Cisco SCMS SM MPLS/VPN BGP LEG Reference Guide

Release 3.1.5
November 2007

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-8233-07
CONTENTS

Preface i
Document Revision History i
Organization iii
Related Publications iii
Conventions iv
Obtaining Documentation and Submitting a Service Request v

CHAPTER 1
About the MPLS/VPN BGP LEG 1-1
MPLS/VPN Overview 1-1
MPLS/VPN BGP LEG Overview 1-2
VPN Entity 1-3
VPN Identifier (RD or RT) 1-4
BGP LEG Scenario 1-4
CE as Subscriber 1-5
Terms and Concepts 1-5
BGP (Border Gateway Protocol) 1-6
CE (Customer Edge) 1-6
LEG (Login Event Generator) 1-6
MPLS (Multi Protocol Label Switching) 1-6
PE (Provider Edge) 1-6
RD (Route Distinguisher) 1-6
RR (Route Reflector) 1-6
RT (Route Target) 1-7
Subscriber Domain 1-7
Subscriber ID 1-7
VPN ID 1-7
Subscriber Mappings 1-7
VPN (Virtual Private Networking) 1-7
VRF (Virtual Routing and Forwarding) 1-7

CHAPTER 2
Installing the MPLS/VPN BGP LEG 2-1
Package Contents 2-1
Installing the MPLS/VPN BGP LEG Software 2-2
Adding a VCS Resource to the BGP LEG 2-2
Removing a VCS Resource from the BGP LEG 2-3

CHAPTER 3 Configuring the MPLS/VPN BGP LEG 3-1
 Configuring the MPLS/VPN BGP LEG Settings 3-1
 Configuration File Example 3-2
 Configuring the SM for the MPLS/VPN BGP LEG 3-2

CHAPTER 4 Using the MPLS/VPN BGP LEG CLU 4-1
 Information About the MPLS/VPN BGP LEG CLU 4-1
 BGP LEG Status 4-2
 BGP LEG Detailed Status 4-2
Preface

This guide describes the concept of a Multi Protocol Label Switching/Virtual Private Network (MPLS/VPN) architecture using the Login Event Generator (LEG) based on the Border Gateway Protocol (BGP), and explains how to install and configure it on the SCMS Subscriber Manager (SM) platform.

Note

This guide assumes a basic familiarity with telecommunications equipment and installation procedures, Cisco SCMS subscriber management, subscriber integration concepts, and the MPLS/VPN architecture.

For complete information regarding Cisco's subscriber integration concept, see the Cisco Service Control Management Suite Subscriber Manager (SCMS SM) User Guide.

This document is intended for system administrators and system integrators who are familiar with the MPLS/VPN BGP LEG concepts and with Cisco Service Control Subscriber Management and Subscriber Integration concepts.

Document Revision History

<table>
<thead>
<tr>
<th>Cisco Service Control Release</th>
<th>Part Number</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.1.5</td>
<td>OL-8233-07</td>
<td>November, 2007</td>
</tr>
</tbody>
</table>

Description of Changes

- Updated for release 3.1.5.

<table>
<thead>
<tr>
<th>Cisco Service Control Release</th>
<th>Part Number</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.1.5 LA</td>
<td>OL-8233-06</td>
<td>July, 2007</td>
</tr>
</tbody>
</table>

Description of Changes

- Removed section covering management of MPLS/VPN subscribers.
- Added VPN entity that replaces the concept of 'VPN subscriber'. See VPN Entity, page 3.
- Added section describing using a Customer Edge router as a Subscriber. See CE as Subscriber, page 5.
Description of Changes

- Updated for release 3.1.0.

Description of Changes

- Updated for release 3.0.5.

Description of Changes

- MPLS/VPN BGP LEG can be installed only on Red Hat Linux platforms.

Description of Changes

- Added new section describing managing MPLS/VPN subscribers.
- Added new section describing the VPN identifier. See **VPN Identifier (RD or RT)**, page 4.

