This chapter describes the components of the Cisco DOCSIS 3.0 Downstream Solution and contains the following topics:

- Base CMTS Components, page 4-1
- Wideband CMTS Components, page 4-9
- Wideband Cable Modems, page 4-15
- Wideband CMTS Redundancy and Resiliency, page 4-17
- Where to Find Information on Solution Hardware Components, page 4-22

The Cisco uBR10012 router can be used as a DOCSIS 1.X or DOCSIS 2.0 CMTS. In this mode the Cisco uBR10012 router does not need any wideband components. Wideband cable components can be added to the Cisco uBR10012 base system so that it can be used as a wideband CMTS. As demand for wideband cable grows, this ability to increase capacity by adding wideband components to an existing Cisco uBR10012 base system is less expensive than adding an additional chassis. This add-on strategy of the Cisco DOCSIS 3.0 Downstream Solution reduces both capital expenditure and operational expenses.

Base CMTS Components

For the Cisco DOCSIS 3.0 Downstream Solution, the Cisco uBR10012 router (Figure 4-1, Figure 4-2 and Figure 4-3) is the wideband cable modem termination system (WCMTS). The CMTS may be located at the cable headend or at a distribution hub. The Cisco DOCSIS 3.0 Downstream Solution uses the modular CMTS (M-CMTS) architecture or integrated CMTS (I-CMTS), with an external DTI server and one or more external EQAM devices.
Figure 4-1 Wideband CMTS: Cisco uBR10012 Router—Front View without Front Cover

1 Fan assembly module
2 LCD module
3 Two route processor (PRE) modules
4 Two DC Power entry modules (DC PEMs)
Figure 4-2 Wideband CMTS: Cisco uBR10012 Router With Cisco uBR-MC5X20 card—Rear View

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Two DOCSIS Timing and Control Cards (DTCC)</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>One Wideband SIP with two Wideband SPAs</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure 4-2 and Figure 4-3 shows a fully loaded Cisco uBR10012 chassis. The minimum number of components needed for base CMTS or wideband CMTS operation requires fewer cards than shown in Figure 4-2 and Figure 4-3. For information on minimum and recommended hardware requirements, see the “Base CMTS Component Requirements” section on page 4-4 and the “Wideband CMTS Components” section on page 4-9.

Base CMTS Component Requirements

For the Cisco uBR10012 base system, Table 4-1 lists the minimum and recommended hardware configurations for major components using Cisco uBR-MC3GX60V cable interface line card. The base system can be used as a DOCSIS 1.x or DOCSIS 2.0 CMTS and can be upgraded to a wideband CMTS. In the Recommended column, the number of components ensures that the Cisco uBR10012 router has component redundancy where it is available.

Cisco IOS Release 12.3(21)BC or a later release is required for supporting wideband cable functionality.
For the Cisco uBR10012 base system, Table 4-2 lists the minimum and recommended hardware configurations for major components using Cisco UBR-MC20X20V cable interface line card for I-CMTS.

Table 4-2 Cisco uBR10012 Base System: Minimum and Recommended Hardware Using Cisco UBR-MC20X20V Cable Interface Line Card

<table>
<thead>
<tr>
<th>Component</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Routing Engine 2 (PRE2), PRE4, or PRE5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DOCIS Timing and Control Card (DTCC)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>DC power entry modules (DC PEMs) or AC power entry modules (AC PEMs)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fan assembly module</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LCD module</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cable Interface Line Cards and Network Uplink Line Cards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisco UBR10-MC20X20V cable interface line card</td>
<td>1</td>
<td>At least 2</td>
</tr>
</tbody>
</table>
Chapter 4 Cisco DOCSIS 3.0 Downstream Solution Components

Table 4-2 Cisco uBR10012 Base System: Minimum and Recommended Hardware Using Cisco UBR-MC20X20V Cable Interface Line Card (continued)

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Cisco SIP-600 and Cisco 5x1 Gigabit SPA or 10 Gigabit SPA or Half-Height Gigabit Ethernet (HHGE) network uplink card.</td>
</tr>
<tr>
<td>Slot splitter card (One is required for each two HHGE line cards.)</td>
</tr>
</tbody>
</table>

1. The number of line cards and slot splitter cards required will vary depending on the set of services and number of subscribers being supported.

For the Cisco uBR10012 base system, Table 4-3 lists the minimum and recommended hardware configurations for major components using the combination of a Cisco uBR-MC5X20 line card and M-CMTS SPAs.

Table 4-3 Cisco uBR10012 Base System: Minimum and Recommended Hardware Using Cisco uBR-MC5X20 Cable Interface Line Card

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Performance Routing Engine 2 (PRE2) or PRE4</td>
</tr>
<tr>
<td>DOCSIS Timing and Control Card (DTCC)</td>
</tr>
<tr>
<td>DC power entry modules (DC PEMs) or AC power entry modules (AC PEMs)</td>
</tr>
<tr>
<td>Fan assembly module</td>
</tr>
<tr>
<td>LCD module</td>
</tr>
</tbody>
</table>

Table 4-3 (continued) Cisco uBR10012 Base System: Minimum and Recommended Hardware Using Cisco uBR-MC5X20 Cable Interface Line Card

<table>
<thead>
<tr>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
</tr>
<tr>
<td>Cisco uBR10-MC5X20 cable interface line card</td>
</tr>
<tr>
<td>Cisco SIP-600 and Cisco 5x1 Gigabit SPA or 10 Gigabit SPA or Half-Height Gigabit Ethernet (HHGE) network uplink line card.</td>
</tr>
<tr>
<td>Slot splitter card (One is required for each two HHGE line cards.)</td>
</tr>
</tbody>
</table>

1. The number of line cards and slot splitter cards required will vary depending on the set of services and number of subscribers being supported.

The Cisco uBR10012 chassis supports four Half-Height Gigabit Ethernet (HHGE) line cards in slots 3/0 and slot 4/0.
Cable Interface Line Cards and Network Uplink Line Cards

The cable interface line cards and network uplink line cards used on the Cisco uBR10012 base system are described in the following sections:

- Cisco uBR-MC3GX60V Cable Interface Line Card, page 4-7
- Cisco uBR-MC5X20S/U/H and Cisco uBR10-MC5X20U-D Cable Interface Line Cards, page 4-7
- Cisco Half-Height Gigabit Ethernet Line Card, page 4-8
- Cisco Half-Height Gigabit Ethernet Line Card, page 4-8
- Cisco Gigabit Ethernet SPAs, page 4-9

Cisco uBR-MC3GX60V Cable Interface Line Card

The Cisco uBR-MC3GX60V cable interface line card is an M-CMTS DOCSIS 3.0-compliant cable line card designed for the Cisco uBR10012 universal broadband chassis. It incorporates 60 upstream channels and 72 downstream channels over 3 separate Gigabit Ethernet ports. This cable line card offers significant cost-per-port reduction while providing lower operating expenditure and easier network operations and maintenance.

