CONTENTS

CHAPTER 1

Dynamic Shared Secret 1
 Hardware Compatibility Matrix for the Cisco cBR Series Routers 2
 Prerequisites for Dynamic Shared Secret 2
 Restrictions for Dynamic Shared Secret 3
 General Restrictions for Dynamic Shared Secret 3
 Cable Modem Restrictions for Dynamic Shared Secret 4
 DHCP Restriction for Incognito Server and Thomson Cable Modems 4
 DOCSIS Compliance 5
 TFTP Restrictions 6
 Information About Dynamic Shared Secret 6
 Modes of Operation 7
 Operation of the Dynamic Shared Secret 8
 Interaction with Different Commands 8
 Performance Information 9
 SNMP Support 9
 System Error Messages 10
 Benefits 11
 Related Features 12
 How to Configure the Dynamic Shared Secret Feature 12
 Enabling and Configuring the Dynamic Shared Secret Feature 12
 Disabling the Dynamic Shared Secret on a Cable Interface 14
 Excluding Cable Modems from the Dynamic Shared Secret Feature 15
 Clearing the Lock on One or More Cable Modems 16
 Upgrading Firmware on the Cable Modems 17
 How to Monitor the Dynamic Shared Secret Feature 18
 Displaying Marked Cable Modems 18
Contents

Displaying the Current Dynamic Secrets 19
Troubleshooting Cable Modems with Dynamic Shared Secret 21
Configuration Examples for Dynamic Shared Secret 22
 Mark Configuration: Example 22
 Lock Configuration: Example 23
 Reject Configuration: Example 23
 Disabled Configuration: Example 24
Additional References 24
Feature Information for Dynamic Shared Secret 25

CHAPTER 2 Lawful Intercept Architecture 27
 Hardware Compatibility Matrix for the Cisco cBR Series Routers 27
 Prerequisites for Lawful Intercept 28
 Restrictions for Lawful Intercept 29
 Information About Lawful Intercept 29
 Introduction to Lawful Intercept 29
 Cisco Service Independent Intercept Architecture 30
 PacketCable Lawful Intercept Architecture 30
 Cisco cBR Series Routers 30
 VRF Aware LI 31
 Lawful Intercept- Redundant Mediation Devices 32
 Lawful Intercept MIBs 32
 Restricting Access to the Lawful Intercept MIBs 32
 Service Independent Intercept 33
 Restricting Access to Trusted Hosts (without Encryption) 33
 How to Configure Lawful Intercept 33
 Creating a Restricted SNMP View of Lawful Intercept MIBs 33
 Where to Go Next 35
 Enabling SNMP Notifications for Lawful Intercept 35
 Disabling SNMP Notifications 36
 Provisioning a MAC Intercept for Cable Modems Using SNMPv3 37
 Provisioning a MAC Intercept for a CPE Device Using SNMPv3 37
 Configuration Examples for Lawful Intercept 37
 Example: Enabling Mediation Device Access Lawful Intercept MIBs 37
Example: Configuring Lawful Intercept - Redundant Mediation Devices 38
Additional References 39
Feature Information for Lawful Intercept 40

CHAPTER 3
Cable Monitoring Feature for Cisco cBR Series Routers 41
Overview of Cable Monitor Command for cBR 42
Configuring Cable Monitoring for cBR Routers 42
Capturing Sniffed Packets 44
Capturing Sniffed Packets on an External Host 44
Capturing Sniffed Packets on a Local Hard Drive 45
Cable Monitor Packet Struct 47
Feature Information for Cable Monitoring 47

CHAPTER 4
Source-Based Rate Limit 49
Hardware Compatibility Matrix for the Cisco cBR Series Routers 49
Prerequisites for Source-Based Rate Limit 50
Restrictions for Source-Based Rate Limit 50
Information About Source-Based Rate Limit 51
How to Configure Source-Based Rate Limit 51
Configuring WAN-Side Source-Based Rate Limit 51
Configuring Control Plane Policing 52
Enabling WAN-Side Source-Based Rate Limit 54
Configuring WAN-Side Quarantine 54
Configuring Subscriber-Side Source-Based Rate Limit 55
Configuring Source-Based Rate Limit Ping-Bypass 56
Configuring Punt Policing 57
Verifying the Source-Based Rate Limit Configuration 57
Configuration Example for Source-Based Rate Limit 62
Default SBRL Configuration 63
Conversion of SBRL Subscriber-side Configuration from 16.8.x to 16.9.x 63
Conversion of Divert Rate Limit Configuration on the Cisco uBR10012 Router to SBRL Configuration on the Cisco cBR Series Routers 64
Additional References 67
Feature Information for Source-Based Rate Limit 67
CHAPTER 5