Description of Changes

- This is the first version of this document.
Organization

The major sections of this guide are as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>About the MPLS/VPN BGP LEG, page 1</td>
<td>Describes the MPLS/VPN BGP LEG software module, and terms and concepts</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Installing the MPLS/VPN BGP LEG, page 1</td>
<td>Describes the installation process for installing the SM MPLS/VPN BGP LEG</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Configuring the MPLS/VPN BGP LEG, page 1</td>
<td>Provides the configuration instructions to configure the MPLS/VPN BGP LEG</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Using the MPLS/VPN BGP LEG CLU, page 1</td>
<td>Describes the Command-Line Utility to control the operation of the MPLS/VPN BGP LEG and to retrieve information and statistics about the LEG</td>
</tr>
</tbody>
</table>

Related Publications

Use this *Cisco SCMS SM MPLS/VPN BGP LEG Reference Guide* in conjunction with the following Cisco documentation:

- *Cisco SCMS Subscriber Manager User Guide*
- *Cisco Service Control Application for Broadband User Guide*
Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Documentation Conventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convention</td>
<td>Description</td>
</tr>
<tr>
<td>boldface font</td>
<td>Commands and keywords are in boldface.</td>
</tr>
<tr>
<td>italic font</td>
<td>Arguments for which you supply values are in italics.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string, or the string will include the quotation marks.</td>
</tr>
<tr>
<td>screen font</td>
<td>Terminal sessions and information that the system displays are in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td><></td>
<td>Nonprinting characters, such as passwords, are in angle brackets.</td>
</tr>
<tr>
<td>[]</td>
<td>Default responses to system prompts are in square brackets.</td>
</tr>
<tr>
<td>!, #</td>
<td>An exclamation point (!) or a pound sign(#) at the beginning of a line of code indicates a comment line.</td>
</tr>
</tbody>
</table>

Note

Means *reader take note*. Notes contain helpful suggestions or references to materials not covered in this manual.

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.

Means *reader be warned*. In this situation, you might do something that could result in bodily injury.
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.
About the MPLS/VPN BGP LEG

This module describes the MPLS/VPN BGP LEG software module, and terms and concepts.
The SCMS SM MPLS/VPN BGP LEG is a software module that dynamically provides the MPLS label for each VPN using the BGP protocol. It listens to the BGP traffic to determine the correct MPLS label.

- MPLS/VPN Overview, page 1-1
- MPLS/VPN BGP LEG Overview, page 1-2
- Terms and Concepts, page 1-5

MPLS/VPN Overview

Internet service providers that have a common network of multiple server sites with IP interconnectivity deployed on a shared infrastructure can be securely connected using a Virtual Private Network (VPN). A VPN can secure a shared network connection by employing technologies such as authentication, encryption, and tunneling. The VPN traffic is encapsulated and transparently sent from one site to another enabling the traffic to be secured by encryption.

Customers that connect to the ISP using the VPN topology experience direct communication to the VPN sites as though they have their own private network even though their traffic is traversing a public network infrastructure and sharing the same infrastructure with other businesses.

Multiprotocol Label Switching (MPLS) is an emerging industry standard for implementing tag switching technology on high-speed routers in large IP networks. MPLS is designed to carry information of different protocols over a network and brings some of the advantages of circuit-switched networks to switched IP networks.

Connecting the MPLS protocol with VPN, the MPLS/VPN topology consists of a set of sites that are interconnected by means of an MPLS provider core network. At each site within the MPLS edge, one or more Customer Edge (CE) routers are attached to one or more Provider Edge (PE) routers. The Provider (P) router within the core routes packets to the PE routers. PE routers use the Border Gateway Protocol (BGP) to communicate dynamically with each other.

Figure 1-1 illustrates the MPLS/VPN topology:
Some of the benefits of MPLS-based VPNs are seamless integration with customer intranets and increased scalability with numerous sites for each VPN and many VPNs for each service provider.

MPLS/VPN BGP LEG Overview

The MPLS/VPN BGP LEG solution consists of two components:

- **BGP LEG**—A UNIX daemon process that runs the BGP protocol to determine the BGP routes. This process runs under the root privileges.
- **Subscriber Manager (SM)**—The Subscriber Manager server stores subscriber and VPN information and updates the Service Control Engines (SCEs). The BGP adapter, an SM component, receives the routes from the BGP LEG and handles the adjustments to the regular VPN login/logout operations.

