignedSituationsPerTeamStats: Returns the number of reassigned Situations associated

with a team or multiple teams in the specified time range.

 getReoccurringSituationPerTeamStats: Returns the number of reoccurring Situations associated

with a team in the specified time range.

 getServiceSituationPerTeamStats: Returns the number of Situations impacting each service for a

team.

 getSeveritySituationPerTeamStats: Returns the number of Situations by severity per team in the

specified time range.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

252

 getStatusSituationPerTeamStats: Returns the number of Situations by status for a team in the

specified time range.

 getTeamSituationStats: Returns the number of active Situations assigned to a team in the specified

time range.

 getTopServiceSituationStats: Returns the number of active Situations impacting a top service in the

specified time range.

User Endpoints

The following endpoints return data statistics relating to your Cisco Crosswork Situation Manager users:

1. getAlertsMarkedPRCPerUserStats: Returns the total number of alerts marked with

probable root cause (PRC) feedback by each user.

2. getAcknowledgedSituationsPerUserStats: Returns the number of Situations acknowledged

by a specific user or users in the specified time range.

3. getAssignedSituationsPerUserStats: Returns the number of Situations assigned to a

specific user or users in the specified time range.

4. getChatOpsToolExecutedPerUserStats: Returns the number of ChatOps tools executed by

a user each hour in the specified time range.

5. getClosedSituationsPerUserStats: Returns the number of Situations that a user has closed

each hour in the specified time range.

6. getCommentCountPerUserStats: Returns the number of comments left by a user or users

in the specified time range.

7. getInvitationsReceivedPerUserStats: Returns the number of Situation invitations received

for a given user each hour in the specified time range.

8. getMTTAPerUserStats: Returns the mean time it takes a user to acknowledge a Situation

in the specified time range.

9. getMTTRPerUserStats: Returns the mean time it takes a user to resolve a Situation in the

specified time range.

10. getOpenSituationsPerUserStats: Returns the number of open Situations assigned to a user

at each data point.

11. getRatedSituationsPerUserStats: Returns the number of Situations rated by a user in the

specified time range.

12. getReassignedSituationsPerUserStats: Returns the number of Situations reassigned by a

user in the specified time range.

13. getResolvedSituationsPerUserStats: Returns the number of Situations resolved by a user

in the specified time range.

14. getViewedSituationsPerUserStats: Returns the number of Situations a user has viewed in

the specified time range.

15. getWorkedSituationsPerUserStats: Returns the number of Situations a user has worked on

in the specified time range.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

253

getAcknowledgedSituationsPerUserStats

A GET request that returns the number of Situations acknowledged by a specific user or users within a

given time range.

Back to Stats API.

Request arguments

Endpoint getAcknowledgedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getAcknowledgedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Acknowledged Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations acknowledged by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations acknowledged each hour

in the time period.

1 week to 1 month: Returns the number of Situations acknowledged each

day in the time period.

1 month to 1 year: Returns the number of Situations acknowledged each

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

254

week in the time period.

More than 1 year: Returns the number of Situations acknowledged each

month in the time period.

Examples

The following examples demonstrate typical use of endpoint

getAcknowledgedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations acknowledged by user Bob from 9am on Friday 28th

September until 3pm on Friday 28th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getAcknowledgedSituationsPerUserStats" --data-

urlencode 'users=[6]' --data-urlencode 'from=1538121620' --data-urlencode

'to=1538143220'

Response example

A successful response returns the number of Situations acknowledged by Bob each hour during that

time frame:

[{

 "datapoints":[

 [2.0,1538121620000],

 [3.0,1538125220000],

 [0.0,1538128820000],

 [2.0,1538132420000],

 [2.0,1538136020000],

 [2.0,1538139620000]

],

 "target":"Acknowledged Situations (Bob Bowden)"

}]

getAlertsInNewSituationsStats

A GET request that returns the number of alerts that belong to new Situations during the specified time

range.

Back to Stats API.

Request arguments

Endpoint getAlertsInNewSituationsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

255

none: No aggregation of data points.

Response

Endpoint getAlertsInNewSituationsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Alerts in new situations"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of alerts.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of alerts each hour in the time period.1

week to 1 month: Returns the number of alerts each day in the time period.1

month to 1 year: Returns the number of alerts each week in the time

period.More than 1 year: Returns the number of alerts each month in the time

period.

Examples

The following examples demonstrate typical use of endpoint getAlertsInNewSituationsStats:

Request example

A cURL GET request for all alerts in new Situations over a 24 hour time range from 13.23pm on

Tuesday 18th September until 13:24pm on Wednesday 19th September 2018::

curl -G -u graze:graze -k -v

"https://freida7/graze/v1/getAlertsInNewSituationsStats" --data-urlencode

'from=1537277017' --data-urlencode 'to=1537363453'

Response example

A successful response indicating there were 56 alerts at13:23pm on Wednesday 19th September

2018:

[

 {"datapoints":[

 [56.0,1537359817000]

],

 "target":"Alerts in new situations"}

]

getAlertsMarkedPRCPerUserStats

A GET request that returns the total number of alerts marked with probable root cause (PRC) feedback

by each user.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

256

Back to Stats API.

Request arguments

Endpoint getAlertsMarkedPRCPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getAlertsMarkedPRCPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Alerts Marked PRC (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of alerts marked with PRC feedback by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of alerts marked with PRC feedback

each hour in the time period.

1 week to 1 month: Returns the number of alerts marked with PRC feedback

each day in the time period.

1 month to 1 year: Returns the number of alerts marked with PRC feedback

each week in the time period.

More than 1 year: Returns the number of alerts marked with PRC feedback

each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getAlertsMarkedPRCPerUserStats:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

257

Request example

A cURL request to return the number of alerts marked with PRC feedback to users 5 and 6 from 8am

until 2pm on on Friday, 28th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getAlertsMarkedPRCPerUserStats" --data-urlencode

'users=[5, 6]' --data-urlencode 'from=1538121620' --data-urlencode

'to=1538143220' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of alerts that users Alice and Ian have marked with PRC

feedback each hour during the time range:

[{

 "datapoints":[

 [22.0,1538121620000],

 [18.0,1538125220000],

 [30.0,1538128820000],

 [23.0,1538132420000],

 [29.0,1538136020000],

 [28.0,1538139620000]]

],

 "target":"Alerts Marked PRC (Alice Anderson)"

}

{

 "datapoints":[

 [34.0,1538121620000],

 [20.0,1538125220000],

 [35.0,1538128820000],

 [21.0,1538132420000],

 [19.0,1538136020000],

 [10.0,1538139620000]]

],

 "target":"Alerts Marked PRC (Ian Ince)"

}]

getAssignedSituationsPerUserStats

A GET request that returns the number of Situations assigned to a specific user or users within a given

time range.

Back to Stats API.

Request arguments

Endpoint getAssignedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

258

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getAssignedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Assigned Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations assigned to the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations assigned each hour in the

time period.1 week to 1 month: Returns the number of Situations assigned each

day in the time period.1 month to 1 year: Returns the number of Situations

assigned each week in the time period.More than 1 year: Returns the number of

Situations assigned each month in the time period.

Examples

The following examples demonstrate typical use of endpoint

getAssignedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations assigned to users 10 and 11 from 11pm on Tuesday,

25th September 2018 until 11pm on Wednesday, 26th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getAssignedSituationsPerUserStats" --data-urlencode

'users=[10,11]' --data-urlencode 'from=1537916400' --data-urlencode

'to=1538002799' --data-urlencode 'aggregation=sum'

Response example

A successful response returns the number of Situations assigned to the users Frank and Dave each

hour during the time range:

[{

 "datapoints":[

 [10.0,1537916400000],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

259

 [5.0,1537920000000],

 [7.0,1537923600000],

 [7.0,1537927200000],

 [7.0,1537930800000],

 [1.0,1537934400000],

 [5.0,1537938000000],

 [6.0,1537941600000],

 [9.0,1537945200000],

 [9.0,1537948800000],

 [7.0,1537952400000],

 [8.0,1537956000000]

],

 "target":"Assigned Situations (Frank Fuller/Dave Danton)"

}]

getChatOpsToolExecutedPerUserStats

A GET request that returns the number of ChatOps tools executed by a user each hour within a given

time range.

Back to Stats API.

Request arguments

Endpoint getChatOpsToolExecutedPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getChatOpsToolExecutedPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

260

target String "Chat Ops Tools executed (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of ChatOps tools executed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of ChatOps tools executed each hour

in the time period.

1 week to 1 month: Returns the number of ChatOps tools executed each day

in the time period.

1 month to 1 year: Returns the number of ChatOps tools executed each week

in the time period.

More than 1 year: Returns the number of ChatOps tools executed each

month in the time period.

Examples

The following examples demonstrate typical use of endpoint

getChatOpsToolExecutedPerUserStats:

Request example

A cURL request to retrieve the total number of ChatOps tools executed by user 5 from 11pm on

Sunday, 14th October until 11pm on Monday, 15th October 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getChatOpsToolExecutedPerUserStats" --data-urlencode

'users=[5]' --data-urlencode 'from=1539558000' --data-urlencode 'to=1539644399'

--data-urlencode 'aggregation=none'

Response example

A successful response returns the number of ChatOps tools executed by the user Max each hour:

[{

 "datapoints":[

 [6.0,1539558000000],

 [24.0,1539561600000],

 [1.0,1539565200000],

 [0.0,1539568800000],

 [14.0,1539572400000],

 [10.0,1539576000000],

 [4.0,1539579600000],

 [12.0,1539583200000],

 [25.0,1539586800000],

 [8.0,1539590400000],

 [0.0,1539598043846]

],

 "target":"ChatOps Tools executed (Max Matthews)"

}]

getClosedSituationsPerUserStats

A GET request that returns the number of Situations that a user has closed each hour within a given

time range.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

261

Back to Stats API.

Request arguments

Endpoint getClosedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getClosedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Closed Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations closed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number ofSituations closed each hour in the

time period.

1 week to 1 month: Returns the number of Situations closed each day in the

time period.

1 month to 1 year: Returns the number of Situations closed each week in the

time period.

More than 1 year: Returns the number of Situations closed each month in the

time period.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

262

Examples

The following examples demonstrate typical use of endpoint getClosedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations closed by user 5 from 6am until midnight on October

1st 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getClosedSituationsPerUserStats" --data-urlencode

'users=[5]' --data-urlencode 'from=1538373600' --data-urlencode 'to=1538395200'

--data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations closed by user Chris each hour during the time

range:

[{

 "datapoints":[

 [1.0,1539558000000],

 [1.0,1539561600000],

 [2.0,1539565200000],

 [5.0,1539568800000],

 [0.0,1539572400000],

 [7.0,1539576000000],

 [1.0,1539579600000],

 [0.0,1539583200000],

 [8.0,1539586800000],

 [6.0,1539590400000],

 [0.0,1539594000000],

 [0.0,1539597600000]

],

 "target":"Closed Situations (Chris Collins)"

}]

getCommentCountPerTeamStats

A GET request that returns the total number of comments each hour for a specific team or teams in a

given time range.

Back to Stats API.

Request arguments

Endpoint getCommentCountPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

263

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getCommentCountPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String Name of the team.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of comments.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of comments each hour in the time

period.1 week to 1 month: Returns the number of comments each day in the

time period.1 month to 1 year: Returns the number of comments each week in

the time period.More than 1 year: Returns the number of comments each month

in the time period.

Examples

The following examples demonstrate typical use of endpoint getCommentCountPerTeamStats:

Request example

A cURL request to retrieve the total number of comments for three teams each hour over a 24 hour time

range from 6am on Wednesday 19th September until 6am on Thursday 20th September 2018:

curl -G -u graze:graze -k -v

"https://freida7/graze/v1/getCommentCountPerTeamStats" --data-urlencode

'teams=[1,2,3]' --data-urlencode 'from=1537336800' --data-urlencode

'to=1537423200' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of comments per hour for the Cloud DevOps, Database

DevOps and Switch DevOps teams:

[

 {"datapoints":[

 [14.0,1537357717000]],

 "target":"Cloud DevOps"},

 {"datapoints":[

 [22.0,1537357717000]],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

264

 "target":"Database DevOps"},

 {"datapoints":[

 [10.0,1537357717000]],

 "target":"Switch DevOps"}

]

getCommentCountPerUserStats

A GET request that returns the number of comments left by a user or users within a given time range.

Back to Stats API.

Request arguments

Endpoint getCommentCountPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getCommentCountPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Number of Comments (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of comments.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of comments each hour in the time

period.

1 week to 1 month: Returns the number of comments each day in the time

period.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

265

1 month to 1 year: Returns the number of comments each week in the time

period.

More than 1 year: Returns the number of comments each month in the time

period.

Examples

The following examples demonstrate typical use of endpoint getCommentCountPerUserStats:

Request example

A cURL request to retrieve the total number of comments made by users 9 and 11 each hour from

11pm on Sunday, 14th October until 11pm on Monday, 15th October 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getCommentCountPerUserStats" --data-urlencode

'users=[9,11]' --data-urlencode 'from=1539558000' --data-urlencode

'to=1539644399' --data-urlencode 'aggregation=sum'

Response example

A successful response returns the number of comments made by the users Ian and Sharon each hour:

[{

 "datapoints":[

 [6.0,1539558000000],

 [24.0,1539561600000],

 [1.0,1539565200000],

 [0.0,1539568800000],

 [14.0,1539572400000],

 [10.0,1539576000000],

 [4.0,1539579600000],

 [12.0,1539583200000],

 [25.0,1539586800000],

 [8.0,1539590400000],

 [0.0,1539598043846]

],

 "target":"Number of Comments (Ian Ince/Sharon Scott)"

}]

getInvitationsReceivedPerUserStats

A GET request that returns the number of Situation invitations received for a given user each hour within

a given time range.

Back to Stats API.

Request arguments

Endpoint getInvitationsReceivedPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

Cisco Crosswork Situation Manager 8.0.x Developer Guide

266

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getInvitationsReceivedPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Invitations Received (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Invitations received by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situation invitations each hour in

the time period.

1 week to 1 month: Returns the number of Situation invitations each day in

the time period.

1 month to 1 year: Returns the number of Situation invitations each week in

the time period.

More than 1 year: Returns the number of Situation invitations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint

getInvitationsReceivedPerUserStats:

Request example

A cURL request for the number of Situation invitations for users 7 and 8 from midnight on Sunday, 14th

October until 6am on Monday, 15th October 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getInvitationsReceivedPerUserStats" --data-urlencode

'users=[7,8]' --data-urlencode 'from=1539558000' --data-urlencode

'to=1539583200' --data-urlencode 'aggregation=none'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

267

Response example

A successful response returns the number of invitations for users 7 and 8:

[{

 "datapoints": [

 [1.0,1539558000000],

 [1.0,1539561600000],

 [2.0,1539565200000],

 [5.0,1539568800000],

 [0.0,1539572400000],

 [7.0,1539576000000],

 [1.0,1539579600000],

 [0.0,1539583200000],

 [8.0,1539586800000],

 [1.0,1539579600000],

 [2.0,1539583200000],

 [0.0,1539586800000],

],

 "target": "Invitations Received (Peter Parker/Kat Knight)"

}]

getMTTAPerTeamStats

A GET request that returns the mean time to acknowledge (MTTA) a Situation per team in the specified

time range.

Back to Stats API.

Request arguments

Endpoint getMTTAPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getMTTAPerTeamStats returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

268

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Acknowledge (MTTA)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point:MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the MTTA each hour in the time period.1 week to 1

month: Returns the MTTA each day in the time period.1 month to 1 year:

Returns the MTTA each week in the time period.More than 1 year: Returns the

MTTA each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getMTTAPerTeamStats:

Request example

A cURL command request to find out the MTTA for the Cloud DevOps team over a year from 13.14pm

on Monday 31st July 2017 until 13.14.pm on Tuesday 31st July 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTAPerTeamStats" --

data-urlencode 'from=1501506840' --data-urlencode 'to=1533042840' --data-

urlencode 'teams=[1]' --data-urlencode 'aggregation=none'

Response example

A successful response shows the MTTA for the year was 3.32 minutes:

[{

 "datapoints": [

 [213.0, 1532956486000]

],

 "target": "Mean Time to Acknowledge (MTTA)"

}]

getMTTAPerUserStats

A GET request that returns the mean time it takes a user to acknowledge a Situation within a given time

range.

Back to Stats API.

Request arguments

Endpoint getMTTAPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

269

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getMTTAPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Acknowledge (MTTA) (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point:MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of MTTA each hour in the time period.

1 week to 1 month: Returns the number of MTTA each day in the time

period.

1 month to 1 year: Returns the number of MTTA each week in the time

period.

More than 1 year: Returns the number of MTTA each month in the time

period.

Examples

The following examples demonstrate typical use of endpoint getMTTAPerUserStats:

Request example

A cURL request for the MTTA for user 5 from 6.34am until 2.35pm on Tuesday, 25th September 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTAPerUserStats" --

data-urlencode 'users=[5]' --data-urlencode 'from=1537857295' --data-urlencode

'to=1537886111' --data-urlencode 'aggregation=none'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

270

Response example

A successful response returns the MTTA each hour for the user Robert:

[{

 "datapoints": [

 [221,1537857295000],

 [960,1537860895000],

 [901,1537864495000],

 [1196,1537868095000],

 [671,1537871695000],

 [1241,1537875295000],

 [556,1537878895000]

],

 "target": "Mean Time to Acknowledge (MTTA)(Robert Richards)"

}]

getMTTAStats

A GET request that returns the Mean Time To Acknowledge (MTTA) Situations in the specified time

range.

The time to acknowledge (TTA) for a Situation is the duration from the first event's inclusion in the

Situation to the time when a moderator assigns a Situation to a user in Moogsoft AIOps.

Back to Stats API.

Request arguments

Endpoint getMTTAStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getMTTAStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Acknowledge (MTTA)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: MTTA (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

271

Less than 1 week: Returns the MTTA each hour in the time period.1 week to 1

month: Returns the MTTA each day in the time period.1 month to 1 year:

Returns the MTTA each week in the time period.More than 1 year: Returns the

MTTA each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getMTTAStats:

Request example

A cURL command to return the MTTA for Moogsoft AIOps over a 24 hour time range from 11.09am on

Sunday 17th December until 11.09am on Monday 18th December 2017:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTAStats" --data-

urlencode 'from=1513508950' --data-urlencode 'to=1513595370'

Response example

A successful response returns the MTTA in seconds for each hour:

[{

 "datapoints": [

 [312.0, 1513657700000],

 [209.0, 1513661300000],

 [101.0, 1513664900000],

 [114.0, 1513668500000],

 [203.0, 1513672100000],

 [120.0, 1513675700000],

 [201.0, 1513679300000],

 [90.0, 1513682900000],

 [100.0, 1513686500000]

],

 "target": "Mean Time to Acknowledge (MTTA)"

}]

getMTTDStats

A GET request that returns the Mean Time To Detect (MTTD) Situations in the specified time range.

The time to detect (TTD) for a Situation is the duration from the first event's inclusion in the Situation to

the Situation creation time.

Back to Stats API.

Request arguments

Endpoint getMTTDStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

Cisco Crosswork Situation Manager 8.0.x Developer Guide

272

returned is the current state datapoint.

Response

Endpoint getMTTDStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Detect (MTTD)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: MTTD (seconds) for that bucket

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the MTTD each hour in the time period.1 week to 1

month: Returns the MTTD each day in the time period.1 month to 1 year:

Returns the MTTD each week in the time period.More than 1 year: Returns the

MTTD each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getMTTDStats:

Request example

A cURL request to retrieve the MTTD for Moogsoft AIOps from 11.09am on Sunday 17th December

until 11.09am on Sunday 24th December 2017:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTDStats" --data-

urlencode 'from=1513508950' --data-urlencode 'to=1514113750'

Response example

Successful request returns the MTTD for the 24 hour time frame:

[{

 "datapoints": [

 [272.0, 1514113750000],

],

 "target": "Mean Time to Detect (MTTD)"

}]

getMTTRPerTeamStats

A GET request that returns the mean time to resolve (MTTR) a Situation per team for a given time range.

Back to Stats API.

Request arguments

Endpoint getMTTRPerTeamStats takes the following request arguments.

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

273

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getMTTRPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point:MTTR (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the MTTR each hour in the time period.1 week to 1

month: Returns the MTTR each day in the time period.1 month to 1 year: Returns

the MTTR each week in the time period.More than 1 year: Returns the MTTR

each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getMTTRPerTeamStats:

Request example

A cURL request for the MTTR of the Cloud DevOps team from 9.26pm on Monday, November 6th until

2.26am on Tuesday, November 7th 2017:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTRPerTeamStats" --

data-urlencode 'teams=[1]' --data-urlencode 'from=1510003600' --data-urlencode

'to=1510021600' --data-urlencode 'aggregation=none'

Response example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

274

A successful response returns the MTTR each hour from 9.26pm until 2.26am:

[{

 "datapoints": [

 [101.6,1510003600000],

 [180.0,1510007200000],

 [210.6667,1510010800000],

 [85.7083,1510014400000],

 [302.5,1510018000000],

 [150.4286,1510021600000]]

],

 "target": "Mean Time to Resolve (MTTR)"

}]

getMTTRPerUserStats

A GET request that returns the mean time it takes a user to resolve a Situation within a given time

range.

Back to Stats API.

Request arguments

Endpoint getMTTRPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getMTTRPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR) (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

275

Data point: MTTR (seconds) for that bucket.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of MTTR each hour in the time period.

1 week to 1 month: Returns the number of MTTR each day in the time

period.

1 month to 1 year: Returns the number of MTTR each week in the time

period.

More than 1 year: Returns the number of MTTR each month in the time

period.

Examples

The following examples demonstrate typical use of endpoint getMTTRPerUserStats:

Request example

A cURL request for the MTTR for user 5 from 11pm on Monday, 1st October until 5am on Tuesday, 2nd

October 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTRPerUserStats" --

data-urlencode 'user=[5]' --data-urlencode 'from=1538434800' --data-urlencode

'to=1538456400' --data-urlencode 'aggregation=none'

Response example

A successful response returns the MTTR each hour:

[{

 "datapoints": [

 [12997.0,1538434800000],

 [14025.0,1538438400000],

 [2969.0,1538442000000],

 [13125.0,1538445600000],

 [11412.0,1538449200000],

 [8264.0,1538452800000]

],

 "target": "Mean Time to Resolve (MTTR)(Oscar O'Neill)"

}]

getMTTRStats

A GET request that returns the Mean Time To Resolve (MTTR) for Situations in the specified time range.

The TTR for a Situation is the duration from the first event in the Situation to the time when a user

resolved the Situation.

Back to Stats API.

Request arguments

Endpoint getMTTRStats takes the following request arguments.

Name Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

276

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getMTTRStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Mean Time to Resolve (MTTR)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: MTTR (seconds) for that bucket

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the MTTR each hour in the time period.1 week to 1

month: Returns the MTTR each day in the time period.1 month to 1 year: Returns

the MTTR each week in the time period.More than 1 year: Returns the MTTR

each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getMTTRStats:

Request example

A cURL request to retrieve the MTTR for Moogsoft AIOps from 11.30am on Sunday, September 24th

2017 until 11.30am on Sunday, September24th 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getMTTRStats" --data-

urlencode 'from=1506252610' --data-urlencode 'to=1537788610'

Response example

A successful response indicates the MTTR for the year was 2.72 minutes:

[{

 "datapoints": [

 [163.54,1537784877233]

],

 "target":"Mean Time to Resolve (MTTR)"

}]

getNewAlertsPerSituationsStats

A GET request that returns the percentage of noise reduction from alerts-to-Situations clustering in the

specified time range.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

277

Back to Stats API.

Request arguments

Endpoint getNewAlertsPerSituationsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getNewAlertsPerSituationsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Alerts per Situation"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Percentage noise reduction (alert to Situation reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the percentage noise reduction each hour in the time

period.1 week to 1 month: Returns the percentage noise reduction each day in

the time period.1 month to 1 year: Returns the percentage noise reduction each

week in the time period.More than 1 year: Returns the percentage noise

reduction each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getNewAlertsPerSituationsStats:

Request example

Example cURL request to to retrieve the percentage noise reduction from 7.07pm on Wednesday, 17th

January 2018 until 1.33pm on Thursday, 18th January 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getNewAlertsPerSituationsStats" --data-urlencode

'from=1516216020' --data-urlencode 'to=1516282420'

Response example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

278

Example response indicating a noise reduction of 78.5% in the number of alerts to Situations:

[

 {"datapoints":[

 [78.5,1523438216685]

],

 "target":"New Alerts per Situation"}

]

getNewAlertsStats

A GET request that returns the number of new alerts in the specified time range.

Back to Stats API.

Request arguments

Endpoint getNewAlertsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getNewAlertsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Alerts"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of alerts

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of alerts each hour in the time period.1

week to 1 month: Returns the number of alerts each day in the time period.1

month to 1 year: Returns the number of alerts each week in the time

period.More than 1 year: Returns the number of alerts each month in the time

period.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

279

Examples

The following examples demonstrate typical use of endpoint getNewAlertsStats:

Request example

Example cURL request to retrieve the number of new alerts between Wednesday, January 17th and

Thursday, January 18th 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getNewAlertsStats" --

data-urlencode 'from=1516216020' --data-urlencode 'to=1516282420'

Response example

Example response that indicates there were 28,542 new alerts over the 24 hour time period: :

[

 {"datapoints":[

 [28542.0,1523438216685]

],

 "target":"New Alerts"}

]

getNewEventsPerAlertsStats

A GET request that returns the percentage of noise reduction from events-to-alerts aggregation and

deduplication in the specified time range.

Back to Stats API.

Request arguments

Endpoint getNewEventsPerAlertsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getNewEventsPerAlertsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Events per Alerts"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

280

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Percentage noise reduction (event to alert reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of percentage noise reduction each

hour in the time period.

1 week to 1 month: Returns the number of percentage noise reduction each

day in the time period.

1 month to 1 year: Returns the number of percentage noise reduction each

week in the time period.

More than 1 year: Returns the number of percentage noise reduction each

month in the time period.

Examples

The following examples demonstrate typical use of endpoint getNewEventsPerAlertsStats:

Request example

A cURL request that retrieves that event to alert noise reduction in Moogsoft AIOps from 7.07pm on

Wednesday, 17th January until 7.07pm on Thursday, 18th January 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getNewEventsPerAlertsStats" --data-urlencode

'from=1516216020' --data-urlencode 'to=1516302431'

Response example

A successful response indicating a 58% noise reduction:

[

 {"datapoints":[

 [58.0,1523438216685]

],

 "target":"New Events per Alerts"}

]

getNewEventsPerSituationsStats

A GET request that returns the percentage of noise reduction from events-to-Situations aggregation,

deduplication, and clustering in the specified time range.

Back to Stats API.

Request arguments

Endpoint getNewEventsPerSituationsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

281

returned is the current state datapoint.

Response

Endpoint getNewEventsPerSituationsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Events per Situation"

datapoi

nts
Numb

er

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Percentage noise reduction (event to Situation reduction).

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

[Delete all except the appropriate Time Period box or complete the custom list if no

t supplied. Delete this para!]

Less than 1 week: Returns the percentage noise reduction each hour in the time

period.1 week to 1 month: Returns the percentage noise reduction each day in the time

period.1 month to 1 year: Returns the percentage noise reduction each week in the

time period.More than 1 year: Returns the percentage noise reduction each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getNewEventsPerSituationsStats:

Request example

A cURL request that retrieves the percentage noise reduction for the past month ranging from 10.28am

on Sunday, August 26th until 10.28am on Wednesday, September 26th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getNewEventsPerSituationsStats" --data-urlencode

'from=1533103200' --data-urlencode 'to=1535695200'

Response example

A successful responses returns an 95% to 96% reduction in events to Situations for each week over the

past month:

[

 {

 "datapoints":[

 [95.86151338591529,1535279280000],

 [95.79150698161867,1535884080000],

 [95.62050414072417,1536488880000],

 [96.08938014241262,1537093680000],

 [95.96508799542137,1537698480000]

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

282

],

 "target":"New Events per Situation"

 }

]

getNewSituationsStats

A GET request that returns the number of new Situations created in the specified time range.

Back to Stats API.

Request arguments

Endpoint getNewSituationsStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getNewSituationsStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "New Situations"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of new Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of new Situations each hour in the

time period.

1 week to 1 month: Returns the number of new Situations each day in the

time period.

1 month to 1 year: Returns the number of new Situations each week in the

time period.

More than 1 year: Returns the number of new Situations each month in the

time period.

Examples

The following examples demonstrate typical use of endpoint getNewSituationsStats:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

283

Request example

Example cURL request to retrieve the number of new Situations over a week from 6am on Saturday,

September 1st until 6am on Saturday, September 8th 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getNewSituationsStats"

--data-urlencode 'from=1535781600' --data-urlencode 'to=1536386400'

Response example

Example response returning the number of new Situations for each day during the week range:

[

 {"datapoints":[

 [601.0,1535781600000],

 [523.0,1535868000000],

 [597.0,1535954400000],

 [618.0,1536040800000],

 [535.0,1536127200000],

 [628.0,1536213600000],

 [618.0,1536300000000]

],

 "target":"New situations"}

]

getOpenSituationsPerUserStats

A GET request that returns the number of open Situations assigned to a user at each data point.

Back to Stats API.

Request arguments

Endpoint getOpenSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getOpenSituationsPerUserStats returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

284

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Open Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of open Situations assigned to the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations assigned each hour in

the time period.

1 week to 1 month: Returns the number of Situations assigned each day in

the time period.

1 month to 1 year: Returns the number of Situations assigned each week in

the time period.

More than 1 year: Returns the number of Situations assigned each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getOpenSituationsPerUserStats:

Request example

A cURL request to return the number of open Situations assigned to user 6 from 9.19am on Monday,

17th September until 16.19am on Monday, 17th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getOpenSituationsPerUserStats" --data-urlencode

'users=[6,7]' --data-urlencode 'from=1537175946' --data-urlencode

'to=1537201140' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of open Situations assigned to the users Oscar and Olivia

each hour during the time range:

[{

 "datapoints":[

 [12.0,1537175946000],

 [8.875,1537262346000],

 [10.0,1537348746000],

 [8.9,1537435146000],

 [10.75,1537521546000],

 [9.25,1537607946000],

 [8.1667,1537694346000]

],

 "target":"Open Situations (Oscar O'Neill)"

},

{

 "datapoints":[

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

285

 [4.0,1537175946000],

 [5.0,1537262346000],

 [12.0,1537348746000],

 [7.0,1537435146000],

 [3.0,1537521546000],

 [9.0,1537607946000],

 [8.0,1537694346000]

],

 "target":"Open Situations (Andrew Anderson)"

}

]

getRatedSituationsPerUserStats

A GET request that returns the number of Situations rated by a user within a given time range.

Back to Stats API.

Request arguments

Endpoint getRatedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getRatedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Rated Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

286

Data point: Number of Situations rated by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations rated each hour in the

time period.

1 week to 1 month: Returns the number of Situations rated each day in the

time period.

1 month to 1 year: Returns the number of Situations rated each week in the

time period.

More than 1 year: Returns the number of Situations rated each month in the

time period.

Examples

The following examples demonstrate typical use of endpoint getRatedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations rated by users 5 and 7 from 3:57am until 9:57am on

Thursday, October 5th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getRatedSituationsPerUserStats" --data-urlencode

'users=[5,7]' --data-urlencode 'from=1538621843' --data-urlencode

'to=1538643443'

Response example

A successful response returns the number of Situations rated by the users Steve and Charlie each hour

during the time range:

[{

 "datapoints":[

 [6.0,1538621843000],

 [1.0,1538625443000],

 [6.0,1538629043000],

 [5.0,1538632643000],

 [2.0,1538636243000],

 [5.0,1538639843000]

],

 "target":"Rated Situations (Steve Smith)"

 },

 {

 "datapoints":[

 [0.0,1538621843000],

 [3.0,1538625443000],

 [1.0,1538629043000],

 [6.0,1538632643000],

 [6.0,1538636243000],

 [8.0,1538639843000]

],

 "target":"Rated Situations (Charlie Copper)"

}]

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

287

getReassignedSituationsPerTeamStats

A GET request that returns the number of reassigned Situations associated with a team or multiple

teams over a given time range. A reassigned Situation is a Situation that a user has assigned to another

user at least twice.

Back to Stats API.

Request arguments

Endpoint getReassignedSituationsPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getReassignedSituationsPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team: "<team_name>"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of reassigned Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations reassigned each hour in the

time period.1 week to 1 month: Returns the number of Situations reassigned

each day in the time period.1 month to 1 year: Returns the number of Situations

reassigned each week in the time period.More than 1 year: Returns the number

of Situations reassigned each month in the time period.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

288

Examples

The following examples demonstrate typical use of endpoint

getReassignedSituationsPerTeamStats:

Request example

A cURL request to retrieve the reassigned Situations for the Cloud DevOps and Application

Performance Monitoring teams from August 1st until September 1st 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getReassignedSituationsPerTeamStats" --data-

urlencode 'teams=[1,2]' --data-urlencode 'from=1533103200' --data-urlencode

'to=1535781600'

Response example

A successful response returns the number of reassigned Situations for each week during that month

range for both teams:

[{

 "datapoints":[

 [4.9702,1533103200000],

 [4.9881,1533708000000],

 [5.0655,1534312800000],

 [4.9524,1534917600000],

 [4.9917,1535522400000]],

 "target":"Cloud DevOps"

 },

 {

 "datapoints":[

 [5.006,1533103200000],

 [5.0,1533708000000],

 [5.131,1534312800000],

 [5.0714,1534917600000],

 [4.8417,1535522400000]],

 "target":"Application Performance Monitoring"

 }]

getReassignedSituationsPerUserStats

A GET request that returns the number of Situations reassigned by a user within a given time range.

Back to Stats API.

Request arguments

Endpoint getReassignedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

289

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getReassignedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reassigned Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations reassigned by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations reassigned each hour in

the time period.

1 week to 1 month: Returns the number of Situations reassigned each day in

the time period.

1 month to 1 year: Returns the number of Situations reassigned each week in

the time period.

More than 1 year: Returns the number of Situations reassigned each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint

getReassignedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations reassigned by user 5 from 11pm on Sunday, 14th

October until 5am on Monday, 15th October 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getReassignedSituationsPerUserStats" --data-

urlencode 'users=[5]' --data-urlencode 'from=1539558000' --data-urlencode

'to=1539579600' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations reassigned by the user Dave each hour during

the time range:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

290

[{

 "datapoints":[

 [2.0,1539558000000],

 [3.0,1539561600000],

 [0.0,1539565200000],

 [1.0,1539568800000],

 [0.0,1539572400000],

 [3.0,1539576000000],

],

 "target":"Reassigned Situations (Dave Danton)"

}]

getReassignedSituationStats

A GET request that returns the number of Situations reassigned in the specified time range. A

reassigned Situation is a Situation that a user has assigned to another user at least twice.

Back to Stats API.

Request arguments

Endpoint getReassignedSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getReassignedSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reassigned Situation"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of reassigned Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations reassigned each hour in the

time period.1 week to 1 month: Returns the number of Situations reassigned

each day in the time period.1 month to 1 year: Returns the number of Situations

reassigned each week in the time period.More than 1 year: Returns the number

of Situations reassigned each month in the time period.

Examples

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

291

The following examples demonstrate typical use of endpoint getReassignedSituationStats:

Request example

A cURL request to retrieve the number of reassigned Situations over a month from 6am on Wednesday,

August 1st until 6am on Saturday, September 1st 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getReassignedSituationStats" --data-urlencode

'from=1533103200' --data-urlencode 'to=1535781600'

Response example

A successful response returns the number of reassigned Situations for each week during the month:

[{

 "datapoints": [

 [25.125,1533103200000],

 [24.1369,1533708000000],

 [25.9405,1534312800000],

 [24.8512,1534917600000],

 [25.1071,1535522400000],

],

 "target": "Reassigned Situation"

}]

getReoccurringSituationPerTeamStats

A GET request that returns the number of reoccurring Situations associated with a team for a given time

range.

Back to Stats API.

Request arguments

Endpoint getReoccurringSituationPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

292

Endpoint getReoccurringSituationPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reoccurring situations"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of reoccurring Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations reoccurring each hour in the

time period.1 week to 1 month: Returns the number of Situations reoccurring

each day in the time period.1 month to 1 year: Returns the number of Situations

reoccurring each week in the time period.More than 1 year: Returns the number

of Situations reoccurring each month in the time period.

Examples

The following examples demonstrate typical use of endpoint

getReoccurringSituationPerTeamStats:

Request example

A cURL request to retrieve the number of reoccuring Situations from 3pm on Saturday, September 1st

until 3pm on Saturday, September 8th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getReoccurringSituationPerTeamStats" --data-

urlencode 'teams=[1,2]' --data-urlencode 'from=1535814000' --data-urlencode

'to=1536418800' --data-urlencode 'aggregation=none'

Response example

A successful response indicates there were four reoccuring Situations at the time the request was sent:

[{"datapoints":[[4.0,1538044321144]],"target":"Reoccurring situations"}]

getReoccurringSituationStats

A GET request that returns the percentage of reoccurring situations in the system over a given time

range.

Back to Stats API.

Request arguments

Endpoint getReoccurringSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

293

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getReoccurringSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Reoccurring Situations"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of reoccurring Situations.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations reoccurring each hour in the

time period.1 week to 1 month: Returns the number of Situations reoccurring

each day in the time period.1 month to 1 year: Returns the number of Situations

reoccurring each week in the time period.More than 1 year: Returns the number

of Situations reoccurring each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getReoccurringSituationStats:

Request example

A cURL request to retrieve the number of reoccurring Situations from 6pm on Sunday, September 10th

2017 until 6pm on Monday, September 10th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getReoccurringSituationStats" --data-urlencode

'from=1505066400' --data-urlencode 'to=1536602400'

Response example

A successful response returns that there were 186 reoccurring Situations during the year:

[{

 "datapoints": [

 [186.0, 1537980650126],

],

 "target": "Reoccurring situations"

}]

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

294

getResolvedSituationsPerUserStats

A GET request that returns the number of Situations resolved by a user within a given time range.

Back to Stats API.

Request arguments

Endpoint getResolvedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getResolvedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Resolved Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations resolved by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations resolved each hour in

the time period.

1 week to 1 month: Returns the number of Situations resolved each day in

the time period.

1 month to 1 year: Returns the number of Situations resolved each week in

the time period.

More than 1 year: Returns the number of Situations resolved each month in

the time period.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

295

Examples

The following examples demonstrate typical use of endpoint

getResolvedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations resolved by user 5 from 8.47am until 15.04pm on

October 1st 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getResolvedSituationsPerUserStats" --data-urlencode

'users=[5]' --data-urlencode 'from=1538380070' --data-urlencode 'to=1538402670'

--data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations resolved by the user Alice each hour during the

time range:

[{

 "datapoints":[

 [5.0,1538380070000],

 [3.0,1538383670000],

 [8.0,1538387270000],

 [0.0,1538390870000],

 [0.0,1538394470000],

 [8.0,1538398070000],

],

 "target":"Resolved Situations (Alice Anderson)"

}]

getServiceSituationPerTeamStats

A GET request that returns the number of Situations impacting each service for a team.

Back to Stats API.

Request arguments

Endpoint getServiceSituationPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

296

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getServiceSituationPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations impacting services.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getServiceSituationPerTeamStats:

Request example

A cURL request to retrieve the number of Situations associated with the Cloud DevOps team that are

impacting the Commerce and Compute services between 12pm and 6pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getServiceSituationPerTeamStats" --data-urlencode

'from=1533902400' --data-urlencode 'to=1533924000' --data-urlencode 'teams=[1]'

--data-urlencode 'services=[1, 2]' --data-urlencode 'aggregation=none'

Response example

A successful request returns the number of Situations impacting the services each hour during the six

hour time range:

[{

 "datapoints":[

 [7.0,1533902400000],

 [18.0,1533906000000],

 [18.0,1533909600000],

 [13.0,1533913200000],

 [9.0,1533916800000],

 [12.0,1533920400000]],

 "target":"Commerce"},

{

 "datapoints":[

 [14.0,1533902400000],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

297

 [15.0,1533906000000],

 [6.0,1533909600000],

 [12.0,1533913200000],

 [1.0,1533916800000],

 [11.0,1533920400000]],

 "target":"Compute"

}]

getServiceSituationStats

A GET request that returns the number of active Situations impacting a service in the specified time

range.

Back to Stats API.

Request arguments

Endpoint getServiceSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

services Array An array of services IDs. If no services are provided, the endpoint does not

return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getServiceSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String Service name(s).

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations impacting services.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

298

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getServiceSituationStats :

Request example

A cURL request to retrieve the number of Situations impacting the Commerce/Compute service

between 12pm and 6pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getServiceSituationStats" --data-urlencode

'services=[1,2]' --data-urlencode 'from=1533902400' --data-urlencode

'to=1533924000' --data-urlencode 'aggregation=sum'

Response example

A successful response returns six data points for each hour during the six hour time range:

[{

 "datapoints": [

 [95.0,1533902400000],

 [85.0,1533906000000],

 [47.0,1533909600000],

 [7.0,1533913200000],

 [33.0,1533916800000],

 [66.0,1533920400000]

],

 "target":"Commerce/Compute"

}]

getSeveritySituationPerTeamStats

A GET request that returns the number of Situations by severity per team for a given time range.

Back to Stats API.

Request arguments

Endpoint getSeveritySituationPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

299

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getSeveritySituationPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the status.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations per severity.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getSeveritySituationPerTeamStats:

Request example

A cURL request to retrieve the number of clear Situations for the Cloud DevOps team between between

12pm onThursday, August 9th and 12pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getSeveritySituationPerTeamStats" --data-urlencode

'from=1533816000' --data-urlencode 'to=1533902400' --data-urlencode 'teams=[1]'

--data-urlencode 'severity=[0]' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of clear Situations each hour over the past 24 hours:

[{

 "datapoints":[

 [13.0,1533816000000],

 [14.0,1533819600000],

 [6.0,1533823200000],

 [10.0,1533826800000],

 [14.0,1533830400000],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

300

 [5.0,1533834000000],

 [19.0,1533837600000],

 [17.0,1533841200000],

 [4.0,1533844800000],

 [13.0,1533848400000],

 [7.0,1533852000000],

 [15.0,1533855600000],

 [6.0,1533859200000],

 [10.0,1533862800000],

 [16.0,1533866400000],

 [20.0,1533870000000],

 [19.0,1533873600000],

 [15.0,1533877200000],

 [15.0,1533880800000],

 [5.0,1533884400000],

 [20.0,1533888000000],

 [3.0,1533891600000],

 [1.0,1533895200000],

 [4.0,1533898800000]],

 "target":"Clear"

}]

getSeveritySituationStats

A GET request that returns the number of Situations by severity in the specified time range.

Back to Stats API.

Request arguments

Endpoint getSeveritySituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

services Array An array of services IDs. If no services are provided, the endpoint does not

return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getSeveritySituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

301

Name Type Description

target String The name of the status.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations per severity.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getSeveritySituationStats:

Request example

A cURL request to retrieve the sum of the major and critical Situations between 12pm on Thursday,

August 9th and 12pm on Friday, August 10th 2018:

curl -G -u graze:graze -k -v

"https://daffy.moogsoft.com/graze/v1/getSeveritySituationStats" --data-urlencode

'from=1533816000' --data-urlencode 'to=1533902400' --data-urlencode

'severity=[5, 4]' --data-urlencode 'aggregation=sum'

Response example

A successful response returns 24 data points, one for each hour over the 24 hour range:

[{

 "datapoints":[

 [51.0,1533816000000],

 [44.0,1533819600000],

 [88.0,1533823200000],

 [84.0,1533826800000],

 [25.0,1533830400000],

 [34.0,1533834000000],

 [82.0,1533837600000],

 [58.0,1533841200000],

 [61.0,1533844800000],

 [52.0,1533848400000],

 [15.0,1533852000000],

 [50.0,1533855600000],

 [54.0,1533859200000],

 [50.0,1533862800000],

 [81.0,1533866400000],

 [78.0,1533870000000],

 [84.0,1533873600000],

 [28.0,1533877200000],

 [54.0,1533880800000],

 [36.0,1533884400000],

 [44.0,1533888000000],

Cisco Crosswork Situation Manager 8.0.x Developer Guide

302

 [47.0,1533891600000],

 [60.0,1533895200000],

 [54.0,1533898800000]],

 "target":"Critical/Major"

}]

getStats

A GET request that retrieves all available Stats API endpoints along with their description and request

parameters.

Back to Stats API.

Request arguments

Name Type Required Description

auth_token String Yes A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Endpoint getStats takes no other arguments because it returns data on all available Stats API

endpoints.

Response

Endpoint getStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Examples

The following examples demonstrate typical use of endpoint getStats:

Request example

A cURL request to return all available Stats API endpoints:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getStats"

Response example

A successful response with all of the endpoints, descriptions and associated parameters:

[

 {

 "endpoint":"getTeamSituationStats",

 "description":"returns the number of active situations assign to a team over

time",

 "display_name":"Open Situations by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

303

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getTopTeamSituationStats",

 "description":"returns the number of active situations assign to a top team

over time",

 "display_name":"Open Situations by Top Team",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

304

},

{

 "endpoint":"getServiceSituationStats",

 "description":"returns the number of active situations impacting a service

over time",

 "display_name":"Open Situations by Service",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "services":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getServices",

 "value":"service_id"

 },

 "type":"mapped",

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getTopServiceSituationStats",

 "description":"returns the number of active situations impacting a top

service over time",

 "display_name":"Open Situations by Top Service",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

305

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getSystemSituationStats",

 "description":"returns the number of active situations in the system over

time",

 "display_name":"All Open Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getStatusSituationStats",

 "description":"returns the number of active situations with specified status

over time",

 "display_name":"Open Situations by Status",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

Cisco Crosswork Situation Manager 8.0.x Developer Guide

306

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "status":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getStatuses",

 "value":"status_id"

 },

 "type":"mapped",

 "required":false

 }

 }

},

{

 "endpoint":"getSeveritySituationStats",

 "description":"returns the number of active situations with specified

severity over time",

 "display_name":"Open Situations by Severity",

 "parameters":{

 "severity":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getSeverities",

 "value":"severity_id"

 },

 "type":"mapped",

 "required":"false"

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

307

 "endpoint":"getReoccurringSituationStats",

 "description":"returns the percentage of reoccurring situations in the

system",

 "display_name":"Reoccurring situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTAStats",

 "description":"returns the mean time to acknowledge a situation over time",

 "display_name":"Mean Time To Acknowledge",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTDStats",

 "description":"returns the mean time to detect a situation over time",

 "display_name":"Mean Time To Detect",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTRStats",

 "description":"returns the mean time to resolve a situation over time",

 "display_name":"Mean Time To Resolve",

 "parameters":{

 "from":{

Cisco Crosswork Situation Manager 8.0.x Developer Guide

308

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReassignedSituationStats",

 "description":"returns the number of situations that have been reassigned

over time",

 "display_name":"Reassigned Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewSituationsStats",

 "description":"returns the number of new situations over time",

 "display_name":"New Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

309

{

 "endpoint":"getNewAlertsStats",

 "description":"returns the number of new alerts over time",

 "display_name":"New Alerts",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsStats",

 "description":"returns the number of new events over time",

 "display_name":"New Events",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

310

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getAlertsInNewSituationsStats",

 "description":"returns the number of alerts in new situations over time",

 "display_name":"Alerts In New Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsPerAlertsStats",

 "description":"returns the number of new events divided by the number of new

alerts over time",

 "display_name":"Reduction From Events To Alert",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

311

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewAlertsPerSituationsStats",

 "description":"returns the number of new alerts divided by the number of new

situations over time",

 "display_name":"Reduction From Alerts To Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getNewEventsPerSituationsStats",

 "description":"returns the number of new events divided by the number of new

situations over time",

 "display_name":"Reduction From Events To Situations",

 "parameters":{

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

312

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Accumulate",

 "value":"accumulate"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getReassignedSituationsPerTeamStats",

 "description":"returns the number of reassigned situations of a team over

time",

 "display_name":"Reassigned Situations by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

313

},

{

 "endpoint":"getSeveritySituationPerTeamStats",

 "description":"returns the number of active situations with specified

severity and team over time",

 "display_name":"Open Situations by Severity by Team",

 "parameters":{

 "severity":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getSeverities",

 "value":"severity_id"

 },

 "type":"mapped",

 "required":"false"

 },

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getStatusSituationPerTeamStats",

 "description":"returns the number of situations with a specified status and

team over time",

 "display_name":"Open Situations by Status by Team",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

314

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "status":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getStatuses",

 "value":"status_id"

 },

 "type":"mapped",

 "required":"false"

 }

 }

},

{

 "endpoint":"getServiceSituationPerTeamStats",

 "description":"returns the number of active situations with specified service

and team over time",

 "display_name":"Open Situations by Service by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":true

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

315

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "services":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getServices",

 "va* Connection #0 to host freida7 left intact

lue":"service_id"

 },

 "type":"mapped",

 "required":"true"

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTAPerTeamStats",

 "description":"returns the mean time to acknowledge a situation of a team

over time",

 "display_name":"Mean Time To Acknowledge by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

316

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getMTTRPerTeamStats",

 "description":"returns the mean time to resolve a situation of a team over

time",

 "display_name":"Mean Time To Resolve by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

317

 }

 }

},

{

 "endpoint":"getReoccurringSituationPerTeamStats",

 "description":"returns the percentage of reoccurring situations of a team

over time",

 "display_name":"Reoccurring situations Per Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

},

{

 "endpoint":"getCommentCountPerTeamStats",

 "description":"returns the number of comments posted on situations by team

members over time",

 "display_name":"Number of Comments by Team",

 "parameters":{

 "teams":{

 "mapping":{

 "display_value":"name",

 "endpoint":"getTeams",

 "value":"team_id"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

318

 "type":"mapped",

 "required":false

 },

 "from":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 },

 "aggregation":{

 "default":"none",

 "type":"string",

 "static_mapping":[

 {

 "display_value":"None",

 "value":"none"

 },

 {

 "display_value":"Sum",

 "value":"sum"

 }

],

 "required":false

 },

 "to":{

 "description":"A timestamp from epoch in seconds",

 "type":"Long",

 "required":true

 }

 }

 }

]

getStatusSituationPerTeamStats

A GET request that returns the number of Situations by status for a team over a given time range.

Back to Stats API.

Request arguments

Endpoint getStatusSituationPerTeamStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

319

Response

Endpoint getStatusSituationPerTeamStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getStatusSituationPerTeamStats:

Request example

A cURL request to return all Situations by status for the Cloud DevOps team from 8.30am until 2.30pm

on Saturday, September 1st 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getStatusSituationPerTeamStats" --data-urlencode

'from=1535790600' --data-urlencode 'to=1535812200' --data-urlencode 'teams=[1]'

--data-urlencode 'status=[]' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations by status each hour for the six hour range:

[

 {"datapoints":[

 [19.0,1535790600000],

 [20.0,1535794200000],

 [17.0,1535797800000],

 [18.0,1535801400000],

 [17.0,1535805000000],

 [17.0,1535808600000]],

 "target":"Opened"},

 {"datapoints":[

 [3.0,1535790600000],

 [7.0,1535794200000],

 [4.0,1535797800000],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

320

 [10.0,1535801400000],

 [10.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Assigned"},

 {"datapoints":[

 [3.0,1535790600000],

 [5.0,1535794200000],

 [10.0,1535797800000],

 [3.0,1535801400000],

 [5.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Acknowledged"},

 {"datapoints":[

 [3.0,1535790600000],

 [3.0,1535794200000],

 [4.0,1535797800000],

 [3.0,1535801400000],

 [3.0,1535805000000],

 [2.0,1535808600000]],

 "target":"Unacknowledged"},

 {"datapoints":[

 [46.0,1535790600000],

 [48.0,1535794200000],

 [32.0,1535797800000],

 [48.0,1535801400000],

 [34.0,1535805000000],

 [36.0,1535808600000]],

 "target":"Resolved"}

]

getStatusSituationStats

A GET request that returns the number of Situations by status.

Back to Stats API.

Request arguments

Endpoint getStatusSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

status Array An array of status ids. This is optional. If not given, it returns the default set of

statuses: Opened, Unassigned, Assigned, Acknowledged, Unacknowledged,

Resolved.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

321

Endpoint getStatusSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The status name.

datapoi

nts
Numb

er

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each status

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

[Delete all except the appropriate Time Period box or complete the custom list if no

t supplied. Delete this para!]

Less than 1 week: Returns the number of Situations each hour in the time period.1

week to 1 month: Returns the number of Situations each day in the time period.1

month to 1 year: Returns the number of Situations each week in the time period.More

than 1 year: Returns the number of Situations each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getStatusSituationStats:

Request example

A cURL request to retrieve the number of opened and assigned Situations from 15.27pm on Sunday,

January 14th until 15.27pm on Monday, 15th January 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getStatusSituationStats" --data-urlencode

'from=1515943678' --data-urlencode 'to=1516030078' --data-urlencode 'status=[1,

2]' --data-urlencode 'aggregation=sum'

Response example

Example response returning the number of Situations for each status: :

[{

 "datapoints": [

 [32.0, 1516008478000],

 [54.0, 1516030078000]

 [68.0, 1516030078000]

 [82.0, 1516030078000]

 [88.0, 1516030078000]

],

 "target": "Opened"

}, {

 "datapoints": [

 [5.0, 1515947278000],

 [12.0, 1515958078000],

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

322

 [25.0, 1515976078000],

 [31.0, 1515994078000],

 [40.0, 1516015678000]

],

 "target": "Assigned"

}]

getSystemSituationStats

A GET request that returns the number of active Situations in the specified time range.

Back to Stats API.

Request arguments

Endpoint getSystemSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If this

timestamp is within 10 seconds of the current system time, the last datapoint

returned is the current state datapoint.

Response

Endpoint getSystemSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "System"

datapoi

nts
Numb

er

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each Status

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

[Delete all except the appropriate Time Period box or complete the custom list if no

t supplied. Delete this para!]

Less than 1 week: Returns the number of Situations each hour in the time period.1

week to 1 month: Returns the number of Situations each day in the time period.1

month to 1 year: Returns the number of Situations each week in the time period.More

than 1 year: Returns the number of Situations each month in the time period.

Examples

The following examples demonstrate typical use of endpoint getSystemSituationStats:

Request example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

323

A cURL request to retrieve the number of active Situations from 11.09am on Sunday, 17th December

until 11.09am on Monday, 18th December 2017:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getSystemSituationStats" --data-urlencode

'from=1513508950' --data-urlencode 'to=1513595370'

Response example

A successful response returns the number of active Situations every hour during that time range:

[{

 "datapoints": [

 [66.0, 1513657700000],

 [98.0, 1513661300000],

 [102.0, 1513664900000],

 [106.0, 1513668500000],

 [92.0, 1513672100000],

 [88.0, 1513675700000],

 [86.0, 1513679300000],

 [74.0, 1513682900000],

 [85.0, 1513672100000],

 [83.0, 1513675700000],

 [79.0, 1513679300000],

 [68.0, 1513686500000]

],

 "target": "Open Situations"

}]

getTeamSituationStats

A GET request that returns the number of active Situations assigned to a team for a given time range.

Back to Stats API.

Request arguments

Endpoint getTeamSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

teams Array An array of team IDs. This is required. If no teams are provided, the endpoint

does not return any data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

324

Response

Endpoint getTeamSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getTeamSituationStats:

Request example

A cURL request to return the number of active Situations assigned to the Cloud DevOps and Application

Performance Monitoring teams from midnight until 6am on Monday, 20th August 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeamSituationStats"

--data-urlencode 'teams=[1,2]' --data-urlencode 'from=1534723200' --data-

urlencode 'to=1534744800' --data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations assigned each hour to each team for the six

hour range:

[

 {"datapoints":[

 [30.0,1534723200000],

 [20.0,1534726800000],

 [24.0,1534730400000],

 [19.0,1534734000000],

 [28.0,1534737600000],

 [23.0,1534741200000]],

 "target":"Cloud DevOps"},

 {"datapoints":[

 [26.0,1534723200000],

 [29.0,1534726800000],

 [15.0,1534730400000],

 [29.0,1534734000000],

 [25.0,1534737600000],

 [22.0,1534741200000]],

 "target":"Application Performance Monitoring"]

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

325

getTopServiceSituationStats

A GET request that returns the number of active Situations impacting a top service in the specified time

range. Top services are the services that have the most situations impacting them.

Back to Stats API.

Request arguments

Endpoint getTopServiceSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getTopServiceSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the service

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getTopServiceSituationStats:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

326

Request example

A cURL request to retrieve the number of Situations impacting top services between 12pm and

midnight on Saturday, 15th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getServiceSituationStats" --data-urlencode

'from=1537012800' --data-urlencode 'to=1536969600' --data-urlencode

'aggregation=sum'

Response example

A successful response returns the number of Situations each hour for the 12 hour range:

[{

 "datapoints": [

 [10.0, 1538133600000],

 [12.0, 1538133600000],

 [8.0, 1538133600000],

 [5.0, 1538133600000],

 [9.0, 1538133600000],

 [6.0, 1538133600000],

 [10.0, 1538133600000],

 [13.0, 1538133600000],

 [11.0, 1538133600000],

 [7.0, 1538133600000],

 [9.0, 1538133600000],

 [1.0, 1538133600000]

],

 "target": "Web Service"

}, {

 "datapoints": [

 [7.0, 1538133600000],

 [3.0, 1538133600000],

 [6.0, 1538133600000],

 [14.0, 1538133600000],

 [9.0, 1538133600000],

 [8.0, 1538133600000],

 [12.0, 1538133600000],

 [11.0, 1538133600000],

 [8.0, 1538133600000],

 [4.0, 1538133600000],

 [6.0, 1538133600000],

 [3.0, 1538133600000]],

 "target": "Cloud Service"

}]

getTopTeamSituationStats

A GET request that returns the number of active Situations assign to top teams over a given range of

time. Top teams are those teams with the highest number of assigned Situations.

Back to Stats API.

Request arguments

Endpoint getTopTeamSituationStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

327

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getTopTeamSituationStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String The name of the team.

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations for each status.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations each hour in the time

period.1 week to 1 month: Returns the number of Situations each day in the time

period.1 month to 1 year: Returns the number of Situations each week in the

time period.More than 1 year: Returns the number of Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getTopTeamSituationStats:

Request example

A cURL request to retrieve the number of Situations impacting top teams between 6am and 12pm

on Wednesday, 1st August 2018:

curl -G -u graze:graze -k -v "https://localhost/graze/v1/getTeamSituationStats"

--data-urlencode 'from=1533103200' --data-urlencode 'to=1533124800' --data-

urlencode 'aggregation=sum'

Response example

A successful response returns the number of Situations per hour for the six hour time time range:

[{

 "datapoints": [

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

328

 [2.0, 1538133780000],

 [9.0, 1538133780000],

 [5.0, 1538133780000],

 [4.0, 1538133780000],

 [3.0, 1538133780000],

 [1.0, 1538133780000]

],

 "target": "Cloud DevOps"

}, {

 "datapoints": [

 [8.0, 1538133780000],

 [2.0, 1538133780000],

 [6.0, 1538133780000],

 [7.0, 1538133780000],

 [5.0, 1538133780000],

 [3.0, 1538133780000]

],

 "target": "Application Performance Monitoring"

}]

getViewedSituationsPerUserStats

A GET request that returns the number of Situations a user has viewed within a given time range.

Moogsoft AIOps considers a user to have viewed a Situation if they opened the Situation Room.

Back to Stats API.

Request arguments

Endpoint getViewedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getViewedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

329

target String "Viewed Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations viewed by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

Less than 1 week: Returns the number of Situations viewed each hour in the

time period.

1 week to 1 month: Returns the number of Situations viewed each day in the

time period.

1 month to 1 year: Returns the number of Situations viewed each week in the

time period.

More than 1 year: Returns the number of Situations viewed each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getViewedSituationsPerUserStats:

Request example

A cURL request to return the number of viewed Situations by user 7 from 9am until 3pm on Thursday,

20th September 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getViewedSituationsPerUserStats" --data-urlencode

'users=[7]' --data-urlencode 'from=1537434000' --data-urlencode 'to=1537455600'

--data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations viewed by the user Charlie each hour during the

time range:

[{

 "datapoints":[

 [16.0,1537434000000],

 [26.0,1537437600000],

 [18.0,1537441200000],

 [34.0,1537444800000],

 [18.0,1537448400000],

 [11.0,1537452000000]

],

 "target":"Viewed Situations (Charlie Cooper)"

}]

getWorkedSituationsPerUserStats

A GET request that returns the number of Situations a user has worked on within a given time range.

Cisco Cisco Crosswork Situation Manager considers a user to have worked on a Situation if the user

has:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

330

1. Been assigned a Situation.

2. Been invited to a Situation.

3. Left a comment on a Situation.

4. Closed a Situation.

5. Resolved a Situation.

6. Executed a ChatOps tool on a Situation.

7. Rated a Situation.

8. Added PRC data to alerts in a Situation.

Back to Stats API.

Request arguments

Endpoint getWorkedSituationsPerUserStats takes the following request arguments.

Name Type Description

auth_token String A valid auth_token returned from the authenticate request. See the

authenticate endpoint for more information.

users Array An array of user IDs. If no users are provided, the endpoint does not return any

data.

from Number Start of the reporting time range. This is a Unix epoch timestamp in seconds.

to Number End of the reporting time range. This is a Unix epoch timestamp in seconds. If

this timestamp is within 10 seconds of the current system time, the last

datapoint returned is the current state datapoint.

aggregation String Set to:

accumulate: Gradually adds data points together over time.

none: No aggregation of data points.

Response

Endpoint getWorkedSituationsPerUserStats returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

target String "Worked Situations (full name)"

datapoints Number

Array

An array of data points. Each data point is an array in the format [data point,

timestamp]:

Data point: Number of Situations worked on by the user.

Timestamp: Calculation time (Unix epoch timestamp in milliseconds).

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

331

Less than 1 week: Returns the number of worked Situations each hour in the

time period.

1 week to 1 month: Returns the number of worked Situations each day in the

time period.

1 month to 1 year: Returns the number of worked Situations each week in

the time period.

More than 1 year: Returns the number of worked Situations each month in

the time period.

Examples

The following examples demonstrate typical use of endpoint getWorkedSituationsPerUserStats:

Request example

A cURL request to return the number of Situations worked on by user 5 from 12:22pm on Thursday

30th August until 8:22am Friday 31st August 2018:

curl -G -u graze:graze -k -v

"https://localhost/graze/v1/getWorkedSituationsPerUserStats" --data-urlencode

'users=[5]' --data-urlencode 'from=1535628143' --data-urlencode 'to=1535700143'

--data-urlencode 'aggregation=none'

Response example

A successful response returns the number of Situations worked by the user Chris each hour during the

time range:

[{

 "datapoints":[

 [12.0,1535628143000],

 [25.0,1535631743000],

 [33.0,1535635343000],

 [14.0,1535638943000],

 [1.0,1535642543000],

 [4.0,1535646143000],

 [9.0,1535649743000],

 [6.0,1535653343000],

 [37.0,1535656943000],

 [31.0,1535660543000],

 [19.0,1535664143000],

 [35.0,1535667743000],

 [36.0,1535671343000],

 [28.0,1535674943000],

 [30.0,1535678543000],

 [19.0,1535682143000],

 [21.0,1535685743000],

 [30.0,1535689343000],

 [35.0,1535692943000],

 [30.0,1535696543000]

],

 "target":"Worked Situations (Chris Cole)"

}]

Cisco Crosswork Situation Manager 8.0.x Developer Guide

332

Integrations API

The Integrations API acts as an integration point for external services and exposes selected Cisco

Crosswork Situation Manager functionality to authorized external clients.

Contact Cisco Support if you experience difficulties or need further guidance.

Endpoints

See Integrations API Endpoint Reference for details of all the Integrations API endpoints.

API definition

All Integrations requests use the following URL format, where <server> is the hostname of the

machine running the Cisco Crosswork Situation Manager UI :

https://<server>/integrations/api/v1/<endpoint>

Examples:

https://example.com/integrations/api/v1/integrations

https://example.com/integrations/api/v1/integrations/{integrationId}

https://example.com/integrations/api/v1/integrations/{integrationId}/status

Authentication

In order to use the Integrations API, you must have the manage_integrations and graze_login

permissions. The Grazer role has both of these permissions in Cisco Crosswork Situation Manager v8.x.

See Role Permissions for more information.

All requests require a basic authentication header.

Integrations API Endpoint Reference

This is a reference list for the Integrations API endpoints. Follow the links to see the details of each

endpoint.

All of the endpoints use basic authorization.

Brokers

The following endpoints relate to brokers:

1. /broker-profiles: Create broker profiles.Create a Broker Profile

Integrations

The following endpoints relate to integration management:

1. /integrations: Create and configure new integrations.

2. /integrations/{integrationId}: Retrieve and update existing integrations.

3. /integrations/{integrationId}/status: Retrieve the status of an integration.

Workflows

The following example workflows combine queries to configure integrations:

1. Export and Import Integrations

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID8355d4984e6d8874b75634d3d25436be
file://document/preview/111152%23UUID5176874f2c2ad302a478af84d0cb9180

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

333

2. Manage Integration States

/integrations

The /integrations endpoint allows you to create and configure new integrations.

To retrieve and update existing integrations see /integrations/{integrationId}.

Back to Integrations API Endpoint Reference.

GET

Retrieves a list of configured integrations.

Path parameters

The /integrations endpoint takes no parameters. It returns data for all existing integrations.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

readonly List Read-only details about the integration. This can include the webhook URL of the

integration and authorisation details.

type_id String Type of integration you have created.

inputs String Username (value) and password (key) you have configured to authenticate with the

integration.

name String Name of the integration you have created.

id Integer ID of the integration you have created.

version String Version of the integration you have created.

config Object The integration's configuration.

Examples

The following examples demonstrate typical use making a GET request to the integrations endpoint:

Request example

Example cURL GET request to the instance:

curl -X GET \

https://example.com/integrations/api/v1/integrations \

-u phil:password123 \

Response example

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

334

Example response returning the configured integrations:

[

 {

 "id": 42,

 "name": "Webhook1",

 "type_id": "Webhook",

 "version": "1.14",

 "config": {

 "single_instance_only": false,

 "category": "monitoring",

 "description": "A webhook integration to allow events to be sent via

generic REST and processed by Moogsoft AIOps",

 "display_name": "Slack",

 "type_id": "Webhook",

 "version": "1.14",

 "properties": [

 {

 "moobot_visibility": true,

 "property": "gatewayURL",

 "value": "jira"

 }

],

 "validations": [

 {

 "name": "jira_availability",

 "type": "HTTP",

 "method": "GET",

 "uri": "http://validator.com",

 "headers": {

 "additionalProp1": "string",

 "additionalProp2": "string",

 "additionalProp3": "string"

 },

 "params": {

 "additionalProp1": "string",

 "additionalProp2": "string",

 "additionalProp3": "string"

 },

 "body": "string",

 "errorMessage": "Provided credentials were rejected by the host"

 }

],

 "alert_url_tools": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

],

 "custom_fields": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

],

 "link_definitions": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

335

 "additionalProp3": {}

 }

],

 "moolets": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

],

 "sig_url_tools": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

],

 "sitroom_plugins": [

 {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

],

 "config": {

 "monitor": {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 },

 "constants": {

 "additionalProp1": {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 },

 "additionalProp2": {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 },

 "additionalProp3": {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

 },

 "conversions": {

 "additionalProp1": {

 "input": "STRING",

 "output": "INTEGER"

 },

 "additionalProp2": {

 "input": "STRING",

 "output": "INTEGER"

 },

 "additionalProp3": {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

336

 "input": "STRING",

 "output": "INTEGER"

 }

 },

 "filter": {

 "presend": "WebhookLam-SolutionPak.js",

 "modules": [

 "string"

],

 "dependencies": {

 "additionalProp1": {},

 "additionalProp2": {},

 "additionalProp3": {}

 }

 },

 "mapping": {

 "lambotOverridden": [

 "string"

],

 "builtInMapper": "CJsonDecoder",

 "catchAll": "overflow",

 "rules": [

 {

 "name": "signature",

 "rule": "$origin::$deviceId::$objectId",

 "conversion": "sevConverter"

 }

]

 }

 }

 },

 "inputs": [

 {

 "key": "username",

 "value": "admin"

 }

],

 "readonly": [

 {

 "name": "url",

 "description": "URL",

 "value": "$config#proxy($config.name)"

 }

]

 }

]

POST

Creates an integration's configuration.

Request arguments

The POST request takes the following request payload:

Name Type Required Description

type_id String Yes Type of integration to add, for example Webhook

inputs String Yes The key and value of inputs to substitute into the integration's

configuration. This can include username, password, URL to poll, and timing

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

337

intervals.

name String Yes Name of the integration to add, for example Webhook1

version String Yes Version of the integration to use. For validation purposes, this must be the

most recent version.

Response

The POST request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

readonly List Read-only details about the integration. This can include the webhook URL of the

integration and authorisation details.

type_id String Type of integration you have created.

inputs String Username (value) and password (key) you have configured to authenticate with the

integration.

name String Name of the integration you have created.

id Integer ID of the integration you have created.

version String Version of the integration you have created.

config Object The integration's configuration.

Examples

The following examples demonstrate typical use making a POST request to the integrations

endpoint:

Request example

Example cURL POST request to create a Webhook integration:

curl -X POST \

https://example.com/integrations/api/v1/integrations \

-u phil:password123 \

-d '{

 "type_id": "Webhook",

 "inputs": [

 {

 "name": "username",

 "value": "myusername"

 },

 {

 "name": "password",

 "value": "mypassword"

 }

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

338

],

 "name": "Webhook1",

 "version": "1.14"

 }'

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the new Webhook integration's configuration:

{

 "id": 4,

 "name": "Webhook2",

 "type_id": "Webhook",

 "version": "1.14",

 "config": {

 "category": "monitoring",

 "description": "A webhook integration to allow events to be sent via

generic REST.",

 "display_name": "Webhook",

 "type_id": "Webhook",

 "version": "1.14",

 "config": {

 "monitor": {

 "name": "Webhook Lam Monitor",

 "class": "CRestMonitor",

 "port": "$config#port()",

 "authentication_type": "basic_auth_static",

 "basic_auth_static": {

 "username": "John.Doe",

 "password": "Password123"

 },

 "use_ssl": false,

 "accept_all_json": true,

 "lists_contain_multiple_events": true,

 "num_threads": 5,

 "rest_response_mode": "on_receipt",

 "rpc_response_timeout": 20

 },

 "constants": {

 "severity": {

 "CLEAR": 0,

 "INDETERMINATE": 1,

 "WARNING": 2,

 "MINOR": 3,

 "MAJOR": 4,

 "CRITICAL": 5,

 "0": 0,

 "1": 1,

 "2": 2,

 "3": 3,

 "4": 4,

 "5": 5,

 "moog_lookup_default": 1

 }

 },

 "conversions": {

 "sevConverter": {

 "input": "STRING",

 "output": "INTEGER",

 "lookup": "severity"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

339

 },

 "stringToInt": {

 "input": "STRING",

 "output": "INTEGER"

 }

 },

 "filter": {

 "presend": "WebhookLam-SolutionPak.js",

 "modules": [],

 "dependencies": {

 "lambot": [

 "LamBot.js",

 "WebhookLam-SolutionPak.js"

],

 "contrib": []

 }

 },

 "mapping": {

 "lambotOverridden": [],

 "catchAll": "overflow",

 "rules": [

 {

 "name": "signature",

 "rule": "$source::$type"

 },

 {

 "name": "source_id",

 "rule": "$source_id"

 },

 {

 "name": "external_id",

 "rule": "$external_id"

 },

 {

 "name": "manager",

 "rule": "$manager"

 },

 {

 "name": "source",

 "rule": "$source"

 },

 {

 "name": "class",

 "rule": "$class"

 },

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$agent_location"

 },

 {

 "name": "type",

 "rule": "$type"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

340

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

 {

 "name": "description",

 "rule": "$description"

 },

 {

 "name": "agent_time",

 "rule": "$agent_time",

 "conversion": "stringToInt"

 }

]

 }

 },

 "ha_profile": "active_active"

 },

 "inputs": [

 {

 "key": "username",

 "value": "password"

 }

],

 "readonly": [

 {

 "name": "url",

 "description": "URL:",

 "value": "https://example.com/integrations/api/v1/events/webhook2"

 },

 {

 "name": "userid",

 "description": "User ID:",

 "value": "myusername"

 },

 {

 "name": "readonly_password",

 "description": "Password:",

 "value": "mypassword"

 },

 {

 "name": "auth",

 "description": "Base64 Encoded Auth:",

 "value": "Basic YWRtaW46"

 }

]

}

/integrations/{integrationId}

The /integrations/{integrationId} endpoint allows you to retrieve and update existing

integrations.

To create a new integration see /integrations.

Back to Integrations API Endpoint Reference.

GET

Retrieves a specific integration's configuration.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

341

Path parameters

The GET request takes the following path parameter:

Name Type Required Description

integrationId Integer Yes ID of the integration to retrieve. You can obtain an integration's ID

by executing a GET request to /integrations.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

readonly List Read-only details about the integration. This can include the webhook URL of the

integration and authorization details.

type_id String Type of integration.

inputs String Username (value) and password (key) you have configured to authenticate with the

integration.

name String Name of the integration.

id Integer ID of the integration.

version String Version of the integration. For validation purposes, this must be the most recent

version.

config Object Integration's configuration.

Examples

The following examples demonstrate making a GET request to the integrations/{integrationId}

endpoint:

Request example

Example cURL request for details of the integration with the ID "3":

curl \

https://example.com/integrations/api/v1/integrations/3 \

-u phil:password123 \

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the integration's details:

{

 "id": 3,

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

342

 "name": "DynatraceAPMPolling1",

 "type_id": "dynatrace_apm_lam",

 "version": "2.3",

 "config": {

 "config": {

 "filter": {

 "modules": [],

 "presend": "DynatraceApmLam.js",

 "dependencies": {

 "lambot": [

 "LamBot.js",

 "DynatraceApmLam.js"

],

 "contrib": []

 }

 },

 "mapping": {

 "rules": [

 {

 "name": "signature",

 "rule": "$systemprofile :: $rule"

 },

 {

 "name": "source_id",

 "rule": "Dynatrace APM"

 },

 {

 "name": "external_id",

 "rule": "$id"

 },

 {

 "name": "manager",

 "rule": "Dynatrace Apm"

 },

 {

 "name": "source",

 "rule": "$source"

 },

 {

 "name": "class",

 "rule": "$rule"

 },

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$LamInstanceName"

 },

 {

 "name": "type",

 "rule": "$state"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

 {

 "name": "description",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

343

 "rule": "$message"

 },

 {

 "name": "agent_time",

 "rule": "$start",

 "conversion": "timeConverter"

 }

],

 "catchAll": "overflow",

 "lambotOverridden": [

 "custom_info.overflow",

 "source"

]

 },

 "monitor": {

 "name": "DynatraceApm Lam Monitor",

 "class": "CDynatraceApmMonitor",

 "targets": {

 "target1": {

 "url": "https://localhost:8021",

 "filter": {

 "state": "InProgress",

 "profileName": "nam",

 "incidentRule": "rul"

 },

 "timeout": 120,

 "password": "def",

 "username": "abc",

 "disable_certificate_validation": true

 }

 },

 "max_retries": -1,

 "retry_interval": 60,

 "request_interval": 60

 },

 "constants": {

 "severity": {

 "severe": 5,

 "warning": 2,

 "informational": 1

 }

 },

 "conversions": {

 "stringToInt": {

 "input": "STRING",

 "output": "INTEGER"

 },

 "sevConverter": {

 "input": "STRING",

 "lookup": "severity",

 "output": "INTEGER"

 },

 "timeConverter": {

 "input": "STRING",

 "output": "INTEGER",

 "timeFormat": "yyyy-MM-dd'T'HH:mm:ss.SSS"

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

344

 }

 },

 "moolets": [],

 "type_id": "dynatrace_apm_lam",

 "version": "2.3",

 "category": "monitoring",

 "ha_profile": "active_passive",

 "description": "An integration which enables Moogsoft AIOps to ingest

events from Dynatrace APM.",

 "display_name": "Dynatrace APM (Polling)"

 },

 "inputs": [

 {

 "key": "targets",

 "value": [

 {

 "url": "https://localhost:8021",

 "filter": {

 "state": "InProgress",

 "profile_name": "nam",

 "incident_rule": "rul"

 },

 "password": "def",

 "username": "abc"

 }

]

 },

 {

 "key": "timing",

 "value": {

 "timeout": 120,

 "retry_interval": 60,

 "request_interval": 60

 }

 }

],

 "readonly": null

}

PUT

Updates an integration's configuration. Integrations with the ID you specify are unavailable during the

update. When the update completes, they automatically resume.

Request arguments

The PUT request takes the following request arguments:

Name Type Required Description

integrationId Integer Yes ID of the integration to update.

type_id String Yes Type of integration to add, for example Webhook.

inputs String Yes The key and value of inputs to substitute into the integration's

configuration. This can include username, password, URL to poll,

and timing intervals.

name String Yes Name of the integration to add, for example Webhook1.

version String Yes Version of the integration to use. For validation purposes, this must

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

345

be the most recent version.

Response

The PUT request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

readonly List Read-only details about the integration. This can include the webhook URL of the

integration and authorisation details.

type_id String Type of integration you have updated.

inputs String Username (value) and password (key) you have configured to authenticate with the

integration.

name String Name of the integration you have updated.

id Integer ID of the integration you have updated.

version String Version of the integration you have updated.

config Object The integration's configuration.

Examples

The following examples demonstrate making a PUT request to the integrations/{integrationId}

endpoint:

Request example

Example cURL PUT request to update the value and password parameters for a Webhook integration.

In this example, the Webhook's ID is 2:

curl -X PUT \

https://example.com/integrations/api/v1/integrations/2 \

-u phil:password123 \

-d '{

 "type_id": "Webhook",

 "inputs": [

 {

 "name": "username",

 "value": "Jane.Doe"

 },

 {

 "name": "password",

 "value": "Password123"

 }

],

 "name": "Webhook1",

 "version": "1.14"

 }'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

346

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the updated integration's details:

{

 "id": 2,

 "name": "Webhook2",

 "type_id": "Webhook",

 "version": "1.14",

 "config": {

 "category": "monitoring",

 "description": "A webhook integration to allow events to be sent via

generic REST and processed by Moogsoft AIOps.",

 "display_name": "Webhook",

 "type_id": "Webhook",

 "version": "1.14",

 "config": {

 "monitor": {

 "name": "Webhook Lam Monitor",

 "class": "CRestMonitor",

 "port": "$config#port()",

 "authentication_type": "basic_auth_static",

 "basic_auth_static": {

 "username": "<username>",

 "password": "<password>"

 },

 "use_ssl": false,

 "accept_all_json": true,

 "lists_contain_multiple_events": true,

 "num_threads": 5,

 "rest_response_mode": "on_receipt",

 "rpc_response_timeout": 20

 },

 "constants": {

 "severity": {

 "CLEAR": 0,

 "INDETERMINATE": 1,

 "WARNING": 2,

 "MINOR": 3,

 "MAJOR": 4,

 "CRITICAL": 5,

 "0": 0,

 "1": 1,

 "2": 2,

 "3": 3,

 "4": 4,

 "5": 5,

 "moog_lookup_default": 1

 }

 },

 "conversions": {

 "sevConverter": {

 "input": "STRING",

 "output": "INTEGER",

 "lookup": "severity"

 },

 "stringToInt": {

 "input": "STRING",

 "output": "INTEGER"

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

347

 },

 "filter": {

 "presend": "WebhookLam-SolutionPak.js",

 "modules": [],

 "dependencies": {

 "lambot": [

 "LamBot.js",

 "WebhookLam-SolutionPak.js"

],

 "contrib": []

 }

 },

 "mapping": {

 "lambotOverridden": [],

 "catchAll": "overflow",

 "rules": [

 {

 "name": "signature",

 "rule": "$source::$type"

 },

 {

 "name": "source_id",

 "rule": "$source_id"

 },

 {

 "name": "external_id",

 "rule": "$external_id"

 },

 {

 "name": "manager",

 "rule": "$manager"

 },

 {

 "name": "source",

 "rule": "$source"

 },

 {

 "name": "class",

 "rule": "$class"

 },

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$agent_location"

 },

 {

 "name": "type",

 "rule": "$type"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

348

 {

 "name": "description",

 "rule": "$description"

 },

 {

 "name": "agent_time",

 "rule": "$agent_time",

 "conversion": "stringToInt"

 }

]

 }

 },

 "ha_profile": "active_active"

 },

 "inputs": [

 {

 "key": "Jane.Doe",

 "value": "MyPassword"

 }

],

 "readonly": [

 {

 "name": "url",

 "description": "URL:",

 "value": "https://example.com/integrations/api/v1/events/webhook2"

 },

 {

 "name": "userid",

 "description": "User ID:",

 "value": "Username"

 },

 {

 "name": "readonly_password",

 "description": "Password:",

 "value": "Password123"

 },

 {

 "name": "auth",

 "description": "Base64 Encoded Auth:",

 "value": "Basic YWRtaW46"

 }

]

}

/integrations/{integrationId}/status

The /integrations/{integrationID}/status endpoint allows you to check and update the status

of an integration.

Back to Integrations API Endpoint Reference.

GET

Retrieves the status of an integration.

Path parameters

The GET request takes the following path parameter:

Name Type Required Description

integrationId Integer Yes ID of the integration to retrieve. You can obtain an integration's ID

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

349

by executing a GET request to /integrations.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

instances String URL of the instances in an object of Broker IDs that map to the

integration status info.

global Object Contains integration_config_id and status.

integration_config_id Integer ID of the integration.

status String Current status of the integration.