Cable Duplicate MAC Address Reject

- Hardware Compatibility Matrix for the Cisco cBR Series Routers
- Prerequisites for Cable Duplicate MAC Address Reject
- Restrictions for Cable Duplicate MAC Address Reject
- Information About Cable Duplicate MAC Address Reject
 - Early Authentication and Encryption
 - EAE Enforcement Policies
 - EAE Exclusion
 - BPI+ Security and Cloned Cable Modems
 - Logging of Cloned Cable Modems
 - DOCSIS 3.0 BPI+ Policy Enforcement
 - BPI+ Policy Enforcement Exclusion
- How to Configure EAE and BPI+ Enforcement Features
 - Configuring EAE Enforcement Policies
 - Configuring BPI+ Enforcement Policies
 - Configuring AES-128 for non-MTC DOCSIS3.0 Cable Modem
 - Verifying AES-128 for non-MTC DOCSIS3.0 Cable Modem
 - Troubleshooting Tips
- Configuration Example for EAE and BPI+ Enforcement Policies
- Verifying EAE and BPI+ Enforcement Policies
- What to Do Next
- System Messages Supporting Cable Duplicate MAC Address Reject
- Additional References
- Feature Information for Cable Duplicate MAC Address Reject

CHAPTER 6

Cable ARP Filtering

- Hardware Compatibility Matrix for the Cisco cBR Series Routers
- Prerequisites for Cable ARP Filtering
- Restrictions for Cable ARP Filtering
- Information About Cable ARP Filtering
 - Overview
 - Filtering ARP Traffic
 - Monitoring Filtered ARP Traffic
Chapter 7

Subscriber Management Packet Filtering Extension for DOCSIS 2.0

Hardware Compatibility Matrix for the Cisco cBR Series Routers
Prerequisites for Configuring Subscriber Management Packet Filtering
Restriction for Configuring Subscriber Management Packet Filtering
Information About Configuring Subscriber Management Packet Filtering
How to Configure Subscriber Management Packet Filtering
- Configuring the Filter Group
- Defining the Upstream and Downstream MTA Filter Group
- Defining the Upstream and Downstream STB Filter Group
- Defining the Upstream and Downstream PS Filter Group
Configuration Examples for Subscriber Management Packet Filtering
- Configuring the Filter Group: Example
- Defining the Upstream and Downstream MTA Filter Group: Example
- Defining the Upstream and Downstream STB Filter Group: Example
- Defining the Upstream and Downstream PS Filter Group: Example
Additional References
Feature Information for Subscriber Management Packet Filtering 104

CHAPTER 8

MAC Filtering 105

Hardware Compatibility Matrix for the Cisco cBR Series Routers 105

Information About MAC Filtering 106

How to Configure MAC Filtering 107

 Configuring MAC Filtering 107

 Verifying MAC Filtering 107

Configuration Examples for MAC Filtering 110

Feature Information for MAC Filtering 110
Dynamic Shared Secret

This document describes the Dynamic Shared Secret feature, which enables service providers to provide higher levels of security for their Data-over-Cable Service Interface Specifications (DOCSIS) cable networks. This feature uses randomized, single-use shared secrets to verify the DOCSIS configuration files that are downloaded to each cable modem.

The Dynamic Shared Secret feature automatically creates a unique DOCSIS shared secret on a per-modem basis, creating a one-time use DOCSIS configuration file that is valid only for the current session. This ensures that a DOCSIS configuration file that has been downloaded for one cable modem can never be used by any other modem, nor can the same modem reuse this configuration file at a later time.

This patented feature is designed to guarantee that all registered modems use only the quality of service (QoS) parameters that have been specified by the DOCSIS provisioning system for a particular modem at the time of its registration. This feature is an accepted DOCSIS standard.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

- Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 2
- Prerequisites for Dynamic Shared Secret, on page 2
- Restrictions for Dynamic Shared Secret, on page 3
- Information About Dynamic Shared Secret, on page 6
- How to Configure the Dynamic Shared Secret Feature, on page 12
- How to Monitor the Dynamic Shared Secret Feature, on page 18
- Troubleshooting Cable Modems with Dynamic Shared Secret, on page 21
- Configuration Examples for Dynamic Shared Secret, on page 22
- Additional References, on page 24
- Feature Information for Dynamic Shared Secret, on page 25
Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.