For more information on how to configure and implement the M-CMTS solution using Cisco uBR-MC3GX60V line card, see Configuring the Cisco uBR-MC3GX60V Cable Interface Line Card at the following URL:
http://www.cisco.com/en/US/docs/interfaces_modu les/cable/broadband_processing_engines/ubr_mc3g x60v/configuration/guide/mc3g60_cfg.html

Cisco uBR-MC5X20S/U/H and Cisco uBR10-MC5X20U-D Cable Interface Line Cards

The Cisco uBR10-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards transmit and receive RF signals between the subscriber and the headend over a hybrid fiber-coaxial (HFC) network.

The Cisco uBR-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards can be used for a standard DOCSIS 1.x and DOCSIS 2.0, or for a Cisco DOCSIS 3.0 Downstream Solution or for a combination of the two. These cable interface line cards support upstream and downstream traffic over DOCSIS-based cable modem networks.

For a DOCSIS 1.x, DOCSIS 2.0 or for the Cisco DOCSIS 3.0 Downstream Solution, upstream data from the subscriber comes through the upstream ports (US0/US19) on the line cards. The line card processes and configures the data and sends it across the backplane to the WAN or backhaul card and out to the Internet.

For a DOCSIS 1.x, DOCSIS 2.0 or DOCSIS 3.0 Downstream Solution, downstream data to the subscriber comes from the Internet through the WAN or backhaul card, and across the backplane to the cable interface line card. The cable interface line card processes and configures the data and sends it out through the appropriate downstream port (DS0/DS4) to be combined with the rest of the downstream signals in the headend.

The downstream data traffic of the wideband channel uses the Cisco Wideband SPA and an external edge QAM device. For more information on the Cisco Cable Wideband systems, see Chapter 5, “Cisco DOCSIS 3.0 Downstream Solution Architecture”.

For more information about the Cisco uBR10-MC5X20 cable interface line card, see the Cisco uBR10-MC5X20S/U/H Cable Interface Line Card Hardware Installation Guide at the following URL:
Cisco uBR10-MC5X20S

The Cisco uBR10-MC5X20S cable interface line card supports downstream and upstream traffic over DOCSIS-based cable modem networks. The line card supports downstream channels in the 70 MHz to 860 MHz range, and upstream channels in the 5 MHz to 42 MHz range. Each downstream port includes an onboard integrated upconverter. The Cisco uBR10-MC5X20S cable interface line card supports Annex B RF data rates, channel widths, and modulation schemes and has DOCSIS MAC management and spectrum management capabilities. DOCSIS 2.0 and Asynchronous Time Division Multiple Access (A-TDMA) rates are also supported.

Cisco uBR10-MC5X20U and H

The Cisco uBR10-MC5X20U/H cable interface line card supports both DOCSIS and EuroDOCSIS cable modem networks. The line card supports downstream channels in the 70 MHz to 860 MHz range, and upstream channels in the 5 MHz to 65 MHz range. Each downstream port includes an onboard integrated upconverter. The Cisco uBR10-MC5X20U/H cable interface line card supports Annex B and Annex A RF data rates, channel widths, and modulation schemes and has DOCSIS MAC management and spectrum management capabilities. DOCSIS 2.0 and A-TDMA rates are also supported.

Compared to the Cisco uBR10-MC5X20U, the Cisco uBR10-MC5X20H increases the line card CPU speed, memory, and flash, allowing support of VoIP at much higher call loads and a higher percentage of modems running advanced DOCSIS features that typically consume line card CPU resources.

Cisco uBR10-MC5X20U-D

The Cisco uBR10-MC5X20U-D cable interface line card supports both DOCSIS and EuroDOCSIS cable modem networks. The Cisco uBR10-MC5X20U-D cable interface line card supports Annex A and Annex B RF data rates, channel widths, and modulation schemes, and has DOCSIS MAC management and spectrum management capabilities.

Cisco Half-Height Gigabit Ethernet Line Card

The Cisco Half-Height Gigabit Ethernet (HHGE) line card is a single-port Gigabit Ethernet (GE) line card that provides a trunk uplink to devices, such as backbone routers, connections to content servers and IP telephony gateways. The HHGE line card provides the Cisco uBR10012 router with an IEEE 802.3z-compliant Ethernet interface that can run up to 1 Gbps in full duplex mode.

The Cisco uBR10012 router supports up to four HHGE line cards to allow connectivity to multiple destinations, and to provide network layer redundancy. The HHGE line card requires a slot splitter card that should be installed in either Slot 3/0 or Slot 4/0 on the Cisco uBR10012 router. Each slot splitter can hold two HHGE line cards. Therefore, the Cisco uBR10012 base system with two slot splitters supports up to four HHGE line cards.

The HHGE line card uses a small form-factor pluggable (SFP) Gigabit Interface Converter (GBIC) module that supports a variety of Gigabit Ethernet interface types (SX, LX, LH, and ZX), which you can change or upgrade at any time.

The following SFP modules are supported by the HHGE line card:

- 1000BASE-SX SFP—The SFP-GE-S operates on ordinary multimode fiber optic link spans of up to 1,805 feet (550 m) in length.
- 1000BASE-LX/LH SFP—The SFP-GE-L operates on ordinary single-mode fiber optic link spans of up to 32,808 feet (10,000 m) in length.
Wideband CMTS Components

A Cisco uBR10012 base system can be upgraded to a wideband CMTS by adding these components:

- Wideband SIP and Wideband SPA, page 4-9
- External Edge QAM Device, page 4-12
- DOCSIS Timing Interface Server, page 4-14

For information about the wideband CMTS functionality, see the “Modular CMTS” section on page 5-41.

Wideband SIP and Wideband SPA

The Wideband SIP and Wideband SPA needed for wideband cable can be added to the base Cisco uBR10012 system when they are required. For the Wideband SIP and Wideband SPA, Table 4-4 lists the minimum and recommended hardware configurations.