The SM and the BGP LEG are different processes that run on the same machine. The connection between the components is based on the PRPC protocol.

Figure 1-2 illustrates the MPLS/VPN BGP LEG solution:
The BGP LEG also supports receiving BGP updates from a Route Reflector (RR), instead of from each PE router separately. The BGP LEG can receive updates from a Route Reflector and from PEs that are not covered by the Route Reflector at the same time.

VPN Entity

A VPN entity is a group of VPN sites. The following parameters define a VPN site:

- The Provider Edge (PE) router that is connected to the VPN site. The IP address of the loopback interface identifies the router.
- An identifier for the VPN Virtual Routing and Forwarding (VRF) table. Either the Route Distinguisher (RD) of the VRF or the Route Target (RT) that is used for exporting or importing routes.

The PE router assigns MPLS labels for each VPN site. The BGP protocol uses the MPLS labels to publish the VPN routes to the other PE routers. The BGP LEG listens to the BGP traffic, extracts the MPLS label, and adds the label to the VPN data in the SM database.
VPN Identifier (RD or RT)

The VPN can be identified using either the Route Distinguisher (RD) attribute or the Route Target (RT) attribute. It is necessary to decide which attribute best reflects the VPN partitioning, and then configure the SM accordingly. Note that the configuration is global for all the VPNs, i.e. all VPNs must be identified by the same attribute.

The Route Distinguisher (RD) is most commonly used to identify the distinct VPN routes of separate customers who connect to the provider. Therefore, in most cases the RD is a good partition for the VPNs in the network. Since the RD is an identifier of the local VRF, and not the target VRF, it can be used to distinguish between VPN sites that transfer information to a common central entity (e.g. a central bank, IRS, Port Authority, etc.).

The Route Target (RT) is used to define the destination VPN site. Though it is not intuitive to define the VPN based on its destination routes, it might be easier in some cases. For example, if all the VPN sites that communicate to a central bank should be treated as a single VPN, it is worthwhile to use the RT as the VPN identifier.

It is important to note that the configuration is global. Thus, if at some point in time, a certain VPN needs to be defined by RD, then all the VPN must be defined by RD as well. This is a point to consider when designing the initial deployment.

BGP LEG Scenario

The following scenario depicts the operation of the MPLS/VPN mode:

1. The Subscriber Manager starts up.
2. The BGP LEG establishes a PRPC connection to the Subscriber Manager.
3. The administrator imports the VPNs to the Subscriber Manager using a CSV file. The administrator specifies the following properties for each VPN:
 - VPN name
 - A list of VPN sites. Each VPN site is defined by:
 - VPN ID—The RD or RT that identifies the VPN's VRF
 - The IP address of the loopback interface of the PE router
 - SM domain
4. The administrator imports the VPN-based subscribers to the Subscriber Manager using another CSV file. The administrator specifies the following properties for each subscriber:
 - Subscriber name
 - A list of private IPs within the VPN using the syntax 'IP@VPN' (or a list of communities within a VPN as described in CE as Subscriber, page 1-5).
 - SM domain
 - A list of application properties. For example, the Service Control Application for Broadband (SCA BB) package ID, as described in the Cisco Service Control Application for Broadband (SCA BB) User Guide.
5. The administrator configures the BGP LEG by specifying the PE routers that should be connected to it.
6. PE routers distribute routing information to the BGP LEG.
Chapter 1 About the MPLS/VPN BGP LEG

7. The BGP LEG analyzes BGP sessions and extracts the relevant data, such as RD/RT, MPLS label, and the loopback IP of the PE router.
8. The BGP LEG updates the VPN in the SM with the added or removed MPLS label.
9. The Subscriber Manager updates its database with the new VPN information and updates all of the SCE devices in the domain.

CE as Subscriber

An MPLS-VPN based subscriber can be defined to handle the traffic of a specific Customer Edge (CE) router. The BGP community field is used to correlate the private IP routes with the CE router. The subscriber is configured with a list of communities within the VPN using the syntax ‘community@VPN’.

