

Cisco cBR Converged Broadband Routers Basic Configuration and Provisioning Construct for Cisco IOS XE Everest 16.6.1

First Published: 2017-07-28

Americas Headquarters

Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

800 553-NETS (6387) Fax: 408 527-0883 © 2017 Cisco Systems, Inc. All rights reserved.

CONTENTS

CHAPTER 1 Video Services Provisioning Model 1

Information about Video Services Provisioning 1

Video Provisioning Constructs 1

Feature Information for Video Services Provisioning 2

CHAPTER 2 Video Virtual Carrier Group and Virtual Edge Input 5

Information about Virtual Carrier Group and Virtual Edge Input 5

Virtual Carrier Group 5

Virtual Edge Input 5

How to Configure Virtual Carrier Group and Virtual Edge Input 6

Configuring Virtual Carrier Group 6

Verifying Virtual Carrier Group Configuration 6

Configuring Virtual Edge Input under Logical Edge Device 7

Verifying Virtual Edge Input Configuration 7

Configuration Examples for Virtual Carrier Group and Virtual Edge Input 8

Example: Configuring Virtual Carrier Group 8

Example: Configuring Virtual Edge Input 9

Feature Information for Virtual Carrier Group and Virtual Edge Input 9

CHAPTER 3 Service Distribution Group 11

Information About Service Distribution Group 11

How to Configure the Service Distribution Group 12

Defining the Physical Slot/Bay/Port 12

Configuring QAM Replication 12

Overriding the Default ONID 13

Overriding the Default PSI Value 13

CHAPTER 4

CHAPTER 5

CHAPTER 6

```
Verifying Service Distribution Group Configuration 13
     Troubleshooting Tips 13
     Configuration Examples 13
        Configuring a Service Distribution Group 14
     Feature Information for Service Distribution Group 14
Video QAM Carriers 15
     QAM Profile 15
     How to Configure the Video QAM Carriers 15
        Configuring the Video QAM Profile 15
        Configuring the Video QAM Carriers 16
        Verify the configuration of the RF Channel
     Configuration Examples 17
        Video QAM Carriers 17
     Feature Information for QAM Video Carriers 17
Logical Edge Devices 19
     Information about Logical Edge Devices 19
     How to Configure the Logical Edge Devices 19
        Configuring Session-Based (Dynamic) Logical Edge Devices 19
          Verifying the Session-Based (Dynamic) Logical Edge Devices Configuration 21
        Configuring the D6 Discovery Protocol 24
          Verifying the D6 Configuration 27
     Configuration Examples 27
        Example: GQI LED Configuration 27
     Feature Information for Logical Edge Devices
Cisco Smart Licensing for Video
                                  29
     Video Smart Licensing
     Information About Video Smart Licensing
        Benefits of Smart Licensing 29
        Prerequisites for Video Smart Licensing
        Restrictions for Video Smart Licensing
     How to Verify Video Smart Licensing 30
```

Verifying Video Smart Licensing Usin	ig Show Commands 3
Configuration Examples 31	
Use Cases or Deployment Scenarios 32	!
Feature Information for Video Smart Lice	ensing 34
Physical to Virtual Binding 35	
Information About Physical to Virtual Bi	inding 35
How to Configure VPME Encryption 3	15
Configuring Physical to Virtual Bindir	ng 35
Configuring QAM Replication 36	
Configuration Examples 36	
Example 1: Physical to Virtual Binding	g Configuration 36
Example 2: Physical to Virtual Binding	g Configuration 36
Example 3: QAM Replication Configu	aration 37
Feature Information for Physical to Virtu	al Binding 37
Table Based Configuration 39	
Information About Table Based Configuration	ration 39
Configuring Table Based Session 39	
Configuration Example 40	
Virtual Edge Input Bundling 40	
Verifying Virtual Edge Input Data 40	1
Verifying VEI Bundles 41	
Configuration Example 41	
Feature Information for Table Based Con	nfiguration 42
Management IP Interface 43	
Information About Management IP Inter-	face 43
How to Configure the Management IP In	nterface 43
Configuring the VirtualPortGroup Inte	erface 44
Configuring the Cable Video Manager	ment Interface 45
Configuring the LED Management Int	terface 45
Configuration Examples 46	
Management IP Interface 46	

CHAPTER 7

CHAPTER 8

CHAPTER 9

CHAPTER 10

Feature Information for Management IP Interface 46

Information About Encryption 49

Video Encryption 49

	Prerequisites for Encryption 50
	How to Configure Encryption for the Data Stream 50
	Enforcing Data Stream Encryption Type 50
	Configuring Virtual Carrier Group 50
	Verifying Encryption Configuration 51
	Configuration Examples for Encryption 51
	Example: Enforcing Data Stream Encryption Type 51
	Example: Configuring Virtual Carrier Group 51
	Configuring Privacy Mode Encryption 51
	Configuring VODS-ID 52
	Configuring CEM IP and Port 52
	Configuring Management IP 52
	Verifying PME Connection Status 53
	Verifying PME Version 53
	Verifying PME Sessions on a Line Card 53
	Feature Information for Encryption 54
CHAPTER 11	Global Video Configuration 55
	Configuring the Default ONID 55
	Configuring the Default PSI interval 55
	Configuring Video Session Timeouts 56
	Configuration Examples 56
	Example: Global Video Configuration 56
	Feature Information for Global Video Configuration 56
CHAPTER 12	Advanced Video MPEG Features 59
	Information about Advanced Video MPEG Features 59
	Reserved Output PID Range 59
	How to Configure Advanced Video MPEG Features 59
	Configuring Reserved Output PID Range 59

Verifying Reserved Output PID Range Configuration 59

Configuration Examples for Advanced Video MPEG Features 60

Example: Configuring Reserved Output PID Range 60

Feature Information for Advanced Video MPEG Features 60

CHAPTER 13 Important Notes 61

Video Packet Routing Requirements 61

Contents

Video Services Provisioning Model

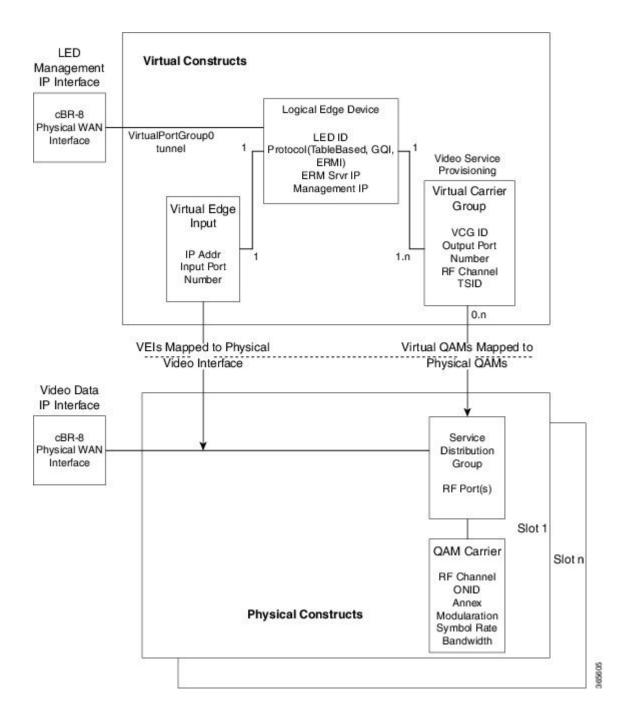
The Cisco cBR-8 router offers the next generation CCAP platform supporting converged CMTS and EQAM functionality. The redesigned video data model supports the creation of virtual edge devices within the platform. This data model simplifies the provisioning procedure and enables seamless migration to virtualized video service management in the future.

The video provisioning constructs of the new data model provide hardware abstraction and divides services into virtual edge devices for easier provisioning at scale. It also provides isolation between the service applications at the software layer. A bind-operation connects these constructs to the physical resources.

- Information about Video Services Provisioning, on page 1
- Feature Information for Video Services Provisioning, on page 2

Information about Video Services Provisioning

Video Provisioning Constructs


The Video Services Provisioning Model has the following elements:

- Logical Edge Device (LED)—a virtual edge device in the Cisco cBR-8 chassis that can be provisioned for static or dynamic sessions.
- Virtual Carrier Group (VCG)—a collection of Virtual QAM Carriers (RF channels) provisioned on an LED.
- Virtual Edge Input (VEI)—assigned either globally to all VCGs in the LED or optionally assigned uniquely to an individual VCG.
- **Service Distribution Group (SDG)**—a collection of one or more RF ports that define the physical slot/bay/port to be used in a video service.

Connection of Virtual and Physical Constructs

The VCGs are bound to an SDG using a bind command (bind-vcg). This connects the virtual carriers to the physical ports listed in the SDG. After binding, a path from the VEI is mapped to the RF ports.

The image below shows the elements in the Video Provisioning Construct.

Feature Information for Video Services Provisioning

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 1: Feature Information for Video Services Provisioning

Feature Name	Releases	Feature Information
Video Services Provisioning	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Feature Information for Video Services Provisioning

Video Virtual Carrier Group and Virtual Edge Input

A Virtual Carrier Group (VCG) is a collection of virtual QAM carriers (RF channels) provisioned on a Logical Edge Device (LED). A Virtual Edge Input (VEI) is a customer assigned IP address that is used, from the Head End, as a destination IP address for unicast video IP packets.

- Information about Virtual Carrier Group and Virtual Edge Input, on page 5
- How to Configure Virtual Carrier Group and Virtual Edge Input, on page 6
- Configuration Examples for Virtual Carrier Group and Virtual Edge Input, on page 8
- Feature Information for Virtual Carrier Group and Virtual Edge Input, on page 9

Information about Virtual Carrier Group and Virtual Edge Input

Virtual Carrier Group

A Virtual Carrier Group (VCG) is a collection of virtual QAM carriers (RF channels) provisioned on a Logical Edge Device (LED).

Each VCG must have a unique name and ID, since it also assigns attributes such as TSID and output port number to the virtual QAM carriers. The output port number only needs to be unique per LED. However, TSID/ONID pair must be unique for the chassis.

The service type must be designated in each VCG and the encrypt command must be entered if the carriers are to be encrypted. Enabling the VCG to use encryption and service type designates that each QAM carrier listed in the VCG will consume a QAM encryption license and video service type license. The actual number of licenses consumed will be done at VCG binding operation and is also dependent on the QAM replication requirements.

For more information on how the licenses are consumed, see Cisco Smart Licensing for Video.