Table 1: Hardware Compatibility Matrix for the Cisco cBR Series Routers

<table>
<thead>
<tr>
<th>Cisco CMTS Platform</th>
<th>Processor Engine</th>
<th>Interface Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco cBR-8 Converged Broadband Router</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Supervisor:</td>
<td>Cisco cBR-8 CCAP Line Cards:</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-250G</td>
<td>• PID—CBR-LC-8D30-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-160G</td>
<td>• PID—CBR-LC-8D31-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-60G</td>
<td>• PID—CBR-RF-PIC</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-8X10G-PIC</td>
<td>• PID—CBR-RF-PROT-PIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco cBR-8 Downstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D30-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D31-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco cBR-8 Upstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D30-US-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D31-US-MOD</td>
</tr>
</tbody>
</table>

Prerequisites for Dynamic Shared Secret

The configuration of Dynamic Shared Secret feature is supported on the Cisco CMTS routers.

Following is a list of other important prerequisites for the Dynamic Shared Secret feature:

• The Cisco CMTS must be running Cisco IOS-XE 3.15.0S or later.

• The Dynamic Shared Secret feature supports an external provisioning server.
Dynamic Shared Secret

Restrictions for Dynamic Shared Secret

General Restrictions for Dynamic Shared Secret

- A cable modem must be able to register with the Cisco CMTS before enabling the Dynamic Shared Secret feature.

- For full security, DOCSIS configuration files should have filenames that are at least 5 or more characters in length.

- For best performance during the provisioning of cable modems, we recommend using Cisco Network Registrar Release 3.5 or later.

Note

When the Dynamic Shared Secret feature is enabled using its default configuration, a cable modem diagnostic webpage shows a scrambled name for its DOCSIS configuration file. This filename changes randomly each time that the cable modem registers with the CMTS. To change the default behavior, use the `nocrypt` option with the `cable dynamic-secret` command.

Restrictions for Dynamic Shared Secret
Cable Modem Restrictions for Dynamic Shared Secret

DHCP Restriction for Incognito Server and Thomson Cable Modems

The Dynamic Host Configuration Protocol (DHCP) passes configuration information to DHCP hosts on a TCP/IP network. Configuration parameters and other control information are stored in the options field of the DHCP message.

When using DMIC with the Incognito DHCP server, the Incognito server must be re-configured so that the following two options are not sent in the DHCP message:

- **option 66** — This option is used to identify a TFTP server when the sname field in the DHCP header has been used for DHCP options. Option 66 is a variable-length field in the Options field of a DHCP message described as “an option used to identify a TFTP server when the 'sname' field in the DHCP header has been used for DHCP options” as per RFC 2132.

- **sname field** — The sname field is a 64-octet field in the header of a DHCP message described as "optional server host name, null terminated string," as per RFC2131. A DHCP server inserts this option if the returned parameters exceed the usual space allotted for options. If this option is present, the client interprets the specified additional fields after it concludes interpretation of the standard option fields.

It is not compliant with DOCSIS to include both of these options in the DHCP message.

The problematic packet capture below is a DHCP offer in which both sname and option 66 are set (in this respective sequence):

```
0000 00 30 19 47 8f 00 00 d0 b7 aa 95 50 08 00 45 00
0010 01 4a 8f 50 00 00 80 11 46 30 ac 10 02 01 ac 10
0020 0a 01 00 43 00 03 01 36 0c 75 02 01 06 00 b0 a0
0030 25 01 00 00 00 00 00 00 00 00 ac 10 0a 53 00 00
0040 00 00 ac 10 0a 01 00 10 95 25 a0 b0 00 00 00 00
0050 00 00 00 00 00 00 5b 31 37 32 2e 31 36 2e 32 2e
(sname option immediately above)
0060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0090 00 00 00 00 00 00 64 65 66 61 75 74 7e 74 2e 63 66
00a0 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00c0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00d0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0110 00 00 00 00 00 00 63 82 53 63 35 01 02 36 04 ac
0120 10 02 01 33 04 00 06 94 0d 01 04 ff ff ff 00 02
0130 04 ff ff b9 b0 03 08 ac 10 02 fe ac 10 0a 01 04
0140 04 ac 10 02 01 07 04 ac 10 02 01 42 0a 31 37 32
(option 66 immediately above)
0150 2e 31 36 2e 32 2e 31 ff
```

When using DMIC with Incognito DHCP servers and Thomson cable modems, you must prevent both options from being sent in the DHCP offer. Use one of the following workaround methods to achieve this:

- Change the Incognito DHCP server so that it does not include the sname option as described above.
• Change the cable modem code so that name is not prioritized above option 66, as in the problematic packet capture shown in the example above.