<table>
<thead>
<tr>
<th>Component</th>
<th>Minimum</th>
<th>Recommended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wideband SIP (SPA interface processor)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wideband SPA (shared port adapter)</td>
<td>1</td>
<td>Varies1</td>
</tr>
</tbody>
</table>

1. The number of Wideband SPAs required will vary depending on the set of services and number of subscribers being supported.
Wideband CMTS Components

Chapter 4 Cisco DOCSIS 3.0 Downstream Solution Components

Cisco Wideband SIP

A SPA interface processor (SIP) is a carrier card that inserts into a router slot like a line card. The Wideband SIP provides no network connectivity on its own. The Wideband SIP occupies two full-height slots on the Cisco uBR10012 router. Each Wideband SIP supports two Wideband SPAs.

When the Cisco uBR10012 router is used as a wideband CMTS, Slot 1/0 and Slot 2/0 are used for the Wideband SIPS. Slot 3/0 and Slot 4/0 are reserved for HHGE line cards. Online insertion and removal (OIR) is supported for both the Wideband SIP and the individual Wideband SPAs.

For more information on the Wideband SIP, see the Cisco uBR10012 Universal Broadband Router SIP and SPA Hardware Installation Guide and the Cisco uBR10012 Universal Broadband Router SIP and SPA Software Configuration Guide.

Cisco Wideband SPA

The Wideband SPA is a single-wide, half-height SPA that provides DOCSIS 3.0 downstream support for a DOCSIS network formatting to the downstream data packets. The Wideband SPA is used for downstream data traffic only. It has one active and one redundant Gigabit Ethernet port that are used to send traffic to the external edge QAM device.

The Cisco uBR10012 router can support up to two Wideband SPAs. Each Wideband SPA can support up to 32 logical wideband channels (bonding groups). Depending on how it is configured, each Wideband SPA supports up to 24 RF channels. Each logical wideband channel consists of multiple RF channels. The Cisco IOS CLI includes a set of commands to configure the Wideband SPA on the Cisco uBR10012 router.

Note: All the configurations supported on Cisco Wideband SPA are also supported on the Cisco 3 Gbps Wideband Shared Port Adapter and Cisco 6 Gbps Wideband Shared Port Adapter.

Cisco 6 Gbps Wideband Shared Port Adapter

The Cisco 6 Gbps Wideband Shared Port Adapter is a single-wide, half-height SPA that provides DOCSIS network formatting to downstream data packets. It is used for only downstream data traffic. It is a key component for the Cisco IOS features, DOCSIS 3.0 Downstream Channel Bonding and DOCSIS M-CMTS network architecture.

Note: In the Cisco IOS Release 12.2(33)SCI, the Cisco 6 Gbps Wideband Shared Port Adapter uses the same hardware as the Cisco 3 Gbps Wideband Shared Port Adapter with an upgraded field-programmable device (FPD) image.

The base hostboard is the Cisco 10000 Series SPA Interface Processor-600. Each Cisco 10000 Series SPA Interface Processor-600 jacket can host four Cisco 6 Gbps Wideband Shared Port Adapter cards.

Each Cisco 6 Gbps Wideband Shared Port Adapter has three 1 Gigabit Ethernet ports (no redundant port). The first two Gigabit Ethernet ports on the SPA can be used as a 10 Gigabit Ethernet port (one active and one redundant). The Gigabit Ethernet ports are used to send traffic to one or more external edge QAM devices.
Wideband CMTS Components

The Cisco uBR10012 router can support up to two Cisco 10000 Series SPA Interface Processor-600 jackets and eight Cisco 6 Gbps Wideband Shared Port Adapters. In the one 10G mode, each Cisco 6 Gbps Wideband Shared Port Adapter card supports up to 144 RF channels and hence a total of 1152 RF channels are supported with eight Cisco 6 Gbps Wideband Shared Port Adapters.

Cisco 3 Gbps Wideband Shared Port Adapter

The Cisco 3 Gbps Wideband Shared Port Adapter is a single-wide, half-height SPA that provides DOCSIS network formatting to downstream data packets. It is used for only downstream data traffic. The Cisco 3 Gbps Wideband Shared Port Adapter is a key component for the Cisco IOS features, DOCSIS 3.0 Downstream Channel Bonding and DOCSIS M-CMTS network architecture. The base hostboard is the Cisco 10000 Series SPA Interface Processor-600. Each Cisco 10000 Series SPA Interface Processor-600 jacket can host four Cisco 3 Gbps Wideband Shared Port Adapter cards.

Each Cisco 3 Gbps Wideband Shared Port Adapter has three 1 Gigabit Ethernet ports (no redundant port). The first two Gigabit Ethernet ports on the SPA can be used as a 10 Gigabit Ethernet port (one active and one redundant). The Gigabit Ethernet ports are used to send traffic to one or more external edge QAM devices.

The Cisco uBR10012 router can support up to two Cisco 10000 Series SPA Interface Processor-600 jackets and eight Cisco 3 Gbps Wideband Shared Port Adapters. In both the three 1G mode and one 10G mode, each Cisco 3 Gbps Wideband Shared Port Adapter card supports up to 72 RF channels and hence a total of 576 RF channels are supported with eight Cisco 3 Gbps Wideband Shared Port Adapters.

Wideband SPA Redundant Gigabit Ethernet Ports

The Wideband SPA has one active and one redundant Gigabit Ethernet port that is used to send traffic to the external edge QAM device. If the link state of both Gigabit Ethernet ports (Port 0 and Port 1) is up, the port that is discovered first as up becomes the active port (forwarding traffic), and the other port becomes the redundant port. The port status LEDs for Port 0 and Port 1 on the Wideband SPA will be green.

Each Gigabit Ethernet port can discover a link failure between itself and the device to which it is directly connected. If both Gigabit Ethernet links from the Wideband SPA to the edge QAM device are up, automatic failover to a redundant link behaves as follows:

- If both Gigabit Ethernet ports are directly connected to the edge QAM device, automatic failover to the redundant link occurs.
- If both Gigabit Ethernet ports are connected to, for example, a switch between the Wideband SPA and the edge QAM device, automatic failover to the redundant link to the switch occurs.
- In the case where there is a switch between the Wideband SPA and the edge QAM device, the SPA cannot detect a link failure between the switch and the edge QAM device. No automatic failover to a redundant Gigabit Ethernet port and link occurs.

The `show controllers modular-cable` command shows the current state of the Wideband SPA Gigabit Ethernet ports. With the Cisco IOS CLI, the Wideband SPA Gigabit Ethernet ports are not specified on the command line as individual Gigabit Ethernet interfaces because the ports work in tandem as a redundant pair.

The two Gigabit Ethernet ports on the Wideband SPA use SFP modules. An SFP module is an I/O device that plugs into the Gigabit Ethernet SFP ports on the Wideband SPA, linking the port with an edge QAM device through a fiber-optic network.