Virtual Edge Input

A Virtual Edge Input (VEI) is a customer assigned IP address that is used, from the Head End, as a destination IP address for unicast video IP packets. Each VEI will need to be configured with a routable IP address from within the customer's network.

A VEI is assigned within a Logical Edge Device. Each Virtual Carrier Group (VCG) is associated with one or more IP addresses that represent VEIs.

For GQI protocol, VEI must be configured under the LED, since GQI expects VEI to be able to reach any Virtual QAM carrier listed in the same LED. Again, for GQI protocol, there is a limit of five VEIs per LED.

For the table based protocol, VEI may be configured under the LED or under a VCG. If the VEI is configured under a VCG, it can only reach the virtual QAM carriers associated with that particular VCG.

During the VCG binding operation, each VEI IP address will be bound to a single Video IP interface.

You can isolate the video traffic from other network traffic using MPLS (Multiprotocol Label Switching) and VRF (Virtual Routing and Forwarding), by configuring the VRF name parameter in video-edge-input command.

Note

Do not use the same VEI IP address in multiple VRFs, as Head End video session management servers are not MPLS or VRF aware.

How to Configure Virtual Carrier Group and Virtual Edge Input

Configuring Virtual Carrier Group

Before you begin

Since each VEI needs to be configured with a routable IP address from within the customer's network, choose the IP addresses to use prior to configuring the VEIs.

Error messages for problems with the VCG configuration will become evident during the bind operation. Errors include overlapping rf-channels.

In virtual-edge-input-ip command line configuration, vrf is an optional parameter and can be used for MPLS routing or to make VEI private from other parts of the network.

To configure virtual carrier group, follow the steps below:

```
enable
configure terminal
cable video
virtual-carrier-group name [id number]
virtual-edge-input-ip ip-address [vrf vrf-name] input-port-number port-number
encrypt
service-type narrowcast
rf-channel start_channel-end_channel tsid start_tsid-end_tsid output-port-number
start_number-end_number
```

Verifying Virtual Carrier Group Configuration

To verify the virtual carrier group configuration, use the **show cable video virtual-carrier-group** command as shown in the example below.

```
Router# show cable video virtual-carrier-group all

Number of Virtual Carrier Groups: 1

ID Name Input Service-Distribution-Group Logical-Edge-Device Total
```

]	IP Address	Name	Name	RF-Channel
1	vcg-0	-	vcg	vcgcast	5

Configuring Virtual Edge Input under Logical Edge Device

Before you begin

Since each VEI will need to be configured with a routable IP address from within the customer's network, choose the IP addresses to use prior to configuring the VEIs.

To configure virtual edge input, follow the steps below:

```
enable
configure terminal
cable video
virtual-carrier-group name [id] number
virtual-edge-input-ip ip-address [vrf vrf-name] input-port-number port-number
vcg vcg-name
active
```

To configure virtual edge input under logical edge device, follow the steps below:

```
enable
configure terminal
cable video
logical-edge-device name [id] number
protocol table-based
virtual-edge-input-ip ip-address [vrf vrf-name] input-port-number port-number
vcg vcg-name
active
```

Verifying Virtual Edge Input Configuration

To verify the virtual edge input configuration, use the **show cable video logical-edge-device** command as shown in the example below.

```
Router# show cable video logical-edge-device id 1
Logical Edge Device: led
Id: 1
Protocol: GQI
Service State: Active
Discovery State: Disable
Management IP: 1.33.2.10
MAC Address: c414.3c17.6000
Number of Servers: 2
 Server 1: 1.200.1.193
 Server 2: 1.200.1.183
Reset Interval: 5
Keepalive Interval: 5
Retry Count:3
Number of Virtual Carrier Groups: 2
Number of Share Virtual Edge Input: 1
Number of Physical Oams: 94
Number of Sessions: 240
No Reserve PID Range
```

To verify the VEI configuration with MPLS-VPN VRF, use the **show ip arp vrf** command as shown in the example below:

```
Router# show ip arp vrf Video-VOD-Vrf
Protocol Address Age (min) Hardware Addr Type Interface
Internet 174.102.1.1 - 12ab.0007.ce01 ARPA Video7/0/0
```

Configuration Examples for Virtual Carrier Group and Virtual Edge Input

This section provides configuration examples for the Virtual Carrier Group and Virtual Edge Input:

Example: Configuring Virtual Carrier Group

The following example shows how to configure virtual carrier group:

```
enable
configure terminal
cable video
virtual-carrier-group vcg-0 id 1
virtual-edge-input-ip 174.101.1.1 input-port-number 1
virtual-edge-input-ip 174.102.1.1 vrf Video-VOD-Vrf input-port-number 2
encrypt
service-type narrowcast
rf-channel 0-10 tsid 1-11 output-port-number 1-11
```

Example: Configuring Virtual Edge Input

The following example shows how to configure virtual edge input:

```
enable
configure terminal
cable video
logical-edge-device led bc1 id 1
protocol table-based
virtual-edge-input-ip 174.102.1.1 input-port-number 1
vcg vcg bc1
active
You can also configure VEI to be associated with a MPLS-VPN VRF:
enable
configure terminal
cable video
virtual-carrier-group vcg1 id 1
virtual-edge-input-ip 174.102.1.1 vrf Video-VOD-Vrf input-port-number 1
vcg vcg-name
active
Under logical edge device, follow the steps below:
enable
configure terminal
cable video
logical-edge-device led bc1 id 1
protocol table-based
virtual-edge-input-ip 174.102.1.1 vrf Video-VOD-Vrf input-port-number 1
vcg vcg bc1
active
```

Feature Information for Virtual Carrier Group and Virtual Edge Input

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 2: Feature Information for Virtual Carrier Group and Virtual Edge Input

Feature Name	Releases	Feature Information
Virtual Carrier Group and Virtual Edge Input	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.
Using VRF for Video Session Traffic	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Service Distribution Group

The Service Distribution Group (SDG) is a collection of one or more RF ports and defines the physical slot/bay/port to be used in a video service.

Contents

- Information About Service Distribution Group, on page 11
- How to Configure the Service Distribution Group, on page 12
- Verifying Service Distribution Group Configuration, on page 13
- Troubleshooting Tips, on page 13
- Configuration Examples, on page 13
- Feature Information for Service Distribution Group, on page 14

Information About Service Distribution Group

The following are the required components for configuring an SDG:

- Multiple Ports—Multiple ports in an SDG replicate all QAMs from the Virtual Carrier Group (VCG) to every port.
- Unicast—Unicast (VoD) services cannot be replicated across line cards.
- TSID—The TSIDs should always be unique (North American MSO). Non-unique TSIDs can be used if the ONID is changed from the default value of zero (0).

The convention slot/bay/port represents the following:

- Slot—Slot is the line card slot number. Slot can be configured 0–3 or 6–9. Slots 4 and 5 are the supervisor slots.
- Bay—Bay is the Cisco cBR-8 chassis number. This parameter is always configured as 0.
- Port—Port is the RF port number. This parameter can be configured 1–8.

Note

- For a Remote PHY line card, the SDG does not describe a collection of RF ports. SDG specifies the line card, bay, and downstream cable controller where the video will be destined. Use **rpd downstream-cable** *slot/bay/controller* command instead of **rf-port integrated-cable** *slot/bay/port* command. Only one downstream cable controller can be specified for an SDG, so QAM replication is not supported. (However, the controller can be multicast to multiple remote PHY devices which is similar to QAM replication but occurs external to the cBR-8.)
- Cisco Remote PHY Device 1x2 can join up to 30 multicast streams simultaneously for video.
- Cisco HA Shelf can join up to 30 multicast streams simultaneously per RPD for video.

How to Configure the Service Distribution Group

This section describes how to configure SDGs for the video session on Cisco cBR-8.

Defining the Physical Slot/Bay/Port

To define the Service Distribution Group (SDG), you must define the physical *slot/bay/port* to be used in a video service.

Before You Begin

Make sure that the controller type is **video** for the *slot/bay/port* that you use for the SDG. Errors due to the incorrect controller type used in the SDG appear during the bind operation.

To define the physical *slot/bay/port*, complete the following procedure:

```
configure terminal
cable video
service-distribution-group sdg name
rf-port integrated-cable slot/bay/port
```

Configuring QAM Replication

To configure QAM replication for service group size alignment between the DOCSIS and video services to one or more ports, you can add more ports into the service distribution group configuration.

Before You Begin

Make sure that the controller type is video for the slot/bay/port that you would use for the SDG. For more information, see the **Video QAM Carriers** section. Errors due to the incorrect controller type used in the SDG appear during the bind operation.

To configure QAM replication, complete the following procedure:

```
configure terminal
cable video
service-distribution-group service distribution group name
rf-port integrated-cable slot/bay/port
rf-port integrated-cable slot/bay/port
```

Overriding the Default ONID

You can override the default ONID, by defining a new ONID value in the SDG configuration. If you perform this configuration, all channels associated with the configured SDG will have the new ONID value. By default, the system ONID is 0, which is commonly used in North America.

To override the default ONID, complete the following procedure:

```
configure terminal
cable video
service-distribution-group service distribution group name
onid onid number
```

Overriding the Default PSI Value

To override the default PSI value, complete the following procedure:

```
configure terminal
cable video
service-distribution-group service distribution group name
psi-interval psi-interval msec
```

Verifying Service Distribution Group Configuration

To verify the SDG configuration, use the **show cable video service-distribution-group** command as shown in the example below:

show cable video service-distribution-group all

Nur	Number of Service Distribution Groups: 1							
ID	Name	Virtual-Carrier-Group	Logical-Edge-Device	RF-Port	ONID	PSI Interval		
		Name	Name					
1	vod	vod	LED	7/0/0	0	100		
1	vod	vod	LED	7/0/1	0	100		
1	vod	vod	LED	7/0/2	0	100		
1	vod	vod	LED	7/0/3	0	100		
1	vod	vod	LED	7/0/4	0	100		
1	vod	vod	LED	7/0/5	0	100		
1	vod	vod	LED	7/0/6	0	100		
1	vod	vod	LED	7/0/7	0	100		

Troubleshooting Tips

To undo any configuration, use the **no** form of the command. This command is useful if you have configured something by mistake. The errors are not apparent until you perform the bind operation.

Configuration Examples

This section provides example configurations for the service distribution group.