• Migrate to a compliant DHCP and TFTP server such as CNR. This also offers significantly higher performance.

Refer to these resources for additional DOCSIS DHCP information, or optional DHCP MAC exclusion:

• DHCP Options and BOOTP Vendor Extensions, RFC 2132
 http://www.ietf.org/rfc/rfc2132.txt

• Filtering Cable DHCP Lease Queries on Cisco CMTS Routers

DOCSIS Compliance

• Cable modems are assumed to be DOCSIS-compliant. If a cable modem is not fully DOCSIS-compliant, it could trigger a CMTS Message Integrity Check (MIC) failure during registration in rare circumstances. Under normal operations, however, it can be assumed that cable modems that fail the CMTS MIC check from the Dynamic Shared Secret feature are either not DOCSIS-compliant, or they might have been hacked by the end user to circumvent DOCSIS security features.

Some of the cable modems with the following OUIs have been identified as having problems with the Dynamic Shared Secret feature, depending on the hardware and software revisions:

• 00.01.03
• 00.E0.6F
• 00.02.B2

These particular cable modems can remain stuck in the init(o) MAC state and cannot come online until the Dynamic Shared Secret feature is disabled. If this problem occurs, Cisco recommends upgrading the cable modem’s software to a fully compliant software revision.

Alternatively, these cable modems may be excluded from the dynamic secret function using the following command in global configuration mode:

cable dynamic-secret exclude

Excluding cable modems means that if a violator chooses to modify their cable modem to use one of the excluded OUIs, then the system is no longer protected. Refer to the #unique_16.

Tip

To help providers to identify non-DOCSIS compliant modems in their network, the Dynamic Shared Secret feature supports a “mark-only” option. When operating in the mark-only mode, cable modems might be able to successfully obtain higher classes of service than are provisioned, but these cable modems will be marked as miscreant in the show cable modem displays (with !online, for example). Such cable modems also display with the show cable modem rogue command. Service providers may decide whether those cable modems must be upgraded to DOCSIS-compliant software, or whether the end users have hacked the cable modems for a theft-of-service attack.

The following example illustrates output from a Cisco CMTS that is configured with the cable dynamic-secret mark command with miscreant cable modems installed. These cable modems may briefly show up as "reject(m)" for up to three registration cycles before achieving the !online status.
Router# show cable modem rogue

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Vendor</th>
<th>Interface</th>
<th>Count</th>
<th>Dlnd</th>
<th>Dynamic Secret</th>
</tr>
</thead>
<tbody>
<tr>
<td>000f.0000.0133</td>
<td>00.0F.00</td>
<td>C4/0/U1</td>
<td>3</td>
<td>Yes</td>
<td>905B740F906848870B3A9C5E441CDD67</td>
</tr>
<tr>
<td>000f.0000.0130</td>
<td>00.0F.00</td>
<td>C4/0/U1</td>
<td>3</td>
<td>Yes</td>
<td>051AAB93062A984F55B7AC979D0501</td>
</tr>
<tr>
<td>000f.0000.0132</td>
<td>00.0F.00</td>
<td>C4/0/U2</td>
<td>3</td>
<td>Yes</td>
<td>FEDC1A6DA5C92A1823AFD2BBFAB9D9E1</td>
</tr>
</tbody>
</table>

TFTP Restrictions

- Cable modems can become stuck in the TFTP transfer state (this is indicated as init(o) by the `show cable modem` command) in the following situation:
 - The Dynamic Shared Secret feature is enabled on the cable interface, using the `cable dynamic-secret` command. This feature applies if the cable modem is a miscreant cable modem, or if the cable modem is a DOCSIS 1.0 cable modem running early DOCSIS 1.0 firmware that has not yet been updated. This feature also applies if the TFTP server is unable to provide the cable modem's TFTP configuration file to the Cisco CMTS. This is the case, for example, when using BACC and not configuring the system to permit a TFTP request from a non-matching source IP address. The `debug cable dynamic-secret` command also shows this failure.
 - A large number of cable modems are registering at the same time. Some or all of those cable modems could also be downloading the DOCSIS configuration file using multiple TFTP transfers that use multiple TFTP ports on the Cisco CMTS router, and the TFTP server is unable to keep up with the rate of TFTP requests generated by the system. Some TFTP servers may be limited to the number of concurrent TFTP get requests initiated by the same source IP address per unit time, or simply unable to handle the rate of new modem registrations before cable dynamic-secret is configured. The `debug cable dynamic-secret` command shows failure to receive some files in this situation.