Table 4-5 lists the SFP modules that the Wideband SPA supports.
Wideband CMTS Components

Chapter 4 Cisco DOCSIS 3.0 Downstream Solution Components

Table 4-5 SFP Modules for the Cisco Wideband SPA

<table>
<thead>
<tr>
<th>SFP Module Product Number</th>
<th>SFP Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFP-GE-T</td>
<td>1000BASE-T-SFP pluggable transceiver</td>
<td>Cisco 1000BASE-T SFP, pluggable transceiver module, 100-m on Category 5 (Cat5), Category 5e (Cat 5e), and Category 6 (Cat 6) cable.</td>
</tr>
<tr>
<td>GLC-SX-MM</td>
<td>Short wavelength (1000BASE-SX)</td>
<td>Cisco 1000BASE-SX SFP transceiver module for multimode fiber (MMF), 850-nm wavelength</td>
</tr>
<tr>
<td>GLC-LH-SM</td>
<td>Long wavelength/long haul (1000BASE-LX/LH)</td>
<td>Cisco 1000BASE-LX/LH SFP transceiver module for single-mode fiber (SMF), 1300-nm wavelength</td>
</tr>
<tr>
<td>GLC-ZX-SM</td>
<td>Extended distance (1000BASE-ZX)</td>
<td>Cisco 1000BASE-ZX SFP transceiver module for SMF, 1550-nm wavelength</td>
</tr>
</tbody>
</table>

1. Due to slow link loss detection, it is not recommended to use the SFP-GE-T transceivers for primary interfaces.

For more information on the Wideband SPA, see the Cisco uBR10012 Universal Broadband Router SIP and SPA Hardware Installation Guide and the Cisco uBR10012 Universal Broadband Router SIP and SPA Software Configuration Guide.

External Edge QAM Device

The Cisco wideband CMTS uses one or more external EQAM devices. The EQAM device is a network element in a separate chassis from the CMTS. The EQAM device has two or more Gigabit Ethernet input interfaces that connect to a Wideband SPA. For output, the EQAM device has multiple QAM modulators and RF upconverters that connect to a HFC network. The EQAM device accepts MPEG over IP on its Gigabit Ethernet interfaces and routes the services to its QAM RF outputs.

The Harmonic NSG 9000 edge QAM device, which has up to 72 QAM channels, has been tested for interoperability with other Cisco DOCSIS 3.0 Downstream Solution components.

Cisco RF Gateway 1 and Cisco RF Gateway 10 have also been tested for interoperability with Cisco DOCSIS 3.0 Downstream solution components.

Number of EQAM Devices Required

Each logical RF channel defined on the Wideband SPA must have one corresponding output QAM channel on an EQAM device. The number of EQAM devices required is determined by two factors:

- The number of logical RF channels in use on the Wideband SPAs in the CMTS. Each Wideband SPA supports up to 24 logical RF channels depending on how it is configured.
 - For Annex A and 256 QAM, each Wideband SPA supports 18 RF channels at full rate and up to 24 RF channels at less than full rate.
 - For all other cases, each Wideband SPA supports 24 RF channels.
- The number of output QAM channels on the EQAM device.

As an example, if a Cisco uBR10012 router (CMTS) contains two Wideband SPAs and each Wideband SPA is configured for 24 RF channels, the total number of RF channels that are in use is 48. Therefore, 48 output QAM channels are required on the EQAM devices.
The Cisco RF Gateway 1 supports 48 QAMs per unit and can, thus, support 2 SPAs. The Cisco RF Gateway 10 supports 48 QAMs per line card and also can support 2 SPA.

If more than two EQAM devices are required for two Wideband SPAs, a Gigabit Ethernet switch is needed to connect the SPAs to the EQAM devices.

Cisco RF Gateway 1

As the first release in the Cisco RF Gateway series of universal edge quadrature amplitude modulation (U-EQAM) products, the Cisco RF Gateway 1 introduces a fourth-generation, standards-based U-EQAM device for expansion of VoD, SDV, and high-speed data services.

The Cisco RF Gateway 1 is a highly dense, highly available and low-cost U-EQAM device, designed from the start to provide sufficient capacity to create a converged highly available Access/Edge.

Key features of the Cisco RF Gateway 1 include:

- Industry-leading scalability for a total stream processing capacity of 2048 streams per chassis
- Fully-redundant Gigabit Ethernet (GE) input ports (4 total for 2:2 redundancy) and redundant powering in just 1 RU
- Front-to-back airflow meets cable operator requirements and allows multiple RF Gateway 1 devices to be stacked.
- True U-EQAM for support of a multitude of applications: video (broadcast, SDV, SD/HD, MPEG-2, AVC) and IP (M-CMTS/DTI, DOCSIS 3.0)
- Fully frequency agile from 45 MHz to 1000 MHz
- Designed as a green EQAM with low power consumption
- Increased solution resiliency and reliability due to full integration with both the Cisco video and data converged architectures
- High QAM capacity enables highly efficient QAM sharing in a converged MPEG and IP environment
- High availability and control plane redundancy with the Cisco USRM
- Compliancy with ITU-T J.83 standard, Annex A (DVB), Annex B (ATSC), or Annex C (Japan)
- Internet Group Management Protocol Version 3 (IGMPv3) support
- Designed for pre-encryption or integrated encryption support
- Hot-swappable and auto-configurable QAM cards

Cisco RF Gateway 10

The Cisco RF Gateway 10 U-EQAM device provides the scalability and high-availability features required to support escalating QAM channel capacity needs. It allows your network to meet new levels of performance, capacity, power consumption, ease of management, and scalability.

The Cisco RF Gateway 10 features up to 480 QAM channels per chassis with the DS48 QAM line card, and the ability to scale with future QAM cards.

The Cisco RF Gateway 10 builds on the RF Gateway 1 and has the following advantages:
• Reduces operational cost of installing, configuring, and managing U-EQAM devices while increasing chassis capacity with field-upgradable components for simplified network build-out and increased service velocity
• Integrates with a wide variety of network architectures requiring advanced switching and routing features
• Reduces cost and complexity of WAN connections through the 10-Gigabit Ethernet interfaces
• Enables expansion in system capacity without RF network recabling
• Reduces time for upgrading and replacing system components
• Improves rack cabling efficiencies and access

Harmonic NSG 9000

The Harmonic Narrowcast Services Gateway (NSG) 9000 is one of the edge QAM devices that has been tested for interoperability with other solution components. The Harmonic NSG 9000 has three independent Gigabit Ethernet input interfaces that use SFP modules for fiber-optic and copper links. The Harmonic NSG 9000 edge QAM device is DOCSIS 3.0-compliant.