Examples

The following examples demonstrate making a GET request to the endpoint

/integrations/{integrationId}/status:

Request example

Example cURL GET request to retrieve the current status of the integration with the ID "6":

curl \

https://example.com/integrations/api/v1/integrations/6/status \

-u phil:password123 \

-H "accept: application/json"

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the integration's current status:

{

 "global":

 {

 "integration_config_id": 6,

 "status": "running"

 },

 "instances":

 {

 "Broker_3a52b7ef_8bad_41cc_8b36_cbb9c2aa3a9e":

 {

 "integration_name": "Azure1",

 "status": "running",

 "last_heartbeat": 1567789762645

 }

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

350

 }

}

PUT

Updates the status of an integration. You can use this to start and stop integrations. An integration can

run on multiple brokers; when assigning an integration to a broker, Cisco Crosswork Situation Manager

favours the broker(s) running the least integrations.

Request arguments

The PUT request takes the following request argument:

Name Type Required Description

integrationId Integer Yes ID of the integration to update.

Response

The PUT request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Required Description

command String Yes Status command you want to make. Choose from start and

stop.

target String Yes, unless using the

start command

Broker on which to run or stop the integration.

If unspecified, Cisco Crosswork Situation Manager starts the

integration on the broker running the least integrations.

Examples

The following examples demonstrate making a PUT request to the endpoint

/integrations/{integrationId}/status:

Request example

Example cURL PUT request to update an integration.

curl -X PUT \

https://example.com/integrations/api/v1/integrations/6/status \

-u phil:password123 \

-H "Content-Type: application/json; charset=UTF-8" \

-d '{ "command": "start" }'

Response example

A successful request returns the HTTP code 200 and no response text.

Export and Import Integrations

You can use the integrations API to migrate integration configurations across your Cisco Crosswork

Situation Manager instances, allowing you to swiftly set up new integrations while keeping previous

configurations intact.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

351

This example workflow combines queries to multiple endpoints to create an export/import workflow,

exporting an integration from one instance and then importing it into another instance.

Before you begin

Before you start the workflow, ensure you have met the following requirements:

 You have access to two separate instances of Cisco Crosswork Situation Manager and an

integration on one of these.

 You have running brokers on the destination instance.

 You have the ID of the integration(s) you want to export from your first instance. The ID displays in

the URL when you open the integration in your browser. For example,

https:/example.com/#/integrations/integration-details/13 has the ID 13.

Export the integration

The first step is to export the integration's details. Using basic authentication, make a GET request to

your first instance's /integrations/{integrationId} endpoint to retrieve its payload:

curl \

https://instance1.com/integrations/api/v1/integrations/3 \

-u phil:password123

The payload in the response returns the integration's details. For example:

{

 "id": 3,

 "name": "DynatraceAPMPolling1",

 "type_id": "dynatrace_apm_lam",

 "version": "2.3",

 "config": {

 "config": {

 "filter": {

 "modules": [],

 "presend": "DynatraceApmLam.js",

 "dependencies": {

 "lambot": [

 "LamBot.js",

 "DynatraceApmLam.js"

],

 "contrib": []

 }

 },

 "mapping": {

 "rules": [

 {

 "name": "signature",

 "rule": "$systemprofile :: $rule"

 },

 {

 "name": "source_id",

 "rule": "Dynatrace APM"

 },

 {

 "name": "external_id",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

352

 "rule": "$id"

 },

 {

 "name": "manager",

 "rule": "Dynatrace Apm"

 },

 {

 "name": "source",

 "rule": "$source"

 },

 {

 "name": "class",

 "rule": "$rule"

 },

 {

 "name": "agent",

 "rule": "$LamInstanceName"

 },

 {

 "name": "agent_location",

 "rule": "$LamInstanceName"

 },

 {

 "name": "type",

 "rule": "$state"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "sevConverter"

 },

 {

 "name": "description",

 "rule": "$message"

 },

 {

 "name": "agent_time",

 "rule": "$start",

 "conversion": "timeConverter"

 }

],

 "catchAll": "overflow",

 "lambotOverridden": [

 "custom_info.overflow",

 "source"

]

 },

 "monitor": {

 "name": "DynatraceApm Lam Monitor",

 "class": "CDynatraceApmMonitor",

 "targets": {

 "target1": {

 "url": "https://localhost:8021",

 "filter": {

 "state": "InProgress",

 "profileName": "nam",

 "incidentRule": "rul"

 },

 "timeout": 120,

 "password": "def",

 "username": "abc",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

353

 "disable_certificate_validation": true

 }

 },

 "max_retries": -1,

 "retry_interval": 60,

 "request_interval": 60

 },

 "constants": {

 "severity": {

 "severe": 5,

 "warning": 2,

 "informational": 1

 }

 },

 "conversions": {

 "stringToInt": {

 "input": "STRING",

 "output": "INTEGER"

 },

 "sevConverter": {

 "input": "STRING",

 "lookup": "severity",

 "output": "INTEGER"

 },

 "timeConverter": {

 "input": "STRING",

 "output": "INTEGER",

 "timeFormat": "yyyy-MM-dd'T'HH:mm:ss.SSS"

 }

 }

 },

 "moolets": [],

 "type_id": "dynatrace_apm_lam",

 "version": "2.3",

 "category": "monitoring",

 "ha_profile": "active_passive",

 "description": "An integration which enables Moogsoft AIOps to ingest

events from Dynatrace APM.",

 "display_name": "Dynatrace APM (Polling)"

 },

 "inputs": [

 {

 "key": "targets",

 "value": [

 {

 "url": "https://localhost:8021",

 "filter": {

 "state": "InProgress",

 "profile_name": "nam",

 "incident_rule": "rul"

 },

 "password": "def",

 "username": "abc"

 }

]

 },

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

354

 "key": "timing",

 "value": {

 "timeout": 120,

 "retry_interval": 60,

 "request_interval": 60

 }

 }

],

 "readonly": null

}

Import the integration

Now that you have the integration's details from the payload you can import them into your second

instance and create a new integration.

Make a POST request to your destination instance's /integrations endpoint, using the whole payload

from the GET request. You do not need to omit the id parameter as the POST request ignores it. For

example:

curl -X POST \

https://instance2.com/integrations/api/v1/integrations \

-H 'Content-Type: application/json' \

-u phil:password123 \

-d '{

 "id": 3,

 "type_id": "dynatrace_apm_lam",

 "inputs": [

 {

 "key": "targets",

 "value": [

 {

 "url": "https://localhost:8021",

 "filter": {

 "state": "InProgress",

 "profile_name": "nam",

 "incident_rule": "rul"

 },

 "password": "def",

 "username": "abc"

 }

]

 },

 {

 "key": "timing",

 "value": {

 "timeout": 120,

 "retry_interval": 60,

 "request_interval": 60

 }

 }

],

 "name": "DynatraceAPMPolling1",

 "version": "2.3"

 }'

A successful response returns a payload containing the new integration's details.

Start the integration

Having exported the integration, the final step is to start it up.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

355

Make a PUT request to your destination instance's /integrations/{integrationId}/status endpoint:

curl -X PUT \

https://instance2.com/integrations/api/v1/integrations/6/status \

-H 'Content-Type: application/json' \

-u phil:password123 \

-d '{

 "command": "start"

 }'

The integration is now ready to use on your second instance.

Manage Integration States

The Integrations Controller stores the states of UI integrations in <moog_intdb>.integration_state.

To modify the state of an integration, you can either run it or use the Integrations API. If you use the

Integrations API, you can modify the data ingestion information for a process group.

This topic provides an example state management workflow in which you combine queries to check an

integration's state, then set its last poll time back an hour.

Before you begin

Before you start the workflow, ensure you have met the following requirements:

 You have the name of the integration you want to modify.

 The integration you want to modify is either running or pre-populated in a non-running state.

Check the integration state

Using basic authentication, make a GET request to retrieve the status of the integration, which contains

the last poll time in milliseconds. In this example, ZabbixPolling2 is the name of the integration:

curl -u John.Doe:MyPassword https://<host>/integrations/api/v1/integration-

states/ZabbixPolling2

The response indicates the last poll time. For example:

{

 "target1": {

 "last_poll_time_ms": 1574758921000

 }

}

Note

If you are checking the state of a LAM, in place of the integration name you use the HA group name.

You can find this in the LAM configuration file under the ha section. See LAMS and High Availability for

more information.

Modify the integration state

Now that you have the last poll time you can change the timestamp. Make a PUT request to the same

endpoint with the new value for last_poll_time_ms:

 curl -X PUT \

 https://<host>/integrations/api/v1/integration-states/ZabbixPolling2_1 \

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID181d7bea1ba0aa00e25ebf4387da6f61

Cisco Crosswork Situation Manager 8.0.x Developer Guide

356

 -u John.Doe:MyPassword

 -H 'Content-Type: application/json' \

 -d '{

 "target1": {

 "last_poll_time_ms": 1574762521000

 }

}'

For a running integration, upon successful completion your changes instantly apply.

If the integration is not running or does not yet exist, the state is applied once the integration starts. See

/integrations/{integrationId}/status for more information.

Topologies API

The Topologies API allows you to create, modify, retrieve and delete topologies and their nodes and

links. You can use the clone and replace endpoints to update a copy of an existing topology and then

replace an active topology with the updated version.

You can use the Topologies API to create and manage small topologies, but this is impractical for large

topologies. If your topology .csv file is larger than 40 MB Cisco recommends using the Topology Loader

utility.

See Load a Topology for information on the loader utility. Contact Cisco Support if you experience

difficulties or need further guidance.

Endpoints

See Topologies API Endpoint Reference for details of all the Topologies API endpoints.

API definition

All Topologies API requests use the following URL format, where <server> is the hostname of the

machine running the Cisco Crosswork Situation Manager UI:

https://<server>/api/v1/topologies/<endpoint>

Examples:

https://example.com/api/v1/topologies

https://example.com/api/v1/topologies/{topologyName}/nodes

https://example.com/api/v1/topologies/{topologyName}/links/{sourceNode}

API behavior

The following behavior and restrictions apply to the Topologies API:

 The endpoints do not allow for filtering, sorting, limiting or pagination.

 To change the name of a topology, use the /topologies/{topologyName}/replace endpoint.

 You cannot change the name of a node. This is by design, to preserve data consistency.

 You cannot replace, rename or delete a topology or set it to "inactive" if it's being used to filter a

Recipe.

 All POST and PUT requests are batched automatically by the API.

 Topology names and node names are saved in lowercase.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

357

 GET and DELETE operations are case insensitive.

 If you attempt to create, retrieve, modify or delete nodes or links for a topology that does not exist,

you will receive a 400 "bad request" response.

For more information on the behavior of individual endpoints, see the Topologies API Endpoint

Reference.

Authentication

To use the Topologies API, you must have the super_privileges permission. See Role Permissions for

more information.

All requests require a basic authentication header.

Topologies API Endpoint Reference

This is a reference list for the Topologies API endpoints. Follow the links to see the details of each

endpoint.

All of the endpoints use basic authorization.

Topologies

The following endpoints relate to topologies:

 /topologies: Creates and updates multiple topologies, and retrieves all active topologies.

 /topologies/inactive: Retrieves all inactive topologies.

 /topologies/{topologyName}: Retrieves and deletes a single topology.

 /topologies/{topologyName}/clone: Clones a topology.

 /topologies/{topologyName}/replace: Replaces an existing topology with another topology, or

renames a topology.

Nodes

The following endpoints relate to topology nodes:

 /topologies/{topologyName}/nodes: Creates, retrieves, updates, and deletes multiple nodes.

 /topologies/{topologyName}/nodes/{nodeName}: Retrieves a single node.

Links

The following endpoints relate to topology links:

 /topologies/{topologyName}/links: Creates, retrieves, and deletes multiple links.

 /topologies/{topologyName}/links/{nodeName}: Retrieves and deletes all links for a node.

 /topologies/{topologyName}/links/{sourceNode}/{sinkNode}: Retrieves a link between two nodes.

Situations

The following endpoints relate to topologies and Situations:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID8355d4984e6d8874b75634d3d25436be

Cisco Crosswork Situation Manager 8.0.x Developer Guide

358

 /situation/{situationID}/topologies: Retrieves the topologies related to the alerts in a specified

Situation.

 getSituationTopology: Retrieves the node and link details for a specified Situation and topology.

/topologies

The /topologies endpoint allows you to create, retrieve and update one or more topologies.

To retrieve and delete a single existing topology, see /topologies/{topologyName}.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of all active topologies.

Path parameters

The GET request takes no parameters. It returns data for all active topologies in the system.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

Examples

The following examples demonstrate making a GET request to the /topologies endpoint.

Request example

Example cURL GET request to return details for all active topologies:

curl -X GET 'https://example.com/api/v1/topologies' -u phil:password123

Response example

Example response returning the active topology details:

[

 {

 "name": "host",

 "description": "Host-based topology",

 "active": true

 },

 {

 "name": "location",

 "description": "Location-based topology",

 "active": true

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

359

 }

]

POST

Creates one or more topologies.

Request arguments

The POST request takes the following request payload:

Name Type Required Description

name String Yes Name of the topology. Must be less than 256 characters.

description String No Description of the topology. Must be less than 1001 characters.

active Boolean No Whether the topology is active (true) or inactive (false). Default is

false.

Response

The POST request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

If you send an existing name in the request, it will be ignored and returned in the response.

Examples

The following examples demonstrate making a POST request to the /topologies endpoint.

Request example

Example cURL POST request to create two topologies named "host" and "location":

curl -X POST 'https://example.com/api/v1/topologies' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '[{"name":"host","description":"Host-based

topology","active":true},{"name":"location","description":"Location-based

topology","active":true}]'

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the new topologies:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

360

[

 {

 "name": "host",

 "description": "Host-based topology",

 "active": true

 },

 {

 "name": "location",

 "description": "Location-based topology",

 "active": true

 }

]

PUT

Updates one or more topologies.

Request arguments

The PUT request takes the following request payload:

Name Type Required Description

name String Yes Name of the topology. Must be less than 256 characters.

You cannot update the topology name. To rename a topology use

the /topologies/{topologyName}/replace endpoint.

description String No Description of the topology. Must be less than 1001 characters.

active Boolean No Whether the topology is active (true) or inactive (false). Default is

false.

You cannot set a topology to inactive if it's being used to filter a

Recipe.

Response

The PUT request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

Examples

The following examples demonstrate making a PUT request to the /topologies endpoint.

Request example

Example cURL PUT request to update the descriptions of two topologies named "host" and "location":

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

361

curl -X PUT 'https://example.com/api/v1/topologies' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '[{"name":"host","description":"Host-based network

topology","active":false},{"name":"location","description":"Location-based

network topology","active":false}]'

Response example

A successful request returns the HTTP code 200 and no response text.

Example response returning the updated topologies:

[

 {

 "name": "host",

 "description": "Host-based network topology",

 "active": false

 },

 {

 "name": "location",

 "description": "Location-based network topology",

 "active": false

 }

]

/topologies/inactive

The /topologies/inactive endpoint allows you to retrieve all inactive topologies.

To retrieve all active topologies see /topologies.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of all inactive topologies.

Path parameters

The GET request takes no parameters. It returns data for all inactive topologies in the system.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

362

active Boolean Whether the topology is active (true) or inactive (false).

Examples

The following examples demonstrate making a GET request to the /topologies/inactive endpoint.

Request example

Example cURL GET request to return details for all inactive topologies:

curl -X GET 'https://example.com/api/v1/topologies/inactive' -u phil:password123

Response example

Example response returning the inactive topology details:

[

 {

 "name": "host",

 "description": "Host-based topology",

 "active": false

 },

 {

 "name": "location",

 "description": "Location-based topology",

 "active": false

 }

]

/topologies/{topologyName}

The /topologies/{topologyName} endpoint allows you to retrieve and delete a single topology.

To create, retrieve and update multiple topologies see /topologies.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of a specified topology.

Path parameters

The GET request takes the following path parameter:

Name Type Required Description

 topologyName String Yes Name of the topology. You can obtain all topology names by

executing a GET request to /topologies.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the topology.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

363

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

Example

The following example demonstrates making a GET request to the /topologies/{topologyName}

endpoint.

Request example

Example cURL request for details of the topology with name "host":

curl -X GET \

https://example.com/api/v1/topologies/host \

-u phil:password123 \

Response example

Example response returning the topology's details:

{

 "name": "host",

 "description": "Host-based topology",

 "active": true

}

DELETE

Deletes a specified topology. Note the following:

 You cannot delete a topology if it's being used to filter a Recipe.

 Deleting a topology will impact your ability to restore associated Recipes in future. In order to

restore a Recipe that filters on a named topology, the topology must still exist in Cisco Crosswork

Situation Manager.

Request arguments

The DELETE request takes no arguments. It deletes the specified topology and any associated nodes

and links.

Response

The DELETE request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Example

The following example demonstrates making a DELETE request to the /topologies/{topologyName}

endpoint.

Request example

Example cURL request to delete a topology with name "host":

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

364

curl -X DELETE \

https://example.com/api/v1/topologies/host \

-u phil:password123

Response example

A successful request returns the HTTP code 204 and no content.

/topologies/{topologyName}/clone

The /topologies/{topologyName}/clone endpoint allows you to clone a topology. You can use the

clone and replace topologies endpoints to update a copy of an existing topology and then replace a

topology with the updated version.

To replace an existing topology with a cloned topology, see /topologies/{topologyName}/replace.

Back to Topologies API Endpoint Reference.

POST

Clones a topology.

Request arguments

The POST request takes the following request payload:

Name Type Required Description

name String Yes Name for the cloned topology.

Response

The POST request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return a JSON object containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false). Topology clones are

set to inactive. To change the active status send a PUT request to the

/topologies endpoint.

Example

The following example demonstrates making a POST request to the

/topologies/{topologyName}/clone endpoint.

Request example

Example cURL POST request to clone the "host" topology and name the clone "host_new":

curl -X POST 'https://example.com/api/v1/topologies/host/clone' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '{"name":"host_new"}'

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

365

Response example

Example response returning the cloned topology:

[

 {

 "name": "host_new",

 "description: "Host-based topology",

 "active: false

 }

]

/topologies/{topologyName}/replace

The /topologies/{topologyName}/replace endpoint allows you to replace an existing topology

with another topology. This process deletes the original topology. You can use the clone and replace

topologies endpoints to update a copy of an existing topology and then replace a topology with the

updated version.

You can also use this endpoint to rename a topology.

Back to Topologies API Endpoint Reference.

PUT

Replaces an existing topology with another topology, or renames a topology. Provide the

{topologyName} in the endpoint according to the desired function:

 Replace: The name of the existing topology to replace.

 Rename: The new topology name.

When a topology is replaced:

 The original topology and its nodes and links are deleted.

 Alerts that reference the original topology are updated to reference the replacement topology.

 If the replacement topology is active, its processing state in the database is set to outdated. This

triggers the graph analyser process to run as part of the Housekeeper Moolet. See Topologies.

Request arguments

The PUT request takes the following request payload:

Name Type Required Description

name String Yes Replace: Name of the replacing topology.

Rename: The topology to rename.

active Boolean No Sets the replaced or renamed topology to active (true) or inactive

(false). Replaced topologies take the active status of the replacing

topology by default.

Response

The PUT request returns the following response:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

366

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

The request fails if any of the following are true:

 name is being used to filter a Recipe, or does not exist.

 {topologyName} is being used to filter a Recipe and you are trying to make it inactive.

 Successful requests return a JSON object containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

Example

The following example demonstrates making a PUT request to the

/topologies/{topologyName}/replace endpoint.

Request example

Example cURL PUT request to replace the "host" topology with the "host_new" topology and set its

status to active:

curl -X PUT 'https://example.com/api/v1/topologies/host/replace' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '{"name":"host_new","active":true}'

In this example, if there is no topology named "host" the "host_new" topology is renamed "host".

Response example

Example response returning the newly replaced topology:

[

 {

 "name": "host_new",

 "description": "Host-based topology",

 "active": true

 }

]

/topologies/{topologyName}/nodes

The /topologies/{topologyName}/nodes endpoint allows you to create, retrieve, update and

delete one or more topology nodes.

To retrieve a single node for a topology, see /topologies/{topologyName}/nodes/{nodeName}.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of all nodes for a specified topology.

Path parameters

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

367

The GET request takes the following path parameter:

Name Type Required Description

 topologyName String Yes Name of the topology. You can obtain all topology names by

executing a GET request to /topologies.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the node.

description String Description of the node.

Example

The following example demonstrates making a GET request to the

/topologies/{topologyName}/nodes endpoint.

Request example

Example cURL GET request to return node details for the "host" topology:

curl -X GET 'https://example.com/api/v1/topologies/host/nodes' -u

phil:password123

Response example

Example response returning the topology's node details:

[

 {

 "name": "node1",

 "description": "First node"

 },

 {

 "name": "node2",

 "description": "Second node"

 }

]

POST

Creates one or more nodes in a topology.

Request arguments

The POST request takes the following request payload:

Name Type Required Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

368

name String Yes Name of the node.

description String No Description of the node.

Response

The POST request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the node.

description String Description of the node.

If you send an existing name in the request, it will be ignored and returned in the response.

Example

The following example demonstrates making a POST request to the

/topologies/{topologyName}/nodes endpoint.

Request example

Example cURL POST request to create two nodes in the "host" topology:

curl -X POST 'https://example.com/api/v1/topologies/host/nodes' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '[{"name":"node1","description":"First

node"},{"name":"node2","description":"Second node"}]'

Response example

Example response returning the new topologies:

[

 {

 "name": "node1",

 "description: "First node"

 },

 {

 "name": "node2",

 "description: "Second node"

 }

]

PUT

Updates one or more nodes in a topology. You can only update node descriptions, not node names.

Request arguments

The PUT request takes the following request payload:

Name Type Required Description

name String Yes Name of the topology.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

369

description String No Description of the topology.

Response

The PUT request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

name String Name of the node.

description String Description of the node.

Example

The following example demonstrates making a PUT request to the

/topologies/{topologyName}/nodes endpoint.

Request example

Example cURL PUT request to update two nodes in the "host" topology named "node1" and "node2":

curl -X PUT 'https://example.com/api/v1/topologies/host/nodes' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '[{"name":"node1","description":"Primary

node"},{"name":"node2","description":"Secondary node"}]'

Response example

Example response returning the new nodes:

[

 {

 "name": "node1",

 "description: "Primary node"

 },

 {

 "name": "node2",

 "description: "Secondary node"

 }

]

DELETE

Deletes one or more nodes in a topology.

Request arguments

The DELETE request takes the following request payload:

Name Type Required Description

names Array of Yes One or more node names in the format

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

370

Strings ["nodename1","nodename2"].

Response

The DELETE request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Example

The following example demonstrates making a DELETE request to the

/topologies/{topologyName}/nodes endpoint.

Request example

Example cURL request to delete the "node1" and "node2" nodes in the "host" topology:

curl -X DELETE 'https://example.com/api/v1/topologies/host/nodes' \

-H 'Content-Type: application/json' \

-d ["node1","node2"] \

-u phil:password123

Response example

A successful request returns the HTTP code 204 and no content.

/topologies/{topologyName}/nodes/{nodeName}

The /topologies/{topologyName}/nodes/{nodeName} endpoint allows you to retrieve a single

existing node in a topology.

To create, retrieve, update and delete multiple topology nodes see /topologies/{topologyName}/nodes.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of a specified topology node.

Path parameters

The GET request takes the following path parameters:

Name Type Required Description

topologyName String Yes Name of the topology.

nodeName String Yes Name of the topology node.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

371

name String Name of the node.

description String Description of the node.

If you send a nonexistent node name in the request, the HTTP code 204 is returned with no content.

Example

The following example demonstrates making a GET request to the

/topologies/{topologyName}/nodes/{nodeName} endpoint.

Request example

Example cURL request for details of the "node1" node in the "host" topology:

curl -X GET \

https://example.com/api/v1/topologies/host/nodes/node1 \

-u phil:password123

Response example

Example response returning the topology's details:

{

 "name": "node1",

 "description": "Primary node"

}

/topologies/{topologyName}/links

The /topologies/{topologyName}/links endpoint allows you to create, retrieve and delete one or

more links in a topology. You cannot update links, you must delete and re-add them.

To retrieve and delete all links for a node see /topologies/{topologyName}/links/{nodeName}.

Back to Topologies API Endpoint Reference.

GET

Retrieves details of all links for a specified topology.

Path parameters

The GET request takes the following path parameter:

Name Type Required Description

 topologyName String Yes Name of the topology. You can obtain all topology names by

executing a GET request to /topologies.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

372

Name Type Description

description String Description of the link between the nodes.

sourceNode String Name of the source node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

sinkNode String Name of the sink node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

Example

The following example demonstrates making a GET request to the

/topologies/{topologyName}/links endpoint.

Request example

Example cURL GET request to return link details for the "host" topology:

curl -X GET 'https://example.com/api/v1/topologies/host/links' -u

phil:password123

Response example

Example response returning the topology's link details:

[

 {

 "description: "link1",

 "sourceNode": "node1",

 "sinkNode: "node2"

 },

 {

 "description: "link2",

 "sourceNode": "node2",

 "sinkNode: "node3"

 }

]

POST

Creates one or more links in a topology. Creates the specified source nodes and sink nodes if they do

not already exist.

Request arguments

The POST request takes the following request payload:

Name Type Required Description

sourceNode String Yes Name of the source node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

description String No Description of the link between the nodes.

Response

The POST request returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

373

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

sourceNode String Name of the source node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

sinkNode String Name of the sink node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

description String Description of the link between the nodes.

If the supplied link already exists, the HTTP code 200 is returned.

Example

The following example demonstrates making a POST request to the

/topologies/{topologyName}/links endpoint.

Request example

Example cURL POST request to create two links in the "host" topology:

curl -X POST 'https://example.com/api/v1/topologies/host/links' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d

'[{"sourceNode":"node1","sinkNode":"node2","description":"link1"},{"sourceNode":

"node2","sinkNode":"node3","description":"link2"}]'

Response example

Example response returning the new links:

[

 {

 "description: "link1",

 "sourceNode": "node1",

 "sinkNode:" "node2"

 },

 {

 "description: "link2",

 "sourceNode": "node2",

 "sinkNode:" "node3"

 }

]

DELETE

Deletes one or more links in a topology.

Request arguments

The DELETE request takes the following request payload:

Name Type Required Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

374

names Array Yes One or more links in the format:

[
 {
 "sourceNode" : "node1",
 "sinkNode" : "node2"
 },
 {
 "sourceNode" : "node2",
 "sinkNode" : "node3"
 }
]

Response

The DELETE request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

If the request contains some existing and some non-existing links, the existing links will be deleted and

non-existing links will be returned in the response.

Example

The following example demonstrates making a DELETE request to the

/topologies/{topologyName}/links endpoint.

Request example

Example cURL request to delete the "link1" and "link2" links in the "host" topology:

curl -X DELETE 'https://example.com/api/v1/topologies/host/links' \

-H 'Content-Type: application/json' \

-d ["link1","link2"] \

-u phil:password123

Response example

A successful request returns the HTTP code 204 and no content.

An example response where link1 and link2 do not exist:

{

"message": "Some of the links could not be deleted as they did not

exist","invalidLinks":

 [

 {

 "sourceNode": "node1",

 "sinkNode": "node2"

 }

]

}

/topologies/{topologyName}/links/{nodeName}

The /topologies/{topologyName}/links/{nodeName} endpoint allows you to retrieve and delete

all links for a topology node. Topology links in Cisco Crosswork Situation Manager are bidirectional so

the node name can be either a source node or a sink node.

To create, retrieve and delete one or more links in a topology see /topologies/{topologyName}/links.

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

375

Back to Topologies API Endpoint Reference.

GET

Retrieves link details for the specified topology node.

Path parameters

The GET request takes the following path parameters:

Name Type Required Description

topologyName String Yes Name of the topology.

nodeName String Yes Name of the node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

description String Description of the link between the nodes.

sourceNode String Name of the source node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

sinkNode String Name of the sink node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

Example

The following example demonstrates making a GET request to the

/topologies/{topologyName}/links/{nodeName} endpoint.

Request example

Example cURL request for details of the "node2" links in the "host" topology:

curl -X GET \

https://example.com/api/v1/topologies/host/links/node2 \

-u phil:password123 \

Response example

Example response returning the links for "node2":

[

 {

 "description": "link1",

 "sourceNode": "node2",

 "sinkNode": "node1"

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

376

 },

 {

 "description": "link2",

 "sourceNode": "node2",

 "sinkNode": "node3"

 }

]

DELETE

Deletes all links for the specified topology node.

Path parameters

The DELETE request takes no arguments. It deletes all links for the specified topology node.

Response

The DELETE request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Example

The following example demonstrates making a DELETE request to the

/topologies/{topologyName}/links/{nodeName} endpoint.

Request example

Example cURL request to delete all links for the "node1" node on the "host" topology:

curl -X DELETE \

https://example.com/api/v1/topologies/host/links/node1 \

-u phil:password123

Response example

A successful request returns the HTTP code 204 and no content.

/topologies/{topologyName}/links/{sourceNode}/{sinkNode}

The /topologies/{topologyName}/links/{sourceNode}/{sinkNode} endpoint allows you to

retrieve a link between two topology nodes.

To create, retrieve and delete one or more links in a topology see /topologies/{topologyName}/links.

To retrieve and delete all links for a topology node see /topologies/{topologyName}/links/{nodeName}.

Back to Topologies API Endpoint Reference.

GET

Retrieves link details for two specified topology nodes.

Path parameters

The GET request takes the following path parameters:

Name Type Required Description

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

377

topologyName String Yes Name of the topology.

sourceNode String Yes Name of the source node. Note that topology links in Cisco

Crosswork Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

Response

The GET request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

Successful requests return an array of JSON objects containing the following:

Name Type Description

description String Description of the link between the nodes.

sourceNode String Name of the source node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

sinkNode String Name of the sink node. Note that topology links in Cisco Crosswork Situation

Manager are bidirectional.

Example

The following example demonstrates making a GET request to the

/topologies/{topologyName}/links/{sourceNode}/{sinkNode} endpoint.

Request example

Example cURL request for details of the link between "node1" and "node2" in the "host" topology:

curl -X GET \

https://example.com/api/v1/topologies/host/links/node1/node2 \

-u phil:password123

Response example

Example response returning the link details:

[

 {

 "description": "link1",

 "sourceNode": "node1",

 "sinkNode": "node2"

 }

]

/topologies/{topologyName}/replace

The /topologies/{topologyName}/replace endpoint allows you to replace an existing topology

with another topology. This process deletes the original topology. You can use the clone and replace

https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

378

topologies endpoints to update a copy of an existing topology and then replace a topology with the

updated version.

You can also use this endpoint to rename a topology.

Back to Topologies API Endpoint Reference.

PUT

Replaces an existing topology with another topology, or renames a topology. Provide the

{topologyName} in the endpoint according to the desired function:

 Replace: The name of the existing topology to replace.

 Rename: The new topology name.

When a topology is replaced:

 The original topology and its nodes and links are deleted.

 Alerts that reference the original topology are updated to reference the replacement topology.

 If the replacement topology is active, its processing state in the database is set to outdated. This

triggers the graph analyser process to run as part of the Housekeeper Moolet. See Topologies.

Request arguments

The PUT request takes the following request payload:

Name Type Required Description

name String Yes Replace: Name of the replacing topology.

Rename: The topology to rename.

active Boolean No Sets the replaced or renamed topology to active (true) or inactive

(false). Replaced topologies take the active status of the replacing

topology by default.

Response

The PUT request returns the following response:

Type Description

HTTP

Code

HTTP status or error code indicating request success or failure. See HTTP status code

definitions for more information.

The request fails if any of the following are true:

 name is being used to filter a Recipe, or does not exist.

 {topologyName} is being used to filter a Recipe and you are trying to make it inactive.

Successful requests return a JSON object containing the following:

Name Type Description

name String Name of the topology.

description String Description of the topology.

active Boolean Whether the topology is active (true) or inactive (false).

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

379

Example

The following example demonstrates making a PUT request to the

/topologies/{topologyName}/replace endpoint.

Request example

Example cURL PUT request to replace the "host" topology with the "host_new" topology and set its

status to active:

curl -X PUT 'https://example.com/api/v1/topologies/host/replace' \

--header 'Content-Type: application/json; charset=UTF-8' \

-u phil:password123 \

-d '{"name":"host_new","active":true}'

In this example, if there is no topology named "host" the "host_new" topology is renamed "host".

Response example

Example response returning the newly replaced topology:

[

 {

 "name": "host_new",

 "description": "Host-based topology",

 "active": true

 }

]

Introduction to Graze API

Command Line Utility

Alert Analyzer Utility

The Alert Analyzer utility is a standalone process. It uses Natural Language Processing (NLP) techniques

to analyze inbound event data. The Alert Analyzer divides text fields within the events into tokens.

Based on the frequency of these tokens appearing in other events, it assigns an entropy value to the

tokens and to the alerts in Cisco Crosswork Situation Manager.

See Entropy for more information on how Cisco Crosswork Situation Manager evaluates entropy and

uses entropy thresholds to reduce the level of 'noise' from incoming event data.Entropy

See Configure Entropy Generation Schedule and Configure Entropy Thresholds for information on how

to use Alert Analyzer features in the Cisco Crosswork Situation Manager UI.

Natural language processing analysis

The Alert Analyzer utility performs a number of linguistic analyses on events entering Cisco Crosswork

Situation Manager. It then uses this linguistic analysis to calculate an entropy value for each token and

then for every alert. See Entropy for more information.

https://en.wikipedia.org/wiki/Natural_language_processing
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID3449e959742f4212346a33997d96324f
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID3449e959742f4212346a33997d96324f
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID662d6cef18f9ee28e46ff7f7c6f02c9a
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID3449e959742f4212346a33997d96324f

Cisco Crosswork Situation Manager 8.0.x Developer Guide

380

Tokenization of text

The Alert Analyzer splits a text string at word boundaries, such as spaces or punctuation marks, into

blocks. Each block of text is known as a token. For example, the following description has five tokens:

Link down on port 2/32

Token type identification

Commonly used word boundaries are often integral to the meaning of a token, for example, dots in

IPV4 addresses. The Alert Analyzer identifies complete tokens of the following types within the

structure of an event:

 IP addresses:

— v4

— v6

 MAC addresses

 OIDs

 Dates: Most standard formats.

 Numbers:

— Integers

— Real numbers

— With and without unit suffixes, for example, 99%, 12kb, 345ms.

 File paths:

— Forward slashes

— Backward slashes

 GUIDs

 Hexadecimal numbers: With the 0x prefix.

 URLs

 Email addresses: Most standard formats.Identifying token types in arbitrary text is not an exact

science and so, occasionally, the algorithms may identify tokens as a certain type which seems

incorrect to a human.

After the Alert Analyzer has identified the token types, it can use them for masking and to identify

tokens with high variation in a given alert.

Token masking

Tokens that change between events for the same alert can cause that alert to be assigned an

incorrectly high entropy value. The most obvious example involves dates and times. If the description of

an event is to be analyzed but each event contains a different timestamp, that timestamp will have a

high entropy and skew the entropy for that alert as a whole. For other token types that change

frequently, such as URLs or IP addresses, it may be desirable to retain the higher entropy associated

with that token type because the changing value is significant.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

381

You can configure the Alert Analyzer to include or exclude specific token types in the entropy analysis

for each event partition.

You should consider masking dates, times and numbers from the entropy calculation.

Language processing techniques

The Alert Analyzer uses many standard techniques in language processing:

1. Case folding

o Tokens that differ only by case, for example, 'WORD', 'Word' or 'word', are converted to the

same case and considered equal.

o Case folding is applied to all token types.

2. Stop words

o You can add common or meaningless words, such as 'a', 'be', 'not', to a stop words file so that

they are removed from the entropy calculation.

o You can define a universal 'length' parameter so that any word at or below a certain length is

treated as a stop word. For example, if set to '2', any words of one or two characters are

ignored.

o Stop words are applied to all token types.

3. Stemming

o A technique used to reduce a word to its root to remove plurals or different tenses in verbs.

Words with the same root are considered equal.

o Note that some words, when stemmed, look unusual. For example, 'priority', 'priorities',

prioritize, get stemmed to 'priorit'.

o If stemming is enabled, the stemmed form is stored in the reference database.

o Stemming is only applied to tokens of type 'word', that is, it is not applied to numbers, GUIDs,

IP addresses, etc.

Priority words

Priority words are similar in concept to stop words but, rather than removing that word from the analysis

as occurs with stop words, a priority word is assigned an entropy value of 1

regardless of how frequently the word appears in events.

1. Priority words are analyzed after stop words. If a token satisfies the criteria of a stop word, it is

removed from the analysis and so cannot subsequently be considered as a priority word.

2. The reference database contains the calculated entropies for all tokens regardless of whether they

are classed as priority words.

Partition-based analysis

You can configure the Alert Analyzer so that it calculates the entropy values for events for different

partitions. As an example, you may want to run separate entropy calculations for different regions. In

https://en.wikipedia.org/wiki/Letter_case#Case_folding
http://en.wikipedia.org/wiki/Stop_words
http://en.wikipedia.org/wiki/Stemming

Cisco Crosswork Situation Manager 8.0.x Developer Guide

382

this type of configuration, the same token can be given multiple entropy values within the same

Moogfarmd deployment based on its frequency in the events within each partition. You can set up

different configuration options for the different partitions. For example, in a particular partition, IP

addresses may be masked whilst for another partition that may be unnecessary. In general, if a

deployment uses the - method in Moogfarmd, that deployment benefits from

partition-based entropy calculations.

See Configure Entropy Generation Schedule for further information on the Graze API endpoints you can

use to configure partitions in the Alert Analyzer.

Alert Builder Reference

This is a reference for the Alert Builder Moolet.Alert Builder

You can change the behavior of the Alert Builder by editing the configuration properties in the

$MOOGSOFT_HOME/config/moolets/alert_builder.conf configuration file. It contains the

following properties:

name

Name of the Alert Builder Moolet. Do not change.

Type String

Required Yes

Default "AlertBuilder"

classname

Moolet class name. Do not change.

Type String

Required Yes

Default 4"CAlertBuilder"

run_on_startup

Determines whether the Alert Builder runs when Cisco Crosswork Situation Manager starts. By default,

it is set to true, so that when Moogfarmd starts, it automatically creates an instance of the Alert Builder.

In this case you can stop it using farmd_ctrl.

Type Boolean

Required Yes

Default true

moobot

Specifies a JavaScript file found in $MOOGSOFT_HOME/moobots, which defines the Alert Builder

Moobot, which creates alerts.

Type String

Required Yes

Default AlertBuilder.js

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID3449e959742f4212346a33997d96324f
file://document/preview/11731%23UUID46fdd0df23feef6890228720a5e2b4cf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

383

metric_path_moolet

Determines whether or not Cisco Crosswork Situation Manager includes the Alert Builder in the Event

Processing metric for Self Monitoring.Self Monitoring

Type Boolean

Required Yes

Default true

event_streams

A list of event streams, which the Alert Builder Moolet processes in this instance of Moogfarmd. The

LAMs can be configured to send events on different streams. Moogfarmd, as specified in the Alert

Builder configuration, then decides whether or not to process them. If Cisco Crosswork Situation

Manager runs multiple Moogfarmds, you can have different event streams being processed by different

Alert Builder Moolets.

You can comment out event_streams, or provide an empty list. Then, the Alert Builder processes

every event that is published on the default /Events topic on the Message Bus.

You configure the Alert Builder Moolet by giving it a list of strings, for example, [App A , App B].

The result is that the Alert Builder listens for events published on /Events/AppA, and /Events/AppB,

and processes that data. Importantly, in this example, events published to /Events or any other stream

are ignored. You can have Moogfarmds that process completely separate event streams, or, multiple

Moogfarmds that process some different event streams and some common event streams. You would

do this when some of the alerts are common to all the applications that are being processed, but some

are specific only to a given application. In this way, you can cluster alerts separately for each

application by configuring the Sigalisers to only processes alerts from a specific upstream Alert Builder

Moolet.

For example, if you have two separate applications that share the same network infrastructure: in

Moogfarmd 1, you can have as the event streams, application A and networks, and, in Moogfarmd 2,

you can have application B and networks. With this configuration, you can detect alerts and then create

Situations that are relevant for just application A and similarly just for application B; however, if there is

common networking infrastructure and problems occur with network failures across applications A and

B, the Alert Builder can cluster these into Situations.

Type String

Required No

Default ["AppA"]

threads

Specifies the number of threads in the Alert Builder. Choose a value to match the event rate

experienced by your system that allows time for alert creation.

Type String

Required Yes

Default 4

file://document/preview/35190%23UUID9cfcd3ad2db8f7f70534ef009f72f493

Cisco Crosswork Situation Manager 8.0.x Developer Guide

384

events_analyser_config

Allows you to specify a different Events Analyser configuration, for tokenizing and analysis rules, for

each Alert Builder Moolet. If no configuration file is specified, the system default

events_analyser.conf is used.

Type String

Required No

Default "events_analyser.conf"

priming_stream_name

Stream name under which the Events Analyser runs in order to calculate token and alert entropies. If set

to null, all alerts from all streams are included in the entropy calculations.

Type String

Required Yes

Default null

priming_stream_from_topic

If set to true, Moogfarmd extracts the priming stream name from the event's stream. If set to false,

Moogfarmd uses the stream configured in priming_stream_name.

Type Boolean

Required Yes

Default false

Archiver Utility Command Reference

The archiver utility moog_archiver is a command line utility to archive and delete Situations, alerts and

statistical data.

The utility is located at $MOOGSOFT_HOME/bin/utils/moog_archiver.

See Archive Situation and Alerts for more information.

Usage

moog_archiver [--alert_filter <filter name>] [--update_batch_size <number of

Situations/rows>] [--delimiter <delimiter>] [--export] [--file_age <number

of days >] [--log_level WARN|INFO|DEBUG|TRACE] [--situation_filter] [--

loose_alert_age <number of days>] [--logconsole] [--logfilename] [--

include_statistics] [--statistics_age <number of days>] [--archive_path

<path>] [--remove] [--situation_age <number of days>] [--loose_alerts_only

] [--delay_time <number of milliseconds>] [--id_batch_size <number of rows>]

--help

Argument Input Description

-a, --alert_filter String <filter name> Include all loose alerts that match the specified

global alert filter. Does not apply to alerts within

Situations that are being archived.

-b, -- Integer <number of Maximum number of alert/Situation rows to process

at once during the export/deletion process.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

385

update_batch_size Situations/rows> Increasing this value can speed up archiving but

places more load on the database. Default is 1000.

-d, --delimiter String <delimiter> Delimiter to insert between values in the export file.

Defaults to comma ",".

-e, --export - Export the archived data to a file.

-f, --file_age Integer <number of

days>

Delete files from the default directory

/usr/local/archived that are older than the

specified number of days.

-g, --log_level String, one of WARN |

INFO | DEBUG |

TRACE

Log level controlling the amount of information

logged by the utility. Default is WARN.

-i, --

situation_filter

- Include all Situations that match the specified global

alert filter.

-l, --

loose_alert_age

Integer <number of

days>

Export data related to loose alerts older than the

specified number of days. Default is 395.

--logconsole - Write logs to the console only.

--logfilename String <filename> Specify a log filename.

-m, --

include_statistics

- Include the deletion of statistical data. Statistical data

can only be deleted, not archived.

-n, --

statistics_age

Integer <number of

days>

Delete statistical data older than the specified

number of days. Default is 395.

-p, --archive_path String <path> Destination path for the archived data. Default is

/usr/local/archived.

-r, --remove - Delete data from the database.

-s, --situation_age Integer <number of

days>

Include Situation data (and alerts within Situations)

older than the specified number of days. Default is

395.

-t, --

loose_alerts_only

- Archive loose alerts only. Cannot be used with -i or

-s.

-y, --delay_time Integer <number of

milliseconds>

Length of the delay between each batch operation.

Can be used to slow the speed of archiving to

reduce load on the database. Default is 0.

-z, --id_batch_size Integer <number of

rows>

Maximum number of rows to process per batch

during the export/deletion process. Increasing this

value can speed up archiving but places more load

on the database. Default is 100.

-h, --help - Display the utility options and syntax.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

386

Example

moog_archiver --export --remove --loose_alert_age 2 --situation_age 7 --

logfilename 10_12_20_archiver.log

Logging to : /var/log/moogsoft/10_12_20_archiver.log

Topology Loader Utility Command Reference

The Topology Loader utility topology_loader is a command line utility to add nodes, links and

optional link descriptions to an existing topology.

The utility is located at $MOOGSOFT_HOME/bin.

See Load a Topology for more information.

Usage

topology_loader [-h] [-b=BATCH_SIZE] [--credentials=USERNAME:PASSWORD] -

f=CSV_FILE [--hostname=HOSTNAME] -t=TOPOLOGY

Argument Input Description

-b, --batch-

size

Integer <batch size> Number of links to create in each batch. Default is 10,000.

--

credentials
String

<username:password>

Graze API username and password. Default is graze:graze.

-f, --file String <csv_filename> Name of the .csv file containing the pairs of connected

nodes with optional link descriptions.

--hostname String <hostname> Name of your Cisco Crosswork Situation Manager host

running Nginx. Default is localhost.

-t, --

topology

String <topology name> Name of the topology in which to create the nodes and

links. You must create the topology before you run the

utility.

-h, --help - Display the utility options and syntax.

Example

An example to load nodes and links from the file "physical_topology.csv" into the "physical" topology

on host "example.com" in batches of 15,000 is as follows:

topology_loader -b=15000 --credentials=phil:password123 -f=physical_topology.csv

--hostname=example.com -t=physical

The utility produces the following example output:

Executing: topology_loader

INFO : [main][20200320 16:35:21.308 +0000] [CTopologyLoader.java:97] +|Starting,

reading from: physical_topology.csv|+

INFO : [main][20200320 16:35:21.348 +0000] [CCertificateProvider.java:83]

+|Found ssl_certificate setting: ssl_certificate

/etc/nginx/ssl/certificate.pem;|+

INFO : [main][20200320 16:35:21.352 +0000] [CTopologyProcessorHelper.java:66]

+|Using certificate: /etc/nginx/ssl/certificate.pem|+

INFO : [main][20200320 16:35:22.074 +0000] [CTopologyLoader.java:105] +|Read 10

link(s) for topology physical, processing in batches of 15,000|+

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

387

INFO : [main][20200320 16:35:23.067 +0000] [CTopologyProcessor.java:196] +|--

[204: https://example.com/api/v1/topologies/physical/links]|+

INFO : [main][20200320 16:35:23.068 +0000] [CTopologyProcessor.java:144] +|10 of

10 sent (100%)|+

INFO : [main][20200320 16:35:23.068 +0000] [CTopologyLoader.java:109]

+|Finished|+

Component Configuration

System Configuration

You can configure the various components of Cisco Crosswork Situation Manager using the system

configuration file.

Configure your system

Edit the configuration file to control the behavior of the different components in your Cisco Crosswork

Situation Manager system. You can find the file at $MOOGSOFT_HOME/config/system.conf.

See the System Configuration Reference for a full description of all properties. Some properties in the

file are commented out by default. Uncomment properties to configure and enable them.

Message Bus

You can edit your Message Bus and RabbitMQ configuration in the mooms section of the file. It allows

you to:

 Configure your Message Bus zones and brokers.

 Control and minimize message loss during a failure.

 Control how senders handle Message Bus failures.

 Control what happens during periods of extended Message Bus unavailability.

 Configure the SSL protocol you want to use.

 Specify the number of connections to use for each message sender pool.

For more information see the Message Bus documentation.

Database

You can edit your database configuration in the mysql section of the file:

 Configure your host name, database names and database credentials:

1. host: Name of your host.

2. moogdb_database_name: Name of the Moogdb database.

3. referencedb_database_name: Name of the Cisco Crosswork Situation Manager reference

database.

4. intdb_database_name: Name of the Cisco Crosswork Situation Manager integrations

database.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

388

5. username:Username for the MySQL user that accesses the database.

6. encrypted_password: Encrypted password for the MySQL user.

7. password: Password for the MySQL user.

8. port: Default port that Cisco Crosswork Situation Manager uses to connect to MySQL.

 Configure the port, deadlock retry attempts and multi-host connections:

— maxRetries: Maximum number of retries in the event of a MySQL deadlock.

— retryWait: Number of milliseconds to wait between each retry attempt.

— failover_connections: Hosts and ports for the different servers that are connected to the

main host.

 Configure the SSL connections to the MySQL database:

— trustStorePath: Path to location that stores the server certificate.

— trustStoreEncryptedPassword: Path to location that stores your encrypted trustStore

 password.

— trustStorePassword: Path to location that stores your trustStore password.

Elasticsearch

You can edit your search configuration in the search section of the file:

 Configure the Elasticsearch connection timeouts:

o connection_timeout: Length of time in milliseconds before the connection times out.

o request_timeout: Length of time in milliseconds before the request times out.

 Configure the Elasticsearch limit and nodes:

o refresh_interval: Defines how often an Elasticsearch index refreshes. A newly indexed

document is not visible in search results until the next time the index refreshes. Default is 30

seconds.

o limit: Maximum number of search results that Elasticsearch returns from a search query.

o nodes: Hosts and ports for the Elasticsearch servers connected in a cluster.

Failover

You can edit failover configuration in the failover section of the file:

 Configure persistence in the event of a failover:

o persist_state: Enable or disable the persistence of the state of all Moolets in the event of a

failover.

 Configure the Hazelcast cluster, this is Cisco Crosswork Situation Manager implementation of

persistence:

o network_port: Port to connect to on each specified host.

o auto_increment: Enable for Hazelcast to attempt to the next incremental available port number

if the configured port is unavailable.

https://en.wikipedia.org/wiki/Hazelcast

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

389

o hosts: List of hosts that can participate in the cluster.

o man_center: Configures the cluster information that you can view in the Hazelcast

Management Center UI.

o cluster_per_group: Enable the stateful information from each process group to persist in a

dedicated Hazelcast cluster.

 Configure failover options that apply to Moogfarmd and the LAMs:

o keepalive_interval: Time interval in seconds at which processes report their active/passive

status and check statuses of other processes.

o margin: Amount of time in seconds after keepalive_intervalbefore Cisco Crosswork

Situation Manager considers processes that do not report their status to be dead.

o failover_timeout: Number of seconds to wait for previously active process to become passive

during a manual failover.

o automatic_failover: Allow a passive process to automatically become active if no other active

processes are detected in the same process group.

o heartbeat_failover_after: Number of consecutive heartbeats that a process fails to send

before Moogfarmd considers it inactive.

Process Monitor

You can edit the process monitor configuration in the process_monitor section of the file:

 Configure the heartbeat interval and delay:

o heartbeat: Interval in milliseconds between heartbeats sent by processes.

o max_heartbeat_delay: Number of milliseconds to wait before declaring heartbeat as missing.

 Configure the Moogfarmd and which processes you can control from the UI:

1. group: Name of the group of processes and subcomponent processes that you want to

control from the UI.

2. instance: Name of the instance of Cisco Crosswork Situation Manager you want to

configure.

3. service_name: Name of the service you want to control.

4. process_type: Type of process you want to control.

5. reserved: Determines if Cisco Crosswork Situation Manager considers the process as

critical in process monitoring.

Encryption

You can edit the encryption configuration in the encryption section of the file:

 encryption_key_file: Default location of the encryption key file.

High Availability

Cisco Crosswork Situation Manager 8.0.x Developer Guide

390

You can edit the high availability configuration in the ha section of the file.

 cluster: Default HA cluster name

Port ranges

You can edit the port range that Cisco Crosswork Situation Manager services use when they look for

open ports.

1. port_range_min: Minimum port number in the range.

2. port_range_max: Maximum port number in the range.

Example

The following example shows system.conf with the default configuration and all available properties

enabled:

{

 "mooms": {

 "zone": "",

 "brokers": [{

 "host": "localhost",

 "port": 5672

 }],

 "username": "moogsoft",

 "password": "m00gs0ft",

 "encrypted_password": "e5uO0LY3HQJZCltG/caUnVbxVN4hImm4gIOpb4rwpF4=",

 "threads": 10,

 "message_persistence": false,

 "message_prefetch": 100,

 "max_retries": 100,

 "retry_interval": 200,

 "cache_on_failure": false,

 "cache_ttl": 900,

 "connections_per_producer_pool": 2,

 "confirmation_timeout": 2000,

 "ssl": {

 "ssl_protocol": "TLSv1.2",

 "server_cert_file": "server.pem",

 "client_cert_file": "client.pem",

 "client_key_file": "client.key"

 }

 },

 "mysql": {

 "host": "localhost",

 "moogdb_database_name": "moogdb",

 "referencedb_database_name": "moog_reference",

 "intdb_database_name": "moog_intdb",

 "username": "ermintrude",

 "encrypted_password": "vQj7/yom7e5ensSEb10v2Rb/pgkaPK/4OcUlEjYNtQU=",

 "password": "m00",

 "port": 3306,

 "maxRetries": 10,

 "retryWait": 50,

 "failover_connections": [

 {

 "host": "193.221.20.24",

 "port": 3306

 },

 {

 "host": "143.47.254.88",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

391

 "port": 3306

 },

 {

 "host": "234.118.117.132",

 "port": 3306

 }

],

 "ssl": {

 "trustStorePath": "etc/truststore",

 "trustStoreEncryptedPassword":

"vQj7/yom7e5ensSEb10v2Rb/pgkaPK/4OcUlEjYNtQU=",

 "trustStorePassword": "moogsoft"

 }

 },

 "search": {

 "connection_timeout": 1000,

 "request_timeout": 10000,

 "refresh_interval": 30,

 "limit": 1000,

 "nodes": [{

 "host": "localhost",

 "port": 9200

 }]

 },

 "failover": {

 "persist_state": false,

 "hazelcast": {

 "network_port": 5701,

 "auto_increment": true,

 "hosts": ["localhost"],

 "man_center":

 {

 "enabled": false,

 "host": "localhost",

 "port": 8091

 },

 "cluster_per_group": false

 },

 "keepalive_interval": 5,

 "margin": 10,

 "failover_timeout": 10,

 "automatic_failover": false,

 "heartbeat_failover_after": 2

 },

 "process_monitor": {

 "heartbeat": 10000,

 "max_heartbeat_delay": 1000,

 "processes": [{

 "group": "moog_farmd",

 "instance": "",

 "service_name": "moogfarmd",

 "process_type": "moog_farmd",

 "reserved": true,

 "subcomponents": [

 "AlertBuilder",

 "Default Cookbook",

 "TeamsMgr",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

392

 "Housekeeper",

 "AlertRulesEngine",

 "SituationMgr",

 "Notifier"

]},

 {

 "group": "servlets",

 "instance": "",

 "service_name": "apache-tomcat",

 "process_type": "servlets",

 "reserved": true,

 "subcomponents": [

 "moogsvr",

 "moogpoller",

 "toolrunner",

 "situation_similarity"

]},

 {

 "group": "logfile_lam",

 "instance": "",

 "service_name": "logfilelamd",

 "process_type": "LAM",

 "reserved": false

 },

 {

 "group": "rest_lam",

 "instance": "",

 "service_name": "restlamd",

 "process_type": "LAM",

 "reserved": false

 },

 {

 "group": "socket_lam",

 "instance": "",

 "service_name": "socketlamd",

 "process_type": "LAM",

 "reserved": false

 },

 {

 "group": "trapd_lam",

 "instance": "",

 "service_name": "trapdlamd",

 "process_type": "LAM",

 "reserved": false

 },

 {

 "group": "rest_client_lam",

 "instance": "",

 "service_name": "restclientlamd",

 "process_type": "LAM",

 "reserved": false

 }

]

 },

 "encryption": {

 "encryption_key_file": "/location/of/.key"

 },

 "ha": {

 "cluster": "MOO"

 },

 "port_range_min": 50000,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

393

 "port_range_max": 51000

}

Start and stop Moogfarmd

Restart the Moogfarmd service to activate any changes you make to the system configuration file.

The service name is moogfarmd.

See Control Moogsoft AIOps Processes for further details.Control Processes

System Configuration Reference

This is a reference for the system configuration file located at

$MOOGSOFT_HOME/config/system.conf. It contains the following sections and properties:

Message Bus (MooMs)

connections_per_producer_pool

The number of connections to use for each message sender pool. For example, if a message sender

pool has 20 channels and this property is set to 2, the channels are split across both connections so

that each has 10 channels. To configure this property, you must manually add it to the mooms section.

Type Integer

Required No

Default 2

zone

Name of the zone.

Type String

Required No

Default N/A

brokers

Hostname and port number of the RabbitMQ broker.

Type Array

Required No

Default "host" : "localhost", "port" : 5672

username

Username of the RabbitMQ user. This needs to match the RabbitMQ broker configuration. If commented

out, it uses the default "guest" user.

Type String

Required No

Default guest

file://document/preview/11677%23UUID1a2205c3aae40b26fdfe94490043f3c3

Cisco Crosswork Situation Manager 8.0.x Developer Guide

394

password

Password for the RabbitMQ user. You can choose to either have a password or an encrypted password,

you cannot use both.

Type String

Required Yes. If you are not using encrypted password.

Default guest

encrypted_password

Encrypted password for the RabbitMQ user. You can choose to either have a password or an encrypted

password, you cannot use both. See Moog Encryptor if you want to encrypt your password.

Type String

Required Yes. If you are not using password.

Default N/A

threads

Number of threads a process can create in order to consume the messages from the Message Bus. If

not specified, the thread limit = (Number of processors x 2) + 1. Altering this limit affects the

performance of Cisco Crosswork Situation Manager processes such as Moogfarmd and Moogpoller.

If your logs indicate an issue in creating threads, Cisco advises that you increase the ulimit, the

maximum number of file descriptors each process can use, for the Cisco Crosswork Situation Manager

user. You can set this limit in /etc/security/limits.conf.

Type Integer

Required No

Default 10

message_persistance

Controls whether RabbitMQ persists important messages. Message queues are durable by default and

data is replicated between nodes in High Availability mode. Setting this value to false means that

replicated data is not stored to disk.

Type Boolean

Required No

Default true

message_prefetch

Controls how many messages a process can take from the Message Bus and store in memory as a

buffer for processing. This configuration allows processes to regulate message consumption which can

ease backlog and memory consumption issues. The higher the number, the more messages held in the

process's memory. Set to 0 for unlimited processing. To achieve high availability of messages and

ensure messages are processed, the value of this should be higher than 0.

Type Integer

Required No

Default 0

max_retries

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

395

Maximum number of attempts to resend a message that failed to send. Cisco Crosswork Situation

Manager only attempts a retry when there is a network outage or if cache_on_failure is enabled.

You can use this in conjunction with the retry_interval property. For example, a combination of 100

maximum retries and 200 milliseconds for retry interval leads to a total of 20 seconds. The combined

default value for these properties was chosen to handle the typical time for a broker failover in a

clustered environment.

Type Integer

Required No

Default 100

retry_interval

Maximum length of time to wait in milliseconds between each attempt to retry and send a message that

failed to send.

You can use this in conjunction with the max_retries property. The combined value for these

properties was chosen to handle the typical time for broker failover in a clustered environment.

Type Integer

Required No

Default 200

cache_on_failure

Controls whether Cisco Crosswork Situation Manager caches the message internally and resends it if

there is an initial retry failure. The system attempts to resend any cached messages in the order they

were cached until the time-to-live value, defined by the cache_ttl property, is reached.

Type Boolean

Required No

Default false

cache_ttl

Length of time in seconds that Cisco Crosswork Situation Manager keeps cached messages in the

cache list before discarding them. If a message is not successfully resent within this timeframe it is still

discarded.

This defaults to 900 seconds (15 minutes). Increasing this value has a direct impact on sender process

memory.

Type Integer

Required No

Default 900

confirmation_timeout

Length of time in milliseconds to wait for the Message Bus to confirm that a broker has received a

message. Cisco does not advise changing this value.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

396

Type Integer

Required No

Default 2000

Message Bus SSL

ssl_protocol

SSL protocol you want to use. JRE 8 supports "TLSv1.2", "TLSv1.1", "TLSv1" or "SSLv3".

Type String

Required No

Default TLSv1.2

server_cert_file

Path to the directory that contains the SSL certificates. You can use a relative path based upon the

$MOOGSOFT_HOME directory. For example, config indicates $MOOGSOFT_HOME/config.

Type String

Required No

Default server.pem

client_cert_file

Enables client authentication if you provide a client certificate and key file.

Type String

Required No

Default client.pem

client_key_file

Enables client authentication if you provide a client key file. The file must be in PKCS#8 format.

Type String

Required No

Default client.key

MySQL

host

Host name or server name of the server that is running MySQL.

Type String

Required No

Default localhost

moogdb_database_name

Name of the primary Cisco Crosswork Situation Manager database.

https://en.wikipedia.org/wiki/PKCS_8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

397

Type String

Required No

Default moogdb

referencedb_database_name

Name of the Cisco Crosswork Situation Manager reference database.

Type String

Required No

Default moog_reference

intdb_database_name

Name of the integrations database.

Type String

Required No

Default moog_intdb

username

Username of the MySQL user.

Type String

Required No

Default ermintrude

password

Password for the MySQL user. You can choose to either have a password or an encrypted password,

you cannot use both.

Type String

Required Yes, if you are not using encrypted password.

Default m00

encrypted_password

Encrypted password for the MySQL user. You can choose to either have a password or an encrypted

password, you cannot use both. See Moog Encryptor if you want to encrypt your password.

Type String

Required Yes, if you are not using password.

Default N/A

port

Port that MySQL uses.

Type Integer

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

398

Required No

Default 3306

maxRetries

Maximum number of MySQL query retries to attempt in the event of a deadlock.

Type Integer

Required No

Default 10

retryWait

Length of time in milliseconds to wait between retry attempts.

Type Integer

Required No

Default 50

failover_connections

Hosts and ports for the different servers that are connected to the main host. For example, primary-

primary, primary-secondary. In the event of connection failover, the connection cannot be read-only

(secondary).

Type List

Required No

Default N/A

MySQL SSL

trustStorePath

Path to tNohe directory that contains the trustStore you want to use for SSL connections to your MySQL

database. You can use a relative path based upon the $MOOGSOFT_HOME directory. For example,

config indicates $MOOGSOFT_HOME/config/truststore.

Type String

Required No

Default etc/truststore

trustStoreEncryptedPassword

Your encrypted trustStore password. You can choose to either have a password or an encrypted

password, you cannot use both. See Moog Encryptor if you want to encrypt your password.

Type String

Required Yes, if you are not using trustStorePassword.

Default N/A

trustStorePassword

Your trustStore password. You can choose to either have a password or an encrypted password, you

cannot use both.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

399

Type String

Required No, if you are not using trustStoreEncryptedPassword.

Default moogsoft

connection_timeout

Length of time in milliseconds before the connection to the Elasticsearch server times out.

Type Integer

Required No

Default 1000

nodes

Hosts and ports for the different Elasticsearch servers connected in a cluster.

Type Array

Required No

Default "host" : "localhost",

"port" : 9200

Failover

persist_state

Enable or disable the persistence of the state of all Moolets in the event of a failover.

Type Boolean

Required No

Default false

network_port

Port to connect to on each specified host in your Hazelcast cluster.

Type Integer

Required No

Default 5701

auto_increment

Enable for Hazelcast to attempt to connect to the next incremental available port number if the

configured port is unavailable.

Type Boolean

Required No

Default true

hosts

Cisco Crosswork Situation Manager 8.0.x Developer Guide

400

List of hosts that can participate in the cluster.

Type Array

Required No

Default localhost

man_center

Specifies the cluster information that you can view in the Hazelcast Management Center UI.

Type List

Required No

Default "enabled" : false,

"host" : "localhost",

"port" : 8091

cluster_per_group

Enable the stateful information from each process group to persist in a dedicated Hazelcast cluster.

Type Boolean

Required No

Default false

Moogfarmd Failover

keepalive_internal

Time interval in seconds at which processes report their active or passive status and check statuses of

other processes.

Type Integer

Required No

Default 5

margin

Amount of time in seconds after keepalive_interval before Cisco Crosswork Situation Manager

considers processes that do not re_port their status to be dead.

Type Integer

Required No

Default 10

failover_timeout

Amount of time in seconds to wait for previously active process to become passive during manual

failover.

Type Integer

Required No

Default 10

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

401

automatic_failover

Allow a passive process to automatically become active if no other active processes are detected in the

same process group.

Type Boolean

Required No

Default false

Process Monitor

heartbeat

Interval in milliseconds between heartbeats sent by processes.

Type Integer

Required Yes

Default 10000

max_heartbeat_delay

Number of milliseconds to wait before declaring heartbeat as missing. Defaults to 10% of the heartbeat.

Type Integer

Required No

Default 1000

Processes

Groups of processes that you want to be able to stop, start and restart from Self Monitoring in the Cisco

Crosswork Situation Manager UI. For each group you can configure the following options:

group

Name of the process group that Cisco Crosswork Situation Manager uses when it starts and stops the

service.

Type String

Required Yes

Default N/A

instance

Name of the instance for the process.

Type String

Required Yes

Default N/A

display_name

Cisco Crosswork Situation Manager 8.0.x Developer Guide

402

Additional identification label that appears in the UI.

Type String

Required No

Default N/A

cluster

Name of the process's cluster. This overrides the default cluster for a process. If left empty, the Cisco

Crosswork Situation Manager uses the process's default cluster.

Type String

Required No

Default N/A

service_name

Name of the service script that Cisco Crosswork Situation Manager uses to control the process. If you

do not configure a service name, Cisco Crosswork Situation Manager uses the group name, removing

underscores and appending a 'd'. For example, "traplam" becomes "traplamd".

Type String

Required No

Default N/A

process_type

Type of process. If left empty, Cisco Crosswork Situation Manager calculates the type based on the

group name.

Type String

Required No

Default N/A

Valid Values moog_farmd, servlet, LAM

reserved

Determines if the process produces a warning in the UI when it is running. Processes that are

unreserved do not produce a warning.

Type Boolean

Required No

Default true

subcomponents

Specifies which Moolets are reserved for the Moogfarmd process. If left empty, no Moolets are

reserved for the Moogfarmd process.

Type Array

Required No

Default N/A

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

403

Encryption

encryption_key_file

Default location of the encryption key file.

Type String

Required No

Default /location/of/.key

High Availability (HA)

cluster

Default HA cluster name.

Type String

Required No

Default MOO

Port Range

port_range_min

Minimum port number in the range that the Cisco Crosswork Situation Manager services use when they

look for open ports.

Type String

Required No

Default 50000

port_range_max

Maximum port number in the range that the Cisco Crosswork Situation Manager services use when they

look for open ports.

Type String

Required No

Default 51000

Security Configuration Reference

This is a reference for security configuration in Cisco Crosswork Situation Manager. You can edit

$MOOGSOFT_HOME/config/security.conf to configure security features such as LDAP and

SAML.Configure Single Sign-On with LDAPConfigure Single Sign-On with SAML

LDAP Connection Properties

You can configure the LDAP connection using the following properties:

file://document/preview/11686%23UUID3193657a12492c15985af2245ae3cfdd
file://document/preview/11683%23UUIDb43cb9ef2ef8258305f79120981ec32a

Cisco Crosswork Situation Manager 8.0.x Developer Guide

404

url

The protocol (LDAP or LDAPS) along with the host and port of your LDAP server. For example:

ldap://172.16.124.169:389.

Type: String

Required: Yes

Default: N/A

connectionTimeout

Defines the connection timeout in milliseconds.

Type: String

Required: Yes

Default: 30000

readTimeout

Defines the read timeout in milliseconds.

Type: String

Required: Yes

Default: 30000

predefinedUser

If enabled, the user account information must exist in the local database as well as the LDAP server and

predefined user details are used to populate created or updated user accounts.

If disabled, Cisco Crosswork Situation Manager creates or updates user accounts with the LDAP

information.

Type: String

Required: Yes

Default: False

LDAP Attribute Search Properties

You can configure the authentication bind, DN resolution method and attribute search with the following

properties:

resolutionType

Defines the method to look up the DN (Distinguished Name), a unique path to any object in the active

directory.

Type: String

Required: Yes

One of: direct, lookup

Default: N/A

https://ldapwiki.com/wiki/Distinguished%20Names

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

405

There are two methods to choose from:

 direct: If using this method, the user DN is created using the usernameAttribute and

userDnPostfix properties. These properties are required. For example:

 "userDnResolution": {

 "resolutionType" : "direct",

 "direct" : {

 "usernameAttribute": "uid",

 "userDnPostfix": "ou=People,dc=moogsoft,dc=com"

 }

},

 For a user called John Smith, the user DN is:

 uid=john.smith,ou=People,dc=moogsoft,dc=com

 lookup: If using this method, Cisco Crosswork Situation Manager searches for the user in the LDAP

server using a combination of usernameAttribute and userBaseSearchFilter as a filter and

userBaseDn as a base to find the DN. These properties are required. For example:

 "userDnResolution": {

 "resolutionType" : "lookup",

 "lookup" : {

 "usernameAttribute": "sAMAccountName",

 "userBaseDn" : "ou=People,dc=moogsoft,dc=com",

 "userBaseSearchFilter" : "(objectclass=person)",

 }

},

Optionally for both "direct" and "lookup" methods, you can use the userDnLookupUser,

userDnLookupPassword and encryptedUserDnLookupPasswordproperties to define the user to

look up each DN in your directory. See Moog Encryptor for more information if you want to use

password encryption.

If you leave the userDnLookupUser property empty, LDAP uses the systemUser defined in the LDAP

Group Search section instead.

attributeSearchFilter

Defines an optional LDAP attribute filter to search for user attributes.

Type: String

Required: No

Default: (objectclass=*)

attributeMap

Defines an attribute map between the LDAP user attributes and the user attributes in the Cisco

Crosswork Situation Manager database.

Type: String

Required: No

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

406

Default: N/A

This property uses the format:

"attributeMap": {

 "db_column_5": "ldap_attribute_1",

 "db_column_2": "ldap_attribute_8",

 "db_column_3": "ldap_attribute_8",

}

LDAP Group Search and Mapping

You can configure the following properties in the LDAP group search section:

systemUser

Username of the system user to bind and search for user group information. LDAP uses this user if you

leave the userDnLookupUser property empty. The system sends two bind requests and two search

requests with LDAP. If you do not configure a system user, the user bind chosen for authentication is

also used for the LDAP group search.

Type: String

Required: No

Default: N/A

systemPassword

Password of the system user to bind and search for user group information.

Type: String

Required: No

Default: N/A

groupBaseDn

DN for the part of the LDAP structure that contains the user groups. This is used in conjunction with the

memberAttribute to find any LDAP groups the user belongs to. These groups are then mapped to a

local role using the roleMap property.

Type: String

Required: No

Default: N/A

memberAttribute

Attribute used to look for group members.

Type: String

Required: No

Default: member

groupNameAttribute

Attribute used to look for group name.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

407

Type: String

Required: No

Default: CN

roleMap

Defines the role mappings between the user directory and Cisco Crosswork Situation Manager.

Type: String

Required: No

Default: N/A

LDAP AssignTeams Properties

You can configure the following sub-properties of assignTeams to synchronize team assignment

between the user directory and the teams in Cisco Crosswork Situation Manager.

assignTeams

Sychronizes team assignment between the user directory and the teams in Cisco Crosswork Situation

Manager.

Type: String

Required: No

Default: N/A

teamMap

Defines the LDAP attribute or custom attribute that maps to team names in Cisco Crosswork Situation

Manager. You can provide the mapping as a JSON object. For example:

{ "LDAP Team" : "Moogsoft Team", "Another LDAP Team" : "Another Moogsoft team" }

Type: JSON Object

Required: No

Default: N/A

useGroupName

Enable to use the LDAP group name as the team name in Cisco Crosswork Situation Manager.

Type: Boolean

Required: No

Default: false

createNewTeams

Creates a team or teams if they do not exist in Cisco Crosswork Situation Manager. If you leave

teamMap empty, the teams adopt their LDAP teams names.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

408

Type: Boolean

Required: No

Default: false

LDAP SSL Properties

You can optionally configure SSL to enable TLS authentication:

ssl_protocol

Defines the SSL protocol you want to use.

Type: String

Required: No

Default: TLSv1.2

server_cert_file

SSL server certificate.

Type: String

Required: No

Default: N/A

client_cert_file

SSL client certificate.

Type: String

Required: No

Default: N/A

client_key_file

Client key file.

Type: String

Required: No

Default: N/A

SAML Service Provider Properties

You can configure a SAML realm by giving it a name and editing the following properties:

idpMetadataFile

Location of the identity provider's metadata file. The metadata file provides information on how to

connect to the IdP. Cisco Crosswork Situation Manager requires the file to be in .xml format.

Type: String

Required: Yes

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

409

Default: "/usr/share/moogsoft/etc/saml/my_idp_metadata.xml"

spMetadataFile

Location of the service provider's metadata file. Cisco Crosswork Situation Manager writes the SP

metadata information to this file. This location must be accessible and editable by the Apache Tomcat

user. Cisco Crosswork Situation Manager requires the file to be in .xml format. If your IdP does not have

an SP metadata file generator, you can create one manually. See Build a Service Provider Metadata File

for instructions.Build a Service Provider Metadata File

Type: String

Required: No

Default: "/usr/share/moogsoft/etc/saml/my_sp_metadata.xml"

defaultRoles

Default roles that Cisco Crosswork Situation Manager assigns to new users upon first login using SAML.

If the user already has a role mapping, Cisco Crosswork Situation Manager uses that instead.

Type: Array

Required: Yes

Default: ["Operator"]

defaultTeams

Default teams that Cisco Crosswork Situation Manager assigns to new users upon first login using

SAML. You can create an empty list if you do not want to assign new users to a team.

Type: Array

Required: No

Default: ["Cloud DevOps"]

defaultGroup

Default primary group that Cisco Crosswork Situation Manager assigns to new users upon first login

using SAML.

Type: Array

Required: Yes

Default: ["End-User"]

SAML User Mapping Properties

You can configure how to map IdP user fields to existing Cisco Crosswork Situation Manager users and

how to map user fields for new users. All mappings are case sensitive. Each mapping follows the

format:

"MoogsoftAttribute" : "IdPAttribute"

existingUserMappingField

file://document/preview/11684%23UUID208f0cb948e9c337cfbf266a14359a52

Cisco Crosswork Situation Manager 8.0.x Developer Guide

410

Defines the field that Cisco Crosswork Situation Manager uses to map existing users to your IdP users.

Type: String

Required: No

One of: username, email

Default: "username"

username

Defines the IdP's attribute that maps to username in Cisco Crosswork Situation Manager.

Type: String

Required: Yes

Default: "$Email"

email

Defines the IdP's attribute that maps to email in Cisco Crosswork Situation Manager.

Type: String

Required: Yes

Default: "$Email"

fullname: Defines the IdP attributes that map to full name in Cisco Crosswork Situation Manager.

Type: String

Required: Yes

Default: "$FirstName $LastName"

SAML Optional Properties

You can customize your SAML realm with a number of optional properties:

contactNumber

Defines the IdP attribute that maps to contact number in Cisco Crosswork Situation Manager.

Type: String

Required: No

Default: "phone",

department

Defines the IdP attribute that maps to department in Cisco Crosswork Situation Manager.

Type: String

Required: No

Default: "department",

primaryGroup

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

411

Defines the IdP attribute that maps to primary group inCisco Crosswork Situation Manager.

Type: String

Required: No

Default: "primaryGroup",

timezone

Defines the IdP attribute that maps to timezone in Cisco Crosswork Situation Manager.

Type: String

Required: No

Default: "timezone",

SAML assignTeams Properties

You can configure the following sub-properties of assignTeams to synchronize team assignment

between the SAML user directory and the teams in Cisco Crosswork Situation Manager:

teamAttribute

Defines the IdP attribute that maps to teams in Cisco Crosswork Situation Manager.

Type: String

Required: No

Default: "groups"

teamMap

Defines the IdP attribute or custom attribute that maps to team names in Cisco Crosswork Situation

Manager.

Type: JSON Object

Required: No

Default: { "IdP Team" : "Moogsoft AIOps Team", "Another IdP Team" : "Another AIOps

team" }

createNewTeams

Creates a team or teams if they do not exist in Cisco Crosswork Situation Manager. If you leave

teamMap empty, the teams adopt their IdP teams names.

Type: Boolean

Required: No

Default: false

SAML assignRoles Properties

roleAttribute

Cisco Crosswork Situation Manager 8.0.x Developer Guide

412

Defines the IdP attribute containing role information.

Type: String

Required: No

Default: "groups"

roleMap

Defines the IdP attribute that maps to Cisco Crosswork Situation Manager roles.

Type: JSON Object

Required: No

Default: { "IdP Standard User" : "Operator", "IdP Manager User" : "Manager" }

SAML Security Properties

keystorePassword

Your unencrypted keystore password. Any whitespace in the name is replaced with an underscore.

Type: String

Required: No

Default: "<my_realm>_secret"

encryptedKeystorePassword

Your encrypted keystore password. Any whitespace in the name is replaced with an underscore. You

can have either an unencrypted keystore password or an encrypted keystore password, but you cannot

use both. See Moog Encryptor for more information on encrypting passwords.

Type: String

Required: No

Default: N/A

privateKeyPassword

Your private key password. Any whitespace in the name is replaced with an underscore.

Type: String

Required: No

Default: "<my_realm>_secret"

maximumAuthenticationLifetime

Maximum time in seconds for Cisco Crosswork Situation Manager to receive an IdP's SAML assertion

before it becomes invalid.

Type: Integer

Required: No

Default: 2592000 (720 hours)

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

413

serviceProviderEntityId

Service Provider Entity ID assertion number. Some IdPs require this ID.

Type: String

Required: No

Default: "MoogsoftAIOps"

Service Provider Metadata Reference

This is a reference for Build a Service Provider Metadata File. Each SP metadata .xml file accepts the

following elements:Build a Service Provider Metadata File

entityID

Unique identifier or name for the service provider. The ID should be a URN or a URL.

Type: String

Required: Yes

Example: https://example.moogsoftaiops.com/moogsvr/mooms

ID

Unique identifier for the root metadata element.

Type: String

Required: No

Example: TW9vZ3NvZnRBSU9wcw==

validUntil

Defines the expiration date of the metadata file. The date should be in ISO 8601 format.

Type: String

Required: No

Example: 2018-08-10T07:47:41+00:00

AuthnRequestsSigned

If enabled, Cisco Crosswork Situation Manager signs SAML authentication requests as part of the

Single Sign-On.

Type: Boolean

Required: No

Default: false

WantAssertionsSigned

file://document/preview/11684%23UUID208f0cb948e9c337cfbf266a14359a52

Cisco Crosswork Situation Manager 8.0.x Developer Guide

414

If enabled, Cisco Crosswork Situation Manager expects IdPs to sign any SAML assertions it sends.

Type: String

Required: No

Default: false

KeyDescriptor

Defines the type of signing or the type of encryption that Cisco Crosswork Situation Manager uses.

Type: String

Required: No

One of: use = "signing", use = "encryption"

X509Certificate

Self-signed certificate that allows Cisco Crosswork Situation Manager to sign and encrypt each SAML

assertion. The certificate should be in DER format and base-64 encoded.

Type: String

Required: No

Example: MIIDijCCAnICCQD[...]+6SBfDCrWFsw==

AssertionConsumerService

Defines the URL or endpoint that receives the SAML assertions. The Location is for the URL and the

Binding identifies the method. Supported bindings include: HTTP-Artifact, HTTP-POST, HTTP-POST-

SimpleSign, HTTP-Redirect and SOAP.

Type: String

Required: Yes

Example: Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

Location="https://localhost/moogsvr/mooms?request=samlResponse"

Moogfarmd and Core Data Processing

Moogfarmd is the core system application that runs all of the algorithms and automation relevant to

Cisco Crosswork Situation Manager. It is responsible for the following:

 Creating alerts.

 Analyzing alerts to determine their significance.

 Clustering alerts into Situations.

 Performing automation relating to the automated response such as escalation, routing, notification,

invitation of either alerts or Situations.

The topics in this guide help you configure the data processing components of Moogfarmd:

You can run one or many instances of Moogfarmd on your Cisco Crosswork Situation Manager system.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

415

Services

The Cisco Crosswork Situation Manager installation installs Moogfarmd as a service:

/etc/init.d/moogfarmd

A backup Moogfarmd service script is located at $MOOGSOFT_HOME/etc/service-

wrappers/moogfarmd.

If you run multiple instances of Moogfarmd on the same host, copy and modify the default Moogfarmd

service script for each Moogfarmd running on the host:

 Copy $MOOGSOFT_HOME/etc/service-wrappers/moogfarmd to /etc/init.d/mymoogfarmd.

 Edit the following parameters in the /etc/init.d/mymoogfarmd file:

SERVICE_NAME=mymoogfarmd
CONFIG_FILE=$PROCESS_HOME/config/my_moog_farmd.conf

 You now have a new service to be used to start your own specific Moogfarmd:

 service mymoogfarmd start

Learn More

For information on starting, stopping and configuring Moogfarmd, see the Moogfarmd Reference.

Moogfarmd Reference

Moogfarmd controls all other services in Cisco Crosswork Situation Manager and manages which

algorithms and Moolets are running.

Services

We advise that you start Moogfarmd as a service. A service script is provided out of the box for the

default Moogfarmd configuration and is located here:

/etc/init.d/moogfarmd

A backup Moogfarmd service script is located at $MOOGSOFT_HOME/etc/service-

wrappers/moogfarmd.

If using multiple instances of Moogfarmd on the same host, we advise that you copy and modify the

default Moogfarmd service script for each Moogfarmd running on the host.