This situation of stuck cable modems can result in the TFTP server running out of available ports, resulting in the cable modems failing the TFTP download stage. To prevent this situation from happening, temporarily disable the Dynamic Shared Secret feature on the cable interface or reduce the size of the DOCSIS configuration file.

Information About Dynamic Shared Secret

The DOCSIS specifications require that cable modems download, from an authorized TFTP server, a DOCSIS configuration file that specifies the quality of service (QoS) and other parameters for the network session. Theft-of-service attempts frequently attempt to intercept, modify, or substitute the authorized DOCSIS configuration file, or to download the file from a local TFTP server.

To prevent theft-of-service attempts, the DOCSIS specification allows service providers to use a shared secret password to calculate the CMTS Message Integrity Check (MIC) field that is attached to all DOCSIS configuration files. The CMTS MIC is an MD5 digest that is calculated over the DOCSIS Type/Length/Value (TLV) fields that are specified in the configuration file, and if a shared secret is being used, it is used in the MD5 calculation as well.

The cable modem must include its calculation of the CMTS MIC in its registration request, along with the contents of the DOCSIS configuration file. If a user modifies any of the fields in the DOCSIS configuration file, or uses a different shared secret value, the CMTS cannot verify the CMTS MIC when the cable modem
The CMTS does not allow the cable modem to register, and marks it as being in the “reject(m)” state to indicate a CMTS MIC failure.

Users, however, have used various techniques to circumvent these security checks, so that they can obtain configuration files that provide premium services, and then to use those files to provide themselves with higher classes of services. Service providers have responded by changing the shared secret, implementing DOCSIS time stamps, and using modem-specific configuration files, but this has meant creating DOCSIS configuration files for every cable modem on the network. Plus, these responses would have to be repeated whenever a shared secret has been discovered.

The Dynamic Shared Secret feature prevents these types of attacks by implementing a dynamically generated shared secret that is unique for each cable modem on the network. In addition, the dynamic shared secrets are valid only for the current session and cannot be reused, which removes the threat of “replay attacks,” as well as the reuse of modified and substituted DOCSIS configuration files.

Modes of Operation

The Dynamic Shared Secret feature can operate in three different modes, depending on what action should be taken for cable modems that fail the CMTS MIC verification check:

- **Marking Mode**—When using the `mark` option, the CMTS allows cable modems to come online even if they fail the CMTS MIC validity check. However, the CMTS also prints a warning message on the console and marks the cable modem in the `show cable modem` command with an exclamation point (!), so that this situation can be investigated.

- **Locking Mode**—When the `lock` option is used, the CMTS assigns a restrictive QoS configuration to CMs that fail the MIC validity check twice in a row. You can specify a particular QoS profile to be used for locked cable modems, or the CMTS defaults to special QoS profile that limits the downstream and upstream service flows to a maximum rate of 10 kbps.

 If a customer resets their CM, the CM will reregister but still uses the restricted QoS profile. A locked CM continues with the restricted QoS profile until it goes offline and remains offline for at least 24 hours, at which point it is allowed to reregister with a valid DOCSIS configuration file. A system operator can manually clear the lock on a CM by using the `clear cable modem lock` command.

 This option frustrates users who are repeatedly registering with the CMTS in an attempt to guess the shared secret, or to determine the details of the Dynamic Shared Secret security system.

- **Reject Mode**—In the reject mode, the CMTS refuses to allow CMs to come online if they fail the CMTS MIC validity check. These cable modems are identified in the `show cable modem` displays with a MAC state of “reject(m)” (bad MIC value). After a short timeout period, the CM attempts to reregister with the CMTS. The CM must register with a valid DOCSIS configuration file before being allowed to come online. When it does come online, the CMTS also prints a warning message on the console and marks the cable modem in the `show cable modem` command with an exclamation point (!), so that this situation can be investigated.

