COPS Engine Operation on the Cisco CMTS Routers

Revised: February 9, 2009

Cisco IOS Release 12.2(33)SCA integrates support for this feature on the Cisco CMTS routers. This feature is also supported in Cisco IOS Release 12.3BC, and this document contains information that references many legacy documents related to Cisco IOS 12.3BC. In general, any references to Cisco IOS Release 12.3BC also apply to Cisco IOS Release 12.2SC.

Cisco IOS Release 12.3(13a)BC introduces support for the Common Open Policy Service (COPS) engine feature on the Cisco universal broadband routers. The Cisco Cable Modem Termination System (CMTS) also supports Access control lists (ACLs) with the COPS engine.

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the Feature Information Table at the end of this document.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/. An account on http://www.cisco.com/ is not required.

Contents

- Prerequisites for the COPS Engine on the Cisco CMTS Routers, page 2
- Restrictions for the COPS Engine on the Cisco CMTS, page 3
- Information About the COPS Engine on the Cisco CMTS, page 3
- How to Configure the COPS Engine on the Cisco CMTS, page 3
- COPS Engine Configuration Examples for Cable, page 11
- Additional References, page 11
- Feature Information for COPS Engine Operation on the Cisco CMTS Routers, page 13
Prerequisites for the COPS Engine on the Cisco CMTS Routers

- A compatible policy server must be connected to the network, such as the Cisco COPS QoS Policy Manager.
- Compliance with administrative policy, such as the Computer Assisted Law Enforcement Act (CALEA) or other lawful intercept (LI), is required for use of this feature on the Cisco CMTS routers.
- COPS for the Cisco CMTS routers is supported on the Cisco CMTS routers in Cisco IOS Release 12.3BC and 12.2SC. Table below shows the hardware compatibility prerequisites for this feature.

Table 1: COPS Engine Operation on the Cisco CMTS Routers Hardware Compatibility Matrix

<table>
<thead>
<tr>
<th>CMTS Platform</th>
<th>Processor Engine</th>
<th>Cable Interface Cards</th>
</tr>
</thead>
</table>
| Cisco uBR10012 Universal Broadband Router | Cisco IOS Release 12.3(13a)BC
 • PRE-2
 Cisco IOS Release 12.2(33)SCA
 • PRE-2 | Cisco IOS Release 12.3(13a)BC
 • Cisco
 uBR10-LCP2-MC16S Cable Interface Line Card
 • Cisco
 uBR10-LCP2-MC28C Cable Interface Line Card
 • Cisco
 uBR10-MC5X20S/U/H Broadband Processing Engine
 Cisco IOS Release 12.2(33)SCA
 • Cisco
 uBR10-MC5X20S/U/H |
| Cisco uBR7246VXR Universal Broadband Router | Cisco IOS Release 12.3(13a)BC
 • NPE-200 or later
 Cisco IOS Release 12.2(33)SCA
 • NPE-G1
 • NPE-G2 | Cisco IOS Release 12.3(13a)BC
 • Cisco
 uBR-MC16U/X and Cisco MC16S/E Cable Interface Line Cards
 • Cisco
 uBR-MC28U/X and Cisco MC28C Cable Interface Line Cards
 Cisco IOS Release 12.2(33)SCA
 • Cisco
 uBR-MC28U/X
 • Cisco
 uBR-MC16U/X |
Restrictions for the COPS Engine on the Cisco CMTS

- Resource Reservation Protocol (RSVP) is not configured on the Cisco CMTS. COPS engine configuration on the Cisco CMTS is limited to networks in which separate RSVP and COPS Servers are configured and operational.

Information About the COPS Engine on the Cisco CMTS

Common Open Policy Service (COPS) is a protocol for communicating network traffic policy information to network devices.

COPS works in correspondence with the Resource Reservation Protocol (RSVP), which is a means for reserving network resources—primarily bandwidth—to guarantee that applications sending end-to-end across the Internet will perform at the desired speed and quality. RSVP is not configured on the Cisco CMTS, but the Cisco CMTS presumes RSVP on the network for these configurations.

Refer to the Additional References, on page 11 for further information about COPS for RSVP.

How to Configure the COPS Engine on the Cisco CMTS

This section describes the tasks for configuring the COPS for RSVP feature on the Cisco CMTS.