Run the Moogfarmd Service Daemon

Moogfarmd is a command line executable that can be run as a service daemon.

To execute the daemon and view available arguments run:

moog_farmd --help

By default, you do not need either 'config' or 'instance'. If you run the system without configuring either

of these, the moogfarmd instance loads the default configuration file for moogfarmd, and responds to

farmd_ctrl with no instance specified. See High Availability Overview for more information on High

Availability.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

416

The moog_farmd command line executable accepts the following arguments:

Option Input Description

--clear_state - Clears any persisted state information associated with

Moogfarmd on startup.

--cluster <arg> String: <cluster

name>

Name of the High Availability (HA) cluster. Overwrites the

value in the configuration file.

--config <arg> String: <file

path/name>

Name and path of the configuration file specific to the

running Moogfarmd instance.

--group <arg> String: <group

name>

Name of the HA group. Overwrites the value in the

configuration file.

-h, --help - Displays all command line options.

--instance <arg> String: <instance

name>

Enables you to name the Moogfarmd instance. You can

refer to this name in the farmd_ctrl utility, which allows you

to start, restart and reload the various Moolets.

--logconsole - Instructs Moogfarmd to write logs to the console only.

--logfilename

<arg>
String: <file

path/name>

Name and path of the Moogfarmd log file.

-l, --loglevel

<arg>
INFO|WARN|ALL Specifies the debug level. Defaults to WARN, which is the

recommended level in all production implementations.

--mode <arg> String:

active/passive

Starts the process in passive or active mode. The default is

active.

--service_instance

<arg>
String: <service

suffix>

Suffix for the service name.

-v, --version - Displays the Moogfarmd version number.

Configuration

You can control Moogfarmd behavior through the following files:

 system.conf: the general Cisco Crosswork Situation Manager system configuration file is located in

$MOOGSOFT_HOME/config/system.conf. See System Configuration.

 moog_farmd.conf: configuration specific to Moogfarmd operation. If you run multiple instances of

Moogfarmd, each needs it own configuration file. All instances of Moogfarmd which do not specify

a different --config use the default configuration file located in

$MOOGSOFT_HOME/config/moog_farmd.conf.

Moogfarmd runs individual isolated applications called Moolets inside the Moogfarmd app container.

Moolets are a parallel concept to servlets in a traditional enterprise application container such as

Tomcat. Moogfarmd controls the flow of data through the Moolets where the data can come via the

Message Bus or from other Moolets.

You can configure the following properties in the Moogfarmd configuration files:

alert_threshold

The minimum number of alerts that must be present in a cluster before it can become a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

417

Type Integer

Required Yes

Default 2

bus_thread_pool_queue_limit

The maximum number of Message Bus messages to store in memory.

Type Integer

Required Yes

Default 0 (unlimited)

Note

If you reduce this value, message data may be lost.

db_connections

Specifies the number of database connections for Moogfarmd independently of the number of threads.

Type Integer

Required Yes

Default 30

Note

Do not change this setting count unless instructed by Cisco Support.

file_only_config

This setting serves two purposes related to the Congfiguration Migration Utility:

1. Setting the property to true before upgrading prevents the configuration migration utility from

running.

2. Setting the property to true after upgrading causes Cisco to ignore all database configurations for

Cookbook and Tempus clustering algorithms as well as merge groups, and only load their file

configurations instead.

Type Boolean

Required No

Default True

ha

The moog_farmd.conf file includes settings you can use to specify the cluster, group, and instance

for an HA configuration hierarchy.

Note

Do not change any other HA settings in this file unless instructed by Cisco Support.

maximum_rest_requests

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

418

The maximum allowed number of concurrent asynchronous REST tasks. Increasing the value consumes

more system resources.

Type Integer

Required Yes

Default 200

moobot_optimization

The optimization level to use for Moobots.

Type Integer

Required Yes

One of -1: Moobots are interpreted.

0-9: Moobots are precompiled. 0 is minial optimization and 9 is maximum optimization.

See Mozilla optimization documentation for more information.

Default 0

moolet_queue_size_limit

The maximum number of messages from each Moolet to store in memory. You can overwrite this

setting in individual Moolet configurations.

Type Integer

Required Yes

Default 0 (unlimited)

Note

If you reduce this value, message data may be lost.

retention_period

Length of time in seconds to keep unchanged closed/superseded Situations in memory.

Type Integer

Required Yes

Default 86400 (1 day)

sig_resolution

Section of the file containing properties related to Situation resolution.

Type Object

Required Yes

Default N/A

sig_similarity_limit

The percentage of alerts two Situations must share before they are merged.

Type Number

https://developer.mozilla.org/enUS/docs/Mozilla/Projects/Rhino/Optimization

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

419

Required Yes

Default 0.7 (70%)

threads

Global number of Moobots (threads) per Moolet. Override this setting by using the threads property in

individual Moolet configurations.

Type Integer

Required Yes

Default 10

Note

Do not change this setting unless instructed by Cisco Support.

Configure the Message Bus

The Moogsoft Messaging System (MooMS) is the Message Bus component of Cisco Crosswork

Situation Manager and shares event data. This is subscribed to by the various Moolets.

The Message Bus is a publish-subscribe message brokering system implemented with RabbitMQ which

uses AMQP, an open standard for message-orientated middleware, over TCP.

Message Handling

The Message Bus handles the data it receives (e.g. raw event data, new alerts, Situation activity etc) by

placing it in queues, which are lines of messages waiting to be handled.

Cisco Crosswork Situation Manager does not enforce any size or time limits on queues, so the

maximum number of messages in a queue is limited by the available RAM and disk space on the server.

It also depends on the size of the alerts and Situations being generated. The size limit is 128kb for

Alerts and 64kb for Situations.

Once the maximum number of messages has been reached, the broker drops messages from the front

of the queue to make room for new messages. By default, Cisco Crosswork Situation Manager

applications use exclusive transient queues. For example, if Cisco Crosswork Situation Manager or the

broker shuts down or dies then the queue and all of its messages are lost. Durable queues can be

enabled using the message_persistence setting in $MOOGSOFT_HOME/config/system.conf (see

Message Persistence).

For more information see the RabbitMQ docs on queues and queue length.

Default Configuration

Cisco Crosswork Situation Manager is installed with a single RabbitMQ broker by default, running on the

same machine as the other components (LAMs, Moogfarmd, the Moolets, etc).

The out-of-the-box configuration in $MOOGSOFT_HOME/config/system.conf is as follows:

port: 5672

zone: <none>

username: moogsoft

password: m00gs0ft

https://www.rabbitmq.com/
https://www.rabbitmq.com/protocol.html
https://www.rabbitmq.com/queues.html
https://www.rabbitmq.com/maxlength.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

420

The username and password must match the Message Bus broker configuration. If commented out, a

default "guest" user will be used (guest: guest).

Zones

You can use zones, or virtual hosts, to share a single RabbitMQ broker cluster among multiple instances

of Cisco Crosswork Situation Manager.

If multiple instances of Cisco Crosswork Situation Manager share a single RabbitMQ broker then each

instance uses a different zone name to prevent message interference. In RabbitMQ, a zone is called a

virtual host (vhost). Clients connecting to one vhost cannot see messages sent to a different vhost.

The default deployment does not use zones. If you specify a zone name, you must also configure a

vhost with the same name in the RabbitMQ broker.

By default, Cisco Crosswork Situation Manager clients connect to the vhost specified during moog-

init.sh setup with the moogsoft username and the password.

For distributed installations using multiple RabbitMQ brokers, this must be configured. A zone (vhost)

name is required by the moog-init.sh setup script. See Message System Deployment.

Message Persistence

You can control and minimize message loss during a shutdown or failure using the following settings in

$MOOGSOFT_HOME/config/system.conf. See the section below for the configurable properties. For

other properties, see System ConfigurationSystem Configuration

connections_per_producer_pool

The number of connections to use for each message sender pool. For example, if a message sender

pool has 20 channels and this property is set to 2, the channels are split across both connections so

that each has 10 channels. To configure this property, you must manually add it to the mooms section.

Type Integer

Required No

Default 2

zone

Name of the zone.

Type String

Required No

Default N/A

brokers

Hostname and port number of the RabbitMQ broker.

Type Array

Required No

Default "host" : "localhost", "port" : 5672

username

Username of the RabbitMQ user. This needs to match the RabbitMQ broker configuration. If commented

out, it uses the default "guest" user.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

421

Type String

Required No

Default guest

password

Password for the RabbitMQ user. You can choose to either have a password or an encrypted password,

you cannot use both.

Type String

Required Yes. If you are not using encrypted password.

Default guest

encrypted_password

Encrypted password for the RabbitMQ user. You can choose to either have a password or an encrypted

password, you cannot use both. See Moog Encryptor if you want to encrypt your password.

Type String

Required Yes. If you are not using password.

Default N/A

threads

Number of threads a process can create in order to consume the messages from the Message Bus. If

not specified, the thread limit = (Number of processors x 2) + 1. Altering this limit affects the

performance of Cisco Crosswork Situation Manager processes such as Moogfarmd and Moogpoller.

If your logs indicate an issue in creating threads, Cisco advises that you increase the ulimit, the

maximum number of file descriptors each process can use, for the Cisco Crosswork Situation Manager

user. You can set this limit in /etc/security/limits.conf.

Type Integer

Required No

Default 10

message_persistance

Controls whether RabbitMQ persists important messages. Message queues are durable by default and

data is replicated between nodes in High Availability mode. Setting this value to false means that

replicated data is not stored to disk.

Type Boolean

Required No

Default true

message_prefetch

Controls how many messages a process can take from the Message Bus and store in memory as a

buffer for processing. This configuration allows processes to regulate message consumption which can

ease backlog and memory consumption issues. The higher the number, the more messages held in the

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

422

process's memory. Set to 0 for unlimited processing. To achieve high availability of messages and

ensure messages are processed, the value of this should be higher than 0.

Type Integer

Required No

Default 0

max_retries

Maximum number of attempts to resend a message that failed to send. Cisco Crosswork Situation

Manager only attempts a retry when there is a network outage or if cache_on_failure is enabled.

You can use this in conjunction with the retry_interval property. For example, a combination of 100

maximum retries and 200 milliseconds for retry interval leads to a total of 20 seconds. The combined

default value for these properties was chosen to handle the typical time for a broker failover in a

clustered environment.

Type Integer

Required No

Default 100

retry_interval

Maximum length of time to wait in milliseconds between each attempt to retry and send a message that

failed to send.

You can use this in conjunction with the max_retries property. The combined value for these

properties was chosen to handle the typical time for broker failover in a clustered environment.

Type Integer

Required No

Default 200

cache_on_failure

Controls whether Cisco Crosswork Situation Manager caches the message internally and resends it if

there is an initial retry failure. The system attempts to resend any cached messages in the order they

were cached until the time-to-live value, defined by the cache_ttl property, is reached.

Type Boolean

Required No

Default false

cache_ttl

Length of time in seconds that Cisco Crosswork Situation Manager keeps cached messages in the

cache list before discarding them. If a message is not successfully resent within this timeframe it is still

discarded.

This defaults to 900 seconds (15 minutes). Increasing this value has a direct impact on sender process

memory.

Type Integer

Required No

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

423

Default 900

confirmation_timeout

Length of time in milliseconds to wait for the Message Bus to confirm that a broker has received a

message. Cisco does not advise changing this value.

Type Integer

Required No

Default 2000

Message System Deployment

The Message Bus is the message system for Cisco Crosswork Situation Manager, implemented with

RabbitMQ. By default, the Cisco Crosswork Situation Manager installation includes with a single

RabbitMQ broker running on the same server as the other Cisco Crosswork Situation Manager

components (LAMs, moogfarmd, the Moolets, etc.). You can also configure Cisco Crosswork Situation

Manager as a distributed system with multiple RabbitMQ broker hosts.

If you encounter any errors or issues with your deployment see Troubleshooting.

Distributed Deployment

Depending on the systems you monitor, you can increase the performance and reliability of your Cisco

Crosswork Situation Manager deployment with distributed RabbitMQ brokers running on different hosts.

Execute the following procedure on each RabbitMQ broker host to install a distributed messaging

system:

 Install the Erlang package built by RabbitMQ:

yum -y install https://github.com/rabbitmq/erlang-

rpm/releases/download/v20.1.7/erlang-20.1.7-1.el7.centos.x86_64.rpm

 Set up RabbitMQ yum repository:

curl -s https://packagecloud.io/install/repositories/rabbitmq/rabbitmq-

server/script.rpm.sh | sudo bash

 Install RabbitMQ:

yum -y install rabbitmq-server-3.7.4

 Copy rabbitmq.config from $MOOGSOFT_HOME/etc/cots/rabbitmq/rabbitmq.config and

add it to the following location on each RabbitMQ broker host:

/etc/rabbitmq/rabbitmq.config

 Run the following commands:

chkconfig rabbitmq-server on
service rabbitmq-server start

 Create a new zone (a RabbitMQ "vhost") on each remote RabbitMQ broker and set the

permissions for the default user:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

424

rabbitmqctl add_vhost <zone>
Creating vhost "<zone>" ...

rabbitmqctl add_user moogsoft <password>
Creating user "moogsoft" ...

rabbitmqctl set_permissions -p <zone> moogsoft ".*" ".*" ".*"
Setting permissions for user "moogsoft" in vhost "<zone>" ...

 Edit the "mooms" section in system.conf on the Cisco host system, to point to the correct IP

addresses and ports (two specified in the example below):

 "mooms" :

 {

 "zone" : "<zone>",

 "brokers" : [

 {

 "host" : "172.16.87.131",

 "port" : 5672

 },

 {

 "host" : "172.16.87.135",

 "port" : 5672

 }

]

 ,"username" : "moogsoft",

 "password" : "<password>"

 },

Cluster Message Bus Brokers

The Message Bus broker is a logical grouping containing one or more Erlang nodes each running

RabbitMQ and sharing vhosts, users, queues etc. If you have multiple RabbitMQ brokers running, you

should cluster them.

For more information about broker clustering, refer to the RabbitMQ documentation.

Enable Queue Mirroring

As part of a Cisco Crosswork Situation Manager High Availability (HA) deployment that employs

message persistence, you must set up mirroring for the relevant durable queues across all nodes in a

RabbitMQ cluster.

To enable queue mirroring, run the following command from any host running a broker in the RabbitMQ

cluster:

rabbitmqctl set_policy -p <zone> ha-all ".+\.HA" '{"ha-mode":"all"}'

For the <zone>, specify the zone you used when you initialized your system. For example, if the zone is

set to Cisco Crosswork Situation Manager:

rabbitmqctl set_policy -p MoogsoftAIOps ha-all ".+\.HA" '{"ha-mode":"all"}'

This command configures mirroring for all the *.HA queues across all RabbitMQ brokers in the cluster.

Run the following command from any host running a broker in the RabbitMQ cluster to verify the policy

is enabled:

rabbitmqctl -p <zone> list_policies

For example:

http://www.rabbitmq.com/clustering.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

425

rabbitmqctl -p MoogsoftAIOps list_policies

Listing policies for vhost "MoogsoftAIOps" ...

MoogsoftAIOps ha-all .+\.HA all {"ha-mode":"all"} 0

For more information about queue mirroring, refer to the RabbitMQ docs.

Message System Troubleshooting

 RabbitMQ Broker Fails to Start

 Typical Error Messages

 First startup of RabbitMQ broker

 LAMs fail to start from command line

 Manually configure IP address and port

 Manually set up a user or zone (vhost)

The Message Bus (sometimes called MooMs) is the message system for Cisco Crosswork Situation

Manager, implemented with RabbitMQ.

This guide outlines some common issues with the Message Bus deployment and offers alternative

solutions.

Open the Management Console

You can launch the RabbitMQ management console directly from the Cisco Crosswork Situation

Manager UI. This provides useful statistics when debugging.

To open the console, go to Settings > Self Monitoring > Message Bus and click

Launch Message Bus Console ... You can log in using the default credentials:

Username: moogsoft

Password: m00gs0ft

These are defined in system.conf. If commented out, a default 'guest' user can be used.

Examine the Log Files

Troubleshooting your Message Bus deployment often requires examining log files. The default locations

of log files are as follows:

 moog_farmd and LAMs - /usr/log/moogsoft/$SERVICE_NAME.log where $SERVICE_NAME is

the process, for example socketlamd for the Socket LAM

 Tomcat -/usr/share/apache-tomcat/logs/catalina.out

 RabbitMQ - $RABBITMQ_HOME/var/log/rabbitmq

RabbitMQ Broker Fails to Start

If RabbitMQ broker fails to start and Security-Enhanced Linux (SELinux) is enabled, it may be related to

this. SELinux and similar mechanisms such as firewalls may prevent RabbitMQ from binding to a port

and starting up.

https://www.rabbitmq.com/ha.html
https://en.wikipedia.org/wiki/SecurityEnhanced_Linux

Cisco Crosswork Situation Manager 8.0.x Developer Guide

426

If SELinux is enabled, check that the following ports can be opened:

 4369 (Erlang port mapper daemon)

 25672 (Erlang distribution)

 5672, 5671 (AMQP 0-9-1 without and with TLS)

 15672 (if management plugin is enabled)

You may need to configure RabbitMQ to use different ports.

For more information, refer to the RabbitMQ installation documentation.

If the RabbitMQ broker fails to start it may be due to file permissions, you may see errors such as:

{error_logger,{{2015,9,1},{21,26,14}},"Failed to create cookie file

'/home/moogsoft/.erlang.cookie': eacces",[]}

{error_logger,{{2015,9,1},{21,26,14}},crash_report,[[{initial_call,{auth,init,['

Argument__1']}},{pid,<0.21.0>},{registered_name,[]},{error_info,{exit,{"Failed

to create cookie file '/home/moogsoft/.erlang.cookie':

eacces",[{auth,init_cookie,0,[{file,"auth.erl"},{line,286}]},{auth,init,1,[{file

,"auth.erl"},{line,140}]},{gen_server,init_it,6,[{file,"gen_server.erl"},{line,3

28}]},{proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,239}]}]},[{gen_se

rver,init_it,6,[{file,"gen_server.erl"},{line,352}]},{proc_lib,init_p_do_apply,3

,[{file,"proc_lib.erl"},{line,239}]}]}},{ancestors,[net_sup,kernel_sup,<0.10.0>]

},{messages,[]},{links,[<0.19.0>]},{dictionary,[]},{trap_exit,true},{status,runn

ing},{heap_size,610},{stack_size,27},{reductions,975}],[]]}...

When the RabbitMQ broker is running as a service, use the following command to check that it is

running:

service rabbitmq-server status

Typical Error Messages

The section below will outline examples and solutions to typical error messages with RabbitMQ.

Connection refused/ Unable to create RabbitMQ connection

If the RabbitMQ broker appears to be down or unreachable, trying to start an Cisco Crosswork Situation

Manager component gives warnings such as:

WARN : [main][20150812 16:09:54.792 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://localhost:5672/ZONE]|+

WARN : [main][20150812 16:09:54.792 +0100] [CMoomsFactory.java]:256 +|Unable to

create RabbitMQ connection : [java.net.ConnectException: Connection refused]|+

WARN : [main][20150812 16:09:54.793 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://localhost:5672/ZONE]|+

WARN : [main][20150812 16:09:54.793 +0100] [CJNIMoomsWrapper.java]:253

+|Problem during mooms setup, retrying|+

The structure of the amqp url is: amqp://<hostname>:<port>/<zone>

Solution:

Check if the RabbitMQ broker is running:

service rabbitmq-server status

If it isn't running, see RabbitMQ broker fails to start (above).

https://www.rabbitmq.com/installrpm.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

427

If it is running, check the Message Bus configuration in the 'mooms' section of system.conf.

AlreadyClosedException/broker forced connection closure

If Cisco Crosswork Situation Manager components are running, the RabbitMQ broker going down or

becoming unreachable gives warnings such:

WARN : [Thread-][20150812 16:15:42.295 +0100] [CLogger.java]:337 +|Problem

sending message id : [4115e512-aa63-44d5-bdc9-8ed164cd75e5]

com.rabbitmq.client.AlreadyClosedException: connection is already closed due to

connection error; protocol method: #method<connection.close>(reply-code=320,

reply-text=CONNECTION_FORCED - broker forced connection closure with reason

'shutdown', class-id=0, method-id=0)

at com.rabbitmq.client.impl.AMQChannel.ensureIsOpen(AMQChannel.java:195)

at com.rabbitmq.client.impl.AMQChannel.transmit(AMQChannel.java:309)

at com.rabbitmq.client.impl.ChannelN.basicPublish(ChannelN.java:657)

at com.rabbitmq.client.impl.ChannelN.basicPublish(ChannelN.java:640)

at com.rabbitmq.client.impl.ChannelN.basicPublish(ChannelN.java:631)

at

com.rabbitmq.client.impl.recovery.AutorecoveringChannel.basicPublish(Autorecover

ingChannel.java:168)

at com.moogsoft.mooms.CMoomsMessageSender.send(CMoomsMessageSender.java:530)

at com.moogsoft.mooms.CMoomsMessageSender.send(CMoomsMessageSender.java:448)

at com.moogsoft.mooms.CMoomsMessageSender.send(CMoomsMessageSender.java:264)

at

com.moogsoft.mooms.CMoomsMessageSenderPool.send(CMoomsMessageSenderPool.java:378

)

at com.moogsoft.mooms.CJNIMoomsWrapper.sendEvent(CJNIMoomsWrapper.java:288)

|+

Note

If Cisco Crosswork Situation Manager is configured to connect to RabbitMQ brokers in a high availability

environment, during a RabbitMQ broker fail-over, warning messages may be logged for a short time

Solution:

If the problem is not temporary, check if the RabbitMQ broker is running:

service rabbitmq-server status

Problem during mooms setup, retrying

A Cisco Crosswork Situation Manager component trying to connect to a non-existent zone (vhost) in a

RabbitMQ broker gives warnings such as:

DEBUG: [main][20150812 16:24:00.764 +0100] [CMoomsFactory.java]:206 +|Setting

factory zone to : [fish]|+

WARN : [main][20150812 16:24:03.825 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://localhost:5672/fish]|+

WARN : [main][20150812 16:24:03.825 +0100] [CMoomsFactory.java]:256 +|Unable to

create RabbitMQ connection : [java.io.IOException]|+

WARN : [main][20150812 16:24:06.373 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://localhost:5672/fish]|+

WARN : [main][20150812 16:24:06.373 +0100] [CJNIMoomsWrapper.java]:253

+|Problem during mooms setup, retrying|+

Solution:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

428

Check you have the correct zone configured in the 'mooms' section of system.conf and that the zone

(vhost) has been created in the RabbitMQ broker.

The best way to check that the zone (vhost) has been created in the RabbitMQ broker is to use the

RabbitMQ management console.

If the zone (vhost) has not been created, manually create it via the command line, or via the RabbitMQ

Management console.

Once the zone has been created, the user defined in system.conf must be given permissions to

access the new zone.

AuthenticationFailureException: ACCESS_REFUSED

A Cisco Crosswork Situation Manager component trying to connect to a valid zone (vhost) in a

RabbitMQ broker, but with wrong authentication details gives warnings such as:

WARN : [main][20150812 16:20:29.760 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://jimmy@localhost:5672/null]|+

WARN : [main][20150812 16:20:29.760 +0100] [CMoomsFactory.java]:256 +|Unable to

create RabbitMQ connection :

[com.rabbitmq.client.AuthenticationFailureException: ACCESS_REFUSED - Login was

refused using authentication mechanism PLAIN. For details see the broker

logfile.]|+

WARN : [main][20150812 16:20:29.805 +0100] [CMoomsFactory.java]:707 +|Unable to

create RabbitMQ connection : [amqp://jimmy@localhost:5672/null]|+

WARN : [main][20150812 16:20:29.805 +0100] [CJNIMoomsWrapper.java]:253

+|Problem during mooms setup, retrying|+

Solution:

Check you have the correct username and password in the 'mooms' section of system.conf and that

they match those defined in the RabbitMQ broker. If they are correct in system.conf then you must

correct it in the RabbitMQ broker. Do this either via the command line, or via the RabbitMQ

management console.

Also see RabbitMQ broker fails to start (above).

First startup of RabbitMQ broker

The first time a RabbitMQ broker is started, it creates an 'account' with the default user and password

from rabbitmq.config.

If this information is subsequently edited in rabbitmq.config, and the RabbitMQ broker is restarted,

the 'account' is not created, which can be confusing.

If the RabbitMQ broker has been started before, then the 'account' will need to be added manually (see

Manually set up a user) rather than by defining a default user in the rabbitmq.config file.

LAMs fail to start from command line

If LAMs run from the command line or as a service result in the following error:

[root@moogbox2 bin]# ./socket_lam

./socket_lam: error while loading shared libraries: libjvm.so: cannot open

shared object file: No such file or directory

...it may be because /usr/java/jdk1.8.0_20/jre/lib/amd64/server has not been added to the

LD_LIBRARY_PATH.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

429

 To run the LAMs via a command line, a change the LD_LIBRARY_PATH to be as follows (the default

initd files have this modification made):

export

LD_LIBRARY_PATH=$MOOGSOFT_HOME/lib:/usr/GNUstep/Local/Library/Libraries:/usr/GNU

step/System/Library/Libraries:$JAVA_HOME/jre/lib/amd64/server

Manually configure IP address and port

In some environments (such as SELinux) you may need to configure a RabbitMQ broker to listen on a

different IP address and port.

To do this:

 Configure the contents of /etc/rabbitmq/rabbitmq-env.conf, for example:

 RABBITMQ_NODE_IP_ADDRESS="172.168.87.131

RABBIT_NODE_PORT="5678"

 Restart the rabbitmq-server service:

 service rabbitmq-server restart

Manually set up a user or zone (vhost)

To help troubleshoot an existing RabbitMQ broker, you may want to manually set up a user or zone

(vhost).

 To manually set up a new user in the RabbitMQ broker, run the following command (using your own

user, password and zone):

 rabbitmqctl add_user <user> <password>

rabbitmqctl set_permissions -p <zone> <user> ".*" ".*" ".*"

 Also ensure the username, password and zone in the 'mooms' section of system.conf

match those defined in the RabbitMQ broker with the above commands.

 To manually set up a new zone in the RabbitMQ broker, run the following command (using your

own user and zone):

 rabbitmqctl add_vhost <zone>

rabbitmqctl set_permissions -p <zone> <user> ".*" ".*" ".*"

 Also ensure the username and zone in the 'mooms' section of system.conf match those

defined in the RabbitMQ broker with the above commands.

Message System SSL

The Message Bus system (MooMs) can be configured to operate using SSL connections to provide

secure and authorized connectivity.

The message system for Cisco Crosswork Situation Manager is implemented with RabbitMQ. By

default, Cisco Crosswork Situation Manager provides rabbitmq.config which does not start RabbitMQ in

SSL mode.

To enable RabbitMQ to run in SSL mode, see the Rabbit MQ documentation.

https://www.rabbitmq.com/ssl.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

430

Configure Cisco Crosswork Situation Manager to use SSL with the Message Bus

Once RabbitMQ has been configured to use SSL, Cisco Crosswork Situation Manager needs to be

configured to use the RabbitMQ broker's SSL port, as well as the SSL certificates and keys to enable

secure and authorized connection to these brokers if required by the SSL configuration set on

RabbitMQ.

Below is an example of full SSL Message Bus configuration in system.conf:

system.conf

SSL configuration can be used to provide a means of secure #

communication between a Moog process and MooMS. MooMS can be setup #

with options to accept SSL connections with or without providing #

the relevant certificates and keys. #

Three modes of SSL are available: #

1. No SSL - SSL configuration is not specified #

2. Express SSL - This is where SSL configuration is specified, but #

empty or only the SSL protocol is set and specific #

certificates do not need to specified. #

3. Custom SSL - This is where all the SSL configuration and #

certificates needed are specified to enable secure #

and authorised communication to MooMS. #

Note that Client key and certificate are optional. #

If neither of those are specified, then client #

certification verification will not be performed. #

"ssl" :

{

 # Specify the SSL Protocol to use.

 # If the configuration is not specified, "TLSv1.2" will be used

 # by default.

 # JRE 8 supports "TLSv1.2", "TLSv1.1", "TLSv1", "SSLv3"

 #

 "ssl_protocol" : "TLSv1.2",

 #

 # The location of the SSL certificate, key files.

 #

 # Relative pathing can be used, i.e. '.' to mean current directory,

 # '../server.pem' or '../../server.pem' etc. If neither relative

 # nor absolute (using '/') path is used then $MOOGSOFT_HOME is

 # prepended to it.

 # i.e. "config/server.pem" becomes "$MOOGSOFT_HOME/config/server.pem"

 #

 # Specify the server certificate.

 #

 "server_cert_file" : "server.pem",

 #

 # Enable client authentication by specifying the client certificate

 # and key files below.

 # The key file has to be in PKCS#8 format.

 #

 "client_cert_file" : "client.pem",

 "client_key_file" : "client.key"

}

Express SSL

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

431

Cisco Crosswork Situation Manager can be configured to connect to the RabbitMQ server without

validating any certificates or attempting to authorize the client.

If the RabbitMQ server has been configured to reject clients that do not present valid certificates then

this SSL mode will not work, Cisco Crosswork Situation Manager will need to be configured with the

correct certificates and keys to establish connectivity. To enable express SSL mode simply uncomment

"ssl" configuration block, optionally specify the "ssl_protocol" configuration:

Express SSL

"ssl" :

{

 # Specify the SSL Protocol to use.

 # If the configuration is not specified, "TLSv1.2" will be used

 # by default.

 # JDK 8 supports "TLSv1.2", "TLSv1.1", "TLSv1", "SSLv3"

 #

 "ssl_protocol" : "TLSv1.2"

}

Custom SSL

Cisco Crosswork Situation Manager can be configured to connect to the RabbitMQ server using a

specific server certificate, and if RabbitMQ has been enabled with Client Authentication then Cisco

Crosswork Situation Manager can be configured with the client key and client certificate to authenticate

with RabbitMQ.

Client Authentication is optional functionality, to run Cisco Crosswork Situation Manager with just a

specific server certificate simply comment out the client_cert_file and client_key_file entries.

Note

If Client Authentication is used, the "client_key_file" must be in a PKCS#8 Format. The following

command can be run to convert a private key in to PKCS#8 format:

openssl pkcs8 -topk8 -inform PEM -outform PEM -nocrypt -in key.pem -out

client.key

An example of Cisco Crosswork Situation Manager specifying full SSL configuration, connecting to a

RabbitMQ which requires Client Authentication. The example also shows how you can organise the

server and client SSL files in sub-folders:

Custom SSL

"ssl" :

{

 # Specify the SSL Protocol to use.

 # If the configuration is not specified, "TLSv1.2" will be used

 # by default.

 # JRE 8 supports "TLSv1.2", "TLSv1.1", "TLSv1", "SSLv3"

 #

 "ssl_protocol" : "TLSv1.2",

 #

 # The location of the SSL certificate, key files.

 #

 # Relative pathing can be used, i.e. '.' to mean current directory,

 # '../server.pem' or '../../server.pem' etc. If neither relative

Cisco Crosswork Situation Manager 8.0.x Developer Guide

432

 # nor absolute (using '/') path is used then $MOOGSOFT_HOME is

 # prepended to it.

 # i.e. "config/server.pem" becomes "$MOOGSOFT_HOME/config/server.pem"

 #

 # Specify the server certificate.

 #

 "server_cert_file" : "server/server.pem",

 #

 # Enable client authentication by specifying the client certificate

 # and key files below.

 # The key file has to be in PKCS#8 format.

 #

 "client_cert_file" : "client/client.pem",

 "client_key_file" : "client/client.key"

}

Note

To disable SSL connectivity with the Message Bus, change the port number for the brokers back to the

non-SSL port (typically 5672) and comment out the "ssl" section in system.conf.

Configure Search and Indexing

Cisco Crosswork Situation Manager uses Elasticsearch to provide search and data indexing functions.

You can control the Elasticsearch service using the following service script:

/etc/init.d/elasticsearch [start|restart|stop]

All Elasticsearch logs are stored in following location:

/var/log/elasticsearch/

Index Alerts and Situations

Two tools are used to index alerts and Situations: the Indexer Moolet and the Moog Indexer utility.

Indexer Moolet

The Indexer listens for new alerts and Situations on the Message Bus and indexes them. Cisco

Crosswork Situation Manager indexes alerts and Situations as soon as they are are created or modified

so that they are immediately searchable.

You can configure the Indexer in $MOOGSOFT_HOME/config/moolets/indexer.conf using the

following parameters:

enable_private_teams

Set to true if you limit team permissions based upon services, Situations, or alerts assigned to the team.

The the indexer applies team permissions to the indexes.Manage Teams

If disabled, the Indexer will index all alerts and Situations present in Cisco Crosswork Situation

Manager.

Type: Boolean

Default: False

full_scan_batch_size

The maximum number of alerts or Situations the Indexer scans in each batch. This is useful because it

is not possible to load all alerts to the memory at once.

https://www.elastic.co/
file://document/preview/35143%23UUID5111357c992e6859d5ea955823e004f8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

433

By default the Indexer scans through batches of one thousand alerts or Situations.

Type: Integer

Default: 1000

full_scan_wait

The number of seconds the Indexer waits between batches. This frees up the CPU and memory used to

index each batch.

It is set to zero by default so the Indexer will not wait between batches.

Type: Integer

Default: 0

full_scan_at

Determines the exact time when Indexer runs a full scan. This allows you to ensure the accuracy of

search data once per day by performing a full reindex. If left empty, the Indexer does not perform a full

scan.

Type: Time (HH:mm:ss)

Default: "02:12:35"

full_scan_at_startup

If enabled, the Indexer performs a full scan when it starts. This is useful if you are not using the

scheduled scan and only restart Moogfarmd once a week.

Type: Boolean

Default: false

historic_scan_frequency

Determines how frequently the Indexer performs a full scan of both active and historic databases. By

default, the Indexer scans both databases every three days.

Type: Integer

Default: 3

By default the Indexer is configured as follows:

Set to false to disable private teams indexing.

enable_private_teams: false,

Maximal full scan batch size

full_scan_batch_size: 1000,

How many seconds to wait between batches (0 not to wait)

full_scan_wait: 0,

When to run the full scan (HH:mm:ss) leave empty to disable full scan

(HH:mm:ss)

Cisco Crosswork Situation Manager 8.0.x Developer Guide

434

full_scan_at: "02:12:35",

Do we want to run full scan when the moolet starts?

full_scan_at_startup: false

Scan the historic data once every how many full scans

historic_scan_frequency: 3

Moog Indexer

Before you can run the indexer utility, you must start Moogfarmd with a running Indexer Moolet. The

moog_indexer accepts the following options:

Argument Input Description

-h,--help - Displays the help text with arguments that can be used with

the utility.

-f, --full - Scans both the active and historic data. Use this argument if

you want data from both databases to be indexed.

-i,--in

<arg>
Integer Schedule full index to run in a set amount of time (in hours).

This can be a decimal. For example, 0.1 = 6 minutes.

-l,--

loglevel

<arg>

WARN|INFO|DEBUG|TRACE Specify the log level to choose the amount of debug output.

Defaults to INFO.

-n,--now - Schedules a full index to run immediately.

-r,--

report
- Request report from on the last performed full scan index.

This report will show the status of previous runs within the

lifetime of the moogfarmd process and any runs still in

progress. If moogfarmd is restarted, the -r argument will not

return any data.

Note

If you use Private Teams mode, meaning one or more Roles do NOT have the all_data permission set,

then you must run both the initial 'full index' and the 'incremental index crontab' moog_indexer

commands with the -p argument. If not, users in one Team will be able to see search results for other

Teams.

Tune your MySQL database to ensure indexing runs as quickly as possible. See either the Percona or

MySQL websites for information on tuning and optimization.

An output example is shown below:

[root@myhost home]# moog_indexer -r

Got report:

 05/10/17 13:43:06 - Starting full scan

 05/10/17 13:43:06 - Scanning for alerts

 05/10/17 13:43:07 - Scanned: [177] alerts

 05/10/17 13:43:07 - Scanning for situations

 05/10/17 13:43:07 - Scanned: [44] situations

 05/10/17 13:43:07 - Full scan complete

 05/10/17 13:43:22 - Starting full scan

 05/10/17 13:43:22 - Scanning for alerts

 05/10/17 13:43:22 - Scanned: [204] alerts

 05/10/17 13:43:22 - Scanning for situations

 05/10/17 13:43:23 - Scanned: [55] situations

 05/10/17 13:43:23 - Full scan complete

https://tools.percona.com/signin
https://www.mysql.com/whymysql/performance/

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

435

Warning

Before you upgrade to Cisco Crosswork Situation Manager V6.2.1 or later, remove or disable the

crontab jobs for the old indexer utility.

Elasticsearch Details

Elasticsearch runs on port 9200 by default.

To make Elasticsearch available externally and listen on the external host IP address, run the following

command:

$MOOGSOFT_HOME/bin/utils/moog_init_search.sh -r

The script updates the Elasticsearch configuration and restarts the service.

Log Levels Reference

Cisco Crosswork Situation Manager components generate log files to report their activity. Log

messages sent from these components use the following log levels:Configure Logging

Level Description

ERROR Errors have occurred but the application is still able to run.

WARN Indicates something potentially serious or harmful has happened to your application.

INFO Informational messages that report the application's normal behaviour.

DEBUG Diagnostic and granular information that can be useful for debugging an application.

TRACE Similar to DEBUG but even more fine-grained information.

Configure Labs Features

Cisco Crosswork Situation Manager Labs offers a preview of unreleased features. Go to

Settings > System > Labs to view available Labs features for the current release.

There are no unreleased features in v8.0.

Enable Situation Room Plugins

You can add configurable third party plugin tabs to the Situation Room in Cisco Crosswork Situation

Manager that relate to the Situation. For example, you can link to a ServiceNow incident that is mapped

to the Situation in question.

Cisco Crosswork Situation Manager requires a link_definition and custom_info column to

enable the Situation Room Plugin.

Note

The Show ServiceNow Incident in the Situation Room check box in System Administration,

Integrations, ServiceNow adds the plugin automatically

Two use cases are:

file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba

Cisco Crosswork Situation Manager 8.0.x Developer Guide

436

 Conditional, based on contents of a field being present in the Situation (if the field is left empty, the

plugin is disabled).

 Universal for all Situations.

Further to these use cases, the link_definition can also have the same use cases:

 Conditional, taking attributes of the Situation and passing to the linked application.

 Generic, passing no details about the Situation.

Implementation

The moogdb.sitroom_plugins table has the following columns:

 Title.

 Its associated Situation field (from the moogdb.sigs table and can be custom_info.<field>).

 The link definition to use.

mysql> describe moogdb.sitroom_plugins;

+---------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| title | varchar(32) | YES | UNI | NULL | |

| internal_name | varchar(255) | YES | | NULL | |

| link_name | varchar(32) | YES | MUL | NULL | |

+---------------+--------------+------+-----+---------+----------------+

4 rows in set (0.01 sec)

Examples

Assuming Situation 14 had already been linked with ServiceNow Incident INC0000055 using the

following SQL:

update moogdb.sigs set custom_info='{"servicenow_id":"INC0000055"}' where

sig_id=14;

Enable a ServiceNow tab in the Situation Room

1. Define a link_definition to point to the ServiceNow URL, and use the $value dynamic placeholder to

be replaced with the incident number when launched.

insert into moogdb.link_definitions (name, link) values ('servicenow',

'https://<your-server-here>/incident.do?sysparm_query=number%3D$value');

2. Add an entry into the sitroom_plugins table to define:

 The tab.

 The Situation field to be used for $value.

 The link_definition.

insert into moogdb.sitroom_plugins (title, internal_name, link_name) values

('ServiceNow', 'custom_info.servicenow_id', 'servicenow');

If desired, you can define multiple plugin tabs (with unique title) using the same or different Situation

fields.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

437

Additional configuration

You must configure your browser to allow third party cookies from these URLs, otherwise, remote

websites may not display within the tab area. To do this, either enable third-party cookies globally, or,

allow the specific URLs to set third party cookies as exceptions.

You must enable iFrames in ServiceNow to use Situation Room Plugins. They are disabled by default.

For more information refer to the ServiceNow documentation, for example High Security Settings. You

may also need to disable "same origin" settings.

ServiceNow integration

Configure ServiceNow using the UI. See the Integrate ServiceNow section in ServiceNow for

details.ServiceNow

MoogDb V2

You can query and manipulate a variety of entities in the Cisco Crosswork Situation Manager database

using the MoogDb v2 Moobot module.

The module uses various methods to retrieve information from MoogDb and update components of

Cisco Crosswork Situation Manager including alerts, Situations, users and teams.

All MoogDb v2 methods that update the database also publish information about the appropriate

updated entities on the Configure the Message Bus, so any updated information automatically appears

in Cisco Crosswork Situation Manager when the relevant method is called.

Load MoogDb v2

You can load the MoogDb v2 module into any standard MooBot by defining a new global object called

moogdb at the top of the JavaScript file:

var moogdb = MooBot.loadModule('MoogDb.V2');

Methods

See MoogDb V2 API Method Reference for details of all the MoogDb v2 API methods.

MoogDb V2 API Method Reference

This is a reference list for the MoogDb v2 API methods. Follow the links to see the details and examples

of each method.

Alerts

The following methods relate to alerts:

 addAlertToSituation: Adds an alert to a Situation.

 assignAlert: Assigns a user as the owner of an alert.

 assignAndAcknowledgeAlert: Assigns and acknowledges the specified user as the owner of a

specified alert.

https://docs.servicenow.com/bundle/jakartaservicenowplatform/page/administer/security/concept/c_HighSecuritySettings.html?title=High_Security_Settings#gsc.tab=0
file://document/preview/45258%23UUID128260eee9f53fbe7fa7caedf4a540bf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

438

 closeAlert: Closes one or more alerts.

 createAlert: Creates or updates an alert.

 deassignAlert: Removes the assignment of the current owner from an alert.

 getAlert: Returns details of an alert.

 getAlertActions: Returns the actions for one or more alerts or for a time period.

 getAlertCustomInfo: Returns custom information for an alert.

 getAlertIds: Returns the total number of alerts, and a list of the alert IDs, for an alert filter and a

limit.

 reload: Takes a Situation or alert type of CEvent and refreshes the data in the payload but

preserves the metadata.

 removeAlertFromSituation: Removes an alert from a Situation.

 setAlertCustomInfo: Updates the custom information for an alert.

 setAlertSeverity: Sets the severity level for an alert.

 updateAlert: Updates an alert object and uses it to update the database and the Message Bus.

 updateClosedAlert: Updates the description and custom info of a closed alert during the grace

period.

 updateCustomInfo: Updates the custom info for an alert or a Situation.

Processes and Maintenance

The following methods relate to the processes and maintenance:

 addProcess: Adds a new process to the database.

 addService: Adds a new external service to the database.

 createMaintenanceWindow: Creates a maintenance window.

 deleteMaintenanceWindow: Deletes a single maintenance window.

 deleteMaintenanceWindows: Deletes maintenance windows that match a filter.

 findMaintenanceWindows: Finds maintenance windows based on a filter and a limit.

 getMaintenanceWindows: Returns maintenance windows based on a start position and a limit.

 getProcesses: Returns a list of processes from the database.

 getQueueName: Returns the queue name for a queue ID.

 getServices: Returns a list of services from the database.

 getToolShares: Returns the shared access for a tool.

 shareToolAccess: Shares access to a tool with other users, teams, or roles, or makes it global so

that all users can access it.

 updateMaintenanceWindow: Updates an existing maintenance window.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

439

Situations

The following methods relate to Situations:

 addSigCorrelationInfo: Adds correlation information to a Situation.

 addCorrelationInfo: This method has been superseded; use addSigCorrelationInfo instead.

 addThreadEntry: Adds a new entry to an existing thread in a Situation.

 assignAndAcknowledgeSituation: Assigns and acknowledges a user as the owner of a Situation.

 assignModerator: Assigns a user as the owner of a Situation.

 assignTeamsToSituation: Assigns one or more teams to a Situation.

 checkSituationFlag: Checks whether a flag is associated with a Situation.

 closeSituation: Closes a Situation.

 createThread: Creates a new thread for a Situation.

 createThreadEntry: This method has been superseded; use addThreadEntry instead.

 getActiveSituationIds: Returns the total number of active Situations, and a list of their Situation IDs.

 getPrcLabels: Returns Probable Root Cause (PRC) information for all alerts or specified alerts within

a Situation.

 getResolvingThreadEntries: Returns thread entries for a Situation that have been marked as

resolving steps.

 getSigCorrelationInfo: Returns all correlation information related to a Situation.

 getSigCustomInfo: Returns all custom info related to a Situation.

 getSituation: Returns details of a Situation.

 getSituationActions: Returns the actions for one or more Situations or for a time period.

 getSituationAlertIds: Returns the total number of alerts, and a list of their alert IDs, for a Situation.

 getSituationFlags: Returns the flags for one or more Situations.

 getSituationHosts: Returns a list of host names for a Situation, either for all alerts in the Situation or

just for unique alerts.

 getSituationIds: Returns the total number of Situations, and a list of their Situation IDs, for a

Situation filter and a limit.

 getSituationPrimaryTeam: Returns the primary team assigned to a Situation.

 getSituationProcesses: Returns a list of process names for a Situation, and the primary process

name, if defined.

 getSituationServices: Returns a list of service names for a Situation, and the primary service name,

if defined.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

440

 getSituationsWithFlag: Returns all the Situations which have a specified flag.

 getSituationTopology: Returns the topology of all alerts connected to a Situation.

 getSituationVisualization: Returns the Visualize tab information for a Situation.

 getThreadEntries: Returns thread entries for a thread in a Situation.

 getThreadEntry: Returns a thread entry specified using thread entry ID.

 getTopPrcDetails: Returns the top most likely causal alerts, based on their Probable Root Cause

value, for a Situation.

 mergeSituations: Merges two or more Situations.

 moveSituationToCategory: Moves a Situation into a new category.

 moveSituationToQueue: Assigns a Situation to a queue and writes a thread entry if required.

 rateSituation: Applies a rating to a Situation.

 reload: Takes a Situation or alert type of CEvent and refreshes the data in the payload but

preserves the metadata.

 removeSigCorrelationInfo: Removes all correlation information related to a Situation.

 removeSituationPrimaryTeam: Removes the primary team from a Situation.

 resolveSituation: Resolves a Situation that is currently open.

 reviveSituation: Revives (sets to Open) a Situation that is currently set to Resolved.

 setPrcLabels: Sets the Probable Root Cause (PRC) labels for alerts within a Situation.

 setResolvingThreadEntry: Sets or clears a thread entry in a Situation as a resolving step.

 setSigCustomInfo: Updates the custom information for a Situation.

 setSituationFlags: Updates the flags associated with a Situation.

 setSituationPrimaryTeam: Sets one of the teams already assigned to a Situation as the primary

team.

 setSituationProcesses: Applies a list of processes to a specified Situation.

 setSituationServices: Applies a list of external services to a specified Situation.

 updateClosedSituation: Updates the description and custom info of a closed Situation during the

grace period.

 updateCustomInfo: Updates the custom info for an alert or a Situation.

 updateSituation: Updates a Situation object and uses it to update the database and the Message

Bus.

User Management

The following methods relate to the management of users, teams and roles:

 createTeam: Creates a new team, by passing an object containing team information.

 createUser: Creates a user, by passing an object containing user properties.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

441

 deleteTeam: Deletes a single team.

 getAllSessionInfo: Returns session information for all users over a period of time.

 getTeam: Returns a team's details by team ID or team name.

 getTeams: Returns details of all teams.

 getTeamsForService: Returns all teams related to a service.

 getTeamSituationIds: Returns the total number of Situations, and a list of the Situation IDs,

associated with a team.

 getUser: Returns details of a user.

 getUserName: Returns the username for a user ID.

 getUserRoles: Returns the roles of a user.

 getUsers: Returns details of all users.

 getUserSessionInfo: Returns session information for a single user over a period of time.

 getUserTeams: Returns the team IDs and team names for a user.

 updateTeam: Updates an existing team.

 updateUser: Updates an existing user.

Workflows

The following methods relate to the Workflow Engine:

 createWorkflow: Creates a new workflow at the end of a Workflow Engine Moolet sequence.

 deleteWorkflow: Deletes a workflow from a Workflow Engine Moolet.

 getWorkflowEngineMoolets: Returns a list of Workflow Engine Moolets and the functions available

in each.

 getWorkflows: Returns the workflows for a Workflow Engine Moolet.

 reorderWorkflows: Reorders the sequence of workflows within a Workflow Engine Moolet.

 sendToWorkflow: Sends a Moolet Inform message to a workflow in an Inform Workflow Engine.

 updateWorkflow: Updates one or more existing workflows in the Workflow Engine.

addAlertToSituation

A MoogDb v2 method that adds an alert to a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addAlertToSituation takes the following request arguments:

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

442

alertId Number Yes Alert ID.

situationId Number Yes Situation ID.

Response

Method addAlertToSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

addCorrelationInfo

Note

This method has been superseded. Use addSigCorrelationInfo instead. The addCorrelationInfo

method has been retained for backwards compatibility.

A MoogDb v2 method that adds correlation information (external service name and external entity ID) to

a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addSigCorrelationInfo takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

service String Name of the external service, such as ServiceNow.

externalId String Identifier that the entity has in the external service, which

corresponds to the Situation.

Response

Method addCorrelationInfo returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method addCorrelationInfo:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

443

Response example

A successful request returns true.

addProcess

A MoogDb v2 method that adds a new process to the database. Processes are external business

entities related to business activities that are affected by the incidents that Cisco Crosswork Situation

Manager captures in Situations.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addProcess takes the following request arguments:

Name Type Required Description

process String Yes Process name.

description String Yes Process description.

Response

Method addProcess returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method addProcess:

Response example

A successful request returns true.

addService

A MoogDb v2 method that adds a new external service to the database. An external service is a

business entity monitored by Cisco Crosswork Situation Manager via event streams.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addService takes the following request arguments:

Name Type Required Description

service String Yes Name of the external service you are adding.

description String No Service description.

Response

Method addService returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

444

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method addService:

Response example

A successful request returns true.

addSigCorrelationInfo

A MoogDb v2 method that adds correlation information (external service name and external entity ID) to

a Situation.

This is the recommended method for adding correlation information to a Situation, the

addCorrelationInfo method has been retained for backwards compatibility.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addSigCorrelationInfo takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

service String Name of the external service, such as ServiceNow.

externalId String Identifier that the entity has in the external service, which

corresponds to the Situation.

Response

Method addSigCorrelationInfo returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method addSigCorrelationInfo:

Response example

A successful request returns true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

445

addThreadEntry

A MoogDb v2 method that adds a new entry to an existing thread in a Situation. Threads are comments

or 'story activity' on Situations.

Optionally, you can specify the new entry as being a resolving step.

This method returns the entry ID of the newly created thread entry.

Back to MoogDb V2 API Method Reference.

Request arguments

Method addThreadEntry takes the following request arguments:

Name Type Required Description

entry String Yes Description of the new entry you want to add to the existing

thread. For example, "And another thing...".

Description of the new entry you want to create in the thread. For

example, "And another thing...". HTML and XML tags are

stripped from the thread entry text. Reserved characters are

converted to HTML entities, for example, & is converted to

&.

thread_name String Yes Name of the existing thread.

user_id Number Yes A valid user ID.

sitn_id Number Yes Situation ID.

resolving_step Boolean No Whether or not the thread entry you are adding is a resolving

step. Default is false if not specified,

Response

Method addThreadEntry returns the following response:

Type Description

Number ID of the new thread entry.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

Cisco Crosswork Situation Manager 8.0.x Developer Guide

446

The following examples demonstrate typical use of method addThreadEntry:

Request examples

Example request to add an entry "New Entry" to thread "Support" in Situation 158 using user ID 47.

The resolving step parameter defaults to false.

Example request to add an entry "New Entry" to thread "Support" in Situation 58 using user ID 47. This

thread entry is a resolving step:

true)

Response example

Example response returning the new thread entry ID:

345

assignAlert

A MoogDb v2 method that assigns a user as the owner of an alert.

Back to MoogDb V2 API Method Reference.

Request arguments

Method assignAlert takes the following request arguments:

Name Type Required Description

alertId Number Yes Alert ID.

userId Number No, if you specify

username.

ID of the user to be assigned as the owner of the alert. You

must provide the userId or the username.

username String No, if you specify

userId.

Username of the user to be assigned to the alert. You must

provide the userId or the username.

Response

Method assignAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

447

assignAndAcknowledgeAlert

A MoogDb v2 method that assigns and acknowledges a user as the owner of an alert.

Back to MoogDb V2 API Method Reference.

Request arguments

Method assignAndAcknowledgeAlert takes the following request arguments:

Name Type Required Description

alertId Number Yes Alert ID.

userId Number No, if you specify

username.

ID of the user to be assigned as the owner of the alert. You

must provide the userId or the username.

username String No, if you specify

userId.

Username of the user to be assigned to the alert. You must

provide the userId or the username.

Response

Method assignAndAcknowledgeAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

assignAndAcknowledgeSituation

A MoogDb v2 method that assigns and acknowledges a user as the owner of a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method assignAndAcknowledgeSituation takes the following request arguments:

Name Type Required Description

SituationId Number Yes Situation ID.

userId Number No, if you specify

username.

ID of the user to be assigned as the owner of the Situation.

You must provide the userId or the username.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

448

username String No, if you specify

userId.

Username of the user to be assigned as the owner of the

Situation. You must provide the userId or the username.

Response

Method assignAndAcknowledgeSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method assignAndAcknowledgeSituation:

Response example

A successful request returns true.

assignModerator

A MoogDb v2 method that assigns the specified user as the owner of the specified Situation ID.

Back to MoogDb V2 API Method Reference.

Request arguments

Method assignModerator takes the following request arguments:

Name Type Required Description

SituationId Number Yes Situation ID.

moderatorId Number No, if you specify

username.

ID of the user to be assigned as the owner of the alert.

You must provide the moderatorId or the username.

username String No, if you specify

moderatorId.

Username of the user to be assigned to the alert. You

must provide the moderatorId or the username.

Response

Method assignModerator returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

449

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method assignModerator:

Response example

A successful request returns true.

assignTeamsToSituation

A MoogDb v2 method that assigns one or more teams to a Situation. Once successfully run, Cisco

Crosswork Situation Manager marks the Situation as overridden and the Teams Manager Moolet can no

longer modify its team assignment. See Teams Manager Moolet for more information.

The method replaces any teams previously assigned to the Situation. You can also use it to deassign all

teams from a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method assignTeamsToSituation takes the following request arguments:

Name Type Required Description

sitn_id Number Yes Situation ID.

team_ids JSON

List

No, if you specify

team_names.

A list of team IDs to assign to the Situation. Specify an

empty list to deassign all teams from the Situation.

team_names JSON

List

No, if you specify

team_ids.

A list of team names to assign to the Situation. Specify

an empty list to deassign all teams from the Situation.

Response

Method assignTeamsToSituation returns the following response:

Type Description

JSON

Object

A Javascript object containing a list of the team names or team IDs assigned to the Situation,

depending on the input.

API update behavior

Cisco Crosswork Situation Manager 8.0.x Developer Guide

450

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method assignTeamsToSituation:

Example assigning team IDs to Situation

Example request to assign team IDs 1 and 2 to Situation ID 1:

var assignTeamIDs = moogdb.assignTeamsToSituation(1, { "team_ids" : [1, 2] })

Example response returning that team IDs 1 and 2 have successfully been assigned to the Situation:

{ "team_ids" : [1, 2] }

Example assigning team names to Situation

Example request to assign teams Team1 and Team2 to Situation ID 1:

var assignTeamNames = moogdb.assignTeamsToSituation(2, { "team_names" : [

"Team1", "Team2"] })

Example response returning that teams Team1 and Team2 have successfully been assigned to the

Situation:

{ "team_names" : ["Team1", "Team2"] }

Example unassigning all teams from a Situation

Example request to unassign all teams from Situation ID 1:

var unassignTeamIDs = moogdb.assignTeamsToSituation(1, { "team_ids" : [] })

Example response returning that all teams have successfully been unassigned from the Situation:

{ "team_ids" : [] }

checkSituationFlag

A MoogDb v2 method that checks whether a flag is associated with a Situation.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Request arguments

Method checkSituationFlag takes the following request arguments:

Name Type Required Description

sitn_id Number Yes ID of the Situation to check.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

451

flag String Yes Name of the flag to check for the specified Situation ID.

Response

Method checkSituationFlag returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method checkSituationFlag:

Request example

Example request to check whether Situation 1 contains the flag S1:

var result = JSON.stringify(moogdb.checkSituationFlag(1, "S1"))

Response example

Example response returning true because the Situation contains the specified flags:

true

closeAlert

A MoogDb v2 method that closes one or more alerts.

Back to MoogDb V2 API Method Reference.

Request arguments

Method closeAlert takes the following request arguments:

Name Type Required Description

alertId Number No, if you

specify

alertIds.

A single alert ID. You must provide a single

alertId or a list of alertIds.

alertIds JSON

List

No, if you

specify

A list of alert IDs. You must provide a single

alertId or a list of alertIds.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

452

alertId.

thread_entry_comment String No Thread entry comment you want to add to the

closed alert. HTML and XML tags are stripped from

the thread entry text. Cisco Crosswork Situation

Manager converts reserved characters to HTML

entities, for example, & is converted to &.

Response

Method closeAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method closeAlert:

Request example

Example request to close alerts 78, 234, and 737 with a thread entry comment:

var success = moogdb.closeAlert([78,234,737], "Closing as agreed during team

discussion 1/1/2018");

Response example

A successful request returns true.

closeSituation

A MoogDb v2 method that closes a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method closeSituation takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

closeAlerts Constant Yes Determines how the alerts in the Situation are treated. One of:

CLOSE_NO_ALERT: No alerts are closed.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

453

CLOSE_ALL_ALERTS: All alerts are closed.

CLOSE_UNUSED_ALERTS: Only alerts that are unique to this Situation

are closed.

To access these constants from a MooBot, precede them with the

module name, for example:

moogdb.CLOSE_NO_ALERT

Response

Method closeSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method closeSituation:

Response example

A successful request returns true.

createAlert

A MoogDb v2 method that creates or updates an alert. Optionally updates custom info for deduplicated

alerts.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createAlert takes the following request arguments:

Name Type Required Description

alert Native

Object

Yes A Javascript object containing alert attributes, such as type,

severity, etc.

event CEvent Yes A CEvent object representing the alert, containing alert

Cisco Crosswork Situation Manager 8.0.x Developer Guide

454

attributes, such as type, severity, etc.

mergeCustomInfo Boolean No Set this to true to merge the custom_info data in this alert

with the custom info held in the database.

Response

Method createAlert returns the following response:

Type Description

CEvent A CEvent object containing the latest version of the alert.

createMaintenanceWindow

A MoogDb v2 method that creates a maintenance window, by passing an object containing the

information. A maintenance window filters alerts caused by a known period of maintenance.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createMaintenanceWindow takes the following request arguments:

Name Type Required Description

maintenanceWindowObj Object Yes A map containing the following information.

The object maintenanceWindowObj contains the following information:

Name Type Required Description

name String Yes Name of the maintenance window.

description String Yes Description of the maintenance window.

filter String Yes An SQL-like filter that alerts must match to be included

in the maintenance window.

start_date_time Number

(Epoch)

Yes Start time of the maintenance window. This must be in

Unix epoch time and may be up to 5 years in the

future.

duration Number

(Epoch)

Yes Duration of the maintenance window in seconds. The

minimum duration is 1 second and the maximum is

157784630 seconds (5 years).

forward_alerts Boolean Yes Whether or not alerts should be forwarded to the next

Moolet in the processing chain.

recurring_period Number No Whether or not this is a recurring maintenance window.

Set this to:1 for a recurring maintenance window.0 for

a one-time maintenance window.If not specified,

default is 0. If you set this property to 1, you must

specify recurring_period_units.

recurring_period_unit Number No Specifies the recurring period of the maintenance

window, in days, weeks or months. Valid values are:2

= daily3 = weekly4 = monthlyDefault is 0 if

recurring_period is set to 0.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

455

Method createMaintenanceWindow returns the following response:

Type Description

Long ID of the new maintenance window, or null if an error occurred.

Examples

The following examples demonstrate typical use of method createMaintenanceWindow:

Request example

Example request to create a new maintenance window which recurs daily:

{

 "name": "Phil",

 "description": "A description",

 "filter": "custom_info.eventDetails.alertGroup = Websphere AND source =

my_source12345",

 "start_date_time": 1497971059,

 "duration": 360000,

 "forward_alerts": true,

 "recurring_period": 1,

 "recurring_period_units": 2

}

createSituation

A MoogDb v2 method that creates a new Situation, containing no alerts.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createSituation takes the following request arguments:

Name Type Required Description

moderator String Yes A valid user name.

label String New Situation description.

Response

Method createSituation returns the following response:

Type Description

CEvent A CEvent object containing the newly created Situation.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Cisco Crosswork Situation Manager 8.0.x Developer Guide

456

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

createTeam

A MoogDb v2 method that creates a new team, by passing an object containing team information.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createTeam takes the following request arguments:

Name Type Required Description

teamObj Object Yes An object containing the following information.

The object teamObj contains the following information:

Name Type Required Description

name String Yes New team name. Must be unique.

alert_filter JSON Object No An SQL-like filter that alerts must match to be assigned

to the team.

sig_filter JSON Object No An SQL-like filter that Situations must match to be

assigned to the team.

active Boolean No Set to true if the team is active; set to false if the

team is inactive. Default is true.

services Array of Numbers or

Strings

No List of the team service names or IDs.

users Array of Numbers or

Strings

No List of users in the team, either usernames or IDs.

description String No Team description.

landing_page String No Default landing page for the team.

Response

Method createTeam returns the following response:

Type Description

Integer ID of the new team, or null if an error occurred.

createThread

A MoogDb v2 method that creates a new thread for a Situation. Threads are comments or 'story

activity' on Situations.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createThread takes the following request arguments:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

457

Name Type Required Description

situationId Number Yes ID of the Situation you want to create a new thread for.

thread String Yes Name of the new thread.

Response

Method createThread returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

createThreadEntry

Note

This method has been superseded. Use addThreadEntry instead. All new functionality will be delivered

in addThreadEntry.

A MoogDb v2 method that creates a new entry on an existing thread in a Situation. Threads are

comments or 'story activity' on Situations.

This method returns a Boolean indicating whether or not the thread entry was created successfully.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createThreadEntry takes the following request arguments:

Name Type Required Description

entry String Yes Description of the new entry you want to create in the thread. For

example, "And another thing...". HTML and XML tags are stripped

from the thread entry text. Reserved characters are converted to

HTML entities, for example, & is converted to &.

thread String Yes Name of the existing thread.

userId Number A valid user ID.

situationId String Yes Situation ID.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

458

Response

Method createThreadEntry returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

createUser

A MoogDb v2 method that creates a user, by passing an object containing user properties.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createUser takes the following request arguments:

Name Type Required Description

userObj Object Yes An object containing the following user information.

username String Yes New user login name. Must be unique.

password String Yes New user password. Only valid for DB realm.

active Boolean No Set to true if user is active; set to false if user is

inactive. Default is true.

email String Yes User's email address.

fullname String Yes User's full name.

roles JSON Array Yes List of either the roleIDs or role names. For

example, "roles":["Super User"].

primary_group String or Number Yes User's primary group name or primary group ID.

department String or Number Yes User's department name or ID.

joined Number Yes Time the user joined in Unix epoch time.

timezone String Yes User's timezone.

contact_num String Yes User's phone number.

session_expiry Number No Number of minutes after which the user's session

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

459

expires. Default is the system default.

teams JSON Array of

Numbers or Strings

Yes List of the user's team names or team IDs.

Response

Method createUser returns the following response:

Type Description

Integer ID of the new user, or null if an error occurred.

Examples

The following examples demonstrate typical use of method createUser:

Request example

Example request to create a new user "user1":

{

 "username": "phil",

 "fullname": "Phil Customer",

 "roles": ["Super User"],

 "department": 3,

 "active": true,

 "email": "phil@example.com",

 "timezone": "(GMT 00:00) Europe/London - Greenwich Mean Time",

 "teams": [1, 2, 4],

 "joined": 12345678,

 "contact_num": "0965412345"

}

Response example

Example response returning the ID of the new user:

72

createWorkflow

A MoogDb v2 method that creates a new workflow at the end of a Workflow Engine Moolet sequence.

To move it, use reorderWorkflows.

Back to MoogDb V2 API Method Reference.

Request arguments

Method createWorkflow takes the following request arguments:

Name Type

Require

d Description

moolet_name String Yes Name of the Workflow Engine Moolet that the new workflow

belongs to.

workflow_name String Yes Name of the new workflow. Must be unique.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

460

description String No Description of the new workflow.

entry_filter JSON

Object

No An SQL-like filter to determine which events, alerts or Situations

can enter the workflow. Leave empty for the workflow to accept

all events, alerts or Situations.

sweep_up_filte

r
JSON

Object

No An SQL-like filter to intake any additional events, alerts or

Situations from the database.

first_match_on

ly
Boolea

n

Yes If enabled, events, alerts, and Situations only pass through

actions on the first time they enter this workflow.

operations JSON

Array

Yes List of properties relating to each operation:

Name Type

Require

d Description

type String Yes Type of operation.

Options are:

'action', 'decision'

and 'delay'.

operation_name String Yes, for

'action'

and

'decisio

n' types.

Name of the

operation.

function_name String Yes, for

'action'

and

'decisio

n' types.

Name of the

function.

forwarding_behavi

or

String No Forwarding

behavior for the

function. One

of:always

forward: The

function always

forwards the object

to the next

workflow.stop

this workflow:

The function stops

this workflow and

the object moves

to the next

workflow.stop

all workflows:

The function stops

all workflows for

this object.Default

is always

forward. Only

valid for 'action'

and 'decision'

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

461

types.

function_args JSON

Object

No Arguments for the

function.

duration Integer Yes, for

'delay'

type.

Length of time

before the

message goes to

the next operation.

reset Boolea

n

Yes, for

'delay'

type.

Determines

whether the timer

resets after each

occurrence. Not

available if you

have set a

workflow to

first_match_onl

y.

The timer is reset

only if an

occurrence with

the same ID is

received (alert_id

or situation_id)

within the current

'delay' timeframe.

Examples

The following examples demonstrate typical use of method createWorkflow:

Request example

Example request to create a new workflow "ChangeInfoWorkflow":

var id = moogdb.createWorkflow(

{

 "moolet_name": "Alerts Workflows",

 "workflow_name": "ChangeInfoWorkflow",

 "description": "Changingthealertinformation",

 "entry_filter": "((category = \"Closed\") AND (custom_info.test = \"test\"))

AND (description = \"test\")",

 "sweep_up_filter": "((sig_id = 1) AND (first_event_time = 1574121600)) AND

(description = \"test\")",

 "first_match_only": false,

 "operations": [{

 "type": "action",

 "function_name": "functionA",

 "function_args": {"admin": 2},

 "operation_name": "do something"

 },

 {

 "type": "delay",

 "delay": 30,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

462

 "reset": false

 }]

});

deassignAlert

A MoogDb v2 method that removes the assignment of the current owner from an alert, and leaves it

unassigned.

Back to MoogDb V2 API Method Reference.

Request arguments

Method deassignAlert takes the following request arguments:

Name Type Required Description

alertId Number Yes ID of the alert that you want to deassign the owner from.

Response

Method deassignAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

deleteMaintenanceWindow

A MoogDb v2 method that deletes a single maintenance window.

Back to MoogDb V2 API Method Reference.

Request arguments

Method deleteMaintenanceWindow takes the following request arguments:

Name Type Required Description

maintenanceWindowId Number Yes ID of the maintenance window you want to delete.

Response

Method deleteMaintenanceWindow returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

463

The following examples demonstrate typical use of method deleteMaintenanceWindow:

Request example

Example request to maintenance window 456:

var success = moogdb.deleteMaintenanceWindow(456)

Response example

A successful request returns true.

deleteMaintenanceWindows

A MoogDb v2 method that deletes maintenance windows that match a filter.

Back to MoogDb V2 API Method Reference.

Request arguments

Method deleteMaintenanceWindows takes the following request arguments:

Name Type Required Description

filter String Yes An SQL-like or JSON filter to match maintenance windows that you want to

delete.

limit Number No Maximum number of windows to fetch. Default is 100.

Response

Method deleteMaintenanceWindows returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method deleteMaintenanceWindows:

Request examples

Example request to delete maintenance windows that match a filter:

var success = deleteMaintenanceWindows(filter, limit);

JSON filter where the description is "host375":

{ "column": "description", "op": 10, "value": "host375", "type": "LEAF" }

Advanced SQL filter where the description is "host375":

Description MATCHES "host375"

Response example

A successful request returns true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

464

deleteTeam

A MoogDb v2 method that deletes a single team.

Request arguments

Method deleteTeam takes the following request arguments:

Name Type Required Description

team_id Number Yes ID of the team you want to delete.

Response

Method deleteTeam returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method deleteTeam:

Request example

Example request to delete a team with ID 33.

var success = moogdb.deleteTeam(33)

Response example

A successful request returns true.

deleteWorkflow

A MoogDb v2 method that deletes a workflow from a Workflow Engine Moolet.

Back to MoogDb V2 API Method Reference.

Request arguments

Method deleteWorkflow takes the following request arguments:

Name Type Required Description

id Integer Yes ID of the workflow to delete.

Response

Method deleteWorkflow returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

findMaintenanceWindows

A MoogDb v2 method that finds maintenance windows based on a filter and a limit.

Back to MoogDb V2 API Method Reference.

Request arguments

Method findMaintenanceWindows takes the following request arguments:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

465

Name Type Required Description

filter String Yes SQL-like filter to match maintenance windows that you want to find. For

example: description matches "server_45".

limit Number No Maximum number of windows to return. Default is 100.

Response

Method findMaintenanceWindows returns the following response:

Type Description

Object A JSON object containing maintenance windows that match the filter.

Examples

The following examples demonstrate typical use of method findMaintenanceWindows:

Request example

Example request to return maintenance windows where the description matches "maintenance":

var response = moogdb.findMaintenanceWindows("description matches maintenance");

Response example

Example response returning two maintenance windows where the description matches "maintenance":

[

 {

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1573833276,

 "timezone": "Europe/London",

 "description": "This is my first maintenance window",

 "recurring_period_units": 0,

 "filter": "description MATCHES \"Test\"",

 "duration": 3600,

 "recurring_period": 0,

 "name": "My Maintenance Window 1",

 "updated_by": 3,

 "id": 1,

 "start_date_time": 1573833229

 },

 {

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1574164385,

 "timezone": "Europe/London",

 "description": "This is my second maintenance window",

 "recurring_period_units": 0,

 "filter": "(severity IN (0, 1, 2, 3, 4, 5)) AND (owner IN (3))",

 "duration": 3600,

 "recurring_period": 0,

 "name": "My Maintenance Window 2",

 "updated_by": 3,

 "id": 2,

 "start_date_time": 1574164339

Cisco Crosswork Situation Manager 8.0.x Developer Guide

466

 }

]

getActiveSituationIds

A MoogDb v2 method that returns the total number of active Situations, and a list of their Situation IDs.

Active Situations are those that are not Closed, Resolved or Dormant.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getActiveSituationIds takes no request arguments.

Response

Method getActiveSituationIds returns the following response:

Type Description

Native Object A JSON object containing the total number of Situations returned and the Situation IDs.

Examples

The following examples demonstrate typical use of method getActiveSituationIds:

Response example

Example response returning ten active Situations:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getAlert

A MoogDb v2 method that returns details of an alert.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getAlert takes either the alertID or signaturerequest arguments:

Name Type Required Description

alertId Number Yes if no signature provided Alert ID.

singature String Yes if no alertId provided Alert signature.

Response

Method getAlert returns the following response:

Type Description

CEvent A CEvent object containing the alert attributes, such as type and severity.

getAlertActions

A MoogDb v2 method that returns the actions for one or more alerts or for a time period.

Back to MoogDb V2 API Method Reference.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

467

Request arguments

Method getAlertActions takes the following request arguments:

Name Type Required Description

alert_ids JSON Array

of Numbers

No List of alert IDs.

start Number Yes Starting row from which data should be included.

limit Number Yes Maximum number of actions you want to return.

actions Array of

Numbers

No List of action codes. If no action codes are specified, all action

codes are returned. See Alert Action Codes for a list of action

codes and their descriptions. Only action codes 8 (Alert Resolved)

and 9 (Alert Closed) are valid.

from Number No Start time of the period you want to retrieve alert actions for. This

is in Unix epoch time in seconds.

to Number No End time of the period you want to retrieve alert actions for. This is

in Unix epoch time in seconds.

Response

Method getAlertActions returns the following response:

Type Description

Native Object A JSON object containing the alert action information.

Examples

The following examples demonstrate typical use of method getAlertActions:

Request examples

Example request to return alert actions:

var actions = moogdb.getAlertActions(request);

Example request object to return the first 100 actions for alert IDs 1 and 2 for action codes 8 and 9:

{

}

Example request object to return the first 100 actions for alert IDs 1 and 2 for action codes 8 and 9

between the Unix epoch times 1553861746 and 1553872546:

{

 "alert_ids" : [1, 2],

 "limit" : 100,

 "actions" : [8, 9],

 "from" : 1553861746,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

468

 "to" : 1553872546

}

Response example

Example response returning alert actions with action codes 8 (Alert Resolved) and 9 (Alert Closed):

[{

 "uid": 49,

 "action_code": 8,

 "description": "Alert Resolved",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504393

 }, {

 "uid": 49,

 "action_code": 9,

 "description": "Alert Closed",

 "details": {},

 "alert_id": 1,

 "timed_at": 1557504912

 }

}]

getAlertCustomInfo

A MoogDb v2 method that returns custom information for an alert.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getAlertCustomInfo takes the following request arguments:

Name Type Required Description

alertId Number Yes ID of the alert you want to return custom info data for.

key String No Specify the key if you are interested in a specific value. Otherwise the

method returns all custom info.

Response

Method getAlertCustomInfo returns the following response:

Type Description

Number, List, String, or

Object

A map of name-value pairs containing the custom info for the specified

alert.

getAlertIds

A MoogDb v2 method that returns the total number of alerts, and a list of the alert IDs, for an alert filter

and a limit.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getAlertIds takes the following request arguments:

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

469

query JSON Object Yes An SQL-like filter that alerts must match to be returned.

limit Number Maximum number of alert IDs to return.

Response

Method getAlertIds returns the following response:

Type Description

Native Object A JSON object containing the total number of alerts and their alert IDs.

Examples

The following examples demonstrate typical use of method getAlertIds:

Response example

Example response returning ten alert IDs:

{

 "total_alerts":10,

 "alert_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getAllSessionInfo

A MoogDb v2 method that returns session information for all users over a period of time.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getAllSessionInfo takes the following request arguments:

Name Type Required Description

from Number No Start time of the period you want to retrieve session information for. This is in

Unix epoch time in seconds. If empty, returns all session information for all

users.

to Number No End time of the period you want to retrieve session information for. This is in

Unix epoch time in seconds. If empty, returns user records to date.

start Number No Starting record from which data should be included. Default is 0, the first

record.

limit Number No Maximum number of records you want to return. Default is 200.

Response

Method getAllSessionInfo returns the following response:

Type Description

Number ID of the session.

String User name for the session.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

470

Number Start time of the session, in Unix epoch time.

Number Last access time within the session, in Unix epoch time.

Examples

The following examples demonstrate typical use of method getAllSessionInfo:

Request example

Example request to return session information from Unix epoch time 1570544146 to Unix epoch time

1570704144:

var UserMap2 = {"start" : 1, "limit":6, "from": 1570544146, "to":1570704144 };

var SessionInfo2 = moogdb.getAllSessionInfo(UserMap2);

logger.warning("getAllSessionInfo..."+ JSON.stringify(SessionInfo2));

Response example

Example response returning session information between Unix epoch times 1570544146 and

1570704144:

getAllSessionInfo...

[{"sessionId":2,"userName":"graze","startTime":1570700522,"lastAccess":157070052

2},

{"sessionId":3,"userName":"user4","startTime":1570700529,"lastAccess":1570700529

},

{"sessionId":4,"userName":"admin","startTime":1570700675,"lastAccess":1570700675

},

{"sessionId":5,"userName":"graze","startTime":1570703911,"lastAccess":1570703911

}]

getMaintenanceWindows

A MoogDb v2 method that returns maintenance windows based on a start position and a limit. Only

returns active recurring windows and scheduled maintenance windows, not expired or deleted

maintenance windows.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getMaintenanceWindows takes the following request arguments:

Name Type Required Description

start Number Yes Number of the first maintenance window to return, 0 to start at the first, 10

to start at the 11th.

limit Number Yes Maximum number of maintenance windows to return.

Response

Method getMaintenanceWindows returns the following response:

Type Description

Native Object A JSON object with a nested array containing information on the maintenance windows.

Examples

The following examples demonstrate typical use of method getMaintenanceWindows:

Request example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

471

Example request to return the first maintenance window in the database:

var response = moogdb.getMaintenanceWindows(0,1);

Response example

Example response returning details of the first maintenance window:

[

 {

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1574164385,

 "timezone": "Europe/London",

 "description": "Test",

 "recurring_period_units": 0,

 "filter": "(severity IN (0, 1, 2, 3, 4, 5)) AND (owner IN (3))",

 "duration": 3600,

 "recurring_period": 0,

 "name": "Test",

 "updated_by": 3,

 "id": 2,

 "start_date_time": 1574164339

 }

]

getPrcLabels

A MoogDb v2 method that returns Probable Root Cause (PRC) information for all alerts or specified

alerts within a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getPrcLabels takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

alert_ids JSON Array No List of alert IDs.

Response

Method getPrcLabels returns the following response:

Type Description

Native

Object

A JSON object containing the probable root cause information for the alerts in the specified

Situation.

Examples

The following examples demonstrate typical use of method getPrcLabels:

Request example

Example request to return the PRC labels for alerts 1, 2, 3, and 4 in Situation 157:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

472

var alertIds = [1,2,3,4];

var prcLabels = moogdb.getPrcLabels(157, alertIds);

Response example

Example response returning the PRC labels for alerts 1, 2, 3, and 4 in the Situation:

{

 "non_causal": [2,3],

 "unlabelled": [4],

 "causal": [1]

}

getProcesses

A MoogDb v2 method that returns a list of processes from the database.

Request arguments

Method getProcesses takes the following request arguments:

Name Type Required Description

limit Integer No Maximum number of processes to return. Default is 1000.

query String Yes A JSON or SQL like filter of the process name.

exact_match Boolean No If true, the query performs an exact match on the process name. If

false, the query checks for contains only on the process name.

Default is false.

Response

Method getProcesses returns the following response:

Type Description

Object A list of strings describing the requested processes, or a null value if there is an error.

Examples

The following examples demonstrate typical use of method getProcesses:

Request example

Example request to return the first thousand process names containing "Network":

Response example

Example response returning returning details of all process names containing "Network":

[

 {

 "process_id": 1,

 "name": "Network LON",

 "description": "Network London"

 },

 {

 "process_id": 2,

 "name": "NY Network A",

 "description": "Network New York A"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

473

 {

 "process_id": 3,

 "name": "NY Network B",

 "description": "Network New York B"

 }

]

getQueueName

A MoogDb v2 method that returns the queue name, from the database, for a queue ID.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getQueueName takes the following request arguments:

Name Type Required Description

queueId Number Yes Queue ID.

Response

Method getQueueName returns the following response:

Type Description

String Queue name for the specified queue ID.

getResolvingThreadEntries

A MoogDb v2 method that returns thread entries for a Situation that have been marked as resolving

steps. Threads are comments or 'story activity' on Situations. Operators can mark one or more thread

entries as steps that were used to resolve a Situation.

You can select specific thread entries to return using start and limit values. If not, their default

values return the first 100 thread entries. The thread entries returned are ordered by most recent first.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getResolvingThreadEntries takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

thread String Yes Name of the thread.

start Number No Number of the first resolving thread entry to return. Default is 0.

limit Number No Maximum number of resolving thread entries to return. Default is

100.

Response

Method getResolvingThreadEntries returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

474

Native Object A JSON object containing details of the selected thread entries.

Examples

The following examples demonstrate typical use of method getResolvingThreadEntries:

Request examples

Example request to return the first 100 thread entries that are resolving steps for Situation 58:

var resolvingEntries = moogdb.getResolvingThreadEntries(58);

Request to return the first 10 thread entries that are resolving steps for Situation 58:

var resolvingEntries = moogdb.getResolvingThreadEntries(58, 0, 10);

Response example

Example response returning two resolving steps for the specified Situation:

{

 "entries": [

 {

 "uid": 3,

 "entry": "A comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 1,

 "entry_id": 2,

 "timed_at": 1423226829,

 "disagrees": [],

 "commenters": []

 },

 {

 "uid": 3,

 "entry": "Another comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 1,

 "entry_id": 1,

 "timed_at": 1423226807,

 "disagrees": [3],

 "commenters": []

 }],

 "total_entries": 2

}

getServices

A MoogDb v2 method that returns a list of services from the database.

Request arguments

Method getServices takes the following request arguments:

Name Type Required Description

limit Integer No Maximum number of services to return. Default is 1,000.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

475

start Integer No Number of the first service to return. Default is 0.

query String Yes A JSON or SQL like filter of the service name.

exact_match Boolean No If true, the query performs an exact match on the service name. If

false, the query checks for contains only on the service name.

Default is false.

Response

Method getServices returns the following response:

Type Description

Native Object A list of strings describing the requested services, or a null value if there is an error.