When the BGP LEG analyzes the BGP session, it also extracts the community field, and adds all the IP routes in the BGP message to the subscriber that contains the same community field. This functionality takes place in addition to adding the VPN information to the SM as described in BGP LEG Scenario, page 1-4.

Terms and Concepts

The following list of terms and concepts are necessary to understand the MPLS/VPN BGP LEG, configuration, and operation. Additional information regarding other issues can be found in the Cisco Service Control Management Suite Subscriber Manager User Guide.

- BGP (Border Gateway Protocol), page 1-6
- CE (Customer Edge), page 1-6
- LEG (Login Event Generator), page 1-6
- MPLS (Multi Protocol Label Switching), page 1-6
- PE (Provider Edge), page 1-6
- RD (Route Distinguisher), page 1-6
- RR (Route Reflector), page 1-6
- RT (Route Target), page 1-7
- Subscriber Domain, page 1-7
- Subscriber ID, page 1-7
- VPN ID, page 1-7
- Subscriber Mappings, page 1-7
- VPN (Virtual Private Networking), page 1-7
- VRF (Virtual Routing and Forwarding), page 1-7
Chapter 1 About the MPLS/VPN BGP LEG

Terms and Concepts

BGP (Border Gateway Protocol)

An exterior gateway protocol used on the Internet to provide loop-free routing between different autonomous systems.

In the context of MPLS/VPN, the BGP protocol is used to distribute the MPLS/VPN routes of a PE router to its neighboring PE routers.

CE (Customer Edge)

A router on the service provider site that connects to the PE (Provider Edge), page 1-6 router in the MPLS core. The CE router only passes the message packet with the IP address and is not concerned with the MPLS/VPN label.

LEG (Login Event Generator)

A software component that performs subscriber login and logout operations on the SM, which is used to handle dynamic subscriber or VPN integration.

MPLS (Multi Protocol Label Switching)

A switching method that forwards IP traffic using a label. This label instructs the routers and the switches in the network where to forward the packets based on pre-established IP routing information.

PE (Provider Edge)

A router in the service provider MPLS core that provides routing information between the customer router and the MPLS/VPN network. The PE router maintains a VRF (Virtual Routing and Forwarding), page 1-7 table for each customer site to determine how to route the packet.

RD (Route Distinguisher)

An 8-byte value that is concatenated with an IPv4 prefix to create a unique VPN IPv4 prefix.

The RD uniquely identifies the VPN VRF within a PE router.

RR (Route Reflector)

A network element in the service provider network that is used to distribute BGP routes to the service provider BGP-enabled routers. Route Reflectors provide a mechanism for both minimizing the number of update messages transmitted within the autonomous system and reducing the amount of data that is propagated in each message.
Chapter 1 About the MPLS/VPN BGP LEG

Terms and Concepts

RT (Route Target)

Used by the routing protocols to control import and export policies and to build arbitrary VPN topologies for customers.

Subscriber Domain

The SM provides the option of partitioning SCE platforms and subscribers/VPNs into subscriber domains. A subscriber domain is a group of SCE platforms that share a group of subscribers/VPNs. Subscriber domains can be configured using the SM configuration file and can be viewed using the SM Command-Line Utility (CLU).

For additional information about domains and domain aliases, see the Cisco SCMS Subscriber Manager User Guide.

Subscriber ID

The Service Control solution requires a unique identifier for each subscriber. A subscriber ID represents a logical subscriber entity from the service provider perspective.

VPN ID

The Service Control solution requires a unique identifier for each VPN. A VPN ID represents a logical VPN entity from the service provider perspective.

Subscriber Mappings

The SCE platform requires mappings between the network IDs (IP addresses) of the flows it encounters and the subscriber IDs. The SM database contains the network IDs that map to the subscriber IDs. The SCE network-ID-to-subscriber mappings are constantly updated from the SM database.

VPN (Virtual Private Networking)

A technology for securely connecting a computer or network to a remote network over an intermediate network such as the Internet.

VPNs can use an insecure public network such as the Internet to connect two networks. They can also use an insecure public network to connect a network and a remote computer, or employ technologies such as tunneling, encryption, and authentication to secure the connection.