Configuring a Service Distribution Group

```
configure terminal
cable video
service-distribution-group vod id 1
onid 100
rf-port integrated-cable 7/0/0
rf-port integrated-cable 7/0/1
rf-port integrated-cable 7/0/2
rf-port integrated-cable 7/0/3
```

Feature Information for Service Distribution Group

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 3: Feature Information for Service Distribution Group

Feature Name	Releases	Feature Information
Service Distribution Group	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Video QAM Carriers

This document describes how to configure the video QAM carriers on the Cisco cBR Series Converged Broadband Router.

Contents

- QAM Profile, on page 15
- How to Configure the Video QAM Carriers, on page 15
- Configuration Examples, on page 17
- Feature Information for QAM Video Carriers, on page 17

QAM Profile

A QAM profile describes the common downstream channel modulator settings, referred to as physical layer parameters. This includes QAM constellation, symbol rate, interleaver-depth, spectrum-inversion, and annex.

For more information about the downstream interface configuration, see Downstream Interface Configuration.

But be aware that, if you configure annex A 6MHz or 7MHz in a QAM profile, then this QAM profile cannot be applied to a DOCSIS channel.

How to Configure the Video QAM Carriers

Configuring the Video QAM Profile

To configure the video QAM profile, complete the following procedure:

configure terminal
cable downstream qam-profile id
annex {A freq_spacing|B|C}
modulation value
interleaver-depth value
symbol-rate value
spectrum-inversion {on|off}
description line

The frequency spacing of 6MHz, 7MHz and 8 MHz can be selected or annex A. In this case, the QAM profile can only be applied to a video channel.

Spectrum Inversion

Spectrum inversion happens as a result of mixing processes in RF or IF electronics. Spectrum inversion allows for the adaptation of older equipment with the new plant. The mixing of I and Q are used to create a quadrant profile. For some settops, the inversion of the quadrant profile is needed where the axis are flipped such that I represents the X and Q represents the Y-axis. Most modern equipment can detect and resolve the inversion split.

You can change this spectrum inversion configuration on a user-defined qam-profile. It cannot be changed on a system generated qam-profile from 0 to 5.

Configuring the Video QAM Carriers

To configure the Video QAM carriers, complete the following procedure:

```
configure terminal
controller integrated-cable slot/bay/port
rf-channel start-channel - end-channel
type video
start-frequency frequency
rf-output normal
power-adjust number
qam-profile gam-profile number
```


Note

For video provisioning, the carriers must be of type "video" in the controller integrated-cable configuration.

Verify the configuration of the RF Channel

To verify the RF channel configuration, use the Show controller integrated-cable rf-chan command as shown in the example below:

```
Router#show controllers integrated-Cable 9/0/7 rf-channel 0-10
Load for five secs: 6%/0%; one minute: 5%; five minutes: 5%
Chan State Admin Frequency Type Annex Mod srate Interleaver dcid power output
     UP UP 10000000 VIDEO A 256
                                           5361 I12-J17
                                                                   34.0
                                                                         NORMAT.
1
     UP UP
              106000000 VIDEO A
                                      256 5361 I12-J17
                                                                   34.0 NORMAL
     UP UP 112000000 VIDEO A 256 5361 I12-J17
                                                              - 34.0 NORMAL
              118000000 VIDEO A 256 5361 I12-J17
124000000 VIDEO A 256 5361 I12-J17
130000000 VIDEO A 256 5361 I12-J17
3
     UP
                                                                 34.0 NORMAL
         UP
     ΠP
          UP
                                                                   34.0
                                                                         NORMAL
5
     UP
          UP
                                                                   34.0
                                                                         NORMAL
              136000000 VIDEO A
                                      256 5361 I12-J17
                                                                  34.0
6
     ΠP
         UP
                                                                         NORMAL
              142000000 VIDEO A
         UP
                                      256 5361 I12-J17
                                                                  34.0
                                                                         NORMAL
8
     UP
         UP
              148000000 VIDEO A
                                      256 5361 I12-J17
                                                                   34.0
                                                                         NORMAL
               154000000 VIDEO A
160000000 VIDEO A
9
         UP
                                      256
                                            5361 I12-J17
                                                                   34.0
     UP
                                                                         NORMAL
10
     UP
          UP
                                      256
                                            5361 I12-J17
                                                                   34.0
                                                                          NORMAL
```

Configuration Examples

This section provides configuration examples for the QAM video carrier.

Video QAM Carriers

The following is a sample for the Video QAM carrier configuration:

```
Router#enable
Router(config) #cable downstream qam-profile 4
Router(config-qam-prof) #annex A 6MHz
Router(config-gam-prof) #modulation 256
Router(config-qam-prof) #interleaver-depth I32-J4
Router(config-qam-prof) #symbol-rate 5361
Router(config-qam-prof) #spectrum-inversion off
Router(config-qam-prof) #description default-annex-a-256-qam
Router(config-qam-prof) #exit
Router(config) #controller Integrated-Cable 3/0/0
Router(config-controller) #max-carrier 128
Router(config-controller) #base-channel-power 34
Router(config-controller) #freq-profile 0
Router(config-controller) #rf-chan 0 95
Router(config-rf-chan) #type video
Router(config-rf-chan) #frequency 93000000
Router(config-rf-chan) #rf-output NORMAL
Router(config-rf-chan) #power-adjust 0
Router(config-rf-chan) #docsis-channel-id 1
Router(config-rf-chan) #qam-profile 1
```

Feature Information for QAM Video Carriers

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 4: Feature Information for QAM Video Carriers

Feature Name	Releases	Feature Information
QAM Video Carriers	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.
Annex A Variable Channel Witdh	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Feature Information for QAM Video Carriers

Logical Edge Devices

A Logical Edge Device (LED) is a virtual edge device within the cBR-8 and can be provisioned for static or dynamic sessions.

Contents

- Information about Logical Edge Devices, on page 19
- How to Configure the Logical Edge Devices, on page 19
- Configuration Examples, on page 27
- Feature Information for Logical Edge Devices, on page 28

Information about Logical Edge Devices

An LED interfaces remotely to a head end video Session Resource Manager (SRM) using the GQI protocol. It also represents a group of locally managed table-based video sessions.

In Cisco cBR-8, you can create up to 32 LEDs to simultaneously manage the video QAM carriers. Each LED manages a set of virtual QAM carriers independently. Due to the limitation of the GQI protocol, a GQI LED can only manage a set of QAM carriers in a single line card, unlike the table-based LED, which can manage more than a single line card.

In addition, an LED can be optionally configured to support the D6 discovery protocol to report a QAM resource to the SRM.

How to Configure the Logical Edge Devices

This section describes how to configure LEDs for the video session on Cisco cBR-8.

Configuring Session-Based (Dynamic) Logical Edge Devices

GQI is a protocol for the GQI LED to interface with the remote SRM.

For system using discovery protocol, the D6 discovery protocol should be enabled to report the QAM resources of the LED to the remote SRM.

An active flag should be enabled on the LED to indicate that it is active. This flag indicates that the connectivity with the SRM can be setup and the LED can start handling GQI message exchange from the SRM.

You cannot edit or remove the LED data when it is in the active mode. To do so, you must first move the LED to inactive mode and then disconnect it from the SRM.

Due to the limitations of the GQI protocol, GQI LED cannot have Virtual Carrier Groups that span across multiple cable line cards (CLC).

Note

In Cisco IOS-XE Release 16.5.1, only GQI version 2 is supported for all GQI LEDs.

Before You Begin

The following data is necessary to define a GQI LED:

- The Management IP address that the SRM uses to setup connectivity with the LED. The IP address must be in the same subnet as configured in the VirtualPortGoup.
- A unique MAC address per LED. Using the chassis MAC address as a basis, increment the least significant number to give a unique identifier (MAC address) for each LED. This number should be unique with respect to the GQI server and does not really relate to a true MAC address. Thus, the number is irrelevant, but needs to be unique.

Tip

Use the **show diag all eeprom detail | include MAC** command to get the chassis MAC address.

- The primary and secondary IP addresses of the remote SRM.
- Virtual Carrier Group (VCG). For more information, see Video Virtual Carrier Group and Virtual Edge Input.
- Connection-orientated controls such as, keep alive, reset interval, and timeout value.
- Virtual Edge Input (VEI) configured with a routable IP address from within the network. For more information, see Video Virtual Carrier Group and Virtual Edge Input.

To configure the session-based LEDs, complete the following procedure:

```
configure terminal
cable video
logical-edge-device name [id number]
protocol gqi
mgmt-ip ip address
server ip address
virtual-edge-input ip address input-port-number port number
vcg vcg name
vcg vcg name
mac-address mac address
keepalive retry retry count interval seconds
reset interval seconds
active
```

Verifying the Session-Based (Dynamic) Logical Edge Devices Configuration

To verify a GQI LED configuration, use the **show cable video logical-edge-device** command as shown in the example below:

```
show cable video logical-edge-device id 1
Logical Edge Device: led
Id: 1
Protocol: GOI
Service State: Active
Discovery State: Disable
Management IP: 1.33.2.10
MAC Address: c414.3c17.6000
Number of Servers: 2
  Server 1: 1.200.1.193
   Server 2: 1.200.1.183
Reset Interval: 5
                       Retry Count:3
Keepalive Interval: 5
Number of Virtual Carrier Groups: 2
Number of Share Virtual Edge Input: 1
Number of Physical Qams: 94
Number of Sessions: 240
No Reserve PID Range
Virtual Edge Input:
Input Port VEI
                                  Slot/Bay
                                               Bundle
                                                            Gateway
ID
             ΙP
                                               ID
                                                            ΙP
             174.102.1.1
                                  7/0
Virtual Carrier Group:
    Name
                                       Total
                                                  Total
                                                             Service-Distribution-Group
    Service-Distribution-Group
                                       VET
                                                  RF-channel Name
    ID
1
      vcg
                                       0
                                                  28
                                                              sda
    1
2
                                       Λ
                                                  19
      vcg-2
                                                              sdg
                                                                 ONTD
Integrated
                Physical
                         Admin
                                      Operational TSID
                                                                              Output
VCG
                          Encryption
Cable
                QAM ID
                          State
                                      State
                                                                              Port
             ID
                          Capable
ID
7/0/0:20
                2.0
                                                                 1000
                          ON
                                      IJΡ
                                                   1
                                                                              1
1
             1
                          powerkey
7/0/0:21
                           ON
                                      UP
                                                                 1000
                                                                              2
1
             1
                          powerkey
7/0/0:22
                           ON
                                      UP
                                                                 1000
                                                                              3
1
             1
                          powerkey
7/0/0:23
                2.3
                                      IJΡ
                                                   4
                                                                 1000
                                                                              4
                           ON
             1
                          powerkey
7/0/0:24
                2.4
                           ON
                                      ΠP
                                                   5
                                                                 1000
                                                                              5
             1
1
                          powerkey
7/0/0:25
                25
                                      UP
                                                    6
                                                                 1000
                                                                              6
                           ON
```