The Harmonic NSG 9000 edge QAM device provides scalable support for up to 72 QAM RF outputs. The chassis is fitted with a passive backplane, while all the processing and modulation functions are performed on retrievable modules. The chassis has nine QAM RF module slots. Each hot-swappable QAM module has two RF ports, and each port is capable of supporting up to four adjacent QAM channels (three channels in Annex A).

The Harmonic NSG 9000 edge QAM device is housed in a 2-rack unit chassis. The system can host two load-sharing AC or DC power supplies, which can be redundant to each other. For more detailed information about the Harmonic NSG 9000 edge QAM device go to the following URL:

http://www.harmonicinc.com/

Gigabit Ethernet Switch (Optional)

Optionally, A Gigabit Ethernet (GE) switch can be used to link the Wideband SPAs to edge QAM devices. The Gigabit Ethernet switch concentrates traffic from multiple Gigabit Ethernet links from the SPAs to a smaller number of Gigabit Ethernet links prior to fiber transport to the edge QAM devices.

A Gigabit Ethernet switch is required to connect Wideband SPAs to the EQAM devices in the following situations:
• If more than two EQAM devices are required for two Wideband SPAs
• If VoD traffic and the RF channels for wideband channels are mixed on the same EQAM device

DOCSIS Timing Interface Server

The DOCSIS Timing Interface (DTI) server provides DOCSIS clock generation and can act as a standalone module or lock to a GPS server or a network clock. It provides power and clock-card redundancy and ensures that the modular CMTS core, edge QAM, and upstream are synchronized to nanosecond levels to support the existing DOCSIS requirements for frequency and time stamps that existed in the traditional CMTS. Additionally, the modular CMTS core is synchronized to the edge QAM to schedule, correct, and insert MPEG time stamps for video. For additional information on the Symmetricom DTI server, go to www.symmetricom.com.

The following configurations are required for a reliable and scalable DTI-server solution:
The M-CMTS devices should have two DTI ports, where one port serves as a backup during cable restructuring or a cable failure.

The DTI servers, power supplies, and clock cards must have internal redundancy. This ensures that the DTI clients are not forced to switch or do not fail if only one port is used.

The DTI server must support multiple configurations, such as, optional power supply, clock card, GPS, and network time protocol (NTP) redundancies.

Symmetricom TimeCreator 1000

The Symmetricom TimeCreator 1000 DTI server delivers a precise time and frequency synchronization between the modular CMTS and the edge QAM devices. The Symmetricom TimeCreator 1000 is a DTI Server with optional GPS traceability, redundant clock cards, redundant power supplies, and an NTP server option.

The Symmetricom TimeCreator 1000 integrated DTI Server capabilities ensure that the M-CMTS core, EQAM, and upstream are synchronized to nanosecond levels to support the existing DOCSIS requirements for frequency and time stamps that existed in the traditional CMTS. With the Symmetricom TimeCreator 1000 in an M-CMTS architecture, a cable modem receives its synchronization from the EQAM so that it is synchronized to other cable modems to properly transmit to the upstream burst receiver. Additionally, the M-CMTS core is synchronized to the EQAM to schedule, correct, and insert MPEG time stamps for video.

Wideband Cable Modems

The Cisco DOCSIS 3.0 Downstream Channel supports the following wideband cable modems:

- **Scientific Atlanta DPC3010 Wideband Cable Modem, page 4-16**
- **Linksys WCM300 Wideband Cable Modem, page 4-16**
- **Scientific Atlanta DPC2505 and EPC2505 Wideband Cable Modems, page 4-17**

Table 4-6 quantifies the number of upstream and downstream channels of some cable modems capable of downstream or upstream bonding, or both:

<table>
<thead>
<tr>
<th>Modem Type</th>
<th>Number of Downstream Channels</th>
<th>Number of Upstream Channels</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA DPC3825 Residential Gateway</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SA DPC3925 Residential Gateway with 2 voice ports</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SA DPC3925 Residential Gateway with 2 voice ports and backup power</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SA DPC3212 with embedded digital voice adapter</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SA DPC 3010</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>SA DPC 3000</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Linksys WCM300</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>SA DPC2505</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Chapter 4 Cisco DOCSIS 3.0 Downstream Solution Components

Wideband Cable Modems

Scientific Atlanta DPC3010 Wideband Cable Modem

When used with the Cisco uBR10012 CMTS, the Scientific Atlanta DPC3010 wideband cable modems can receive traffic on multiple wideband channels simultaneously where each wideband channel consists of up to eight bonded downstream RF channels (6 MHz Annex B and 8 MHz Annex A channels are supported). One of the RF channels from the Wideband SPA serves as the primary downstream channel. The Scientific Atlanta DPC3010 cable modem has two tuners, each of which handles four RF channels. The 4 RF channels per tuner must be contiguous within a 32 MHz window.

The Scientific Atlanta DPC3010 is DOCSIS 3.0-compatible and can be used in this mode. The modem is also backward compatible with existing DOCSIS 1.x networks (for example, if the modem is connected to a non-wideband Cisco CMTS or to a non-Cisco CMTS).

Linksys WCM300 Wideband Cable Modem

When used with the Cisco uBR10012 CMTS, the Linksys WCM300-NA (for DOCSIS), WCM300-EURO (for EuroDOCSIS), and WCM300-JP (for J-DOCSIS) wideband cable modems support the acquisition of up to three wideband (bonded) channels: one primary bonded channel and two secondary bonded channels.

Note

Cisco IOS Release 12.3(21a)BC3 through Cisco IOS Release 12.3BC are required for support of the Linksys WCM300-NA, WCM300-EURO, and WCM300-JP modems in wideband mode. Cisco support for the Linksys WCM300 ends at Cisco IOS Release 12.3(23)BC.

For each wideband channel, the Linksys WCM300 wideband cable modem receives one or more bonded RF channels. The Linksys WCM300 software provides the wideband cable modem with a 50 MHz capture window to receive up to eight downstream channels at 6 MHz per channel or six downstream channels at 8 MHz per channel. The total of the RF channels in the primary and secondary bonded channels must comply with the 50 MHz capture-window limitation.

For wideband, the Linksys WCM300 wideband cable modem uses one or more bonded RF channels. For wideband, the Linksys WCM300 uses a primary downstream channel from an M-CMTS SPA, Cisco uBR-MC5X20, or Cisco uBR-MC20X20 line card to carry MAC management and signaling messages.