VRF (Virtual Routing and Forwarding)

In general, a VRF includes the routing information that defines the VPN site that is attached to a PE router. A VRF consists of an IP routing table, a forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table.
This module describes the installation process for installing and uninstalling the SM MPLS/VPN BGP LEG.

The SM MPLS/VPN BGP LEG is an external component that should be installed on the SM. The SM MPLS/VPN BGP LEG distribution is part of the SM LEG distribution.

The SM MPLS/VPN BGP LEG installation package includes a set of configuration files and the Command-Line Utility (CLU).

The SM MPLS/VPN BGP LEG can be installed only on Red Hat Linux platforms.

- Package Contents, page 2-1
- Installing the MPLS/VPN BGP LEG Software, page 2-2
- Adding a VCS Resource to the BGP LEG, page 2-2
- Removing a VCS Resource from the BGP LEG, page 2-3

Package Contents

The following tables describe the contents of the SM MPLS/VPN BGP LEG distribution package supplied by Cisco:

<table>
<thead>
<tr>
<th>Path</th>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIST_ROOT/bgp_leg</td>
<td>bgp_leg.tar.gz</td>
<td>SM MPLS/VPN BGP LEG files</td>
</tr>
<tr>
<td></td>
<td>install-bgp-leg.sh</td>
<td>SM MPLS/VPN BGP LEG installation script</td>
</tr>
<tr>
<td></td>
<td>linux-def.sh</td>
<td>Linux specific definitions script</td>
</tr>
<tr>
<td></td>
<td>sm-common.sh</td>
<td>General installation script</td>
</tr>
</tbody>
</table>
Installing the MPLS/VPN BGP LEG Software

Step 1 Copy the SM LEG distribution file to the SM machine and extract it with the `gunzip` command.

```bash
>gunzip SM_LEG_3.1.5_Bbbb.tar.gz
>tar -xvf SM_LEG_3.1.5_Bbbb.tar.gz
>cd bgp_leg
```

Step 2 Run the BGP LEG installation script.

```bash
#/install-bgp-leg.sh
```

The installation script automatically installs the SM MPLS/VPN BGP LEG on the SM and runs the OS specific definitions scripts according to your installation’s operating system.

Note The installation script must run under root privileges.

Step 3 Add a VCS resource for the BGP LEG

Adding a VCS Resource to the BGP LEG

In a Subscriber Manager cluster topology, the Veritas Cluster Server (VCS) should monitor the BGP LEG process to verify that the process is running. To do so, you must configure the VCS with a resource that monitors and controls the LEG.

Step 1 Import the OnOnlyProcess agent’s type from file:

```
/opt/VRTSvcs/bin/OnOnlyProcess/OnOnlyProcess.cf
```

Step 2 Add an OnOnlyProcess resource called “BGP_LEG” to the service group.

Step 3 Run the ```ps -ea -o pid,s,args``` command via telnet on each one of the servers.

Step 4 Look for the line containing “bgpleg” in the text.

This line contains the path and arguments of the BGP LEG to be used in the next step.

Step 5 Define the `OnlineCmd`, `PathName`, and `Arguments` parameters:

- **OnlineCmd**—Type the BGP LEG `start` command, for example:
  ```
  /opt/pcube/sm/server/bin/p3bgp --start
  ```

- **PathName**—Type the BGP LEG process path (from the previous step), for example:
  ```
  /opt/pcube/sm/server/addons/bgpleg/bgpleg
  ```

- **Arguments**—Type the BGP LEG process arguments (from the previous step), for example:
  ```
  -launch /opt/pcube/sm/server/root/config/p3bgpleg.cfg
  ```

Step 6 Click **OK**.

The following figure shows the Add Resource window:
Note
The arguments line might seem shorter than the actual full argument value, which is perfectly acceptable.

Removing a VCS Resource from the BGP LEG

Step 1 Right-click the BGP LEG resource icon you want to remove.

Step 2 From the drop-down list, choose Delete.
Removing a VCS Resource from the BGP LEG

Note

The BGP LEG will be inactivated if there are no VCS resources. To activate the BGP LEG, there must be at least one resource.
CHAPTER 3

Configuring the MPLS/VPN BGP LEG

This module provides the configuration instructions to configure the MPLS/VPN BGP LEG.