IJΡ

ΠP

UP

8

9

powerkey

powerkey

powerkey

powerkey

ON

ON

ON

1

1

1

1

2.6

27

28

7/0/0:26

7/0/0:27

7/0/0:28

1

1

1000

1000

1000

7

8

9

7/0/0:29	29	ON	UP	10	1000	10
1 7/0/0:30	1 30	powerkey ON	UP	11	1000	11
1 7/0/0:31	1 31	powerkey ON	UP	12	1000	12
1 7/0/0:32	1 32	powerkey ON	UP	13	1000	13
1 7/0/0:33	1 33	powerkey ON	UP	14	1000	14
1 7/0/0:34	1 34	powerkey ON	UP	15	1000	15
1 7/0/0:35	1 35	powerkey ON	UP	16	1000	16
1 7/0/0:36	1 36	powerkey ON	UP	17	1000	17
1	1	powerkey				
7/0/0:37 1	37 1	ON powerkey	UP	18	1000	18
7/0/0:38 1	38 1	ON powerkey	UP	19	1000	19
7/0/0:39 1	39 1	ON powerkey	UP	20	1000	20
7/0/0:40 1	40	ON powerkey	UP	21	1000	21
7/0/0:41 1	41	ON powerkey	UP	22	1000	22
7/0/0:42 1	42	ON	UP	23	1000	23
7/0/0:43	43	powerkey ON	UP	24	1000	24
1 7/0/0:44	1 44	powerkey ON	UP	25	1000	25
1 7/0/0:45	1 45	powerkey ON	UP	26	1000	26
1 7/0/0:46	1 46	powerkey ON	UP	27	1000	27
1 7/0/0:47	1 47	powerkey ON	UP	28	1000	28
1 7/0/7:20	1 20	powerkey ON	UP	1	1000	1
1 7/0/7:21	1 21	powerkey ON	UP	2	1000	2
1 7/0/7:22	1 22	powerkey ON	UP	3	1000	3
1 7/0/7:23	1 23	powerkey ON		4	1000	4
1	1	powerkey	UP			
7/0/7:24	24	ON powerkey	UP	5	1000	5
7/0/7 : 25 1	25 1	ON powerkey	UP	6	1000	6
7/0/7:26 1	26 1	ON powerkey	UP	7	1000	7
7/0/7:27 1	27 1	ON powerkey	UP	8	1000	8
7/0/7:28 1	28 1	ON powerkey	UP	9	1000	9
7/0/7:29 1	29 1	ON powerkey	UP	10	1000	10
7/0/7:30	30	ON	UP	11	1000	11
7/0/7:31	31	powerkey ON	UP	12	1000	12
1 7/0/7:32	1 32	powerkey ON	UP	13	1000	13
1	1	powerkey				

7/0/7:33		33	ON	UP	14	1000	14
1 7/0/7:34	1	34	powerkey ON	UP	15	1000	15
1 7/0/7:35	1	35	powerkey ON	UP	16	1000	16
1 7/0/7:36	1	36	powerkey ON		17	1000	17
1	1		powerkey	UP			
7/0/7 : 37 1	1	37	ON powerkey	UP	18	1000	18
7/0/7:38 1	1	38	ON powerkey	UP	19	1000	19
7/0/7:39		39	ON	UP	20	1000	20
1 7/0/7:40	1	40	powerkey ON	UP	21	1000	21
1 7/0/7:41	1	41	powerkey ON	UP	22	1000	22
1 7/0/7:42	1	42	powerkey ON	UP	23	1000	23
1	1		powerkey				
7/0/7:43 1	1	43	ON powerkey	UP	24	1000	24
7/0/7:44 1	1	44	ON powerkey	UP	25	1000	25
7/0/7:45 1	1	45	ON powerkey	UP	26	1000	26
7/0/7:46		46	ON	UP	27	1000	27
1 7/0/7 : 47	1	47	powerkey ON	UP	28	1000	28
1 7/0/0:1	1	1	powerkey ON	UP	29	1000	29
2 7/0/0:2	1	2	powerkey ON	UP	30	1000	30
2	1		powerkey				
7/0/0:3 2	1	3	ON powerkey	UP	31	1000	31
7/0/0:4 2	1	4	ON powerkey	UP	32	1000	32
7/0/0:5 2	1	5	ON powerkey	UP	33	1000	33
7/0/0:6		6	ON	UP	34	1000	34
2 7/0/0:7	1	7	powerkey ON	UP	35	1000	35
2 7/0/0:8	1	8	powerkey ON	UP	36	1000	36
2 7/0/0:9	1	9	powerkey ON	UP	37	1000	37
2	1		powerkey				
7/0/0:10 2	1	10	ON powerkey	UP	38	1000	38
7/0/0:11 2	1	11	ON powerkey	UP	39	1000	39
7/0/0:12 2	1	12	ON powerkey	UP	40	1000	40
7/0/0:13		13	ON	UP	41	1000	41
2 7/0/0:14	1	14	powerkey ON	UP	42	1000	42
2 7/0/0:15	1	15	powerkey ON	UP	43	1000	43
2 7/0/0:16	1	16	powerkey ON	UP	44	1000	44
2	1		powerkey				
7/0/0:17 2	1	17	ON powerkey	UP	45	1000	45

7/0/0:18		18	ON	UP	46	1000	46
2	1		powerkey				
7/0/0:19		19	ON	UP	47	1000	47
2	1		powerkey				
7/0/7:1	_	1	ON	UP	29	1000	29
	-	1		OF	29	1000	23
2	1		powerkey				
7/0/7:2		2	ON	UP	30	1000	30
2	1		powerkey				
7/0/7:3		3	ON	UP	31	1000	31
2	1		powerkey				
7/0/7:4		4	ON	UP	32	1000	32
2	1		powerkey				
7/0/7:5		5	ON	UP	33	1000	33
	-	J		OF	33	1000	33
2	1	_	powerkey				
7/0/7:6		6	ON	UP	34	1000	34
2	1		powerkey				
7/0/7:7		7	ON	UP	35	1000	35
2	1		powerkey				
7/0/7:8		8	ON	UP	36	1000	36
2	1		powerkey				
7/0/7:9	_	9	ON	UP	37	1000	37
	1	9		OF	31	1000	3 /
2	1	4.0	powerkey		2.0	4000	
7/0/7:10		10	ON	UP	38	1000	38
2	1		powerkey				
7/0/7:11		11	ON	UP	39	1000	39
2	1		powerkey				
7/0/7:12		12	ON	UP	40	1000	40
2	1		powerkey				
7/0/7:13	_	13	ON	UP	41	1000	41
2	1	10		OI	41	1000	4.1
	1		powerkey			4000	
7/0/7:14		14	ON	UP	42	1000	42
2	1		powerkey				
7/0/7:15		15	ON	UP	43	1000	43
2	1		powerkey				
7/0/7:16		16	ON	UP	44	1000	44
2	1		powerkey				
7/0/7:17	_	17	ON	UP	45	1000	45
2	1	Ι/		OI	43	1000	40
	1	1.0	powerkey		4.6	1000	4.5
7/0/7:18		18	ON	UP	46	1000	46
2	1		powerkey				
7/0/7:19		19	ON	UP	47	1000	47
2	1		powerkey				

Configuring the D6 Discovery Protocol

D6 discovery protocol is the discovery portion of the Comcast Next Generation on Demand (NGOD) specification. D6 discovery protocol sends out carrier information such as frequency, annex, modulation mode, interleave, and edge input information such as IP address and maximum bandwidth to an Edge Resource Manager (ERM). D6 discovery protocol also sends unique structured names (topological location information) for each edge input or carrier output. From these structured names, and input and RF port numbers, the ERM can infer the topological network location of both the QAM streaming input port (IP) and RF output port (MPEG).

The D6 discovery protocol configuration can be performed only when the LED protocol is either table-based or GQI. The LED must be in inactive mode to edit or create a D6 discovery protocol configuration. The D6 discovery protocol configuration parameters are:

• Management IP—The source IP address used to establish a connection with the external D6 discovery protocol server (ERM). The IP address must be in the same subnet as configured in a virtual port group.

For GQI LED, this configuration is not needed under D6 discovery protocol as it is automatically fetched from the LED configuration.

- D6 discovery protocol server IP address and port—Identifies the remote D6 discovery protocol server (ERM) IP address and listening port used by the D6 discovery protocol client in LED to setup a connection with the peer. You can configure only one server address and port per LED.
- FQDN (Fully Qualified Domain Name)—This can be given instead of IP address for D6 discovery protocol server.
- Streaming zone—Streaming zone as configured in the D6 discovery protocol server (ERM). The name should match with the configured D6 discovery protocol server in the ERM for the connection to be established.
- Component name—The name of the Edge QAM device. Each LED is considered by the D6 discovery
 protocol server as a separate Edge QAM component. This name is used by the D6 discovery protocol
 server to represent the LED.
- Timeout value—(Optional) Time to wait for connection in socket call.
- Hold time value—(Optional) Time interval that decides the interval of the keepalive message exchange between the client and the server.
- Input group—(Optional) Each virtual edge input IP address under the LED can be assigned an input group name and the maximum bandwidth that is used to send traffic to it. This information is used in D6 discovery protocol messages when advertising the edge inputs to the D6 discovery protocol server. If these parameters are not configured then for group name, the LED or the VCG name, and the default bandwidth of 20 Gbps are used. You must repeat this command for each VEI and VCG under the LED. For GQI LED, there is no option to set VEI IP under the VCG, so, this input group CLI is not available for the VCGs for GQI LEDs.

To configure the D6 discovery protocol, complete the following procedure:

```
cable video

logical-edge-device
device name [id
number]

protocol
gqi | table-based

mgmt-ip
ip address

server
ip address

virtual-edge-input
```

```
ip address
```

input-port-number

port number

vcg

vcg name

vcg

vcg name

mac-address

mac address

keepalive retry

retry count

interval

seconds

reset interval

seconds

discovery d6

streaming-zone

name

component-name

name

d6-server

ip address [port]

d6-server fqdn

domain-name

timeout

seconds

holdtime

seconds

input-group led vei-ip

led vei ip address

group-name

group name [bandwidth
 mbps]

exit

active

Verifying the D6 Configuration

To verify the D6 discovery protocol configuration, use the **show cable video logical-edge-device** command as shown in the example below.