Examples

The following examples demonstrate typical use of method getServices:

Example Using Exact Matching

Example request using exact matching of the query "Network LON":

Example response returning details of the service name "Network LON":

[{

 "service_id":3,

 "name":"Network LON",

 "description":"Network description"

}]

Example using approximate matching

Example request using approximate matching of the query "Network":

var actions = moogdb.ge

Example response returning details of all service names containing "Network":

[{

 "service_id":1,

 "name":"Network LON",

 "description":"Network London"

},{

 "service_id":2,

 "name":"NY Network A",

 "description":"Network New York A"

},{

 "service_id":3,

 "name":"NY Network B",

 "description":"Network New York B"

}]

getSigCorrelationInfo

A MoogDb v2 method that returns all correlation information related to a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

476

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSigCorrelationInfo takes the following request argument:

Name Type Required Description

sitn_id Number Yes Situation ID.

Response

Method getSigCorrelationInfo returns the following response:

Type Description

Object A JSON object containing a list of maps of correlation info.

getSigCustomInfo

A MoogDb v2 method that returns all custom info related to a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSigCustomInfo takes the following request arguments:

Name Type Required Description

sigId Number Yes Situation ID.

key String Node path for specific value to return.

Response

Method getSigCustomInfo returns the following response:

Type Description

Number, Object, Array

or String

Response depends on the key but can be a number, object, array or string

containing a list of maps of custom info.

getSituation

A MoogDb v2 method that returns details of a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituation takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

Response

Method getSituation returns the following response:

Type Description

Object A JSON object representing the Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

477

getSituationActions

A MoogDb v2 method that returns the actions for one or more Situations or for a time period. Created

by passing an object with the information requested. You can use the from and to arguments to

specify a period that you want to retrieve Situation actions for. If you do not specify these, all actions

are returned.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationActions takes the following request arguments:

Name Type Required Description

sitn_ids JSON

Array

No, if to and

from are used.

Array of Situation IDs that the actions are requested for.

start Number Yes Number of the first action to return.

limit Number Yes Maximum number of actions that you want to return.

actions JSON

Array

No List of action codes. Returns all action codes if no action codes

are specified. See Situation Action Codes for a list of action

codes and their descriptions.

from Number No Start time of the period you want to retrieve Situation actions

for. This is a Unix epoch timestamp in seconds.

to Number No End time of the period you want to retrieve Situation actions for.

This is a Unix epoch timestamp in seconds.

Response

Method getSituationActions returns the following response:

Type Description

Native Object A JSON object containing the activity for the specified Situations.

Examples

The following examples demonstrate typical use of method getSituationActions:

Request examples

Example request to return Situation actions:

var actions = moogdb.getSituationActions(request);

Example request object to return the first 100 actions for Situation IDs 1, 2, and 3 for action codes 1

(Situation Created) and 14 (Added Alerts To Situation):

{

 "sitn_ids" : [1, 2, 3],

 "start" : 0,

 "limit" : 100,

 "actions" : [1, 14]

}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

478

Response example

Example response returning the requested actions for the specified Situations:

[

 {

 "uid": 2,

 "action_code": 1,

 "description": "Situation Created",

 "details": {},

 "type": "event",

 "sig_id": 1,

 "timed_at": 1507039842

 },

 {

 "uid": 2,

 "action_code": 14,

 "description": "Added Alerts To Situation",

 "details": {},

 "alerts": [1, 2]

 }

]

getSituationAlertIds

A MoogDb v2 method that returns the total number of alerts, and a list of their alert IDs, for a Situation.

This can be either all alerts or just those alerts unique to the Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationAlertIds takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

uniqueOnly Boolean No Indicates the alerts to return from the Situation:true: Return only

alerts unique to the Situation.false: Return all alerts in the Situation.

Default.

Response

Method getSituationAlertIds returns the following response:

Type Description

Native

Object

A JSON object containing the total number of alerts and the alert IDs for the specified

Situation.

Examples

The following examples demonstrate typical use of method getSituationAlertIds:

Response example

Example response returning the total number of alerts and the alert IDs for the specified Situation:

{

 "total_alerts":10,

 "alert_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

479

getSituationFlags

A MoogDb v2 method that returns the flags for one or more Situations.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Request arguments

Method getSituationFlags takes the following request arguments:

Name Type Required Description

sitn_ids Array Yes IDs of the Situations to return the flags for.

Response

Method getSituationFlags returns the following response:

Type Description

JSON Array An array of the flags associated with the specified Situation IDs.

Examples

The following examples demonstrate typical use of method getSituationFlags:

Request example

Example request to return the flags associated with Situation IDs 1 and 2:

var result = JSON.stringify(moogdb.getSituationFlags([1, 2]))

Response example

Example response returning the flags associated with specified Situations:

{"1":["A1", "B1"], "2":["A1"]}

getSituationHosts

A MoogDb v2 method that returns a list of host names for a Situation, either for all alerts in the Situation

or just for unique alerts.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationHosts takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

uniqueOnly Boolean No Indicates the host names to return from the Situation:true: Return

only host names unique to the Situation.false: Return all host

names in the Situation. Default.

Response

Method getSituationHosts returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

480

Type Description

Native Object A JSON array containing the host names.

Examples

The following examples demonstrate typical use of method getSituationHosts:

Response example

Example response returning the host names for the Situation:

{

 "hosts": [

 "server1",

 "server2",

 "server3",

 "server4",

 "server5",

 "server6",

 "server7"

]

}

getSituationIds

A MoogDb v2 method that returns the total number of Situations, and a list of their Situation IDs, for a

Situation filter and a limit.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationIds takes the following request arguments:

Name Type Required Description

query JSON Object Yes An SQL-like filter that Situations must match to be returned.

limit Number Maximum number of Situation IDs to return.

Response

Method getSituationIds returns the following response:

Type Description

Native Object A JSON object containing the total and the Situation IDs.

Examples

The following examples demonstrate typical use of method getSituationIds:

Response example

Example response returning the total number of Situations and the Situation IDS matching the filter:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getSituationPrimaryTeam

A MoogDb v2 method that returns the primary team assigned to a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

481

Request arguments

Method getSituationPrimaryTeam takes no request arguments.

Name Type Required Description

sitn_id Number Yes ID of the Situation you want to return the primary team for.

Response

Method getSituationPrimaryTeam returns the following response:

Type Description

Object A Javascript object containing the Situation ID and the primary team ID.

Examples

The following examples demonstrate typical use of method getSituationPrimaryTeam:

Request example

Example request to return the primary team for Situation 1906:

var actions = moogdb.getSituationPrimaryTeam(1906);

Response examples

Example response returning that team 36 is the primary team for Situation 1906:

{

 "primary_team_name": "Infrastructure",

 "sitn_id":1906,

 "primary_team_id":36

}

Example response returning that Situation 1906 does not have a primary team assigned to it:

{

 "sitn_id":1906,

}

getSituationProcesses

A MoogDb v2 method that returns a list of process names for a Situation, and the primary process

name, if defined.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationProcesses takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

Response

Method getSituationProcesses returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

482

Type Description

Native Object A JSON array containing the process names, and the Situation's primary process, if defined.

Examples

The following examples demonstrate typical use of method getSituationProcesses:

Response example

Example response returning the processes and the primary process for a Situation:

{

 "processes": ["Process1", "Process2"],

 "primary": "Process2"

}

getSituationServices

A MoogDb v2 method that returns a list of service names for a Situation, and the primary service name,

if defined.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationServices takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

Response

Method getSituationServices returns the following response:

Type Description

Native Object A JSON array containing the service names, and the Situation's primary service, if defined.

Examples

The following examples demonstrate typical use of method getSituationServices:

Response example

Example response returning the services and the primary service for a Situation:

{

 "services": ["Service1","Service2"],

 "primary": "Service1"

}

getSituationsWithFlag

A MoogDb v2 method that returns all the Situations which have a specified flag.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Request arguments

Method getSituationsWithFlag takes the following request arguments:

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

483

flag String Yes Name of the flag to search for.

start Number No Starting point of the result set to return. Default is 0.

limit Number No Number of results to return. Default is 1000.

Response

Method getSituationsWithFlag returns the following response:

Type Description

JSON Array An array of the Situation IDs that have the specified flag associated with them.

Examples

The following examples demonstrate typical use of method getSituationsWithFlag:

Request example

Example request to return all Situations with flag "S1":

var result = JSON.stringify(moogdb.getSituationsWithFlag("S1",0,1000))

Response example

Example response returning the Situation IDs with the specified flag:

[1, 2, 3]

getSituationTopology

A MoogDb v2 method that returns the topology details for a specified Situation and topology. The

request returns a JSON object that lists the links and nodes affected by the Situation in a specified

topology. It also returns the alert matching attributes for the nodes in the topology.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationTopology takes the following request arguments:

Name Type Required Description

sigId Number Yes Situation ID.

topologyName String Yes Name of the topology for which to return the Situation's link, node

and alert matching attribute details. A Situation can impact nodes

in multiple topologies.

context Integer Yes Number, between 0 and 4, of contextual hops from the nodes

directly affected within the Situation to other nodes to be included

in the returned object. See Vertex Entropy for more information on

contextual hops.Vertex Entropy0: Only nodes directly affected by

the Situation. Default.4: Nodes that are up to four hops away from

the nodes directly affected by the Situation.

properties Array of Yes List of the node properties to be returned. Valid properties

are:severity: Severity of the node.prc: Whether this node is the

file://document/preview/11796%23UUID8635a39b79fdd302137e104ae42562e8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

484

Strings probable root cause of the alert.description: Description of the

node.vertex_entropy: Vertex Entropy of the node. See Vertex

Entropy for more information.

Response

The method returns the following response:

Type Description

Object A JSON object in NetJSON format that lists the links, nodes and alert matching attributes affected

by the Situation.

Successful requests return an array of JSON objects containing the following:

Examples

The following examples demonstrate typical use of method getSituationTopology:

Request example

Example request to retrieve the topology link and node details for Situation ID 12 in the "host" topology

within 4 hops:

var sigId = 12;

var context = 4;

var topologyName = "host";

var properties = ["severity", "vertex_entropy", "prc", "description"];

var situationTopology = moogdb.getSituationTopology(sigId, context,

topologyName, properties);

Response example

Example response returning the links, nodes and alert matching attributes for the Situation:

{

 "links": [

 {

 "source":"appsvr02",

 "target":"appsvr03"

 },

 {

 "source":"appsvr01",

 "target":"sd-01"},

 {

 "source":"appsvr02",

 "target":"appsvr01"},

 {

 "source":"sd-02",

 "target":"sd-01"

 }],

 "nodes": [

 {

 "id":"appsvr02",

 "properties":

 {

 "prc":null,

 "severity":5,

 "context":0,

 "description":"node1",

 "vertex_entropy": 0.1794592472207979

 }

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

485

 },

 {

 "id":"appsvr03",

 "properties":

 {

 "prc":null,

 "severity":null,

 "context":1,

 "description":"node2",

 "vertex_entropy": 0.1794592472207979

 }

 },

 {

 "id":"appsvr01",

 "properties":

 {

 "prc":null,

 "severity":5,

 "context":0,

 "description":"node3",

 "vertex_entropy": 0.08976540495989357

 }

 },

 {

 "id":"sd-02",

 "properties":

 {

 "prc":null,

 "severity":0,

 "context":0,

 "description":"node4",

 "vertex_entropy": 0.08976540495989357

 }

 },

 {

 "id":"sd-01",

 "properties":

 {

 "prc":null,

 "severity":0,

 "context":0,

 "description":"node5",

 "vertex_entropy": 0.1794592472207979

 }

 }],

 "alertMatchingAttributes":["source"]

}

getSituationVisualization

A MoogDb v2 method that returns the Visualize tab information for a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getSituationVisualization takes the following request arguments:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

486

Name Type Required Description

id Number Yes Situation ID.

Response

Method getSituationVisualization returns the following response:

Type Description

Examples

The following examples demonstrate typical use of method getSituationVisualization:

Request example

Example request to return the Visualize information for Situation 99:

var visualizeData = moogdb.getSituationVisualization(99);

getTeam

A MoogDb v2 method that returns a team's details by team ID or team name.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getTeam takes the following request arguments:

Name Type Required Description

team_id Integer No, if you specify name. ID of the team to return information about.

name String No, if you specify team_id. Name of the team to return information about.

Response

Method getTeam returns the following response:

Type Description

JSON Object A JSON object containing information about the team.

Examples

The following examples demonstrate typical use of method getTeams:

Request example

Example request to return the details of team ID 1:

var teamData = moogdb.getTeam(1);

Response example

Example response returning information on team ID 1:

{

 "room_id": 1,

 "alert_filter": "(severity = 0) AND (severity = 1)",

 "user_ids": [3],

 "sig_filter": "((internal_priority = 0) AND (description = \"Test\")) AND

(last_state_change = 1574121600)",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

487

 "landing_page": "",

 "description": "",

 "active": true,

 "team_id": 1,

 "services": [],

 "users": ["admin"],

 "deleted": false,

 "name": "Cloud DevOps",

 "service_ids": []

}

getTeams

A MoogDb v2 method that returns details of all teams.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getTeams takes no request arguments.

Response

Method getTeams returns the following response:

Type Description

JSON

Object

A JSON object containing information about all teams in Cisco Crosswork Situation

Manager.

Examples

The following examples demonstrate typical use of method getTeams:

Request example

Example request to return details of all teams:

var response = moogdb.getTeams();

Response example

Example response returning information on all teams in Cisco Crosswork Situation Manager:

[{

 "room_id": 1,

 "alert_filter": "(severity = 0) AND (severity = 1)",

 "user_ids": [3],

 "sig_filter": "((internal_priority = 0) AND (description = \"Test\")) AND

(last_state_change = 1574121600)",

 "landing_page": "",

 "description": "",

 "active": true,

 "team_id": 1,

 "services": [],

 "users": ["admin"],

 "deleted": false,

 "name": "Cloud DevOps",

 "service_ids": []

Cisco Crosswork Situation Manager 8.0.x Developer Guide

488

 },

 {

 "room_id": 2,

 "alert_filter": "",

 "user_ids": [5,6,7,8,9],

 "sig_filter": "",

 "landing_page": null,

 "description": "Team based in Kingston",

 "active": true,

 "team_id": 2,

 "services": ["Kingston::AD::Server","Kingston::Application::Server"],

 "users": ["AnnaMatthews1","JorgeHowell2","LilyHolt3"],

 "deleted": false,

 "name": "Team Kingston",

 "service_ids": [1,2]

 },

 {

 "room_id": 3,

 "alert_filter": "",

 "user_ids": [10,11,12,13,14],

 "sig_filter": "",

 "landing_page": null,

 "description": "Team based in Waterloo",

 "active": true,

 "team_id": 3,

 "services": ["Waterloo::AD::Server

","Waterloo::Application::Server","Waterloo::Catalog::Server"],

 "users": ["ElizaJordan6","LeslieDiaz7"],

 "deleted": false,

 "name": "Team Waterloo",

 "service_ids": [16,17,18]

 },

 {

 "room_id": 4,

 "alert_filter": "",

 "user_ids": [15,16,17],

 "sig_filter": "",

 "landing_page": null,

 "description": "Team based in Warren Street",

 "active": true,

 "team_id": 4,

 "services": ["Warren Street::AD::Server","Warren

Street::Application::Server"],

 "users": ["MorrisCox12","VictoriaGarcia13"],

 "deleted": false,

 "name": "Team Warren Street",

 "service_ids": [31,32,33]

 }]

getTeamsForService

A MoogDb v2 method that returns details of all teams related to a service.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getTeamsForService takes the following request arguments:

Name Type Required Description

service_id String No, if you specify name. ID of the service.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

489

name String No, if you specify service_id. Name of the service.

Response

Method getTeamsForService returns the following response:

Type Description

JSON A JSON object containing information about all teams related to the specified services in Cisco

Crosswork Situation Manager.

Examples

The following examples demonstrate typical use of method getTeamsForService:

Request example

Example request to return all teams related to service ID 1:

var response = moogdb.getTeamsForService(1);

Response example

Example response returning details of the teams related to the service:

[{

 "room_id": 2,

 "alert_filter": "(significance = 3) OR (significance = 0)",

 "user_ids": [5,6,7],

 "sig_filter": "(internal_priority = 1) AND (internal_priority = 2)",

 "landing_page": "",

 "description": "Team based in Kingston",

 "active": true,

 "team_id": 2,

 "services": ["Kingston::AD::Server","Kingston::Application::Server"],

 "users": ["LisaRichards1","TerrencePowell2","JacksonKnight3"],

 "deleted": false,

 "name": "Team Kingston",

 "service_ids": [1,2,3]

}]

getTeamSituationIds

A MoogDb v2 method that returns the total number of Situations, and a list of the Situation IDs,

associated with a team.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getTeamSituationIds takes the following request arguments:

Name Type Required Description

teamName String Yes Team name.

limit Number Maximum number of Situations to return.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

490

Method getTeamSituationIds returns the following response:

Type Description

JSON

Object

A JSON object containing the total number of Situations and the Situation IDs associated with

the team.

Examples

The following examples demonstrate typical use of method getTeamSituationIds:

Response example

Example response returning the total number of Situations and the Situation IDs associated with the

team:

{

 "total_situations":10,

 "sitn_ids":[4, 5, 6, 12, 14, 15, 16, 17, 18, 19]

}

getThreadEntries

A MoogDb v2 method that returns thread entries for a thread in a Situation. Threads are comments or

'story activity' on Situations.

You can request to return specific thread entries using start and limit values. If not, their default

values return the first 100 entries. The entries returned are ordered by most recent first.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getThreadEntries takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

thread String Yes Name of the thread.

start Number No Number of the first thread entry to return. Default is 0.

limit Number No Maximum number of thread entries to return. Default is 100.

Response

Method getThreadEntries returns the following response:

Type Description

JSON Object A JSON object containing details of the requested thread entries.

Examples

The following examples demonstrate typical use of method getThreadEntries:

Request example

Example request to return the thread entries for thread "Support" on Situation ID 58:

var threadEntries =

Response example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

491

Example response returning two thread entries on the specified thread:

{

 "entries": [

 {

 "uid": 3,

 "entry": "A comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 58,

 "entry_id": 2,

 "timed_at": 1423226829,

 "disagrees": [],

 "commenters": []

 },

 {

 "uid": 3,

 "entry": "Another comment",

 "agrees": [],

 "total_comments": 0,

 "thread_id": "Support",

 "mmid": -1,

 "sig_id": 58,

 "entry_id": 1,

 "timed_at": 1423226807,

 "disagrees": [3],

 "commenters": []

 }],

 "total_entries": 2

}

getThreadEntry

A MoogDb v2 method that returns a thread entry specified using thread entry ID. Threads are

comments or 'story activity' on Situations.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getThreadEntry takes the following request arguments:

Name Type Required Description

entry_id Number Yes Entry ID.

Response

Method getThreadEntry returns the following response:

Type Description

JSON Object A JSON object containing details of the requested thread entry.

Examples

The following examples demonstrate typical use of method getThreadEntry:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

492

Request example

Example request to return the thread entry with thread entry ID "1":

var result = JSON.stringify(moogdb.getThreadEntry(1));

Response example

Example response returning thread entry with thread entry ID "1":

{

 "entry_id":1,

 "sig_id":1,

 "thread_id":

 "Support",

 "standard_thread":"Support",

 "status":1,

 "timed_at":1586948533,

 "uid":3,

 "did":1,

 "entry":

 "Entry Text1111",

 "mmid":-1

}

getToolShares

A MoogDb v2 method that returns the shared access for a tool.

Request arguments

Method getToolShares takes the following request arguments:

Name Type Required Description

tool_id Number Yes ID of the tool that you want to retrieve its shared access for.

Response

Method getToolShares returns the following response:

Type Description

Object A Javascript object containing the tool ID, the domain, and an array of all the domain IDs that can

access the tool.

Examples

The following examples demonstrate typical use of method getToolShares:

Request example

Example request to retrieve all the domain IDs that have access to tool 15 :

var actions = moogdb.getToolShares(15);

Response example

Example response returning that tool ID 15 can be accessed by team ID 3:

{

 "tool_id": 15,

 "domain_ids": [3],

 "domain": "team"

}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

493

getTopPrcDetails

A MoogDb v2 method that returns the top most likely causal alerts, based on their Probable Root Cause

value, for a Situation.

You can select the maximum number of causal alerts to return using a limit value. If not specified, the

endpoint only returns the alert with the highest root cause probability.

The entries returned are ordered with the highest root cause probability first, for the specified Situation,

irrespective of whether they have been labeled causal or are unlabeled. Alerts marked as symptoms are

excluded from the return.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getTopPrcDetails takes the following request arguments:

Name Type Required Description

sitn_id Integer Yes ID of the Situation you want to retrieve the Probable Root Cause details for.

limit Integer No Maximum number of causal or unlabeled alerts to return. Default is 1, if not

specified, returning one alert with the highest root cause probability.

Response

Method getTopPrcDetails returns the following response:

Type Description

JSON

Array

An array of objects containing the details of the causal or unlabeled alerts with the highest root

cause probability in the specified Situation.

The following details are returned for each alert:

Name Type Description

rc_probability Number Root cause probability of the alert.

description String Description of the alert.

rc_label Integer Label defining whether the alert is causal or unlabeled. Alerts marked as

symptoms are excluded from the return.

1 = causal

0 = unlabeled

-1 = symptom

alert_id Integer Alert ID.

Examples

The following examples demonstrate typical use of method getTopPrcDetails:

Request example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

494

Example request to return the top three causal alerts with the highest root cause probability in Situation

145:

var result = JSON.stringify(moogdb.getTopPrcDetails(145,3))

Response example

Example response returning the top three causal or unlabeled alerts for Situation ID 145:

{

 "alerts": [

 {

 "rc_probability":0.9933107459030244,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":53

 },

 {

 "rc_probability":0.9933092393241993,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":1,

 "alert_id":8

 },

 {

 "rc_probability":0.22480057080448923,

 "description":"Web Server HTTPD is DOWN",

 "rc_label":0,

 "alert_id":39

 }]

}

getUser

A MoogDb v2 method that returns details of a user.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getUser takes the following request arguments:

Name Type Required Description

userId Number No, if you specify username. A valid user ID.

username String No, if you specify userId. A valid username.

Response

Method getUser returns the following response:

Type Description

CEvent A CEvent object containing the user information.

Examples

The following examples demonstrate typical use of method getUser:

Request example

Example request to return the details of user ID 6:

var cevent = moogdb.getUser(6);

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

495

Response example

Example response returning the details of user ID 6:

{

 active=true,

 competencies=[],

 contact_num=,

 department=null,

 description=Online,

 email=customer@example.com,

 fullname=cyber,

 groupname=End-User,

 invitations=[],

 joined=1516963803,

 only_ldap=0,

 photo=-1,

 primary_group=1,

 profile_image=null,

 realms=[DB],

 roles=[1, 3, 4, 5],

 session_expiry=null,

 status=1,

 teams=[],

 timezone=SYSTEM,

 uid=6,

 username=phil

}

getUserName

A MoogDb v2 method that returns the username for a user ID.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getUserName takes the following request arguments:

Name Type Required Description

userId Number Yes A valid user ID.

Response

Method getUserName returns the following response:

Type Description

String The corresponding username for the requested user ID.

getUserRoles

A MoogDb v2 method that returns the roles of a user.

Back to MoogDb V2 API Method Reference.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

496

Method getUserRoles takes the following request arguments:

Name Type Required Description

userId Number No, if you use username. A valid user ID.

username String No, if you use userId. A valid username.

Response

Method getUserRoles returns the following response:

Type Description

JSON

Object

A JavaScript object containing the role IDs, role names and role descriptions for the

specified user.

Examples

The following examples demonstrate typical use of method getUserRoles:

Request example

Example request to return the user roles for user ID 6:

var cevent = moogdb.getUserRoles(6);

Response example

Example response returning the roles of the specified user:

[{

 "id": 1,

 "name": "Super User",

 "description": "Super User"

},

{

 "id": 3,

 "name": "Manager",

 "description": "Manager"

},

{

 "id": 4,

 "name": "Operator",

 "description": "Operator"

}]

getUsers

A MoogDb v2 method that returns details of all users.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getUsers takes the following request arguments:

Name Type Required Description

limit Number No Maximum number of users to return. Default is 1000.

Response

Method getUsers returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

497

Type Description

JSON Object A JSON object containing information on all users, up to the limit.

Examples

The following examples demonstrate typical use of method getUsers:

Request example

Example request to return the details of all users:

var cevent = moogdb.getUsers;

Response example

Example response returning the details of all users:

[{

 "uid": 3,

 "teams": ["Cloud DevOps"],

 "fullname": "Administrator",

 "username": "admin"

},

{

 "uid": 6,

 "teams": [],

 "fullname": "Nagios",

 "username": "Nagios"

},

{

 "uid": 5,

 "teams": [],

 "fullname": "Webhook",

 "username": "Webhook"

}]

getUserSessionInfo

A MoogDb v2 method that returns session information for a single user over a period of time.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getUserSessionInfo takes the following request arguments:

Name Type Required Description

username String Yes Name of the user.

from Number No Start time of the period you want to retrieve session information for. This

is in Unix epoch time in seconds. If empty, returns all session information

for the user.

to Number No End time of the period you want to retrieve session information for. This

is in Unix epoch time in seconds. If empty, returns user records to date.

start Number No Starting record from which data should be included. Default is 0, the first

Cisco Crosswork Situation Manager 8.0.x Developer Guide

498

record.

limit Number No Maximum number of records you want to return. Default is 200.

Response

Method getUserSessionInfo returns the following response:

Type Description

Number ID of the session.

Number Start time of the session, in Unix epoch time.

Number Last access time within the session, in Unix epoch time.

Examples

The following examples demonstrate typical use of method getUserSessionInfo:

Request example

Example request to return ten records of session information for username "graze", starting from the

second session:

var UserMap = {"username":"graze", "from":1570544146, "to":1570700529,

"start":2, "limit":10};

var SessionInfo = moogdb.getUserSessionInfo(UserMap);

logger.warning("getUserSessionInfo with username, start, limit, from and to

..."+ JSON.stringify(SessionInfo));

Response example

Example response returning session information for username "graze":

getUserSessionInfo with username, start, limit, from and to ...

[

 {"sessionId":2,"startTime":1570700522,"lastAccess":1570700522},

 {"sessionId":3,"startTime":1570700529,"lastAccess":1570700529},

 {"sessionId":7,"startTime":1570700675,"lastAccess":1570700675},

 {"sessionId":9,"startTime":1570703911,"lastAccess":1570703911},

 {"sessionId":13,"startTime":1570704735,"lastAccess":1570704735}

]

getUserTeams

A MoogDb v2 method that returns the team IDs and team names for a user.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getUserTeams takes the following request arguments:

Name Type Required Description

userId Number No, if you specify username. A valid user ID.

username String No, if you specify userId. A valid username.

Response

Method getUserTeams returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

499

Type Description

CEvent A CEvent object containing the team IDs and team names for the specified user.

Examples

The following examples demonstrate typical use of method getUserTeams:

Request example

Example request to return the details of user ID 6:

var cevent = moogdb.getUserTeams(6);

Response example

Example response returning the team IDs and team names for user ID 6:

[{

 "id": 2,

 "name": "Alpha"

},

{

 "id": 3,

 "name": "Epsilon"

},

{

 "id": 4,

 "name": "Delta"

}]

getWorkflowEngineMoolets

A MoogDb v2 method that returns a list of Workflow Engine Moolets and the functions available in each.

This endpoint returns an empty list if Moogfarmd is not running.

Back to MoogDb V2 API Method Reference.

Request arguments

Method getWorkflowEngineMoolets takes no request arguments.

Response

Method getWorkflowEngineMoolets returns a JSON array of Workflow Engine Moolet objects. Each

object has the following:

Name Type Description

moolet_name String Workflow Engine Moolet name.

moolet_type ENUM/String Workflow Engine Moolet type: event, alert, or Situation.

active Boolean Whether or not the workflow engine that the Moolet represents is

active.

functions[c][d][e] JSON The available functions in the Workflow Engine Moobot - each key

is the function name and the values are:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

500

Description (String): Description of the function.

Decision (Boolean): If true, treat the result of this function as a

decision.

Arguments (JSON): Arguments of the function, a map from the

argument name to:

Type (ENUM/String): Type of argument - either Text, JSON or

Number.

Description: Human readable description of the argument.

last_updated Number Time when the Workflow Engine Moolet was last updated, in Unix

Epoch time.

Examples

The following examples demonstrate typical use of method getWorkflowEngineMoolets:

Request example

Example request to return information on all of the Workflow Engine Moolets in Cisco Crosswork

Situation Manager:

var workflowEngineMoolets = moogdb.getWorkflowEngineMoolets;

Response example

Example response returning information on all of the Workflow Engine Moolets in Cisco Crosswork

Situation Manager:

[{

 "active": true,

 "last_updated": 1567420771,

 "moolet_name": "Alert Workflows",

 "functions": {

 "alertInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertInSituation",

 "description": "Check if the alert is in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "alertNotInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertNotInSituation",

 "description": "Check if the alert is not in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "between": {

 "decision": true,

 "validators": null,

 "name": "between",

 "description": "Check to see if the trigger falls between two times,

and optionally on specific days.",

 "arguments": [

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

501

 {

 "name": "from",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'from' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

 "name": "to",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'to' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

 "name": "days",

 "description": "The optional list of days in short form

(Mon,Tue,Wed...), for all days use a blank list []",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": false,

 "type": ["alert","situation"]

 },

 "contains": {

 "decision": true,

 "validators": null,

 "name": "contains",

 "description": "Check whether the specified object field contains

any of the listed values. Define values as an array, for example [a] or [a,

b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check values

in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, any

intersection is valid.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

 },

 "containsAll": {

 "decision": true,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

502

 "validators": null,

 "name": "containsAll",

 "description": "Check whether the specified object field contains

all of the listed values. Define values as an array, for example [a] or [a,

b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check values

in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, all must be

included to be valid.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

 },

 "doesNotContain": {

 "decision": true,

 "validators": null,

 "name": "doesNotContain",

 "description": "Check whether the specified object field does not

contain any of the listed values. Define values as an array, for example [a]

or [a, b, c].",

 "arguments": [

 {

 "name": "field",

 "description": "The name of the object field to check values

in (including custom_info).",

 "type": "string",

 "required": true

 },

 {

 "name": "values",

 "description": "The list of values to check for, any

intersection will count.",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": true,

 "type": ["event","alert","situation"]

 }

 },

 "moolet_type": "alert"

},

{

 "active": true,

 "last_updated": 1567420777,

 "moolet_name": "Enrichment Workflows",

 "functions": {

 "alertInSituation": {

 "decision": true,

 "validators": null,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

503

 "name": "alertInSituation",

 "description": "Check if the alert is in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "alertNotInSituation": {

 "decision": true,

 "validators": null,

 "name": "alertNotInSituation",

 "description": "Check if the alert is not in an active Situation.",

 "arguments": [],

 "actionOnAssociated": true,

 "type": ["alert"]

 },

 "between": {

 "decision": true,

 "validators": null,

 "name": "between",

 "description": "Check to see if the trigger falls between two times,

and optionally on specific days.",

 "arguments": [

 {

 "name": "from"

, "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'from' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

 "name": "to",

 "validator": {

 "regex": "^[0-9]{2}:[0-9]{2}:[0-9]{2}$"

 },

 "description": "The 'to' time in hh:mm:ss 24hr format",

 "type": "string",

 "required": true

 },

 {

 "name": "days",

 "description": "The optional list of days in short form

(Mon,Tue,Wed...), for all days use a blank list []",

 "type": "object",

 "required": true

 }

],

 "actionOnAssociated": false,

 "type": ["alert","situation"]

 },

 "moolet_type": "alert"

}]

getWorkflows

A MoogDb v2 method that returns workflows for a Workflow Engine Moolet.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

504

Back to MoogDb V2 API Method Reference.

Request arguments

Method getWorkflows takes the following request arguments:

Name Type Required Description

mooletName String Yes Name of the Workflow Engine Moolet to return workflows for.

activeOnly Boolean Return only active workflows.

Response

Method getWorkflows returns a JSON array of workflow objects. Each object has the following:

Name Type Description

id Integer Unique ID of the workflow.

moolet_name String Name of the Workflow Engine Moolet.

workflow_name String Name of the workflow.

description String Description of the workflow.

sequence Integer Sequence number of the workflow.

active Boolean Indicates whether or not the Moolet's associated Workflow Engine is

active.

entry_filter String An SQL-like filter to determine which events, alerts, or Situations can

enter the workflow. If empty, the workflow accepts all events, alerts or

Situations.

sweep_up_filter String An SQL-like filter to intake any additional alerts or Situations from the

database. Not relevant for event workflows.

first_match_only Boolean If enabled, alerts and Situations only pass through actions on the first

time they enter the Workflow Engine. Not relevant for event workflows.

operations JSON

List

List of properties relating to each operation:

Name Type Description

type String Type of operation. Options are: 'action',

'decision' and 'delay'.

operation_name String Name of the operation. Only relevant

for 'action' and 'decision' types.

function_name String Name of the function. Only relevant for

'action' and 'decision' types.

function_args JSON

Object

Arguments for the function.

duration Integer Length of time before the message

goes to the next operation. Only

relevant for 'delay' type.

reset Boolean Determines whether the timer resets

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

505

after each occurrence. Only relevant for

'delay' type.

Examples

The following examples demonstrate typical use of method getWorkflows:

Request example

Example request to workflows associated with the "Situation Workflows" Moolet:

var response = moogdb.getWorkflows("Situation Workflows");

Response example

Example response returning details of the workflows associated with the "Situation Workflows" Moolet:

[

 {

 "first_match_only": true,

 "sequence": 1,

 "operations": [

 {

 "duration": 120,

 "reset": false,

 "type": "delay"

 },

 {

 "operation_name": "Create Ticket",

 "function_name": "createServiceTicket",

 "forwarding_behavior": "always forward",

 "function_args": {

 "services": "ServiceNow, Remedy, Cherwell, Jira Service Desk, Jira

Software"

 },

 "type": "action"

 }

],

 "moolet_name": "Situation Workflows",

 "workflow_name": "Automated Ticketing",

 "entry_filter": "((category = \"Closed\") AND (custom_info.test = \"test\"))

AND (description = \"test\")",

 "active": false,

 "description": "You can optionally use this workflow if you use UI ticketing

integrations. It creates tickets in the ticketing system as Situations are

actioned.",

 "sweep_up_filter": "((sig_id = 1) AND (first_event_time = 1574121600)) AND

(description = \"test\")",

 "id": 1

 },

 {

 "first_match_only": false,

 "sequence": 2,

 "operations": [

 {

 "duration": 0,

 "reset": false,

 "type": "delay"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

506

 },

 {

 "operation_name": "Stop Situation",

 "function_name": "stop",

 "forwarding_behavior": "Stop All Workflows",

 "type": "action"

 }

],

 "moolet_name": "Situation Workflows",

 "workflow_name": "Closed Situation Filter",

 "entry_filter": "status = 9",

 "active": true,

 "description": "You can optionally use this workflow to prevent closed

Situations from processing.",

 "sweep_up_filter": "",

 "id": 4

 }

]

mergeSituations

A MoogDb v2 method that merges two or more Situations, superseding the original Situations if

required, and returns details of the newly created Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method mergeSituations takes the following request arguments:

Name Type Required Description

situationIds Native Array Yes A JSON array containing the IDs of the Situations to merge.

keepOriginals Boolean Yes Determines what to do with the original Situations:

true: Keep the original Situations.

false: Supersede the original Situations.

Response

Method mergeSituations returns the following response:

Type Description

CEvent A CEvent object containing details of the newly created Situation.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

507

moveSituationToCategory

A MoogDb v2 method that moves a Situation into a new category. A category represents a type of

Situation, indicating how it was created or its state. See Create Shared Alert and Situation Filters for

more information.

Back to MoogDb V2 API Method Reference.

Request arguments

Method moveSituationToCategory takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

category String Yes Name of the new category you want to assign the Situation to.

Response

Method moveSituationToCategory returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method moveSituationToCategory:

Request example

Example request to move Situation ID 123 to the category "Detected":

var result=moogdb.moveSituationToCategory(123, "Detected");

Response example

A successful request returns true.

moveSituationToQueue

A MoogDb v2 method that assigns a Situation to a queue and writes a thread entry if required. The

queue and user may be provided as either an ID or a valid name.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

508

Back to MoogDb V2 API Method Reference.

Request arguments

Method moveSituationToQueue takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

user Object Yes An object containing either a valid user name or ID.

queue Object Yes An object containing either a valid queue name or ID

journal String No An entry to add to the journal thread, if required.

Response

Method moveSituationToQueue returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method moveSituationToQueue:

Response example

A successful request returns true.

rateSituation

A MoogDb v2 method that applies a rating to a Situation.

Request arguments

Method rateSituation takes the following request arguments.

Name Type Required Description

situationId Number Yes ID of the Situation you want to rate.

rating Number Yes Rating that you want to apply to the Situation. This is equivalent to

the number of stars that you can assign to a Situation in the UI. One

of:0 = Not yet rated1 = Bad2 = Poor3 = Adequate4 = Good5 =

Excellent

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

509

comment String No A comment about the rating you are applying to the Situation.

Response

Method rateSituation returns the following response:

Type Description

Object A Javascript object containing rating, comment, and sig_id of the rated Situation.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method rateSituation:

Request example

Example request to apply a rating of 4 to Situation ID 18 with a comment "Rating 4":

var success = moogdb.rateSituation(18, 4, "Rating 4");

Response example

Example response returning the rating number, comment and ID of the rated Situation:

{"rating":4,"comment":"Rating 4","sig_id":18}

reload

A MoogDb v2 method that takes a Situation (CMooBotSituation) or alert (CMooBotAlert) type of CEvent

and refreshes the data in the payload but preserves the metadata. This method should be used instead

of getSituation and getAlert if you want to update the event with the latest data from the database, and

when you are forwarding an event on using situation.forward(<event>).

Back to MoogDb V2 API Method Reference.

Request arguments

Method reload takes the following request arguments:

Name Type Required Description

cevent CEvent Yes A CEvent object representing the alert, containing alert attributes, such

as type or severity.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

510

removeAlertFromSituation

A MoogDb v2 method that removes an alert from a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method removeAlertFromSituation takes the following request arguments:

Name Type Required Description

alertId Number Yes Alert ID.

situationId Number Yes Situation ID.

Response

Method removeAlertFromSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method removeAlertFromSituation:

Response example

A successful request returns true.

removeSigCorrelationInfo

A MoogDb v2 method that removes all correlation information related to a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method removeSigCorrelationInfo takes the following request arguments:

Name Type Required Description

sitn_id Number Yes Situation ID.

serviceName String No Service name.

externalId String No External ID.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

511

Response

Method removeSigCorrelationInfo returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method removeSigCorrelationInfo:

Response example

A successful request returns true.

removeSituationPrimaryTeam

A MoogDb v2 method that removes the primary team from a Situation. The team remains assigned to

the Situation.

Request arguments

Method removeSituationPrimaryTeam takes the following request arguments:

Name Type Required Description

sitn_id Number Yes ID of the Situation that you want to remove the primary team from.

Response

Method removeSituationPrimaryTeam returns the following response:

Type Description

Object A Javascript object containing the Situation ID.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Cisco Crosswork Situation Manager 8.0.x Developer Guide

512

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method removeSituationPrimaryTeam:

Request example

Example request to remove the primary team from Situation 1906:

var actions = moogdb.removeSituationPrimaryTeam(1906);

Response example

Example response returning the Situation ID that the primary team has been removed from:

{"sitn_id": 1906}

reorderWorkflows

A MoogDb v2 method that reorders the sequence of workflows within a Workflow Engine Moolet.

Back to MoogDb V2 API Method Reference.

Request arguments

Method reorderWorkflows takes the following request arguments:

Name Type Required Description

moolet_name String Yes Name of the Workflow Engine Moolet.

workflow_IDs_sequence Array of

Integers

Yes An ordered array of all the workflow IDs within the

Workflow Engine Moolet. The position of each

workflow ID is its position within the Workflow Engine

Moolet.

Response

Method reorderWorkflows returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method reorderWorkflows:

Request example

Example request to reorder the workflows in "Alerts Workflows" into the workflow sequence 1, 4, 3, 2,

5:

Response example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

513

A successful request returns true.

resolveSituation

A MoogDb v2 method that resolves a Situation that is currently open.

Back to MoogDb V2 API Method Reference.

Request arguments

Method resolveSituation takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

Response

Method resolveSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method resolveSituation:

Response example

A successful request returns true.

reviveSituation

A MoogDb v2 method that revives (sets to Open) a Situation that is currently set to Resolved.

Back to MoogDb V2 API Method Reference.

Request arguments

Method reviveSituation takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

514

Response

Method reviveSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method reviveSituation:

Response example

A successful request returns true.

sendToWorkflow

A MoogDb v2 method that sends a Moolet Inform message to a workflow in an Inform Workflow Engine.

See Workflow Engine for more information on Inform Workflow Engines.

Back to MoogDb V2 API Method Reference.

Request arguments

Method sendToWorkflow takes the following request arguments:

Name Type Required Description

engineName String Yes Name of an active Inform Workflow Engine.

workflowName String Yes Name of an active workflow within the specified Inform Workflow

Engine.

situationId Number No ID of the Situation you want to send to the workflow.

situation Object No Situation object to send to the workflow.

alertId Number No ID of the alert you want to send to the workflow.

alert Object No Alert object to send to the workflow.

context String No Additional context to send with the message. This must be available

as an action in the workflow as getWorkflowContext().

Response

Method sendToWorkflow returns the following response:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

515

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method sendToWorkflow:

Request example

Example request to send a message to an Inform Workflow Engine:

var

 };

var sent = moogdb.sendToWorkflow(engineName,workflowName,alert,context);

Response example

A successful request returns true.

setAlertCustomInfo

A MoogDb v2 method that updates the custom information for an alert.

You can use this method either with the alertInfo CEvent or with both the alertID and

customInfoMap arguments.

You can use the merge parameter alongside either method. This determines whether to merge the new

custom information data with existing data or replace it.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setAlertCustomInfo takes the following request arguments:

Name Type Required Description

alertId Number No, if you use

alertInfo.

Alert ID. This can be used alongside customInfoMap and

merge but not alertInfo.

alertInfo CEvent No, if you use

alertId.

A CEvent containing alert_id and custom_info

attributes, the values of which will be used to replace the

custom_info in the specified alert.

customInfoMap Object Yes, if you use

alertId.

A map of name value pairs containing the new

custom_info information.

merge Boolean No Determines the action for the custom information:true:

Merge the existing data with the new data. Default.false:

Replace the existing data with the new data.

Response

Method setAlertCustomInfo returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

516

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setAlertCustomInfo:

Response example

A successful request returns true.

setAlertSeverity

A MoogDb v2 method that sets the severity level for an alert.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setAlertSeverity takes the following request arguments:

Name Type Required Description

alertId Number Yes Alert ID.

severity Number Yes The severity of the alert as an integer:0 = Clear1 = Indeterminate2 =

Warning3 = Minor4 = Major5 = Critical

Response

Method setAlertSeverity returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database No

Closed alert/Situation in historic database No

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

517

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setAlertSeverity:

Response example

A successful request returns true.

setPrcLabels

A MoogDb v2 method that sets the Probable Root Cause (PRC) labels for alerts within a Situation.

You can mark alerts as causal, non-causal or unlabeled within a Situation. An alert can have different

PRC levels within different Situations.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setPrcLabels takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

object JSON

Object

Yes A JSON object containing the following fields:

causal: A JSON array containing the alert IDs that you want to be

marked as causal. Leave the list empty if there are no causal alerts.

non_causal: A JSON array containing the alert IDs that you want

to be marked as non-causal. Leave the list empty if there are no

non-causal alerts.

unlabelled: A JSON array containing the alert IDs that you do not

want to be labeled as causal or non-causal. Leave the list empty if

there are no unlabeled alerts.

Response

Method setPrcLabels returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Cisco Crosswork Situation Manager 8.0.x Developer Guide

518

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setPrcLabels:

Request example

Example request to set alert IDs 1 and 2 as causal, alert IDs 3 and 7 as non-causal, and alert IDs 5 and

9 as unlabeled, in Situation ID 1:

var labelsSet = moogdb.setPrcLabels(1, { "causal" : [1, 2], "non_causal" : [

3,7], "unlabelled" : [5, 9] });

Response example

A successful request returns true.

setResolvingThreadEntry

A MoogDb v2 method that sets or clears a thread entry in a Situation as a resolving step. Threads are

comments or 'story activity' on Situations.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setResolvingThreadEntry takes the following request arguments:

Name Type Required Description

entryId Number Yes ID of the thread entry.

resolving_step Boolean Yes Whether you are setting or clearing the thread entry as a

resolving step.

userId Number Yes A valid user ID.

Response

Method setResolvingThreadEntry returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

519

The following examples demonstrate typical use of method setResolvingThreadEntry:

Request example

Example request to mark thread entry 32 as a resolving step using user ID 1:

var success = moogdb.setResolvingThreadEntry(32, true, 1);

Response example

A successful request returns true.

setSigCustomInfo

A MoogDb v2 method that updates the custom information for a Situation.

The Situation ID and new custom information are both contained in the situationInfo CEvent. The

new custom information is contained in the customInfoMap object.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setSigCustomInfo takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

customInfoMap Object Yes A map of name value pairs containing the new custom

information.

merge Boolean No Determines the action for the custom information:true: Merge the

existing data with the new data. Default.false: Replace the

existing data with the new data.

Response

Method setSigCustomInfo returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

520

Examples

The following examples demonstrate typical use of method setSigCustomInfo:

Response example

A successful request returns true.

setSituationFlags

A MoogDb v2 method that updates the flags associated with a Situation. You can add flags to or

remove them from a Situation.

See Situation Flags for more information on Cisco Crosswork Situation Manager Situation flags.

Request arguments

Method setSituationFlags takes the following request arguments:

Name Type Required Description

sitn_ids Array of

Numbers

Yes An array of IDs for the Situations you want to update.

to_add Array of

Strings

Yes Flags to be added to those Situations. If this is an empty list, no

flags are added to the Situation.

to_remove Array of

Strings

Yes Flags you want to remove from the Situation. If this is an empty

list, no flags are removed from the Situation.

Response

Method setSituationFlags returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setSituationFlags:

Request example

Example request to update Situation IDs 1 and 2:

var result = JSON.stringify(moogdb.setSituationFlags([1, 2], ["S1","S2"],

["S2"]))

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

521

Response example

A successful request returns true.

setSituationPrimaryTeam

A MoogDb v2 method that sets one of the teams already assigned to a Situation as the primary team.

Request arguments

Method setSituationPrimaryTeam takes the following request arguments:

Name Type Required Description

sitn_id Number Yes ID of the Situation.

team_id Number No, if you specify

team_name.

ID of the team that you want to make the primary

team.

team_name String No, if you specify team_id. Name of the team that you want to make the primary

team.

Response

Method setSituationPrimaryTeam returns the following response:

Type Description

Object A Javascript object containing the Situation ID and the primary team ID.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setSituationPrimaryTeam:

Request example

Example request to set the team "Database Management System" as the primary team on Situation

1906:

var actions = moogdb.setSituationPrimaryTeam(1906, 12);

Response example

Example response returning that team 12 is the primary team on Situation 1906:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

522

{

 "primary_team_name": "Infrastructure",

 "sitn_id": 1906,

 "primary_team_id": 12

}

setSituationProcesses

A MoogDb v2 method that applies a list of processes to a Situation. Any other processes already

associated with the Situation are removed.

Back to MoogDb V2 API Method Reference.

Request arguments

Method setSituationProcesses takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

processes JSON

Array

Yes A Javascript array of process names as text strings. If any

processes supplied do not exist in the database, the request

creates them and assigns them to the Situation.

Response

Method setSituationProcesses returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method setSituationProcesses:

Response example

A successful request returns true.

setSituationServices

A MoogDb v2 method that applies a list of external services to a Situation. Any other services already

associated with the Situation are removed.

Back to MoogDb V2 API Method Reference.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

523

Method setSituationServices takes the following request arguments:

Name Type Required Description

situationId Number Yes Situation ID.

services JSON

Array

Yes A Javascript array of service names as text strings. If any services

supplied do not exist in the database, the request creates them and

assigns them to the Situation.

Response

Method setSituationServices returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

shareToolAccess

A MoogDb v2 method that shares access to a tool with other users, teams, or roles, or makes it global

so that all users can access it. When a user creates a tool, it is automatically shared globally. You can

use this endpoint to restrict its availability and ensure that tools are only available to users who need

them. Using this endpoint to share access to a tool overwrites any existing shares.

Request arguments

Method shareToolAccess takes the following request arguments:

Name Type Required Description

tool_id Number Yes ID of the tool that you want to share access for.

domain String Yes Domain to share access with. One of: user, team, role, or global.

domain_ids Array Yes/No An array of one or more IDs within the domain. Optional for the

global domain.

Response

Method shareToolAccess returns the following response:

Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

524

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method shareToolAccess:

Request example

Example request to share access of tool ID 15 with team ID 3:

Response example

A successful request returns true.

updateAlert

A MoogDb v2 method that takes an alert object and uses it to update the database and the Message

Bus.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateAlert takes the following request arguments:

Name Type Required Description

alertObject CEvent Yes Alert object containing the information about the alert.

Response

Method updateAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method updateAlert:

Response example

A successful request returns true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

525

updateClosedAlert

A MoogDb v2 method that updates the description and custom info of a closed alert during the grace

period. The grace period is when an alert is closed and in the active database, before it is archived to

the historic database. If a custom info field already exists, this method replaces the previous value; if

the custom info field does not exist, this method adds it.

The updateClosedAlert method returns an error if the alert is open, or if it is closed and has been

archived to the historic database.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateClosedAlert takes the following request arguments:

Name Type Required Description

alert_id Number Yes ID of the closed alert that you want to update.

description String No New description of the alert.

custom_info JSON

Object

No A JSON object containing the custom info values that you want to

update. If the key already exists, the method replaces the existing

value. If the key does not exist, the method adds it.

Response

Method updateClosedAlert returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation No

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method updateClosedAlert:

Request example

Example request to update the description and custom info for alert ID 9:

function updateClosedAlert1()

{

Cisco Crosswork Situation Manager 8.0.x Developer Guide

526

 var obtainAlert=moogdb.getAlert(9);

 var customInfo={"key1":"value1"};

 obtainAlert.set("description", "updateClosedAlert1_description_updated");

 obtainAlert.set("custom_info", customInfo);

 var result=moogdb.updateClosedAlert(obtainAlert);

 logger.warning("system updates alert which is in grace period, result should

return true");

 logger.warning("result = "+ result);

}

Response example

A successful request returns true.

updateClosedSituation

A MoogDb v2 method that updates the description and custom info of a closed Situation during the

grace period. The grace period is when a Situation is closed and in the active database, before it is

archived to the historic database. If a custom info field already exists, this method replaces the previous

value; if a custom info field does not exist, this method adds it.

The updateClosedSituation method returns an error if the Situation is open, or if it is closed and has

been archived to the historic database.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateClosedSituation takes the following request arguments:

Name Type Required Description

sitn_id Number Yes ID of the closed Situation that you want to update.

description String No New description of the Situation.

custom_info JSON

Object

No A JSON object containing the custom info values that you want to

update. If the key already exists, the method replaces the existing

value. If the key does not exist, the method adds it.

Response

Method updateClosedSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation No

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

527

Examples

The following examples demonstrate typical use of method updateClosedSituation:

Request example

Example request to update the description and custom info for Situation ID 333:

function updateClosedSituation1()

{

 var obtainSit=moogdb.getSituation(333);

 var customInfo={"key1":"value1"};

 obtainSit.set("description", "updateClosedSituation1_description_updated");

 obtainSit.set("custom_info", customInfo);

 var result=moogdb.updateClosedSituation(obtainSit);

 logger.warning("system updates Situation which is in grace period, result

should return true");

 logger.warning("result = "+ result);

}

Response example

A successful request returns true.

updateCustomInfo

A MoogDb v2 method that updates the custom info for an alert or a Situation.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateCustomInfo takes the following request arguments:

Name Type Required Description

toUpdate CEvent Yes A CEvent representing the alert or Situation you want to update.

toMerge JSON

Object

Yes Custom info to add to or replace the existing custom info field.

merge Boolean No Determines the action for the custom information:true: Merge the

existing data with the new data. Default.false: Replace the existing

data with the new data.

For an alert you can also use the following arguments:

Name Type Required Description

alertId Number No ID of the alert you want to add custom info to.

path String No Dot-notation path to the custom_info key where the info is stored.

Updates the existing value if the key already exists; creates the full path if

the key does not exist.

param Value No Value to put at the specified key.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

528

Method updateCustomInfo returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method updateCustomInfo:

Response example

A successful request returns true.

updateMaintenanceWindow

A MoogDb v2 method that updates an existing maintenance window object, by passing an object

containing the maintenance window information.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateMaintenanceWindow takes the following request arguments:

Name Type Required Description

updatedWindow JSON Object Yes Maintenance window object containing the updated details.

The maintenance window object updatedWindow contains the following information:

Name Type Required Description

id Number Yes ID of the maintenance window you want to update.

user_id Number Yes ID of the user who is updating the maintenance

window.

name String No Name of the maintenance window.

description String No Description of the maintenance window.

filter String No SQL-like filter that alerts must match to be included in

the maintenance window.

start_date_time Number No Start time of the maintenance window. This must be in

Unix epoch time in seconds and may be up to 5 years

in the future.

duration Number No Duration of the maintenance window in seconds. The

minimum duration is 1 second and the maximum is

157784630 seconds (5 years).

forward_alerts Boolean No Determines whether or not alerts should be forwarded

to the next Moolet in the processing chain.

recurring_period Number No Whether or not this is a recurring maintenance

window. Set this to:1 for a recurring maintenance

window.0 for a one-time maintenance window.If not

specified, default is 0. If you set this property to 1, you

must specify recurring_period_units.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

529

recurring_period_units Number No Specifies the recurring period of the maintenance

window, in days, weeks or months. Valid values are:2

= daily3 = weekly4 = monthlyDefault is 0 if

recurring_period is set to 0.

Response

Method updateMaintenanceWindow returns the following response:

Type Description

Object A JSON object containing details of the updated maintenance window.

Examples

The following examples demonstrate typical use of method updateMaintenanceWindow:

Request example

Example request to update the description in maintenance window ID 2 by user ID 3:

var response = moogdb.updateMaintenanceWindow({ "id" : 2, "description" :

"Updated name", "user_id": 3 });

Response example

Example response returning details of the updated maintenance window ID 2:

{

 "del_flag": false,

 "forward_alerts": false,

 "last_updated": 1574164759,

 "timezone": "Europe/London",

 "description": "Updated name",

 "recurring_period_units": 0,

 "filter": "(severity IN (0, 1, 2, 3, 4, 5)) AND (owner IN (3))",

 "duration": 3600,

 "recurring_period": 0,

 "name": "Test",

 "updated_by": 3,

 "id": 2,

 "start_date_time": 1574164339

}

updateSituation

A MoogDb v2 method that takes a Situation object and uses it to update the database and the Message

Bus.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateSituation takes the following request arguments:

Name Type Required Description

situationObject CEvent Yes Object containing the Situation details.

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

530

Method updateSituation returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

API update behavior

The behavior of this method depends on whether the relevant alert or Situation is open, closed and still

in the active database, or closed and archived to the historic database. This method updates or returns

information about the alert or Situation as follows:

Alert/Situation Status API Updates or Retrieves Alert/Situation

Open alert/Situation Yes

Closed alert/Situation in active database Yes

Closed alert/Situation in historic database No

See API Update Behavior for more information on Situation statuses.

Examples

The following examples demonstrate typical use of method updateSituation:

Response example

A successful request returns true.

updateTeam

A MoogDb v2 method that updates an existing team, by passing an object containing team information.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateTeam takes the following request arguments:

Name Type Required Description

teamObj Object Yes Object containing the team information.

The team object teamObj contains the following information:

Name Type Required Description

team_id Number Yes Team ID.

name String No Team name. Exclude this attribute to leave Cisco Crosswork

Situation Manager as it is.

alert_filter JSON Object No An SQL-like or JSON filter that alerts must match to be

assigned to the team. Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

services Array of

Numbers or

Strings

No List of the team service names or IDs. Exclude this attribute

to leave Cisco Crosswork Situation Manager as it is.

sig_filter JSON Object No An SQL-like or JSON filter that Situations must match to be

assigned to the team. Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

531

landing_page String No Default landing page for the team. Exclude this attribute to

leave Cisco Crosswork Situation Manager as it is.

active Boolean No Set to true if the team is active; set to false if the team is

inactive. Default is true. Exclude this attribute to leave

Cisco Crosswork Situation Manager as is.

description String No Team description. Exclude this attribute to leave Cisco

Crosswork Situation Manager as it is.

users Array of

Numbers or

Strings

No List of users in the team, either IDs or usernames. Exclude

this attribute to leave Cisco Crosswork Situation Manager as

it is.

Response

Method updateTeam returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method updateTeam:

Response example

A successful request returns true.

updateUser

A MoogDb v2 method that updates an existing user, by passing an object containing user information.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateUser takes the following request arguments:

Name Type Required Description

userObj Object Yes Object containing the user details.

The user object userObj contains the following information:

Name Type Required Description

username String No, if you use

uid.

Username of the user to be updated.

uid Number No, if you use

username.

User ID of the user to be updated.

password String No New user password, only valid for DB realm.

active Boolean No Set to true if the user is active, false if the user

is inactive. Default is true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

532

email String No User's email address.

fullname String No User's full name.

roles JSON Array No List of either the role IDs or the role names. For

example, "roles":["Super User"].

primary_group String or Number No User's primary group name or primary group ID.

department String or Number No User's department ID or department name.

timezone String No User's timezone.

contact_num String No User's phone number.

session_expiry Number No Number of minutes after which the user's session

expires. Default is the system default.

competencies JSON Array No A list with the user competencies. Each

competency should have have name or cid and

ranking. For example:

[
 {"name":"SunOS", "ranking":

40},
 {"name":"SAP", "ranking": 50},
 {"name":"EMC", "ranking": 60}
]

team JSON Array of

Numbers or

Strings

No List of the user's team names or team IDs.

Response

Method updateUser returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method updateUser:

Request example

Example request to update a number of fields in user ID 5:

{

 "uid": 5,

 "fullname": "Phil Customer",

 "competencies": [

 {

 "name": "SunOS",

 "ranking": 40

 },

 {

 "name": "SAP",

 "ranking": 50

 },

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

533

 "name": "EMC",

 "ranking": 60

 }],

 "roles": ["Super User"],

 "department": 3,

 "active": true,

 "email": "phil@example.com",

 "timezone": "(GMT 00:00) Europe/Jersey - Greenwich Mean Time",

 "teams": [1, 2, 4],

 "joined": 12345678,

 "contact_num": "0965412345"

}

Response example

A successful request returns true.

updateWorkflow

A MoogDb v2 method that updates an existing workflow in the Workflow Engine.

Back to MoogDb V2 API Method Reference.

Request arguments

Method updateWorkflow takes the following request arguments:

Name Type Required Description

id Integer Yes ID of the workflow you want to update.

details JSON

Object

Yes A JSON object containing the details of the workflow(s) to be

updated.

The object details contains the following information:

Name Type

Require

d Description

workflow_name String Yes Name of the workflow.

active Boolea

n

No Determines whether the workflow is active or not. If true, the

workflow is active.

description String No Description of the workflow.

entry_filter String No An SQL-like filter to determine which events, alerts or

Situations can enter the workflow. If empty, the workflow

accepts all events, alerts or Situations.

sweep_up_filter String No An SQL-like filter to intake any additional events, alerts or

Situations from the database.

first_match_onl

y
Boolea

n

No Determines whether to perform workflow operations only once

on each object.

operation JSON

Array

No List of properties relating to each operation:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

534

Name Type Required Description

type String Yes Type of

operation.

Options are:

'action',

'decision' and

'delay'.

operation_name String Yes, for

'action'

and

'decision

' types.

Name of the

operation.

function_name String Yes, for

'action'

and

'decision

' types.

Name of the

function.

forwarding_behavio

r

String No Forwarding

behavior for

the function.

One

of:always

forward: The

function

always

forwards the

object to the

next

workflow.sto

p this

workflow:

The function

stops this

workflow and

the object

moves to the

next

workflow.sto

p all

workflows:

The function

stops all

workflows for

this

object.Default

is always

forward. Only

valid for

'action' and

'decision'

types.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

535

function_args JSON

Object

No Arguments for

the function.

duration Integer Yes, for

'delay'

type.

Length of time

before the

message goes

to the next

operation.

reset Boolea

n

Yes, for

'delay'

type.

Determines

whether the

timer resets

after each

occurrence.

reset Boolea

n

No Mandatory for 'delay' type.

Response

Method updateWorkflow returns the following response:

Type Description

Boolean Indicates whether or not the operation was successful: true = success, false = fail.

Examples

The following examples demonstrate typical use of method updateWorkflow:

Request example

Example request to update workflow ID 1 with a new workflow name:

Response example

A successful request returns true.

LAMbots

Lambot Overview

LAMbot Configuration

LAMbots are JavaScript modules associated with every LAM. The LAMbots control the actions the LAM

performs at startup and any necessary processing before forwarding objects to the Message Bus.

You can configure a LAMbot by modifying the functions and modules within its configuration file. The

LAMbot files are located at $MOOGSOFT_HOME/bots/lambots.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

536

LAMbot Functions

Each LAMbot includes an onLoad function that runs at startup and a presend function that processes

and filters objects before sending them to the Message Bus.

REST-based LAMbotscall modifyResponse after they receive an object and convert it to JSON.

REST Client-based LAMbots call preClientSend before they send a request to a polled server and

modifyResponse after a response is received from a polled server.

onLoad

Every instance of a LAMbot calls the onLoad function at startup. We recommend setting up shared

values or lookup tables in the onLoad function. You can use it to initalize internal variables, load

external JavaScript modules and set up structures needed for the filter function. For example:

var config = MooBot.loadModule('Config');

var moogUrl;

function onLoad()

{

 var servletsConf = config.getConfig('servlets.conf');

 if (servletsConf)

 {

 moogUrl = servletsConf.webhost;

 }

}

The onLoad function:

 Stores the value of the servlets configuration in the config module to a variable "servletsConf".

 Sets the variable moogURL to the servlets webhost value.

presend

The LAMbot calls the presend function every time it assembles an object to publish on the Message

Bus. Moogfarmd processes objects and turns them into alerts and Situations. An example presend

function is:

function presend(event)

{

 event.setCustomInfoValue("eventDetails",overflow);

 if (overflow.LamInstanceName && (overflow.LamInstanceName ===

"DATA_SOURCE"))

 {

 delete overflow.LamInstanceName;

 }

 event.setCustomInfoValue("nodeSeverity", overflow.Severity);

 event.setCustomInfoValue("nodeMachineType", overflow.MachineType);

 event.setCustomInfoValue("nodeVendor", overflow.Vendor);

 return true;

}

The presend function:

 Adds the overflow object as event details.

 Checks whether LamInstanceName is the default value DATA_SOURCE and if so, removes it from

custom info.

 Saves three overflow fields to custom info.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

537

 Returns a true response to indicate that the object will be passed to the Message Bus.

You can partition event streams into substreams for differential processing in a distributed environment.

You can send a boolean response if the configuration dictates that all objects will or will not be sent to

the bus.

Instead of a boolean response, you can configure the function to return a JSON object containing two

members: "passed" which is either true or false, and "stream" which defines the substream to send

the event. For example:

function presend(event)

{

 return

 ({

 "stream" : "my_stream",

 "passed" : true

 });

}

You can configure the event inside the presend function. For example you can:

 Change values

 Access lookup tables

 Add or remove key value bindings

 Access regular expressions

 Extract tokens

In the LAMbot, the following line instructs the LAM to use the presend function. It calls

filterFunction using the global LamBot variable:

LamBot.filterFunction("presend");

The filterFunction function receives a string, which is the name of the function to use for filtering.

You define the presend processing file or stream in individual LAM configuration files. See "Filtering"

in Data Parsing for more information.

preClientSend

REST Client-based LAMbots call preClientSend before they send a request to a polled server. The

function accepts an object and returns a modified version that is then sent by the Rest Client LAM. An

example preClientSend function is:

function preClientSend(outBoundEvent)

{

 outBoundEvent.set('method', 'Post');

 var header = outBoundEvent.value('header');

 header['Content-Type'] = 'application/json';

 outBoundEvent.set('header', header);

 var body = { 'events': 'all', 'type': { 'id': '12345', 'name': 'incident' }

};

 outBoundEvent.set('body', body);

 return true;

}

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID181d7bea1ba0aa00e25ebf4387da6f61

Cisco Crosswork Situation Manager 8.0.x Developer Guide

538

The function generates a POST request with body type JSON.

In the LAMbot, the following line instructs the LAM to use the preClientSend function. It calls

preClientSendFunction using the global LamBot variable:

LamBot.preClientSendFunction("preClientSend");

modifyResponse

You can modify the response sent by a REST-based LAMbot after it receives an object and a REST

Client-based LAMbot after it receives a response from a polled server. An example modifyResponse

function is:

function modifyResponse(inBoundEventData)

{

 var response = JSON.parse(inBoundEventData.value('responseData'));

 if (inBoundEventData.value('moog_target_name') == 'target1') {

 response['manager'] = 'primary';

 }

 else {

 response['manager'] = 'secondary';

 }

 inBoundEventData.set('responseData', JSON.stringify(response));

 return true;

}

The function generates a different response depending on the name of the REST client target called.

In the LAMbot, the following line instructs the LAM to use the modifyResponse function. It calls

modifyResponseFunction using the global LamBot variable:

LamBot.modifyResponseFunction("modifyResponse");

LAMbot Modules

You can load modules into a LAMbot to perform various tasks. The most commonly used modules are:

 Logger: Cisco Crosswork Situation Manager components generate log files to report their activity.

 Constants: Used to share logic, states and flags between LAMbots.

 Utilities: A JavaScript utility used to escape and convert XML strings and JSON objects.

Define a global object to load a module into a LAMbot. For example:

var logger = LamBot.loadModule("Logger");

var constants = LamBot.loadModule("Constants");

var utilities = LamBot.loadModule("Utilities");

Moobots

Moobot Modules

Within Cisco Crosswork Situation Manager data processing, Moogfarmd Moolets, LAMs and

integrations use simple computer programs called "bots" to perform automated tasks. A Moobot is a

JavaScript file that is loaded at startup by a Moolet. The Moobot exposes logic and data flow, which

you can control in JavaScript, relevant to the necessary function. LAMbots perform a similar function for

LAMs and integrations.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

539

Moobots expose the function of the Moolets allowing for extensive customization, for example in the

Alert Rules Engine where the Moobot is used to perform automation.

Threads and global scope

Cisco Crosswork Situation Manager is built to handle high scale environments, so individual JavaScript

MooBots are run in a multi-threaded fashion. For example, if a Moolet has ten threads, there will be ten

instances of the MooBot running. This supports high throughput of Events through the Moobot,

particularly, when they are doing complex processing. However, it does have important implications for

the JavaScript concerning where the global scope (or context) for the JavaScript program for the

MooBot resides. In principle, each Moobot has its own independent global scope. So it is impossible for

one Moobot's logic to interact and affect another instance of the Moobot logic. To allow necessary

communication between individual Moobot instances there are utility modules such as the Constants

module.

Moobot modules

You can use the available Moobot modules to perform these functions:

Module Description

Config Read configuration files within LAMbots and Moobots.

Constants Build a key value dictionary shared across Moobots.

Events Set the types of Event that interest a Moobot.

ExternalDb Access external relational databases.

Graph Topology Access topology methods.

Kafka Allows you to broadcast information on a Kafka bus.

LoggerConfigure

Logging

Write log messages to the common Moogfarmd log file. See Configure Logging.

Mailer Send an email in response to events occurring in Cisco Crosswork Situation

Manager.

MoogDb V2 Query and manipulate a variety of entities in the Cisco Crosswork Situation

Manager database, including alerts and Situations.

Moolet Informs Can send update messages from one Moolet to other Moolets.

Process Run and control the execution of other processes.

RabbitMQ Allows you to broadcast information on a RabbitMQ bus.

REST.V2 Access an external RESTful API via HTTP to post, read, or delete data.

Utilities Escape and unescape XML strings, convert an XML string to a JSON object and

vice versa.

To use these modules, define a global variable at the top of the Moobot js file using the loadModule

method.

You can also load load external JavaScript modules using the loadModule method. See below.

file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba

Cisco Crosswork Situation Manager 8.0.x Developer Guide

540

Examples

Throughout this section, all examples will use AlertBuilder.js to explain how Moobots function.

Step 1

When the Alert Builder starts and creates an instance of the Moolet, it creates a Moobot for every

threaded instance of the Moolet. The first action undertaken by a Moobot is to load a system wide

default file called MooB.js. This file pushes into the Global Scope using a closure, some shared

functionality, which you can take advantage of in the Moobot. You should never edit MooB.js as the file

is linked to the internal implementation of the Moobots.

Step 2

The preload statements in the MooB.js closure instruct a Moobot to load into its Global Scope the

available modules. For example, they can be used to:

 Change and create structure in the MoogDb database.

 Listen for specific events in the system.

 Push events out.

 Log to the common log file output.

 Communicate using communication methodologies such as tweets, email etc.

Before you can use any of the built in modules that correspond to the functionality Cisco provides, you

need the preload() method in the global object (MooB.js) to load the required modules.

The object exposes an API that you can use to add functionality into the system. In the example above,

Process has a number of functions that you can call which allow the Moolet to run processes in the

system.

After loading and running the MooB.js closure in the Moobot, the full Moobot user definable JavaScript

file is loaded and run. It is important to understand from a JavaScript concept that it is executed at

start-up. The reason for executing the script at start-up is to load any Event driven callbacks, and

initialization code inside of the Moobot. For example in the Alert Builder, for a new Event arriving in the

Moolet, Cisco Crosswork Situation Manager needs to know which functionality inside of the Moobot to

run.

Using external modules

Moobots can load external JavaScript modules. This means that modules can be reused as generic

functions in multiple Moobots.

To do this:

 Add the external JavaScript module file (BotExampleModule.js) in the

$MOOGSOFT_HOME/bots/moobots or the $MOOGSOFT_HOME/contrib directory.

 Load the external JavaScript module in the Moobot by adding a line at the beginning (relative paths

are supported), for example:

MooBot.loadModule('BotExampleModule.js');

The example below shows the external JavaScript module (BotExampleModule.js). It defines a class

which takes an alert and prints out a message:

function CPrinter()

{

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

541

 var mLogger=MooBot.loadModule('Logger');

 var self=

 {

 prettyPrint: function(alert)

 {

 mLogger.info("This is a print of " + alert.value("alert_id") + "

other info");

 }

 };

 var F=function() {};

 F.prototype=self;

 return(new F());

}

The AlertMgr.js Moobot loads the external JavaScript module BotExampleModule.js and uses the

function CPrinter (from the external JavaScript module) to send alert details to a remote service:

MooBot.loadModule('BotExampleModule.js');

var printer = new CPrinter();

function newAlert(alert)

{

 printer.prettyPrint(alert);

}

onLoad function

Moobots can include an onLoad function to allow commands to be run once on startup per Moobot

instance. You can use it to initialize internal variables, such as dbTypes, for example:

var dbTypes = null;

function onLoad()

{

 dbTypes = {

 employees: {

 type: 'mySql',

 host: '192.168.1.141',

 port: '3306',

 database: 'emp_db'

 },

 customers: {

 type: 'sqlServer',

 host: '213.32.112.17',

 database: 'customers',

 user: 'sa',

 encrypted_password: '0rJGl5oCWpmE9Hbk32sxFgxlQV3O5cx2bx1vKNOM7YA='

 }

 };

}

Config

The Config bot module allows you to read configuration files within LAMbots and Moobots.

It retrieves valid JSON configuration files found in $MOOGSOFT_HOME/config and performs a direct

read from the file system before delivering the JSON Object to the calling bot. The module is available

for all bots but can only be used for reading and storing global configuration files.

Before you begin

Cisco Crosswork Situation Manager 8.0.x Developer Guide

542

Before you use the Config bot module, ensure you have met the following requirements:

 The configuration file is in valid JSON.

 The configuration file is in $MOOGSOFT_HOME/config.

 The configuration is present on the file system as the process running the bot.

Best practice

Follow these guidelines when using the Config bot module:

 Use the module within the constraints of the OnLoad function.

 Note that making multiple calls to the module may impact the performance of the bot.

 Keep custom configuration files in a subdirectory of $MOOGSOFT_HOME/config and name them

appropriately.

 Comment custom configuration files extensively so other users can understand the context of their

use.

Error reporting

The following error messages are returned if the configuration file cannot be opened, the contents

returned are null or if the JSON is invalid:

INFO :[CJSONCodec.java]:813 +|java.io.FileNotFoundException:

/export/src/incident/build/config/bad.conf (No such file or directory): Unable

to open file /export/src/incident/build/config/bad.conf|+

WARN :[CJSONCodec.java]:105 +|Failed to parse file

/export/src/incident/build/config/bad.conf, returned null contents|+

WARN :[CConfigModule.java]:112 +|File

[/export/src/incident/build/config/bad.conf] is either missing, unreadable or is

not valid JSON.|+

Examples

If you want to create a URL that links to Cisco Crosswork Situation Manager Situations, you can use the

Config bot module to dynamically retrieve the base URL of the Cisco Crosswork Situation Manager

instance from servlets.conf. For example:

var config = MooBot.loadModule('Config');

...

var servletsConf = config.getConfig('servlets.conf');

if (servletsConf) {

 moogURL = servletsConf.webhost;

}

Constants

Each Moobot runs in its own thread and instances of Moobots are independent of each other. The

Constants module enables you to share logic, states or flags between Moobots. You can build a key

value dictionary mapping that is shared across Moobot instances.

There are many system wide defined Constants that are used in the Events module to define which

event to listen for. See the event types table below for more information.

Load the module

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

543

The Constants module is available to load into any standard Moobot. To load it, define a new global

variable at the top of the Moobot Javascript file. For example:

var constants = MooBot.loadModule('Constants');

Method reference

The Constants module uses the following methods.

put

Associated a specified value with a specified key. Replaces the mapping for an existing key.

Request arguments

The method takes the following arguments.

Name Type Description

key String The key to associate with the value.

value Object The value to associate with the key.

Response

None.

get

Retrieves the value mapped to a specified key.

Request arguments

The method takes the following arguments.

Name Type Description

key String The key for which to retrieve the value.

Response

The method returns the following parameter:

Type Description

Object The value to which the key is mapped, or null if no mapping exists.

contains

Returns a positive response if the module contains an object with the specified name.

Request argument

The method takes the following arguments:

Name Type Description

name String The Object name.

Response

The method returns the following parameter:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

544

Type Description

Boolean True if the module contains the specified object, otherwise false.

remove

Removes the value mapped to the specified key.

Request arguments

The method takes the following arguments:

Name Type Description

key String The key for which the value is to be removed.

Response

None.

eventType

Retrieves the value of a specified event type.

Request arguments

The method takes the following arguments:

Name Type Description

name String The name of the event type. See the list of event types in the table below.

Event types

You can use one of the following event types in the name argument:

Name Passed Value Description

E_LamEvent "Event"/"Events" Raw event from a LAM

E_NewAlert "Alert"/"Alerts" New alert

E_AlertUpdate "AlertUpdate" Alert update

E_CloseAlert "AlertClose" Close alert

E_NewComment "Comment" New comment

E_NewFeedback "Feedback" New feedback

E_NewSig "Sig" New Situation

E_SigClose "SigClose" Close Situation

E_SigUpdate "SigUpdate" Updated Situation

E_SigStatus "SigStatus" Situation status

E_SigAction "SigAction" Situation action

E_ThreadEntry "ThreadEntry" A thread entry

E_NewThreadEntry "NewThreadEntry" A new thread entry

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

545

E_Summary "Summary" System summary

E_Invite "Invitation" Situation Room invitation

E_User "User" Username

E_Unknown "Unknown" An uncategorized event (error condition)

Response

The method returns the following parameter:

Type Description

CEvent An object containing the value of the specified event type.

Examples

The following example in AlertBuilder.js shows the Constants module with two methods that allow

you to post and retrieve values from a shared scratchpad.

var count=0

constants.put("counter",count);

The variable count is set to 0 and stored using the label counter.

You can then retrieve a value by calling the get method and passing the name of the shared attribute,

which is returned as a JavaScript local variable.

var count_val=constants.get("counter");

count_val++;

constants.put("counter",count_val);

 The get method takes the name of the shared attribute, "counter".

 The variable count_val is incremented.

 The put method takes the name of the variable to store, "counter", and the incremented value

count_val.

If nothing is stored in counter, the Moobot returns null.

The following example passes the name of an event and returns a system wide constant that identifies

that type of event when using the Events module.

constants.eventType("Event")

Events

The Events Moobot module allows you to make a Moobot driven by the occurrence of events by

defining the type of event that interests the Moobot. It is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global variable events to load the Events module:

var events = MooBot.loadModule('Events');

Note

Cisco Crosswork Situation Manager 8.0.x Developer Guide

546

Compatibility with MoogDb and MoogDb V2 Methods and auxiliary objects listed here are compatible

with the MoogDb V2 module.

Method

events.onEvent

The Events module has only one method, onEvent. This method points the Moobot to a supplied

JavaScript function, which is called when a specified event type occurs.

The parameters to the called function depend on the type of event that you are listening for.

In a Moobot, this method is typically the last line in a script.

The type of event adaptor chosen is specific to the type of Moobot you are building.

onEvent method

Takes the name of a valid JavaScript function in a Moobot and also event code (from the Constants

module eventType), and returns an event adaptor object

Request Arguments

Name Type Description

functionName String The name of a valid JavaScript function in the Moobot that is called when the

event arrives.

type CEvent eventType event code that specifies what type of event the Moobot is listening

for. It is typically from the Constants module.

Return Parameter

Name Type Description

CEventAdaptor Object An event adaptor object. Made active with the listen () function in-line to

listen for the event type.

Example

For the AlertBuilder MooBot:

events.onEvent("newEvent",constants.eventType("Event")).listen();

 Call the newEventJavaScript function.

 Define the Event type Event (from the Constants module), which responds to events put on the

Message Bus by a LAM.

 Call the listenfunction in-line to listen for the event type.

When the Moolet starts and loads this events Moobot, its JavaScript file executes, initializing the

Moobot to respond in an event-driven way to events arriving.

newEvent JavaScript function

The format of the function newEvent (which is called when you get an event), is as follows:

newEvent()

Request Argument

Name Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

547

event CEvent

object

An object that encapsulates all the data for the event from the Message Bus, and

allows you to forward the event to the bus, using the CEvent forward method detailed

below.

Event forward methods

The advantage of this approach is that alerts / Situations can be forwarded to different

AlertRulesEngines / Sigalisers dynamically in the Moobots (for example based on the value of the

source file).

alert.forward("Cookbook");

You could instead remove the process_output_of lines from the AlertRulesEngine / Sigaliser /

Cookbook / Speedbird Moolets and explicitly send events / alerts / Situations on within the Moobot

code using (as an example):

You can emulate MoogDb behavior by running the MoogDb.V2 Moobots.For example, the

alert.forward(this) line will send an alert onto the Moolets specified in the appropriate

process_output_of block within moog_farmd.conf.

CEventAdaptor auxiliary object

This object is a utility class used by the Events module to allow for the programmatic activation of event

listening. It has one method:

listen()

Starts the event adaptor listening, which then calls the specified function when an event occurs.

Request Argument

None.

Return Parameter

Void - no value returned.

CEvent auxiliary object

This object encapsulates a generic Message Bus event object, and the contents of it are specific to the

event type it represents. You can however access the key-value pairs contained in the object, and also

set the values. Its methods include:

contains

Returns true if the Event contains a value stored at the key name.

Request Argument

Name Type Description

name String The name of the key being queried.

Return Parameter

Type Description

Boolean True if the event has a field called name, otherwise false.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

548

set

Associates the specified value with the specified name in the event.

Previous key mapping has the old value replaced.

Request Argument

Name Type Description

name String The key with which the specified value is to be associated.

value Object The value associated with the key.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail

value

Returns the object stored at the key name.

Request Argument

Name Type Description

name String The name of the key to return the object from.

Return Parameter

Type Description

Object A Javascript object containing what is at the key name.

CEvents API

The CEvents API is an object interface used to encapsulate data as it flows through Cisco Crosswork

Situation Manager. A CEvent object contains status and data, and methods to access and manipulate

that data. The data contained in the CEvent object depends on the type specified in the object, which

include LAM events, alerts, Situations, thread entries, and invitations.

This API uses the following methods.

contains

Checks whether the CEvent object contains the given key.

Request arguments

Name Type Description

key String Name of a potential key in the CEvent object.

Return parameter

Type Description

Boolean Returns true if the provided key exists in the CEvent object, or false if it was not.

Request example

var custom_info = event.contains("custom_info") ? event.getCustomInfo() : {};

evaluateFilter

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

549

Allows an event/alert/Situation to be easily evaluated against a filter.

Request arguments

Name Type Description

filter String An SQL-like filter for events, alerts or Situations.

Return parameter

Type Description

Boolean Whether the filter matches the event, alert or Situation.

Returns true if the filter matches the event, alert or Situation.

Returns false if the filter has a correct syntax but doesn't match the event, alert or Situation.

Returns null if the filter syntax is incorrect.