Note

To account for possible network problems, such as loss of packets and congestion, the Cisco CMTS will allow a cable modem to attempt to register twice before marking it as having failed the Dynamic Shared Secret authentication checks.
Operation of the Dynamic Shared Secret

The Dynamic Shared Secret feature automatically creates a unique DOCSIS shared secret on a per-modem basis, creating a one-time use DOCSIS configuration file that is valid only for the current session. This ensures that a DOCSIS configuration file that has been downloaded for one cable modem can never be used by any other modem, nor can the same modem reuse this configuration file at a later time.

This patent pending feature is designed to guarantee that all registered modems are using only the QOS parameters that have been specified by the DOCSIS provisioning system for that particular modem at the time of its registration.

When a DOCSIS-compliant cable modem registers with the CMTS, it sends a DHCP request, and the DHCP server sends a DHCP response that contains the name of the DOCSIS configuration file that the cable modem should download from the specified TFTP server. The cable modem downloads the DOCSIS configuration file and uses its parameters to register with the CMTS.

When the Dynamic Shared Secret feature is enabled, the CMTS performs the following when it receives the DHCP messages:

- The CMTS creates a dynamically generated shared secret.
- In the default configuration, the CMTS takes the name of the DOCSIS configuration file and generates a new, randomized filename. This randomized filename changes every time the cable modem registers, which prevents the caching of DOCSIS configuration files by cable modems that are only semi-compliant with the DOCSIS specifications. You can disable this randomization of the filename by using the `nocrypt` option with the `cable dynamic-secret` command.
- The CMTS changes the IP address of the TFTP server that the cable modem should use to the IP address of the CMTS. This informs the cable modem that it should download its configuration file from the CMTS.
- The CMTS downloads the original DOCSIS configuration file from the originally specified TFTP server so that it can modify the file to use the newly generated dynamic secret.

When the cable modem downloads the DOCSIS configuration file, it receives the modified file from the CMTS. Because this file uses the one-time-use dynamically generated shared secret, the CMTS can verify that the cable modem is using this configuration file when it attempts to register with the CMTS.

The Dynamic Shared Secret feature does not support and is incompatible with, the use of the original shared secret or secondary shared secrets that are configured using the `cable shared-secondary-secret` and `cable shared-secret` commands.

Although a user could attempt to circumvent these checks by downloading a DOCSIS configuration file from a local TFTP server, the cable modem would still fail the CMTS MIC verification.

Interaction with Different Commands

The Dynamic Shared Secret feature works together with a number of other commands to ensure network security and integrity:

- `cable shared-secret`—The DOCSIS specification allows service providers to use a shared-secret to ensure that cable modems are using only authorized DOCSIS configuration files.
The Dynamic Shared Secret feature is incompatible with cable shared-secret. Do not configure the cable shared-secret command when using the Dynamic Shared Secret feature

• cable shared-secondary-secret— The Dynamic Shared Secret feature is incompatible with cable shared-secret. Do not configure the cable secondary-shared-secret command when using the Dynamic Shared Secret feature

Performance Information

The Dynamic Shared Secret feature does not add any additional steps to the cable modem registration process, nor does it add any additional requirements to the current provisioning systems. This feature can have either a small negative or a small positive effect on the performance of the network provisioning system, depending on the following factors:

• The provisioning system (DHCP and TFTP servers) being used
• The number of cable modems that are coming online
• The vendor and software versions of the cable modems
• The number and size of the DOCSIS configuration files

Large-scale testing has shown that the Dynamic Shared Secret feature can affect the time it takes for cable modems to come online from 5% slower to 10% faster. The most significant factor in the performance of the provisioning process is the provisioning system itself. For this reason, Cisco recommends using Cisco Network Registrar (CNR) Release 3.5 or greater, which can provide significant performance improvements over generic DHCP and TFTP servers.

The second-most important factor in the performance of cable modem provisioning is the number and size of the DOCSIS configuration files. The size of the configuration file determines how long it takes to transmit the file to the cable modem, while the number of configuration files can impact how efficiently the system keeps the files in its internal cache, allowing it to reuse identical configuration files for multiple modems.