This CLI command shows the status and statistics of the D6 client associated to the LED. In the example below, it shows the duration and number of open, updated, keepalive and notification messages exchanged between the D6 client and the server in that duration. It also indicates how many unknown or unrecognized messages are received from the server. When the open message count is more than 1, it indicates that the connection is terminated and reconnected.

show cable video logical-edge-device id 1 d6

```
Logical Edge Device: led1
Id: 1
D6 Summary:

Enabled : Yes
VREP Version : 2
D6 State : Established
Management IP : 1.21.2.11
Source Port : 6069
D6 Server IP : 172.25.20.144
D6 Server Port : 6069
Hold Time(negotiated): 30
Timeout : 90
Keep Alive Interval : 10
Streaming Zone : Sanjose.ciscolab
failure Reason : No Failure

D6 Statistics:

Duration Dir Open Update KeepAlive Notification Unknown

1 RX 1 0 9 0 0
1 TX 1 13 11 0 0
```

Configuration Examples

This section provides configuration examples for the LED configuration.

Example: GQI LED Configuration

Example: GOI LED Configuration

```
cable video
  mgmt-intf VirtualPortGroup 0
  encryption
    linecard 7/0 ca-system powerkey scrambler des
  service-distribution-group sdg id 1
    onid 1000
```

```
rf-port integrated-cable 7/0/0
 rf-port integrated-cable 7/0/7
virtual-carrier-group vcg id 1
 rf-channel 20-47 tsid 1-28 output-port-number 1-28
virtual-carrier-group vcg-2 id 2
 rf-channel 1-19 tsid 29-47 output-port-number 29-47
bind-vcg
 vcg vcg sdg sdg
 vcg vcg-2 sdg sdg
logical-edge-device led id 1
 protocol gqi
   mgmt-ip 1.33.2.10
   mac-address c414.3c17.6000
   server 1.200.1.193
   server 1.200.1.183
    virtual-edge-input-ip 174.102.1.1 input-port-number 1
   vca vca
   vcq vcq-2
   active
```

Feature Information for Logical Edge Devices

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 5: Feature Information for Logical Edge Devices

Feature Name	Releases	Feature Information
Logical Edge Devices	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Cisco Smart Licensing for Video

The Cisco Smart Licensing for Video on the Cisco cBR router leverages existing Cisco cBR Smart Licensing framework that includes Call Home and SLA capabilities.

- Video Smart Licensing, on page 29
- Information About Video Smart Licensing, on page 29
- How to Verify Video Smart Licensing, on page 30
- Configuration Examples, on page 31
- Use Cases or Deployment Scenarios, on page 32
- Feature Information for Video Smart Licensing, on page 34

Video Smart Licensing

The Cisco Smart Licensing feature uses a pooled license model. All FRUs in the chassis and multiple such chassis share the entitlements for Upstream (US), Downstream (DS), WAN, Narrowcast (NC), Broadcast (BC), encrypted licenses (PME, PKY, DVB), and Replicate (RPL) as long as they do not exceed the entitlement count for that pool.

For information on entitlement usage, see the Cisco Smart Licensing.

Information About Video Smart Licensing

Benefits of Smart Licensing

Cisco Smart Licensing is intended to overcome the limitations and issues of the enforced licensing method. For more information, see the Cisco Smart Licensing document.

Prerequisites for Video Smart Licensing

See the Cisco Smart Licensing document.

Restrictions for Video Smart Licensing

For video services, the VCG service type determines the number of licenses consumed for bound VCGs. The QAM channel **shut/no shut** state has no relevance for video (unlike DOCSIS services). When the service type is not defined, the NC license entitlements are consumed per QAM channel.

How to Verify Video Smart Licensing

Verifying Video Smart Licensing Using Show Commands

Use the **show cable license** command to verify video smart licensing configuration.

To verify all license information, use the **show cable license all** command:

Router# show cable license all Entitlement: Downstream License Consumed count: 768 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Upstream License Consumed count: 64 Consumed count reported to SmartAgent: 64 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: WAN License Consumed count: 2 Consumed count reported to SmartAgent: 2 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: LCHA License Consumed count: 0 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Video Narrowcast License Consumed count: 0 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Video Narrowcast Replicate License Consumed count: 0 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Video Narrowcast PKEY License Consumed count: 0 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Video Narrowcast PME License Consumed count: O Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement Entitlement: Video Narrowcast DVB License Consumed count: 0 Consumed count reported to SmartAgent: 0 Forced-Shut count: 0 Enforced state: No Enforcement

To view specific video license configuration, use the appropriate keyword with the **show cable license** command:

```
Router# show cable license ?

all Show all license information
ds DOCSIS downstreams
lcha LCHA groups
nc Narrowcast video
nc_dvb Narrowcast video DVB
nc_pky Narrowcast video PowerKEY
nc_pme Narrowcast video PME
nc_rpl Narrowcast video replicate
us DOCSIS upstreams
wan WAN ports
```

For example, to verify Narrowcast video configuration, use the **show cable license nc** command:

```
Router # show cable license nc
------
Entitlement: Video Narrowcast License
Consumed count: 128
Consumed count reported to SmartAgent: 128 Forced-Shut count: 0 Enforced state: No Enforcement
```

Configuration Examples

Example 1: Show Running Output for Basic Configuration

```
cable video
service-distribution-group sdg-lic id 64
  rf-port integrated-cable 7/0/0
service-distribution-group sdg-lic1 id 63
 rf-port integrated-cable 7/0/1
virtual-carrier-group vcg-lic1 id 158
 rf-channel 0 tsid 65535 output-port-number 1
virtual-carrier-group vcg-lic2 id 157
 rf-channel 1-3 tsid 65532-65534 output-port-number 2-4
virtual-carrier-group vcg-lic3 id 156
 rf-channel 4-7 tsid 65528-65531 output-port-number 5-8
virtual-carrier-group vcg-lic4 id 155
 rf-channel 8-15 tsid 65520-65527 output-port-number 9-16
virtual-carrier-group vcg-lic5 id 154
 rf-channel 16-31 tsid 65504-65519 output-port-number 17-32
virtual-carrier-group vcg-lic6 id 153
 rf-channel 32-63 tsid 65472-65503 output-port-number 33-64
virtual-carrier-group vcg-lic7 id 152
 rf-channel 64-127 tsid 65408-65471 output-port-number 65-128
virtual-carrier-group vcg-lic8 id 151
 rf-channel 0-127 tsid 65280-65407 output-port-number 129-256
bind-vcg
 vcg vcg-lic1 sdg sdg-lic
 vcg vcg-lic2 sdg sdg-lic
 vcg vcg-lic3 sdg sdg-lic
 vcg vcg-lic4 sdg sdg-lic
 vcg vcg-lic5 sdg sdg-lic
 vcg vcg-lic6 sdg sdg-lic
```

```
vcg vcg-lic7 sdg sdg-lic
vcg vcg-lic8 sdg sdg-lic1
exit
```

Example 2: Show Running Output for QRG and NC License Configuration

```
cable video
 service-distribution-group sdg-lic id 64
   rf-port integrated-cable 7/0/0
   rf-port integrated-cable 7/0/2
  service-distribution-group sdg-lic1 id 63
   rf-port integrated-cable 7/0/1
   rf-port integrated-cable 7/0/3
    rf-port integrated-cable 7/0/4
   rf-port integrated-cable 7/0/5
   rf-port integrated-cable 7/0/6
   rf-port integrated-cable 7/0/7
  virtual-carrier-group vcg-lic1 id 158
   rf-channel 0-55 tsid 65480-65535 output-port-number 1-56
   virtual-carrier-group vcg-lic2 id 157
   rf-channel 0-55 tsid 65424-65479 output-port-number 57-112
   vcg vcg-lic1 sdg sdg-lic
   vcg vcg-lic2 sdg sdg-lic1
exit
```

Use Cases or Deployment Scenarios

Case 1: Narrowcast Video Services with PowerKEY Encryption

```
cable video
linecard 7/0 ca-system powerkey scrambler des
 service-distribution-group sdg-lic id 64
 rf-port integrated-cable 7/0/0
  rf-port integrated-cable 7/0/2
 rf-port integrated-cable 7/0/3
 service-distribution-group sdg-lic1 id 63
 rf-port integrated-cable 7/0/1
 rf-port integrated-cable 7/0/4
  rf-port integrated-cable 7/0/5
 rf-port integrated-cable 7/0/6
 rf-port integrated-cable 7/0/7
virtual-carrier-group vcg-lic1 id 158
 rf-channel 0 tsid 65535 output-port-number 1
 virtual-carrier-group vcg-lic2 id 157
 rf-channel 1-3 tsid 65532-65534 utput-port-number 2-4
 virtual-carrier-group vcg-lic3 id 156
encrypt
 rf-channel 4-7 tsid 65528-65531 output-port-number 5-8
 virtual-carrier-group vcg-lic4 id 155
 rf-channel 8-15 tsid 65520-65527 output-port-number 9-16
virtual-carrier-group vcg-lic5 id 154
 rf-channel 16-31 tsid 65504-65519 output-port-number 17-32
```

```
virtual-carrier-group vcg-lic6 id 153
 rf-channel 32-63 tsid 65472-65503 output-port-number 33-64
virtual-carrier-group vcg-lic7 id 152
encrypt
 rf-channel 64-127 tsid 65408-65471 output-port-number 65-128
 virtual-carrier-group vcg-lic8 id 151
encrypt
 rf-channel 0-127 tsid 65280-65407 output-port-number 129-256
bind-vcq
 vcg vcg-lic1 sdg sdg-lic
 vcq vcq-lic2 sdq sdq-lic
 vcg vcg-lic3 sdg sdg-lic
 vcg vcg-lic4 sdg sdg-lic
 vcg vcg-lic5 sdg sdg-lic
 vcg vcg-lic6 sdg sdg-lic
 vcg vcg-lic7 sdg sdg-lic
 vcg vcg-lic8 sdg sdg-lic1
exit
```