To configure the COPS engine on the Cisco CMTS, perform the following tasks:

Configuring COPS TCP and DSCP Marking

This feature allows you to change the Differentiated Services Code Point (DSCP) marking for COPS messages that are transmitted or received by the Cisco router. The `cops ip dscp` command changes the default IP parameters for connections between the Cisco router and COPS servers in the cable network.

DSCP values are used in Quality of Service (QoS) configurations on a Cisco router to summarize the relationship between DSCP and IP precedence. This command allows COPS to remark the packets for either incoming or outbound connections.

The default setting is 0 for outbound connections. On default incoming connections, the COPS engine takes the DSCP value from the COPS server initiating the TCP connection.
This feature affects all TCP connections with all COPS servers.

• For messages transmitted by the Cisco router, the default DSCP value is 0.

• For incoming connections to the Cisco router, the COPS engine takes the DSCP value used by the COPS server that initiates the TCP connection, by default.

• The **cops ip dscp** command allows the Cisco router to re-mark the COPS packets for either incoming or outbound connections.

• This command affects all TCP connections with all COPS servers.

• This command does not affect existing connections to COPS servers. Once you issue this command, this function is supported only for new connections after that point in time.

Perform the following steps to enable optional DSCP marking for COPS messages on the Cisco CMTS.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>cops ip dscp [0-63]</code></td>
<td>Specifies the marking for COPS messages that are transmitted by the Cisco router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# cops ip dscp default</code></td>
<td></td>
</tr>
</tbody>
</table>

The values for this command specify the markings with which COPS messages are transmitted. The following values are supported for the Cisco CMTS router:

- **0-63**—DSCP value ranging from 0-63.
- **af11**—Use AF11 dscp (001010)
- **af12**—Use AF12 dscp (001100)
- **af13**—Use AF13 dscp (001110)
- **af21**—Use AF21 dscp (010010)
- **af22**—Use AF22 dscp (010100)
- **af23**—Use AF23 dscp (010110)
- **af31**—Use AF31 dscp (011010)
- **af32**—Use AF32 dscp (011100)
- **af33**—Use AF33 dscp (011110)
### Command or Action	Purpose
• af41—Use AF41 dscp (100010)	
• af42—Use AF42 dscp (100100)	
• af43—Use AF43 dscp (100110)	
• cs1—Use CS1 dscp (001000) [precedence 1]	
• cs2—Use CS2 dscp (010000) [precedence 2]	
• cs3—Use CS3 dscp (011000) [precedence 3]	
• cs4—Use CS4 dscp (100000) [precedence 4]	
• cs5—Use CS5 dscp (101000) [precedence 5]	
• cs6—Use CS6 dscp (110000) [precedence 6]	
• cs7—Use CS7 dscp (111000) [precedence 7]	
• default—Use default dscp (000000)	
• ef—Use EF dscp (101110)	

Step 4

Exit

Example:

Router(config)# exit
Router#

Configuring COPS TCP Window Size

This feature allows you to override the default TCP receive window size that is used by COPS processes. This setting can be used to prevent the COPS server from sending too much data at one time.

Perform the following steps to change the TCP Window size on the Cisco CMTS.

DETAILED STEPS

Command or Action	Purpose
Step 1	Enables privileged EXEC mode.
enable	
Example:	
Router> enable	

Enter your password if prompted.
Configuring Access Control List Support for COPS Engine

Cisco IOS Release 12.3(13)BC introduces support for Access Control Lists (ACLs) for COPS. Perform the following steps to configure COPS ACLs on the Cisco CMTS.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

Note: When using ACLs with cable monitor and the Cisco uBR10012 router, combine multiple ACLs into one ACL, and then configure cable monitor with the consolidated ACL.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>configure terminal</td>
</tr>
<tr>
<td>interface cable (slot/subslot/port)</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Restricting RSVP Policy to Specific Access Control Lists

Cisco IOS Release 12.3(13)BC introduces support for Access Control Lists (ACLs) with COPS, and further supports the option of restricting the RSVP policy to specific access control lists (ACLs).

Perform the following steps to restrict the RSVP policy to specific ACLs, as already configured on the Cisco CMTS.

For ACL configuration, refer to the Configuring Access Control List Support for COPS Engine, on page 6.