Request example

var is_matching = situation.evaluateFilter("description LIKE 'Created

Situation'");

forward(this)

Forwards the CEvent down the chain configured in the moog_farmd.conf (using the

process_output_of configuration). The usual way of calling this is CEvent.forward(this) where

this is the Moobot that is processing the CEvent object. This method also sends the CEvent object to

any Moolet listening via event_handlers.

Request arguments

Name Type Description

moobot NativeObject The instance of the Moobot which is handling the CEvent object, usually the

variable named this.

Return parameter

None.

forward(target,....)

Takes any number of target Moolet names as strings and forwards the CEvent to each of them. For

example CEvent.forward("moolet1") or CEvent.forward("moolet1", "moolet2").

Request arguments

Name Type Description

targets Stringvarargs One or more Moolet names as strings.

Return parameter

None.

Request examples

Cisco Crosswork Situation Manager 8.0.x Developer Guide

550

You can forward alerts or Situations to other Moolets such as clustering algorithms programmatically

using this function.

Example request to forward an alert to Alert Enricher:

alert.forward("AlertEnricher");

Example request to forward a Situation to Situation Manager Labeler:

situation.forward("SituationMgrLabeller");

getActionDetails

A utility helper method that retrieves the entire alert or Situation contained in the payload of a CEvent.

The format of the details varies depending on what the action type is, and may be empty.

Request arguments

None

Return parameter

Type Description

JS

NativeObject

Whole of the alert or Situation contained in the payload of the CEvent, as a NativeObject

ready for use in the Javascript for a Moobot.

getCorrelationInfo

Returns the correlation information for a Situation, which lists all of the services which are interested in

this Situation. This method only applies to CEvent objects that contain Situation thread entries from the

Collaborate tab in a Situation Room. For other correlation information, use the MoogDb v2 method

getSigCorrelationInfo.

Request arguments

None

Return parameter

Type Description

NativeObject An object which contains the sig_id, service_name, external_id and properties for all the

correlation info for the Situation. sig_correlation_info is a one to many relationship of sigs to

services.

getCustomInfo

A helper method provided to retrieve the whole custom_info object for an alert or Situation.

Request arguments

None

Return parameter

Type Description

JS

NativeObject

Whole custom_info map for an alert or Situation as a NativeObject ready for use in the

Javascript for a Moobot.

Bot.getType

Returns the internal name of the Moobot that is running the code.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

551

Request arguments

None.

Return parameter

Type Description

Enumerated type Can be one of the following:

Request example

Example request if the following code is put into the Alert Builder Moobot:

logger.warning("This moobot is a: " + Bot.getType());

When Moogfarmd is started, the log line shows:

[AlertBuilder.js:65] +|This moobot is a: CAlertBuilder|+

getSummaryData

Returns a summary of information about a system, such as the number of alerts or the service count

bundled up as key/value pairs.

Request arguments

None.

Return parameter

Type Description

JS NativeObject The summary of information about a system:

summary.alert_count - number

summary.service_count - number

summary.sig_summaries - map (contains "categories" and "queues")

summary.sig_summaries.categories - (array of objects)

summary.sig_summaries.queues - (array of objects)

Categories and queues contain the following:

summary.sigs_down - number

summary.sigs_up - number

summary.total_events - number

summary.total_sigs - number

Request example

If a Moolet is configured to listen to the 'Summary' event type as follows:

events.onEvent("summary", constants.eventType("Summary")).listen();

Cisco Crosswork Situation Manager 8.0.x Developer Guide

552

Then you can define a function can be defined to extract data out of the summary event object as

follows:

function summary(summary)

{

var info = summary.getSummaryData();

logger.warning("Summary data: Events: "+info.total_events + " Situations: " +

info.open_sigs);

}

getTopic

Returns the topic that the data was received on, for example "alerts" or "Situations".

Request arguments

None.

Return parameter

Type Description

String Name of the topic that the data came from or relates to, such as "Situations" or "alerts".

payload

Retrieves the whole data payload that was sent in the CEvent object. In most cases the data contained

in the payload is going to represent either a Situation or an alert, and as such will have key/value pairs

which match the data columns for each.

Request arguments

None.

Return parameter

Type Description

CMooMsg Enum value specifying the type of data that the Event contains and/or which topic the data was

received on from the bus.

Examples

Request example

Example CEvent payload request:

logger.warning(cevent.payload().getData());

Response example

Example CEvent payload response:

{active=true, competencies=[], contact_num=, department=null,

description=Online, email=, fullname=cyber, groupname=End-User, invitations=[],

joined=1516963803, only_ldap=0, photo=-1, primary_group=1, profile_image=null,

realms=[DB], roles=[1, 3, 4, 5], session_expiry=null, status=1, teams=[],

timezone=SYSTEM, uid=6, username=cyber}

set

Inserts or updates a value in the CEvent object. This call does no transformation of values. All values

specified must match the underlying value type in the CEvent.The custom_info value is a JSON string. If

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

553

using .set() to change the value of custom_info, the JS object must be stringified first. Use

setCustomInfo() to update custom_info.

Request arguments

Name Type Description

key String Key to insert or change a value at.

value String or Number New value to store against the key.

Return parameter

Type Description

Boolean Indicates whether or not the value was successfully changed: true = success, false = fail.

setCustomInfo

Sets the whole custom_info object for an alert or Situation.

Request arguments

Name Type Description

customInfo NativeObject The whole custom_info object to set for an alert or Situation.

Return parameter

None.

setCustomInfoValue

Sets a value of a specific property within custom_info to the supplied value. This can be used to change

existing values, or create new ones.

Request arguments

Name Type Description

field String Dot-formatted field within the custom_info of the reference alert or

Situation to update.

value String, Integer, Boolean,

Object, or Map

String, integer, Boolean, object, or map value to replace the value

stored in the custom_info field.

Return parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

Request examples

You can use this method to add or replace specific keys within alert or Situation custom_info.

Example request to set a custom_info value in an alert:

alert.setCustomInfoValue("key1.my_new_key", "my_new_value");

var result = moogdb.updateAlert(alert);

Example request to set a custom_info value in a Situation:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

554

situation.setCustomInfoValue("fieldA.fieldB",

{"my_new_map_key1":"my_new_map_value1"});

var result = moogdb.updateSituation(situation);

setTopic

Sets or updates the topic value in the payload of the CEvent object.

Request arguments

Name Type Description

topic String Name of a topic to set or update in the payload data.

Return parameter

None.

Request example

Example request to close an alert in a non-standalone Moolet:

moogdb.closeAlert(alert.value("alert_id"));

alert.setTopic("alerts.close");

alert.forward(this);

stringValue

Retrieves a value from inside the payload which matches the provided key as a string value.

Request arguments

Name Type Description

key String Key for a value stored in the payload which will be used to fetch the data.

Return parameter

Type Description

String Value from the payload that was stored alongside the key, or null if no value was found for the

provided key, converted to string format.

type

Retrieves the type stored on the CEvent, this value indicates type of information in the payload and/or

which topic the data came from.

Request arguments

None.

Return parameter

Type Description

EBotEvent Enum value specifying the type of data that the Event contains and/or which topic the data was

received on from the bus.

value

Retrieves a value from inside the payload which matches the provided key. Objects such as

custom_info are stored as JSON strings, not native objects. To return custom_info as a native JS

object, use the getCustomInfo call instead.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

555

Name Type Description

key String Key for a value stored in the payload which will be used to fetch the data.

Return parameter

Type Description

String,

Number or

Boolean

Value from the payload that was stored alongside the key, or null if no value was found to for

the provided key. Values are returned in their native stored format, that is, as a string,

number, or Boolean. Native JS objects such as custom_info are stored in CEvent objects as

JSON strings, and are returned as such by this method.

Events (MoogDb Only)

Compatibility with MoogDb and MoogDb.V2

Methods and auxiliary objects listed here are compatible with the MoogDb module, which was removed

in v4.1.14.

Information here is provided for reference only.

For methods and auxiliary objects compatible with its replacement, see the MoogDb V2 module.

Description

The events Moobot module allows you to make a Moobot driven by the occurrence of events by

defining the type of event that interests the Moobot.

The events module is available to load into any standard Moobot.

To use, at the top of a Moobot js file, define a new global variable events to load the events module:

var events = MooBot.loadModule('Events');

Method

• events.onEvent

The events module has only one method, onEvent. This method points the Moobot to a supplied

JavaScript function, which is called when a specified event type occurs.

The parameters to the called function depend on the type of event that you are listening for. In a

Moobot, this method is typically the last line in a script.

The type of event adaptor chosen is specific to the type of Moobot you are building.

events.onEvent

Takes the name of a valid JavaScript function in a Moobot and also event code (from the constants

module eventType), and returns an event adaptor object.

Request Arguments

Name Type Description

functionName String The name of a valid JavaScript function in the Moobot that is called when the

event arrives.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

556

type CEvent eventType event code that specifies what type of event the Moobot is listening

for. It is typically from the constants module.

Return Parameter

Name Type Description

CEventAdaptor Object An event adaptor object. Made active with the listen function in-line to listen for

the event type.

Example

For the AlertBuilder MooBot:

events.onEvent("newEvent",constants.eventType("Event")).listen();

 Call the newEvent JavaScript function.

 Define the event type event (from the Constants module), which responds to events put on the

Message Bus by a LAM.

 Call the listenfunction in-line to listen for the event type.

When the Moolet starts and loads this events Moobot, its JavaScript file executes, initialising the

Moobot to respond in an event-driven way to events arriving.

newEvent Javascript function

The format of the function newEvent (which is called when you get an event), is as follows:

function newEvent

Request Arguments

Name Type Description

event CEvent object An object that encapsulates all the data for the event from the Message Bus.

response CResponse

object

An object to communicate back to the Moolet. The Moolet uses this response

to broadcast any updates, or any changes to the data structures on the

Message Bus.

CEventAdaptor auxiliary object

This object is a utility class used by the events module to allow for the programmatic activation of event

listening. It has one method:

listen

Starts the event adaptor listening, which then calls the specified function when an event occurs.

Request Argument

None.

Return Parameter

Void - no value returned.

CEvent auxiliary object

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

557

This object encapsulates a generic Message Bus event object, and the contents of it are specific to the

event type it represents. You can however access the key-value pairs contained in the object, and also

set the values. Its methods include:

contains

Returns true if the event contains a value stored at the key name.

Request Argument

Name Type Description

name String The name of the key being queried.

Return Parameter

Type Description

Boolean True if the Event has a field called name, otherwise false.

set

Associates the specified value with the specified name in the event. Previous key mapping has the old

value replaced.

Request Argument

Name Type Description

name String The key with which the specified value is to be associated.

value Object The value associated with the key.

Return Parameter

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

value

Returns the object stored at the key name.

Request Argument

Name Type Description

name String The name of the key to return the object from.

Return Parameter

Type Description

Object A Javascript object containing what is at the key name.

CEvent auxiliary object

Note

The following methods only apply to the MoogDb module, which is being deprecated.

getCorrelationInfo

Cisco Crosswork Situation Manager 8.0.x Developer Guide

558

Returns the external service correlation_info (where this has been set) for a Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the correlation_info.

getCustomInfo

Returns the custom information (if any) for an alert or Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the custom information.

getJournalDetails

Returns the details (if any) of the journaled operation for a Situation.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the details of the journaled operation for a Situation.

getSummaryData

Returns the summary information from a statistics summary event.

Request Argument

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

Return Parameter

Type Description

Object Javascript object containing the summary information.

setCustomInfo

Sets the custom information for an Alert or Situation

Request Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

559

Name Type Description

scope Javascript object The Moobot context, provided by using this as a parameter.

customInfoJS Native object A Javascript object containing the custom information.

Return Parameter

Void - no value returned.

CResponse auxiliary object

Note

The following methods only apply to the MoogDb module, which has been deprecated.

doNotPropagate

Indicates that no propagation is needed.

Request Argument

None.

Return Parameter

Void - no value returned.

message

Object to broadcast on.

Request Argument

Name Type Description

msg CEvent Object to broadcast on.

Return Parameter

Void - no value returned.

output

Freeform message to attach.

Request Argument

Name Type Description

txt String The message as a text string.

Return Parameter

Void - no value returned.

retcode

The retcode value must be >= 0 for a message to be sent.

Request Argument

Cisco Crosswork Situation Manager 8.0.x Developer Guide

560

Name Type Description

code Number Must be >= 0 for a message to be sent.

Return Parameter

Void - no value returned.

topic

Topic to broadcast message on.

Request Argument

Name Type Description

topic String The topic name.

Return Parameter

Void - no value returned.

Expose Active Moolets

You can expose which Moolets are running by adding functions to a Moobot. The functions are:

 Bot.isActive: Returns whether the specified Moolet is active or not.

 Bot.getActiveMoolets: Returns a list of all active Moolets in the system.

isActive

Returns whether the specified Moolet is active or not.

Request Argument

Name Type Required Description

<mooletName> String Yes Name of a Moolet.

Return Parameter

Type Description

Boolean 'true' indicates the Moolet is active, 'false' indicates it is inactive.

Example

For example, you could use the function to return a logger warning if the ServiceNow Moolet is not

running:

if(Bot.isActive('ServiceNow'))

 {

 var inform = mooletInforms.create('ServiceNow');

 inform.setSubject("ticket");

 inform.setDetails({sig_id: sigId}); inform.send();

 }

else

 {

 logger.warning("ServiceNow is not running - situation " + sigId

+ " was not sent");

 }

getActiveMoolets

Returns a list of all active Moolets in the Cisco Crosswork Situation Manager system.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

561

Request Argument

None.

Return Parameter

Type Description

List A list of all active Moolets in the Cisco Crosswork Situation Manager system.

Example

You could use the function to return which Moolets are running if a specified Alert Workflow Engine

Moolet is active:

var alert = moogdb.createAlert(event);

if(alert)

 {

 logger.info("New Alert Id: " + alert.value("alert_id"));

 if(Bot.isActive('AlertWorkflows'))

 {

 logger.warning("Moolets running are: \n" +

Bot.getActiveMoolets());

 }

 }

An example log might return as follows:

WARN : [3:AlertBuilder][20190301 19:05:20.808 +0000] [AlertBuilder.js:128]

+|Moolets running are: [MaintenanceWindowManager, TeamsMgr, AlertBuilder,

SituationWorkflows, Housekeeper, Default Cookbook, Indexer, EnrichmentWorkflows,

AlertWorkflows, EventWorkflows, SituationMgr, SituationRootCause]|+

ExternalDb

The ExternalDb Moobot module allows Cisco Crosswork Situation Manager to access the following

external relational databases, as well as any relational database that supports JDBC:

 MySQL

 Microsoft SQL Server

 IBM DB2

 Oracle

 PostgreSQL

Using ExternalDb, Cisco Crosswork Situation Manager can retrieve information from external databases

for use in alerts and Situations. The ExternalDb method can also update external databases with

information from Cisco Crosswork Situation Manager.

Load the module

The ExternalDb Moobot module is available to load into any standard Moobot. To load it, define a new

global variable at the top of the Moobot Javascript file. For example:

var externalDb = MooBot.loadModule('ExternalDb');

Cisco Crosswork Situation Manager 8.0.x Developer Guide

562

Method reference

The ExternalDb module uses the following methods.

connect

Establishes a connection to an external database with defined connection properties.

Request arguments

The method takes the following arguments.

Name Type Required

properties Object Yes

Database connection properties

The properties object is a Javascript object that can contain the following keys. You can also define

connection properties in the file moog_external_db_details.conf.

Key Description

type Database type. If you omit type you must specify the URL, jar files and JDBC class

name. To use an external database other than those in the supported list, omit the

type from the connection properties.

host Database host name or IP address. Default is localhost.

database Database name.

port Port number. Default values:

MySQL: 3306

SQL Server: 1433

DB2: 50000

Oracle: 1521

PostgreSQL: 5432

user Username to connect to the database. If omitted you can specify it in the URL (for

some databases) or the properties.

password Password to connect to the database. If omitted you can specify it in the URL (for

some databases) or the properties.

encrypted_password Encrypted version of the password.

properties A map of key-value pairs of properties to specify the connection properties. For

example, loginTimeout for SQL Server or useCompression for MySQL.

jar_files The JDBC driver jar file locations. Default values:

SQL Server: sqljdbc4.jar

DB2: db2jcc4.jar

Oracle: ojdbc6.jar

PostgreSql: postgresql-9.3-1102.jdbc41.jar

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

563

The assumed location is $MOOGSOFT_HOME/lib/cots/. These files are not

bundled in a standard Cisco Crosswork Situation Manager installation.

class_name The name of the JDBC class. Default values:

SQL Server: com.microsoft.sqlserver.jdbc.SQLServerDriver

MySQL: com.mysql.jdbc.Driver

DB2: com.ibm.db2.jcc.DB2Driver

Oracle: oracle.jdbc.OracleDriver

PostgreSql: org.postgresql.Driver

URL JDBC-specific URL. If specified, it can override other properties.

pool_properties A map of key-value pairs of properties of the connection pool that will be created.

You can define the number of connections made available to the external

database by including the pool_size key.

pool_size: Number of connections in the pool. Must be 1 or more. Default is 10.

Generally, this should match the number of threads configured to run the Moobot.

Response

The method returns the following parameter.

Type Description

Object A Java object containing the connection details. Returns null if the connection fails.

Examples

The method can accept a single parameter with connection properties, or two parameters: one with the

generic connection properties and one specific to this connection.

The following command establishes a connection using the details in the customers object:

var customersConnection = externalDb.connect(dbTypes.customers);

The following command establishes a connection using the same details, but the username and

password in the object are overridden by the ones provided in the command:

var customersConnection = externalDb.connect(dbTypes.customers, {user: 'myuser',

password: 'mypassword'});

execute

Performs an SQL update on the external database.

Request arguments

The method takes the following arguments.

Name Type Required

argument String Yes

Cisco Crosswork Situation Manager 8.0.x Developer Guide

564

Response

The method returns the following parameter.

Type Description

Boolean Indicates if the operation was successful: true = success, false = fail.

Examples

The following example uses the execute method to update the species column in a pets database.

employeesConnection.execute('update pets set species="dog" where species null');

query

Performs an SQL query on the external database.

Request arguments

The method takes the following arguments.

Name Type Required

argument String Yes

Response

The method returns the following parameter.

Type Description

Object A Java object containing the query results. Returns null if the connection fails.

Response methods

The response can contain the following methods.

Name Description

rows Returns the number of rows.

next Returns the next row.

rewind Goes back to the first row.

hasNext Indicates whether the current row is the last one.

row(i) Returns row i (zero based index).

first Returns the first row.

type(name) Returns the type of column called name (or null if no such column exists).

columnName(i) Returns the name of column i (zero based index).

isNumber(name) Returns true if the column name is a numeric column.

isString(name) Returns true if the column name is a not numeric.

Row methods

You can use the following row methods in the query.

Name Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

565

value(name) Returns the value for column named name as a string.

columns Returns the number of columns.

rewind Goes back to the first column.

hasNext Indicates whether the current column is the last one.

next Returns the value in the next column as a string.

column(i) Returns the value in column i as a string.

first Returns the value in the first column as a string.

last Returns the value in the last column as a string.

Example

The following example uses the query method to query the customers database.

var customers = customersConnection.query('Select * from customers');

while(customers.hasNext()==true)

{

 var customer = customers.next();

 var firstName = customer.value("first_name");

 var lastName = customer.value("last_name");

 logger.info(firstName + " " + lastName +" is a customer");

}

prepare

Performs SQL queries and updates on the external database. You can use the prepare method for

complicated operations. For example, you can reuse the same SQL statement with different arguments,

and you can use external data within a statement.

Request arguments

The method takes the following arguments.

Name Type Required

argument String Yes

Response

The method returns the following parameter.

Type Description

Object A Java object containing the query results. Returns null if the connection fails.

Response methods

The response object can contain the following methods.

Name Description

set(i, value) Sets parameter i (1 based index) to a value. Returns false in case of failure.

bind(value1, value2, Sets parameter 1 to value 1, parameter 2 to value 2 and so on. Returns false

Cisco Crosswork Situation Manager 8.0.x Developer Guide

566

value3,...) in case of failure.

bindCount Returns the number of parameters needed to bind. Some vendors do not

support this method in all cases, if not supported -1 is returned.

execute(value1,

value2, value3,...)
Sets parameter 1 to value 1, parameter 2 to value 2 and so on, and then

executes the prepared statement. Returns false in case of a failure in one of

the stages. If values are omitted, uses the previously set or bind.

query(value1, value2,

value3,...)
Sets parameter 1 to value 1, parameter 2 to value 2 and so on, and then

performs the query. Returns null in case of failure. Returns a result set if the

operation was successful. If values are omitted, uses the previously set or

bind.

close Closes the prepared statement. Note: It is important to close the statement

with this method when no longer needed.

Example

The following example uses the prepare method to set all pet species to "dog" if the breed is one of

those specified:

var petsChange = employeesConnection.prepare('Update pets set species=? where

breed = ?');

petsChange.set(1, 'dog');

for (var breed in ['Labrador', 'Terrier', 'Beagle', 'Boxer', 'Poodle'])

{

 petsChange.set(2, breed);

 petsChange.execute();

}

petsChange.close();

Database drivers and declarations

When downloading JDBC drivers:

 Be sure to download the correct version of the driver for your database.

 Copy or move the downloaded drivers to $MOOGSOFT_HOME/lib/cots/.

Microsoft SQL Server

JDBC driver: http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=11774

Connection properties: http://technet.microsoft.com/en-us/library/ms378672(v=sql.110).aspx

Example declarations:

testdb:

{

 type: 'sqlServer',

 host: '172.16.87.248',

 port: '1433',

 database: 'my_db',

 user: 'myuser',

 password: 'mypassword'

}

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/sqljdbc4.jar"],

http://www.microsoft.com/enus/download/details.aspx?displaylang=en&id=11774
http://technet.microsoft.com/enus/library/ms378672(v=sql.110).aspx

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

567

 class_name: "com.microsoft.sqlserver.jdbc.SQLServerDriver",

 url: "jdbc:sqlserver://172.16.87.248:1433;databaseName=my_db",

 properties: { user: "myuser", password: "mypassword" }

}

MySQL

JDBC driver: Already included in Cisco Crosswork Situation Manager - no need to download.

Connection properties: http://dev.mysql.com/doc/connector-j/en/connector-j-reference-

configuration-properties.html

Example declarations:

testdb:

{

 type: 'mySql',

 host: '172.16.87.247',

 port: '3306',

 database: 'my_db',

 user: 'myuser',

 password: 'mypassword'

}

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/mysql-connector-java-5.1.37-

bin.jar"],

 class_name: "com.mysql.jdbc.Driver",

 url: "jdbc:mysql://172.16.87.247:3306/my_db",

 properties: { user: "myuser", password: "mypassword" }

}

IBM DB2

JDBC driver: http://www-01.ibm.com/support/docview.wss?uid=swg21363866

Connection properties: http://www-

01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.ht

m?cp=SSEPGG_9.1.0%2F8-1-4-2-1-0

Example declarations:

testdb:

{

 type: 'db2',

 host: '172.16.87.248',

 port: '50000',

 database: 'my_db',

 user: 'myuser',

 password: 'mypassword'

}

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/db2jcc4.jar"],

 class_name: "com.ibm.db2.jcc.DB2Driver",

 url: "jdbc:db2://172.16.87.248:50000/my_db",

http://dev.mysql.com/doc/connectorj/en/connectorjreferenceconfigurationproperties.html
http://dev.mysql.com/doc/connectorj/en/connectorjreferenceconfigurationproperties.html
http://www01.ibm.com/support/docview.wss?uid=swg21363866
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210
http://www01.ibm.com/support/knowledgecenter/SSEPGG_9.1.0/com.ibm.db2.udb.apdv.java.doc/doc/tjvjcccn.htm?cp=SSEPGG_9.1.0%2F814210

Cisco Crosswork Situation Manager 8.0.x Developer Guide

568

 properties: { user: "myuser", password: "mypassword" }

}

Oracle

JDBC driver: http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

Connection properties: http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm

Example declarations:

testdb:

{

 type: 'oracle',

 host: '172.16.87.248',

 port: '1521',

 database: 'my_db',

 user: 'myuser',

 password: 'mypassword'

}

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/ojdbc6.jar"],

 class_name: "oracle.jdbc.OracleDriver",

 url: "jdbc:oracle:thin:System/myuser@172.16.87.248:1521:my_db"

}

PostgreSql

JDBC driver: https://jdbc.postgresql.org/download.html

Connection properties: http://jdbc.postgresql.org/documentation/head/connect.html

Example declarations:

testdb:

{

 type: 'postgresql',

 host: '172.16.87.248',

 port: '5432',

 database: 'my_db',

 user: 'myuser',

 password: 'mypassword'

}

testdb:

{

 jar_files: ["/usr/share/moogsoft/lib/cots/postgresql-9.3-1102.jdbc41.jar"],

 class_name: "org.postgresql.Driver",

 url: "jdbc:postgresql://172.16.87.248:5432/my_db",

 properties: { user: "myuser", password: "mypassword" }

}

Graph Topology

The Graph Topology Moobot module allows you to create, manage and query multiple named

topologies, and their nodes and links.

If your topology .csv file is larger than 40 MB Moogsoft recommends using the Topology Loader utility.

See Load a Topologyfor information on the loader utility.

http://www.oracle.com/technetwork/database/features/jdbc/index091264.html
http://docs.oracle.com/cd/B28359_01/java.111/b31224/urls.htm
https://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/documentation/head/connect.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

569

Load the module

The Graph Topology module is available to load into any standard Moobot. To load it, define a new

global variable at the top of the Moobot Javascript file. For example:

var graphtopo = MooBot.loadModule('GraphTopo');

Method reference

The Graph Topology module uses the following methods.

createTopologies

Creates one or more topologies.

Request arguments

The method takes the following arguments.

Name Type Required Description

topologies Array of JSON

objects

Yes One or more topology objects containing topology

properties.

Topology properties

The topology objects can contain the following properties:

Name Type Required Description

name String Yes Name of the topology. Must be less than 256 characters.

active Boolean No Flag to set the topology to active (true) or inactive (false). Default

is false.

description String No Description of the topology. Must be less than 1001 characters.

Response

The method returns the following response.

Type Description

Array of JSON

objects

One or more objects containing the details of any topologies that could not be

created.

Example

Example function using the createTopologies method to create two topologies named "host" and

"location":

function createTopologies()

{

 logger.warning("Creating topologies");

 var topo1 =

 {

 name: "host",

 description: "Host-based topology",

 active: true

 };

Cisco Crosswork Situation Manager 8.0.x Developer Guide

570

 var topo2 =

 {

 name: "location",

 description: "Location-based topology",

 active: true

 };

 var topologiesNotCreated = graphtopo.createTopologies([topo1, topo2]);

 logger.warning("Returned object to string from createTopologies: " +

JSON.stringify(topologiesNotCreated));

}

updateTopologies

Updates one or more topologies.

You can also use this function to create a topology. If name does not exist the endpoint creates it.

Request arguments

The method takes the following arguments.

Name Type Required Description

topologies Array of JSON

objects

Yes One or more topology objects containing topology

properties.

Topology properties

The topology objects can contain the following properties:

Name Type Required Description

name String Yes Name of the topology. Must be less than 256 characters. You cannot

update the topology name. To rename a topology use the

replaceTopology method.

active Boolean No Flag to set the topology to active (true) or inactive (false).

description String No Description of the topology. Must be less than 1001 characters.

Response

The method returns the following response.

Type Description

Array of JSON

objects

One or more objects containing the details of any topologies that could not be

updated.

The request fails if any of the following are true:

1. The topology you're trying to update does not exist.

2. The topology you're trying to update is being used to filter a Recipe and you are trying to make it

inactive.

Example

Example function using the updateTopologies method to update the descriptions of two topologies

named "host" and "location":

function updateTopologies()

{

 logger.warning("Updating topologies");

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

571

 var topo1 =

 {

 name: "host",

 description: "Host-based network topology"

 };

 var topo2 =

 {

 name: "location",

 description: "Location-based network topology"

 };

 var topologiesNotUpdated = graphtopo.updateTopologies([topo1, topo2]);

 logger.warning("Returned object to string from updateTopologies: " +

JSON.stringify(topologiesNotUpdated));

}

deleteTopology

Deletes a single topology. Note the following:

 You cannot delete a topology if it's being used to filter a Recipe.

 Deleting a topology will impact your ability to restore associated Recipes in future. In order to

restore a Recipe that filters on a named topology, the topology must still exist in Cisco Crosswork

Situation Manager.

Request arguments

The method takes the following arguments.

Name Type Required Description

name String Yes Name of the topology.

Response

The method returns the following response.

Type Description

Boolean true: Topology was deleted.

false: Topology was not deleted.

The request fails if name is being used to filter a Recipe, or does not exist.

Example

Example function using the deleteTopology method to delete a topology named "host":

function deleteTopo(host)

{

 var deleteTopoResult = graphtopo.deleteTopology(host);

 logger.warning("Returned object to string from deleteTopo: " +

JSON.stringify(deleteTopoResult));

}

getTopology

Retrieves a single topology.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

572

You can also use this function to determine whether a topology exists. If getTopology returns null, the

specified topology does not exist.

Request arguments

The method takes the following arguments.

Name Type Required Description

name String Yes Name of the topology.

Response

The method returns the following response.

Type Description

JSON object Object containing the topology details.

Example

Example request using the getTopology method to retrieve a topology named "host":

var topology = graphtopo.getTopology(host);

The response object contains details of the "host" topology:

{

 name: "host",

 description: "Host-based topology",

 active: true

}

getActiveTopologies

Retrieves all active topologies.

Request arguments

The method takes no request arguments.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing the details of active topologies.

Example

Example request using the getActiveTopologies method to retrieve all active topologies:

var active = graphtopo.getActiveTopologies();

The response object contains details of all active topologies:

[

 {

 name: "host",

 description: "Host-based topology",

 active: true

 },

 {

 name: "location",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

573

 description: "Location-based topology",

 active: true

 }

]

getInactiveTopologies

Retrieves all inactive topologies.

Request arguments

The method takes no request arguments.

Response

The method returns the following response.

Type Description

JSON object Object containing the details of all inactive topologies.

Example

Example request using the getInactiveTopologies method to retrieve all inactive topologies:

var inactive = graphtopo.getInactiveTopologies();

The response object contains details of all inactive topologies:

[

 {

 name: "virtual",

 description: "Virtual topology",

 active: false

 },

 {

 name: "physical",

 description: "Physical topology",

 active: false

 }

]

getTopologiesForSituation

Retrieves all topologies linked to a specified Situation.

Request arguments

The method takes the following arguments.

Name Type Required Description

sitn_id Number Yes ID of the Situation for which to retrieve topologies.

Response

The method returns the following response.

Type Description

Array of One or more objects containing the details of topologies linked to the Situation, including

Cisco Crosswork Situation Manager 8.0.x Developer Guide

574

JSON objects topology name and a flag indicating whether this topology caused the Situation to be

created.

Example

Example request using the getTopologiesForSituation method to retrieve all topologies linked to

Situation 12:

var situationtopos = graphtopo.getTopologiesForSituation(12);

The response object contains details of all linked topologies and their causal flags:

[

 {

 "name" : "host",

 "causal" : true

 },

 {

 "name" : "location",

 "causal" : false

 }

]

cloneTopology

Clones an existing topology and sets the clone to inactive.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology to clone.

cloneTopoName String Yes Name for the cloned topology. Must be less than 256 characters.

Response

The method returns the following response.

Type Description

JSON object Object containing details of the cloned topology.

Example

Example function using the cloneTopology method to clone the "host" topology and name the clone

"host_new":

function cloneTopology(host, host_new)

{

 logger.warning("Calling function cloneTopology for topo: [" + host + "] -

new name will be: [" + host_new + "]");

 var clonedTopology = graphtopo.cloneTopology(host, host_new);

 logger.warning("Returned object to string from cloneTopology: " +

JSON.stringify(clonedTopology));

}

The response contains details of the "host_new" topology:

{

 "name" : "host_new",

 "description" : "host-based topology",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

575

 "active": false

}

replaceTopology

Replaces an existing topology with another topology. This process deletes the original topology. You

can use the clone and replace Graph Topology methods to update a copy of an existing topology and

then replace a topology with the updated version.

You can also use this method to rename a topology.

When a topology is replaced:

 The original topology and its nodes and links are deleted.

 Alerts that reference the original topology are updated to reference the replacement topology.

 If the replacement topology is active, its processing state in the database is set to outdated. This

triggers the graph analyser process to run as part of the Housekeeper Moolet to calculate Vertex

Entropy for the topology nodes. See Topologies.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Replace: The name of the existing topology to replace.

Rename: The new topology name.

topology JSON

object

Yes Object containing properties of the replacing topology, or the

topology to rename.

Topology properties

The topology object contains the following properties:

Name Type Required Description

name String Yes Replace: Name of the replacing topology.

Rename: The topology to rename.

active Boolean No Sets the replaced or renamed topology to active (true) or inactive

(false). Replaced topologies take the active status of the replacing

topology by default.

Response

The method returns the following response.

Type Description

JSON object Object containing details of the newly replaced or renamed topology.

The request fails if any of the following are true:

 name is being used to filter a Recipe, or does not exist.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDd4df5b02d3a235d59111a185063a477d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

576

 topoName is being used to filter a Recipe and you are trying to make it inactive.

Example

Example function using the replaceTopology method to replace the "host" topology with the

"host_new" topology and set its status to active:

function replaceTopology(host, host_new)

{

 logger.warning("Calling function replaceTopology - topology to replace: [" +

host + "], replacing topology: [" + host_new + "]");

 var replacingTopology = { name: host_new, active: true };

 var replacedTopology = graphtopo.replaceTopology(host, replacing_topology);

 logger.warning("Returned object to string from replaceTopology: " +

JSON.stringify(replacedTopology));

}

In this example, if there is no topology named "host" the "host_new" topology is renamed "host".

createNodes

Creates nodes in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology in which to create the nodes.

nodes Array of JSON objects Yes One or more node objects containing node properties.

Node properties

The node objects can contain the following properties:

Name Type Required Description

name String Yes Name of the node. Must be less than 256 characters.

description String No Description of the node. Must be less than 1001 characters.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing the details of any nodes that could not be created.

Example

Example function using the createNodes method to create two nodes in the "host" topology named

"node1" and "node2":

function createNodes()

{

 logger.warning("Creating nodes");

 var node1 =

 {

 name: "node1",

 description: "First node"

 };

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

577

 var node2 =

 {

 name: "node2",

 description: "Second node"

 };

 var nodesNotCreated = graphtopo.createNodes(host, [node1, node2]);

 logger.warning("Returned object to string from createNodes: " +

JSON.stringify(nodesNotCreated));

}

updateNodes

Updates specified nodes in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology in which to create the nodes.

nodes Array of JSON objects Yes One or more node objects containing node properties.

Node properties

The nodes objects can contain the following properties:

Name Type Required Description

name String Yes Name of the node. You cannot update the node name. To rename a

node delete it and recreate it with a new name.

description String No Description of the node. Must be less than 1001 characters.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing the details of any nodes that could not be updated.

Example

Example function using the updateNodes method to update two nodes in the "host" topology named

"node1" and "node2":

function updateNodes()

{

 logger.warning("Updating nodes");

 var node1 =

 {

 name: "node1",

 description: "Primary node"

 };

 var node2 =

 {

 name: "node2",

 description: "Secondary node"

Cisco Crosswork Situation Manager 8.0.x Developer Guide

578

 };

 var nodesNotUpdated = graphtopo.updateNodes(host, [node1, node2]);

 logger.warning("Returned object to string from updateNodes: " +

JSON.stringify(nodesNotUpdated));

}

deleteNodes

Deletes specified nodes in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology that contains the nodes to delete.

nodes Array of Strings Yes Names of one or more nodes to delete.

Response

The method returns the following response.

Type Description

Array of Strings Names of one or more nodes that could not be deleted.

Example

Example function using the deleteNodes method to delete two nodes in the "host" topology named

"node1" and "node2":

function deleteNodes()

{

 logger.warning("Deleting nodes");

 var nodesNotDeleted = graphtopo.deleteNodes(host, ["node1", "node2"]);

 logger.warning("Returned object to string from deleteNodes: " +

JSON.stringify(nodesNotDeleted));

}

getNode

Retrieves details of a single node in a specified topology.

You can also use this function to determine whether a node exists. If getNode returns null, the specified

node does not exist.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the node.

nodeName String Yes Name of the node.

Response

The method returns the following response.

Type Description

JSON object Object containing the node details.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

579

Example

Example using the getNode method to return details of "node1" in the "host" topology.

var node1 = graphtopo.getNode("host", "node1");

The response object contains the node details:

{

 name: "node1",

 description: "First node"

}

getAllNodes

Retrieves details of all nodes in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the nodes.

Response

The method returns the following response.

Type Description

JSON object Object containing details of the nodes.

Example

Example using the getAllNodes method to return details of all nodes in the "host" topology:

var allNodes = graphtopo.getAllNodes("host");

The response object contains details of the nodes in the "host" topology:

[

 {

 name: "node1",

 description: First node

 },

 {

 name: "node2",

 description: Second node

 }

]

isConnected

Checks whether a specified node is part of a topology.

Request arguments

The method takes the following arguments.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

580

Name Type Required Description

topoName String Yes Name of the topology that contains the node.

nodeName String Yes Name of the node.

Response

The method returns the following response.

Type Description

Boolean true: Node in topology.

false: Node not in topology.

Example

Example using the isConnected method to check whether the "node1" node is in the "host"

topology.

var isNodeInTopo = graphtopo.isConnected("host", "node1");

numberOfConnections

Counts the number of links from a specified node in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology that contains the node.

nodeName String Yes Name of the node for which to count the links.

Response

The method returns the following response.

Type Description

Number The number of connections from the node. Returns 0 if the node does not exist or has no

connections, or the topology does not exist.

Example

Example using the numberOfConnections method to return the number of connections from node

"node1" in the "host" topology:

var return = topo.numberOfConnections("host", "node1");

logger.warning("numberOfConnections -> " + return);

This example logs the following message:

WARN : ... [CLogModule.java]:99 +|numberOfConnections -> 3|+

distance(topoName, sourceNode, sinkNode)

Calculates the number of hops between two specified nodes in a specified topology.

Request arguments

The method takes the following arguments.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

581

Name Type Required Description

topoName String Yes Name of the topology that contains the nodes.

sourceNode String Yes Name of the source node. Must be less than 256 characters. Note that

topology links in Cisco Crosswork Situation Manager are bidirectional. If

the node does not exist, the endpoint will create it.

sinkNode String Yes Name of the sink node. Must be less than 256 characters. Note that

topology links in Cisco Crosswork Situation Manager are bidirectional. If

the node does not exist, the endpoint will create it.

Response

The method returns the following response.

Type Description

Double The number of hops between the nodes. Returns -1 if the nodes are not connected.

Example

Example function using the distance method to calculate the number of hops between nodes

"node1" and "node2" in the "host" topology:

function distance(host, node1, node2)

{

 logger.warning("Calling function distance for topo: [" + host + "] and

nodes: [" + node1 + "], [" + node2 + "]");

 var distance = graphtopo.distance(host, nost1, node2);

 logger.warning("Returned object to string from distance: " +

JSON.stringify(distance));

}

distance(topoName, sourceNode, sinkNode, radius)

Calculates the number of hops between two specified nodes in a specified topology, up to a maximum

number of hops.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology that contains the nodes.

sourceNode String Yes Name of the source node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

radius Double Yes Maximum number of hops to count.

Response

The method returns the following response.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

582

Type Description

Double The number of hops between the nodes. Returns -1 if the nodes are not connected or the number

of hops is larger than the radius.

Example

Example function using the distance method to calculate the distance between nodes "node1" and

"node2" in the "host" topology, where the number of hops is 5 or less:

function distance(host, node1, node2, 5.0)

{

 logger.warning("Calling function distance (with max hops) for topo: [" +

host + "] and nodes: [" + node1 + "], [" + node2 + "] and radius: [5.0]");

 var distanceWithMaxHops = graphtopo.distance(host, node1, node2, 5.0);

 logger.warning("Returned object to string from distance (with max hops): " +

JSON.stringify(distance));

}

createLinks

Creates links between specified nodes in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology in which to create the links.

links Array of JSON objects Yes One or more link objects containing link details.

Link properties

The link objects can contain the following properties:

Name Type Required Description

sourceNode String Yes Name of the source node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

description String No Description of the link. Must be less than 1001 characters.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing the details of any links that could not be created.

Example

Example function using the createLinks method to create links "node1" > "node2" and "node2" >

"node3" in the "host" topology:

function createLinks()

{

 logger.warning("Creating links");

 var link1 =

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

583

 sourceNode: "node1",

 sinkNode: "node2",

 description: "link1"

 };

 var link2 =

 {

 sourceNode: "node2",

 sinkNode: "node3",

 description: "link2"

 };

 var linksNotCreated = graphtopo.createLinks(host, [link1, link2]);

 logger.warning("Returned object to string from createLinks: " +

JSON.stringify(linksNotCreated));

}

getLink

Retrieves details of a link between specified nodes in a specified topology.

You can also use this function to determine whether a link exists. If getLink returns null, the specified

link does not exist.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the link.

sourceNode String Yes Name of the source node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

Response

The method returns the following response.

Type Description

JSON object Object containing the link details.

Example

Example using the getLink method to return details of the link between "node1" and "node2" in the

"host" topology.

var linkdetails = graphtopo.getLink("host", "node1", "node2");

The response object contains the link details:

{

 description: "link1",

 sourceNode: "node1",

 sinkNode: "node2"

}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

584

getAllLinksForTopology

Retrieves all links for a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the links.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing details of the links.

Example

Example using the getAllLinksForTopology method to retrieve details of all links in the "host"

topology:

var linkDetails = graphtopo.getAllLinksForTopology("host");

The response object contains details of the links:

[

 {

 description: "link1",

 sourceNode: "node1",

 sinkNode: "node2"

 },

 {

 description: "link2",

 sourceNode: "node2",

 sinkNode: "node3"

 }

]

getAllLinksForNode

Retrieves all links for specified node in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the links.

nodeName String Yes Name of the node.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing details of the links.

Example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

585

Example using the getAllLinksForNode method to retrieve link details for the "node2" node in the

"host" topology:

var linksForNode = graphtopo.getAllLinksForNode("host", "node2");

The response object contains details of the links:

[

 {

 description: "link1",

 sourceNode: "node2",

 sinkNode: "node1"

 },

 {

 description: "link2",

 sourceNode: "node2",

 sinkNode: "node3"

 }

]

deleteAllLinksForNode

Deletes all links for a specified node in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

topoName String Yes Name of the topology containing the links.

nodeName String Yes Name of the node.

Response

The method returns the following response.

Type Description

Boolean true: Links were deleted.

false: Links were not deleted.

Example

Example using the deleteAllLinksForNode method to delete all links for the "node2" node in the

"host" topology:

var deleteLinks = graphtopo.deleteAllLinksForNode("host", "node2");

deleteLinks

Deletes one or more links in a specified topology.

Request arguments

The method takes the following arguments.

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

586

topoName String Yes Name of the topology that contains the links to delete.

links Array of JSON objects Yes One or more link objects containing link details.

Link properties

The link objects can contain the following properties:

Name Type Required Description

sourceNode String Yes Name of the source node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

sinkNode String Yes Name of the sink node. Note that topology links in Cisco Crosswork

Situation Manager are bidirectional.

Response

The method returns the following response.

Type Description

Array of JSON objects One or more objects containing the details of any links that could not be deleted.

Example

Example function using the deleteLinks method to delete two links in the "host" topology between

"node1" ands "node2", and "node2" and "node3":

function deleteLinks()

{

 logger.warning("Deleting links");

 var link1 =

 {

 sourceNode: "node1",

 sinkNode: "node2"

 };

 var link2 =

 {

 sourceNode: "node2",

 sinkNode: "node3"

 };

 var linksNotDeleted = graphtopo.deleteLinks("host", [link1, link2]);

 logger.warning("Returned object to string from deleteLinks: " +

JSON.stringify(linksNotDeleted));

}

Deprecated methods

The following Topology methods are no longer supported.

loadTopology

Use getTopology.

isConnected(node)

Use getNode.

connected(node1, node2)

Use isConnected.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

587

numberOfConnections(node)

Use numberOfConnections.

addEdge(node1, node2)

Use createLinks.

addEdge(node1, node2, weight)

Use createLinks.

distance(node1, node2)

Use distance(topoName, sourceNode, sinkNode).

distance(node1, node2, radius)

Use distance(topoNode, sourceNode, sinkNode, radius).

radialDelta(node1, node2)

Use distance(topoName, sourceNode, sinkNode).

Kafka

The Kafka module allows you to broadcast information on a Kafka bus. For example, you can use it to

push alert or Situation data to a data lake via Kafka.

Load the module

The Kafka Moobot module is available to load into any standard Moobot. To load it, define a new global

variable at the top of the Moobot Javascript file. For example:

var kafka = MooBot.loadModule('Kafka');

Method reference

The Kafka module uses the following methods.

connect

Establishes a connection to one or more Kafka brokers with defined connection properties.

Request arguments

The method takes the following arguments.

Name Type Required

properties Object Yes

Connection properties

The properties object can include the following keys:

Name Type Required Description

servers List Yes Specifies the Kafka broker or

Cisco Crosswork Situation Manager 8.0.x Developer Guide

588

brokers to connect to.

connection_id String Yes Name of the connection.

use_ssl Boolean Yes Whether to connect using SSL.

ssl_truststore_location String No Path to the SSL truststore file.

ssl_truststore_password String No Password for the SSL truststore

file.

ssl_truststore_encrypted_password String No Encrypted password for the SSL

truststore file.

ssl_key_password String No Password for the SSL certificate.

ssl_key_encrypted_password String No Encrypted password for the SSL

certificate.

ssl_endpoint_identification_algorithm String No Endpoint identification algorithm to

validate the server hostname.

compression_codec String No Compression codec to use. One of:

none

gzip

lz4

snappy

use_sasl Boolean No Whether to connect using SASL.

sasl_mechanism String No SASL mechanism to use. If you set

a SASL mechanism you must set

use_sasl to true. One of:

PLAIN

SCRAM-SHA-256

SCRAM-SHA-512

OAUTHBEARER

Choose from PLAIN, SCRAM-SHA-

256, SCRAM-SHA-512 and

OAUTHBEARER.

security_protocol String No SASL protocol to use. If you set a

SASL protocol you must set

use_sasl to true. One of:

SASL_SSL

SASL_PLAINTEXT

sasl_jaas_config String No Credentials for JAAS

authentication.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

589

additional_properties Various No Kafka consumer properties. Any

properties you define here take

priority over any configurations.

See the Apache Kafka

documentation for descriptions of

these properties.

sasl_kerberos_service_name String No Kerberos service name.

kerberos_conf_file_path String No Path to the Kerberos configuration

file.

kerberos_debug_log Boolean No Whether to enable Kerberos

authentication debug logs.

Response

The method returns the following parameter.

Type Description

Object A Java object containing connection details, depending on the requested connection properties.

Returns null if no connection can be made.

Example

Example use of the connect method without SSL:

var conn = kafka.connect(

{

 servers: ["my.kafka.broker:9092", "my.other.kafka.broker:9092"],

 connection_id: "KafkaConnection",

 use_ssl: false

});

Example use of the connect method using SSL:

var conn = kafka.connect(

{

 servers: ["my.kafka.broker:9092", "my.other.kafka.broker:9092"],

 connection_id: "KafkaConnection",

 use_ssl: true,

 ssl_truststore_location: "/path/to/truststore",

 ssl_truststore_password: "test1234",

 ssl_keystore_location: "/path/to/keystore",

 ssl_keystore_password: "test1234",

 ssl_key_password: "test1234",

 ssl_endpoint_identification_algorithm: "",

 use_sasl: false

});

Example use of the connect method using SASL:

var conn = kafka.connect(

{

 servers: ["my.kafka.broker:9092", "my.other.kafka.broker:9092"],

 connection_id: "KafkaConnection",

 use_ssl: false,

https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#consumerconfigs

Cisco Crosswork Situation Manager 8.0.x Developer Guide

590

 use_sasl: true,

 sasl_mechanism: "PLAIN",

 security_protocol: "SASL_PLAINTEXT",

 sasl_jaas_config: "org.apache.kafka.common.security.plain.PlainLoginModule

required username=myuser password=mypassword;",

 additional_properties:{

 "sasl.login.refresh.window.factor": "0.8",

 "sasl.login.refresh.window.jitter": "0.05",

 "sasl.login.refresh.min.period.seconds": "60",

 "sasl.login.refresh.min.buffer.seconds": "300"

 },

 sasl_kerberos_service_name: "kafka",

 kerberos_conf_file_path : "/etc/krb5.conf",

 kerberos_debug_log : true

});

send

Sends a message to the Kafka broker.

Request arguments

The method takes the following arguments.

Name Type Required

topic String Yes

key String No

message JSON Yes

Response

The method returns the following parameter:

Type Description

Boolean Indicates whether the send operation was successful.

Example

Example use of the send method:

if (connection)

{

 connection.send("myTopic", {test_field: "value"});

 connection.send("myTopic", "myKey", {test_field: "value"});

}

close

Closes the connection to the Kafka broker.

Request arguments

The method takes no arguments.

Response

None.

Examples

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

591

Example function using the Kafka module:

function sendToKafka(alert)

{

 var connection = kafka.connect({

 servers: ["my.kafka.broker:9092", "my.other.kafka.broker:9092"],

 connection_id: "KafkaConnection",

 use_ssl: false

 });

 if (connection){

 boolean success = connection.send("myTopic", {test_field: "value"});

 if (!success){

 logger.warning("Failed to send message to Kafka");

 }

 }

}

Logger

Warning

The Logger module was deprecated with the release of Cisco Crosswork Situation Manager v7.1. See

Configure Logging for new logging details.Configure Logging

The Logger module sets the log level in Moogfarmd, allowing log messages to be written to the

common Moogfarmd log file. See Configure Logging for more information on configuring

logging.Configure Logging

When you create a Moobot you can use the Logger module for debugging. Writing a log message to a

file is an IO operation, and comes with execution cost. When developing a Moobot it can be helpful to

include a number of logging statements. Once the Moobot is operational, however, it is best to keep

logging to a minimum.

Load the module

The Logger module is available to load into any standard Moobot. To load it, define a new global

variable at the top of the Moobot Javascript file. For example:

var logger = MooBot.loadModule('Logger');

Method reference

The Logger module uses the following methods. Note that printf Logger functions have been

deprecated in favour of the 'single string argument' version. For more information see the Wikipedia

entry for Printf format string.

debug

Sends a debug log message (the lowest severity level). You can use the debug method to log detailed

troubleshooting information in non-production environments.

Request arguments

The method takes the following arguments.

Name Type Required Description

file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba
file://document/preview/11693%23UUID6c5a18c5db3af17ad14c9a8382cd0dba
https://en.wikipedia.org/wiki/Printf_format_string

Cisco Crosswork Situation Manager 8.0.x Developer Guide

592

logmessage String Yes A log message formed of a single string of JavaScript variables or

objects. Use concatenation to form multiple arguments.

Response

None.

Example

Example use of the debug method to log a message:

logger.debug("A debug message");

This example logs the following message:

DEBUG:... ...A debug message

info

Sends an information log message (the intermediate severity level). You can use it to log changing a

property, for example.

Request arguments

The method takes the following arguments.

Name Type Required Description

logmessage String Yes A log message formed of a single string of JavaScript variables or

objects. Use concatenation to form multiple arguments.

Response

None.

Example

Example use of the info method to log a message:

{

 var dispText= "Reset";

 var dispNum= 2;

 var aReal= 3.141593;

 logger.info("Counter: "+ dispText);

 logger.info("Severity low. Level: "+ dispNum + ". ...Pi = "+ aReal);

}

This example logs the following messages:

INFO :... ...Counter: Reset

INFO :... ...Severity low. Level: 2. ...Pi = 3.141593

warning

Sends a warning message (high severity level). You can use it to log behavior that impacts normal

operation of the system.

Request arguments

The method takes the following arguments.

Name Type Required Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

593

logmessage String Yes A log message formed of a single string of JavaScript variables or

objects. Use concatenation to form multiple arguments.

Response

None.

Example

Example use of the warning method to log a message:

{

 var aString= "CPU@ >90%";

 var intHigh= 4;

 logger.warning("Warning: "+ aString);

 logger.warning("Severity high. Level: "+ intHigh);

}

This example logs the following messages:

WARN :... ...Warning: CPU@ >90%

WARN :... ...Severity high. Level: 4

fatal

Sends a fatal log message (the highest severity setting). You can use it to log extreme circumstances,

such as an unrecoverable failure that caused Moogfarmd to exit.

Request arguments

The method takes the following arguments.

Name Type Required Description

logmessage String Yes A log message formed of a single string of JavaScript variables or

objects. Use concatenation to form multiple arguments.

Response

None.

Example

Example use of the fatal method to log a message:

{

 var intHighest= 5;

 logger.fatal("Severity exceeds "+ intHighest + "! Restart required");

}

This example logs the following message:

FATAL:... ...Severity exceeds 5! Restart required

Cisco Crosswork Situation Manager 8.0.x Developer Guide

594

Mailer

The Mailer module allows you to send an email message in response to events occurring in Cisco

Crosswork Situation Manager. For example, you can use it in the Notifier.js Moobot to send email to

users when they are invited to a Situation Room.

Load the module

The Mailer module is available to load into any standard Moobot. To load it, define a new global variable

at the top of the Moobot Javascript file. For example:

var mailer = MooBot.loadModule('Mailer');

Method reference

The Mailer module uses the following methods.

intTransport

Defines the mail server information needed to send the email in the send function.

Request arguments

The method takes the following arguments.

Name Type Required Description

mailerObj Object Yes A JSON object specifying connection properties.

Use the following port guidelines:

1. If using port 587, set start_tls to true and use_tls to false.

2. If using port 465, set start_tls to true and use_tls to true.

3. If using port 25, set start_tls to false and use_tls to false (or comment out both properties).

If you omit the password field, an unauthenticated connection is created between Mailer and the

server.

Response

None.

Example

Example use of the intTransport method to specify a mailserver, port and other connection details:

mailer.initTransport(

{

 server : "smtp.mailserver.com",

 port : 2525,

 account : "user@mailserver.com",

 password : "m00gsoft",

 isEncrypted : false,

 start_tls : false,

 use_tls : false

});

send

Sends the email message. You must define a callback function in the same Moobot that is referenced in

the mailMsg executed after a successful transmission.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

595

Request arguments

The method takes the following arguments.

Name Type Required Description

mailerObj Object Yes A JSON object containing the fields required to populate the email

message.

Response

None.

Example

Example use of the send method to send an email message:

var mailMsg = {

 to : "destination@mail.com",

 subject : "Situation Room Notification",

 message : "email body",

 invite : invite, // do not change

 bot : MooBot.self, // do not change

 callback: "sendSuccess", // the name of the function to run in this Moobot

 args : [invite_id, "Sent successfully", vector] // do not change

 };

mailer.send(mailMsg);

Moolet Informs

The Moolet Informs module enables the exchange of messages between Moolets. You can configure a

Moolet to update other Moolets. For example, after you label some alerts you can configure the module

to inform the ticketing Moolet to update the severity of a ticket, based on the new label.

To use Moolet Informs, you need:

1. A Moolet and associated Moobot to send inform messages from.

2. One or more Moolets to receive the inform messages. These are your "targets".

Load the module

The Moolet Informs module is available to load into any standard Moobot. To load it, define a new

global variable at the top at the top of the Javascript file of the Moobot associated with the Moolet you

want to send messages from. For example:

var mooletInforms = MooBot.loadModule('MooletInforms');

Configure the Moobot as outlined below.

Configure the module

To configure the Moolet Informs module:

1. Create the Moolet Inform using the create method as follows, passing the target Moolets that

receive messages from this source:

var inform = mooletInforms.create("AlertRulesEngine", "Cookbook");

Cisco Crosswork Situation Manager 8.0.x Developer Guide

596

Or, you can choose not to specify the target Moolets in this step:

var inform = mooletInforms.create();

2. Add values to the inform using one or more of the following:

o inform.setSubject: Subject of the inform message. You can use this to enable a different

workflow within the target Moobot.

o inform.setPayload: Any CEvent object. See Events for more information.

o inform.setDetails: Details of any other data you want to send as a JSON object.

3. If you did not specify the target Moolets previously, specify them now:

o inform.setTarget: List of target Moolets to receive messages.

4. You can configure message sending in two ways. If you have already set your targets:

o inform.send();

If you have not set your targets, include them in the method call:

o inform.send("AlertRulesEngine", "Cookbook");

5. Edit the configuration file for each target Moolet and add an event handler to listen for the Inform

messages:

events.onEvent("informReceive",

constants.eventType("mooletInforms.ExampleMoolet")).listen();

6. The listening target Moolet can access the data in two ways. You can use the getSubject,

getPayload and getDetails methods:

function informReceive(inform)
{
 var subject = inform.getSubject();
 var payload = inform.getPayload();
 var details = inform.getDetails();
 logger.warning("Received Moolet Inform. Subject [" + subject + "] Payload ["

+ payload + "] Details [" + details + "]");
}

Alternatively, you can use the value method:

function informReceive(inform)
{
 var subject = inform.value("subject");
 var payload = inform.value("payload");
 var details = inform.value("details");
 logger.warning("Received Moolet Inform. Subject [" + subject + "] Payload ["

+ payload + "] Details [" + details + "]");
}

7. You can configure the Moolet to call a specific method for different subjects in the inform

messages. For example you can configure a Remedy Moolet to listen for a specific subject in the

inform message and route the event to a function:

 events.onEvent("createNewTicket",

constants.eventType("mooletInforms.RemedyMoolet.ticketCreate")).listen();

After you have completed your configuration, inform messages are sent to your target Moolets which

will call any methods you have added.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

597

Method reference

The Moolet Informs module uses the following methods.

create

Creates a Moolet inform message. You can choose to select one or more Moolet targets to receive the

messages, or you can leave the method empty.

Request arguments

The method takes the following arguments.

Name Type Required Description

targets String No A single Moolet or comma separated list of Moolets to target.

Response

The method returns the following parameter.

Type Description

Object A Moolet inform Java object.

Example

The following example uses the create method to set MaintenanceWindowManager and

AlertRulesEngine as targets:

var inform = mooletInforms.create("MaintenanceWindowManager",

"AlertRulesEngine");

setSubject

Sets the subject for Moolets to listen for on the Message Bus.

Request arguments

The method takes the following arguments:

Name Type Required Description

Subject String Yes Subject the Moolets listen for on the Message Bus.

Response

None.

Example

The following example uses the setSubject method to set the subject "subTopic":

inform.setSubject("subTopic");

setPayload

Sets the payload to a CEvent object. See Events for more information.

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

598

The method takes the following argument:

Name Type Required Description

Payload CEvent Yes A CEvent object that has been passed into the Moobot from the pipeline, or

has been retrieved from MoogDb.

Response

None.

Example

The following example uses the setPayload method to set the payload to the "event" CEvent:

inform.setPayload(event);

setDetails

Sets any other details to send in the Moolet Inform message.

Request arguments

The method takes the following arguments.

Name Type Required Description

setDetails NativeObject Yes A JSON object containing details to send in the message.

Response

None.

Example

The following example uses the setDetails method to send signature, description and source details

in the message.

inform.setDetails({"signature":"Loss of Signal","description":"Loss of

Signal","source":"S-DF_P2_1"});

setTarget

Sets the target Moolets to receive the Moolet Inform messages. Use this method if you did not set the

target Moolets with the create method.

Request arguments

The method takes the following arguments.

Name Type Required Description

targets String Yes A single Moolet or comma separated list of Moolets to target.

Response

None.

Example

The following example uses the setTarget method to set AlertRulesEngine and Cookbook as targets:

inform.setTarget("AlertRulesEngine", "Cookbook");

send

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

599

Sends the Moolet Informs messages to the target Moolets.

Request arguments

The method takes the following arguments.

Name Type Required Description

targets String No A single Moolet or comma separated list of Moolets to target.

Response

None.

Example

The following example uses the send method to send messages to the Cookbook:

inform.send("Cookbook");

Example

The following example uses the Moolet Inform module to send a signature, description and source to

the Cookbook Moolet:

var mooletInforms = MooBot.loadModule('MooletInforms');

var inform = mooletInforms.create();

inform.setSubject("subTopic");

inform.setPayload(event);

inform.setDetails({"signature":"Loss of Signal","description":"Loss of

Signal","source":"S-DF_P2_1"});

inform.send("Cookbook");

Example configuration in the target Moolet:

events.onEvent("handleEvent",

constants.eventType("mooletInforms.EmptyMoolet.event_subject")).listen();

events.onEvent("handleAlert",

constants.eventType("mooletInforms.EmptyMoolet.alert_subject")).listen();

events.onEvent("handleSig",

constants.eventType("mooletInforms.EmptyMoolet.sig_subject")).listen();

Moolet Information API (Bot API)

You can use the Moolet Information API or Bot API methods in a Moobot to obtain contextual

information about the associated Moolet. These methods are useful in automation and other workflows

where you want to verify the Moolet context before performing an action such as sending data.

Method reference

The Moolet Information API uses the following methods.

getType

Retrieves the Moolet type.

Request arguments

The method takes no arguments.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

600

Response

The method returns one of the following parameters.

Type Description

Enumerated type One of the following:

ALERT_BUILDER

ALERT_RULE_ENGINE

COOKBOOK

EMPTY_MOOLET

NOTIFIER

SCHEDULE

SITUATION_MANAGER

TEAMS_MANAGER

WORKFLOW_ENGINE

If the result is WORKFLOW_ENGINE you can use the WorkflowEngine.getMessageType method to

retrieve the Workflow Engine type.

Example

Example use of the getType method:

var MooletType = Bot.getType();

logger.warning(' Moolet type is ...' +MooletType);

getMooletName

Retrieves the Moolet name.

Request arguments

The method takes no arguments.

Response

The method returns the following parameter.

Type Description

String Name of the associated Moolet.

Example

Example use of the getMooletName method:

if((Bot.getType() === Bot.EMPTY_MOOLET))

 {

 logger.warning(Bot.getMooletName() + ' is an empty moolet')

 };

WorkflowEngine.getMessageType

Retrieves the Workflow Engine type. Returns null for non-Workflow Engine Moolets.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

601

Request arguments

The method takes no arguments.

Response

The method returns one of the following parameters.

Type Description

String One of the following:

ALERT

SITUATION

EVENT

null (if the Moolet is not a Workflow Engine)

Example

Example use of the WorkflowEngine.getMessageType method:

if((Bot.getType() === Bot.WORKFLOW_ENGINE)

 && (Bot.workflowEngine.getMessageType() === Bot.workflowEngine.ALERT))

 {

 logger.warning('Moolet ' + Bot.getMooletName() + ' will handle alerts')

 }

Process

The Process module allows you to run and control the execution of another process. You can run a

process in two ways:

 Use the run method to run the process in a separate child process of Moogfarmd.

 Use the runToExit method to run the process and only return when the process exits.

Stop processes with the terminate method. These methods are detailed below.

Load the module

The Process module is available to load into any standard Moobot. To load it, define a new global

variable at the top of the Moobot Javascript file. For example:

var proc = MooBot.loadModule('Process');

Method reference

The Process module uses the following methods.

create

Defines a valid pathname to an executable file that you have permission to execute (or the user that

started Moogfarmd has permissions to execute).

Request arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

602

The method takes the following arguments.

Name Type Required Description

process String Yes Path to an executable file (with permission).

Response

The method returns the following parameter.

Name Type Description

processObj Object An object containing the process to run.

arg

Defines the command line arguments required to run the process.

Request arguments

The method takes the following arguments.

Name Type Required

argString Array of Strings Yes

Response

None.

run

Takes the object returned by the create method and runs the process in a separate child process of

Moogfarmd.

Request arguments

The method takes the following arguments.

Name Type Required

processObj Object Yes

Response

The method returns the following parameter.

 Type Description

Object An object containing the process results.

runToExit

Takes the object returned by the create method, runs the process and returns when the process exits.

Request arguments

The method takes the following arguments.

Name Type Required

processObj Object Yes

Response

The method returns the following parameter.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

603

 Type Description

Object An object containing the process results.

terminate

Stops the process.

Request arguments

The method takes the following arguments.

Name Type Required

processObj Object Yes

Response

None.

Example

The following function runs an external tool thisTool using the Process module:

function runTool(thisTool,toolArgs,toExit)

{

var toolRun=proc.create(thisTool);

 for (var argIdx = 0; argIdx < toolArgs.length ; argIdx++)

 {

 toolRun.arg(toolArgs[argIdx]);

 }

 if (toExit === true)

 {

 proc.runToExit(toolRun);

 var toolResults=toolRun.output();

 toolResults=toolResults.replace("\n","");

 return(toolResults);

 }

 else

 {

 proc.run(toolRun);

 return;

 }

}

Usage:

var toolScript = "/usr/share/moogsoft/scripts/hip_chat.py";

var toolArgs = ["--room=","Support Team", "--sigid=",sigId];

var hipChatData = runTool(toolScript,toolArgs, true);

The above calls the tool runner, retrieves data, runs the process as "run to exit" (runToExit = true).

RabbitMQ

The RabbitMQ module allows you to broadcast information on a RabbitMQ bus. For example, you can

use it to push alert or Situation data to a data warehouse via RabbitMQ.

You cannot connect the RabbitMQ Moobot module to the RabbitMQ instance used by Cisco Crosswork

Situation Manager.

https://en.wikipedia.org/wiki/Data_warehouse

Cisco Crosswork Situation Manager 8.0.x Developer Guide

604

Configure the module

To use the RabbitMQ Moobot module:

 Define a new global object rabbit at the top of a Moobot JavaScript file to load the module.

 Use the connect method to create a new connection to one or more RabbitMQ brokers.

 Use the send method to send the required information.

 Use the close method to close the connection.

Refer to the Examples for more details.

Reference Guide

You can use the following methods in the RabbitMQ Moobot module.

connect

Establishes a connection to one or more RabbitMQ brokers with defined connection properties.

You cannot connect the RabbitMQ Moobot module to the RabbitMQ instance used by Cisco Crosswork

Situation Manager.

Request Argument

Name Type Description

<properties> Object A JavaScript object containing connection properties. See below.

RabbitMQ Connection Properties

The RabbitMQ module connect method defines connection properties as a Javascript object, which

may include the following keys:

Key Description

brokers Top-level container for one or more target RabbitMQ brokers. For each broker,

define:

host: Hostname or IP address of the RabbitMQ broker.

port: Port of the RabbitMQ broker.

user Username to connect to RabbitMQ.

password Username to connect to RabbitMQ.

timeout Length of time to wait before halting a connection or read attempt, in milliseconds.

Defaults to 10,000.

vhost Name of the RabbitMQ virtual host. Optional.

ssl Top-level container for the SSL configuration. Optional.

ssl_protocol The SSL protocol to use. If not specified, TLSv1.2 is used by default.

server_cert_file Name of the SSL root CA file.

client_cert_file Name of the SSL client certificate.

client_key_file Name of the SSL client key file. Must be in PKCS#8 format. Refer to Message

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

605

System SSL for more information.

Return Parameter

Type Description

Object A Java object containing connection details, depending on the requested connection properties.

Returns null if no connection can be made.

Example

{

 brokers: [

 {

 host: "rabbithost",

 port: 5672

 }],

 user: "rabbitmq_admin",

 password: "78smr9!b",

 timeout: 10000,

 vhost: "rabbitvhost",

 ssl: {

 ssl_protocol: "TLSv1.2",

 server_cert_file: "server.pem",

 client_cert_file: "client.pem",

 client_key_file: "client.key"

 }

}

send

Sends a message to the RabbitMQ broker. Refer to the basic class in the RabbitMQ AMQP 0-9-1

Reference for a list of keys that you can specify in the message properties.

Name Type Description

Exchange String The RabbitMQ exchange.

RoutingKey String The RabbitMQ routing key.

Properties String or Object Message properties in one of the following formats:

Plain text

JSON Object payload

JSON Array payload

Message String The message to send.

Return Parameter

None.

Example

connection.send("direct_logs", "severity",

{

 content-type : "text/xml",

https://www.rabbitmq.com/amqp091reference.html
https://www.rabbitmq.com/amqp091reference.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

606

 reply-to : "greetings.hi",

 headers : {"server" "app5.myapp.megacorp.com" "cached" false}

},

 "<Priority>1</Priority>"

)

connection.send("topic_logs", "topic", {contentType: "text/xml"},

"<Priority>1</Priority>");

close

Closes the connection to the RabbitMQ broker.

Request Arguments

None.

Return Parameter

Type Description

Boolean Indicates whether the close operation was successful.

Examples

The following examples demonstrate the use of the RabbitMQ Moobot module:

var rabbit = MooBot.loadModule('RabbitMQ');

var connection = rabbit.connect({

 brokers:[

 {

 host:"myHost",

 port:5672

 }

],

 user:"test",

 password:"test",

 timeout:10000,

 vhost:"myVHost",

 ssl:{

 ssl_protocol:"TLSv1.2",

 server_cert_file:"server.pem",

 client_cert_file:"client.pem",

 client_key_file:"client.key"

 }

});

if (connection) {

 connection.send("test", "test", {contentType: "text/xml"},

"<testKey>testValue</testKey>");

 connection.send("test", "test", {testKey: "value"});

 connection.send("test", "test", ["value"]);

 connection.send("test", "test", "testValue");

 connection.close();

}

var rabbit = MooBot.loadModule('RabbitMQ');

var connection = rabbit.connect({

 brokers:[

 {

 host:"rabbithost",

 port:5672

 }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

607

],

 user:"rabbitmq_admin",

 password:"78smr9!b",

 timeout:10000,

 vhost:"rabbitvhost",

 ssl:{

 ssl_protocol:"TLSv1.2",

 server_cert_file:"server.pem",

 client_cert_file:"client.pem",

 client_key_file:"client.key"

 }

});

if (connection) {

 connection.send("testExchange", "testRoutingKey", ["one", "two"]);

 connection.close();

}

REST.V2

REST (Representational State Transfer) and RESTful applications use HTTP requests to post data

(create and update), read data (make queries), and delete data.

The REST.V2 Moobot module accesses an external RESTful API through HTTP or HTTPS, offering

consistent usage between the available methods and customization of HTTP requests sent.

It supports asynchronous operation (using callback functions) to send a request without blocking the

JavaScript code execution until the request is completed. It supports use of the timeout property to

make the request fail after a specified time.

REST.V2 is available to load into any standard Moobot.

To use, define a new global variable at the top of a Moobot JavaScript file to load the module. For

example:

var REST = MooBot.loadModule('REST.V2');

Reference Guide

sendGet

Sends a HTTP GET request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory

<parameters> JSON Object Optional parameters. See below

Optional parameters

Name Type Description

params String

or

Object

Either a String with the request encoded parameters or an Object with the

parameters that will get encoded by the module.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

608

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_passwo

rd
String Encrypted version of password (encrypted using moog_encryptor).

disable_certific

ate
 _validation

Boolea

n

'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callbac

k

functio

n

The request is sent asynchronously, returns null and the callback

function is called regardless of the success or failure of the request. See

below.

success Callbac

k

functio

n

The request is sent asynchronously, returns null and the success

function is called only the request was successful. See below.

failure Callbac

k

functio

n

The request is sent asynchronously, returns null and the failure

function is called only if the request failed. See below.

timeout Numbe

r

The period of time (in seconds) to wait for response before completing

with timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

proxy String

or

Object

Host, port, user, encrypted_password/password.

For example, as an object:

proxy:{
 host:"proxyhost",
 port:1223,
 user:"proxyuser",

encrypted_password:"2KctaEbJH/m8rz4WqgmZYZfdripdIsku7fOFJ

WM6YNA="
 //password: "unencrypted_plain_text_password"
}

As an object, you can either specify a Cisco encrypted password or a

plain text password, specifying both will favour the encrypted_password

value.

Or, as a string, where format is <user>:<password>@<host>:<port>

proxy: "proxyuser:passw0rd@proxyhost:1223"

Only plain text passwords are supported in the string format.

Sending an asynchronous request (with callback functions)

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

609

To send a request without blocking the javascript code execution until the request is completed, define

one (or more) of the callback functions: callback, success and failure. The REST.V2 module

method (send...) then returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful

status_code Number The HTTP status code of the request

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text

Currently, binary response is not supported

headers Object The response HTTP headers

Sending an asynchronous request (with callback functions) returns null. Once the request has

completed, the callback function(s) are called with the reply object as the first (optional) parameter and

the request object as the second (optional) parameter.

Examples

Each of the following gives details on the Cisco home page:

Synchronous request

var rc = REST.sendGet('http://www.Cisco.com');

Asynchronous request

function restSuccess(rc)

{

 var response = JSON.parse(rc.response);

 logger.info("number = " + response.records[0].number);

}

function restFailed(rc, req)

{

 var response = JSON.parse(rc.response);

 logger.info("URL:" + req.url +" failed - Msg:" + response.status_msg);

}

REST.sendGet({url: "http://www.Cisco.com",

 success: restSuccess,

 failure: restFailed});

Response

{

 "status_code": 200,

 "success": true,

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

610

 "response": "<!DOCTYPE html>... </body></html>",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Keep-Alive": [

 "timeout=15, max=100"

],

 "Server": [

 "Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.10 with Suhosin-Patch

mod_ssl/2.2.22 OpenSSL/1.0.1"

],

 "Connection": [

 "Keep-Alive"

],

 "Vary": [

 "Accept-Encoding"

],

 "Date": [

 "Fri, 30 Jan 2015 12:37:13 GMT"

],

 "Content-Type": [

 "text/html"

],

 "X-Powered-By": [

 "PHP/5.3.10-1ubuntu3.10"

]

 }

}

sendPost

Sends a HTTP POST request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory

<parameters> JSON Object Optional parameters. See below

Optional parameters

Name Type Description

params String

or

Object

Either a string with the request encoded parameters or an object with the

parameters that will get encoded by the module.

content_type String The content type of the body.

body String

or

Object

The request body. Either a string (that will be sent as is) or an object. If

the content_type is application/json and the body is an object, the

body will be sent as JSON. Otherwise it will be sent as URL encoded.

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_passwo String Encrypted version of password (encrypted using moog_encryptor).

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

611

rd

disable_certific

ate
 _validation

Boolea

n

'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callbac

k

functio

n

The request is sent asynchronously, returns null and the callback

function is called regardless of the success or failure of the request. See

below.

success Callbac

k

functio

n

The request is sent asynchronously, returns null and the success

function is called only the request was successful. See below.

failure Callbac

k

functio

n

The request is sent asynchronously, returns null and the failure

function is called only if the request failed. See below.

timeout Numbe

r

The period of time (in seconds) to wait for response before completing

with timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

proxy String

or

Object

Host, port, user, encrypted_password/password.

For example, as an object:

proxy:{
 host:"proxyhost",
 port:1223,
 user:"proxyuser",

encrypted_password:"2KctaEbJH/m8rz4WqgmZYZfdripdIsku7fOFJ

WM6YNA="
 //password: "unencrypted_plain_text_password"
}

As an object, you can either specify a Cisco encrypted password or a

plain text password, specifying both will favour the encrypted_password

value.

Or, as a string, where format is <user>:<password>@<host>:<port>

proxy: "proxyuser:passw0rd@proxyhost:1223"

Only plain text passwords are supported in the string format.

Sending an asynchronous request (with callback functions)

To send a request without blocking the JavaScript code execution until the request is completed, define

one (or more) of the callback functions: callback, success and failure. The REST.V2 module

method (send...) then returns null, and sends the request in another thread.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

612

Return Parameters

Sending an asynchronous request (with Callback functions) returns null. See above.

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text. Binary response is not supported.

 headers Object The response HTTP headers.

Sending an asynchronous request (with callback functions) returns null. Once the request has

completed, the callback function(s) are called with the reply object as the first (optional) parameter and

the request object as the second (optional) parameter.

Examples

Each of the following accesses DuckDuckGo and searches for 'Cisco'.

Synchronous request:

var rc = REST.sendPost('https://api.duckduckgo.com/',

{q:'Cisco', format:'json', pretty:1});

Asynchronous request:

REST.sendPost({url: 'https://api.duckduckgo.com/',

 body: {q:'Cisco', format:'json', pretty:1},

 timeout: 4.2,

 callback: function(rc) {

 ...

 }});

Here, the request has a timeout set of 4.2 seconds.

Responses

For the synchronous request, and for the asynchronous request if it doesn't time out:

{

 "status_code": 200,

 "success": true,

 "response": "{ \"DefinitionSource\" : \"\", \"Heading\" : \"\",

\"ImageWidth\" : 0, ... : \"\"}",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Strict-Transport-Security": [

 "max-age=0"

],

 "Cache-Control": [

 "max-age=1"

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

613

],

 "Server": [

 "nginx"

],

 "X-DuckDuckGo-Results": [

 "1"

],

 "X-DuckDuckGo-Locale": [

 "en_US"

],

 "Connection": [

 "keep-alive"

],

 "Expires": [

 "Fri, 30 Jan 2015 12:44:47 GMT"

],

 "Date": [

 "Fri, 30 Jan 2015 12:44:46 GMT"

],

 "Content-Type": [

 "application/x-javascript"

]

 }

}

...if the asynchronous request times out:

{

 "status_code": 408,

 "success": false,

 "status_msg": "Request Time-Out"

}

sendPut

Sends a HTTP PUT request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory.

<parameters> JSON Object Optional parameters. See below.

 Optional parameters

Name Type Description

params String or

Object

Either a string with the request encoded parameters or an object

with the parameters that will get encoded by the module.

content_type String The content type of the body.

body String or

Object

The request body. Either a string (that will be sent as is) or an

object. If the content_type is application/json and the body is

an object, the body will be sent as JSON. Otherwise it will be sent

as URL encoded.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

614

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_password String Encrypted version of password (encrypted using

moog_encryptor).

disable_certificate
 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the

callback function is called regardless of the success or failure of

the request. See below.

success Callback

function

The request is sent asynchronously, returns null and the success

function is called only the request was successful. See below.

failure Callback

function

The request is sent asynchronously, returns null and the failure

function is called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before

completing with timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

Sending an asynchronous request (with callback functions)

To send a request without blocking the JavaScript code execution until the request is completed, define

one (or more) of the callback functions: callback, success and failure. The REST.V2 module

method (send...) then returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text.

Binary response is not supported.

headers Object The response HTTP headers.

Sending an asynchronous request (with callback functions) returns null. Once the request has

completed, the callback function(s) are called with the reply object as the first (optional) parameter and

the request object as the second (optional) parameter.

Example

The following stores the specified information at the URL (similar to a file upload):

Request

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

615

var rc = REST.sendPut('http://api.acme.com/reportIncident', '{"incident":"broken

fan","location":"office2"}');

Response

{

 "status_code": 204,

 "success": true,

 "response": "",

 "status_msg": "No Content",

 "headers": {

 "Connection": [

 "keep-alive"

],

 "Date": [

 "Fri, 30 Jan 2015 12:55:59 GMT"

]

 }

}

When POSTing or PUTting URL encoded data (a content-type of "application/x-www-form-

urlencoded) complex objects will need to be either split into individual key:value pairs suitable for url

encoding or simply JSON stringify the object in its entirety. Stringifying the object will require the

receiver to be able to parse the string value back to an object if needed. If the receiver cannot do this

parsing then the object will need to be broken into key value pairs. For example, to send the entire alert

custom_info object as part of a URL-encoded body:

 var custom_info = alert.getCustomInfo();

 var payload;

 try {

 payload = JSON.stringify(custom_info);

 }

 catch(e) {

 payload = null;

 }

 var postParams={

 "body" : payload,

 "content_type" : "application/x-www-form-

 };

 var request = rest.sendPost(postParams);

sendDelete

Sends an HTTP DELETE request to a third party (URL) with optional parameters:

Request Arguments

Name Type Description

url String The request URL. Mandatory.

<parameters> JSON Object Optional parameters. See below.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

616

Optional parameters

Name Type Description

params String or

Object

Either a string with the request encoded parameters or an object

with the parameters that will get encoded by the module.

user String The user name for basic authentication.

password String The password for basic authentication.

encrypted_password String Encrypted version of password (encrypted using

moog_encryptor).

disable_certificate
 _validation

Boolean 'true' to disable HTTPS server certificate validation by the Moobot.

headers Object Any additional headers sent with the request.

callback Callback

function

The request is sent asynchronously, returns null and the

callback function is called regardless of the success or failure of

the request. See below .

success Callback

function

The request is sent asynchronously, returns null and the

success function is called only the request was successful. See

below.

failure Callback

function

The request is sent asynchronously, returns null and the

failure function is called only if the request failed. See below.

timeout Number The period of time (in seconds) to wait for response before

completing with timeout error.

If 0 or less, wait indefinitely. The default is 120 seconds.

Sending an asynchronous request (with callback functions)

To send a request without blocking the javascript code execution until the request is completed, define

one (or more) of the callback functions: callback, success and failure. The REST.V2 module

method (send...) then returns null, and sends the request in another thread.

Return Parameters

Sending a synchronous request returns a JavaScript object with the following fields:

Name Type Description

success Boolean True if and only if the request was successful.

status_code Number The HTTP status code of the request.

(200 = OK, 404 = Not found. Full list at w3.org)

status_msg String The message from the request ("OK", "Not found", etc.)

response String The response as raw text.

Binary response is not supported.

 headers Object The response HTTP headers.

http://www.w3.org/Protocols/rfc2616/rfc2616sec10.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

617

Sending an asynchronous request (with callback functions) returns null. Once the request has

completed, the callback function(s) are called with the reply object as the first (optional) parameter and

the request object as the second (optional) parameter.