Case 2: Narrowcast Video Services with PME Encryption

```
cable video
encrypt
linecard 7/0 ca-system pme scrambler dvs042
service-distribution-group sdg-lic id 64
 rf-port integrated-cable 7/0/0
 rf-port integrated-cable 7/0/2
 rf-port integrated-cable 7/0/3
service-distribution-group sdg-lic1 id 63
 rf-port integrated-cable 7/0/1
 rf-port integrated-cable 7/0/4
 rf-port integrated-cable 7/0/5
 rf-port integrated-cable 7/0/6
 rf-port integrated-cable 7/0/7
virtual-carrier-group vcg-lic1 id 158
 rf-channel 0 tsid 65535 output-port-number 1
virtual-carrier-group vcg-lic2 id 157
encrypt
 rf-channel 1-3 tsid 65532-65534 output-port-number 2-4
virtual-carrier-group vcg-lic3 id 156
 rf-channel 4-7 tsid 65528-65531 output-port-number 5-8
virtual-carrier-group vcg-lic4 id 155
encrypt
 rf-channel 8-15 tsid 65520-65527 output-port-number 9-16
virtual-carrier-group vcg-lic5 id 154
 rf-channel 16-31 tsid 65504-65519 output-port-number 17-32
virtual-carrier-group vcg-lic6 id 153
encrypt
 rf-channel 32-63 tsid 65472-65503 output-port-number 33-64
virtual-carrier-group vcg-lic7 id 152
 rf-channel 64-127 tsid 65408-65471 output-port-number 65-128
virtual-carrier-group vcg-lic8 id 151
encrypt
 rf-channel 0-127 tsid 65280-65407 output-port-number 129-256
bind-vcg
 vcg vcg-lic1 sdg sdg-lic
 vcg vcg-lic2 sdg sdg-lic
 vcg vcg-lic3 sdg sdg-lic
 vcg vcg-lic4 sdg sdg-lic
 vcg vcg-lic5 sdg sdg-lic
 vcg vcg-lic6 sdg sdg-lic
 vcg vcg-lic7 sdg sdg-lic
```

vcg vcg-lic8 sdg sdg-lic1
exit

Feature Information for Video Smart Licensing

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 6: Feature Information for Video Smart Licensing

Feature Name	Releases	Feature Information
Video Smart Licensing	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Physical to Virtual Binding

The Virtual Carrier Group (VCG) is bound to a Service Distribution Group (SDG) using a bind command (bind-vcg). This connects the virtual carriers to the physical ports listed in the SDG. After binding, a path from the Virtual Edge Input (VEI) is mapped to the RF ports.

- Information About Physical to Virtual Binding, on page 35
- How to Configure VPME Encryption, on page 35
- Configuration Examples, on page 36
- Feature Information for Physical to Virtual Binding, on page 37

Information About Physical to Virtual Binding

In general, more than one VCG can be bound to the same SDG, only if the RF-channels in the VCG are not overlapping each other. However, one VCG cannot be bound to multiple SDGs.

If you want to configure one VCG to multiple SDGs, you should configure QAM replication instead. For more information, see Configuring QAM Replication section.

How to Configure VPME Encryption

This section describes how to configure physical to virtual binding and QAM replication on Cisco cBR-8.

- Configuring Physical to Virtual Binding, on page 35
- Configuring QAM Replication, on page 36

Configuring Physical to Virtual Binding

To bind a set of virtual RF-channels defined in the VCG to the physical port in the SDG, perform the following:

enable
configure terminal
cable video
bind-vcg
vcg vcg-name sdg sdg-name
exit

Configuring QAM Replication

To configure QAM replication to one or more ports, add the ports to an SDG configuration as following:

```
enable
configure terminal
cable video
service-distribution-group name
rf-port integrated-cable slot/bay/port
rf-port integrated-cable slot/bay/port
exit
```

Configuration Examples

This section provides configuration examples for the physical to virtual binding configuration.

Example 1: Physical to Virtual Binding Configuration

The following is a sample in which the port 7/0/2 of SDG west-region binds with 0 to 10 RF-channels of VCG movie-channels to physically identify the 7/0/2:0 to 7/0/2:10 QAM carriers.

Example 1:

```
Router#config t
Router(config)#cable video
Router(config-video)#service-distribution-group west-region
Router(config-video-sdg)#rf-port integrated-cable 7/0/2
Router(config-video-sdg)#exit
Router(config-video)#virtual-carrier-group movie-channels
Router(config-video-vcg)#rf-channel 0-10 tsid 1-11 output-port-num 1-11
Router(config-video-vcg)#exit
Router(config-video)#bind-vcg
Router(config-video-bd)# vcg movie-channels sdg west-regions
```

Example 2: Physical to Virtual Binding Configuration

The following is a sample in which the *movie-channels* VCG and *news-channels* VCG bind with *west-regions* SDG.

Example 2:

```
Router#config t
Router(config)#cable video
Router(config-video)#service-distribution-group west-region
Router(config-video-sdg)#rf-port integrated-cable 7/0/2
Router(config-video-sdg)#exit
Router(config-video)#virtual-carrier-group movie-channels
Router(config-video-vcg)#rf-channel 0-10 tsid 1-11 output-port-num 1-11
Router(config-video-vcg)#exit
Router(config-video)#virtual-carrier-group news-channels
Router(config-video)#virtual-carrier-group news-channels
Router(config-video-vcg)#rf-channel 11-15 tsid 12-16 output-port-num 12-16
Router(config-video-vcg)#exit
Router(config-video-bd)# vcg movie-channels sdg west-regions
Router(config-video-bd)# vcg news-channels sdg west-regions
```

Example 3: QAM Replication Configuration

The following is a sample in which video replication is set across 7/0/0 and 7/0/1 ports:

Example 3:

```
Router#config t
Router(config)#cable video
Router(config-video)# service-distribution-group qrg-example
Router(config-video-sdg)# rf-port integrated-cable 7/0/0
Router(config-video-sdg)# rf-port integrated-cable 7/0/1
```

Feature Information for Physical to Virtual Binding

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 7: Feature Information for Physical to Virtual Binding

Feature Name	Releases	Feature Information
Physical to Virtual Binding	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Feature Information for Physical to Virtual Binding

Table Based Configuration

The table-based video is a local session management that provisions using CLI. The statically allocated local video sessions can be either unicast or multicast video stream.

- Information About Table Based Configuration, on page 39
- Configuring Table Based Session, on page 39
- Virtual Edge Input Bundling, on page 40
- Feature Information for Table Based Configuration, on page 42

Information About Table Based Configuration

Table-based video session configuration can be performed for a range or an individual session under each Quadrature Amplitude Modulation (QAM) carrier that is being assigned to a table-based Logical Edge Device (LED). In cBR-8, you can create multiple LEDs for table-based video sessions; each LED manages one set of QAM carriers for table-based sessions. Table-based sessions can be configured as a pass-through, remap, or a data piping session.

Configuring Table Based Session

To configure the encryption type for a VOD session, perform the following steps:

```
enable
configure terminal
cable video
table-based
vcg vcg-name
rf-channel n-m
session sess-name input-port id start-udp-port udp port number
num-sessions-per-qam 1-80 processing-type remap start-program n jitter
10-200 msec [cbr | vbr]
exit
```

Configuration Example

The following is a sample in which two sessions are created per RF channel, HBO-1 and HBO-2 are for channel 0, HBO-3 and HBO-4 are for channel 1. The destination IP address is obtained from VCG (if any), otherwise from the LED broadcast.

```
Router(config) #cable video
Router(config-video) #table-based
Router(config-video-tb) #vcg bcast
Router(config-video-tb-vcg) #rf-channel 0-1
Router(config-video-tb-vcg-sess) # session HBO input-port 10 start-udp-port 1
num-sessions-per-qam 2 processing-type remap start-program 1 jitter 100 cbr
Router(config-video-tb-vcg-sess) # session HBO bundle-id 1 start-udp-port 49152
num-sessions-per-qam 2 processing-type program start-program 1 jitter 100 cbr
```

Virtual Edge Input Bundling

Virtual Edge Input Bundling assists with load balancing from the Head End. This allows multiple VEIs to be accessed via a gateway, since it is unknown at the time of configuration which VEI the stream will come in on. Thus, when the Head End sends a stream to the gateway, it enters the cBR-8 in on any VEI in the bundle. VEI bundling can be performed only if table based protocol is used for a particular LED.

To bundle the VEIs, perform the following steps:

Before You Begin

- All video sessions must have unique UDP ports for the Head End.
- Create two or more Virtual Edge Inputs using the following command:

 $\verb|virtual-edge-input-ip| ipaddr | \verb|vrf| | \textit{vrfname}| input-port-number| \#$

Note

Same IP address cannot be used in more than one bundle.

```
enable
configure terminal
cable video
logical-edge-device
protocol table-based
vei-bundle id input-port-number #
exit
```

Verifying Virtual Edge Input Data

To verify the VEI data, use the following command:

```
Router# show cable video logical-edge-device [all | id | name]

Example:

Router# show cable video logical-edge-device id 1

Logical Edge Device: led-vei
Id: 1

Protocol: Table-based
Service State: Active
```

```
Discovery State: Disable
Number of Virtual Carrier Groups: 1
Number of Share Virtual Edge Input: 5
Number of Physical Qams: 5
Number of Sessions: 0
No Reserve PID Range
Virtual Edge Input:
Input Port VEI
                                Slot/Bay
                                             Bundle
TD
            ΤP
                                             TD
                                                         ΤP
11
        11.11.11.11 7/0
           22.22.22.22
                                7/0
          66.66.66.66 7/0
77.77.77.77 7/0
222.222.222.222 7/0
                                           40000
                                                       177.0.10.3
77
                                           40000
                                                        177.0.10.3
222
                                            40000
                                                         177.0.10.3
Virtual Carrier Group:
                      Total
TD Name
         Total
                                 Service-Distribution-Group
                                                             Service-Distribution-Group
            VEI
                      RF-channel Name
  vcq-vei 5
                                 sdq-vei
                                                              VCG
Integrated Physical Admin Operational TSID ONID Output
                                                                    SDG
                                                                           Encryption
            QAM ID State State
Cable
                                                      Port
                                                                           Capable
           208 ON UP
209 ON UP
210 ON UP
211 ON UP
212 ON ""
                                            0
7/0/3:0
                                         0
                                                     1
                                                              1
                                                                    1
                                                                           clear
7/0/3:1
                                         1
                                                                           clear
                                             0
7/0/3:2
                                                      3
                                                              1
                                                                    1
                                                                           clear
7/0/3:3
                                                                   1
                                                                           clear
7/0/3:4
                                                    5
                                                             1
                                                                   1
                                                                           clear
```

Verifying VEI Bundles

To view the VEI bundles, use the following command:

Router# show cable video vei-bundle all

Example:

This is a sample output of the show command that displays the VEI bundle details.