The Linksys WCM300 is DOCSIS 2.0-compatible and can be used in the DOCSIS 2.0 mode (for example, if the modem is connected to a non-wideband Cisco CMTS or to a non-Cisco CMTS). The modem is also backward compatible with existing DOCSIS 1.x networks.

The Linksys WCM300-JP supports J-DOCSIS channel operation—6-MHz Annex B extension support with a downstream frequency range of 88 MHz to 860 MHz and an upstream frequency range of 5 MHz to 65 MHz.

Separate Linksys WCM300 software images are used for DOCSIS and EuroDOCSIS channel widths. Downstreams in the wideband channel support 64 QAM and 256 QAM.

The Linksys WCM300 wideband cable modem has two ports—an F-type 75-ohm connector that provides a cable network attachment, and an RJ-45 port that provides a 10/100/1000-Mbps Ethernet connection to the home or business. For more information about the Linksys WCM300 wideband cable modem, go to:

Scientific Atlanta DPC2505 and EPC2505 Wideband Cable Modems

When used with the Cisco uBR10012 CMTS, the Scientific Atlanta DPC2505 and EPC2505 (for EuroDOCSIS) wideband cable modems can receive one wideband channel, which consists of up to three bonded downstream RF channels from the SPA at 6 MHz per channel or at 8 MHz per channel. One of the RF channels from the Wideband SPA serves as the primary downstream channel.

The Scientific Atlanta DPC2505 is DOCSIS 3.0-compatible and can be used in this mode (for example, if the modem is connected to a non-wideband Cisco CMTS or to a non-Cisco CMTS). The modem is also backward compatible with existing DOCSIS 1.x networks.

The Scientific Atlanta DPC2505 and EPC2505 wide band cable modems have an F-type 75-ohm connector for a cable network attachment and two data ports—a Gigabit Ethernet port with Autonegotiate and Auto-MDIX, and a USB 2.0 port.

The Scientific Atlanta DPC2505 and EPC2505 also feature front-panel LEDs to provide visual feedback of real-time data transmission and operational status. The Scientific Atlanta DPC2505 features WebWizard, a browser-based user interface, which is a powerful tool that facilitates installation and troubleshooting. WebWizard eliminates the need to load set-up software on the customer premises equipment (CPE).

Wideband CMTS Redundancy and Resiliency

The Cisco uBR10012 wideband CMTS and related hardware and software provide redundancy and resiliency to the Cisco DOCSIS 3.0 Downstream Solution. Reliable, fault-tolerant components and resilient network technologies automatically identify and overcome failures. The following sections describe the wideband CMTS redundancy and resiliency features:

- Route Processor Redundancy and Resiliency, page 4-18
- Cisco uBR10-MC5X20 Line Card Redundancy, page 4-19
- Cisco uBR-MC3GX60V Line Card Redundancy, page 4-20
- Wideband SPA Redundancy, page 4-21
- Wideband Channel Resiliency, page 4-21
- Edge QAM Redundancy, page 4-21

Table 4-7 summarizes redundancy and resiliency support for the Cisco uBR10012 base system recommended hardware configuration (see Table 4-1 and Table 4-3). If component failure occurs, the components listed in Table 4-7 can be replaced without interrupting system operations as long as the redundant components are correctly installed and configured before the component failure occurs.

<table>
<thead>
<tr>
<th>Modular CMTS Component</th>
<th>Redundancy and Resiliency Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRE route processors</td>
<td>Two PRE modules. The Route Processor Redundancy Plus (RPR+) feature and DOCSIS Stateful Switchover (DSSO) provide the PRE modules with fast route processor failover without DOCSIS line card reboot.</td>
</tr>
<tr>
<td>Redundant power supplies</td>
<td>Two DC or AC power entry modules (PEMs). If one PEM fails, the other PEM immediately begins providing the required power to the system.</td>
</tr>
</tbody>
</table>
Wideband CMTS Redundancy and Resiliency

Table 4-7
Cisco uBR 10012 Base System Redundancy and Resiliency

<table>
<thead>
<tr>
<th>Modular CMTS Component</th>
<th>Redundancy and Resiliency Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant DOCSIS Timing and Control Cards (DTCC)</td>
<td>The two DTCCs monitor priority information of each other so that if the active card fails, the active card role is transferred to the redundant backup card without loss of data.</td>
</tr>
<tr>
<td>Fan assembly module</td>
<td>The fan assembly has four internal fans. If a single fan fails and the fan assembly is still able to cool the chassis, the router will continue to function until the fan assembly module can be replaced.</td>
</tr>
<tr>
<td>Redundant Half-Height Gigabit Ethernet (HHGE) line cards</td>
<td>Multiple HHGE line cards to support connectivity to multiple destinations and to provide network layer redundancy.</td>
</tr>
<tr>
<td>Cisco uBR10-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards</td>
<td>N+1 Redundancy provides automatic switchover and recovery for cable modems connected as DOCSIS 1.x or DOCSIS 2.0 modems in the event that there is a cable interface line card failure.</td>
</tr>
<tr>
<td>Cisco UBR-MC20X20V cable interface line cards</td>
<td>N+1 Redundancy provides automatic switchover and recovery for cable modems connected as DOCSIS 1.x, DOCSIS 2.0 or DOCSIS 3.0 modems in the event that there is a cable interface line card failure.</td>
</tr>
<tr>
<td>Cisco uBR-MC3GX60 cable interface line card</td>
<td>Beginning with Cisco IOS Release 12.2(33)SCE1, the N+1 redundancy feature including DEPI redundancy is supported on the Cisco uBR-MC3GX60V cable interface line card.</td>
</tr>
<tr>
<td>M-CMTS line card DEPI Link</td>
<td>Both the M-CMTS SPA and Cisco uBR-MC3GX60V line card support the optional use of dual Gigabit Ethernet ports for link level redundancy. The line card detects link failure and automatically uses the redundant link if it is present.</td>
</tr>
</tbody>
</table>

For complete information on the Cisco uBR10012 router hardware redundancy, see the Cisco uBR10012 Universal Broadband Router Hardware Installation Guide at the following URL:

Route Processor Redundancy and Resiliency

The Route Processor Redundancy Plus (RPR+) feature and DOCSIS Stateful Switchover (DSSO) in the Cisco IOS software provide the Cisco uBR10012 router PRE route processors with fast route processor failover without DOCSIS line card reboot.
Route Processor Redundancy Plus

The RPR+ feature enables the Cisco uBR10012 router to use two PRE route processors in a redundant configuration—an active and standby PRE module. If the active PRE module fails, or is removed from the system, the standby PRE detects the failure and initiates a switchover. During a switchover, the standby PRE assumes control of the router, connects with the network interfaces, and activates the local network management interface and system console.