Example

The following sends a delete request to the specified URL, with additional headers criteria:

Request:

var rc =

REST.sendDelete({url:"http://moogbox2:9090/deletePassport/123456789","headers":{

"user-agent":"moobot","accept":"text/plain","accept-language":"en-US"}});;

Response

{

 "status_code": 200,

 "success": true,

 "response": "{\t\"remoteId\": 33,\t\"weight\":

0.8240487528964877,\t\"location\": {\t\t\"latitude\":

147.3387699946761,\t\t\"longitude\": -7.957067163661122\t}}",

 "status_msg": "OK",

 "headers": {

 "Transfer-Encoding": [

 "chunked"

],

 "Connection": [

 "keep-alive"

],

 "Date": [

 "Fri, 30 Jan 2015 12:49:44 GMT"

],

 "Content-Type": [

 "application/json"

]

 }

}

send

A generic send request for sending other HTTP methods as part of the request properties ('GET',

'HEAD', etc.). Optional parameters for synchronous and asynchronous requests are available as

described in the above methods.

Example

The following returns time/date information from the Cisco server:

Request

var rc = REST.send({method: 'HEAD', url: 'http://www.Cisco.com/'});

logger.warning("rc: " + JSON.stringify(rc, null, "\t"));

var date = rc.headers.Date[0];

logger.warning("date " + date);

Response

Cisco Crosswork Situation Manager 8.0.x Developer Guide

618

{

 "status_code": 204,

 "success": true,

 "response": "",

 "status_msg": "OK",

 "headers": {

 "Keep-Alive": [

 "timeout=15, max=100"

],

 "Server": [

 "Apache/2.2.22 (Ubuntu) PHP/5.3.10-1ubuntu3.10 with Suhosin-Patch

mod_ssl/2.2.22 OpenSSL/1.0.1"

],

 "Connection": [

 "Keep-Alive"

],

 "Vary": [

 "Accept-Encoding"

],

 "Date": [

 "Fri, 30 Jan 2015 13:00:33 GMT"

],

 "Content-Type": [

 "text/html"

],

 "X-Powered-By": [

 "PHP/5.3.10-1ubuntu3.10"

]

 }

}

Proxy examples

The following examples show how to configure Cisco Crosswork Situation Manager Moobots when a

proxy server is used for connection to Cisco.

You can define a proxy in the following ways:

proxy: "proxyuser:passw0rd@proxyhost:1223"

proxy: "proxyhost:1223"

proxy: {

 host: "proxyhost",

 port: 1223

 }

Situation Manager

The following example shows how to update the Situation Manager to send a REST.V2 updateSituation

message through a proxy server.

 Edit the Situation Manager Moobot file, located

at$MOOGSOFT_HOME/bots/moobots/SituationMgr.js.

 Modify theupdateSitnfunction to utilize the POST action. For example:

 function updateSitn(situation)

{

 var sig_id = situation.value("sig_id");

 logger.warning("Update Situation Processed: " + sig_id);

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

619

 doPOST(sig_id);

}

 Insert the proxy block into the POST action. For example:

 function doPOST(sig_id)

{

 var request = REST.sendPost({

 url:"http://surveilanceserver_84:9090/reportAntiSoc",

 params: {

 crime: "Graffiti"

 },

 proxy: {

 host: "proxyserver",

 port : 3128,

 user : "username",

 encrypted_password:"zm0lxjTGiAhp6LrpM49+kr4SDtHj/fq16+i+hD1MG4c="

 },

 callback: function(response, request)

 {

 if (response.success) {

 logger.warning("4764 CALLBACK SUCCESS

("+sig_id+") RESPONSE - ("+response.status_code +" - "+response.response+")

REQUEST - "+ JSON.stringify(request));

 } else {

 logger.warning("4764 CALLBACK FAILURE

("+sig_id+") RESPONSE - ("+response.status_code +" - "+response.response+" -

"+response.status_msg+") REQUEST -

 " + request.status_code + " " +

request.response + " " + request.status_msg);

 }

 }

 });

 logger.warning("4764 POST REQUEST SENT FOR "+sig_id+" ...");

}

ServiceNow

The following example demonstrates how to configure the ServiceNow ticketing integration when Cisco

Crosswork Situation Manager is installed on-prem and ServiceNow is in the cloud, and the two systems

communicate through a proxy server.

Edit the ServiceNow Moobot file, located at $MOOGSOFT_HOME/bots/moobots/ServiceNow-2.0-

Geneva.js and define a variable containing the proxy details. For example:

 var proxy = {

 host: 'proxy-app.company.com',

 timeout:60,

 port: 8080

 }

 Add the proxy to the POST actions in theAddToWorkNotesandresolveIncidentfunctions. For

example:

 var rc = REST.sendPost({

 'url': url,

 'body': JSON.stringify(urlParameters),

 'user': user,

Cisco Crosswork Situation Manager 8.0.x Developer Guide

620

 'password': password,

 'content_type': "application/json",

 'proxy': proxy,

 'disable_certificate_validation': true

 });

Utilities

The Utilities module is a JavaScript utility that allows you to escape XML so that Cisco Crosswork

Situation Manager correctly interprets control characters as data, not markup.

You can also use the module to convert an XML string to a JSON object, which is easier to manipulate

in JavaScript. You can convert a JSON object to XML for external communication that requires XML

input.

Load the module

The Utilities module is available to load into any standard Moobot or LAMbot. To load it, define a new

global variable at the top of the Moobot or LAMbot Javascript file. For example:

var utilities = MooBot.loadModule('Utilities');

var utilities = LamBot.loadModule('Utilities');

Method reference

The Utilities module uses the following methods.

escapeXML

Escapes an XML string. Certain characters will not parse correctly if they are not escaped:

Unescaped character Escaped string

" "

' '

< <

> >

& &

Request arguments

The method takes the following arguments:

Name Type Required

value String Yes

Example

Example use of the escapeXML method:

var unescapedXML = 'my content requires "< and > "';

var escapedXML = '<tag>' + utilities.escapeXML(unescapedXML) + '</tag>';

The variable escapedXML now contains:

<tag>my content requires "< and > "</tag>

unescapeXML

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

621

Unescapes an XML string.

Request arguments

The method takes the following arguments:

Name Type Required

value String Yes

Example

Example use of the unescapeXML method:

var escapedXML = '<tag>my content requires "< and > "</tag>';

var unescapedXML = utilities.unescapeXML(escapedXML);

The variable unescapedXML now contains:

<tag>my content requires "< and > "</tag>

xmlToJSON

Converts an XML string to a JSON object.

Request arguments

The method takes the following arguments:

Name Type Required

value XML string Yes

Example

Example use of the xmlToJSON method:

var xmlExample = '<alerts>' +

 '<alert enriched="false">' +

 '<id>1</id>' +

 '<description>Alert 1</description>' +

 '<host>email.moogsoft.com</host>' +

 '<severity>5</severity>' +

 '</alert>' +

 '<alert enriched="true">' +

 '<id>2</id>' +

 '<description>Alert 2</description>' +

 '<host>calendar.moogsoft.com</host>' +

 '<severity>2</severity>' +

 '</alert>' +

 '</alerts>';

var alerts = utilities.xmlToJSON(xmlExample);

The variable alerts now contains:

{

 "alerts":{

 "alert":

 [

Cisco Crosswork Situation Manager 8.0.x Developer Guide

622

 {

 "severity":5,

 "host":"email.moogsoft.com",

 "description":"Alert 1",

 "id":1,

 "enriched":false

 },

 {

 "severity":2,

 "host":"calendar.moogsoft.com",

 "description":"Alert 2",

 "id":2,

 "enriched":true

 }

]

 }

}

jsonToXML

Converts a JSON object to an XML string. You can only use the utility to convert JSON objects, not

arrays.

Request arguments

The method takes the following arguments:

Name Type Required

value JSON object Yes

Example

Example use of the jsonToXML method:

var jsonObjectExample =

{

 "data": {

 "alerts":

 [

 {

 "enriched": "false",

 "id": "1",

 "description": "Alert 1",

 "host": "email.moogsoft.com",

 "severity": "5"

 },

 {

 "enriched": "true",

 "id": "2",

 "description": "Alert 2",

 "host": "calendar.moogsoft.com",

 "severity": "2"

 }

]

 }

};

var convertedXML = utilities.jsonToXML(jsonObjectExample);

The variable convertedXML now contains:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

623

<data>

 <alerts>

 <severity>5</severity>

 <enriched>false</enriched>

 <host>email.moogsoft.com</host>

 <description>Alert 1</description>

 <id>1</id>

 </alerts>

 <alerts>

 <severity>2</severity>

 <enriched>true</enriched>

 <host>calendar.moogsoft.com</host>

 <description>Alert 2</description>

 <id>2</id>

 </alerts>

</data>

Alert Builder Reference

This is a reference for the Alert Builder Moolet.Alert Builder

You can change the behavior of the Alert Builder by editing the configuration properties in the

$MOOGSOFT_HOME/config/moolets/alert_builder.conf configuration file. It contains the

following properties:

name

Name of the Alert Builder Moolet. Do not change.

Type String

Required Yes

Default "AlertBuilder"

classname

Moolet class name. Do not change.

Type String

Required Yes

Default 4"CAlertBuilder"

run_on_startup

Determines whether the Alert Builder runs when Cisco Crosswork Situation Manager starts. By default,

it is set to true, so that when Moogfarmd starts, it automatically creates an instance of the Alert Builder.

In this case you can stop it using farmd_ctrl.

Type Boolean

Required Yes

Default true

file://document/preview/11731%23UUID46fdd0df23feef6890228720a5e2b4cf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

624

moobot

Specifies a JavaScript file found in $MOOGSOFT_HOME/moobots, which defines the Alert Builder

Moobot, which creates alerts.

Type String

Required Yes

Default AlertBuilder.js

metric_path_moolet

Determines whether or not Cisco Crosswork Situation Manager includes the Alert Builder in the Event

Processing metric for Self Monitoring.

Type Boolean

Required Yes

Default true

event_streams

A list of event streams, which the Alert Builder Moolet processes in this instance of Moogfarmd. The

LAMs can be configured to send events on different streams. Moogfarmd, as specified in the Alert

Builder configuration, then decides whether or not to process them. If Cisco Crosswork Situation

Manager runs multiple Moogfarmds, you can have different event streams being processed by different

Alert Builder Moolets.

You can comment out event_streams, or provide an empty list. Then, the Alert Builder processes

every event that is published on the default /Events topic on the Message Bus.

You configure the Alert Builder Moolet by giving it a list of strings, for example, [App A , App B].

The result is that the Alert Builder listens for events published on /Events/AppA, and /Events/AppB,

and processes that data. Importantly, in this example, events published to /Events or any other stream

are ignored. You can have Moogfarmds that process completely separate event streams, or, multiple

Moogfarmds that process some different event streams and some common event streams. You would

do this when some of the alerts are common to all the applications that are being processed, but some

are specific only to a given application. In this way, you can cluster alerts separately for each

application by configuring the Sigalisers to only processes alerts from a specific upstream Alert Builder

Moolet.

For example, if you have two separate applications that share the same network infrastructure: in

Moogfarmd 1, you can have as the event streams, application A and networks, and, in Moogfarmd 2,

you can have application B and networks. With this configuration, you can detect alerts and then create

Situations that are relevant for just application A and similarly just for application B; however, if there is

common networking infrastructure and problems occur with network failures across applications A and

B, the Alert Builder can cluster these into Situations.

Type String

Required No

Default ["AppA"]

threads

Specifies the number of threads in the Alert Builder. Choose a value to match the event rate

experienced by your system that allows time for alert creation.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

625

Type String

Required Yes

Default 4

events_analyser_config

Allows you to specify a different Events Analyser configuration, for tokenizing and analysis rules, for

each Alert Builder Moolet. If no configuration file is specified, the system default

events_analyser.conf is used.

Type String

Required No

Default "events_analyser.conf"

priming_stream_name

Stream name under which the Events Analyser runs in order to calculate token and alert entropies. If set

to null, all alerts from all streams are included in the entropy calculations.

Type String

Required Yes

Default null

priming_stream_from_topic

If set to true, Moogfarmd extracts the priming stream name from the event's stream. If set to false,

Moogfarmd uses the stream configured in priming_stream_name.

Type Boolean

Required Yes

Default false

Alert and Event Field Reference

This is a reference guide for alert and event fields, input types, field descriptions and output examples.

Field Type Description Example Output

active_situations Array IDs of any Situations

associated with the alert.

1, 6, 8

agent_host Text Host machine or physical

location of the agent that

created the event.

OEM Monitor 1

agent_name Text Name of the agent that

created the event.

NAGIOS SOCKET

Cisco Crosswork Situation Manager 8.0.x Developer Guide

626

agent_location Text Host machine or physical

location of the agent that

created the event.

London Data Centre (51.4167,-

0.2833)

agent_time Integer Timestamp when the event

occurred in epoch time.

Use $moog_now in the

mapping to set agent time

to the time the event arrived

at Cisco Crosswork

Situation Manager.

1516183437

alert_id Integer Internal identifier generated

by Cisco Crosswork

Situation Manager.

101

class Text Level of classification for an

event. This follows the

hierarchy; class then

type.

CISCO-IF-Extension-MIB

count Integer Number of events in the

alert.

2

custom_info Text Custom information added

as a JSON encoded string.

custom_info.myNodeList=[

"node1" , "node2" ,

"node3"]

description Text Text description of the alert. Network Interface (ifIndex =

512479388) Up

(ifEntry.52683483)

entropy Integer Measure of uncertainty of

an outcome between 0 and

1 (0 meaning very certain

and 1 meaning very

uncertain).

0.4

external_id Integer Unique identifier from the

event source.

7622183

first_event_time Integer Earliest event time for the

alert. This is calculated from

the agent_time of the

events that constitute the

alert.

14:08:14 16/01/2018

host Text Name of the source

machine that generated the

event.

OEM Server 2

internal_last_event_time Integer Time that the latest event

for the alert was received

by the Cisco Crosswork

Situation Manager server.

10:24:03 19/01/2018

last_change Integer Time that the alert was last

updated in the Cisco

12:38:06 19/01/2018

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

627

Crosswork Situation

Manager UI.

last_event_time Integer Latest event time for the

alert. This is calculated from

the agent_time of the

events that constitute the

alert.

10:24:03 19/01/2018

manager Text General identifier of the

event generator or

intermediary.

NAGIOS, SCOM.

owned_by Text Alert owner's username. John Smith

severity Integer Severity level of the alert

between 0 and 5.

4

significance Integer Relative Significance of an

alert is calculated based on

its entropy.

3

situations Array Any Situations the alert is

associated with, including

those that have been

resolved or closed.

24, 01

source Text Name of the source

machine that generated the

event. If there is no source

machine or application, the

source is the name of the

instance (database name,

cluster node, container

name).

A hostname or fully qualified

domain name (FQDN).

source_id Text Identifier for the source

machine that generated the

event.

5dc68d65-532c-4918-be12-

21e1cbcf7af2

status Text Status of the alert. Assigned

type Text Level of classification for an

event. This follows the

hierarchy; class then

type.

CISCO-IF-Extension-MIB

Notification

Event and Alert Field Best Practice

This best practice is an attempt to offer consistency and reuse of configurations including the mapping

from a source to an inbound event. The fields exposed in the alert/event are:

 Field Requi Data Type Size Description Example Comment

Cisco Crosswork Situation Manager 8.0.x Developer Guide

628

red

1 signature Yes VARBINARY(

binary)

767 This is a special

attribute used to

determine when Cisco

Crosswork Situation

Manager deduplicates

events into Alerts. It

can be any

combination of one or

more of the attributes

listed below

To be constructed as a

subset of events from

a source, also see

existing guidance

Constructed fields

should be separated

by :: avoiding any

possible issues with

concatenation

providing misleading

results. e.g. NodeA

event id 12 would

concatenate as

NodeA12, which

would be the same as

NodeA1 event 2.

NodeA::12 and

NodeA1::2 would

therefore differentiate

Signatures do not

need to be human

readable, so clarity

length is becoming an

issue - remove

whitespace or other

extraneous characters

(via a lambot)

host1::nagio

s::cpu

2 alert_id Yes BIGINT(binary

)

20 An auto-assigned

incremental number.

Internally generated

DO NOT CHANGE

3 source_id Yes TEXT(utf8) 655

35

Source and Source_ID

refer to the generating

source of the event,

primarily focused on

the host environment.

The Source should be

any unique human

readable name (FQDN,

Hostname, etc) and

192.168.1.1

07

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

629

the source_id should

be any identifier for the

source machine

generated (IP, MAC,

CI Number, etc.) If the

event has no machine

identification such as

Application or other

software generated

events, then the

Source should be

some unique identifier

of the instance

(database name,

cluster node, container

name etc.). Again

source_id should be

any other unique

identifier that is

available (container

UUID, cluster node

UUID etc.)

This attribute can be

used for any additional

identification attribute

of the CI

4 external_id No TEXT(utf8) 655

35

Any unique identifier

provided in the source

event (event ID,

Incident ID etc.)

This is typically set to

the CI's ID in the

CMDB, or where the

event is emitted from

an underlying element

management system,

and may hold the

unique source event

identifier

12345 Returns Null

if blank

5 manager No TEXT(utf8) 655

35

A general identifier of

the event generator or

intermediary (NAGIOS,

SCOM, etc.)

In hub-and-spoke

and/or relay

architectures this

typically is the name of

Nagios Returns Null

if blank

Cisco Crosswork Situation Manager 8.0.x Developer Guide

630

the agent manager that

pre-aggregates events

prior to sending to

Cisco Crosswork

Situation Manager.

For example, there

may be an BMC Patrol

manager that manages

all San Francisco data

center alerts. This field

is also sometimes

used simply to track

the name of the Cisco

Crosswork Situation

Manager LAM that

received the alerts in

multi-LAM

deployments

6 source Yes TEXT(utf8) 655

35

Source and Source ID

refer to the generating

source of the event,

primarily focused on

the host environment.

The source should be

any unique human

readable name (FQDN,

Hostname, etc) and

the source_id should

be any identifier for the

source machine

generated (IP, MAC,

CI Number, etc.) If the

event has no machine

identification such as

Application or other

software generated

events, then the

Source should be

some unique identifier

of the instance

(database name,

cluster node, container

name etc.). Again

source_id should be

any other unique

identifier that is

available (container

UUID, cluster node

UUID etc.)

host1

7 class Yes TEXT(utf8) 655

35

Class and Type are

generic classifications

for the event in a

hierarchy that allow

cpu

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

631

you to maintain a

simple event

ontologies; class then

type. (Disk space: free

space, Memory: max

used...total available,

etc.)

8 agent Yes TEXT(utf8) 655

35

The specific agent that

created the event,

(SCOM REST, NAGIOS

SOCKET, SNMP TRAP

NATIVE, etc.). This is

typically the name of

the agent that

facilitates the event

from the CI e.g.

"nagios-agent-

london-7"

A simple way to

provide this is in the

lam.conf by setting the

agent:name and then

mapping

$LamInstanceName to

agent,

this is the default

{ name:

"agent",rule:

"$LamInstanceName"

},

Linux

9 agent_locatio

n

Yes TEXT(utf8) 655

35

This is typically the

geographic location of

the agent and/or CI

such as "London".

Should be used

consistently for all

sources, either as the

host machine that the

agent is executed from

(BEM Server 1, OEM

Monitor cluster, etc.)

OR the physical

location that the agent

is executing (NYC Data

Centre, Stuttgart Main

Station, (51.407139, -

0.307321) etc.)

New York,

NY

Cisco Crosswork Situation Manager 8.0.x Developer Guide

632

1

0

agent_time Yes This is the timestamp

in epoch seconds

when the event

occurred.

This should be set

across all event

sources to provide a

common time

reference. Timezones

should be nullified - all

events should be

presented in the same

time context. If an

event source does not

provide a suitable time

in the payload then use

the ingestion time at

the LAM. Note: polled

event sources

(rest_client_lam,

SCOM, Netcool) may

skew the event time in

line with the poll cycle.

If an event is being

generated in a

different timezone and

is manipulated into the

Cisco Crosswork

Situation Manager

server time - add the

origin time to the

custom_info for the

event. This can be

operationally useful.

e.g.

custom_info.originalEv

entTime : agent_time

should be in epoch

seconds - convert as

necessary.

Miscalculated event

times will cause

unpredictable results

across the system.

Also see 4.1.2 Release

note. [MOOG-2278] -

Enhanced Alert Times

If the agent_time is not

defined, it should be

set to the current

epoch time using

Javascript functions

such as:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

633

Math.round(Date.now

() / 1000);

1

1

type Yes TEXT(utf8) 655

35

Class and Type are

generic classifications

for the event in a

hierarchy that allow

you to maintain a

simple event

ontologies; class then

type. (Disk space: free

space, Memory: max

used...total available,

etc.)

DOWN

1

2

severity Yes INT(binary) 11 Standard 0-5 but be

mindful of the

significance across all

event sources if

possible. A low value

event source could

produce critical events

that in the wider

context would be

considered minor

Use the Cisco

Crosswork Situation

Manager LAM config

file built in

"sevMapper" to map

your incoming severity

values to a number

between 0 and 5 :

0 = Clear

1 = Indeterminate

2 = Warning

3 = Minor

4 = Major

5 = Critical

5 0 clear - 5

critical

1

3

significance No INT(binary) 11 This value is calculated

by Cisco Crosswork

Situation Manager

Events Analyser.

Internally generated

Cisco Crosswork Situation Manager 8.0.x Developer Guide

634

DO NOT CHANGE

1

4

count No INT(binary) 11 The reference count of

deduplicated Events

for each Alert.

Internally generated

DO NOT CHANGE

1

5

description Yes TEXT(utf8) 655

35

The main text payload

of the event.

Add as much textual

detail as possible.

Remember a human

operator will look at

the detail and the

entropy calculation

works best with

detailed narratives.

CPU

Threshold

exceeded:

99%

1

6

first_event_ti

me

No BIGINT(binary

)

20 If you set agent_time

in the LAM/LAMbot to

the actual epoch

seconds timestamp of

each event, Cisco

Crosswork Situation

Manager will

automatically keep

track of the first and

last occurrence of

multiple instances of

the same event.

Internally generated

DO NOT CHANGE

1

7

last_event_ti

me

No BIGINT(binary

)

20

1

8

int_last_even

t_time

No BIGINT(binary

)

20 Internally generated

DO NOT CHANGE

1411134582 Fromagent

_time

1

9

last_state_ch

ange

No BIGINT(binary

)

20 Internally generated

DO NOT CHANGE

2

0

state No INT(binary) 11 1 | Opened

2 | Unassigned

3 | Assigned

4 | Acknowledged

5 | Unacknowledged

6 | Active

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

635

7 | Dormant

8 | Resolved

9 | Closed

10 | SLA Exceeded

Internally generated

DO NOT CHANGE

2

1

owner No INT(binary) 11 Set when an operator

right-clicks on an alert

in the Cisco Crosswork

Situation Manager UI

and assigns

ownership.

Internally generated

DO NOT CHANGE

2

2

entropy No DOUBLE(bina

ry)

22 Internally generated

DO NOT CHANGE

2

3

custom_info No TEXT(utf8) 655

35

Custom_info is a

special field that is the

mechanism for

extending the Cisco

Crosswork Situation

Manager alert schema.

This is a JSON

encoded string that

should contain key

value pairs for each

data element not

supplied in the initial

event or having been

enriched via alert

transformation. Be

consistent with key

names so they can be

used in Sigalisers and

filters. Consider using

a LAMBot module that

sets a base set of

custom_info across all

lams - this provides a

single point of

administration for the

customer. Care should

be taken when setting

custom_info in a LAM

to ensure that it does

 Returns Null

if blank

Cisco Crosswork Situation Manager 8.0.x Developer Guide

636

not overwrite

downstream additions

(e.g. enrichment via a

moobot) when the

Event is de-duplicated.

You can store simple

or arbitrarily complex

hierarchical JSON

attributes in this field.

They are basically

serialized for use in the

standard

JSON.parse/stringify

manner and Cisco

Crosswork Situation

Manager UI is written

to display JSON

hierarchies of any

complexity in a tree-

view format

Moolets

A Moolet is an intelligence module that is used to perform specific services in Cisco Crosswork

Situation Manager. Some Moolets have an accompanying Moobot, a Javascript file that controls or

customizes Moolet behavior.

Events can trigger a Moolet in Moogfarmd as follows:

1. process_output_of: The Moolet listens for events from another named Moolet. You can use this

method to chain Moolets together to form an automated workflow pipeline.

2. mooms_event_handler: The Moolet listens for events on the Message Bus, for example actions

triggered by a user or within another instance of moogfarmd.

3. standalone_moolet: The Moolet listens for events generated by other Moolets within the same

Moogfarmd instance without being part of the same process chain.

4. scheduler: A unique Moolet type that allows time based task execution.

Refer to the documentation on individual Moolets to learn about how to configure their behavior:

Configure Alert Behavior During a Maintenance Window

The Maintenance Window Manager Moolet compares alerts against active maintenance windows. If the

alerts match an active Maintenance Schedule filter, then they are not forwarded onto the next part of

the chain. This prevents a Sigaliser Moolet clustering these alerts into Situations.

To schedule a maintenance window, see Schedule Maintenance Downtime.

Configure Maintenance Window Manager

Edit the configuration file at

$MOOGSOFT_HOME/config/moolets/maintenance_window_manager.conf.

Refer to Maintenance Window Manager Reference to see all available properties.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

637

Example configuration

The following example demonstrates a simple Maintenance Window Manager configuration:

{

 name : "MaintenanceWindowManager",

 classname : "CMaintenance",

 run_on_startup : true,

 metric_path_moolet : true,

 process_output_of : "AlertBuilder",

 maintenance_status_field : "maintenance_status",

 maintenance_status_label : "In maintenance",

 update_captured_alerts : true

}

Maintenance windows

You can use the Maintenance Schedule functionality to schedule outages when you do not want new

Situations to be created from these alerts. You can configure the Maintenance Manager Moolet to

ensure that alerts are not passed along to Sigalisers and clustered into Situations during that time

period. You can set up maintenance windows using:

 UI: See Schedule Maintenance Downtime for more information on how to set up maintenance

windows.Schedule Maintenance Downtime

 Graze API.

Updating captured alerts

In addition to implementing the maintenance windows, the Maintenance Window Manager Moolet

updates the following custom_info fields in each alert affected by a maintenance window. Because

the Maintenance Window Manager uses these custom_info fields within the alerts, Moobots must not

overwrite these custom_info fields or completely empty the custom_info object within alerts.

Field Description

custom_info.maintenance_status Configurable text label. Set to "In maintenance" by default.

custom_info.maintenance_id Numerical ID of the maintenance window that captured the alert.

custom_info.maintenance_name Name of the maintenance window that captured the alert.

custom_info.forward_Alerts Whether the alert is forwarded to clustering algorithms or not. Set to

false by default.

Maintenance Window Manager Reference

This is a reference for the Maintenance Window Manager Moolet.

Cisco recommends you do not change any properties that are not in this reference guide.

You can change the behavior of the Maintenance Window Manager by editing the configuration

properties in the $MOOGSOFT_HOME/config/moolets/maintenance_window_manager.conf

configuration file. It contains the following properties:

name

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef

Cisco Crosswork Situation Manager 8.0.x Developer Guide

638

Name of the Maintenance Window Manager Moolet. Do not change.

Type: String

Required: Yes

Default: "MaintenanceWindowManager"

classname

Moolet class name. Do not change.

Type: String

Required: Yes

Default: "CMaintenance"

run_on_startup

Determines whether the Maintenance Window Manager runs when Cisco Crosswork Situation Manager

starts. By default, it is set to true, so that when Moogfarmd starts, it automatically creates an instance

of the Maintenance Window Manager.

Type: Boolean

Required: Yes

Default: true

metric_path_moolet

Determines whether or not Cisco Crosswork Situation Manager factors the Maintenance Window

Manager into the Event Processing metric for Self Monitoring.

Type: Boolean

Required: Yes

Default: true

process_output_of

Defines the input source for the Maintenance Window Manager. This determines the Maintenance

Window Manager's place in the alert processing workflow.

Type: List

Required: Yes

One of: AlertBuilder, AlertRulesEngine, Enricher

Default: "AlertBuilder"

maintenance_status_field

Name of the custom_info field or key used to indicate the alert's maintenance status.

Type: String

Required: Yes

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

639

Default: "maintenance_status"

maintenance_status_label

Value of the custom_info.maintenance_status field used to indicate that an alert is in maintenance.

Type: String

Required: Yes

Default: "In maintenance"

update_captured_alerts

If enabled, ensures the maintenance status of an alert is set to null once the Maintenance Window that

captured it has expired. If disabled, the maintenance status field of a captured alert remains as the text

value set in the maintenance_status_label property, unless that alert reoccurs when all

custom_info maintenance fields are set to null.

Type: Boolean

Required: Yes

Default: true

It is possible to add a column in the alert view displaying the 'Maintenance Status' for each alert and the

text visible in this column can be controlled by editing the maintenance_status_label in the

MaintenanceWindowManager Moolet configuration in

$MOOGSOFT_HOME/config/moolets/maintenance_window_manager.conf.

For the feature to function, you must place the Maintenance Window Manager Moolet before a

Sigalising Moolet in a forwarding chain. It is also appropriate for you to locate it before the Alert Rules

Engine in the processing chain.

Empty Moolet

The Empty Moolet enables Cisco Crosswork Situation Manager integrators to intercept and handle

Message Bus events without impacting upon the existing alert flow logic and processing. This provides

a mechanism for you to implement your own alert processing rules. The Empty Moolet can also be used

to provide general augmentation of alert and Situation details, for example, Enrichment.

An Empty Moolet can be passed an alert or a Situation by one of the following mechanisms:

 Process output of: The Empty Moolet exists in the alert processing chain.

 Event handler: The Empty Moolet listens for specific message types on the bus.

 Direct forwarding: The Empty Moolet is handed an object by another Moolet, for example, Moolet A

forwards an alert to Moolet B.

A single Empty Moolet uses one or more of these mechanisms.

Configure Empty Moolet

The Empty Moolet takes messages off the Message Bus according to message type and passes them

to a Moolet. The configuration includes the message types to register interest for and the name of the

/document/preview/11750#UUIDa079e66cf5d05f6b29d33de8e0ea50a5.Enrichment

Cisco Crosswork Situation Manager 8.0.x Developer Guide

640

Moolet to pass them to. For example, to integrate with an incident management system such as

ACMEIncidentManager, the Empty Moolet must:

 Listen to NewThreadEntry events (the topic on Message Bus is /sig/thread/entry/new) and

SigStatus events (the topic on Message Bus is /sigs/status topic).

 Interrogate the events to select only those in which the incident management system has

registered an interest via the Graze API addSigCorrelationInfo request.

 Filter out those events which were originated by the incident management system via the Graze API

to avoid sending duplicate information.

 Extract relevant information from the event including the incident management system entity

reference.

 Send the information to the incident management system via the REST.V2 Moobot module which

supports the sending of simple RESTful POST requests using basic HTTP authentication.

The following example demonstrates an Empty Moolet configuration for this scenario:

{

 name : "ACMEIncidentManager",

 classname : "CEmptyMoolet",

 run_on_startup : true,

 moobot : "ACMEIntegration.js",

 event_handlers : [

 "NewThreadEntry".

 "SigStatus"

]

}

This example shows one way of integrating Cisco Crosswork Situation Manager with another system.

Each integration is dependent upon the individual use cases and systems being integrated.

See Alert Manager for a further example of an Empty Moolet configuration.

Note

Not all event handlers are required for every integration. Only specify required handlers.

Customize Empty Moolet

To invoke custom javascript for a particular set of actions related to Situations, you can leverage the

Empty Moolet to listen for these actions and use the data within the Situations involved. For example,

when a Situation is closed you may want to notify an external entity via the REST.V2 module.

Edit the configuration file moog_farmd.conf to associate the CustomTaskRunner Moobot with the

Empty Moolet, and listen for SigAction events:

{

 name : "CustomTaskRunner",

 classname : "CEmptyMoolet",

 run_on_startup : true,

 metric_path_moolet : false,

 moobot : "CustomTaskRunner.js",

 event_handlers : [

 "SigAction"

]

}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

641

This is an example of Moobot code that runs a function when a supported Situation action occurs in

Cisco Crosswork Situation Manager:

CustomTaskRunner.js

var events = MooBot.loadModule('Events');

var logger = MooBot.loadModule('Logger');

var constants = MooBot.loadModule('Constants');

logger.debug("Empty Moolet Started.");

/**

 * ### situationAction

 *

 * Listen for specific "sigAction"

 *

 * @param {object} situation - A situation object from Events

 */

function situationAction(situation) {

 logger.warning("Checking Action event...");

 var sitn_id = situation.value("situation_id");

 var action = situation.payload().valueOf("action");

 if (action !== null) {

 var details = situation.getActionDetails();

 // The name of the URL Tool has to match to trigger action

 if (action == "Ran Tool") {

 if (details.tool == urlToolName) {

 runFunction(sitn_id);

 }

 }

 }

}

/**

 * ### runFunction

 *

 * Run some function

 *

 * @param {number} sitn_id - The Situation Id

 */

function runFunction(sitn_id) {

 logger.info('Run some function for Situation Id ' + sitn_id);

}

//

// Listen for SigAction event to see if certain URL tool has been run

//

events.onEvent("situationAction",constants.eventType("SigAction")).listen();

The urlToolName must match the name of the Situation URL tool. The Situation ID is available in the

event payload, because the tool is run in the context of a particular Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

642

Enricher Moolet

Enable the Enricher Moolet to update alerts with Enrichment data. See UI Enrichment for further

information.UI Enrichment

Configure Enricher

You can define the behavior of the Enricher Moolet by editing the

$MOOGSOFT_HOME/config/moolets/enricher.conf configuration file.

Enricher Parameters

The parameters that relate to the Enricher Moolet are as follows:

run_on_startup

Determines whether Enricher runs when Cisco Crosswork Situation Manager starts. If enabled, Enricher

updates alerts with enrichment data from the moment the system starts, without you having to

configure or start it manually.

Type: Boolean

Default: false

metric_path_moolet

Determines whether or not Enricher is included in the the Event Processing metric for Self Monitoring.

Type: Boolean

Default: false

description

Describes the Moolet.

Type: String

Default: Alert Enrichment

The default Enricher parameters are as follows:

{

 name : "Enricher",

 classname : "com.moogsoft.farmd.moolet.enricher.CEnricherMgr",

 run_on_startup : true,

 persist_state : false,

 metric_path_moolet : true,

 process_output_of : "AlertBuilder",

 description : "Alert Enrichment"

}

Note

nameandclassnameare hardcoded and should not be changed.

Output Parameters

These parameters control the output processed by the Moolet:

process_output_of

file://document/preview/24302%23UUIDac981c90c4fe0f1501ee8f29b1fc0d28
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

643

Defines the source of the alerts that Enricher processes. By default, the Moolet connects directly to the

Alert Builder.

Type: List

One of: AlertBuilder, AlertRulesEngine Default: AlertBuilder

Notifier Moolet

Introduction

The Notifier Moolet enables Cisco Crosswork Situation Manager to act on invite MooMS Bus

messages and optionally send an email.

For example, to send an email when a user is invited to a Situation via the UI, the Notifier Moolet must:

1. Listen to Invite Events

2. Interrogate the Events to identify Situation invitations

3. Filter out Events for Situations we are not interested in notifying

4. Extract relevant information from the Event including the Situation Id and User Id

5. Send an email message containing a customized body to a recipient using the Mailer Moobot

module

Moogfarmd Configuration

The Notifier Moolet is designed to take messages off the MooMS bus according to message type.

You can edit the Notifier in the $MOOGSOFT_HOME/config/moolets/notifier.conf configuration

file.

Moolets are capable of supporting multiple Moobots. By configuring a Moolet to run multiple Moobots,

you can customise the functions of the default Moobot. You can use this feature to customise the

actions for Workflow Engine. To do this, locate the Moobot property in the Moolet configuration file and

add a comma-separated list of the Moobots you want to run. See the extract Notifier Moolet

parameters below and notice the default "moobot" property which contains one Moobot: "Notifier.js".

The default configuration is as follows:

{

 name : "Notifier",

 classname : "CNotifier",

 run_on_startup : false,

 metric_path_moolet : false,

 moobot : "Notifier.js"

}

Teams Manager Moolet

The Teams Manager Moolet is triggered by Cisco Crosswork Situation Manager when a Situation is

created, updated and deleted, and also when a team is created and updated. You can assign teams to

Situations using the filters in the UI under Settings > Teams > General. If there are no filters for a team,

it is assigned all new Situations by default.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

644

If you use the "assignTeamsToSituation" Graze API endpoint or MoogDb method to assign teams to a

Situation, Cisco Crosswork Situation Manager marks the Situation as overridden. The Teams Manager

Moolet can no longer act on it even if that Situation matches a filter.

You can alter the behavior of the Teams Manager Moolet by changing the "Situation Update Policy" in

the UI under Settings > Teams.

One Teams Manager Moolet is run for every instance of Cisco Crosswork Situation Manager.

Configure Teams Manager

You can configure the Teams Manager Moolet in the

$MOOGSOFT_HOME/config/moolets/teams_manager.conf configuration file.

Moolets are capable of supporting multiple Moobots. By configuring a Moolet to run multiple Moobots,

you can customise the functions of the default Moobot. You can use this feature to customise the

actions for Workflow Engine. To do this, locate the Moobot property in the Moolet configuration file and

add a comma-separated list of the Moobots you want to run. See the extract Teams Manager Moolet

parameters below and notice the default "moobot" property which contains one Moobot:

"SituationMgr".

Teams Manager Properties

The properties that relate to the Teams Manager Moolet are:

run_on_startup

Determines whether Teams Manager runs when Cisco Crosswork Situation Manager starts. If you

enable it, Teams Manager processes Moolet output from the moment the system starts, without you

having to configure or start it manually.

Type: Boolean

Default: true

metric_path_moolet

Determines whether or not Cisco Crosswork Situation Manager includes Teams Manager in the Event

Processing metric for Self Monitoring.

Type: Boolean

Default: false

moobot

JavaScript program that controls and customizes the behavior of Teams Manager.

Type: String

Default: "TeamsMgr.js"

The default Teams Manager configuration is:

name : "TeamsMgr",

classname : "CTeamsMgr",

run_on_startup : true,

metric_path_moolet : false,

moobot : "TeamsMgr.js",

Specifies the list of all the moolet that can change

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

645

or create situations. Remove this section if the

TeamsMgr is running in its own instance.

process_output_of : [

 "Speedbird",

 "Cookbook",

 "Default Cookbook",

 "SituationMgr"

]

Note

name and classname are hardcoded and should not be changed.

Output Parameters

These parameters control the output the Moolet processes:

process_output_of

The Moolets that perform actions that trigger the Teams Manager:

Type: Array

Valid Moolets : Sigaliser, Speedbird, Cookbook, Default Cookbook, SituationMgr

Default: ["Sigaliser", "Speedbird", "Cookbook", "Default Cookbook",

"SituationMgr"]

Scheduler Moolet

You can schedule jobs at regular intervals by editing the

$MOOGSOFT_HOME/config/moolets/scheduler.conf configuration file:

The Scheduler is used to run scheduled jobs at regular

intervals throughout the lifetime of moog_farmd. Only this

moolet, which cannot subscribe to the MooMS bus and

listen to events, is allowed to submit scheduled jobs.

To start up successfully it must have the name and threads

values set to "Scheduler" and 1 respectively.

{

 name : "Scheduler",

 classname : "CScheduler",

 run_on_startup : false,

 metric_path_moolet : false,

 moobot : "Scheduling.js",

 threads : 1

}

Moolets are capable of supporting multiple Moobots. By configuring a Moolet to run multiple Moobots,

you can customise the functions of the default Moobot. You can use this feature to customise the

actions for Workflow Engine. To do this, locate the Moobot property in the Moolet configuration file and

add a comma-separated list of the Moobots you want to run. See the extract Scheduler parameters

above and notice the default "moobot" property which contains one Moobot.

To load the scheduler module:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

646

var scheduler =MooBot.loadModule('Scheduler');

Run jobs using, for example:

// A job that fails and does not restart.

scheduler.scheduleJob(this, "knockOnce", 5, 5, false);

This calls a method in the same js file called knockOnce:

function knockOnce()

{

 logger.warning("Knock knock");

 throw new Error("Failed to knock.");

}

The scheduledJob method has two possible parameter sets:

 scheduleJob(this, functionName, start_delay , interval);

 scheduleJob(this, functionName, start_delay, interval, true | false) ;

Parameter Description

first always this

second the name of the function to call to run the job

third is the delay from starting farmd to the first run (in seconds)

fourth the interval between runs (in seconds)

fifth decides whether the job will run again if it failed previously

Scheduling Frequency

When executing multiple jobs we recommend that you try and offset potential workload, by for example

staggering the initial run of multiple jobs a few seconds apart or scheduling jobs at slightly offset

frequencies.

Constraints

 Must be single threaded.

 Only one per Moogfarmd process.

 Has to be called Scheduler.

 Use a Moobot module function as a scheduled job - which involves some rarer JavaScript as the

scheduler

For example, in your scheduler moobot you might have:

 MooBot.loadModule('AutoClose.js');

var autoClose=new AutoClose();

// Bind the module function locally to the module function.

var autoCloseAlertFunction = autoClose.closeAgedAlerts.bind(autoClose);

// Schedule execution

scheduler.scheduleJob(this, "autoCloseAlertFunction" , 60,

autoCloseAlertFrequency , true);

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

647

Housekeeper Moolet

The Housekeeper Moolet performs the following tasks:

 Periodic background tasks required for the Auto Close feature and for the moving of data to the

historic database. See Configure Historic Data Retention document and the Historic Data Utility

Command Reference for more information. Gathers statistics from the system, for example Team

Insights.

 The Graph Analyser task to calculate the Vertex Entropy for the nodes in your topologies. See

Create and Manage Topologies and Set Up Vertex Entropy for further information. To verify that the

Housekeeper Moolet is running, use the HA Control utility with the view argument:

ha_cntl -v

See HA Utility Command Reference for more information about this utility.

Configure the Housekeeper Moolet

You can define the behavior of the Housekeeper Moolet by editing the configuration file:

$MOOGSOFT_HOME/config/moolets/housekeeper.conf

Moolets are capable of supporting multiple Moobots. By configuring a Moolet to run multiple Moobots,

you can customise the functions of the default Moobot. You can use this feature to customise the

actions for Workflow Engine. To do this, locate the moobot property in the Moolet configuration file and

add a comma-separated list of the Moobots you want to run.

Housekeeper properties

The Housekeeper Moolet properties are as follows.

run_on_startup

Determines whether Housekeeper runs when Cisco Crosswork Situation Manager starts. If set to true,

Housekeeper performs its background tasks from the moment the system starts, without you having to

configure or start it manually.

Type: Boolean

Default: true

metric_path_moolet

Determines whether Housekeeper is factored into the event processing metric for Self Monitoring. See

Moogfarmd Reference for more information.

Type: Boolean

Default: false

standalone_moolet

Determines whether the Housekeeper can listen for events generated by other Moolets within the same

Moogfarmd instance without being in a processing chain.

Type: Boolean

file://document/preview/35147%23UUID83d95a8464ac71ef231e996f34213a88
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDf7ccf703cf1e43129d63505e3ce8c6f8
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID7e9648e0d7a671d613f352815c0ff450
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID7e9648e0d7a671d613f352815c0ff450
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID5d4fd1dcabdcdb4443b4286a126dab8e
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDcaa579e4f06d3069c81350c37fddd8ef
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d
file://document/preview/35190%23UUID9cfcd3ad2db8f7f70534ef009f72f493

Cisco Crosswork Situation Manager 8.0.x Developer Guide

648

Default: true

moobot

A comma-separated list of Moobots the Housekeeper Moolet will run.

Type: String

Default: Housekeeper.js

Example configuration

An example Housekeeper Moolet configuration as follows:

{

 run_on_startup : true,

 metric_path_moolet : false,

 standalone_moolet : true,

 moobot : "Housekeeper.js"

}

Situation Manager

The Situation Manager listens for Situation creation, update, or closure actions and passes the Situation

to an associated Moobot. It runs as a standalone Moolet by default.

You can define the algorithms for which the Situation Manager processes output, the Moobot it passes

Situations to and the actions performed on those Situations.

When a Moobot receives a Situation, you can configure it to perform functions such as data enrichment,

auto-assignment to a user or notifying a third-party tool to raise a ticket.

Configure the Situation Manager

The Situation Manager configuration file is located here:

$MOOGSOFT_HOME/config/moolets/situation_manager.conf. You can define the following

properties:

run_on_startup

Determines whether Situation Manager starts when Cisco Crosswork Situation Manager starts.

Type String

Required Yes

Default N/A

metric_path_moolet

Determines whether Situation Manager is included in the events processing metric for Self Monitoring.

Type Boolean

Required No

Default False

moobot

Determines which Moobot receives Situations from the Situation Manager. The Moobot JavaScript files

are located here: $MOOGSOFT_HOME/bots/moobots.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

649

Moolets are capable of supporting multiple Moobots. By configuring a Moolet to run multiple Moobots,

you can customise the functions of the default Moobot. You can use this feature to customise the

actions for Workflow Engine. To do this, locate the Moobot property in the Moolet configuration file and

add a comma-separated list of the Moobots you want to run. See the extract Situation Manager

parameters below and notice the default "moobot" property which contains one Moobot:

"SituationMgrLabeller.js".

Type String

Required Yes

Default SituationMgr.js

standalone_moolet

Determines whether Situation Manager runs as a standalone Moolet.

Type Boolean

Required No

Default True

Example

An example Situation Manager Moolet configuration as as follows:

{

 name : "SituationMgr",

 classname : "CSituationMgr",

 run_on_startup : true,

 metric_path_moolet : false,

 moobot : "SituationMgrLabeller.js",

 standalone_moolet : true

}

Note

Do not change the name and classname properties.

Configure the Moobot

Situation Manager listens for three event types by default:

 Sig: Situation creation.

 SigClose: Situation closure.

 SigUpdate: Situation update.

If you want to listen for other events, create an Empty Moolet and define the events in the

event_handler. See the eventType method in Constants for a full list of event types.

You can listen for specific Situation actions using the SigAction event. It can filter our the following

actions:

Assigned Moderator
Situation Resolved
Situation Revived

Deacknowledged Situation

Moderator
Added Alerts To Situation

Described Situation
Excluded User
Invited User

Cisco Crosswork Situation Manager 8.0.x Developer Guide

650

Situation Closed
Assigned Queue
Created By Merge
Used In Merge
Created By Split
Used For Split
Ran Tool
Acknowledged Situation

Moderator

Added Entry To Thread
Changed Situation Processes
Changed Situation Services
Created Thread
Agreed With Thread Entry
Commented On Thread Entry
Disagreed With Thread Entry
Changed Situation Custom

Info

Moved Alerts To Situation
Removed Alerts From

Situation
Situation Teams Changes
Marked Thread Entry As

Resolving
Unmarked Thread Entry As

Resolving
Situation Rating
Situation Rating Removed

The Situation Manager can send Situations to one of three Moobots. You can customize these to meet

your requirements:

 Situation Manager: Situation Manager's default associated Moobot. The configuration file is

SituationManager.js. For information on how to configure it, see Moobot Modules.

 Situation Manager Labeler: You can use the Situation Manager Labeler to enrich Situations by

dynamically adding alert properties to the Situation description. The configuration file is

SituationMgrLabeller.js. See Situation Manager Labeler for more information.

 Situation Manager Netcool: This Moobot is required for the Netcool legacy LAM. The configuration

file is SituationMgrNetcool.js. For more information see Netcool Legacy LAM.

Services

In Cisco Crosswork Situation Manager a service represents a supportable unit that provides a set of

related functionality. A service may relate to a single application or it may incorporate multiple

applications. Example services may include web application, web service, data management, database,

network.

This document outlines how to create services, assign them to Situations, associate them with teams

and monitor affected services in the Cisco Crosswork Situation Manager UI.

Before You Begin

Before you begin to create services in Cisco Crosswork Situation Manager, ensure you have met the

following requirements:

1. Identify the services in your environment. A third party tool or external system may be useful for this

task, for example the list of business services, applications or assignment groups in ServiceNow.

2. If your service data is held externally to Cisco Crosswork Situation Manager, identify the data

source.

3. Choose one or more methods that you will use to create and assign services:

o Graze API: Useful when you have a known list of services that change infrequently.

o Situation Manager Labeller: Useful when your services are likely to change and you want to

avoid the overhead associated with manual creation and assignment.

o Moobot: Useful when you are already using a custom Moobot for enrichment. See Enrichment

for more information.

o Another Enrichment method: Another method may be suitable depending on the source of

your service data, for example a static data file. See Enrichment for more information.

o Cisco Crosswork Situation Manager UI: An administrator can assign services to individual

Situations in the UI.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID181d7bea1ba0aa00e25ebf4387da6f61
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

651

Create Services and Assign Services to Situations

You can use one of the following methods, or a combination of these, to add services and assign them

to Situations.

Graze API Endpoints

The addService endpoint enables you to create a single service or script the creation of multiple

services. You can use setSituationServices to add one or more services to a Situation and

getSituationServices to return a list of impacted services for a specified Situation.

See Graze API for details on the command syntax and examples.

Situation Manager Labeller

This utility allows you to create services from your custom data as it is ingested into Cisco Crosswork

Situation Manager and assign those services to Situations.

See Create Services With Situation Manager Labeller for more information and an example.

Moobot

If you are using a custom Moobot to enrich on Situation creation, you can use the MoogDb addService

and setSituationServices methods to create services as part of this process. See Enrichment for further

information.

Another Enrichment Method

See Enrichment for further information on other enrichment methods.

Cisco Crosswork Situation Manager UI

In the UI, go into a Situation Room. Click Services Impacted at the top of the screen to add or remove

services from the Situation. You will need administrator rights to perform this function.

Assign Services to Teams

Cisco Crosswork Situation Manager can automatically assign Situations to teams based upon the

service data. You can also automatically create teams based on the service data in Situations.

See Manage Teams for details.Manage Teams

Monitor Affected Services

The Services Overview in the UI Workbench Summary allows you to view the impacted services with

the highest severity Situations. You can use this information to prioritize which Situations to address

first.

See Check Impacted Services for details.Check Impacted Services

Workflow Engine Moolets

The Workflow Engine Moolets perform tasks on events, alerts, and Situations as specified in a user-

defined workflow. See Workflow Engine for more information.Workflow Engine

The following files define the actions that are available when you define a workflow in the Cisco

Crosswork Situation Manager UI:

file://document/preview/11767%23UUIDf846cea88140c84d412edfa148fa0bbc
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUIDdbc9da65ba98a3b252169bb45eab878b
file://document/preview/35143%23UUID5111357c992e6859d5ea955823e004f8
file://document/preview/35022%23UUID57f7ab3ce1c5dea54082bfdbfe3e971f

Cisco Crosswork Situation Manager 8.0.x Developer Guide

652

 A Workflow Engine Moobot specifies a set of actions that are available when you define a workflow

in the Cisco Crosswork Situation Manager UI.

 The $MOOGSOFT_HOME/config/moolets/ folder has one default config file for each workflow

engine:

o event_workflows.conf: Event workflows process event data after data ingestion from a

LAM and before the Alert Builder.

o enrichment_workflows.conf: Enrichment workflows process alert data after the Alert

Builder but before the Maintenance Window Manager.

o alert_workflows.conf: Alert workflows process alert data after the Maintenance Window

Manager and before they pass to a clustering algorithm.

o alert_inform_workflows.conf: Alert Inform workflows trigger specific workflows from

within the Cisco Crosswork Situation Manager UI in response to another action on an alert.

o situation_workflows.conf: Situation workflows process Situation data after the Teams

Manager. For example, you can use a Situation workflow when you want to integrate with a

ticketing system.

o situation_inform_workflows.conf: Situation Inform workflows trigger specific workflows

from within the Cisco Crosswork Situation Manager UI in response to another action on a

Situation.

o If you have installed the Add-ons, you will see additional workflow engine configurations.

o Each configuration file has a moobot field that specifies the set of supported Moobots. The

default Moobot for all four Moolet types is

$MOOGSOFT_HOME/bots/moobots/WorkflowEngine.js. Do NOT modify the Cisco supplied

WorkflowEngine.js.

You can add and update Workflow Engine functionality. See Install Add-ons for more information.

If you want to create your own Workflow Engine Moolet, see Create a Workflow Engine Moolet.

Create a Workflow Engine Moolet

Implementers and administrators can use the Workflow Engine to add custom logic for event, alert, and

Situation processing in Cisco Crosswork Situation Manager.

A Moolet is an intelligence module that performs specific services in Cisco Crosswork Situation

Manager.

You can define a workflow in a Workflow Engine (WFE) Moolet to perform tasks on events, alerts, and

Situations.

If the existing WFE Moolets do not perform the service that you need, you can create a new WFE

Moolet.

Before you create a new WFE Moolet, consider where the new Moolet:

 Fits into your workflow.

 Receives data from and sends data to, and what the data types are.

WFE Moolet types

There are three types of WFE Moolet:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

653

 Event WFE Moolets process event data after that data is ingested by an integration or LAM and

before it is processed by the Alert Builder.

 Alert WFE Moolets process alert data after the Maintenance Window Manager and before that data

passes to a clustering algorithm.

 Situation WFE Moolets process Situation data after the Teams Manager finishes processing those

Situations.

You create a new Moolet by creating a Moolet configuration file in

$MOOGSOFT_HOME/config/moolets/.

WFE Moolet configuration file examples

For a full description of WFE Moolet configuration file properties, see the WFE Moolet Reference.

Event WFE Moolet

cl

run_on_startup: : true,

metric_path_moolet : true,

Alert WFE Moolet

name

run_on_startup: : true,

metric_path_moolet : true,

Situation WFE Moolet

run_on_startup: : true,

metric_path_moolet : true,

moobot

Activate the new Moolet

Once you have created the Moolet configuration file:

 Add the new Moolet to the Moogfarmd configuration file at

$MOOGSOFT_HOME/config/moog_farmd.conf. For example:

 moolets : [

 ...

 {

 include : "alert_builder.conf"

 },

Cisco Crosswork Situation Manager 8.0.x Developer Guide

654

 ...

 {

 include : "teams_manager.conf"

 },

 {

 include : "NEW_WFE_MOOLET_NAME.conf"

 }

]

 Restart the Moogfarmd instance to activate the new Moolet. See Control Processes for more

information.Control Processes

Workflow Engine Moolet reference

This is a reference for Workflow Engine (WFE) Moolets. The WFE Moolet configuration files are located

at $MOOGSOFT_HOME/config/moolets. See Create a WFE Moolet for examples of these configuration

files.

name

The name of the new Moolet. You must set a unique name for the Moolet name within each Moogfarmd

instance.

Type String

Required Yes

Default N/A

classname

The name of the java class that implements the moolet. WFE moolets are always the

"com.moogsoft.farmd.moolet.workflowengine.CWorkflowEngine" java class.

Type String

Required Yes

Default N/A

run_on_startup

Determines whether the new Moolet starts when the Moogfarmd instance starts.

Type Boolean

Required No

Default true

metric_path_moolet

Determines whether the Moolet is included in the events processing metric for Self Monitoring.Self

Monitoring

You can set the property to true or false. If the new Moolet is in a processing chain and logically

before the Alert WFE in that chain, set this property to true. Otherwise, set it to false.

Type Boolean

Required No

Default false

moobot

file://document/preview/11677%23UUID1a2205c3aae40b26fdfe94490043f3c3
file://document/preview/35190%23UUID9cfcd3ad2db8f7f70534ef009f72f493

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

655

A Moobot name or list of Moobot names that the new Moolet runs. The Moolet loads the Moobots in the

order specified.

Type Single Moobot: String

Multiple Moobots: Array

Required Yes

Default N/A

event_handlers

Specifies the type of event and message the new Moolet listens for.

Type Single event and message: String

Multiple events and messages: Array

Required No

Default N/A

process_output_of (alert and Situation WFE Moolets only)

A Moolet name or list of Moolet names for the new Moolet to receive events from.

Type Single Moolet: String

Multiple Moolets: Array

Required No

Default N/A

message_type

Specifies the type of object that the Moolet processes. There are three options:

 Event: "event".

 Alert: "alert".

 Situation: "situation".

Type String

Required Yes

Default N/A

Alert Manager

The Alert Manager uses the Empty Moolet to enable Cisco Crosswork Situation Manager administrators

or implementers to incorporate additional alert processing not handled by the Alert Builder,

Maintenance Window Manager or Alert Rules Engine. You can use the Alert Manager in standalone

mode or as part of the alert processing workflow.

Configure the Alert Manager

You can edit the Alert Manager configuration file at

$MOOGSOFT_HOME/config/moolets/alert_manager.conf

Cisco Crosswork Situation Manager 8.0.x Developer Guide

656

Alert Manager properties

The configurable Alert Manager properties are as follows. Do not edit the name and classname

properties in the file.

run_on_startup

Determines whether Alert Manager runs when Cisco Crosswork Situation Manager starts. If set to true,

the Alert Manager performs its background tasks from the moment the system starts, without you

having to configure or start it manually.

Type Boolean

Default true

metric_path_moolet

Determines whether Alert Manager is factored into the event processing metric for Self Monitoring. See

Moogfarmd Reference for more information.Self Monitoring

Type Boolean

Default false

moobot

A single Moobot or comma-separated list of Moobots the Alert Manager will run. Specify a JavaScript

file or files located in $MOOGSOFT_HOME/moobots.

Type String

Default AlertMgr.js

standalone_moolet

Determines whether the Alert Manager is run as a standalone process or whether it is a component

within the alert processing workflow.

Type Boolean

Default true

event_handlers

Configure the Alert Manager to receive the specified event types. See Constants for more information

on event types.

Type String

Default ["AlertClose", "AlertUpdate", "Alert"]

Example configuration

The default configuration file contains an example implementation of the Empty Moolet functionality in

the form of the Alert Manager Moolet. For example:

{

 run_on_startup : false,

 metric_path_moolet : false,

 standalone_moolet : true,

 moobot : "AlertMgr.js",

 event_handlers : ["AlertClose", "AlertUpdate", "Alert"]

}

file://document/preview/35190%23UUID9cfcd3ad2db8f7f70534ef009f72f493

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

657

Alert Manager Moobot

Cisco Crosswork Situation Manager provides a Moobot for the Alert Manager Moolet named

AlertMgr.js. You can use this Moobot to enable a specific action on different alert types. For

example, to update a Situation's services when an alert that contains certain attributes is updated.

Empty Moolet

For further information on customizing Cisco Crosswork Situation Manager using the Empty Moolet, see

Empty Moolet.

Server Roles

In order to plan your Cisco Crosswork Situation Manager deployment, it helps to understand the

different components of Cisco Crosswork Situation Manager and the options for distributing them

among multiple physical or virtual machines.

A server role within an Cisco Crosswork Situation Manager installation is a functional entity containing

components that must be installed on the same machine. You can distribute different roles to different

machines.

The following diagram illustrates the typical deployment strategy for the components of Cisco

Crosswork Situation Manager in an High Availability Overview configuration:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

658

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

659

The architecture is built upon two clusters with software components that serve several roles. See also

HA Reference Architecture.

In the case of a single-server installation, you install all the roles on one machine.

UI role

The UI role comprises Nginx and Apache Tomcat, represented in the diagram as numbers 1 and 2. The

Cisco Crosswork Situation Manager servlets groups run in active / active configuration.

Ngnix is the proxy for the web application server and for integrations.

Tomcat is the web application server. It reads and writes to the Message Bus and the database.

Database role

Percona XtraDB Cluster serves the database role, represented in the diagram as numbers 3, 4, and 5.

The cluster runs in active / active standby / active standby mode.

Percona Xtra Db Cluster is the system datastore that handles transactional data from other parts of the

system: LAMs (integrations), data processing, and the web application server.

HA Proxy handles database query routing and load balancing.

Core role

The Core role, represented by numbers 6 and 7 in the diagram comprises the following:

 Moogfarmd, the Cisco Crosswork Situation Manager data processing component. Moogfarmd

consumes messages from the Message Bus. It processes event data in a series of servlet-like

modules called Moolets.

 Moogfarmd reads and writes to the database and publishes messages to the bus.

 RabbitMQ which provides the message queue. It receives published messages from integrations. It

publishes messages destined for data processing (Moogfarmd) and the web application server.

 Elasticsearch which provides the UI search capability. It indexes documents from the indexer

Moolet in the data processing series. It returns search results to Tomcat.

In HA deployments, Moogfarmd automatically runs in active / passive mode. See High Availability

Overview for more information.

In concert with the the Redundancy Role server, RabbitMQ and Elasticsearch run in active / active /

active mode.

Redundancy role

The redundancy role, represented by number 8 in the diagram, provides the third node required for true

HA for RabbitMQ and Elasticsearch.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID74d4cfc8aa189a879a82ee26366c85dd
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

660

Data ingestion role

Link Access Modules (LAMs) make up the data ingestion role represented by numbers 9 and 10 in the

diagram. Receiving LAMs listen for events from monitoring sources and Polling LAMs poll monitoring

sources for events. Both parse and encode raw events into discrete events, and then write the discrete

events to the Message Bus.

In HA deployments, receiving LAMs run in active / active mode, but polling LAMs run in active / passive

mode.

Load balancers

The load balancers in front of the UI server role and the data ingestion server role are the customer's

responsibility.

Severity Reference

Severity is a measure of the seriousness of an event and indicates how urgently it requires corrective

action.

Cisco Crosswork Situation Manager LAMs and integrations use six industry standard severity levels as

follows:

 0: Clear - One or more events have been reported but then subsequently cleared, either manually

or automatically.

 1: Indeterminate - The severity level could not be determined.

 2: Warning - A number of faults with the potential to affect services have been detected.

 3: Minor - A fault that is not affecting services has been detected. Action may be required to

prevent it from becoming a more serious issue.

 4: Major - A fault is affecting services and corrective action is required urgently.

 5: Critical - A serious fault is affecting services and corrective action is required immediately.

The severity mapping is set in each LAM configuration file:

severity:

{

 "CLEAR" : 0,

 "INDETERMINATE" : 1,

 "WARNING" : 2,

 "MINOR" : 3,

 "MAJOR" : 4,

 "CRITICAL" : 5,

}

The LAM takes the severity string in a received event and translates it into one of the above integer

values using the mapping in its configuration file:

sevConverter:

{

 lookup : "severity",

 input : "STRING",

 output : "INTEGER"

},

mapping:

 rules:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

661

 [

 {

 name: "severity",

 rule: "$severity",

 conversion:"sevConverter"

 }

]

You can customize the severity section of the LAM configuration file according to the severities used in

the system sending events to Cisco Crosswork Situation Manager. In the following example, events

sent to the LAM with non-standard severities 'info' and 'Information' are mapped to 'INDETERMINATE'

in Cisco Crosswork Situation Manager:

severity:

{

 "info" : 1,

 "Information" : 1,

 "user" : 1,

 "warning" : 2,

 "Warning" : 2,

 "error" : 5,

 moog_lookup_default : 1

}

The moog_lookup_default property specifies a default value to use when the severity does not

match any of the defined strings. If you do not set a default, events with an unmapped severity are not

processed. For more information on mapping see "Conversion Rules" in Data Parsing.Data Parsing

Cisco Crosswork Situation Manager determines a Situation's severity from the member alert with the

highest severity level.

Status ID Reference

The status of alerts and Situations is determined by their status ID. These statuses are used within the

Heartbeat Monitor.

The different status_id values are as follows:

Status ID Name

1 Opened

2 Unassigned

3 Assigned

4 Acknowledged

5 Unacknowledged

6 Active

7 Dormant

8 Resolved

file://document/preview/11720%23UUID5c67156b667b1a28ec648cd779393914

Cisco Crosswork Situation Manager 8.0.x Developer Guide

662

9 Closed

10 SLA Exceeded

Situation Manager Labeler

You can use the Situation Manager Labeler to set Situation descriptions and fields dynamically, based

on the alert data in each Situation. For example, suppose you are defining a correlation based on the

custom_info.services alert field. To generate descriptions for the resulting Situations, you can

specify a label string in the description field such as:

$$COUNT(custom_info.services) services affected including

$$CITED(custom_info.services,3)

Given this string, the resulting descriptions include the three most-cited services and the number of

times each service is cited by a member alert:

5 services affected including cust-login(7), verify-login(6), update-login-

info(4), ...

Note

The Situation Manager Labeler is installed by default with Cisco Crosswork Situation Manager v7.3 and

higher. For previous releases, contact Cisco Customer Support to obtain installers and instructions.

Usage

Given a macro operation and an alert data field, the operation iterates through the relevant values in the

Situation alerts and returns a string derived from these values.

The usage for fields with single values (prefix is one $): $macro(alert-field, max-alerts-to-

include)

 $$macro(alert-field, max-alerts-to-

include)

The max-alerts-to-include field is optional. This value limits the number of alert values to include

in the description.

Consider the following example. You want to create a label with a count of all the affected services

(custom_info.services) cited in all alerts. A Situation has two alerts:

 Alert 1: custom_info.services = [a, b, c];

 Alert 2: custom_info.services = [d, e, f];

$COUNT treats the fields as individual values and returns a count of 2.

$$COUNT treats the fields as lists of individual values and returns a count of 6.

Update Situation descriptions

You can use the following macros to generate Situation descriptions. These macros are supported for

single values ($macro) and lists ($$macro):

 COUNT(alert-field)---- Return the count of alert-field citations, including duplicates.

 UCOUNT(alert-field) ---- Return the count of unique alert-field citations, excluding duplicates.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

663

 CRITICAL(alert-field)---- Return the string CRITICAL : if any alerts have a severity of critical,

or 5. This macro is only useful for the severity field.

 UNIQ(alert-field)---- Return a list of all cited alert-field values.

 TOP(alert-field)---- Return the alert-field value cited by the most alerts in the Situation.

 CITED(alert-field)---- Return a list of the unique alert-field values cited by alerts in the

Situation along with the number of times they are cited -- for example, source1 (10), source5

(7), source3 (4).

 CITEDLIST(alert-field)---- Same as $CITED but returns a string instead of a JSON list.

 BOOLEAN(alert-field)---- Return false if all values are falsy: 0, null, undefined, "", and so on.

 $CLASS(custom-info-value) ----Set the situation custom_info.situationClass field with this

value and include this value in the situation label. This is useful for specifying custom information

about the Situation such information about the clustering algorithm ---- for example, cookbook-

name.recipe-name.

 TOLIST(alert-field)---- Creates a comma-separated string from the elements of alert-field.

Note

UI list-based filtering is now native, so $TOLIST() should no longer be required.

Numeric fields only

The following macros are supported for numeric fields only, such as time, severity, or event-

count.

 MIN(alert-field)---- Return the minimum cited value of alert-field.

 MAX(alert-field)---- Return the maximum cited value of alert-field.

 AVE(alert-field)---- Return the average of all cited values of aalert-field.

 SUM(alert-field)---- Return the average of all cited values of alert-field.

 NUM(alert-field)---- Return the set of alert-field values sorted numerically from low to high,

including duplicates.

 UNUM(alert-field)---- Return the set of unique alert-field values sorted numerically from low

to high, excluding duplicates.

Text fields only

The following macros are supported for text fields only, such as service, source, or description.

 ALPHA(alert-field)---- Return the set of alert-field values sorted alphabetically, including

duplicates.

 UALPHA(alert-field) ---- Return the set of unique alert-field values sorted alphabetically,

excluding duplicates.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

664

List values only

The following macros are supported for array values only.

 $$INTERSECT(alert-field)---- Return the list of intersections -- that is, alert-field values cited

by multiple alerts. This macro parses the alert-field array values and returns a list of the items with

multiple citations.For example, support a Situation has two alerts. The service field of alert 1 is [a,

b, c]. The service field of alert 2 is [b, c, d]. $$INTERSECT(service) would return the list

[b, c].

 $$NINTERSECT(alert-field)---- Return the number of intersections. Given the previous example,

$$NINTERSECT(service) would return the number 2.

 $$CINTERSECT(alert-field) ---- Return the list of common intersections -- that is, values cited

by all alerts in the Situation. This macro is useful for identifying a possible root cause that caused all

the alerts to get correlated together.

Limiting the number of alerts to consider

By default, each macro considers all alerts in a Situation up to a maximum of 200. You might want to

specify a lower threshold to ensure that labeling does not become a bottleneck in systems with large or

frequently-updated Situations. To lower the threshold, append the $FETCH modifier at the start of the

Labeler string:

$FETCH(max-alerts-to-consider)Labeler-string

For example, the following macro considers the first alert in each Situation based on alert ID:

$FETCH(1) Application Situation for: $UNIQ(custom_info.application) at

DataCentre $UNIQ(custom_info.location)

You should specify the maximum number of alerts needed to ensure an accurate description. If you are

correlating based on a specific field such that all alerts have the same value for that field, you only need

to fetch 1 alert.

Warning

Do not specify a fetch value higher than 20.

Update Situation columns

You can use the following macros to update columns in the Situation Table with values contained in its

member alerts.

 $$SERVICES(alert-field) ----Update the Services Impacted column in the Situation with all

unique alert-field values cited in the member alerts.

 $$ISERVICES(alert-field) ---- Update the Services Impacted column in the Situation with all

unique alert-field values cited in 2 or more member alerts.

 $$PROCESSES(alert-field)---- Update the Processes Impacted column in the Situation with all

unique alert-field values cited in the member alerts.

You can also use the $MAP[] macro to update a custom_info field in the Situation with data from the

member alerts. The usage is as follows:

$MAP[$MACRO(source alert field, destination custom_info field)]

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

665

Update Situation fields

You can use the following macro to update the custom_info field for individual Situations.

 $MAP[source-alert-field, destination-custom-info-field] ----Update a custom_info

field in the Situation with data from the member alerts. You can include multiple macros in the same

MAP macro, as shown in the following example:

 $MAP[$UNIQ(source, hosts) $UCOUNT(source, num_hosts)]

 $CLASS(custom-info-value) ----Set the situation custom_info.situationClass field with this

value. This is useful for specifying custom information about the situation, such as information

about the clustering algorithm ---- for example, cookbook-name.recipe-name.

Example

For instructions on how to use the Situation Manager Labeler to automatically create services based on

custom_info data, see Create Services With Situation Manager Labeller

Workflow Engine

Implementers and administrators can use a workflow engine to add custom logic for event, alert, and

Situation processing in Cisco Crosswork Situation Manager. You can check conditions against object

data, modify object data, and control object routing. For example you can set up a workflow engine to

process and normalize data from a LAM or Integration before it forwards the data to the Alert Builder.

Some scenarios where you can implement the Workflow Engine include:

 Using the Alert Workflow Engine to escalate alerts. For example to respond to a disk space alert.

 Using the Event Workflow Engine to prevent them from processing.

See for an example.

 Enrich alerts with external data such as the services supported by a host or its location.

 Using the Heartbeat Workflow Engine to detect the absence of events like a missing keep alive

event from a predictable source.

 See for an example.

 Controlling stateful workloads. For example, you can configure a workflow to hold a "link down"

event until Cisco Crosswork Situation Manager receives a corresponding "link up" event within a

time limit.

 Using the Situation Workflow Engine to integrate with external systems for ticketing, notification,

automation, and reporting.

See for an example.

Default Workflow Engine types

Each workflow engine is a Moolet that operates within the context of Moogfarmd. Cisco Crosswork

Situation Manager includes the following workflow engines by default:

file://document/preview/11767%23UUIDf846cea88140c84d412edfa148fa0bbc
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID034c0f622f6362cfff6a01d6e55e4c51

Cisco Crosswork Situation Manager 8.0.x Developer Guide

666

 Event Workflows: Process events data after data after ingestion from a LAM and before the Alert

Builder.

 Enrichment Workflows: Process alerts after the Alert Builder but before the Maintenance Window

Manager.

 Alert Workflows: Process alerts after the Maintenance Window Manager and before they pass to

clustering algorithms. For example, you can use an alert workflow when you want to route a

specific type of alert to a specific clustering algorithm.

 Alert Inform Workflows: Invokes a specific alert workflow outside of the Alert Workflow Engine

chain.

 Situation Workflows: Process Situations after the Teams Manager. For example, you can use a

Situation workflow when you want to integrate with a ticketing system.

 Situation Inform Workflows: Invokes a specific Situation workflow outside of the Situation

Workflow Engine chain.

Cisco periodically releases new workflow engines. See Add-ons for the most recent update.

Because workflow engines are Moolets, you can use a Moobot to extend the engine functionality. You

can create a new Workflow Engine Moolet if the existing Moolets do not perform the service that you

need. You can also add new workflow engines. For more information, see Workflow Engine Moolets.

Workflows

Each workflow engine is a container for a set of workflows. In general a workflow comprises the

following:

 A workflow definition that defines the workflow purpose, the objects it affects, and some basic

functionality.

 Workflow actions that let you apply functions to object data and apply some routing rules in case

the function returns false. There are functions to let you check conditions of object data within the

workflow, modify the object data, and route the object within the workflow or to another Moolet.

For most engines, workflows execute in numerical order from first to last. You can rearrange the order

of the workflows to control the order of execution within the engine. The exception are the "inform"

workflows. Inform engines let you execute a single, specific workflow without executing all the

workflows in the engine.

Within a workflow, actions execute in numerical order.

Each action within a workflow lets you control the flow in the case that its function returns false.

Cisco Crosswork Situation Manager ships with the following default workflows:

 Closed Objects Filters to prevent processing of closed ob in the Alert Workflows and Situation

Workflows.

 Automated Ticketing to help you integrate with third party ticketing systems in the Situation

Workflows.

To learn how to create workflows, see Manage Workflows. For information on creating actions within a

workflow, see Manage Workflow Engine Actions.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

667

Manage Workflow Engine Actions

After you have defined the data you want to process using a Workflow Engine in Cisco Crosswork

Situation Manager, you can set up actions to programmatically transform the data and control the data

flow.

Read through Workflow Engine Strategies and Tips for ideas about how to use the Workflow Engine.

When you edit an engine, you can click +Add Action to create a new action, or double-click an existing

action to edit it.

Delay

By default, each workflow has a delay action. It is mandatory and you can not delete it. You can set the

delay for up to 86,400 seconds (24 hours). If you enable the Reset option, if another matching event

reaches the delay, the delay timer resets to 0.

Actions

Define workflow actions as follows to add custom processing to events, alerts, or Situations depending

on the type of engine:

Action Property Description

Action Name Identifier for the action. Must be unique within the workflow.

Function A programmatic task based on JavaScript and Java functions. The available

function list varies according to the object: event, alert, enrichment, or Situation.

When you set the function, the UI displays its description and updates the Values to

correspond to the function. For example, the contains action lets you check a

field in your object for matching values. See Workflow Engine Functions

Reference.Workflow Engine Functions Reference

Value Parameters for the function. The parameters vary from function to function. When

you select a function, the UI updates the description of the parameters. For more

information, see Workflow Engine Functions Reference and Alert and Event Field

Reference.Workflow Engine Functions Reference

Forwarding Behavior Controls the data flow. For objects where the function returns false, you can

choose to always forward to the next action or workflow, stop the current workflow,

or stop all workflows for the object.

If you have multiple actions, you can drag and drop them to arrange them according to your

requirements.

Workflow Engine Moolets

The Workflow Engine Moolets perform tasks on events, alerts, and Situations as specified in a user-

defined workflow. See Workflow Engine for more information.Workflow Engine

The following files define the actions that are available when you define a workflow in the Cisco

Crosswork Situation Manager UI:

 A Workflow Engine Moobot specifies a set of actions that are available when you define a workflow

in the Cisco Crosswork Situation Manager UI.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

668

 The $MOOGSOFT_HOME/config/moolets/ folder has one default config file for each workflow

engine:

o event_workflows.conf: Event workflows process event data after data ingestion from a

LAM and before the Alert Builder.

o enrichment_workflows.conf: Enrichment workflows process alert data after the Alert

Builder but before the Maintenance Window Manager.

o alert_workflows.conf: Alert workflows process alert data after the Maintenance Window

Manager and before they pass to a clustering algorithm.

o alert_inform_workflows.conf: Alert Inform workflows trigger specific workflows from

within the Cisco Crosswork Situation Manager UI in response to another action on an alert.

o situation_workflows.conf: Situation workflows process Situation data after the Teams

Manager. For example, you can use a Situation workflow when you want to integrate with a

ticketing system.

o situation_inform_workflows.conf: Situation Inform workflows trigger specific workflows

from within the Cisco Crosswork Situation Manager UI in response to another action on a

Situation.

o If you have installed the Add-ons, you will see additional workflow engine configurations.

o Each configuration file has a moobot field that specifies the set of supported Moobots. The

default Moobot for all four Moolet types is

$MOOGSOFT_HOME/bots/moobots/WorkflowEngine.js. Do NOT modify the Cisco supplied

WorkflowEngine.js.

You can add and update Workflow Engine functionality. See Install Add-Ons for more information.

If you want to create your own Workflow Engine Moolet, see Create a Workflow Engine Moolet.

Manage Workflows

You can create and configure individual workflows or chains of workflows in the UI.Cisco Crosswork

Situation Manager.

Read through Workflow Engine Strategies and Tips for ideas about how to use the Workflow Engine.

To access the Workflow Engine, navigate to Settings > Automation.

When you open the Workflow Engine, you see workflow tabs for the different types of engines you can

enable at startup.

Click +Add Worfklow to create a workflow or double-click an existing workflow to open it.

Edit the Workflow Definition as follows to control which data the engine processes:

Workflow

Property Description

Workflow Name Identifies the workflow.

Description Describes the purpose of the workflow and what it should do.

Entry Filter Identifies the criteria for events, alerts, or Situations to process with the current engine.

Anything that does not meet the criteria skips to the next engine or Moolet in the chain.

For example, you can set a filter on "severity > 3" to process only Major and Critical

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID81f2bc6812793e17a9a2d378ae9ab40d

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

669

severity alerts.

Sweep Up Filter Check the database for all objects that match the filter criteria and pass them to certain

workflow actions as a list parameter. The sweep up filter expedites entry of related

objects into the workflow. For example if you receive a link-up alert, you can set a filter

to retrieve all related link-down alerts from the database and have the sweep up filter

close them.

The sweep up filter only applies to certain actions. You can see the actions that use the

Sweep Up filter in the Workflow Engine Functions Reference and the topics for

individual actions.Workflow Engine Functions Reference

Note

Cisco restricts use of the sweep up filter to open alerts that reside in the live database

and does not permit the sweep up filter to pick up archived or closed alerts. Whether an

archived or closed alert resides in the live database or elsewhere is immaterial, Cisco

does not support this functionality and it is strictly prohibited.

First Match Only Allow only the first occurrence of an object to pass through the workflow.

You can use the slider in the title bar to set the engine to Active or Inactive.

If you have multiple workflows, you can use the up and down arrows in Edit mode to reorder them.

Alternatively, you can drag and drop the workflows into order.

After you create an engine, you can add actions to process data. When the engine is active, it

processes all objects that match the filtering criteria according to the actions. If a user has manually

changed an alert or Situation, this may affect its processing by the Workflow Engine.

Workflow Engine Functions Reference

This is a reference for Workflow Engine functions in Cisco Crosswork Situation Manager.

Functions may be available for more than one object. For example, addItemToList is available in event,

alert, enrichment, and Situation workflows. In this reference, the functions appear in the lists for all the

objects they are valid for.

Event functions

The following functions are available in event workflows:

 addDefaultValues: Adds a set of default values to custom_info based on a payload map. Sweep up

filter applies.

 addItemToList: Adds an item or items to an array. Sweep up filter applies.

 addTags: Adds or updates a custom info field called "tags" with an array of string values.

 appendFields: Appends a concatenated set of fields to an existing field, using a separator character.

 appendString: Appends a static string to an existing field separated by a space character.

 ceventFilter: Returns true if the object matches a SQL-like filter. Sweep up filter applies.

 checkSeverity: Checks the severity level of the object.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

670

 classifyEvent: Sets the class, type, and severity fields of an event based upon its contents using a

predefined classification algorithm.

 concatFields: Sets the value of a field to a string representing a set of concatenated fields.

 contextFilter: Filters a workflowContext object for a specified name field. Sweep up filter applies.

 convertToJSON: Converts the object to JSON and adds it to the workflowContext for use in subsequent

actions.

 copyFieldFromAlertToEvent: Copies a single field from an existing alert to a deduplicating event for the

same alert.

 copyFromAlertToEvent: Copies multiple fields from an existing alert to a deduplicating event for the

alert.

 copyFromContext: Copies a field from the workflowContext to a destination object field. Sweep up

filter applies.

 copyToContext: Copies an object field to the workflowContext.

 copyToPayload: Copies a value to the payload in workflowContext for the current object.

 createPayload: Creates a workflowContext payload from the triggering object using a predefined

payload map.

 deleteEnrichment:Removes data from the enrichment datastore.

 deltaEvent: Returns true: if the specified event fields differ from corresponding fields in an existing

alert, or when an error occurs in the delta check, or when no alert exists. Returns false when it

detects no changes.

 dnsLookup: Performs a lookup of an IP address or name to return a JSON object containing the IP

address, FQDN, and name for the address.

 dropEvent: Allows you to prevent further processing of an event.

 estimateSeverity: Uses a predefined classification algorithm to estimate event or alert severity. Sweep

up filter applies.

 existingAlertFilter: Returns true if the existing alert for a deduplicating event matches a SQL-like filter.

 getIntegrationConfig: Retrieves an integration configuration and stores it in the workflowContext for

subsequent actions to use.

 getPayload: Creates a workflowContext payload from the triggering object from a predefined payload

map. Sweep up filter applies.

 isClear: Returns true if the object's severity level is Clear (0).

 isInSubnet: Returns true when an IP address is present within a specified subnet. Sweep up filter

applies.

 isNewerThan: Returns true when the object age in seconds is less than a specified age in seconds.