SNMP Support

Cisco IOS-XE 3.15.0S and later releases add the following SNMP support for the Dynamic Shared Secret feature:

• Adds the following MIB objects to the CISCO-DOCS-EXT-MIB:
 • cdxCmtsCmDMICMode—Sets and shows the configuration of the Dynamic Shared Secret feature for a specific cable modem (not configured, mark, lock, or reject).
 • cdxCmtsCmDMICLockQoS—Specifies the restrictive QoS profile assigned to a cable modem that has failed the Dynamic Shared Secret security checks, when the interface has been configured for lock mode.
 • cdxCmtsCmStatusDMICTable—Lists all cable modems that have failed the Dynamic Shared Secret security checks.

• An SNMP trap (cdxCmtsCmDMICLockNotification) can be sent when a cable modem is locked for failing the Dynamic Shared Secret security checks. The trap can be enabled using the snmp-server enable traps cable dmic-lock command.

Note

The DMIC lock mode is disabled during a switchover event in HCCP N+1 Redundancy.
System Error Messages

The following system error messages provide information about cable modems that have failed the CMTS Message Integrity Check (MIC) when the Dynamic Shared Secret feature is enabled.

Message

%CBR-4-CMLOCKED

The cable modem’s DOCSIS configuration file did not contain a Message Integrity Check (MIC) value that corresponds with the proper Dynamic Shared Secret that was used to encode it. The CMTS has, therefore, assigned a restrictive quality of service (QoS) configuration to this cable modem to limit its access to the network. The CMTS has also locked the cable modem so that it will remain locked in the restricted QoS configuration until it goes offline for at least 24 hours, at which point it is permitted to reregister and obtain normal service (assuming it is DOCSIS-compliant and using a valid DOCSIS configuration file).

This error message appears when the `cable dynamic-secret lock` command has been applied to a cable interface to enable the Dynamic Shared Secret feature for the DOCSIS configuration files on that cable interface. The cable modem has been allowed to register and come online, but with a QoS configuration that is limited to a maximum rate of 10 kbps for both the upstream and downstream flows. Check to ensure that this cable modem is not running old software that caches the previously used configuration file. Also check for a possible theft-of-service attempt by a user attempting to download a modified DOCSIS configuration file from a local TFTP server. The CM cannot reregister with a different QoS profile until it has been offline for 24 hours, without attempting to register, or you have manually cleared the lock using the `clear cable modem lock` command.

Message

%CBR-4-CMMARKED

The cable modem’s DOCSIS configuration file did not contain a Message Integrity Check (MIC) value that corresponds with the proper dynamic shared secret that was used to encode it. The CMTS has allowed this modem to register and come online, but has marked it in the `show cable modem` displays with an exclamation point (!) so that the situation can be investigated.

This error message appears when the `cable dynamic-secret mark` command has been applied to a cable interface to enable the Dynamic Shared Secret feature for the DOCSIS configuration files on that cable interface. Check to ensure that this cable modem is not running old software that caches the previously used configuration file. Also check for a possible theft-of-service attempt by a user attempting to download a modified DOCSIS configuration file from a local TFTP server.

Message

%CBR-4-NOCFGFILE

The CMTS could not obtain the DOCSIS configuration file for this cable modem from the TFTP server. This message occurs when the Dynamic Shared Secret feature is enabled on the cable interface with the `cable dynamic-secret` command.

Verify that the CMTS has network connectivity with the TFTP server, and that the specified DOCSIS configuration file is available on the TFTP server. Check that the DHCP server is correctly configured to send the proper configuration filename in its DHCP response to the cable modem. Also verify that the DOCSIS configuration file is correctly formatted.
This problem could also occur if the TFTP server is offline or is overloaded to the point where it cannot respond promptly to new requests. It might also be seen if the interface between the CMTS and TFTP server is not correctly configured and flaps excessively.

Note

This error indicates a problem with the provisioning system outside of the Cisco CMTS. Disabling the Dynamic Shared Secret feature does not clear the fault, nor does it allow cable modems to come online. You must first correct the problem with the provisioning system.

Benefits

The Dynamic Shared Secret feature provides the following benefits to cable service providers and their partners and customers:

Implements Network Security

Service providers do not need to worry about users discovering the shared secret value and using it to modify DOCSIS configuration files to give themselves higher levels of service. Even if a user were to discover the value of a dynamically generated shared secret, the user would not be able to use that shared secret again to register.

The generic TFTP server performance and error handling on the Cisco CMTS routers has been greatly improved to support the high performance that is required for rapidly provisioning cable modems.