What to Do Next

Access lists can be displayed by using the `show access-list` command in privileged EXEC mode.
Purpose

Command or Action	Purpose
Step 4 ip rsvp policy cops *ACL-1 ACL-2 servers ip-addr1 IP-addr2* | Tells the router to apply RSVP policy to messages that match the specified ACLs, and specifies the COPS server or servers for those sessions.

Example:

Router(config-if)# ip rsvp policy cops 40 160 servers 161.44.130.164 161.44.129.2

Step 5 exit | Returns to privileged EXEC mode.

Example:

Router(config)# exit
Router#

Displaying and Verifying COPS Engine Configuration on the Cisco CMTS

Once COPS is enabled and configured on the Cisco CMTS, you can verify and track configuration by using one or all of the *show* commands in the following steps.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 show cops servers	Displays server addresses, port, state, keepalives, and policy client information.
Example:	
Router# show cops servers	

Step 3 show ip rsvp policy cops	Displays policy server addresses, ACL IDs, and client/server connection status.
Example:	
Router# show ip rsvp policy cops	

Step 4 show ip rsvp policy	Displays ACL IDs and their connection status.
Example:	
Router# show ip rsvp policy	
Show Commands for COPS Engine Information

The following examples display three views of the COPS engine configuration on the Cisco router. These respective show commands verify the COPS engine configuration.

Displaying COPS Servers on the Network

This example displays the policy server address, state, keepalives, and policy client information:

```
Router# show cops servers
COPS SERVER: Address: 161.44.135.172. Port: 3288. State: 0. Keepalive: 120 sec
Number of clients: 1. Number of sessions: 1.
    COPS CLIENT: Client type: 1. State: 0.
```

Displaying COPS Policy Information on the Network

This example displays the policy server address, the ACL ID, and the client/server connection status:

```
Router# show ip rsvp policy cops
COPS/RSVP entry. ACLs: 40 60
PDPs: 161.44.135.172
Current state: Connected
Currently connected to PDP 161.44.135.172, port 0
```

Displaying Access Lists for COPS

This example displays the ACL ID numbers and the status for each ACL ID:

```
Router# show ip rsvp policy
Local policy: Currently unsupported
COPS:
    ACLs: 40 60 . State: CONNECTED.
    ACLs: 40 160 . State: CONNECTING.
```

Debugging the COPS Engine on the Cisco CMTS

Cisco IOS Release 12.3(13a)BC and later releases support the following commands for debugging the COPS Engine on the Cisco CMTS:

Debugging COPS for PacketCable

To enable debugging processes for PacketCable with the COPS engine, use the `debug packetcable cops` command in privileged EXEC mode. To disable debugging, use the `no` form of this command.

```
debug packetcable cops
no debug packetcable cops
```

The following example illustrates the `debug packetcable cops` command:

```
Router# debug packetcable cops
Pktcbl COPS msgs debugging is on
```
Debugging PacketCable Gate Control

To enable and display debugging processes for PacketCable gate control, use the `debug packetcable gate control` command in privileged EXEC mode. To disable this debugging, use the `no` form of this command:

```
debug packetcable gate control
no debug packetcable gate control
```

The following example illustrates gate control debugging:

```
Router# debug packetcable gate control
Pktcbl gate control msgs debugging is on
```

Debugging PacketCable Subscribers

To enable and display debugging processes for PacketCable subscribers, use the `debug packetcable subscriber` command in privileged EXEC mode. To disable this debugging, use the `no` form of this command:

```
debug packetcable subscriber IP-addr
no debug packetcable subscriber IP-addr
```

The following example illustrates the activation of the `debug packetcable subscriber` command for the specified IP address:

```
Router# debug packetcable subscriber 68.1.2.5
Pktcbl on the subscriber debugging is on
```