Sweep up filter applies.

 isNotClear: Returns true if the object's severity level is not "Clear". Sweep up filter applies.

 isNotNull: Returns true if the value for an object's cEvent field is not null, is not an empty object, or is

not an empty array.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

671

 isNull: Returns true if the value for an object's cEvent field is null, is not set, is an empty object, or is an

empty array.

 isOlderThan: Returns true when the object age in seconds is older than a specified age in seconds.

Sweep up filter applies.

 listContains: Returns true when the array field you query contains some of your specified values.

Sweep up filter applies.

 listContainsAll: Returns true when the array field you query contains all of your specified values.

Sweep up filter applies.

 listDoesNotContain: Returns true when the array field you query contains none of your specified

values. Sweep up filter applies.

 logCEvent: Prints a warning level message containing the current in-scope object in a readable JSON

format to the Moogfarmd log file. Sweep up filter applies.

 logMessage: Logs a message to the Moogfarmd log.

 logWorkflowContext: Logs the contents of workflowContext to the current Moogfarmd log file at a

warning level.

 logWorkflowDuration: Logs debug messages for the workflow execution duration.

 lowerCase: Changes the value of a field to lower case. Sweep up filter applies.

 populateNamedTopology: Populates the named topology field custom_info.moog_topology with a

value. It can be a string value or the value of an alert attribute. Sweep up filter applies.

 prependFields: Prepends a concatenated set of fields to an existing field, using a separator character.

 prependString: Prepends a string to an existing field, using a separator character.

 restAsyncPost: Makes a HTTP POST request with a JSON payload to a named REST endpoint.

 searchAndReplace: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Sweep up filter applies.

 searchAndReplaceOrdered: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Allows you to provide the map as an array to preserve mapping order.

Sweep up filter applies.

 sendToWorkflow; Sends the in-scope object to a named workflow in an Inform based workflow engine.

 setAgent: Sets the agent of the event or alert.

 setAgentLocation: Sets the agent location of the event or alert.

 setAgentTime: Sets the agent_time of the event to current time if the field does not exist in the event,

or is more than the offset seconds in the past/future.

 setEnrichment: Updates a single record in the enrichment datastore with data from an alert.

 setEnrichmentBulk: Updates multiple records in the enrichment datastore with an array of data from an

alert.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

672

 setExternalId: Sets the external ID of the event or alert.

 setManager Sets the manager of the event or alerts.

 setSource Sets the source of the event or alert.

 setSourceId Sets the source ID of the event or alert.

 setCoreEventField: Sets a single core event field to a value.

 simpleLookup: Defines the lookup as two arrays of equal length. Sweep up filter applies.

 skip: Forwards an in-scope event, alert or Situation to the next chained moolet using the standard

forwarding mechanism, and skips the rest of the workflows in the current engine.

 staticLookup: Searches for a key in a static lookup table, retrieves the corresponding value, and applies

that value to a field in the object.

 #: Stops the workflow.

 stripFQDN: Splits a fully qualified domain name (FQDN) into a hostname/short name and a domain name

and updates fields with the values.

 upperCase: Changes the value of a field to uppercase. Sweep up filter applies.

 willCreateNewAlert: Returns true if the event will create a new alert.

 willDeduplicateAlert: Returns true if the event will deduplicate into an existing alert.

Alert and enrichment functions

The following functions are available in alert and enrichment workflows:

 ackNotification: Automatically acknowledges a notification for a service.

 activateTopology: Updates a named topology from an inactive to an active state.

 addDefaultValues: Adds a set of default values to custom_info based on a payload map. Sweep up

filter applies.

 addItemToList: Adds an item or items to an array. Sweep up filter applies.

 addTags: Adds or updates a custom info field called "tags" with an array of string values.

 addTopologyLink: Creates a link between two endpoints, A (source node) and Z (sink node), in a

named topology.

 addTopologyNode: Creates a node in a named topology.

 alertDelta: Returns true when attributes have changed.

 alertInSituation: Returns true when the alert is a member of an active Situation. Sweep up filter applies.

 alertNotInSituation: Returns true when the alert is not a member of an active Situation. Sweep up filter

applies.

 appendFields: Appends a concatenated set of fields to an existing field, using a separator character.

 appendString: Appends a static string to an existing field separated by a space character.

 assignAlert: Assigns an owner of in-scope alerts. Sweep up filter applies.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

673

 between: Returns true if the object creation date falls between two times.

 ceventFilter: Returns true if the object matches a SQL-like filter. Sweep up filter applies.

 checkSeverity: Checks the severity level of the object.

 checkTopology: Checks for the existence of a named topology.

 checkTopologyLink: Checks for a link between two endpoints, A (source node) and Z (sink node), in a

named topology.

 cloneTopology: Copies an existing topology to a new inactive named topology if the name is not

already in use.

 closeAlert: Closes alerts.

 concatFields: Sets the value of a field to a string representing a set of concatenated fields.

 contextFilter: Filters a workflowContext object for a specified name field. Sweep up filter applies.

 convertToJSON: Converts the object to JSON and adds it to the workflowContext for use in subsequent

actions.

 copyFromContext: Copies a field from the workflowContext to a destination object field. Sweep up

filter applies.

 copyToContext: Copies an object field to the workflowContext.

 copyToPayload: Copies a value to the payload in workflowContext for the current object.

 createNotification: Automatically creates a notification for a service.

 createPayload: Creates a workflowContext payload from the triggering object using a predefined

payload map.

 createTopology: Creates a named topology if it does not already exist. Takes no action if the topology

exists.

 deactivateTopology: Updates a named topology from an active to an inactive state.

 deassignAlert: Removes the current owner of in-scope alerts. Sweep up filter applies.

 deleteEnrichment:Removes data from the enrichment datastore.

 deleteTopology: Delete a named topology

 deleteTopologyLink: Removes a direct link between two endpoints, A (source node) and Z (sink node),

in a named topology.

 deleteTopologyNode: Deletes a node in a named topology.

 dnsLookup: Performs a lookup of an IP address or name to return a JSON object containing the IP

address, FQDN, and name for the address.

 doesNotHaveStatus: Returns true when the in-cope alert or Situation is not in any of the specified

states.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

674

 estimateSeverity: Uses a predefined classification algorithm to estimate event or alert severity. Sweep

up filter applies.

 exportViaKafka: Exports the payload from a createPayload to an external Kafka endpoint. Sweep up

filter applies.

 exportViaRest: Exports the payload from a createPayload to an external REST endpoint. Sweep up filter

applies.

 forward: Forwards the object to the named Moolet.

 getEnrichment: Retrieves data from the enrichment datastore through the Cisco Crosswork Situation

Manager Enrichment API. Sweep up filter applies.

 getPayload: Creates a workflowContext payload from the triggering object from a predefined payload

map. Sweep up filter applies.

 getIntegrationConfig: Retrieves an integration configuration and stores it in the workflowContext for

subsequent actions to use.

 hasStatus: Returns true when the in-scope alert or Situation is in any of the specified states.

 isAssigned: Returns true if the object has an owner or moderator. Sweep up filter applies.

 isClear: Returns true if the object's severity level is Clear (0).

 isInSubnet: Returns true when an IP address is present within a specified subnet. Sweep up filter

applies.

 isNewerThan: Returns true when the object age in seconds is less than a specified age in seconds.

Sweep up filter applies.

 isNotAssigned: Returns true if the object does not have an owner or moderator. Sweep up filter

applies.

 isNotClear: Returns true if the object's severity level is not "Clear". Sweep up filter applies.

 isNotNull: Returns true if the value for an object's cEvent field is not null, is not an empty object, or is

not an empty array.

 isNull: Returns true if the value for an object's cEvent field is null, is not set, is an empty object, or is an

empty array.

 isOlderThan: Returns true when the object age in seconds is older than a specified age in seconds.

Sweep up filter applies.

 listContains: Returns true when the array field you query contains some of your specified values.

Sweep up filter applies.

 listContainsAll: Returns true when the array field you query contains all of your specified values.

Sweep up filter applies.

 listDoesNotContain: Returns true when the array field you query contains none of your specified

values. Sweep up filter applies.

 logCEvent: Prints a warning level message containing the current in-scope object in a readable JSON

format to the Moogfarmd log file. Sweep up filter applies.

 logMessage: Logs a message to the Moogfarmd log.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

675

 logWorkflowContext: Logs the contents of workflowContext to the current Moogfarmd log file at a

warning level.

 logWorkflowDuration: Logs debug messages for the workflow execution duration.

 lookupAndReplace: Sets the alertField to a value when one of the fields in the inFields list

matches a word or regular expression. Sweep up filter applies.

 lowerCase: Changes the value of a field to lower case. Sweep up filter applies.

 populateNamedTopology: Populates the named topology field custom_info.moog_topology with a

value. It can be a string value or the value of an alert attribute. Sweep up filter applies.

 prependFields: Prepends a concatenated set of fields to an existing field, using a separator character.

 prependString: Prepends a string to an existing field, using a separator character.

 replaceString: Replaces a string or regular expression in a field with a specified string or regular

expression.

 resolveNotification: Automatically resolves a notification for a service.

 restAsyncPost: Makes a HTTP POST request with a JSON payload to a named REST endpoint.

 searchAndReplace: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Sweep up filter applies.

 searchAndReplaceOrdered: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Allows you to provide the map as an array to preserve mapping order.

Sweep up filter applies.

 sendMooletInform: Sends a Moolet inform with a subject and details.

 sendToWorkflow; Sends the in-scope object to a named workflow in an Inform based workflow engine.

 sendViaRest: Sends the payload from a createPayload to an external REST endpoint. Sweep up filter

applies.

 setAgent: Sets the agent of the event or alert.

 setAgentLocation: Sets the agent location of the event or alert.

 setClass: Sets the class of the alert.

 setCustomInfoJSONValue: Adds or updates a custom info key to the specified JSON value. Sweep up

filter applies.

 setCustomInfoValue: Adds or updates a custom info key to a specified string value. Sweep up filter

applies.

 setDescription: Sets the description of the object.

 setEnrichment: Updates a single record in the enrichment datastore with data from an alert.

 setEnrichmentBulk: Updates multiple records in the enrichment datastore with an array of data from an

alert.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

676

 setExternalId: Sets the external ID of the event or alert.

 setManager Sets the manager of the event or alerts.

 setSource Sets the source of the event or alert.

 setSourceId Sets the source ID of the event or alert.

 setSeverity: Sets the severity of the alert. Sweep up filter applies.

 setType: Sets the type of the alert.

 simpleLookup: Defines the lookup as two arrays of equal length. Sweep up filter applies.

 skip: Forwards an in-scope event, alert or Situation to the next chained moolet using the standard

forwarding mechanism, and skips the rest of the workflows in the current engine.

 staticLookup: Searches for a key in a static lookup table, retrieves the corresponding value, and applies

that value to a field in the object.

 #: Stops the workflow.

 stripFQDN: Splits a fully qualified domain name (FQDN) into a hostname/short name and a domain name

and updates fields with the values.

 upperCase: Changes the value of a field to uppercase. Sweep up filter applies.

Situation functions

The following functions are available in Situation workflows:

 ackNotification: Automatically acknowledges a notification for a service.

 addDefaultValues: Adds a set of default values to custom_info based on a payload map. Sweep up

filter applies.

 addItemToList: Adds an item or items to an array. Sweep up filter applies.

 addTags: Adds or updates a custom info field called "tags" with an array of string values.

 addThreadEntry: Adds a post to the named thread in the Collaboration tab of the Situation Room.

 appendFields: Appends a concatenated set of fields to an existing field, using a separator character.

 appendString: Appends a static string to an existing field separated by a space character.

 between: Returns true if the object creation date falls between two times.

 ceventFilter: Returns true if the object matches a SQL-like filter. Sweep up filter applies.

 checkSeverity: Checks the severity level of the object.

 checkSituationFlag: Checks if a specific flag is set for a Situation.

 checkSituationState: Returns true if the specified state exists for a Situation. Sweep up filter applies.

 concatFields: Sets the value of a field to a string representing a set of concatenated fields.

 containsAlertDetails: Returns true if all or any of the alerts in the Situation matches the filter condition.

Sweep up filter applies.

 contextFilter: Filters a workflowContext object for a specified name field. Sweep up filter applies.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

677

 convertToJSON: Converts the object to JSON and adds it to the workflowContext for use in subsequent

actions.

 copyFromContext: Copies a field from the workflowContext to a destination object field. Sweep up

filter applies.

 copyToContext: Copies an object field to the workflowContext.

 copyToPayload: Copies a value to the payload in workflowContext for the current object.

 createNotification: Automatically creates a notification for a service.

 createPayload: Creates a workflowContext payload from the triggering object using a predefined

payload map.

 dnsLookup: Performs a lookup of an IP address or name to return a JSON object containing the IP

address, FQDN, and name for the address.

 exportViaKafka: Exports the payload from a createPayload to an external Kafka endpoint. Sweep up

filter applies.

 exportViaRest: Exports the payload from a createPayload to an external REST endpoint. Sweep up filter

applies.

 createServiceTicket: Creates a ticket for the specified service.

 doesNotHaveStatus: Returns true when the in-cope alert or Situation is not in any of the specified

states.

 filterByCookbook: Returns true if the Visualize data for the Situation matches the cookbook name.

 filterByCookbookAndRecipe: Returns true if the Visualize data for the Situation matches the cookbook

name and recipe name.

 filterByRecipe: Returns true if the Visualize data for the Situation matches the recipe name.

 forward: Forwards the object to the named Moolet.

 getIntegrationConfig: Retrieves an integration configuration and stores it in the workflowContext for

subsequent actions to use.

 getPayload: Creates a workflowContext payload from the triggering object from a predefined payload

map. Sweep up filter applies.

 getSituationFlags: Retrieves the Situation flags and stores them in the workflowContext for subsequent

actions to use.

 getVisualizationData: Retrieves the Visualize data and stores them in the workflowContext for

subsequent actions to use.

 hasCausalPRC: Returns true if one or more alerts in the Situation has a causal PRC flag set. Sweep up

filter applies.

 hasMerged: Returns true if the Situation has been merged or superseded.

 hasNotMerged: Returns true if the Situation has not been merged or superseded.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

678

 hasSimilarSituations: Returns true when the Situation has a similar Situation above the specified

threshold.

 hasStatus: Returns true when the in-scope alert or Situation is in any of the specified states.

 isAlertAcknowledged: Returns true when the in-scope alert state is Acknowledged.

 isAlertNotAcknowledged: Returns true when the in-scope alert state is not Acknowledged.

 isAssigned: Returns true if the object has an owner or moderator. Sweep up filter applies.

 isClear: Returns true if the object's severity level is Clear (0).

 isNotAssigned: Returns true if the object does not have an owner or moderator. Sweep up filter

applies.

 isNewerThan: Returns true when the object age in seconds is less than a specified age in seconds.

Sweep up filter applies.

 isNotClear: Returns true if the object's severity level is not "Clear". Sweep up filter applies.

 isNotNull: Returns true if the value for an object's cEvent field is not null, is not an empty object, or is

not an empty array.

 isNull: Returns true if the value for an object's cEvent field is null, is not set, is an empty object, or is an

empty array.

 isOlderThan: Returns true when the object age in seconds is older than a specified age in seconds.

Sweep up filter applies.

 labelSituation: Labels the Situation using the Situation Manager Labeler macro language. Sweep up

filter applies.

 listContains: Returns true when the array field you query contains some of your specified values.

Sweep up filter applies.

 listContainsAll: Returns true when the array field you query contains all of your specified values.

Sweep up filter applies.

 listDoesNotContain: Returns true when the array field you query contains none of your specified

values. Sweep up filter applies.

 logCEvent: Prints a warning level message containing the current in-scope object in a readable JSON

format to the Moogfarmd log file. Sweep up filter applies.

 logMessage: Logs a message to the Moogfarmd log.

 logWorkflowContext: Logs the contents of workflowContext to the current Moogfarmd log file at a

warning level.

 logWorkflowDuration: Logs debug messages for the workflow execution duration.

 lowerCase: Changes the value of a field to lower case. Sweep up filter applies.

 prependFields: Prepends a concatenated set of fields to an existing field, using a separator character.

 prependString: Prepends a string to an existing field, using a separator character.

 removeSituationFlag: Removes a specific flag from a Situation.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

679

 replaceString: Replaces a string or regular expression in a field with a specified string or regular

expression.

 resolveNotification: Automatically resolves a notification for a service.

 resolveSituation: Marks in-scope Situations as Resolved if they match the workflow's entry filter and

sweep up filter.

 reviveSituation: Revives (sets to Open) a Situation that is currently set to Resolved.

 restAsyncPost: Makes a HTTP POST request with a JSON payload to a named REST endpoint.

 searchAndReplace: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Sweep up filter applies.

 searchAndReplaceOrdered: Matches a regular expression to an object field and maps the contents of

subgroups to other fields. Allows you to provide the map as an array to preserve mapping order.

Sweep up filter applies.

 sendMooletInform: Sends a Moolet inform with a subject and details.

 sendToWorkflow; Sends the in-scope object to a named workflow in an Inform based workflow engine.

 sendViaRest: Sends the payload from a createPayload to an external REST endpoint. Sweep up filter

applies.

 setCustomInfoJSONValue: Adds or updates a custom info key to the specified JSON value. Sweep up

filter applies.

 setCustomInfoValue: Adds or updates a custom info key to a specified string value. Sweep up filter

applies.

 setDescription: Sets the description of the object.

 setSituationFlag: Sets a flag for a Situation.

 sigActionFilter: Returns true if the Situation action is of the specified type.

 sigActionToolFilter: Returns true if the specified tool has been run against a Situation.

 simpleLookup: Defines the lookup as two arrays of equal length. Sweep up filter applies.

 situationDelta Returns true when attributes have changed.

 skip: Forwards an in-scope event, alert or Situation to the next chained moolet using the standard

forwarding mechanism, and skips the rest of the workflows in the current engine.

 staticLookup: Searches for a key in a static lookup table, retrieves the corresponding value, and applies

that value to a field in the object.

 #: Stops the workflow.

 upperCase: Changes the value of a field to uppercase. Sweep up filter applies.

Infrastructure and Automation functions

The following functions are available in specific infrastructure and automation workflows:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

680

 getJDBCEnrichment: Adds data to alerts from a JDBC database. Available in JDBC Enrichment

workflows.

 getServiceNowEnrichment: Adds data to alerts from a ServiceNow database.

 sendToAnsible: Sends an automation request to Ansible. Available in Ansible Alert and Ansible

Situation workflows.

 sendToAutomation: Sends an automation request. Available in EyeShare Alert, EyeShare Situation,

Ignio Alert, and Ignio Situation workflows.

 sendToPuppet: Sends an automation request to Puppet. Available in Puppet Alert and Puppet

Situation workflows.

 setAnsibleJob: Sets the instance and job template rule to use for Ansible automation requests.

Available in Ansible Alert and Ansible Situation workflows.

 setAutomationPayload: Sets the automation solution, instance and Workflow Payload rule set to use

for automation requests. Available in EyeShare Alert, EyeShare Situation, Ignio Alert, and Ignio

Situation workflows.

 setPuppetAutomation: Sets the instance and job template rule to use for Puppet automation

requests. Available in Puppet Alert and Puppet Situation workflows.

ackNotification

A Workflow Engine function that automatically acknowledges a notification for a service.

This function currently supports the PagerDuty and OpsGenie integrations.

This function is available as a feature of 7.4 integrations.

This function requires you to have already configured the services you want to use it with. When you

configure some integrations, Cisco Crosswork Situation Manager automatically creates a workflow with

the createNotification function; ensure that this workflow is active before you configure the

ackNotification function. Integrations this function applies to indicate their compatibility on the UI.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function ackNotification takes the following arguments:

Name Required Type Description

services Yes String Comma separated list of the service names.

Example

The following example demonstrates typical use of Workflow Engine function ackNotification.

After you have configured the PagerDuty integration, you can configure a workflow with this function to

automatically acknowledge alerts or Situations that Cisco Crosswork Situation Manager sends to

PagerDuty.

 services: PagerDuty

The UI translates this setting to the following JSON:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1c333f2f647d4168c71039bf1b86c28c

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

681

{"services":"PagerDuty"}

Now when Cisco Crosswork Situation Manager sends alert or Situation data to PagerDuty, the

corresponding PagerDuty incident is automatically set to "Acknowledged".

activateTopology

A Workflow Engine function that updates a named topology from an inactive to an active state. Returns

false if the topology can not be activated.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function activateTopology takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

Example

The following example demonstrates typical use of Workflow Engine function activateToplogy.

If you want to activate an inactive topology named "my network", set the following:

 topologyName: my network

The UI translates your settings to the following JSON:

{"topologyName":"my network"}

If you run the topologies API, you can see your new topology:

curl -X GET 'https://example.com/api/v1/topologies'

Returns the following:

 {

 "name": "my network",

 "active": true,

 "description": "my network nodes"

 }

addDefaultValues

A Workflow Engine function that adds a set of default values to custom_info based on a payload map.

You can use this function as part of an Alert Enrichment engine, where it precedes any dynamic

enrichment. The map can contain plain text, substitutions (for example, $severity,

$custom_info.a.b.c.d) and complex objects (for example,

). See Payload Maps to learn how to define maps.

This function is available as a feature of the Workflow Engine v1.2 download and later.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

682

This function is available for event, alert, enrichment, and Situation workflows. At alert level this function

can either run in an Event Workflow Engine, or an Alert Workflow Engine, the choice of which depends

on what else happens to the data (for example, whether it is further added to, or overwritten), and if

custom_info is de-duplicated as part of the alert creation process (by default it is not).

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addDefaultValues takes the following arguments:

Name Required Type Description

mapName Yes String Name of the map defined in the PayloadMaps integration.

key Yes String Destination custom_info location.

Example

The following example demonstrates typical use of Workflow Engine function addDefaultValues.

You have created a payload map called "Default Enrichment". You can now create a workflow to add

the resulting map to a CEvent object before enrichment takes place (ensuring that the object has a set

of populated values). To hold your enrichment data in custom_info.enrichment.myCMDB, set the

following:

 mapName: DefaultEnrichment

 key: custom_info.enrichment.myCMDB

The UI translates your settings to the following JSON:

{"mapName":"DefaultEnrichment","key":"custom_info.enrichment.myCMDB"}

Note

This function does not store the resulting map in workflowContext, and so the result of this action is

not available to subsequent actions.

addItemToList

A Workflow Engine function that adds an item or items to an array. You can specify more than one

value. Does not add duplicate elements to the array, but maintains an array of unique elements. Returns

an array of unique items.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addItemToList takes the following arguments:

Name Required Type Description

field Yes String Name of the field to add the elements to. If the field does not exist, creates it.

items Yes Object Values of the items to add as an array.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

683

addTags

A Workflow Engine function that adds or updates a custom info field called tags with an array of

string values.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addTags takes the following arguments:

Name Required Type Description

tags Yes Object Array of tags to add. For example, ["tag1", "tag2"]

Example

The following example demonstrates typical use of Workflow Engine function addTags.

To add the tags traps and network to alerts of SNMP traps of networking devices, set the following:

 tags: ["traps", "network"]

The UI translates your settings to the following JSON:

{"tags":"["traps", "network"]"}

If successful, the function returns true and adds the tags to in-scope alerts under custom_info. You

can also now use the Tag field in UI filters New tags merge with those already in the

custom_info.tags field. For example, if there are existing tags, and custom_info.tags is therefore

present:

The new tags now also appear in this field:

addThreadEntry

A Workflow Engine function that adds a post to the named thread in the Collaboration tab of the

Situation Room. Defaults to the Support thread.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addThreadEntry takes the following arguments:

Name Required Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

684

entry Yes String Thread entry text to add.

threadName No String Name of the thread. Defaults to Support.

Example

The following example demonstrates typical use of Workflow Engine function addThreadEntry.

To create a new thread for a Situation, set the following:

 entry: New Entry

 thread_Name: Thread 0958

The UI translates your settings to the following JSON:

{"entry":"New Thread","threadName":"Thread 0958"}

addTopologyLink

A Workflow Engine function that attempts to create a link between two endpoints, A (source node) and

Z (sink node), in a named topology. Creates and activates the named topology if it does not exist.

Leaves existing inactive topologies inactive. Adds the referenced nodes if they do not exist.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addTopologyLink takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

sourceNode yes string The name or substituted value for the 'A' endpoint (source node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.mySourceNode)

sinkNode yes string The name or substituted value for the 'Z' endpoint (sink node). To

substitute a value, use $(<;attribute_name>). For example

$(custom_info.mySinkNode)

description no string Optional link description. When not supplied, defaults to the time, date,

and the triggering alert id.

Example

The following example demonstrates typical use of Workflow Engine function addTopologyLink.

If you want to create a link in the topology "My Network" between the alert source and another node

you have previously added to the workflow context, set the following:

1. topologyName: my network

2. sourceNode: $(source)

3. sinkNode: $(workflowContext.destination)

The UI translates your settings to the following JSON:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

685

{"topologyName":"my network",

"sourceNode":"$(source)","sinkNode":"$(workflowContext.destination)"}

For an alert where source = sflinux101 and the corresponding workflowContext.destination =

sflinux102, you can run the topologies API to see your new link:

curl -X GET 'https//example.com/api/v1/topologies/my%20network/links'

Returns the following:

[{

 "description": "Automatically created link:

triggering alert # 35 @ 2020-05-08T02:14:05.680Z",

 "sourceNode": "sflinux101",

 "sinkNode": "sflinux102"

}]

addTopologyNode

A Workflow Engine function that creates a node in the named topology. The node name can be static or

a substitution value. To substitute a value, use $(<attribute_name>). For example $(source). Creates the

named topology if the it does not exist. As a best practice, set 'first match only' for this action.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function addTopologyNode takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology).

nodeName yes string The name or substituted value for the 'A' endpoint (source node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.node).

description no string Optional node description. When not supplied, defaults to the time,

date, and the triggering alert id.

Example

The following example demonstrates typical use of Workflow Engine function addTopologyNode.

If you want to create a node in the topology "My Network" for the alert source, set the following:

 topologyName: my network

)sourceNode: $(source)

The UI translates your settings to the following JSON:

{"topologyName":"my network","nodeName":"$(source)"}

For an alert where source = sflinux101, you can run the topologies API to see your new node:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

686

curl -X GET 'https//example.com/api/v1/topologies/my%20network/nodes '

Returns the following:

[{ "name": "sflinux101",

"description": "Automatically created node: triggering alert # 35 @ 2020-05-

08T02:14:05.680Z" }]

alertDelta

A Workflow Engine function that returns true when attributes have changed. This is based on the

previous_data metadata, which Cisco Crosswork Situation Manager sends with the alert object in an

AlertUpdate event.

Only use this function in conjunction with an entry filter that includes the event_handler trigger for

"Alert Updated".

This function does not check the values of the attributes, only if the attributes have changed. As

standard de-duplication changes attributes, use this function carefully.

Cisco recommends placing alertDelta in an engine dedicated to handling Alert Updates and other

alert event handlers. This prevents updated alerts re-entering the processing chain through standard

Alert Workflows. Contact your Cisco Crosswork Situation Manager administrator for more information.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for alert and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function alertDelta takes the following arguments:

Name Required Type Description

fields Yes Object List of attributes to check for change. Accepts granular custom info

attributes.

Example

The following example demonstrates typical use of Workflow Engine function alertDelta.

You want to check if the owner an alert has changed before performing subsequent actions in your

workflow. You could use an entry filter to check for a specific ownership, but in this instance the value

of the ownership is not relevant, only that it has changed.

Using a separate Workflow Engine to prevent unwanted re-entry, you set up a workflow with an entry

filter that includes the event_handler trigger for "Alert Update" and the owner as "Unassigned":

(event_handler = "Alert Update") AND (owner != "anon")

Set the following:

 fields: owner

 Forwarding behavior: Stop this workflow. This ensures that if the alert owner has not changed,

subsequent actions in this workflow do not execute.

The UI translates your settings to the following JSON:

{"fields":["owner"]}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

687

If the alerts metadata shows that the owner has changed, the function returns true and the alert is

forwarded to the next action in the workflow.

If function does not detect a change of ownership, the function returns false and the forwarding

behaviour prevents subsequent actions in the workflow from executing.

alertInSituation

A Workflow Engine function that returns true when the alert is a member of an active Situation.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function alertInSituation has no arguments.

alertNotInSituation

A Workflow Engine function that returns true when the alert is not a member of an active Situation.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function alertNotInSituation has no arguments.

appendFields

A Workflow Engine function that appends a concatenated set of fields to an existing field, using a

separator character.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function appendFields takes the following arguments:

Name Required Type Description

sourceFields Yes object An array of fields to concatenate, in the format: [field1, ...,

fieldn].

separator Yes string Separator to use between the concatenated values. Do not use

quotes around the separator.

destination Yes string Destination field for the concatenated string.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

688

appendString

A Workflow Engine function that appends a static string to an existing field separated by a space

character.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function appendString takes the following arguments:

Name Required Type Description

string Yes string String to append.

destination Yes string Field to append the concatenated string to.

assignAlert

A Workflow Engine function that assigns an owner of in-scope alerts. Returns true if the function

assigns at least one alert.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function assignAlert takes the following arguments:

Name Required Type Description

user Yes String ID or username of the user to assign as owner. To specify a workflowContext

key, prefix with "workflowContext." For example,

"workflowContext.username"

Example

The following example demonstrates typical use of Workflow Engine function assignAlert.

To assign all in-scope alerts to the user "support", Set the following:

 user: support

The UI translates your settings to the following JSON:

{"user":"support"}

A more likely scenario is where a previous action has identified an appropriate user and populated a

workflowContext key, username . Here, the following arguments assign the in-scope alerts to the

username stored in that key:

{"user":"workflowContext.username"}

In either scenario, if the function is able to assign at least one alert to the user, it returns true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

689

between

A Workflow Engine function that returns true if the object creation date falls between two times.

Optionally between times on specific days.

This function is available for alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function between takes the following arguments:

Name Required Type Description

from Yes String Start time in hh:mm:ss 24hr format.

to Yes String End time in hh:mm:ss 24hr format.

days Yes Object Optional array of days in short form: "Sun", "Mon", "Tue", "Wed", "Thu",

"Fri", "Sat".

Use a blank array for all days.

Example

The following example demonstrates typical use of Workflow Engine function between. If you want to

check for objects created at any time on Monday or on Friday, set the following:

 from: 00:00:00

 to: 24:00:00

 days: ["Mon","Fri"]

The UI translates your settings to the following JSON:

{"from":"00:00:00","to":"24:00:00","days":["Mon","Fri"]}

ceventFilter

A Workflow Engine function that returns true if the object matches a SQL-like filter. This function uses

the CEvents API to evaluate the SQL-like filter against the object.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function ceventFilter takes the following arguments:

Name Required Type Description

filter Yes String SQL-like filter expression. Use single quotes around strings.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

690

For example: description matches 'abc'

checkSeverity

A Workflow Engine function that checks the severity level of the object, either as a static value, or with

an operator. Returns true if the severity level matches your specified value.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function checkSeverity takes the following arguments:

Name Required Type Description

severity Yes Validated String Severity value and optional operator.

Enter a severity value between 0 and 5.

Valid operators are: >, <, >=, <=, !=, =.

Example

The following examples demonstrate typical use of Workflow Engine function checkSeverity.

If you want to check if an object has a severity level of less than 3, enter the following:

 severity: <3

The UI translates your settings to the following JSON:

{"severity":"<3"}

Given an object with the following data:

"severity": 1

The function returns true, since the severity level is less than 3.

Now consider an object with the following:

"severity": 3

In this case the function returns false, since the severity level is not less than 3.

However, if you were to check if the object has a severity level of less than or equal to 3 (<=3), the UI

would translate your settings as follows:

{"severity": "<=3"}

For the same object, the function now returns true, since your criteria now includes 3, whereas before

your criteria only included values less than 3.

checkSituationFlag

A Workflow Engine function that returns true if the specified flag is set for a Situation. For example

TICKETING, or LEAVE_MANUAL_DESCRIPTION.

This function is available as a feature of the Workflow Engine v1.1 download and later.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

691

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function checkSituationFlag takes the following arguments:

Name Required Type Description

flag Yes String Name of the flag to check for.

Example

The following example demonstrates typical use of Workflow Engine function checkSituationFlag.

If you want to check if a Situation's flag is "TICKETED", enter the following:

 flag: TICKETED

The UI translates your settings to the following JSON:

{"flag":"TICKETED"}

Given a Situation with the following flag:

{"situationFlags": ["TICKETED"]}

The function returns true, since the object's flag matches "TICKETED".

Now consider this Situation:

{"situationFlags": ["TICKET_PENDING"]}

In this case the function returns false, since the Situation's flag does not match "TICKETED".

As a subsequent action you can set the flag using setSituationFlag.

checkSituationState

A Workflow Engine function that returns true if the specified state exists for a Situation. For example

TICKETED, LEAVE_MANUAL_DESCRIPTION. Not to be confused with Situation status.

This function is available for Situation workflows only.

This function is only available as a feature of the Workflow Engine v1.0 download. The Workflow Engine

v.1.1 replaces this function with checkSituationFlag.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function checkSituationState takes the following arguments:

Name Required Type Description

state Yes String Situaton state or flag to check for. For example: "TICKETED".

Example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

692

The following example demonstrates typical use of Workflow Engine function checkSituationState.

If you want to set the state to TICKETED, enter the following:

 state: TICKETED

The UI translates your settings to the following JSON:

{"state":"TICKETED"}

Returns true for Situations that have a state of "TICKETED". For example a Situation 22 which returns

the following for getSituationFlags :

{"22": ["TICKETED"]}

checkTopology

A Workflow Engine function that checks for the existence of a named topology. Returns true if the

topology exists.

The topology name can be static or a substitution value. To substitute a value, use $(<attribute_name>).

For example $(custom_info.myTopology).

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function checkTopology takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

Example

The following example demonstrates typical use of Workflow Engine function checkTopology.

If you want to delete the topology stored in custom_info.moog_topology set the following:

 topologyName: $(custom_info.myTopology)

The UI translates your settings to the following JSON:

{"topologyName":"$(custom_info.myTopology)"}

For an alert with the following custom_info.myTopology = "my network", the action returns true if

the "my network" topology exists.

checkTopologyLink

A Workflow Engine function that returns true when a link exists between two endpoints, A (source

node) and Z (sink node), in a named topology. Assumes direct connection when no hop count is

supplied. For hop counts greater than 1, returns true when the a connection exists and the distance

between nodes is less than or equal to the hop count. Otherwise returns false.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

693

Workflow Engine function checkTopologyLink takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

sourceNode yes string The name or substituted value for the 'A' endpoint (source node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.mySourceNode)

sinkNode yes string The name or substituted value for the 'Z' endpoint (sink node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.mySinkNode)

hopCount no string Optional distance in hops between the nodes. Defaults to 1 when not

specified.

Example

The following example demonstrates typical use of Workflow Engine function checkTopologyLink.

If you want to check for direct link in the topology "my network" between the alert source and another

node you have previously added to the workflow context, set the following:

 topologyName: my network

 sourceNode: $(source)

 sinkNode: $(workflowContext.destination)

The UI translates your settings to the following JSON:

{"topologyName":"my network",

"sourceNode":"$(source)","sinkNode":"$(workflowContext.destination)"}

For an alert where source = sflinux101 and the corresponding workflowContext.destination =

sflinux102, the function returns true when a direct link exists as follows:

[{

 "description": "Automatically created link:

triggering alert # 35 @ 2020-05-08T02:14:05.680Z",

 "sourceNode": "sflinux101",

 "sinkNode": "sflinux102"

}]

classifyEvent

A Workflow Engine function that sets the class, type, and severity fields of an event based upon its

contents using a predefined classification algorithm. Overwrites existing values. See Event and Alert

Field Best Practice for information on object fields.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Cisco Crosswork Situation Manager 8.0.x Developer Guide

694

Arguments

Workflow Engine function classifyEvent takes the following arguments:

Name Required Type Description

eventFields Yes Object An array of fields to use in the classification. An empty list, [], uses

the description field.

typeField Yes String Field to populate with the calculated 'type'.

classField Yes String Field to populate with the calculated 'class'.

severityField Yes String Field to populate with the calculated 'severity'.

Example

The following example demonstrates typical use of Workflow Engine function classifyEvent. If you

want the Workflow Engine to automatically populate the type, class, and severity fields of the event

based upon the description, set the following:

 eventFields: []

 typeField: type

 classField: class

 severityField: severity

The UI translates your settings to the following JSON:

{"eventFields":[],"typeField":"type","classField":"class","severityField":"sever

ity"}

Given an object with the following description:

"description":"App server APPSERVER2002 down."

The Workflow Engine updates the object fields as follows:

"severity": 5,

"type": "availability",

"class": "server"

cloneTopology

A Workflow Engine function that copies an existing topology to a new inactive named topology if the

name is not already in use. Both topologyName and cloneName can be static or a substitution value. To

substitute a value, use $(<attribute_name>). For example $(custom_info.myTopology).

Follow this action with the 'activateTopology' action if you want to activate the new topology.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function cloneTopology takes the following arguments:

Name Required Type Description

topologyName yes string The 'donor' named topology or substituted value for the topology. May

be active or inactive. To substitute a value, use $(<attribute_name>).

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

695

For example $(custom_info.myTopology).

cloneName yes string The 'clone' named topology or substituted value for the topology. To

substitute a value, use $(<attribute_name>). For example

$(custom_info.myTopology).

Example

The following example demonstrates typical use of Workflow Engine function cloneTopology.

If you want to create a new topology based upon a topology in the alert workflow context, set the

following:

 topologyName: $(workflowContext.myTopology)

 cloneName: $(workflowContext.myTopology) copy

The UI translates your settings to the following JSON:

{"topologyName":"$(workflowContext.myTopology)","cloneName":"$(workflowContext.m

yTopology) copy"}

For an alert that has a workflowContext.myTopolgy = "my network", the action clones the topology

to "my network copy". If you run the topologies API, you can see your new inactive topology:

curl -X GET 'https://example.com/api/v1/topologies/inactive'

Returns the following:

 [{

 "name": "my network copy",

 "active": false,

 "description": "Automatically created topology:

triggering alert # 35 @ 2020-05-08T02:14:05.680Z"

}]

closeAlert

A Workflow Engine function that closes alerts.

 As a best practice, it is better to use Auto Close rules to close alerts instead of the Workflow

Engine. When possible, you should use the Event Workflows engine to prevent unnecessary alert

creation. This way you can avoid creating an alert and immediately closing it during enrichment.

 You cannot modify a closed alert. If this function is not the last in a workflow, any subsequent

functions that attempt to modify the alert may cause the workflow to fail.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function. If the workflow has a sweep up filter, the function

closes alerts the filter finds too so that other moolets can process them. For example, if you export

alerts for reporting purposes.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

696

Workflow Engine function closeAlert has no arguments.

concatFields

A Workflow Engine function that sets the value of a field to a string representing a set of concatenated

fields.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function concatFields takes the following arguments:

Name Required Type Description

sourceFields Yes Object An array of fields to concatenate, in the format: ["field1", ...,

"fieldn"].

separator Yes String Separator to use between fields in concatenation. Do not quote the

separator.

destination Yes String Field to populate with the concatenated string.

containsAlertDetails

A Workflow Engine function that returns true if all or any of the alerts in the Situation matches the filter

condition. Uses SQL-like filter syntax.

Applies the scope to all Situations in the Workflow when there are multiple Situations in context. For

example, if you used a sweep up filter in the workflow definition. In this case, if you have set the scope

to 'any', every Situation must have at least one alert match the SQL-like filter for the function to return

true.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for Situation workflows only.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function containsAlertDetails takes the following arguments:

Name Required Type Description

scope Yes String Sets the scope of the contains match to:

all : every alert within the Situation must match the SQL-like filter.

any: at least one alert within the Situation must match the SQL-like filter

Applies the scope to all Situations in the workflow.

filter Yes String SQL-like CEvent filter to use to evaluate alerts against. For example:

"severity > 1".

Example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

697

The following example demonstrates typical use of Workflow Engine function

containsAlertDetails. If you want to verify that a Situation contains at least one severity 3 or higher

alert, set the following:

 scope: any

 filter: severity >= 3

The UI translates your settings to the following JSON:

{"scope":"any","filter":"severity >= 3"}

contextFilter

A Workflow Engine function that filters a workflowContext object for a specified name field. Returns

true if the function finds the field under the workflowContext object.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function contextFilter takes the following arguments:

Name Required Type Description

field Yes String Name of the field to filter by.

Example

The following example demonstrates typical use of Workflow Engine function

workflowEngineFunction.

You want to filter a workflowContext object for a field called "visualize.my_cookbook". Set the

following:

 field: visualize.my_cookbook

The UI translates your settings to the following JSON:

If the "visualize.my_cookbook" field is present under the workflowContext object, the function

returns true. If the field does not exist, the function returns false.

convertToJSON

A Workflow Engine function that converts the object to JSON and adds it to the workflowContext for

use in subsequent actions such as the restAsyncPost function.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

698

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function convertToJSON has no arguments.

copyFieldFromAlertToEvent

A Workflow Engine function that copies a single field from an existing alert to a deduplicating event for

the same alert. For example, if an update event doesn't include a 'source' attribute, the

'copyFromAlertToEvent' copies the 'source' from the existing alert. If the copy fails, the event would

have an empty 'source' field causing the Alert Builder to reject it. In this case create a subsequent

action to check for the existence of 'source enables you to set a default source for the event if it is

undefined.

When using this function, the following applies:

 You can specify both the source and destination fields. Choose the forwarding action for this

carefully.

 If the process fails and the forwarding behavior is 'Stop All Workflows', the Workflow Engine drops

the event.

 If you select 'Always Forward' there is a risk that the Alert Builder will reject an incomplete event.

For example, if an update event does not include a 'source' property, this function copies the value

for 'source' from the existing alert.

 If the copy fails, the event has an empty 'source' field causing the Alert Builder to reject it. In this

case, create a subsequent action to check for the existence of 'source' and set a default source for

the event if it is undefined.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function copyFieldFromAlertToEvent takes the following arguments:

Name Required Type Description

sourceField Yes String The field in the existing alert to copy.

destinationField Yes String Destination field in the event.

copyFromAlertToEvent

A Workflow Engine function that copies multiple fields from an existing alert to a deduplicating event for

the alert.

When using this function, the following applies:

 You can backfill fields from the alert to the event. Choose the forwarding action for this carefully.

 Returns true when the event has no matching existing alert. The same behavior as if all specified

fields copied successfully. To avoid this behavior, use another function to check for event

deduplication before copyFromAlertToEvent.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

699

 If the forwarding behavior is 'Always Forward', there is a risk that the Alert Builder may reject an

incomplete event.

 Use subsequent actions to validate the event and add defaults to any backfilled event fields as

needed. For example, if an update event does not include a 'source' attribute, you can use this

function to copy 'source' from the existing alert. If the copy fails, the event would have an empty

'source' field causing the Alert Builder to reject it. In this case, create a subsequent action to check

for the existence of 'source' which enables you to set a default source for the event if it is

undefined.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function copyFromAlertToEvent takes the following arguments:

Name Required Type Description

fields Yes Object Array of fields to copy from the alert to the event.

copyFromContext

A Workflow Engine function that copies a field from the workflowContext to a destination object field.

The function overwrites the destination field if it exists, and creates and populates it if it does not.

Returns false if the workflowContext field does not exist.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function copyFromContext takes the following arguments:

Name Required Type Description

from Yes String Source workflowContext field.

to Yes String Destination object field.

Example

The following example demonstrates typical use of Workflow Engine function

workflowEngineFunction.

To copy the value of the workflowContext field visualise.cookbook_name to

custom_info.sourceCookbook , set the following:

 from: visualize.cookbook_name

Cisco Crosswork Situation Manager 8.0.x Developer Guide

700

 to: custom_info.sourceCookbook

The UI translates your settings to the following JSON:

copyToContext

A Workflow Engine function that copies an object field to the workflowContext. Returns false if the

object field is null or does not exist.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function copyToContext takes the following arguments:

Name Required Type Description

from Yes String Source object field.

to Yes String Destination workflowContext field.

Example

The following example demonstrates typical use of Workflow Engine function

workflowEngineFunction.

To copy the value of the CEvent field custom_info.location.city to location.city in

workflowContext, set the following:

 from: custom_info.location.city

 to: location.city

The UI translates your settings to the following JSON:

copyToPayload

A Workflow Engine function that copies a value to the payload in workflowContext for the current

object. This can be a specific value, or a substitution for an existing object, such as

$custom_info.myvalue.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function copyToPayload takes the following arguments:

Name Required Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

701

payloadKey Yes String Key in the payload to insert data.

value Yes String Value to insert into payloadKey

Example

The following example demonstrates typical use of Workflow Engine function copyToPayload.

As part of an alert data export you have a basic payload map defined called "AlertExport", which

generates a map with the following keys and values:

{

 "summary": "$description"

}

At export time, you want to include the location, but the data is stored in different places in different

alerts: either ci.location.city or ci.location.dc. Additionally you want to add the current time

to the alert.

The solution is as follows:

 You create two workflows: one to add data from custom_info.location, the other from

custom_info.datacentre.

 You have already configured default values for these properties, so you can create entry filters

based on them. For example, an entry filter of custom_info.location.city != 'Unknown'

ensures you are only copying data from alerts that have city set to a non-default value.

 You use the copyToPayload function to copy from the correct key into the payload using the

following actions:

 createPayload configured with the map name (AlertExport).

 copyToPayload for alerts within the city, with payloadKey set to "location" and value set to

$custom_info.location.city.

 copyToPayload with payloadKey set to "currentTime" and value set to $moog_now.

 exportViaRest configured with the endpoint name.

This configuration ensures your payload contains the additional data and exports to an external REST

endpoint. The final payload is a combination of your base payload and the additional keys you have

added to it:

{

 alertId: 11,

 summary: 'Ping fail 10.0.0.1',

 currentTime: 1576154788,

 location: 'London'

}

The actions returns true if the data successfully copies to the payload. If the data did not successfully

copy, or the function did not find the payload you specified, it returns false.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

702

createNotification

A Workflow Engine function that automatically creates a notification for a service.

This function currently supports the PagerDuty and OpsGenie integrations.

This function is available as a feature of 7.4 integrations.

This function requires you to have already configured the services you want to use it with. When you

configure some integrations, Cisco Crosswork Situation Manager creates a workflow with this function

that automatically communicates new alert or Situation data to the service. Integrations this function

applies to indicate their compatibility on the UI.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function createNotification takes the following arguments:

Name Required Type Description

services Yes String Comma separated list of the service names.

Example

The following example demonstrates typical use of Workflow Engine function createNotification.

When you configure the PagerDuty integration, Cisco Crosswork Situation Manager automatically

creates a workflow with this function, and is configured as follows:

 services: PagerDuty

The UI translates this setting to the following JSON:

{"services":"PagerDuty"}

This allows Cisco Crosswork Situation Manager to automatically notify PagerDuty of new alert or

Situation data and make a request to raise an incident.

createPayload

A Workflow Engine function that creates a workflowContext payload from the triggering object from a

predefined payload map. For use in subsequent actions, for example exportViaRest or exportViaKafka.

This function relates directly to the payload maps from your Payload Maps integration.

This function is available as a feature of the Workflow Engine v1.2 and later. If you are using a newer

version of the Workflow Engine, use getPayload instead.

This function is available for event, alert, enrichment, and Situation workflows.

This function does not modify the in-scope object.

The workflow sweep up filter applies to this function. Swept up objects have an entry under the

workflowContext.payloads object corresponding to their associated ID.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1c333f2f647d4168c71039bf1b86c28c
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

703

Workflow Engine function createPayload takes the following arguments:

Name Required Type Description

mapName Yes String Name of the map from the Payload Maps

Example

The following example demonstrates typical use of Workflow Engine function createPayload.

If you wanted to create a payload for a map called "AlertExport", set the following:

 mapName: AlertExport

The UI translates your settings to the following JSON:

The function returns true when it finds a map and creates the payload. It stores the payload in the

workflowContext payloads key. The function also assigns the payload an identifier for the in-scope

object.

For example, a payload created for an alert with the ID #1234 stores in workflowContext as follows:

"workflowConext" : {

 "payloads" : {

 "1234" : { ... }

 }

}

Note

All functions must use the same structure for payloads. For alerts and Situations, use the object ID. For

events, use the signature value.

createServiceTicket

A Workflow Engine function that creates a ticket for the specified service.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function createServiceTicket takes the following arguments:

Name Required Type Description

services Yes String Comma separated list of the service names: ServiceNow, Remedy, Cherwell,

Jira Service Desk, Jira Software.

createTopology

A Workflow Engine function that creates a named topology if it does not already exist. Takes no action

if the topology exists.

This function is available for alert workflows.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

704

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function createTopology takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

description no string Optional topology description. When not supplied, defaults to the time,

date, and the triggering alert id

active no string True or false depending on whether you want the topology to be

active. Defaults to 'true'.

Example

The following example demonstrates typical use of Workflow Engine function createTopology.

If you want to create an active topology named "my network", set the following:

1. topologyName: my network

2. description: my network nodes

The UI translates your settings to the following JSON:

{"topologyName":"my network","description":"my network nodes"}

If you run the topologies API, you can see your new topology:

curl -X GET 'https://example.com/api/v1/topologies'

Returns the following:

 {

 "name": "my nework",

 "active": true,

 "description": "my network nodes"

 }

deactivateTopology

A Workflow Engine function that updates a named topology from an active to an inactive state. Returns

false if the topology can not be dedactivated.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deactivateTopology takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology).

Example

The following example demonstrates typical use of Workflow Engine function deactivateToplogy.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

705

If you want to deactivate an active topology named "my network", set the following:

1. topologyName: my network

The UI translates your settings to the following JSON:

{"topologyName":"my network"}

If you run the topologies API, you can see your inactive topology:

curl -X GET 'https://example.com/api/v1/topologies/inactive'

Returns the following:

 {

 "name": "my nework",

 "active": false,

 "description": "My network nodes"

 }

deassignAlert

A Workflow Engine function that removes the current owner of in-scope alerts. Returns true if the

function deassigns at least one alert.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deassignAlert has no arguments.

deleteEnrichment

A Workflow Engine function that removes data from the enrichment datastore. Returns true if the

request is successful.

This function relates directly to the API details from your Enrichment API.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for event, alert, and enrichment workflows.

This function does not modify the in-scope object when it deletes enrichment data.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deleteEnrichment takes the following arguments:

Name Required Type Description

attribute Yes String Name of the attribute to lookup. For example, "hostname".

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

706

value Yes String Name of the field or workflowContext key holding the data to lookup.

To specify a workflowContext key, prefix with "workflowContext". For

example, "workflowContext.lookupkey".

Wildcard Search

You can perform a wildcard search if the event field or workflowContext contains a wildcard string.

Valid wildcards are as follows:

Wildcard Type Example Description

Ends with *searchString Matches strings ending with the string searchString .

Begins with searchString* Matches strings beginning with the string searchString .

Contains *searchString* Matches strings containing the string searchString .

The following conditions apply when performing a wildcard search on an attribute or value:

Attribute Wildcard

The only supported wildcard for an attribute parameter is a single asterisk * , which deletes all records

in the enrichment datastore.

Value Wildcard

For a fixed attribute, a wildcard search performs over the values of that attribute if the contents (of the

value field or workflowContext) includes a supported wildcard.

For example, you have set the following:

a. attribute source

b. value custom_info.lookupkey

Where "custom_info.lookupkey" contains the string "host2*". In this scenario, the function matches

records for the attribute "source" and values host2 , host201 , and host2a , and deletes all of

these records.

Example

The following example demonstrates typical use of Workflow Engine function deleteEnrichment.

You want to send an update to your Enrichment API endpoint to delete the data within a field called

"source". The field contains a value of "host_1". Set the following:

 source: source

The UI translates your settings to the following JSON:

{"source":"source"}

The request deletes data for the attribute source and value host_1 .

tries for a given attribute by providing a field containing an array of

string values in the source argument. For example, given the arguments:

{"source": "workflowContext.deleteList.source" }

Where the workflowContext key deleteList holds the value:

{ "source": ["node_1", "node_2"] }

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

707

In this scenario, the action generates two requests to the API to delete the data for the attribute

source: one request to delete the value node_1 , and a second request to delete the value node_2 .

If these requests are successful, the function returns true and deletes these values.

deleteTopology

A Workflow Engine function that attempts to delete the named topology. The topology name can be

static or a substitution value. To substitute a value, use $(<attribute_name>). For example

$(custom_info.myTopology).

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deleteTopology takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

Example

The following example demonstrates typical use of Workflow Engine function deleteTopology.

If you want to delete the topology stored in the "myTopology" key of the workflow context, set the

following:

 topologyName: workflowContext.myTopology

The UI translates your settings to the following JSON:

{"topologyName":"$(workflowContext.myTopology)"}

For an alert with the following workflowContext.myTopology = "my network", the action deletes the

topology.

deleteTopologyLink

A Workflow Engine function that removes a direct link between two endpoints, A (source node) and Z

(sink node), in a named topology. Both nodes must exist with a direct link to return true.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deleteTopologyLink takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology)

sourceNode yes string The name or substituted value for the 'A' endpoint (source node). To

substitute a value, use $(<attribute_name>). For example

Cisco Crosswork Situation Manager 8.0.x Developer Guide

708

$(custom_info.mySourceNode)

sinkNode yes string The name or substituted value for the 'Z' endpoint (sink node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.mySinkNode)

Example

The following example demonstrates typical use of Workflow Engine function deleteTopologyLink.

If you want to remove a link in the topology "my network" between the alert source and another node

you have previously added to the workflow context, set the following:

 topologyName: my network

 sourceNode: $(source)

 sinkNode: $(workflowContext.destination)

The UI translates your settings to the following JSON:

{"topologyName":"my network",

"sourceNode":"$(source)","sinkNode":"$(workflowContext.destination)"}

For an alert where source = sflinux101 and the corresponding workflowContext.destination =

sflinux102, the workflow action deletes any existing direct link between the two nodes.

deleteTopologyNode

A Workflow Engine function that deletes a node in the named topology. The node name can be static or

a substitution value. To substitute a value, use $(<attribute_name>). For example $(source). As a best

practice, set 'first match only' for this action.

This function is available for alert workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deleteTopologyNode takes the following arguments:

Name Required Type Description

topologyName yes string The name or substited value for the topology. To substitute a value,

use $(<attribute_name>). For example $(custom_info.myTopology).

nodeName yes string The name or substituted value for the 'A' endpoint (source node). To

substitute a value, use $(<attribute_name>). For example

$(custom_info.node).

Example

The following example demonstrates typical use of Workflow Engine function deleteTopologyNode.

If you want to delete a node in the topology "My Network" for alert source, set the following:

 topologyName: my network

)sourceNode: $(source)

The UI translates your settings to the following JSON:

{"topologyName":"my network","nodeName":"$(source)"}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

709

For an alert where source = sflinux101, the action deletes the node.

deltaEvent

A Workflow Engine function that returns true:

 If the specified event fields differ from corresponding fields in an existing alert.

 When an error occurs in the delta check.

 When no alert exists.

Returns false when it detects no changes.

Uses shallow object inspection which compensates for list ordering and object key ordering, but may

still result in an inaccurate response.

This function has an inherent call to willDeduplicateAlert so you do not need to call it first.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function deltaEvent takes the following arguments:

Name Required Type Description

fields Yes Object An array of core and custom info fields to check. Objects may produce

unexpected results during comparison

Example

The following example demonstrates typical use of Workflow Engine function deltaEvent. If you want

to check for differences in the services in the custom_info.eventDetails.services field between the alert

and deduplicating events, set the following:

 fields: ["custom_info.eventDetails.services"]

The UI translates your settings to the following JSON:

["custom_info.eventDetails.services"]

Given an alert with the following fields:

"custom_info": {"eventDetails":

 {"services": ["APPSERVER"]}

 }

An event with the following fields returns true:

"custom_info": {"eventDetails":

 {"services": ["NETWORK"]}

 }

An event with the following fields returns false:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

710

"custom_info": {"eventDetails":

 {"services": ["APPSERVER"]}

 }

dnsLookup

A Workflow Engine function that performs a lookup of an IP address or name to return the following

object:

{

 "name" : <resolved name>,

 "address" : <resolved address>,

 "fqdn" : <resolved fqdn>

}

The functon uses the underlying dnsLookup bot utility and caches results. Repeated queries for the

same data use the cached values. Caching happens at the Moogfarmd level. You can edit the

Moogfarmd configuration if needed. See Java 11 Networking Properties and Java 8 Network Properties

for details on caching and configuration.

By default the cache lasts the lifetime of the JVM. You can add the appropriate flags and caching

duration to the Moogfarmd startup. The function writes the results from the DNS lookup to the

workflowContext.dnsDetails for use in other actions. Returns null when the DNS lookup fails to

find any details for an IP address. To prevent unpredictable behavior, check the returned data for null

before using it in a downstream actions.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function dnsLookup takes the following arguments:

Name Required Type Description

lookup yes string Object field containing the value to look up.

Example

The following example demonstrates typical use of Workflow Engine function dnsLookup. To lookup

the DNS entry for the source field, set the following:

 lookup: source

The UI translates your settings to the following JSON:

{"lookup":"source"}

For an alert where source = 198.51.100.12, the function updates the workflowContext as follows:

"dnsDetails": {

 "address": "198.51.100.12",

 "fqdn": "sflinux101.example.com",

 "name": "sflinux101"

}

doesNotHaveStatus

A Workflow Engine function that returns true when the in-scope alert or Situation is not in any of the

specified states.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for alert, enrichment, and Situation workflows.

https://cr.openjdk.java.net/~iris/se/11/latestSpec/api/java.base/java/net/docfiles/netproperties.html
https://docs.oracle.com/javase/8/docs/technotes/guides/net/properties.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

711

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function doesNotHaveStatus takes the following arguments:

Name Required Type Description

states Yes Object The states to check for. Choose from:

Acknowledged

Active

Assigned

Closed

Dormant

Opened

Resolved

SLA Exceeded

Unacknowledged

Unassigned

Not all states are available to both alerts and Situations. For example, you

cannot set an alert to Dormant.

Example

The following example demonstrates typical use of Workflow Engine function doesNotHaveStatus.

You want to check if an alert is neither Opened, Acknowledged, or Closed before performing

subsequent actions in your workflow. Set the following:

 states : [Opened , Acknowledged , Closed]

 Forwarding behavior: Stop this workflow. This ensures that if the alert is in any of the specified

states, subsequent actions in this workflow do not execute.

The UI translates your settings to the following JSON:

If the alert is not in any of these states, the function returns true and the alert is forwarded to the next

action in the workflow.

If the alert is in any of these states, the function returns false and the forwarding behaviour prevents

subsequent actions in the workflow from executing.

dropEvent

A Workflow Engine function that allows you to prevent further processing of an event. For example, you

may wish to discard an event if it has a severity of 0 and willCreateNewAlert returns true.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

712

Always returns false. Follows the Forwarding Behavior settings.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function dropEvent has no arguments.

estimateSeverity

A Workflow Engine function that uses a predefined classification algorithm to estimate event or alert

severity.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for event, alert, and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function estimateSeverity takes the following arguments:

Name Required Type Description

eventFields No Object Array of fields to use in the classification algorithm. Defaults to the

description field.

severityField No String Destination field for the classification algorithm's calculated

severity. Defaults to the severity field.

If you do not configure these arguments, the function parses the event description field to calculate a

severity value, which it assigns to the severity field.

Example

The following example demonstrates typical use of Workflow Engine function estimateSeverity.

The optional eventFields argument allows you to customize the event fields the function uses for

severity classification. You define these as an array of event fields. For example, if you set the following:

 eventfields: ["agent", "description", "custom_info.clustering",

"custom_info.enrichment.BusinessApps"]

The UI translates your settings to the following JSON:

"description", "custom_info.clustering",

"custom_info.enrichment.BusinessApps"]}

The optional severityField argument allows you to assign the estimated severity to a target field

instead of using the default, severity. For example, to assign the result to

custom_info.catasaurus.severity, set the following:

 severityField: custom_info.catasaurus.severity

The UI translates your settings to the following JSON:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

713

{"severityField":"custom_info.catasaurus.severity"}

If the classification algorithm fails to estimate the severity and target is the event severity field, the

function returns false and the event does not update. If the target is a custom_info field, the value

defaults to Indeterminate.

existingAlertFilter

A Workflow Engine function that returns true if the existing alert for a deduplicating event matches a

SQL-like filter. Uses the evaluateFilter method in the CEvents API.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function existingAlertFilter takes the following arguments:

Name Required Type Description

filter Yes String SQL-like filter expression. Use single quotes around strings. For example:

description matches 'abc'.

Example

The following example demonstrates typical use of Workflow Engine function existingAlertFilter.

If you want to verify if a deduplicating event has an agent_location value of "London", set the following:

 filter: agent_location = 'London'

The UI translates your settings to the following JSON:

agent_location = 'London'

Given an alert with the following signature:

"APPSERVER2002:APPLICATION:AVAILABILITY"

An event with the following fields returns true:

"signature": "APPSERVER2002:APPLICATION:AVAILABILITY",

"agent_location": "London"

An event with the following fields returns false:

"signature": "APPSERVER2002:APPLICATION:AVAILABILITY",

"agent_location": "SF"

exportViaKafka

A Workflow Engine function that exports the payload from a createPayload function to an external Kafka

endpoint.

To use this function, you must first configure the following:

 A Kafka Endpoints integration, which configures the endpoints for this function to use.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

714

 A createPayload function which precedes this function, in order to generate the payloads this

function exports.

 For best practice, create a new engine to handle the data export process. This is to prevent

potential blockages during the export process under load.

 If you want to export both alerts and Situations, you must create a separate engine for each

workflow. A separate engine has the following moolet characteristics:

 standalone_moolet: true

threads: 1

event_handlers: [<if required>]

process_output_of: <place in the moolet chain>

Cisco recommends this moolet is single threaded to ensure Cisco Crosswork Situation Manager works

at the same rate as the receiving API. However, you can modify the thread count if necessary, for

example if the endpoint has inherent rate or load mechanics, or ordering. No other moolet should rely

on or process the output of this one.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function. If you use the sweep up filter within the workflow,

createPayload applies to all the objects in the workflow. Consequently, exportViaKafka exports the

payload created using all objects within the workflow.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function exportViaKafka takes the following arguments:

Name Required Type Description

endpointName Yes String Name of the Kafka endpoint defined in the Kafka Endpoints Reference

integration.

topic Yes String Destination Kafka topic.

key No String Optional Kafka topic key. Allows substitution such as

'$custom_info.myvalue'.

Example

The following example demonstrates typical use of Workflow Engine function exportViaKafka.

If you want to export to an endpoint with the name Broker1, set the following:

 endpointName: AlertExport

 topic: Export Feed

 key: myKey

The UI translates your settings to the following JSON:

{"endpointName":"AlertExport","topic":"myTopic","key":"myKey"}

The function returns true if it was able to locate and successfully complete the export. If it could not

find the endpoint configuration, or the export was unsuccessful, the function returns false.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

715

exportViaRest

A Workflow Engine function that exports the payload from a createPayload to an external REST

endpoint.

To use this function, you must first configure the following:

 A REST Endpoints integration, which configures the endpoints for this function to use.

 A createPayload function which precedes this function, in order to generate the payloads this

function exports.

 For best practice, create a new engine to handle the data export process. This is to prevent

potential blockages during the export process under load.

 If you want to export both alerts and Situations, you must create a separate engine for each

workflow. A separate engine has the following Moolet characteristics:

 standalone_moolet: true

threads: 1

event_handlers: [<if required>]

process_output_of: <place in the moolet chain>

Cisco recommends this Moolet is single threaded to ensure Cisco Crosswork Situation Manager works

at the same rate as the receiving API. However, you can modify the thread count if necessary, for

example if the endpoint has inherent rate or load mechanics, or ordering. No other Moolet should rely

on or process the output of this one.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function. If you use the sweep up filter within the workflow,

createPayload applies to all the objects in the workflow. Consequently, exportViaRest exports the

payload created using all objects within the workflow.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function exportViaRest takes the following arguments:

Name Required Type Description

endpointName Yes String Name of the endpoint defined in the REST Endpoints Reference

integration.

Example

The following example demonstrates typical use of Workflow Engine function exportViaRest.

Set the following:

 endpointName: AlertExport

The UI translates your settings to the following JSON:

{"endpointName":"AlertExport"}

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID7d6a4850a50b04268dc6c03271f6a898

Cisco Crosswork Situation Manager 8.0.x Developer Guide

716

The function returns true if it was able to locate and successfully complete the export. If it could not

find the endpoint configuration, or the export was unsuccessful, the function returns false.

filterByCookbook

A Workflow Engine function that allows you to filter inscape Situations (trigger and swept up) based on

their Visualize data. These are inclusive filters and return true if the Visualize data for the Situation

matches the cookbook name.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function filterByCookbook takes the following arguments:

Name Required Type Description

cookbook Yes String Name of the cookbook to filter by.

Example

The following example demonstrates typical use of Workflow Engine function filterByCookbook.

If you want to check if the cookbook name is "Default Cookbook", enter the following:

 cookbook: Default Cookbook

The UI translates your settings to the following JSON:

{"cookbook":"Default Cookbook"}

Given a Situation with the following Visualize data:

{

 "visualize": {

 "origin": "Cookbook",

 "cookbook_name": "Default Cookbook",

 "recipe_name": "Description"

 }

}

The function returns true, since the value of cookbook matches the Visualize data.

Now consider this filter:

{"cookbook":"MyCookbook"}

In this case the function returns false, since the value of cookbook does not match the Visualize data.

filterByCookbookAndRecipe

A Workflow Engine function that allows you to filter inscape Situations (trigger and swept up) based on

their Visualize data. These are inclusive filters and return true if the Visualize data for the Situation

matches the cookbook name and recipe name.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

717

Arguments

Workflow Engine function filterByCookbookAndRecipe takes the following arguments:

Name Required Type Description

cookbook Yes String Name of the cookbook to filter by.

recipe Yes String Name of the recipe to filter by.

Example

The following example demonstrates typical use of Workflow Engine function

filterByCookbookAndRecipe.

If you want to check if the cookbook name is "Default Cookbook" and the recipe name is

"Description", enter the following:

 cookbook: Default Cookbook

 recipe: Description

The UI translates your settings to the following JSON:

{"cookbook":"Default Cookbook","recipe":"Description"}

Given a Situation with the following Visualize data:

{

 "visualize": {

 "origin": "Cookbook",

 "cookbook_name": "Default Cookbook",

 "recipe_name": "Description"

 }

}

The function returns true, since the values of both cookbook and recipe match the Visualize data.

Now consider these filters:

{"cookbook":"MyCookbook","recipe":"Description"}

In this case the function returns false, since only the value of recipe matches the Visualize data,

while cookbook does not. For the function to return true, the values of both arguments must match

the Visualize data.

filterByRecipe

A Workflow Engine function that allows you to filter inscape Situations (trigger and swept up) based on

their Visualize data. These are inclusive filters and return true if the Visualize data for the Situation

matches the recipe name.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

718

Workflow Engine function filterByRecipe takes the following arguments:

Name Required Type Description

recipe Yes String Name of the recipe to filter by.

Example

The following example demonstrates typical use of Workflow Engine function filterByRecipe.

If you want to check if the recipe name is "Description", enter the following:

 recipe: Description

The UI translates your settings to the following JSON:

{"recipe":"Description"}

Given a Situation with the following Visualize data:

{

 "visualize": {

 "origin": "Cookbook",

 "cookbook_name": "Default Cookbook",

 "recipe_name": "Description"

 }

}

The function returns true, since the value of recipe matches the Visualize data.

Now consider this filter:

{"recipe":"Source"}

In this case the function returns false, since the value of recipe does not match the Visualize data.

forward

A Workflow Engine function that forwards the object to the named Moolet.

Navigate to Settings> Self Monitoring > Event Processing to see the list of Moolets running on your

system.

This function is available for alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function forward takes the following arguments:

Name Required Type Description

moolet Yes String Moolet name to forward the object to. Must match the name of a running

Moolet.

getEnrichment

A Workflow Engine function that retrieves data from the enrichment data store through the Cisco

Crosswork Situation Manager Enrichment API. Returns true if the request is successful.

This function relates directly to the API details from your Enrichment API.

This function is available as a feature of the Add-ons v1.4 download and later.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

719

This function is available for alert and enrichment workflows.

This function does not modify the in-scope object when it retrieves enrichment data.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getEnrichment takes the following arguments:

Name Required Type Description

attribute Yes String Name of the attribute to lookup. For example, "hostname".

value Yes String Name of the field or workflowContext key holding the data to lookup.

To specify a workflowContext key, prefix with "workflowContext". For

example, "workflowContext.lookupkey".

target No String Optional subkey under custom_info.enrichment to assign the result

to. For example, "data".

Wildcard Search

You can perform a wildcard search if the event field or workflowContext contains a wildcard string.

Valid wildcards are as follows:

Wildcard Type Example Description

Ends with *searchString Matches strings ending with the string searchString .

Begins with searchString* Matches strings beginning with the string searchString .

Contains *searchString* Matches strings containing the string searchString .

The following conditions apply when performing a wildcard search on an attribute or value:

Attribute Wildcard

The only supported wildcard for an attribute parameter is a single asterisk * , which searches all

records in the enrichment datastore and returns the first.

Value Wildcard

For a fixed attribute, a wildcard search performs over the values of that attribute if the contents (of the

value field or workflowContext) includes a supported wildcard.

For example, you have set the following:

 attribute source

 value custom_info.lookupkey

Where "custom_info.lookupkey" contains the string "host2*". In this scenario, the function matches

records for the attribute "source" and values host2 , host201 , and host2a , and returns the first

record in this list, "host2".

Cisco Crosswork Situation Manager 8.0.x Developer Guide

720

Example

The following example demonstrates typical use of Workflow Engine function getEnrichment.

Within your Enrichment API endpoint you have an attribute called "source". You want to retrieve data

from the lookupkey field of this attribute and assign the result to a subkey called "data". Set the

following:

 attribute: source

 value: custom_info.lookupkey

 target: data

The UI translates your settings to the following JSON:

{"attribute":"source","value":"custom_info.lookupkey","target":"data"}

The function sends a request to the datastore configured in the Enrichment API endpoint for attribute

"source" and the contents of the custom_info.lookupkey field as the value to search. If successful,

the function returns true, and any enrichment data in this field returns as JSON, which the function

assigns to custom_info.enrichment.data.

The field or workflowContext key you specify for value must contain either a string or an array of

strings. For an array of strings, the function looks up each string and keys the aggregated results by

value.

For example, in the same configuration, now consider that custom_info.lookupkey holds the following

array:

["host1", "host2"]

Assuming the request is successful and returns true, the function assigns enrichment data to

custom_info.enrichment.data in the following format:

{

 "host1": { .. enrichment data for host 1 .. },

 "host2": { .. enrichment data for host 2 .. }

}

getIntegrationConfig

A Workflow Engine function that retrieves an integration configuration and stores it in the

workflowContext for subsequent actions to use. Returns true if the specified type and key are found.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getIntegrationConfig takes the following arguments:

Name Required Type Description

integrationType Yes String Integration type, for example PayloadMaps.

integrationKey No String Key to use within the type. Varies by type, for example map name

from the PayloadMaps integration. For integration types with

multiple sub-objects, such as maps or endpoints, provide this to

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

721

return only the specific configuration.

Example

The following example demonstrates typical use of Workflow Engine function

getIntegrationConfig.

If the integration you configure is PayloadMaps, set the following:

 integrationType: PayloadMaps

The UI translates your settings to the following JSON:

{"integrationType":"PayloadMaps"}

In this example, the PayloadMaps integration has created two payload maps: "Export" and "Datalake".

The JSON equivalent of this is:

"PayloadMaps" : {

 "config" : [{

 [

 {

 "configName": "Export",

 "rules": [{

 "name": "alert_id",

 "rule": "$alert_id",

 "conversion": "stringToInt"

 }, {

 "name": "description",

 "rule": "$description",

 "conversion": "none"

 }, {

 "name": "class",

 "rule": "$class",

 "conversion": "none"

 }, {

 "name": "type",

 "rule": "$type",

 "conversion": "none"

 }, {

 "name": "severity",

 "rule": "$severity",

 "conversion": "unenumerate"

 }, {

 "name": "agent",

 "rule": "$agent:$agent_location",

 "conversion": "none"

 }, {

 "name": "services",

 "rule": "$custom_info.services",

 "conversion": "none"

 }, {

 "name": "servicesList",

 "rule": "$custom_info.services",

 "conversion": "objToString"

 }, {

 "name": "manger",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

722

 "rule": "Manager:$manager",

 "conversion": "none"

 }

]

 },

 {

 "configName": "Datalake",

 "rules": [

 {

 "name": "alert",

 "rule": "$alert_id",

 "conversion": "stringToInt"

 }, {

 "name": "description",

 "rule": "$description",

 "conversion": "none"

 }

]

 }

]

}

As integrationKey is not set, the function produces a workflowContext containing both maps:

{

 "workflowConfig": {

 "payloadmaps": [

 {

 "configName": "Export",

 "rules": [

 {

 "name": "alert_id",

 "rule": "$alert_id",

 "conversion": "stringToInt"

 },

 {

 "name": "description",

 "rule": "$description",

 "conversion": "none"

 },

 {

 "name": "class",

 "rule": "$class",

 "conversion": "none"

 },

 {

 "name": "type",

 "rule": "$type",

 "conversion": "none"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "unenumerate"

 },

 {

 "name": "agent",

 "rule": "$agent:$agent_location",

 "conversion": "none"

 },

 {

 "name": "services",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

723

 "rule": "$custom_info.services",

 "conversion": "none"

 },

 {

 "name": "servicesList",

 "rule": "$custom_info.services",

 "conversion": "objToString"

 },

 {

 "name": "manger",

 "rule": "Manager:$manager",

 "conversion": "none"

 }

]

 },

 {

 "configName": "Datalake",

 "rules": [

 {

 "name": "alert",

 "rule": "$alert_id",

 "conversion": "stringToInt"

 },

 {

 "name": "description",

 "rule": "$description",

 "conversion": "none"

 }

]

 }

]

 }

}

To only return the export map, set the following:

 integrationType: PayloadMaps

 integrationKey: Export

The function now produces a workflowContext that only contains the Export map:

{

 "workflowConfig": {

 "payloadmaps": {

 "configName": "Export",

 "rules": [

 {

 "name": "alert_id",

 "rule": "$alert_id",

 "conversion": "stringToInt"

 },

 {

 "name": "description",

 "rule": "$description",

 "conversion": "none"

 },

 {

Cisco Crosswork Situation Manager 8.0.x Developer Guide

724

 "name": "class",

 "rule": "$class",

 "conversion": "none"

 },

 {

 "name": "type",

 "rule": "$type",

 "conversion": "none"

 },

 {

 "name": "severity",

 "rule": "$severity",

 "conversion": "unenumerate"

 },

 {

 "name": "agent",

 "rule": "$agent:$agent_location",

 "conversion": "none"

 },

 {

 "name": "services",

 "rule": "$custom_info.services",

 "conversion": "none"

 },

 {

 "name": "servicesList",

 "rule": "$custom_info.services",

 "conversion": "objToString"

 },

 {

 "name": "manger",

 "rule": "Manager:$manager",

 "conversion": "none"

 }

]

 }

 }

}

getJDBCEnrichment

A JDBC Enrichment Workflow Engine function that adds data to alerts from a JDBC database.

This function relates directly to the database and table definitions from your JDBC Enrichment

integration.

This function does not make use of workflowContext.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for JDBC Enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getJDBCEnrichment takes the following arguments:

Name Required Type Description

databaseDefName Yes String Name of the database definition from the JDBC Enrichment

integration.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDf09512def37c1f6de73a4ca98a7cb4f3

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

725

tableDefName Yes String Name of the table definition from the JDBC Enrichment integration

value1 No String Alert property to use in the Query field of the table definitions in

the JDBC Enrichment integration. For example, "source", or

"custom_info.host_name".

value2 No String Alert property to use in the Query field of the table definitions in

the JDBC Enrichment integration. For example, "source", or

"custom_info.host_name".

Example

The following example demonstrates typical use of Workflow Engine function getJDBCEnrichment. It

assumes you have set up and configured the JDBC Enrichment integration with:

 A database definition of "localmdb".

 A table definition name of "ci"

custom_info, set the following:

 databaseDefName: localcmdb

 tableDefName: ci

The UI translates your settings to the following JSON:

{"databaseDefName":"localcmdb","tableDefName":"ci"}

The function retrieves the data and adds it to custom info:

{

 "enrichment": {

 "HostDetails": {

 "OS Version": "2.6.9-22.0.1.ELsmp",

 "SupportGroup": "Linux Server",

 "Class": "Linux Server"

 }

 },

 "mooghandling": {

 "isEnriched": true

 }

}

getPayload

A Workflow Engine function that creates a workflowContext payload from the triggering object from a

predefined payload map. For use in subsequent actions, for example exportViaRest or exportViaKafka.

This function relates directly to the payload maps from your Payload Maps integration.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

This function does not modify the in-scope object.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

726

The workflow sweep up filter applies to this function. Swept up objects have an entry under the

workflowContext.payloads object corresponding to their associated ID.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getPayload takes the following arguments:

Name Required Type Description

mapName Yes String Name of the map from the Payloads

Example

The following example demonstrates typical use of Workflow Engine function getPayload.

To create a payload for a map called "AlertExport", set the following:

 mapName: AlertExport

The UI translates your settings to the following JSON:

{

The function returns true when it finds a map and creates the payload. It stores the payload in the

workflowContext payloads key. The function also assigns the payload an identifier for the in-scope

object.

For example, a payload for an alert with the ID #1234 stores in workflowContext as follows:

"workflowConext" : {

 "payloads" : {

 "1234" : { ... }

 }

}

Note

All functions must use the same structure for payloads. For alerts and Situations, use the object ID. For

events, use the signature value.

getSituationFlags

A Workflow Engine function that retrieves the Situation flags and stores them in the workflowContext for

subsequent actions to use. The function stores the flags in the workflowContext under

workflowContext.situationFlags.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.

Arguments

Workflow Engine function getSituationFlags has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function getSituationFlags.

A Situation with the flag "TICKETED" produces the following result:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8fa85f1d9ee9c96da7cccd43ca5683c5

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

727

{

 "situationFlags": [

 "TICKETED"

]

}

getServiceNowEnrichment

A Workflow Engine function that adds data to alerts from a ServiceNow database.

This function does not make use of workflowContext.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for ServiceNow Enrichment workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getServiceNowEnrichment takes the following arguments:

Name Required Type Description

tableDefName Yes String Name of the table definition from the ServiceNow CMDB integration

value1 No String Alert property to use in the Query field of the table definitions in the

ServiceNow CMDB Enrichment integration. For example, "source", or

"custom_info.host_name".

value2 No String Alert property to use in the Query field of the table definitions in the

ServiceNow CMDB integration. For example, "source", or

"custom_info.host_name".

Example

The following example demonstrates typical use of Workflow Engine function

getServiceNowEnrichment. It assumes you have set up and configured the ServiceNow CMDB

integration with:

 A database definition of "localmdb".

 A table definition name of "ci"

See Enrich Alerts with ServiceNow data for the full workflow.

custom_info, set the following:

 tableDefName: ci

The UI translates your settings to the following JSON:

{"databaseDefName":"localcmdb","tableDefName":"ci"}

The function retrieves the data and adds it to custom info:

{

 "enrichment": {

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8d9d99ac43fb8b84cfe0d420d6661b22

Cisco Crosswork Situation Manager 8.0.x Developer Guide

728

 "Services": {

 "Client Services": {

 "Apps": "Client Services",

 "SupportGroup": "ITSM Engineering",

 "Class": "Service"

 },

 "Bond Trading": {

 "Apps": "Bond Trading",

 "SupportGroup": "IT Securities",

 "Class": "Service"

 }

 }

 },

 "mooghandling": {

 "isEnriched": true

 }

}

getVisualizationData

A Workflow Engine function that retrieves the Visualize data, including cookbook and recipe details, for

a situation. The function stores the details in the workflowContext, under

workflowContext.visualize, which subsequent actions can then utilize.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function getVisualizationData has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function

getVisualizationData. Creating a Situation using the "Description" recipe in the "Default

Cookbook" produces the following result set:

{

 "visualise": {

 "origin": "Cookbook",

 "cookbook_name": "Default Cookbook",

 "recipe_name": "Description"

 }

}

hasCausalPRC

A Workflow Engine function that returns true if one or more alerts in the Situation has a causal PRC

flag set.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for Situation workflows only.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

729

Workflow Engine function hasCausalPRC has no arguments.

hasMerged

A Workflow Engine function that returns true if the Situation has been merged with another Situation or

superseded by a Situation. See Merge Groups for more information.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function hasMerged has no arguments.

hasNotMerged

A Workflow Engine function that returns true if the Situation has not been merged with another Situation

or superseded by another Situation. See Merge Groups for more information.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function hasNotMerged has no arguments.

hasSimilarSituations

A Workflow Engine function that returns true when the Situation has a similar Situation above the

specified threshold. Uses the Situation Similarity utility provided with the Workflow Engine to calculate

similarity between .5 (50% similar) and 1 (100% similar).

The Situation Similarity requires some configuration. You can find the configuration file at:

$MOOGSOFT_HOME/config/SimilarSigConfig.conf.

 Verify the Graze API credentials are valid.

 Verify the webhost is correct if the UI runs on a different host than Moogfarmd.