Router# show cable video vei-bundle all			
Input Port	VEI	Slot/Bay	Gateway
ID	IP		IP
33	33.33.33.33	7/0	177.0.10.3
44	44.44.44.44	7/0	177.0.10.3
66	66.66.66.66	7/0	177.0.10.3
77	77.77.77.77	7/0	177.0.10.3
222	222.222.222.222	7/0	177.0.10.3
	Input Port ID 33 44 66 77	Input Port VEI ID IP 33 33.33.33.33 44 44.44.44 66 66.66.66 77 77.77.77	Input Port VEI Slot/Bay ID IP 33 33.33.33.33 7/0 44 44.44.44 7/0 66 66.66.66.66 7/0 77 77.77.77.77 7/0

Configuration Example

The following is a sample in which five VEIs are created on VCG and bundled:

```
cable video
  service-distribution-group sdg-vei id 1
```

```
rf-port integrated-cable 7/0/3
  virtual-carrier-group vcg-vei id 1
   virtual-edge-input-ip 111.111.111.111 input-port-number 111
   virtual-edge-input-ip 222.222.222 input-port-number 222
   virtual-edge-input-ip 33.33.33 input-port-number 33
    virtual-edge-input-ip 44.44.44 input-port-number 44
   virtual-edge-input-ip 55.55.55.55 vrf Video-VOD-Vrf input-port-number 55
   rf-channel 0-4 tsid 0-4 output-port-number 1-5
 virtual-carrier-group vcg-vei1 id 2
   virtual-edge-input-ip 111.111.111.111 input-port-number 111
   virtual-edge-input-ip 222.222.222 input-port-number 222
   virtual-edge-input-ip 33.33.33 input-port-number 33
   virtual-edge-input-ip 44.44.44 input-port-number 44
   rf-channel 5-10 tsid 5-10 output-port-number 5-10
bind-vca
  vcq vcq-vei sdq sdq-vei
  vcg vcg-veilsdg sdg-vei
logical-edge-device led-vei id 1
  protocol table-based
   virtual-edge-input-ip 11.11.11.11 input-port-number 11
   virtual-edge-input-ip 22.22.22.22 input-port-number 22
   virtual-edge-input-ip 66.66.66 input-port-number 66
   virtual-edge-input-ip 77.77.77 input-port-number 77
    virtual-edge-input-ip 222.222.222 vrf Mgmt-MPEG-video-intf-vrf input-port-number
222
vcg vcg-vei
vei-bundle 40000 input-port-number 33,44,66,77,222
```

Feature Information for Table Based Configuration

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 8: Feature Information for Table Based Configuration

Feature Name	Releases	Feature Information
Table based configuration		This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Management IP Interface

The management interface is used for the video control plane messages, such as session creation and deletion, between the Logical Edge Devices (LED) and the external Edge Resource Manager (ERM) server.

Contents

- Information About Management IP Interface, on page 43
- How to Configure the Management IP Interface, on page 43
- Configuration Examples, on page 46
- Feature Information for Management IP Interface, on page 46

Information About Management IP Interface

Video Logical Edge Device (LED) communicates with an external Edge Resource Manager (ERM) and a D6 server via the management interface. The physical interface for the connection is a front panel WAN port.

The following are the characteristics of the management interface:

- The management interface configuration is applied on both active and standby supervisor. However, only the active supervisor's management interface is connected to the external server.
- VirtualPortGroup interface must be configured prior to configuring the cable video management interface.
- Cable video management interface must be configured prior to configuring an LED that uses the management interface.

How to Configure the Management IP Interface

This section describes how to configure the management IP interface for the video session on Cisco cBR-8. Configuring the Management IP Interface consists of the following three steps:

- Configuring the VirtualPortGroup Interface, on page 44
- Configuring the Cable Video Management Interface, on page 45
- Configuring the LED Management Interface, on page 45

Configuring the VirtualPortGroup Interface

First step towards configuring the Management IP Interface is to configure a VirtualPortGroup interface. You can also configure secondary IP addresses on the VirutalPortGroup interface, similar to a gigabit Ethernet interface IP address configuration.

To configure the VirtualPortGroup interface, complete the following procedure:

```
configure terminal
interface VirtualPortGroup virtual port group number
ip address ip address subnet-mask
ip address ip address subnet-mask secondary
end
```

Verifying the VirtualPortGroup Interface Configuration

To verify the VirtualPortGroup interface configuration, use the **show run interface VirtualPortGroup** command as shown in the example below:

show run interface VirtualPortGroup 0

```
Building configuration...

Current configuration: 145 bytes!
interface VirtualPortGroup0
ip address 1.22.3.1 255.255.255.0 secondary
ip address 1.22.2.1 255.255.255.0
no mop enabled
no mop sysid
```

The VirtualPortGroup interface is in a down state. The interface comes up after the cable video management interface is configured.

Verifying the VirtualPortGroup Interface State

To verify the VirtualPortGroup interface state, use the **show interfaces VirtualPortGroup** command as shown in the example below:

show interfaces VirtualPortGroup 0

```
VirtualPortGroup0 is up, line protocol is up
 Hardware is Virtual Port Group, address is badb.ad09.7077 (bia badb.ad09.7077)
  Internet address is 1.22.2.1/24
  MTU 1500 bytes, BW 2500000 Kbit/sec, DLY 1000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive not supported
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input never, output 00:24:14, output hang never
  Last clearing of "show interface" counters never
  Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
     0 packets input, 0 bytes, 0 no buffer
     Received 0 broadcasts (0 IP multicasts)
     0 runts, 0 giants, 0 throttles
     0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
     O input packets with dribble condition detected
```

```
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 unknown protocol drops
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out
```

Troubleshooting Tips

• To check if the management interface IP route is up, use the following command:

```
show ip interface brief | include VirtualPortGroup 0
VirtualPortGroup0 1.22.2.1 YES NVRAM up up
```

• To ping the VirtualPortGroup interface, use the following command:

```
ping 1.22.2.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.22.2.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
```

Configuring the Cable Video Management Interface

Before You Begin

VirtualPortGroup interface must be configured before configuring the cable video management.

To configure the cable video management interface, complete the following procedure:

```
configure terminal
cable video
mgmt-interface VirtualPortGroup virtual port group number
end
```

Verifying the Cable Video Management Interface Configuration

To verify the VirtualPortGroup interface configuration, use the **show run** | **include mgmt-intf** command as shown in the example below:

```
show run | include mgmt-intf
mgmt-intf VirtualPortGroup 0
```

Configuring the LED Management Interface

Before You Begin

- Cable video management interface must be configured before configuring an LED that uses the management interface.
- Management IP address and the VirtualPortGroup IP address must be in the same subnet.

To configure the LED management interface, complete the following procedure:

```
configure terminal
cable video
logical-edge-device device name
```

```
protocol gqi
mgmt-ip management ip address
exit
```

Verifying the LED Management Interface Configuration

To verify the VirtualPortGroup interface state, use the **show run** | **begin logical-edge-device test** command as shown in the example below:

```
sh run | begin logical-edge-device test
logical-edge-device test id 2
protocol gqi
mgmt-ip 1.22.2.10
```

Troubleshooting Tips

To ping the management interface, use the following command:

```
video-LWR-S-C2# ping 1.22.2.10
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 1.22.2.10, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/1 ms
```

Configuration Examples

This section provides configuration examples for the management IP interface.

Management IP Interface

The following example shows how to create a management IP interface:

```
configure terminal
interface VirtualPortGroup 0
ip address 1.23.2.1 255.255.255.0
cable video
mgmt-interface VirtualPortGroup 0
logical-edge-device test id 2
protocol gqi
mgmt-ip 1.23.2.10
exit
exit
```

Feature Information for Management IP Interface

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 9: Feature Information for Management IP Interface

Feature Name	Releases	Feature Information
Management IP Interface	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Feature Information for Management IP Interface

Video Encryption

The Cisco cBR-8 supports PowerKey and Privacy Mode Encryption (PME) encryption CA systems for Video On Demand (VOD) sessions to address security concerns. However, only one encryption type can be installed on the line card. There are two levels to the CA system. The lower level encrypts the actual data streams. The upper level specifies the control words that are used to encrypt the data streams.

- Information About Encryption, on page 49
- How to Configure Encryption for the Data Stream, on page 50
- Configuration Examples for Encryption, on page 51
- Configuring Privacy Mode Encryption, on page 51
- Feature Information for Encryption, on page 54

Information About Encryption

The encrypted sessions can be created on any QAM carriers on a line card. Only the Single Program Transport Stream (SPTS) VOD session can be encrypted. Encryption is not supported on the Pass-through, and Data-piping sessions.

The VOD session can be encrypted in any of the following types of encryption:

- PowerKey for video session management protocol GQI
- Privacy Mode Encryption (PME) for Table-based session
- Digital Video Broadcasting (DVB)

The scrambler mode varies based on the type of encryption, as given in the following table:

Table 10: Supported Encryption Types and Scrambler Modes

Encryption Type	Scrambler Mode
PowerKey	DES, 3DES
PME	DVS-042
DVB	DVB-CSA

Prerequisites for Encryption

You should configure the Virtual Carrier Group (VCG) to setup an encrypted session. For more details, see the Configuring Virtual Carrier Group, on page 50.

How to Configure Encryption for the Data Stream

This section describes how to configure encryption for the video session on Cisco cBR-8.

- Enforcing Data Stream Encryption Type, on page 50
- Configuring Virtual Carrier Group, on page 50
- Verifying Encryption Configuration, on page 51

Enforcing Data Stream Encryption Type

Note

Once the line card and VCG are configured for PowerKey encryption, further configuration of the Cisco cBR-8 is not required.

To configure the encryption type for a VOD session, perform the following steps:

Before You Begin

Configure the Virtual Carrier Group (VCG) to setup an encrypted session. For more details, see .

```
enable
configure terminal
cable video
encryption
linecard slot/bay ca-system [dvb | pme | powerkey] scrambler scrambler-type
exit
```

Configuring Virtual Carrier Group

To configure the Virtual Carrier Group (VCG) for setting up an encrypted session, perform the following steps:

```
enable
configure terminal
cable video
virtual-carrier-group name [id #]
rf-channel start-channel#-end-channel# tsid start-tsid-end-tsid output-port-number
    start-number-end-num
virtual-edge-input ipaddr input-port-number #
encrypt
exit
```

Verifying Encryption Configuration

To verify the encryption configurations, use the following command:

show cable video encryption linecard [all | slot number]

Example 1:

Example 2:

Configuration Examples for Encryption

This section provides configuration examples for the Encryption feature.