Using the RPR+ feature, the standby PRE module is fully initialized and configured. This allows RPR+ to dramatically shorten the switchover time if the active PRE fails, or if a manual switchover is performed. Because both the startup configuration and running configuration are continually synchronized from the active to the standby PRE route processor, line cards are not reset during a switchover. The interfaces remain up during this transfer, so neighboring routers do not detect a link flap (that is, the link does not go down and come back up).

The RPR+ feature does not require a full reboot of the system to perform a failover. When the system is originally initialized, the secondary PRE module performs an abbreviated initialization routine—the module performs all self-checks and loads the Cisco IOS software, but instead of performing normal systems operations, it begins monitoring the primary PRE module. If the secondary PRE module detects a failure in the primary module, it can quickly assume the primary responsibility for systems operations.

During RPR+ switchover, wideband cable modems on the CMTS stay online. The MAC state for the wideband cable modem remains online for a modem registered as a DOCSIS 2.0 modem, or offline for a modem registered as a wideband cable modem.

DOCSIS Stateful Switchover

DOCSIS Stateful Switchover (DSSO) increases service uptime by instantaneously switching over between dual route processors should one processor fail. Switchover takes place without resetting or reloading line cards or affecting related subsystems or processes. The advantage of DSSO with RPR+ is that a switchover between the primary and standby RP does not require the cable interfaces to be reset, nor do the modems reregister or go offline. Furthermore, the cable modems retain their service IDs (SIDs) through the switchover.

For more information on PRE and RPR+ and DOCSIS Stateful Switchover, see the document Route Processor Redundancy Plus on the Cisco uBR10012 Universal Broadband Router at the following URL: http://www.cisco.com/en/US/docs/ios/cable/configuration/guide/u10k_rpro_red_plus_ps2209_TSD_Products_Configuration_Guide_Chapter.html

Cisco uBR10-MC5X20 Line Card Redundancy

The Cisco uBR10012 router supports N+1 Redundancy on the cable interface line cards including the Cisco uBR10-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards, which are used in the Cisco Cable Wideband solution.

N+1 Redundancy can help limit customer premises equipment (CPE) downtime by enabling robust automatic switchover and recovery in the event that there is a localized system failure. Upon switchover, N+1 Redundancy uses Hot Standby Connection-to-Connection Protocol (HCCP) to synchronize the configurations and current status between working interfaces and the protect interfaces. This makes the configuration of both easier and switchover times faster.

A single Cisco uBR10012 CMTS can support up to 8 Cisco uBR10-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards, each featuring 5 downstream and 20 upstream cable interfaces for a total of up to 40 downstream and 160 upstream interfaces in the chassis.
eight-card 7+1 Redundancy scheme for the Cisco uBR10012 router supports redundancy for the cable interface line cards installed in a fully populated Cisco uBR10012 chassis. Other redundancy schemes are designed to support partial cable interface line card populations in a Cisco uBR10012 chassis.

N+1 Redundancy is made possible with the addition of a Cisco RF Switch to your cable headend network. A single Cisco RF Switch can be connected to the Cisco uBR10012 CMTS, allowing deployment of an N+1 Redundancy scheme where one protect cable interface line card supports from one to seven working cable interface line cards in the same chassis.

Note

Both 7+1 Redundancy and N+1 Redundancy switchover are supported only for cable modems connected as DOCSIS 1.x, DOCSIS 2.0 and DOCSIS 3.0 modems. During 7+1 Redundancy and N+1 Redundancy switchover, cable modems that are connected in the wideband mode using the failed cable interface line card lose connectivity. Manual intervention (for example, use of the clear cable modem wideband reset command) may be required to bring wideband cable modems wideband-online mode again.

For more information on N+1 redundancy for Cisco uBR10012 line cards, see the Cisco Cable Modem Termination System Feature Guide.

Cisco uBR-MC3GX60V Line Card Redundancy

Note

Beginning with Cisco IOS Release 12.2(33)SCE1, the N+1 redundancy feature including DEPI redundancy is supported on the Cisco uBR-MC3GX60V cable interface line card.

Similar to Cisco uBR-MC5X20 line card, Cisco uBR10012 router supports N+1 redundancy on the Cisco uBR-MC3GX60V line card. A single Cisco uBR10012 CMTS can support up to eight Cisco uBR-MC3GX60V cable interface line cards, each featuring 72 downstream and 60 upstream cable interfaces for a total of up to 576 downstream and 480 upstream interfaces in the chassis. The eight-card 7+1 Redundancy scheme for the Cisco uBR10012 router supports redundancy for the cable interface line cards installed in a fully populated Cisco uBR10012 chassis. Other redundancy schemes are designed to support partial cable interface line card populations in a Cisco uBR10012 chassis.

For more information on N+1 redundancy for Cisco uBR-MC3GX60V line cards, see the Cisco Cable Modem Termination System Feature Guide.

For more information on how to configure the N+1 redundancy for Cisco uBR-MC3GX60V line cards, see Configuring the Cisco uBR-MC3GX60V Cable Interface Line Card at the following URLs:

http://www.cisco.com/en/US/docs/interfaces_modules/cable/broadband_processing_engines/ubr_mc3g x60v/configuration/guide/mc3g60_cfg.html

Cisco uBR-MC3GX60V Line Card Redundant Gigabit Ethernet Ports

The Cisco uBR-MC3GX60V has three pairs of active and redundant Gigabit Ethernet ports (a total of six ports). The ports carry downstream traffic and are directly connected to the external edge QAM device or indirectly through and intermediary switch or network. If the link state of both Gigabit Ethernet ports is up, port 0 comes up as the active port and Port 1 will be the redundant port. If the link state of Port 0 is not up, Port 1 comes up as the active port.

The show controllers modular-cable command shows the current state of the Cisco uBR-MC3GX60V Gigabit Ethernet ports. With the Cisco IOS CLI, the Gigabit Ethernet ports are not specified as individual Gigabit Ethernet interfaces because the ports work in tandem as a redundant pair.
For Cisco DOCSIS 3.0 Downstream Solution, if a Gigabit Ethernet link fails, automatic failover to a redundant link is supported.

Wideband SPA Redundancy

The Wideband SPA provides redundancy and resiliency through a number of mechanisms. The Wideband SIP and Wideband SPAs support online insertion and removal (OIR) and are hot-swappable.

Wideband SPA Redundant Gigabit Ethernet Ports

The Wideband SPA has one active and one redundant Gigabit Ethernet port that is used to send traffic to the external edge QAM device. If the link state of both Gigabit Ethernet ports is up, Port 0 comes up as the active port and Port 1 will be the redundant port. If the link state of Port 0 is not up, Port 1 comes up as the active port.