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function hasSimilarSituations takes the following arguments:

Name Required Type Description

Similarity Yes Number Similarity threshold between .5 and 1 used to identify similar

Situations. Situations with an equal or greater value qualify.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html

Cisco Crosswork Situation Manager 8.0.x Developer Guide

730

hasStatus

A Workflow Engine function that returns true when the in-scope alert or Situation is in any of the

specified states.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function hasStatus takes the following arguments:

Name Required Type Description

states Yes Object The states to check for. Choose from:

Acknowledged

Active

Assigned

Closed

Dormant

Opened

Resolved

SLA Exceeded

Unacknowledged

Unassigned

Not all states are available to both alerts and Situations. For example, you

cannot set an alert to Dormant.

Example

The following example demonstrates typical use of Workflow Engine function hasStatus.

You want to check if an alert is either Opened, Acknowledged, or Closed before performing subsequent

actions in your workflow. Set the following:

 states : [Opened , Acknowledged , Closed]

 Forwarding behavior: Stop this workflow. This ensures that if the alert is not in any of the specified

states, subsequent actions in this workflow do not execute.

The UI translates your settings to the following JSON:

If the alert is in any of these states, the function returns true and the alert is forwarded to the next

action in the workflow.

If the alert is not in any of these states, the function returns false and the forwarding behaviour

prevents subsequent actions in the workflow from executing.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

731

isAlertAcknowledged

A Workflow Engine function that returns true when the in-scope alert state is Acknowledged.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for alert and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isAlertAcknowledged has no arguments.

Example

You can use this function as a qualifier or condition, so that subsequent actions only execute if the alert

state is Acknowledged.

isAlertNotAcknowledged

A Workflow Engine function that returns true when the in-scope alert state is not Acknowledged.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for alert and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isAlertNotAcknowledged has no arguments.

Example

You can use this function as a qualifier or condition, so that subsequent actions only execute if the alert

state is not Acknowledged.

isAssigned

A Workflow Engine function that returns true if the object has an owner or moderator.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isAssigned has no arguments.

isClear

A Workflow Engine function that returns true if the object's severity level is Clear (0).

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Cisco Crosswork Situation Manager 8.0.x Developer Guide

732

Arguments

Workflow Engine function isClear has no arguments.

isInSubnet

A Workflow Engine function that returns true when an IP address is present within a specified subnet.

This function is available for event, alert, and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isInSubnet takes the following arguments:

Name Required Type Description

field Yes String Event or alert field to retrieve the IP address from.

subnet Yes String Subnet to check for membership, expressed as:

Classless Inter-Domain Routing (CIDR): nnn.nnn.nnn.nnn/nn.

For example: 198.51.100.0/24

Mask: nnn.nnn.nnn.nnn/nnn.nnn.nnn.nnn.

For example: 198.51.100.0/255.255.255.0

Example

The following example demonstrates typical use of Workflow Engine function isInSubnet. To check if

the source field for an IP address within the "198.51.100.0/24" subnet, set the following:

 field: source_id

 subnet: 198.51.100.0/24

The UI translates your settings to the following JSON:

{"field":"source_id","subnet":"(198.51.100.0/24)"}

An object with the following source_id value returns true:

source_id":"198.51.100.33"

An object with the following source_id value returns false:

source_id":"198.51.101.33"

isNewerThan

A Workflow Engine function that returns true when the object age in seconds is less than a specified

age in seconds. Uses the difference between the current time and agent_time for events,

int_last_event_time for alerts, and last_event_time for Situations.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

733

Arguments

Workflow Engine function isNewerThan takes the following arguments:

Name Required Type Description

age Yes Number Maximum object age in seconds.

isNotAssigned

A Workflow Engine function that returns true if the object does not have an owner or moderator.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isNotAssigned has no arguments.

isNotClear

A Workflow Engine function that returns true if the object's severity level is not "Clear".

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isNotClear has no arguments.

isNotNull

A Workflow Engine function that returns true if the value for a field within an object is not null, is not an

empty object , {}, or is not an empty array , []. See Alert and Event Field Reference and Event and

Alert Field Best Practice for more information on object fields.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isNotNull takes the following arguments:

Name Required Type Description

field Yes String Object field.

Example

The following example demonstrates typical use of Workflow Engine function isNotNull.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

734

{"field":"custom_info"}

isNull

A Workflow Engine function that returns true if the value for a field within an object is null, is an empty

object , {}, or is an empty array , []. See Alert and Event Field Reference and Event and Alert Field

Best Practice for more information on object fields.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isNull takes the following arguments:

Name Required Type Description

field Yes String Object field.

Example

The following example demonstrates typical use of Workflow Engine function isNull.

{"field":"custom_info"}

isOlderThan

A Workflow Engine function that returns true when the object age in seconds is greater than a specified

age in seconds. Uses the difference between the current time and agent_time for events,

int_last_event_time for alerts, and last_event_time for Situations.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function isOlderThan takes the following arguments:

Name Required Type Description

age Yes Number Minimum object age in seconds.

labelSituation

A Workflow Engine function that labels the Situation using the Situation Manager Labeler macro

language. Does not override manual Situation descriptions. See Situation Manager Labeler for more

information on the macro language.

This function is available for Situation workflows only.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function labelSituation takes the following arguments:

Name Required Type Description

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

735

label Yes String Macro-based label to use for the Situation. Standard macros can be used.

listContains

A Workflow Engine function that returns true when the array field you query contains some of your

specified values. Define values as an array, for example [a] or [a, b, c]. You must specify an array

field, not a string.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function listContains takes the following arguments:

Name Required Type Description

field Yes String Name of the array field to check values in. You can specify custom info fields.

The specified field must be an array of values not a string.

values Yes Object List of values to check for, any intersection is valid. Define values as an array,

for example [a] or [a, b, c].

Example

The following example demonstrates typical use of Workflow Engine function listContains. If you

want to check for the existence of "Webserver" or "Webapp" elements in an array of services in

custom_info, set the following:

 field: custom_info.eventDetails.service_list

 values: ["Webserver","Webapp"]

The UI translates your settings to the following JSON:

{"field":"custom_info.eventDetails.service_list","values":["Webserver","Webapp"]

}

An object with the following custom_info value returns true:

"custom_info": {"eventDetails":

 {"service_list": ["Webapp"] }

 }

An object with the following custom_info value returns false:

"custom_info": {"eventDetails":

 {"service_list": ["Network"] }

 }

listContainsAll

A Workflow Engine function that returns true when the array field you query contains all of your

specified values. Define values as an array, for example [a] or [a, b, c]. You must specify an array

field, not a string.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

736

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function listContainsAll takes the following arguments:

Name Required Type Description

field Yes String Name of the array field to check values in. You can specify custom info fields.

The specified field must be an array of values not a string.

values Yes Object List of values to check for, any intersection is valid. Define values as an array,

for example [a] or [a, b, c].

Example

The following example demonstrates typical use of Workflow Engine function listContainsAll. If you

want to check for the existence of both "Webapp" and "Webserver" elements in an array of services in

custom_info, set the following:

 field: custominfo.eventDetails.service_list

 values: ["Webapp","Webserver"]

The UI translates your settings to the following JSON:

{"field":"custominfo.eventDetails.service_list","values":["Webapp","Webserver"]}

An object with the following custom_info value returns true:

"custom_info": {"eventDetails":

 {"service_list": ["Webserver", "Webapp"] }

 }

An object with the following custom_info value returns false:

"custom_info": {"eventDetails":

 {"service_list": ["Webserver","Network"]}

 }

listDoesNotContain

A Workflow Engine function that returns true when the array field you query contains none of your

specified values. Define values as an array, for example [a] or [a, b, c]. You must specify an array

field, not a string.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function listDoesNotContain takes the following arguments:

Name Required Type Description

field Yes String Name of the array field to check values in. You can specify custom info fields.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

737

The specified field must be an array of values not a string.

values Yes Object List of values to check for, any intersection returns false. Define values as an

array, for example [a] or [a, b, c].

Example

The following example demonstrates typical use of Workflow Engine function listDoesNotContain. If

you want to check for the absence of an element "Network" in an array of services in custom_info,

set the following:

 field: custominfo.eventDetails.service_list

 values: ["Network"]

The UI translates your settings to the following JSON:

{"field":"custominfo.eventDetails.service_list","values":["Network"]}

An object with the following custom_info value returns true:

"custom_info": {"eventDetails":

 {"service_list": ["Webapp","Webserver"] }

 }

An object with the following custom_info value returns false:

"custom_info": {"eventDetails":

 {"service_list": ["Webapp","Webserver","Network"] }

 }

logCEvent

A Workflow Engine function that prints a warning level message containing the current in-scope object

in a readable JSON format to the Moogfarmd log file.

You can use this function to debug workflows. It is not recommended for production workflow because

it can clutter log files and make them difficult to use.

This function is available for event, alert, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function logCEvent takes the following arguments:

Name Required Type Description

tag no string Optional text to print with the log message to help you find related messages.

Example

The following example demonstrates typical use of Workflow Engine function logCEvent.

Set the following:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

738

 tag: workflowdebug

The UI translates your settings to the following JSON:

{"tag":"workflowdebug"}

logMessage

A Workflow Engine function that logs a warning level message to the Moogfarmd log. See Configure

Logging for information on log locations.

Prepends the message with the workflow function name and the alert or Situation ID, or signature for

events.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function logMessage takes the following arguments:

Name Required Type Description

message Yes String The message to log.

Example

The following example demonstrates typical use of Workflow Engine function logMessage.

{"message":"Urgent action required."}

logWorkflowContext

A Workflow Engine function that logs the contents of workflowContext to the current Moogfarmd log

file at a warning level.

This function is for debugging and troubleshooting purposes. Do not use it in a regular production

workflow.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function logWorkflowContext has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function logWorkflowContext.

For identification purposes, each workflowContext log file entry provides the alert or Situation ID, or

the event signature:

WORKFLOW CONTEXT: ALERT: 23 : :

{

 "payloads": [

 {

 "alert_id": 23,

 "description": "Ping fail 10.0.0.1",

 "class": "wqtooling",

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID74d4cfc8aa189a879a82ee26366c85dd
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID74d4cfc8aa189a879a82ee26366c85dd

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

739

 "type": "RestTest",

 "severity": "Minor",

 "agent": "RESTLAM:rest_test.js",

 "services": [

 "a",

 "b",

 "c"

],

 "servicesList": "[\"a\",\"b\",\"c\"]",

 "manger": "Manager:RESTLam1"

 }

],

 "location": {

 "city": {

 "mycity": {

 "mytown": "London"

 }

 }

 }

}

logWorkflowDuration

A Workflow Engine function that logs debug messages for the workflow execution duration. To log

duration you need to set at lest two actions with logWorkflowDuration in your workflow. The first starts

the timer. subsequent instances log the elapsed time since the first logWorkflowDuration action within

the workflow. For example, for an event:

DEBUG: [0:Event Workflows housekeeping][20191002 21:08:30.208 -0400]

[WorkflowEngine.js:6907] +|Even

t Workflows::logWorkflowDuration: Workflow for event :

APPSERVER2002:APPLICATION:AVAILABILITY: execution

 time = 10858ms|+

To enable debug logging for Moogfarmd, execute the following:

farmd_cntl --loglevel debug

When you are through logging, reset the log level to warn:

farmd_cntl --loglevel warn

This function is available as a feature of the Workflow Engine v1.0 and later.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function auditWorkflow takes the following arguments:

Name Required Type Description

workflowName Yes String Optional workflow name which makes it easier to find messages in

the log.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

740

lookupAndReplace

Updates a specified alert field with a static value if any listed alert fields contain a text substring or

match against a regular expression.

For example, you can search both the class and description fields for the words "router" or

"switch" while also searching for the regular expression representing a network interface: "eth\\d+". In

case of a match, you can update the custom_info.key field to the static value of "network." Then

you can configure a Cookbook recipe to use the custom_info.key field for clustering.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function lookupAndReplace takes the following arguments:

Name Required Type Description

wordList Yes Object An array of words to look for.

reList Yes Object An array of regular expressions to test for. Use JavaScript notation for

regular expressions.

inFields Yes Object An array of alert fields to check. Allows custom_info fields.

alertField Yes String Alert field to update if one of the inFields contains a word from the

wordList or matches a regular expression from the reList.

value Yes String Static value to set for the alertField.

Example

The following example demonstrates typical use of Workflow Engine function lookupAndReplace. Set

the following to search for network related terms in the class or description fields and set the

custom_info.key field to "network":

 wordList: ["router","switch"]

 reList: ["eth\\d+","network"]

 inFields: ["class","description"]

 alertField: custom_info.services

 value: network

The UI translates your settings to the following JSON:

{"wordList":["router","switch"],"reList":["eth\\d+","network"],"inFields":["clas

s","description"],"alertField":"custom_info.key","key":"network"}

The following example data matches the lookup criteria:

"class":"network",

"description":"Communication link failure."

 "class":"",

 "description":"Router failed."

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

741

"class":"",

"description":"Interface eth0 down."

For all matching cases, the Workflow Engine updates the custom_info field as follows:

"custom_info": {"key": "network"}

The following data does not match the lookup criteria so the custom_info.key field remains

unchanged:

"class":"",

"description":"Error establishing database connection."

lowerCase

A Workflow Engine function that changes the value of a field to lower case. For example, changes a

value of "NETWORK" to "network".

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function lowerCase takes the following arguments:

Name Required Type Description

field Yes String Name of the field.

The following example demonstrates typical use of Workflow Engine function lowerCase.

To change the value of the source field of an event to lower case, set the following:

 field: source

The UI translates your settings to the following JSON:

{"field":"source"}

populateNamedTopology

A Workflow Engine function that populates the named topology field custom_info.moog_topology

with a value. It can be a string value or the value of an alert attribute.

Before populating the field the function checks that the argument value is a valid topology.

This function is available for event and alert workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Cisco Crosswork Situation Manager 8.0.x Developer Guide

742

Workflow Engine function populateNamedTopology takes the following arguments:

Name Required Type Description

topologyName Yes String Topology name or alert attribute name. Use $ for an alert attribute.

See the example for more information.

prependFields

A Workflow Engine function that prepends a concatenated set of fields to an existing field, using a

separator character.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function prepEndFields takes the following arguments:

Name Required Type Description

sourceFields Yes Object An array of fields to concatenate, in the format: [field1, ...,

fieldn].

separator Yes String Separator to use between the concatenated values. Do not use

quotes around the separator.

destination Yes String Field to prepend the concatenated string to.

prependString

A Workflow Engine function that prepends a string to an existing field, using a separator character.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function prependString takes the following arguments:

Name Required Type Description

string Yes String String to prepend.

destination Yes String Field to prepend the concatenated string to.

Example

The following example demonstrates typical use of Workflow Engine function prependString.

{"string":"This is an example of prepending further

description.","destination":"description"}

removeSituationFlag

A Workflow Engine function that removes a specific flag from a Situation.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

743

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function removeSituationFlag takes the following arguments:

Name Required Type Description

flag Yes String Flag to remove.

Example

The following example demonstrates typical use of Workflow Engine function removeSituationFlag.

If you want to remove the "TICKET_PENDING" flag from a Situation, enter the following:

 flag: TICKET_PENDING

The UI translates your settings to the following JSON:

{"flag":"TICKET_PENDING"}

Given a Situation with the following flag:

{

 "situationFlags": [

 "TICKET_PENDING"

]

}

The Workflow Engine updates the object as follows:

{

 "situationFlags": []

}

replaceString

A Workflow Engine function that replaces a string or regular expression in a field with a specified string.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function replaceString takes the following arguments:

Name Required Type Description

field Yes String Field to replace text in.

replace Yes String Original string to replace. This value is treated as a regex. Do not include

leading or trailing delimiters.

with No String New string you want to use instead. If you leave this field blank, replaces the

original string with a blank space.

Example

The following example demonstrates typical use of Workflow Engine function replaceString.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

744

Some systems abbreviate "database" as "d.b." or "D.B.". If you had a class field that contains the

value "A D.B. has failed", and you wanted to replace the abbreviation with "database", set the

following:

 field: class

 replace: d\.b\.

 with: database

The UI translates your settings to the following JSON:

{"field":"class","replace":"d\\.b\\.","with":"database"}

The function replaces any occurrences of "d.b." and "D.B.", so the resulting value reads "A database

has failed".

resolveNotification

A Workflow Engine function that automatically resolves a notification for a service.

This function currently supports the PagerDuty, OpsGenie and xmatters integrations.

This function is available as a feature of 7.4 integrations.

This function requires you to have already configured the services you want to use it with. When you

configure some integrations, Cisco Crosswork Situation Manager automatically creates a workflow with

the createNotification function; ensure that this workflow is active before you configure the

resolveNotification function. Integrations this function applies to indicate their compatibility on the

UI.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function ackNotification takes the following arguments:

Name Required Type Description

services Yes String Comma separated list of the service names.

Example

The following example demonstrates typical use of Workflow Engine function resolveNotification.

After you have configured the PagerDuty integration, you can configure a workflow with this function to

automatically resolve alerts or Situations that Cisco Crosswork Situation Manager sends to PagerDuty.

 services: PagerDuty

The UI translates this setting to the following JSON:

{"services":"PagerDuty"}

Now when Cisco Crosswork Situation Manager sends alert or Situation data to PagerDuty, the

corresponding PagerDuty incident is automatically set to "Resolved".

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1c333f2f647d4168c71039bf1b86c28c
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1c333f2f647d4168c71039bf1b86c28c

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

745

resolveSituation

A Workflow Engine function that marks in-scope Situations as Resolved if they match the workflow's

entry filter and sweep up filter. Adds a resolving thread to the Situation that indicates this function

resolved it.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for Situation workflows only.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function resolveSituation has no arguments.

The following example demonstrates typical use of Workflow Engine function resolveSituation.

Set the following:

The UI translates your settings to the following JSON:

restAsyncPost

A Workflow Engine function that makes a HTTP POST request with a JSON payload to a named REST

endpoint. Expects the payload from a previous action, for example, from the convertToJSON function

that converts an event, alert or Situation to a JSON blob. Returns false when no payload is found.

restAsyncPost is a non-blocking asynchronous call which returns true to the workflow immediately. It

is best for a 'data sink' use case. It does not support setting authentication or other HTTP request fields

or attributes.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function restAsyncPost takes the following arguments:

Name Required Type Description

URL Yes String The URL of the REST endpoint.

The following example demonstrates typical use of Workflow Engine function restAsyncPost.

{"URL":"https://example.com"}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

746

reviveSituation

A Workflow Engine function that revives (sets to Open) a Situation that is currently set to Resolved.

Provides a way to revive a closed Situation if a support ticket relating to it is still active.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function reviveSituation has no arguments.

The following example demonstrates typical use of Workflow Engine function

workflowEngineFunction.

Set the following:

The UI translates your settings to the following JSON:

searchAndReplace

A Workflow Engine function that matches a regular expression to an object field and updates the values

for fields in the object based upon a map. You can map the contents of subgroups to other fields. For

example, extract the 'source' value inside a description and map it to the source field. You can also

map fields to a constant value.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function searchAndReplace takes the following arguments:

Name Required Type Description

field Yes String Field to search.

expression Yes String Regular expression pattern to use on the field.

map Yes Object Map to apply the extracted values to as a key: value pairing using

$extract.n, where n = the subgroup identified.

For example: { "custom_info.newValue" : "$extract.1",

"source" : "$extract.2" }

Note

The code display for the Workflow Engine double-escapes characters. You do not need to double-

escape in the data entry field. For example the IP address: "((?:\d+\.){3}\d+)".

When you have nested subgroups, as in the example with the IP address, they do not affect the extract

numbering.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

747

Example

The following example demonstrates typical use of Workflow Engine function searchAndReplace. You

can check for an IP address, and a value of "memory" or "disk" in the object's description field.

When the Workflow Engine finds a match, it maps the following fields:

 source to the matching IP address: ((?:\\d+\\.){3}\\d+).

 class to the matching value of "memory" or "disk": (memory|disk).

 custom_info.support team to the constant "NOC".

Set the following:

 field: description

 expression: ^.+?((?:\d+\.){3}\d+).+?(memory|disk).+?$

 map: {"source":"$extract.1","class":"$extract.2","custom_info.support_team":"NOC"}

The UI translates your settings to the following JSON:

{"field":"description",

"expression":"^.+?((?:\\d+\\.){3}\\d+).+?(memory|disk).+?$",

"map":{"source":"$extract.1","class":"$extract.2","custom_info.support_team":"NO

C"}}

An object with the following description matches the regular expression test:

"description": "Host 198.51.100.0 high memory utilization on

mytestbox.example.com"

The Workflow Engine updates the object fields as follows:

"source": "198.51.100.0",

"custom_info": {"support_team": "NOC"},

"class": "memory"

searchAndReplaceOrdered

A Workflow Engine function that matches a regular expression to an object field and updates the values

for fields in the object based upon a map. You can map the contents of subgroups to other fields. For

example, extract the 'source' value inside a description and map it to the source field. You can also

map fields to a constant value.

searchAndReplaceOrdered requires you to, with the exception of the $extract.n pattern, delimit

field replacements with "$[<field>]". For example, $[description]. Otherwise, this function treats

the replacement as a literal string.

This function differs from searchAndReplace in that you can provide the map as an array to preserve

the mapping order. For efficiency reasons, only use this function instead if you require this functionality,

or intend to supply the map as a set of key:value pairs.

For example, the ordered map:

[

 {"source": "${source]-1"},

Cisco Crosswork Situation Manager 8.0.x Developer Guide

748

 {"description": "$[description] $[source]"}

]

differs from the unordered map:

{

 "source": "${source]-1",

 "description": "$[description] $[source]"

}

This is because, given an event with source set to "host" and description set to "Failure for", the

ordered map results in an updated event with source: "host-1" and description: "Failure for

host-1". The unordered version has the same source, but the description is only "Failure for host", as

it doesn't have access to the updated source value from the first operation.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function searchAndReplaceOrdered takes the following arguments:

Name Required Type Description

field Yes String Field to search.

expression Yes String Regular expression pattern test against the field.

map Yes Object Map to apply the extracted values to as a key : value pairing using

$extract.n, where n = the subgroup identified.

For example [{ "custom_info.newValue" : "$extract.1" },

{ "source" : "$extract.2" }, {"description" :

"$[description] $extract.3" }].

Note

The code display for the Workflow Engine double-escapes characters. You do not need to double-

escape in the data entry field. For example the IP address: "((?:\d+\.){3}\d+)".

When you have nested subgroups, as in the example with the IP address, they do not affect the extract

numbering.

Example 1

The following example demonstrates typical use of Workflow Engine function

searchAndReplaceOrdered.

Set the following:

 field: description

 expression: Event for (host\d+)

 map:

[{"custom_info.eventDetails.manager":"$[source]"},{"source":"$extract.1"},{"d

escription":"$[class] $[type] event: destination $[source] unreachable"}]

This defines the following mapping:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

749

o Save the original value of source as the value of manager.

o Replace the original value of source with an extract from description.

o Update the description with a statement which references the values of class, type, and

the updated source field.

The UI translates your settings to the following JSON:

{

 "field": "description",

 "expression": "Event for (host\d+)",

 "map": [

 {

 "manager": "$[manager]::$[source]"

 },

 {

 "source": "$extract.1"

 },

 {

 "description": "$[class] $[type] event: destination $[source] unreachable"

 }

]

}

With this mapping, given the following event:

{

 "signature": "network::availability::host10",

 "source_id": "192.168.1.1",

 "manager": "Pinger",

 "source": "ping-host1",

 "class": "network",

 "agent": "RESTLam",

 "type": "availability",

 "severity": 5,

 "description": "Event for host10",

 "agent_time": 1581951814000,

 "custom_info": = {}

}

The function transforms the event payload to:

{

 "signature": "network::availability::host10",

 "source_id": "192.168.1.1",

 "manager": "Pinger::ping-host-1",

 "source": "host10",

 "class": "network",

 "agent": "RESTLam",

 "type": "availability",

 "severity": 5,

 "description": "network availability event: destination host10 unreachable",

 "agent_time": 1581951814000,

 "custom_info": = {}

}

Example 2

Cisco Crosswork Situation Manager 8.0.x Developer Guide

750

This example makes use of the mapping order to update the description using a source value that a

previous mapping assigned.

You can provide the map as an array to preserve the mapping order. For efficiency reasons, only use

this functionality if you require it. Otherwise, supply the map as a set of key:value pairs. For example:

map: {"custom_info.eventDetails.manager":"$[source]" , "source":"$extract.1",

"description":"$[class] $[type] event: destination $[source] unreachable"}

This defines the following mapping:

 map: {"custom_info.eventDetails.manager":"$[source]" , "source":"$extract.1",

"description":"$[class] $[type] event: destination $[source] unreachable"}

 This defines the following mapping:

o Save the original value of source as the value of manager.

o Replace the original value of source with an extract from description.

o Update the description with a statement which references the values of class, type, and

the original source field.

With the same field and expression arguments as Example 1, the UI translates your settings to the

following JSON:

{

 "field": "description",

 "expression": "Event for (host\d+)",

 "map": {

 "manager": "$[manager]::$[source]",

 "source": "$extract.1",

 "description": "$[class] $[type] event: desination $[source] unreachable"

 }

}

With this mapping, given the same event as before:

{

 "signature": "network::availability::host10",

 "source_id": "192.168.1.1",

 "manager": "Pinger",

 "source": "ping-host1",

 "class": "network",

 "agent": "RESTLam",

 "type": "availability",

 "severity": 5,

 "description": "Event for host10",

 "agent_time": 1581951814000,

 "custom_info": = {}

}

The event payload is now:

{

 "signature": "network::availability::host10",

 "source_id": "192.168.1.1",

 "manager": "Pinger::ping-host-1",

 "source": "host10",

 "class": "network",

 "agent": "RESTLam",

 "type": "availability",

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

751

 "severity": 5,

 "description": "network availability event: destination ping-host-1

unreachable",

 "agent_time": 1581951814000,

 "custom_info": = {}

}

description now contains the original value of source as this time you have defined map as key:value

pairs rather than an array.

sendMooletInform

A Workflow Engine function that sends a Moolet inform with a subject and details. Adds the object to

the payload, and so is always available to the receiver. See Moolet Informs for more information.

This function is available for alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sendMooletInform takes the following arguments:

Name Required Type Description

target Yes String Moolet to send the inform to.

subject No String Subject of the inform.

details Yes Object A JSON object with the details for the inform.

sendToAnsible

A Workflow Engine function that sends an automation request to Ansible.

This function relates directly to configurations from your Ansible Automation integration.

sendToAnsible requires a setAnsibleJob function that precedes it in your workflow.

This function is typically the last action in a workflow. After this action completes you can forward your

alert or Situation data to another workflow for further processing. For example, if you want to send alert

data to another automation tool.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sendToAnsible has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function sendToAnsible, in which

you send Ansible a request to restart a service when Cisco Crosswork Situation Manager receives a

new alert. It assumes you have set up and configured the following:

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID6993da3900e3504efe1b6f278e7d6053

Cisco Crosswork Situation Manager 8.0.x Developer Guide

752

 An Ansible Automation integration with the name "Ansible1"

 A setAnsibleJob function where you have defined the automation solution, instance, and payload.

You must configure these before you invoke the sendToAnsible function in your workflow.

 You have configured the setAnsibleJob arguments as follows:

o instance: Ansible1

o jobTemplateName: Restart-service

The Restart-service template you specify in the Ansible Automation integration defines mapping rules

which build the request payload. In this scenario, one of the rules sets the extra_vars.serviceName

field in the request to the alert's $source_id, so the Ansible job tries to restart the service using this

value.

Note

You can use extra_var settings to pass additional information to Ansible job templates for the

associated Ansible playbook to use.

Set the following:

 Forwarding Behavior: Always Forward.

If the request is successful, the function sets the alert or Situation's custom info status field to Pending.

Otherwise, it sets to Failed. Automation results from the Ansible automation tool send back through a

webhook that uses the Cisco Crosswork Situation Manager integration gateway generic endpoint. See

Ansible Automation.

sendToAutomation

A Workflow Engine function that sends an automation request.

This function currently supports the eyeShare and Ignio integrations and directly relates to

configurations from these integrations.

sendToAutomation requires a setAutomationPayload function that precedes it in your workflow.

This function is typically the last action in your workflow. After this action completes you can forward

your alert or Situation data to another workflow. For example, if you want to send alert data to another

automation tool.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sendToAutomation has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function sendToAutomation. It

assumes you have set up and configured the following:

 An eyeShare integration with the name "eyeShare1"

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID6993da3900e3504efe1b6f278e7d6053
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDc0dadeb352d6c967e10a274ab7876be7
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

753

 A setAutomationPayload function where you have defined the automation solution, instance, and

payload. You must configure these before you invoke sendToAutomation in your workflow.

Set the following:

 Forwarding Behavior: Always Forward.

If the request is successful, the function sets the alert or Situation's custom info status field to Pending.

Otherwise, it sets to Failed. Automation results from the automation tool send back through either a

Moolet Informs module or direct update to custom_info. See eyeShare and Ignio for more information.

sendToPuppet

A Workflow Engine function that sends an automation request to Puppet.

This function relates directly to configurations from your Puppet integration.

sendToPuppet requires a setPuppetAutomation function that precedes it in your workflow.

This function is typically the last action in your workflow. After this action completes you can forward

your alert or Situation data to another workflow. For example, if you want to send alert data to another

automation tool.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sendToPuppet has no arguments.

Example

The following example demonstrates typical use of Workflow Engine function sendToPuppet. It

assumes you have set up and configured the following:

 A Puppet integration with the name "Puppet1".

 A setPuppetAutomation function where you have defined the automation solution, instance, and

payload. You must configure these before you invoke sendToPuppet in your workflow.

Set the following:

 Forwarding Behavior: Always Forward.

If the request is successful, the function sets the alert or Situation's custom info status field to Pending.

Otherwise, it sets to Failed. Automation results from the Puppet automation tool send back through

either a Moolet Informs module or direct update to custom info. See Puppet for more information.

sendToWorkflow

A Workflow Engine function that sends the in-scope object to a named workflow in an informs based

engine. This allows for additional flexibility in workflow execution. You can step out of the currently

executing workflow while avoiding some of the complexities of the skip function. The function is a

wrapper for the MoogDBv2 sendToWorkflow API.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDc0dadeb352d6c967e10a274ab7876be7
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID05d46bb5a7eff3db321655e21800ef54
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID05d46bb5a7eff3db321655e21800ef54

Cisco Crosswork Situation Manager 8.0.x Developer Guide

754

The destination Workflow Engine must be an informs based engine. Informs engines execute only the

named workflow without executing subsequent workflows within the engine. By default you can choose

the Alert Inform Engine or the Situation Inform Engine.

The sendToWorkflow function does note stop the current workflow after it executes. If you want to

stop subsequent workflows, use the stop function after sendToWorkflow.

This function is available for event, alert, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Name Required Type Description

engineName yes string Name of an inform based workflow engine. For example, Alert Inform

Engine or Situation Inform Engine.

workflowName yes string Name of the workflow within the inform based engine.

context no object Optional workflow context object. For example {"key":"value"}. If you

don't supply a context, sends the currently active context.

Example

The following example demonstrates typical use of Workflow Engine function sendToWorkflow.

Imagine you want to send an alert to a workflow named "Export Data" in the "Alert Inform Engine" that

performs an asynchronous alert data export outside the linear alert workflow. The workflows in Alert

Workflows are not blocked waiting for the export to complete.

Set the following:

 engineName: Alert Inform Engine

 workflowName: Export Data

 context: {"details":"Export example: $(alert_id)"}

The UI translates your settings to the following JSON:

{"engineName":"Alert Inform Engine","workflowName":"Export

Data","context":{"details":"Export example: $(alert_id)"}}

For an alert with id 28, the Workflow Engine passes the alert to the Export Data workflow in the Alert

Inform Engine with the following context:

{"details":"Export example: 28"}

You can use the createPayload and copyToPayload actions in the Export Data workflow to prepare

the alert data for export. copyToPayload has access to the workflow context you sent. To add the

workflow context data to the export, set the following:

 payloadKey: details

 value: $(workflowContext.details)

Finally, set up an export action to export the data.

sendViaRest

A Workflow Engine function that sends the payload from a createPayload function to an external REST

endpoint.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

755

This function is available as a feature of the Add-ons v1.4 download and later.

To use this function, you must first configure the following:

 A REST Endpoints integration, which configures the endpoints for this function to use.

 A createPayload function which precedes this function, in order to generate the payloads this

function sends.

 For best practice, create a new engine to handle the send process. This is to prevent potential

blockages during the send process under load.If you want to send both alerts and Situations, you

must create a separate engine for each workflow. A separate engine has the following moolet

characteristics:

 standalone_moolet: true

threads: 1

event_handlers: [<if required>]

process_output_of: <place in the moolet chain>

Cisco recommends this moolet is single threaded to ensure Cisco Crosswork Situation Manager works

at the same rate as the receiving API. However, you can modify the thread count if necessary, for

example if the endpoint has inherent rate or load mechanics, or ordering. No other moolet should rely

on or process the output of this one.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function. If you use the sweep up filter within the workflow,

createPayload applies to all the objects in the workflow. Consequently, sendViaRest sends the

payload created using all objects within the workflow.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sendViaKafka takes the following arguments:

Name Required Type Description

endpointName Yes String Name of the endpoint defined in the REST Endpoints integration.

Example

The following example demonstrates typical use of Workflow Engine function sendViaRest.

Set the following:

 endpointName: AlertToSend

The UI translates your settings to the following JSON:

{"endpointName":"AlertToSend"}

The function returns true if it was able to locate and successfully send the alert data to the REST

endpoint. If it could not find the endpoint configuration, or send the data, the function returns false.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID7d6a4850a50b04268dc6c03271f6a898
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID7d6a4850a50b04268dc6c03271f6a898

Cisco Crosswork Situation Manager 8.0.x Developer Guide

756

setAgent

A Workflow Engine function that sets the Agent field of the alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setAgent takes the following arguments:

Name Required Type Description

agent Yes String Agent value to set.

setAgentLocation

A Workflow Engine function that sets the Agent Location field of the alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setAgentLocation takes the following arguments:

Name Required Type Description

agentLocation Yes String Agent Location value to set.

setAgentTime

A Workflow Engine function that sets the agent_time of the event to current time if the field does not

exist in the event, or is more than the offset seconds in the past/future.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setAgentTime takes the following arguments:

Name Required Type Description

offset Yes Number The maximum number of seconds in the past or future to allow for the

agent time. Set to 0 for current time.

setAnsibleJob

A Workflow Engine function that sets the instance and job template rule set to use for Ansible

automation requests. Checks the template name against your Ansible Automation integration for a

matching job template name. If found, uses the rule set to generate the request payload. Otherwise,

uses the default job template rules.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID6993da3900e3504efe1b6f278e7d6053

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

757

This function relates directly to configurations from your Ansible Automation integration.

setAnsibleJob typically precedes a sendToAnsible action in your workflow, which uses the payload

this function generates.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setAnsibleJob takes the following arguments:

Name Required Type Description

instance Yes String Name of your Ansible Automation integration instance.

jobTemplateName Yes String Name of the template. Must match the

Workflow Job Template Name in your Ansible Automation

integration.

Example

The following example demonstrates typical use of Workflow Engine function setAnsibleJob. It

assumes you have set up the following:

 An Ansible Automation integration with the name "Ansible1".

 Within your Ansible Automation integration, a Workflow Job Template Name instance called

"Restart-service".

Set the following:

 instance: Ansible1

 jobTemplateName: Restart-service

 Forwarding Behavior: Stop this workflow. This prevents further processing if the function fails to

locate your configuration and returns false.

The UI translates your settings to the following JSON:

{"instance":"Ansible1","jobTemplateName":"Restart-service"}

setAutomationPayload

A Workflow Engine function that sets the automation solution, instance and Workflow Payload rule set

to use for automation requests. Checks the Workflow Payload name against your automation integration

for a matching job template name. If found, uses the rule set to generate the request payload.

Otherwise, uses the default Workflow Payload rules.

This function currently supports the eyeShare and Ignio integrations and directly relates to

configurations from these integrations.

setAutomationPayload typically precedes a sendToAutomation action in your workflow, which uses

the payload this function generates.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID6993da3900e3504efe1b6f278e7d6053
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDc0dadeb352d6c967e10a274ab7876be7
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUIDcddeebf15c59429423cf781451041b73

Cisco Crosswork Situation Manager 8.0.x Developer Guide

758

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setAutomationPayload takes the following arguments:

Name Required Type Description

automationSolution Yes String Name of the automation solution. For example, "Ignio".

automationInstance Yes String Name of the integration instance. For example, "Ignio1".

payloadName Yes String Name of the payload. Must match the

Workflow Payload Name in your integration.

Example

The following example demonstrates typical use of Workflow Engine function

setAutomationPayload. It assumes you have set up the following:

 An eyeShare integration with the name "eyeShare1".

 Within your eyeShare integration, a Workflow Payload instance where you have entered the

Workflow Payload Name as "Default".

Set the following:

 automationSolution: eyeShare

 automationInstance: eyeShare1

 payloadName: Default

 Forwarding Behavior: Stop this workflow. This prevents further processing if the function fails to

locate your configuration and returns false.

The UI translates your settings to the following JSON:

{"automationSolution":"eyeShare","automationInstance":"eyeShare1","payloadName":

"Default"}

setClass

A Workflow Engine function that sets the class of the alert to a static value.

This function is available for alert and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setClass takes the following arguments:

Name Required Type Description

class Yes string Class to set for this alert.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

759

setCoreEventField

A Workflow Engine function that sets a single core event field to a static value. For custom info, use the

setCustomInfoValue or setCustomInfoJSONValue functions. For example set the agent_location field

to "London".

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setCoreEventField takes the following arguments:

Name Required Type Description

field Yes String The field name other than custom_info.

value Yes Object The static value to set.

Example

The following example demonstrates typical use of Workflow Engine function setCoreEventField.

{"field":"signature","value":"mySource:myClass:myType"}

setCustomInfoJSONValue

 A Workflow Engine function that adds or updates a custom info key to the specified JSON value.

 Accepts complex keys: a.b.c.d. The value must be a JSON object. Use the setCustomInfoValue

function for to set string values.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setCustomInfoJSONValue takes the following arguments:

Name Required Type Description

key Yes String Custom info key for which to set the JSON. Complex keys are allowed. Do not

include "custom_info" in the key.

value Yes Object JSON value that you want to set.

Example

The following example demonstrates typical use of Workflow Engine function

setCustomInfoJSONValue. If you want to set the JSON value for the custom_info.services key,

set the following:

 key: services

 value: {"service_list":["Network","Database"]}

Cisco Crosswork Situation Manager 8.0.x Developer Guide

760

The UI translates your settings to the following JSON:

{"service_list":["Network","Database"]}

The Workflow Engine updates the object fields as follows:

 "custom_info":

 {"services":

 {"service_list": ["Network","Database"]}

 }

setCustomInfoValue

A Workflow Engine function that adds or updates a custom info key to a specified string value. Accepts

complex keys: a.b.c.d. The value must be a text string. Use the setCustomInfoJSONValue for JSON

object values.

This function is available for alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setCustomInfoValue takes the following arguments:

Name Required Type Description

key Yes String Custom info key for which to set the value. Complex keys are allowed.

value Yes String Value to set. Must not be JSON.

setDescription

A Workflow Engine function that sets the description of the object. The action does not override manual

descriptions.

This function is available for alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setDescription takes the following arguments:

Name Required Type Description

description Yes String Description to set.

setEnrichment

A Workflow Engine function that updates a single record in the enrichment datastore with data from an

alert. Returns true if the request is successful.

This function relates directly to the API details from your Enrichment API.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for event, alert, and enrichment workflows.

This function does not modify the in-scope object when it updates enrichment data.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

761

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setEnrichment takes the following arguments:

Name Required Type Description

attribute Yes String Name of the attribute to lookup. For example, "hostname".

value Yes String Name of the field or workflowContext key holding the data to lookup.

To specify a workflowContext key, prefix with "workflowContext". For

example, "workflowContext.lookupkey".

data Yes String Name of the field or workflowContext key which holds the data to store

against the source key. If you are using a workflowContext key, prefix

with the string "workflowContext". For example,

"workflowContext.datakey". Must contain a vaild JSON object.

Example

The following example demonstrates typical use of Workflow Engine function setEnrichment.

You want to send an update to your Enrichment API endpoint, using an attribute called "source" as the

search key and the contents of the workflowContext key data as the enrichment data to store. Set the

following:

Within your endpoint you have an attribute called "source". You want to send an update to the value of

the custom_info.lookupkey field and use the contents of the workflowContext key data as the

enrichment data to store. Set the following:

 attribute: source

 value: custom_info.lookupkey

 data: workflowContext.datakey

The UI translates your settings to the following JSON:

{"attribute":"source","value":"custom_info.lookupkey","data":"workflowContext.da

takey"}

If successful, the function returns true and sends a request to the API endpoint, using the object

source field as the search key.

setEnrichmentBulk

A Workflow Engine function that updates multiple records in the enrichment datastore with an array of

data from an alert. Returns true if the request is successful.

This function relates directly to the API details from your Enrichment API.

This function is available as a feature of the Add-ons v1.4 download and later.

This function is available for event, alert, and enrichment workflows.

This function does not modify the in-scope object when it updates enrichment data.

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID1ac64d131d353ffe5d2b7df56f23fdf8

Cisco Crosswork Situation Manager 8.0.x Developer Guide

762

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setEnrichmentBulk takes the following arguments:

Name Required Type Description

data Yes String Name of the field or workflowContext key which holds the data to store against

source key. To specify a workflowContext key, prefix with

"workflowContext". For example, "workflowContext.datakey".

Must contain a vaild array of JSON objects which contain the attribute, value,

and enrichment values to use.

Example

The following example demonstrates typical use of Workflow Engine function setEnrichmentBulk.

You want to send an update to your Enrichment API endpoint using data stored in the workflowContext

key as the enrichment data to store. Set the following:

 data: workflowContext.datakey

The UI translates your settings to the following JSON:

{"data":"workflowContext.datakey"}

 The data must contain an array of JSON objects which contain the attribute, value and enrichment

to store. For example:

[

 {

 "attribute": "source",

 "value": "node_1",

 "enrichment": { "service": "service_1"}

 },

 {

 "attribute": "source",

 "value": "node_2",

 "enrichment": { "service": "service_2"}

 }

]

This results in two update requests to the Enrichment API: one request to store the

 enrichment data against the attribute and value node_1 , and a second

request to store the enrichment data against the attribute

and value node_2 . If these requests are successful, the function returns true and applies the

updates.

setExternalId

A Workflow Engine function that sets the external_id field of the event or alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setExternalId takes the following arguments:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

763

Name Required Type Description

externalId Yes String external_id value to set.

setManager

A Workflow Engine function that sets the Manager field of the event or alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setManager takes the following arguments:

Name Required Type Description

manager Yes String Manager value to set.

setPuppetAutomation

A Workflow Engine function that sets the instance and job template rule set to use for Puppet

automation requests. Checks the template name against your Puppet integration for a matching job

template name. If found, uses the rule set to generate the request payload. Otherwise, uses the default

job template rules.

This function relates directly to configurations from your Puppet.

setPuppetAutomation typically precedes a sendToPuppet action in your workflow, which uses the

payload this function generates.

This function is available as a feature of the Add-ons v1.3 download and later.

This function is only available for automation alert and automation Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setPuppetAutomation takes the following arguments:

Name Required Type Description

instance Yes String Name of your Puppet integration instance.

templateName Yes String Name of the template. Must match the

Workflow Job Template Name in your Puppet integration.

Example

The following example demonstrates typical use of Workflow Engine function setPuppetAutomation.

It assumes you have set up and configured the following:

 A Puppet integration with the name "Puppet1".

 Within your Puppet integration, a Workflow Job Template Name instance called "my-plan".

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID05d46bb5a7eff3db321655e21800ef54
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID05d46bb5a7eff3db321655e21800ef54

Cisco Crosswork Situation Manager 8.0.x Developer Guide

764

Set the following:

 instance: Puppet1

 templateName: my-plan

 Forwarding Behavior: Stop this workflow. This prevents further processing if the function fails to

locate your configuration and returns false.

The UI translates your settings to the following JSON:

{"instance":"Puppet1","templateName":"my-plan"}

setSeverity

A Workflow Engine function that sets the severity of the alert.

This function is available for alert and enrichment workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setSeverity takes the following arguments:

Name Required Type Description

severity Yes Number Severity value to set for this alert. See Severity Reference for a list of

severity values.

setSituationFlag

A Workflow Engine function that sets a flag for a Situation. If the Situation already has a flag set, using

this action replaces it.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setSituationFlag takes the following arguments:

Name Required Type Description

flag Yes String Flag to set.

Example

The following example demonstrates typical use of Workflow Engine function setSituationFlag.

If you want to set the Situation's flag to "TICKETED", enter the following:

 flag: TICKETED

The UI translates your settings to the following JSON:

{"flag":"TICKETED"}

Given a Situation with the following flag:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

765

{

 "situationFlags": [

 "TICKET_PENDING"

]

}

The Workflow Engine updates the object as follows:

{

 "situationFlags": [

 "TICKETED"

]

}

setSituationState

A Workflow Engine function that sets the state of the Situation. Not to be confused with Situation status.

This function is available for Situation workflows only.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setSituationState takes the following arguments:

Name Required Type Description

state Yes String State to set, for example TICKETED.

setSource

A Workflow Engine function that sets the source (hostname) field of the event or alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function source takes the following arguments:

Name Required Type Description

source Yes String Source to set for the event or alert.

setSourceId

A Workflow Engine function that sets the source_id field of the event or alert.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Cisco Crosswork Situation Manager 8.0.x Developer Guide

766

Arguments

Workflow Engine function setSourceId takes the following arguments:

Name Required Type Description

sourceId Yes String source_id to set for the event or alert.

setType

A Workflow Engine function that sets the type of the alert.

This function is available for alert and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function setType takes the following arguments:

Name Required Type Description

type Yes String Type to set for this alert.

Example

The following example demonstrates typical use of Workflow Engine function setType. If you want to

set the type for an object to "availablity", enter the following:

 type: availability

The UI translates your settings to the following JSON:

{"type":"availability"}

sigActionFilter

A Workflow Engine function that returns true if the Situation action matches the specified type.

Operates as a filter that stops processing Situations.

This function accepts an array Situation action types. See Situation Action Codes for a list. Specify

which actions you want to continue processing, and use the either the "Stop This Workflow" or "Stop

All Workflows" forwarding behavior to stop processing any other actions.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sigActionFilter takes the following argument:

Name Required Type Description

actionType Yes Array See Situation Action Codes for a list of Situation actions. For example

["Situation Updated"].

sigActionToolFilter

A Workflow Engine function that returns true if the specified tool has been run against a Situation. For

example, a ticketing integration tool.

This function is available for Situation workflows only.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

767

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function sigActionToolFilter takes the following argument:

Name Required Type Description

toolName Yes String Name of the tool

simpleLookup

A Workflow Engine function that defines the simple lookup as two arrays of equal length: keys and

values. When the value of fromField matches a value in the keys array, sets toField to the value in the

values array with the corresponding index.

This function is intended to make administration and usage easier, and is designed for short lists rather

than for long lookups. For longer, more complex lookups, use the staticLookup function, which uses a

configuration file.

This function is available as a feature of the Workflow Engine v1.2 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function simpleLookup takes the following arguments:

Name Required Type Description

fromField Yes String Source field of the key.

keys Yes Object Array of keys as a JSON array.

values Yes Object Array of values as a JSON list.

toField Yes String Destination field. Overwrites any existing values.

Example

The following example demonstrates typical use of Workflow Engine function simpleLookup, in which

you perform a simple lookup that translates a textual severity in an event to a number-based severity.

equivalent:

"clear" : 0

"unknown" : 1

"warning" : 2

"minor" : 3

"major" : 4

"critical" : 5

If you take your key from custom_info.sourceSeverity and put the looked up value into

severity , set the following:

Cisco Crosswork Situation Manager 8.0.x Developer Guide

768

 fromField: custom_info.sourceSeverity

 keys: ["clear","unknown","warning","minor","major","critical"]

 values: [0,1,2,3,4,5]

 toField: severity

The UI translates your settings to the following JSON:

{

"fromField":"custom_info.sourceSeverity",

"keys":["clear","unknown","warning","minor","major","critical"],

"values":[0,1,2,3,4,5],

"toField":"severity"

}

The action returns true if the fromField value is found in the keys and the corresponding value

was successfully set in toField.

The action returns false if the fromField has no value or was not found in the keys , the value was

not successfully set, or if the keys and values are not of equal length.

situationDelta

A Workflow Engine function that returns true when attributes have changed. This is based on the

previous_data metadata, which Cisco Crosswork Situation Manager sends with the situation object in

a situationUpdate event.

Only use this function in conjunction with an entry filter that includes the event_handler trigger for

"Situation Updated".

This function does not check the values of the attributes, only if the attributes have changed. As

standard de-duplication changes attributes, use this function carefully.

Cisco recommends placing situationDelta in an engine dedicated to handling Situation Updates and

other alert event handlers. This prevents updated alerts re-entering the processing chain through

standard Situation Workflows. Contact your Cisco Crosswork Situation Manager administrator for more

information.

This function is available for Situation workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function alertDelta takes the following arguments:

Name Required Type Description

fields Yes Object List of attributes to check for change. Accepts granular custom info

attributes.

Example

The following example demonstrates typical use of Workflow Engine function situationDelta.

You want to check if the moderator of a Situation has changed before performing subsequent actions in

your workflow. You could use an entry filter to check for a specific moderator, but in this instance the

value of the moderator is not relevant, only that it has changed.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

769

Using a separate Workflow Engine to prevent unwanted re-entry, you set up a workflow with an entry

filter that includes the event_handler trigger for "Situation Update" and the moderator as

"Unassigned":

(event_handler = "Situation Update") AND (moderator != "anon")

Set the following:

 fields: moderator

 Forwarding behavior: Stop this workflow. This ensures that if the alert owner has not changed,

subsequent actions in this workflow do not execute.

The UI translates your settings to the following JSON:

{"fields":["moderator"]}

If the Situation metadata shows that the moderator has changed, the function returns true and the

alert is forwarded to the next action in the workflow.

If function does not detect a change of ownership, the function returns false and the forwarding

behaviour prevents subsequent actions in the workflow from executing.

skip

A Workflow Engine function that forwards an in-scope object to the next chained moolet using the

standard forwarding mechanism, and skips the rest of the workflows in the current engine. This is

useful if you have an engine with many workflows. For example, you may only want to process the

workflow from the first matching entry filter for performance reasons.

You may also want to use this function to ensure no further actions execute after the first workflow. For

example, if a lower action has a more open entry filter.

This function is available as a feature of the Workflow Engine v1.1 download and later.

This function is available for event, alert, enrichment, and Situation workflows.

This function is only compatible with the "Stop All Workflows" Forwarding Behavior, and the function

always returns false.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function skip has no arguments.

Example

To use the skip function, set it as the last action in your workflow and ensure Forwarding Behavior is

set to Stop All Workflows .

staticLookup

A Workflow Engine function that searches for a key in a static lookup table, retrieves the corresponding

value, and applies that value to a field in the object. lookupName references a .lookup file in JSON

format in the following folder: $MOOGSOFT_HOME/config/lookups/.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

770

For example, Locations refers to $MOOGSOFT_HOME/config/lookups/Locations.lookup. On first

use, the lookup loads into constants. You do not need to edit the Workflow Engine Moobot to load. The

default lifespan for the lookup is 3600 seconds, after which the Workflow Engine reloads the file.

This function is available for event, alert, enrichment, and Situation workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function staticLookup takes the following arguments:

Name Required Type Description

key Yes String Source field to use as the key.

lookupName Yes String Name of the lookup. Corresponds to a lookup file in

$MOOGSOFT_HOME/config/lookups/lookupName.lookup.

field Yes String Field to set the result of the lookup to. If the lookup is unsuccessful,

this is set to null or if there is a key named 'default' the values are

taken from that.

lifespan Yes Number Lifespan of the current lookup data in memory before the Workflow

Engine reloads the data from disk. Default is 3600 seconds.

stripFQDN

A Workflow Engine function that splits a fully qualified domain name (FQDN) into a hostname/short

name and a domain name and updates fields with the values.

If shortNameField begins with "www" or a derivative, sets the value to the subsequent segment of

the domain. For instance, "www3.example.com" returns "example'.

If you don't want to map the domain name, enter null or an empty string, "", for the domainNameField

.

This function is available for event, alert, and enrichment workflows.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function stripFQDN takes the following arguments:

Name Required Type Description

fqdnField Yes String Name of the field to parse the FQDN.

shortNameField Yes String Destination field for the extracted short name/host name.

domainNameField No String Destination field for the extracted domain name.

upperCase

A Workflow Engine function that changes the value of a field to uppercase. For example, changes a

value of "Network" to "NETWORK".

This function is available for event, alert, enrichment, and Situation workflows.

The workflow sweep up filter applies to this function.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

771

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function upperCase takes the following argument:

Name Required Type Description

field Yes String The name of the field.

willCreateNewAlert

A Workflow Engine function that returns true if the event will create a new alert.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function willCreateNewAlert has no arguments.

willDeduplicateAlert

A Workflow Engine function that returns true if the event will deduplicate into an existing alert.

This function is available for event workflows only.

Back to Workflow Engine Functions Reference.Workflow Engine Functions Reference

Arguments

Workflow Engine function willDeduplicateAlert has no arguments.

Troubleshoot the Workflow Engine

The Workflow Engine is a flexible tool that can help you transform your data and manage its flow

through Cisco Crosswork Situation Manager data processing. Workflow Engine functions provide you

programmatic control over your data, but sometimes your workflows may not behave the way you

expect.

This topic contains ideas to help you debug your workflows and get the most from the Workflow

Engine.

Troubleshoot from the UI

Consider the following options for troubleshooting workflows from the Cisco Crosswork Situation

Manager UI:

 If you have multiple workflows enabled, but one of them is behaving unexpectedly, try temporarily

disabling the other workflows to see if it works on its own. If so, reactivate the other workflows one

by one, testing at each step to see if one of the other workflows is affecting it.

 Check the forwarding behavior for your workflow actions. The forwarding behavior controls

subsequent processing when the function returns false. Stop This Workflow prevents the object

passing to subsequent actions and Stop All Workflows prevents the object from passing to any

subsequent action or workflow.

Cisco Crosswork Situation Manager 8.0.x Developer Guide

772

 Test your entry filter for the workflow. If your objects are not meeting entry filter requirements, the

workflow will not process them.

 Verify your source fields and destination fields. Make sure that the names match up exactly. If you

are using complex keys, make sure that you have the path exactly right. For example:

custom_info.eventDetails.services.

 If you are using an event that specifies a Moolet, check the Moolet name under

Settings > Self Monitoring > Event Processing. For example, "Default Cookbook".

Troubleshoot from the moog_farmd.log

If you have access to the log for Moogfarmd, you have a lot more troubleshooting options to identify

exactly what is happening with your objects as they progress through workflows.

To enable debug logging for Moogfarmd, execute the following:

farmd_cntl --loglevel debug

When you are through logging, reset the log level to warn:

farmd_cntl --loglevel warn

You can find the Moogfarmd log at /var/logs/moogsoft. See Configure Logging for more

information.Configure Logging

The Workflow Engine includes the following logging functions to help you troubleshoot:

 logMessage: Logs a message to the Moogfarmd log.

 logWorkflowDuration: Logs debug messages for the workflow execution duration.

The log messages from the Worfklow Engine include the engine name along with details about the

object processing in the workflow. This means that you can use the tail command to observe the

activity within an engine. For example:

tail -f MOO.moog_farmd.log | grep ":Alert.Workflows"

Within the log output, you can search for specific things, including:

 The function name you are troubleshooting.

 Identifying data for the object you are processing, such as the event signature.

 Identifying information about an entry or sweep up filter.

See Example Workflow Engine log for sample messages and their meanings within the log context.

Example Workflow Engine log

The following log segment includes comments to highlight the different aspects of a Workflow Engine

log:

Alert did not pass the entry filter ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:55.983 -0400]

[CWorkflow.java:470] +|Moolet [Enrichment Workflows] - workflow [Closed Alerts

Filter]: message [{"Elements":{active_sig_list=[67, 68], agent=DATA_SOURCE,

agent_location=my_agent_location, alert_id=165, class=my_class, count=3,

custom_info={eventDetails={agent=TestAgent1, first_occurred=1570047828,

service=SAP, name=REST LAM Post 1, team=SAP Support}}, description=DESC: Host 1

Sig 1, entropy=0.8312803355385304, event_id=2899, external_id=my_external_id,

first_event_time=1570047828, int_last_event_time=1570047828,

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/implementor_guide/Cisco_Crosswork_Situation_Manager_8_0_Implementer_Guide.html#UUID74d4cfc8aa189a879a82ee26366c85dd

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

773

last_event_time=1570047896, last_state_change=1570047828, manager=TestMgr1,

owner=2, rc_probability=null, severity=5, sig_list=[67, 68],

signature=lnux100:sig1, significance=3, source=lnux100,

source_id=192.168.100.101, state=2, type=TestType1}, "Topic":"alerts",

"Seq":"0", "SessId":"4769192054476008521", "Pdu":"E_MooMsg",

"MessageId":"c2fc745a-8572-4982-a012-69fe64b84e96", "CorrelationId":"ff62fbbb-

45ff-44f8-a1b5-9341bf33e729", "Metadata":{action=Event Added To Alert,

clock_time=1570047895, message_type=1,

previous_data={last_event_time=1570047869, count=2}, user_id=2},

"UsedCount":"null", "AckPoint":"0"}] failed to pass entry filter [state = 9].|+

Workflow is inactive ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:55.983 -0400]

[CWorkflow.java:463] +|Moolet [Enrichment Workflows] - workflow [Enrich From

SNow] inactive, sending message to the next Workflow/Moolet.|+

Active workflow begins ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:55.983 -0400]

[CWorkflow.java:294] +|Moolet [Enrichment Workflows] - workflow [Test External

DB]: starting delay of [0] seconds for msg [{"Elements":{active_sig_list=[67,

68], agent=DATA_SOURCE, agent_location=my_agent_location, alert_id=165,

class=my_class, count=3, custom_info={eventDetails={agent=TestAgent1,

first_occurred=1570047828, service=SAP, name=REST LAM Post 1, team=SAP

Support}}, description=DESC: Host 1 Sig 1, entropy=0.8312803355385304,

event_id=2899, external_id=my_external_id, first_event_time=1570047828,

int_last_event_time=1570047828, last_event_time=1570047896,

last_state_change=1570047828, manager=TestMgr1, owner=2, rc_probability=null,

severity=5, sig_list=[67, 68], signature=lnux100:sig1, significance=3,

source=lnux100, source_id=192.168.100.101, state=2, type=TestType1},

"Topic":"alerts", "Seq":"0", "SessId":"4769192054476008521", "Pdu":"E_MooMsg",

"MessageId":"c2fc745a-8572-4982-a012-69fe64b84e96", "CorrelationId":"ff62fbbb-

45ff-44f8-a1b5-9341bf33e729", "Metadata":{action=Event Added To Alert,

clock_time=1570047895, message_type=1,

previous_data={last_event_time=1570047869, count=2}, user_id=2},

"UsedCount":"null", "AckPoint":"0"}]|+

Name of the function that is processing ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:55.984 -0400]

[CWorkflowBotAction.java:196] +|Performing action [enrichOneToOne]|+

Depending on the function, different logs here ###

Alert updated ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:56.096 -0400] [CMooMsg.java:1086]

+|Encoded size [991] json[{"_MOOTADATA_":{"action":"Alert

Updated","clock_time":1570047896,"message_type":1,"previous_data":{"custom_info"

:{"enrichment":null,"eventDetails":{}},"last_state_change":1570047828}},"active_

sig_list":[67,68],"agent":"DATA_SOURCE","agent_location":"my_agent_location","al

ert_id":165,"class":"my_class","count":3,"custom_info":{"eventDetails":{"agent":

"TestAgent1","first_occurred":1570047828,"service":"SAP","name":"REST LAM Post

1","team":"SAP

Support"},"enrichment":{"ci":{"Name":"lnux100","AssetClass":"Linux

Server"}}},"description":"DESC: Host 1 Sig

1","entropy":0.8312803355385304,"external_id":"my_external_id","first_event_time

":1570047828,"int_last_event_time":1570047828,"last_event_time":1570047896,"last

_state_change":1570047896,"manager":"TestMgr1","owner":2,"rc_probability":null,"

severity":5,"sig_list":[67,68],"signature":"lnux100:sig1","significance":3,"sour

Cisco Crosswork Situation Manager 8.0.x Developer Guide

774

ce":"lnux100","source_id":"192.168.100.101","state":2,"type":"TestType1"}]|+

Action completing with an exit status of 'true' ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:56.103 -0400] [CMDB-WFE.js:403]

+|Enrichment Workflows::enrichOneToOne: Exiting action with a status of true|+

Workflow Finished and sending to next Moolet ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:56.104 -0400]

[CPassToNextMoolet.java:63] +|Moolet [Enrichment Workflows] - Sending message to

the next Moolet|+

DEBUG: [3:Enrichment Workflows][20191002 16:24:56.104 -0400]

[CMsgDispatch.java:516] +|Dispatching message from [Enrichment Workflows]|+

Name of the next Moolet for the alert ###

DEBUG: [3:Enrichment Workflows][20191002 16:24:56.104 -0400]

[CMsgDispatch.java:547] +|Dispatching to [MaintenanceWindowManager]|+

Workflow Engine Strategies and Tips

The Cisco Crosswork Situation Manager Workflow Engine is a powerful tool that gives you access to

your event, alert and Situation data and lets you control data processing flow. This topic covers some

strategies to help you get the most out of the Workflow Engine.

Before you begin

Taking some time to prepare before you start creating workflows in Cisco Crosswork Situation Manager

can help improve your experience. The following include some suggestions to help you get ready:

 Take time to define outcomes you want to accomplish with the Workflow Engine. Read through the

example use cases listed in the Workflow Engine topic to gather ideas.

 Pick one use case and think about the supporting data that can help you define your workflow. For

example, you want to stop processing of clear, severity 0, events if they are going to create a new

alert. In this case, you need the severity field. For more information see Alert and Event Field

Reference.

 Look through the Workflow Engine Functions Reference to find the right function you need to

accomplish your task. For example, to see if an event will create a new alert, you can use

willCreateNewAlert.

 If possible, set up a REST LAM so you can send sample data to test out your workflows. See REST

LAM. You can use cURL or a graphical API client to send event data to the REST LAM.

 If possible, get SSH access to the machine running Moogfarmd so you can access the log for

troubleshooting. See Troubleshoot the Workflow Engine for more information.

Creating workflows

Workflows are containers for a set of actions to process your data. In a complex system, you may

create hundreds of workflows to handle all kinds of scenarios. Consider the following as you define

your workflows:

 Workflow Engines process data through individual workflows in the numeric order from the UI. If

possible, work with one active workflow at a time while you design and configure your workflow.

This way you can focus on a single behavior without worrying about an upstream or downstream

workflow.

 Whenever possible, use an entry filter to limit the number of objects entering your workflow.

Running a workflow takes processing power and time. Using an entry filter ensures that only

pertinent objects pass through a workflow. Entry filters are also more performant than action based

https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8d9d99ac43fb8b84cfe0d420d6661b22
https://www-author3.cisco.com/c/en/us/td/docs/cloud-systems-management/crosswork-network-automation/situation-manager/integration_guide/Cisco_Crosswork_Situation_Manager_8_0_Integration_Guide.html#UUID8d9d99ac43fb8b84cfe0d420d6661b22

Cisco Crosswork Situation Manager 8.0.x Developer Guide

Cisco Systems, Inc. www.cisco.com

775

filters. For example, if I want to stop processing clear events, I can create a filter: severity =

"Clear".

 If you want to use a sweep up filter to process multiple alerts or Situations, verify that the function

you plan to use works with sweep up filters. You can check the Workflow Engine Functions

Reference or the topics for individual functions.

 When objects enter a workflow as part of a sweep up filter, the workflow processes each action on

all objects in turn. For example, it executes action one for all objects before proceeding to action

two.

 When you enable multiple workflows, consider the impact of upstream workflows on downstream

ones. For example, keep the default Closed Alerts Filter early in the workflow chain. This prevents

those events from entering later workflows. Also consider the impact of event workflows on alert

and Situation workflows.

See Manage Workflows for steps to create a workflow.

Adding Actions to workflows

You add actions to a workflow to manipulate data and control the data processing flow for events,

alerts, enrichment, and Situations. Consider the following as you add actions to your workflow:

 The UI validates that the data you enter for function arguments as JSON. Where possible, it checks

validity of number and string data. For example 0-5 are the only valid severities. It does not check

for valid field names or value data.

 Unless instructed, you do not need to enter quotation marks around values, except strings where

they represent elements in an array.

 The Workflow Engine uses JavaScript regular expression notation. Consider using a third-party

regular expression validator to help with syntax. For example, regex101. Cisco does not endorse

any specific tool. Before using any tool, verify that it meets your organization's standard for security

and privacy.

 The forwarding behavior applies when the action returns false. For more detail, see Action types

and forwarding behavior.

 Actions execute in numeric order. Test your workflow for both negative and positive cases with the

addition of each new action.

See Manage Workflow Engine Actions for steps to add actions to a workflow.

Action types and forwarding behavior

The Workflow Engine has several types of actions to choose from. Each action lets you set the

forwarding behavior to control the downstream flow of the object in the case that the action returns

false. The type of action should influence how you choose your forwarding behavior. Action types

include:

 Conditionals that return true or false to let you control whether or not to proceed with the

current object. You can use these as an "action" based filter if you need to filter data within a

workflow after the execution of previous actions. For maximum efficiency, you may consider

breaking a workflow into multiple workflows and using the entry filter for the subsequent workflow.

https://regex101.com/

Cisco Crosswork Situation Manager 8.0.x Developer Guide

776

 Transformers that update object data. In general transformer actions should Always Forward

unless doing so compromises the workflow. For example, when a failed action impacts the

subsequent action.

 Data actions that action retrieved data and pass it to a consecutive action or that send data

asynchronously to an external data sink. Treat data retrievers like conditionals. For example, stop

the workflow if it returns false since subsequent actions may not run. An asynchronous exporter

always returns true regardless of the result from the asynchronous return.

	Developer Guide
	Graze API
	Stats API
	Topologies API
	Integrations API
	Moobot modules
	Programmatic LAM
	Alert Rules Engine
	Link Up-Link Down Example
	Heartbeat Monitor
	Alert Rules Engine Reference
	Transitions
	Create a New Transition
	Delete a Transition

	Action States
	Create an Action State
	Delete an Action State

	Clustering Algorithm Guide
	Cookbook
	Tempus

	Situation Manager Labeler
	Usage
	Update Situation descriptions
	Numeric fields only
	Text fields only
	List values only

	Limiting the number of alerts to consider
	Update other Situation fields
	Example

	Field Behavior in Merged Situations
	Graze API
	Endpoints
	Before you begin
	Configure Apache Tomcat

	API definition
	Authentication
	Authentication troubleshooting

	POST parameters
	form-urlencoded
	application/json

	Graze API EndPoint Reference
	Alerts
	Dashboards and reporting
	Entropy thresholds and Events Analyser configuration
	Processes and maintenance
	Situations
	Security realms
	Topologies
	User management
	Workflow Engine
	addAlertCustomInfo
	addAlertToSituation
	addBotRecipe
	addCookbook
	addEventsAnalyserWord
	addMergeGroup
	addProcess
	addService
	addSigCorrelationInfo
	addSituationCustomInfo
	addTempus
	addThreadEntry
	addValueRecipe
	applyNewLicense
	assignAlert
	assignAndAcknowledgeAlert
	assignAndAcknowledgeSituation
	assignSituation
	assignTeamsToSituation
	authenticate
	checkSituationFlag
	closeAlert
	closeSituation
	createMaintenanceWindow
	createSecurityRealm
	createSituation
	createTeam
	createThread
	createThreadEntry
	createUser
	createWorkflow
	deassignAlert
	deassignSituation
	deleteCookbook
	deleteMaintenanceWindow
	deleteMaintenanceWindows
	deleteMergeGroup
	deleteRecipe
	deleteTeam
	deleteTempus
	deleteWorkflow
	/enrichment
	Match List Items in Recipes
	getActiveSituationIds
	getAlertActions
	getAlertDetails
	getAlertIds
	getAllSessionInfo
	getCookbooks
	getDefaultMergeGroup
	getEventsAnalyserConfig
	getEventsAnalyserPartitionOverrides
	getEventsAnalyserWords
	getGlobalEntropyThresholds
	getIntegrationConfig
	getMaintenanceWindows
	getMergeGroups
	getPrcLabels
	getProcesses
	getRecipes
	getResolvingThreadEntries
	getSecurityRealm
	getServices
	getSeverities
	getSigCorrelationInfo
	getSimilarSituationIds
	getSimilarSituations
	getSituationActions
	getSituationAlertIds
	getSituationDescription
	getSituationDetails
	getSituationFlags
	getSituationHosts
	getSituationIds
	getSituationPrimaryTeam
	getSituationProcesses
	getSituationServices
	getSituationSeverityChanges
	getSituationsWithFlag
	getSituationTopology
	getSituationVisualization
	getStatuses
	getSystemStatus
	getSystemSummary
	getTeam
	getTeams
	getTeamsForService
	getTeamSituationIds
	getTempus
	getThreadEntries
	getThreadEntry
	getToolShares
	getTopPrcDetails
	getUserInfo
	getUserRoles
	getUsers
	getUserSessionInfo
	getUserTeams
	getWorkflowEngineMoolets
	getWorkflows
	mergeSituations
	rateSituation
	removeAlertFromSituation
	removeEventsAnalyserPartitionOverrides
	removeEventsAnalyserWord
	removeSigCorrelationInfo
	removeSituationPrimaryTeam
	reorderWorkflows
	resolveAlerts
	resolveSituation
	sendToWorkflow
	setAlertAcknowledgeState
	setAlertSeverity
	setGlobalEntropyThreshold
	setPrcLabels
	setResolvingThreadEntry
	setSituationAcknowledgeState
	setSituationDescription
	setSituationFlags
	setSituationPrimaryTeam
	setSituationProcesses
	setSituationServices
	shareToolAccess
	/situation/{situationID}/topologies
	updateBotRecipe
	updateClosedAlert
	updateClosedSituation
	updateCookbook
	updateDefaultMergeGroup
	updateEventsAnalyserConfig
	updateEventsAnalyserPartitionOverrides
	updateEventsAnalyserWords
	updateMaintenanceWindow
	updateMergeGroup
	updateSecurityRealm
	updateTeam
	updateTempus
	updateUser
	updateValueRecipe
	updateWorkflow

	Alert Action Codes
	Situation Action Codes
	Situation Flags
	API Update Behavior
	Stats API
	System Endpoints
	Team Endpoints
	User Endpoints
	getAcknowledgedSituationsPerUserStats
	getAlertsInNewSituationsStats
	getAlertsMarkedPRCPerUserStats
	getAssignedSituationsPerUserStats
	getChatOpsToolExecutedPerUserStats
	getClosedSituationsPerUserStats
	getCommentCountPerTeamStats
	getCommentCountPerUserStats
	getInvitationsReceivedPerUserStats
	getMTTAPerTeamStats
	getMTTAPerUserStats
	getMTTAStats
	getMTTDStats
	getMTTRPerTeamStats
	getMTTRPerUserStats
	getMTTRStats
	getNewAlertsPerSituationsStats
	getNewAlertsStats
	getNewEventsPerAlertsStats
	getNewEventsPerSituationsStats
	getNewSituationsStats
	getOpenSituationsPerUserStats
	getRatedSituationsPerUserStats
	getReassignedSituationsPerTeamStats
	getReassignedSituationsPerUserStats
	getReassignedSituationStats
	getReoccurringSituationPerTeamStats
	getReoccurringSituationStats
	getResolvedSituationsPerUserStats
	getServiceSituationPerTeamStats
	getServiceSituationStats
	getSeveritySituationPerTeamStats
	getSeveritySituationStats
	getStats
	getStatusSituationPerTeamStats
	getStatusSituationStats
	getSystemSituationStats
	getTeamSituationStats
	getTopServiceSituationStats
	getTopTeamSituationStats
	getViewedSituationsPerUserStats
	getWorkedSituationsPerUserStats

	Integrations API
	Endpoints
	API definition
	Authentication
	Integrations API Endpoint Reference
	Export and Import Integrations
	Manage Integration States

	Topologies API
	Endpoints
	API definition
	API behavior
	Authentication
	Topologies API Endpoint Reference

	Introduction to Graze API
	Command Line Utility
	Alert Analyzer Utility
	Natural language processing analysis
	Tokenization of text
	Token type identification
	Token masking
	Language processing techniques
	Priority words
	Partition-based analysis

	Alert Builder Reference
	name
	classname
	run_on_startup
	moobot
	metric_path_moolet
	event_streams
	threads
	events_analyser_config
	priming_stream_name
	priming_stream_from_topic

	Archiver Utility Command Reference
	Usage
	Example

	Topology Loader Utility Command Reference
	Usage
	Example

	Component Configuration
	System Configuration
	Configure your system
	Example
	Start and stop Moogfarmd

	System Configuration Reference
	Message Bus (MooMs)
	Message Bus SSL
	MySQL
	MySQL SSL
	Failover
	Moogfarmd Failover
	Process Monitor
	Processes
	Encryption
	High Availability (HA)
	Port Range

	Security Configuration Reference
	Service Provider Metadata Reference

	Moogfarmd and Core Data Processing
	Services
	Learn More
	Moogfarmd Reference
	Services
	Run the Moogfarmd Service Daemon
	Configuration

	Configure the Message Bus
	Message Handling
	Default Configuration
	Zones
	Message Persistence
	Message System Deployment
	Message System Troubleshooting
	Message System SSL

	Configure Search and Indexing
	Index Alerts and Situations
	Elasticsearch Details

	Log Levels Reference

	Configure Labs Features
	Enable Situation Room Plugins
	Implementation
	Examples
	Additional configuration
	ServiceNow integration

	MoogDb V2
	Load MoogDb v2
	Methods
	MoogDb V2 API Method Reference
	Alerts
	Processes and Maintenance
	Situations
	User Management
	Workflows
	addAlertToSituation
	addCorrelationInfo
	addProcess
	addService
	addSigCorrelationInfo
	addThreadEntry
	assignAlert
	assignAndAcknowledgeAlert
	assignAndAcknowledgeSituation
	assignModerator
	assignTeamsToSituation
	checkSituationFlag
	closeAlert
	closeSituation
	createAlert
	createMaintenanceWindow
	createSituation
	createTeam
	createThread
	createThreadEntry
	createUser
	createWorkflow
	deassignAlert
	deleteMaintenanceWindow
	deleteMaintenanceWindows
	deleteTeam
	deleteWorkflow
	findMaintenanceWindows
	getActiveSituationIds
	getAlert
	getAlertActions
	getAlertCustomInfo
	getAlertIds
	getAllSessionInfo
	getMaintenanceWindows
	getPrcLabels
	getProcesses
	getQueueName
	getResolvingThreadEntries
	getServices
	getSigCorrelationInfo
	getSigCustomInfo
	getSituation
	getSituationActions
	getSituationAlertIds
	getSituationFlags
	getSituationHosts
	getSituationIds
	getSituationPrimaryTeam
	getSituationProcesses
	getSituationServices
	getSituationsWithFlag
	getSituationTopology
	getSituationVisualization
	getTeam
	getTeams
	getTeamsForService
	getTeamSituationIds
	getThreadEntries
	getThreadEntry
	getToolShares
	getTopPrcDetails
	getUser
	getUserName
	getUserRoles
	getUsers
	getUserSessionInfo
	getUserTeams
	getWorkflowEngineMoolets
	getWorkflows
	mergeSituations
	moveSituationToCategory
	moveSituationToQueue
	rateSituation
	reload
	removeAlertFromSituation
	removeSigCorrelationInfo
	removeSituationPrimaryTeam
	reorderWorkflows
	resolveSituation
	reviveSituation
	sendToWorkflow
	setAlertCustomInfo
	setAlertSeverity
	setPrcLabels
	setResolvingThreadEntry
	setSigCustomInfo
	setSituationFlags
	setSituationPrimaryTeam
	setSituationProcesses
	setSituationServices
	shareToolAccess
	updateAlert
	updateClosedAlert
	updateClosedSituation
	updateCustomInfo
	updateMaintenanceWindow
	updateSituation
	updateTeam
	updateUser
	updateWorkflow

	LAMbots
	Lambot Overview
	LAMbot Configuration
	LAMbot Functions
	LAMbot Modules

	Moobots
	Moobot Modules
	Threads and global scope
	Moobot modules
	Examples
	Using external modules
	onLoad function
	Config
	Constants
	Events
	Expose Active Moolets
	ExternalDb
	Graph Topology
	Kafka
	Logger
	Mailer
	Moolet Informs
	Moolet Information API (Bot API)
	Process
	RabbitMQ
	REST.V2
	Utilities

	Alert Builder Reference
	name
	classname
	run_on_startup
	moobot
	metric_path_moolet
	event_streams
	threads
	events_analyser_config
	priming_stream_name
	priming_stream_from_topic

	Alert and Event Field Reference
	Event and Alert Field Best Practice

	Moolets
	Configure Alert Behavior During a Maintenance Window
	Maintenance Window Manager Reference
	Empty Moolet
	Enricher Moolet
	Notifier Moolet
	Teams Manager Moolet
	Scheduler Moolet
	Housekeeper Moolet
	Configure the Housekeeper Moolet

	Situation Manager
	Configure the Situation Manager

	Services
	Before You Begin
	Create Services and Assign Services to Situations
	Assign Services to Teams
	Monitor Affected Services

	Workflow Engine Moolets
	Create a Workflow Engine Moolet
	Workflow Engine Moolet reference

	Alert Manager
	Configure the Alert Manager
	Alert Manager Moobot
	Empty Moolet

	Server Roles
	UI role
	Database role
	Core role
	Redundancy role
	Data ingestion role
	Load balancers

	Severity Reference
	Status ID Reference
	Situation Manager Labeler
	Usage
	Update Situation descriptions
	Numeric fields only
	Text fields only
	List values only

	Limiting the number of alerts to consider
	Update Situation columns
	Update Situation fields
	Example

	Workflow Engine
	Default Workflow Engine types
	Workflows
	Manage Workflow Engine Actions
	Workflow Engine Moolets
	Manage Workflows
	Workflow Engine Functions Reference
	Event functions
	Alert and enrichment functions
	Situation functions
	Infrastructure and Automation functions
	ackNotification
	activateTopology
	addDefaultValues
	addItemToList
	addTags
	addThreadEntry
	addTopologyLink
	addTopologyNode
	alertDelta
	alertInSituation
	alertNotInSituation
	appendFields
	appendString
	assignAlert
	between
	ceventFilter
	checkSeverity
	checkSituationFlag
	checkSituationState
	checkTopology
	checkTopologyLink
	classifyEvent
	cloneTopology
	closeAlert
	concatFields
	containsAlertDetails
	contextFilter
	convertToJSON
	copyFieldFromAlertToEvent
	copyFromAlertToEvent
	copyFromContext
	copyToContext
	copyToPayload
	createNotification
	createPayload
	createServiceTicket
	createTopology
	deactivateTopology
	deassignAlert
	deleteEnrichment
	deleteTopology
	deleteTopologyLink
	deleteTopologyNode
	deltaEvent
	dnsLookup
	doesNotHaveStatus
	dropEvent
	estimateSeverity
	existingAlertFilter
	exportViaKafka
	exportViaRest
	filterByCookbook
	filterByCookbookAndRecipe
	filterByRecipe
	forward
	getEnrichment
	getIntegrationConfig
	getJDBCEnrichment
	getPayload
	getSituationFlags
	getServiceNowEnrichment
	getVisualizationData
	hasCausalPRC
	hasMerged
	hasNotMerged
	hasSimilarSituations
	hasStatus
	isAlertAcknowledged
	isAlertNotAcknowledged
	isAssigned
	isClear
	isInSubnet
	isNewerThan
	isNotAssigned
	isNotClear
	isNotNull
	isNull
	isOlderThan
	labelSituation
	listContains
	listContainsAll
	listDoesNotContain
	logCEvent
	logMessage
	logWorkflowContext
	logWorkflowDuration
	lookupAndReplace
	lowerCase
	populateNamedTopology
	prependFields
	prependString
	removeSituationFlag
	replaceString
	resolveNotification
	resolveSituation
	restAsyncPost
	reviveSituation
	searchAndReplace
	searchAndReplaceOrdered
	sendMooletInform
	sendToAnsible
	sendToAutomation
	sendToPuppet
	sendToWorkflow
	sendViaRest
	setAgent
	setAgentLocation
	setAgentTime
	setAnsibleJob
	setAutomationPayload
	setClass
	setCoreEventField
	setCustomInfoJSONValue
	setCustomInfoValue
	setDescription
	setEnrichment
	setEnrichmentBulk
	setExternalId
	setManager
	setPuppetAutomation
	setSeverity
	setSituationFlag
	setSituationState
	setSource
	setSourceId
	setType
	sigActionFilter
	sigActionToolFilter
	simpleLookup
	situationDelta
	skip
	staticLookup
	stripFQDN
	upperCase
	willCreateNewAlert
	willDeduplicateAlert

	Troubleshoot the Workflow Engine
	Troubleshoot from the UI
	Troubleshoot from the moog_farmd.log
	Example Workflow Engine log

	Workflow Engine Strategies and Tips
	Before you begin
	Creating workflows
	Adding Actions to workflows
	Action types and forwarding behavior