Displaying Enabled Debug Functions

To display current debugging information that includes PacketCable COPS messages on the Cisco CMTS, use the `show debug` command in privileged EXEC mode.

```
Router# show debug
PacketCable Client:
   Pktcbl COPS msgs debugging is on
PacketCable specific:
   Debugging is on for Subscriber 68.1.2.4, Mask 255.255.255.255
   SLOT 6/0: Nov 19 04:57:09.219: %UBR10000-5-UNREGSIDTIMEOUT: CMTS deleted unregistered Cable Modem 0002.8a8c.8c1a
   SLOT 6/0: Nov 19 04:57:12.279: %UBR10000-5-UNREGSIDTIMEOUT: CMTS deleted unregistered Cable Modem 0002.8a8c.92ae
   *Nov 19 04:57:19.751: PktCbl(cops): Received callback [code 2, handle: 0x63982B08] from COPS engine
   *Nov 19 04:57:19.751: PktCbl(cops): Received a COPS DEC message, flags is 0x1
   *Nov 19 04:57:19.755: PktCbl(cops): Received callback [code 2, handle: 0x63982B08] from COPS engine
   *Nov 19 04:57:19.755: PktCbl(cops): Received a COPS DEC message, flags is 0x1
   *Nov 19 04:57:19.755: PktCbl(cops): Received callback [code 2, handle: 0x63982B08] from COPS engine
   *Nov 19 04:57:19.755: PktCbl(cops): Received a COPS DEC message, flags is 0x1
   *Nov 19 04:57:19.755: PktCbl(cops): Received callback [code 2, handle: 0x63982B08] from COPS engine
   *Nov 19 04:57:19.755: PktCbl(ndle: 0x63982B08] from COPS engine
```
COPS Engine Configuration Examples for Cable

The following sections provide COPS for RSVP configuration examples on the Cisco CMTS:

Example: COPS Server Specified

The following example specifies the COPS server and enables COPS for RSVP on the server. Both of these functions are accomplished by using the `ip rsvp policy cops` command. By implication, the default settings for all remaining COPS for RSVP commands are accepted.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip rsvp policy cops servers 161.44.130.168 161.44.129.6
Router(config)# exit
```

Example: COPS Server Display

The following examples display three views of the COPS for RSVP configuration on the router, which can be used to verify the COPS for RSVP configuration.

This example displays the policy server address, state, keepalives, and policy client information:

```
Router# show cops servers
COPS SERVER: Address: 161.44.135.172. Port: 3288. State: 0. Keepalive: 120 sec
Number of clients: 1. Number of sessions: 1.
COPS CLIENT: Client type: 1. State: 0.
```

This example displays the policy server address, the ACL ID, and the client/server connection status:

```
Router# show ip rsvp policy cops
COPS/RSVP entry. ACLs: 40 60
PDPs: 161.44.135.172
Current state: Connected
Currently connected to FDP 161.44.135.172, port 0
```

This example displays the ACL ID numbers and the status for each ACL ID:

```
Router# show ip rsvp policy
Local policy: Currently unsupported
COPS:
ACLs: 40 60 . State: CONNECTED.
ACLs: 40 160 . State: CONNECTING.
```

Additional References

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco CMTS Commands</td>
<td>Cisco CMTS Cable Command Reference</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>COPS for RSVP</th>
<th>Configuring COPS for RSVP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COPS for RSVP</td>
</tr>
<tr>
<td></td>
<td>http://www.cisco.com/en/US/docs/ios/12_1t/12_1t1/feature/guide/CopsRSVP.html</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKT-SP-ESP-I01-991229</td>
<td>PacketCable™ Electronic Surveillance Specification (http://www.packetcable.com)</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No MIBs have been introduced or enhanced for support of this feature.</td>
</tr>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
</table>
Feature Information for COPS Engine Operation on the Cisco CMTS Routers

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://tools.cisco.com/ITDIT/CFN/. An account on http://www.cisco.com/ is not required.

The below table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
</table>
| Access Control for COPS/TCP Ports | 12.3(13a)BC | Support for Common Open Policy Service (COPS) engine and Access Control Lists for COPS introduced for the Cisco uBR10012 router and Cisco uBR7246VXR router. The following commands are new or modified:
 • cops ip dscp
 • cops listeners access-list
 • cops tcp window-size |
<p>| PacketCable Client Accept Timeout | 12.3(21)BC | Support for the PacketCable Client Accept Timeout feature was added. |</p>
<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>COPS Support for PacketCable</td>
<td>12.2(33)SCA</td>
<td>This feature was integrated into Cisco IOS Release 12.2(33)SCA. Support for the Cisco uBR7225VXR Universal Broadband Router was added.</td>
</tr>
</tbody>
</table>