Example: Enforcing Data Stream Encryption Type

The following is a sample in which the line card in slot 7 is configured for powerkey encryption.

Router(config)#cable video Router(config-video)#encryption
Router(config-video-encrypt)#linecard 7/0 ca-system powerkey scrambler des

Example: Configuring Virtual Carrier Group

The following is a sample in which the QAM channel from 64 to 158 are encryption capable if the virtual channels are successfully bound to a Service Distribution Group. The sessions created on those QAM carriers are encrypted using the scrambler installed on the line card.

```
Router(config) #cable video
Router(config-video) #virtual-carrier-group sdv-grp
Router(config-video-vcg) #rf-channel 64-158 tsid 64-158 output-port-number 64-158
Router(config-video-vcg) virtual-edge-input 14.1.1.1 input-port-number 1
Router(config-video-vcg) encrypt
Router(config-video-vcg) #exit
```

Configuring Privacy Mode Encryption

Only one device from the MSO site can communicate with the Encryption Renewal System (ERS) and obtain the latest ECM templates. The CEM communicates with the ERS and sends the ECM templates to the Cisco Edge QAM devices in the MSO site.

You can configure the following:

 VODS-ID—IDs assigned by CCAD or ARRIS to the MSO site. The configured VODS-ID on the Cisco cBR-8 and the CEM must be same.

- CEM IP—Interface IP of the Windows/Linux system through which the CEM can be reached by Cisco cBR-8.
- CEM Port—Port number on which the CEM listens for connections from the Cisco cBR-8.
- Management Interface—Source IP address of the Cisco cBR-8 virtual interface through which the connection must be established with the CEM server.

Note

There can be only one entry for VODS-ID, CEM IP, CEM Port, and Management Interface IP. If you configure any new values for these parameters, the previous configuration is cleared. You can clear the configurations using the 'no' form of the command.

Configuring VODS-ID

To configure the VODS-ID of the CEM, perform the following steps:

```
enable
configure terminal
cable video
encryption
pme vodsid id
exit
```

Configuring CEM IP and Port

To configure the CEM IP and port of the CEM, perform the following steps:

```
enable
configure terminal
cable video
encryption
pme cem ip-address tcp_port
exit
```

Configuring Management IP

To configure the PME management IP address to establish CEM connection, perform the following steps:

Before You Begin

The virtual port group must be configured before configuring the management IP. For more information, see the *Configuring a VirtualPortGroup iIterface* section.

```
enable
configure terminal
cable video
encryption
pme mgmt-ip ip-address
exit
```

Verifying PME Connection Status

To verify the connection status between the Cisco Converged EdgeQAMManager (CEM) application and the Cisco cBR-8,use the following command:

```
show cable video encryption linecard [all | slot number]
```

This command displays the following information:

- VODS-ID—Specifies the configured VODS-ID on the CEM and Cisco cBR-8.
- CEM IP—Specifies the IP through which CEM can be reached by Cisco cBR-8.
- CEM Port—Specifies the port on which the CEM obtain connections from Cisco cBR-8.
- Local Mgmt IP—Specifies the Cisco cBR-8 interface through which the connection is established with the CEM.
- Local Port—Specifies the Local Port number assigned for the connection with the CEM.
- CEM Connection State—Specifies the status of the connection with the CEM (Connected (or) Not Connected).
- Count of ECMs recd—Specifies the count of ECMs received from the CEM.

Example:

This is a sample output of the show command that displays the connection status of PME.

```
Router#show cable video encryption pme status

PME Connection Status:

VODS-ID : 111

CEM IP : 1.200.1.163

CEM Port : 5000

Local Mgmt IP : 1.24.2.6

Local Port : 50394

CEM Connection State : Connected Count of ECMs recd : 2
```

Verifying PME Version

To verify the version information of the PME module loaded in the chassis, use the following command:

```
show cablevideo encryption pme version
```

The version information is read from the IOS PME subsystem. The version information displays in MAJOR.MINOR version format.

Example:

This is a sample output of the show command that displays the version details of PME.

```
Router#show cable video encryption pme version PME Version: 1.0
```

Verifying PME Sessions on a Line Card

To verify the sessions that use the PME modules that are loaded on a specific line card, use the following command:

```
show cable video encryption pme linecard [slot | bay] session {1-65535 | all |
    summary}
```

Example 1:

This is a sample output of the show command that displays the session details that use PME modules.

```
Router#show cable video encryption pme linecard 7/0 session all Count of ECMG Streams: 4
======= ECMG Stream DATA ===========
ID num EcmId CP# CwE CPDur NomCPD EcmRqst EcmRsp
0020(0032) 0020(0032) 0002 0 0 40000 7 2
0021(0033) 0021(0033) 0002 0 0 40000 7 2
0040(0064) 0040(0064) 0002 0 0 40000 7 2
0041(0065) 0041(0065) 0002 0 0 40000 7 2
video-LWR-B-A7B#show cable video encryption pme linecard 7/0 session 32 Stream 32, session
7681 is active
Stream number = 32 Session number = 7681
ECM requests = 8 ECM replies = 2
ECM ID = 32 CryptoPeriod num = 2
CP duration = 0 Nominal duration = 40000
CA transfer mode = 1 Stream status = No Error Blob details
video-LWR-B-A7B#show cable video encryption pme linecard 7/0 session summary Currently
active streams:
Active = 4 ECM req/resp mismatch = 4
ECM req, all streams = 32 ECM resp, all streams = 8
Since last reset:
Sessions created = 4 Sessions deleted = 0
ECMs received = 2 ECMs discarded = 0
```

Feature Information for Encryption

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 11: Feature Information for Encryption

Feature Name	Releases	Feature Information
Encryption	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Global Video Configuration

You can perform some global configurations for provisioning the video services. These configurations have some default values. If you do not choose to change those values, the default values are used. The following sections describe the procedures for global configurations.

Contents

- Configuring the Default ONID, on page 55
- Configuring the Default PSI interval, on page 55
- Configuring Video Session Timeouts, on page 56
- Configuration Examples, on page 56
- Feature Information for Global Video Configuration, on page 56

Configuring the Default ONID

By default, the system ONID is 0, which is commonly used in North America. If the default value of the ONID is used, the TSID must be unique. You can change the default ONID. If you change the ONID, the TSID-ONID pair must be unique. The ONID must be in the range of 0 to 65535.

configure terminal
cable video
default-onid default onid number

Configuring the Default PSI interval

By default, the Program Specific Information (PSI) interval is 100 msec. You can change the default PSI interval. The PSI interval must be in the range of 40 to 1000.

configure terminal
cable video
default-psi-interval default-psi-interval msec

Configuring Video Session Timeouts

The default video session init timeout is 1000 msec, the idle session timeout is 250 msec, and the off session timeout is 60 seconds. You can change these default values. The following are the permissible ranges for the timeouts:

- Init session timeout—100 to 60000
- Idle session timeout —100 to 5000
- Off session timeout —1 to 1800

```
configure terminal
cable video
timeout init-session timeout msec
timeout idle-session timeout msec
timeout off-session timeout sec
```

Configuration Examples

This section provides examples for the global video configuration.

Example: Global Video Configuration

```
configure terminal
cable video
default-onid 10
default- psi-interval 50
timeout init-session 200 msec
timeout idle-session 250 msec
timeout off-session 500 sec
```

Feature Information for Global Video Configuration

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 12: Feature Information for Global Video Configuration

Feature Name	Releases	Feature Information
Global Video Configuration		This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Feature Information for Global Video Configuration

Advanced Video MPEG Features

Cisco cBR Series Converged Broadband Router supports the following video features.

- Information about Advanced Video MPEG Features, on page 59
- How to Configure Advanced Video MPEG Features, on page 59
- Configuration Examples for Advanced Video MPEG Features, on page 60
- Feature Information for Advanced Video MPEG Features, on page 60

Information about Advanced Video MPEG Features

Reserved Output PID Range

The reserved output PID range allows the user to specify a range of PIDs that will not be used as output for remapped sessions. A range of up to 4000 PIDs from 1-8190 can be reserved.

One continuous reserved PID range is supported for each chassis. Note that the protection is only good for future output remapped PIDs, so the reserved PID range is expected to be configured before any remapped sessions are created. Remapped PIDs within the reserved range that already exists will not be reallocated.

How to Configure Advanced Video MPEG Features

Configuring Reserved Output PID Range

To configure reserved output range, follow the steps below:

enable
configure terminal
cable video
reserve-pid-range start-pid-end-pid

Verifying Reserved Output PID Range Configuration

To verify the reserved output PID range configuration, use the **show cable video logical-edge-device id** *id* **reserve-pid-range** command as shown in the example below.

Router# show cable video logical-edge-device id 1 reserve-pid-range Logical Edge Device: led1 Id: 1 Reserve PID Range: 1-4000

Configuration Examples for Advanced Video MPEG Features

This section provides configuration examples for the advanced video MPEG features:

Example: Configuring Reserved Output PID Range

The following example shows how to configure reserved output PID range.

enable
configure terminal
cable video
reserve-pid-range 4000-4100

Feature Information for Advanced Video MPEG Features

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Note

The table below lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 13: Feature Information for Advanced Video MPEG Features

Feature Name	Releases	Feature Information
Advanced Video MPEG Features	Cisco IOS XE Everest 16.6.1	This feature was integrated on the Cisco cBR Series Converged Broadband Routers.

Important Notes

The following are some important notes for Management IP Interface and Virtual Routing Interface.

• Video Packet Routing Requirements, on page 61

Video Packet Routing Requirements

A routing protocol, such as OSPF or IS-IS, must be enabled on the cBR-8 in order for video data packets from the head end to reach the virtual QAMs. On the cBR-8, enable a routing protocol as described in the routing configuration guide.

Once the routing protocol is set up correctly, the cBR-8 will advertise the internal static routes for the video data path to the head end.

The user needs to configure the Virtual Edge Input (VEI) with a routable IP address from within the customer's network. More information, see Configuring Virtual Edge Input under Logical Edge Device.

Video Packet Routing Requirements