The SM MPLS/VPN BGP LEG is configured using the configuration file `p3bgpleg.cfg` file, which resides in the `sm-inst-dir/sm/server/root/config` directory (`sm-inst-dir` refers to the SM installation directory). The configuration file is loaded only upon the SM MPLS/VPN BGP LEG startup.

The configuration file holds the IP addresses of the PEs from which the routing information is gathered. When you reload the configuration file, all the BGP connections terminate and the BGP LEG waits for connections to be re-established from the IP addresses configured in the configuration file.

The configuration file consists of sections headed by a bracketed section title such as `[General]` for the general configuration section. Each section consists of one or more parameters having the format `parameter=value`. The number sign ("#") at the beginning of a line signifies that it is a comment.

- Configuring the MPLS/VPN BGP LEG Settings, page 3-1
- Configuration File Example, page 3-2
- Configuring the SM for the MPLS/VPN BGP LEG, page 3-2

Configuring the MPLS/VPN BGP LEG Settings

This section describes the configuration file settings for each section.

The `[General]` section contains the following parameters:

- **as-num**

 Defines the autonomous system number of the BGP LEG. This parameter is mandatory and has no default value.

 Possible values are 1 to 65535.

- **max-route-burst**

 Defines an estimation of the expected burst of routes upon PE connection/refresh-all.

 This parameter sets the PRPC buffer size between the BGP LEG and the SM.

 The parameter is mandatory and has a default value of 100,000 routes in the `p3bgpcfg` configuration file.
The [PE.xxxxxxx] section holds the PE or Route Reflector information. Each PE section must include a unique PE/Route Reflector name. The section contains the following parameters:

- access
 Defines the IP address or addresses that the PE/Route Reflector accesses (in dotted notation). It is mandatory to configure at least one access IP address. Additional IP addresses, if needed, should be on the same line, separated by comma. The same IP address cannot appear in two PE sections.

- as-num
 Defines the autonomous system number connected to the PE/Route Reflector. This parameter is not required. If not specified, the as-num defined in the [General] section is used.

Configuration File Example

The following example illustrates the MPLS/VPN BGP LEG configuration file:

```
[General]
as-num=255
max-route-burst=100000
[PE.site104]
access=10.56.211.80, 10.0.1.2, 10.55.123.56
[PE.site110]
access=10.28.233.129
as-num=110
[PE.10.56.211.81]
access=10.56.211.81
```

Configuring the SM for the MPLS/VPN BGP LEG

You must configure the Subscriber Manager to support the SM MPLS/VPN BGP LEG. The SM configuration file, p3sm.cfg contains a configuration section for MPLS/VPN called [MPLS/VPN]. The section contains the following parameters:

- vpn_id
 Defines the BGP attribute that is used to identify the VPNs.
 Possible values for this parameter are RD and RT.
 The default value is RT.

- log_all
 Defines the logging level of the BGP LEG.
 Possible values for this parameter are true or false.
 The default value is false.

 If this parameter is set to true, the SM logs all received BGP packets. Set this parameter to true during the integration/testing phase.

For further information on configuring the SM, see the Cisco SCMS Subscriber Manager User Guide.
CHAPTER 4

Using the MPLS/VPN BGP LEG CLU

This module describes the MPLS/VPN BGP LEG CLU.

Information About the MPLS/VPN BGP LEG CLU

The p3bgp utility controls the operation of the BGP LEG and displays its status. The command format is p3bgp <operation>[parameter]

The following table lists the p3bgp operations:

Table 4-1 p3bgp Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>--start</td>
<td>Starts the BGP LEG</td>
</tr>
<tr>
<td>--stop</td>
<td>Stops the BGP LEG</td>
</tr>
<tr>
<td>--restart</td>
<td>Restarts the BGP LEG</td>
</tr>
<tr>
<td>--status</td>
<td>Displays a short status line for each PE/RR</td>
</tr>
<tr>
<td>--show</td>
<td>Displays a detailed status for a specific PE/RR</td>
</tr>
<tr>
<td>--show-all</td>
<td>Displays a detailed status for each PE/RR</td>
</tr>
<tr>
<td>--refresh</td>
<td>Sends a refresh request to specific PE/RR to receive updated information on all routes</td>
</tr>
<tr>
<td>--refresh-all</td>
<td>Sends a refresh request to all PE/RR to receive updated information on all routes. Use this operation when the PE/RR is disconnected from the LEG and you want to make sure that all the BGP information is propagated to the SCE boxes. The refresh is for new information only; obsolete labels are not checked for validity.</td>
</tr>
<tr>
<td>--force-sync</td>
<td>Used together with --refresh-all. Sends a refresh request to all PE/RR to receive updated information on all routes, and then synchronizes this information with all SCE boxes. After this operation is completed, the SCE boxes are updated with the BGP information. Use this operation when the PE/RR is disconnected from the LEG and you want to make sure that all the BGP information is propagated to the SCE boxes. This operation also makes sure that obsolete labels are removed from the SCE boxes.</td>
</tr>
<tr>
<td>--load-config</td>
<td>Loads the configuration file to the BGP LEG. This operation also restarts the BGP LEG.</td>
</tr>
<tr>
<td>--help</td>
<td>Displays the available p3bgp commands</td>
</tr>
</tbody>
</table>
BGP LEG Status

The following is an example of the **p3bgp** command-line utility using the status operation:

Table 4-2 BGP LEG Status

<table>
<thead>
<tr>
<th>ID</th>
<th>Peer IP</th>
<th>PE Name</th>
<th>Updates Recv</th>
<th>Notify Recv</th>
<th>K.Alive Sent</th>
<th>K.AliveRecv</th>
<th>Hold Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2.3.4</td>
<td>PE101</td>
<td>150</td>
<td>0</td>
<td>58</td>
<td>57</td>
<td>157</td>
</tr>
<tr>
<td>2</td>
<td>1.2.3.5</td>
<td>PE102</td>
<td>183</td>
<td>0</td>
<td>34</td>
<td>33</td>
<td>77</td>
</tr>
</tbody>
</table>

The following list is a description of the status operation output:

- Peer IP—The IP of the PE/RR that is connected to the LEG
- PE name—The name of the PE/RR as configured in the configuration file
- Updates recv—A counter for all the BGP updates received from this PE/RR
- Notify recv—A counter for all the BGP notifications received from this PE/RR
- K.Alive sent—A counter for all the BGP keep alives sent to this PE/RR
- K.Alive recv—A counter for all the BGP keep alives received from this PE/RR
- Hold Time—The remaining time-out for the next keep alive

BGP LEG Detailed Status

The following is an example of the **p3bgp** command line utility using the **show** operation on a specific PE router named PE101:

```
1 : PE101
connects : 1
recv UPDATE : 150
recv KEEPALIVE : 57
sent KEEPALIVE : 58
recv NOTIFY : 0
current holdtime : 157
TCP sndwnd : 16384
TCP rcvwnd : 87380
Connection up time : 0 Days, 1 Hrs, 7 Min, 59 Sec
refresh requests : 2
recv PE AddRoute messages : 2
send SM AddRoute messages : 10
send SM not connected : 0
BGP state : Established
```
The following list is a description of the show operation output:

- **connects**—The number of successful connections established with this PE/RR since the LEG is up.
- **recv UPDATE**—A counter for all the BGP updates received from this PE/RR
- **recv KEEPALIVE**—A counter for all the BGP keep alives received from this PE/RR
- **sent KEEPALIVE**—A counter for all the BGP keep alives sent to this PE/RR
- **recv NOTIFY**—A counter for all the BGP notifications received from this PE/RR
- **current holdtime**—The remaining time-out for the next keep alive
- **TCP sndwnd**—The TCP send window buffer size
- **TCP rcvwnd**—The TCP receive window size
- **Connection up time**—The time since the connection to this PE/RR was established
- **refresh requests**—A counter for the number of refresh requests requested for this PE/RR
- **recv PE AddRoute messages**—A counter for BGP add-route messages received from the PE/RR
- **send SM AddRoute message**—A counter for successful add routes invocations performed on the SM for this PE/RR
- **send SM not connected**—A counter for SM invocations that were kept in an internal buffer due to disconnected SM
- **BGP state**—The state of the BGP connection to this PE/RR