The `show controllers modular-cable` command shows the current state of the Wideband SPA Gigabit Ethernet ports. With the Cisco IOS CLI, the Wideband SPA Gigabit Ethernet ports are not specified as individual Gigabit Ethernet interfaces because the ports work in tandem as a redundant pair.

For Cisco DOCSIS 3.0 Downstream Solution, if a Gigabit Ethernet link from the Wideband SPA to the edge QAM device fails, automatic failover to a redundant link is not supported.

Wideband Channel Resiliency

Wideband Channel Resiliency is a Cisco CMTS feature supported on deployments using any of the Cisco wideband capable line cards. The feature utilizes DOCSIS cable modem status messaging to monitor the cable plant on a per-RF channel basis.

If a wideband channel fails, the wideband cable modem goes offline and reregisters:

- If another wideband channel is available for the service, the wideband cable modem tries that channel and comes online.
- If no other wideband channel is available, the wideband cable modem comes online in DOCSIS 1.x or DOCSIS 2.0 mode.

If a sufficient number of modems report channel failure, then the CMTS will disable the channel to keep the associated bonding groups up and passing traffic going. For more information, see [Wideband Channel Resiliency Feature Guide](http://www.cisco.com/en/US/docs/ios/cable/configuration/guide/ubr_wm_resiliency_ps2209_TSD_Products_Configuration_Guide_Chapter.html)

Edge QAM Redundancy

For information on redundancy for the Harmonic NSG 9000, see the vendor documentation for that device. This section describes one mechanism for redundancy that is available with Harmonic NSG 9000.

Cisco RF Gateway 10 supports in-chassis redundancy. Cisco RF Gateway 1 supports Edge QAM redundancy through external RF Signal Manager switches. For more information, see the Cisco RF Gateway documentation at the following URL:

Edge QAM Redundant Gigabit Ethernet Ports

The Harmonic NSG 9000 has redundant Gigabit Ethernet ports that are used to receive downstream traffic from the Wideband SPA. If the link state of the active Gigabit Ethernet port of the Wideband SPA goes down, the redundant link from the Wideband SPA to the edge QAM device becomes the active link. On the CMTS, the `show controllers modular-cable` command shows the current state of the Wideband SPA Gigabit Ethernet ports, which connect to the EQAM device.

Cisco RF Gateway 1 and Cisco RF Gateway 10 both support Gigabit Ethernet redundancy. For more information on the full description of input redundancy options, see the Cisco RF Gateway documentation at the following URL:

Where to Find Information on Solution Hardware Components

Table 4-8 provides a list of the hardware installation documents that are most relevant to the Cisco DOCSIS 3.0 Downstream Solution components. The complete list of Cisco uBR10012 hardware installation and upgrade guides is available at:

<table>
<thead>
<tr>
<th>Solution Component</th>
<th>Where to Find More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco uBR10012 chassis</td>
<td>Regulatory Compliance and Safety Information for the Cisco uBR10012 Universal Broadband Router</td>
</tr>
<tr>
<td>Performance Routing Engine (PRE)</td>
<td>Cisco uBR10012 Universal Broadband Router Hardware Installation Guide (full installation guide)</td>
</tr>
<tr>
<td>DOCSIS Timing and Control Card (DTCC)</td>
<td>Cisco uBR10012 Universal Broadband Router Hardware Installation Guide (quick start guide)</td>
</tr>
<tr>
<td>DC power entry modules (DC PEMs)</td>
<td></td>
</tr>
<tr>
<td>AC power entry modules (AC PEMs)</td>
<td></td>
</tr>
<tr>
<td>Fan assembly module</td>
<td></td>
</tr>
<tr>
<td>LCD module</td>
<td></td>
</tr>
<tr>
<td>Cisco uBR10-MC5X20S/U/H and Cisco uBR10-MC5X20U-D cable interface line cards</td>
<td>Cisco uBR10012 Universal Broadband Router Hardware Installation Guide (full installation guide)</td>
</tr>
<tr>
<td>Cisco uBR10-MC5X20S/U/H Cable Interface Line Cards - Hardware Installation Guide</td>
<td></td>
</tr>
<tr>
<td>Cabling the Cisco uBR10-MC5X20S/U/H Cable Interface Line Card with Universal Cable Holder—UCH1</td>
<td></td>
</tr>
<tr>
<td>Cabling the Cisco uBR10-MC5X20S/U/H Cable Interface Line Card with Universal Cable Holder—UCH2</td>
<td></td>
</tr>
<tr>
<td>Cisco uBR10-MC3GX60V cable interface line card</td>
<td>Cisco uBR10012 Universal Broadband Router Hardware Installation Guide (full installation guide)</td>
</tr>
<tr>
<td>Cisco uBR-MC3GX60V Cable Interface Line Cards - Hardware Installation Guide</td>
<td></td>
</tr>
<tr>
<td>Configuring the Cisco uBR-MC3GX60V Cable Interface Line Card</td>
<td></td>
</tr>
</tbody>
</table>
Table 4-8 Cisco Hardware Components: Where to Find More Information (continued)

<table>
<thead>
<tr>
<th>Solution Component</th>
<th>Where to Find More Information</th>
</tr>
</thead>
</table>
| Half-Height Gigabit Ethernet (HHGE) network uplink line card | *Cisco uBR10012 Universal Broadband Router Hardware Installation Guide* (full installation guide)
Cisco uBR10012 Universal Broadband Router Gigabit Ethernet Half-Height Line Card Installation |
| Wideband SPA Interface Processor (SIP)
Wideband Shared Port Adapter (SPA) | *Cisco uBR10012 Universal Broadband Router SIP and SPA Hardware Installation Guide*
Cisco uBR10012 Universal Broadband Router SIP and SPA Software Configuration Guide |
| Gigabit Ethernet Shared Port Adapters (SPA) | *Cisco uBR10012 Universal Broadband Router SIP and SPA Hardware Installation Guide* |
| Symmetricom TimeCreator 1000 | Refer to the vendor documentation. |
| Harmonic NSG 9000 edge QAM device | Refer to the vendor documentation. |
| Scientific Atlanta DPC2505 and EPC2505 wideband cable modems | Refer to the vendor documentation. |
| Linksys WCM300-NA, WCM300-EURO, and WCM300-JP wideband cable modems | *Release Notes for Linksys WCM300 Cable Modem Software*
Cisco uBR10012 Universal Broadband Router SIP and SPA Software Configuration Guide |