Flexibility in Dealing with Possible Theft-of-Service Attempts

Service providers have the option of deciding what response to take when a DOCSIS configuration file fails its CMTS MIC check: mark that cable modem and allow the user online, reject the registration request and refuse to allow the user to come online until a valid DOCSIS configuration file is used, or lock the cable modem in a restricted QoS configuration until the modem remains offline for 24 hours. Locking malicious modems is the most effective deterrent against hackers, because it provides the maximum penalty and minimum reward for any user attempting a theft-of-service attack.

No Changes to Provisioning System Are Needed

Service providers can use the Dynamic Shared Secret feature without changing their provisioning or authentication systems. Existing DOCSIS configuration files can be used unchanged, and you do not need to change any existing shared secrets.

Tip

If not already done, the service provider could also install access controls that allow only the CMTS routers to download DOCSIS configuration files from the TFTP servers.

No Changes to Cable Modems Are Needed

The Dynamic Shared Secret feature does not require any end-user changes or any changes to the cable modem configuration. This feature supports any DOCSIS compliant cable modem.
The Dynamic Shared Secret feature does not affect cable modems that are already online and provisioned. Cable modems that are already online when the feature is enabled or disabled remain online.

Simplifies Network Management

Service providers do not have to continually update the shared secrets on a cable interface whenever the files providing premium services become widely available. Instead, providers can use the same shared secret on a cable interface for significant periods of time, trusting in the Dynamic Shared Secret feature to provide unique, single-use shared secrets for each cable modem.

In addition, service providers do not have to manage unique DOCSIS configuration files for each cable modem. The same configuration file can be used for all users in the same service class, without affecting network security.

Related Features

The following features can be used with the Dynamic Shared Secret feature to enhance the overall security of the cable network.

- Baseline Privacy Interface Plus (BPI+) Authorization and Encryption—Provides a secure link between the cable modem and CMTS, preventing users from intercepting or modifying packets that are transmitted over the cable interface. BPI+ also provides for secure authorization of cable modems, using X.509 digital certificates, as well as a secure software download capability that ensures that software upgrades are not spoofed, intercepted, or altered.

How to Configure the Dynamic Shared Secret Feature

The following sections describe how to enable and configure the Dynamic Shared Secret feature, to disable the feature, to manually clear a lock on a cable modem, or dynamically upgrade firmware on the cable modems.

Note

All procedures begin and end at the privileged EXEC prompt (“Router#”).

Enabling and Configuring the Dynamic Shared Secret Feature

This section describes how to enable and configure the Dynamic Shared Secret feature on a cable interface.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

cable qos permission create

Example:

Router(config)# cable qos permission create

Example:

Router(config)#

(Optional) If you are using the `lock` option in Step 6, and if you are not specifying a specific QoS profile to be used, you must allow cable modems to create their own QoS profiles.

Step 3

cable qos permission update

Example:

Router(config)# cable qos permission update

Example:

Router(config)#

(Optional) If you are using the `lock` option in Step 6, and if you are not specifying a specific QoS profile to be used, you must allow cable modems to update their own QoS profiles.

Step 4

snmp-server enable traps cable dmic-lock

Example:

Router(config)# snmp-server enable traps cable dmic-lock

Example:

Router(config)#

(Optional) Enables the sending of SNMP traps when a cable modem fails a dynamic shared-secret security check.

Step 5

interface cable interface

Example:

Router(config)# interface cable 3/0

Example:

Router(config-if)#

Enters interface configuration mode for the specified cable interface.

Step 6

cable dynamic-secret {lock [lock-qos] | mark | reject [nocrypt

Example:

Router(config-if)# cable dynamic-secret lock

Example:

Router(config-if)# cable dynamic-secret lock 90

Example:

Router(config-if)#

Enables the Dynamic Shared Secret feature on the cable interface and configures it for the appropriate option:

- **nocrypt**—(Optional) The Cisco CMTS does not encrypt the filenames of DOCSIS configuration files, but sends the files to CMs using their original names.
- **lock**—Cable modems that fail the MIC verification are allowed online with a restrictive QoS profile. The cable modems must remain offline for 24 hours to be able to reregister with a different QoS profile.
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>lock-qos—(Optional) Specifies the QoS profile that should be assigned to locked cable modems. The valid range is 1 to 256, and the profile must have already been created. If not specified, locked cable modems are assigned a QoS profile that limits service flows to 10 kbps (requires Step 2 and Step 3).</td>
<td>Router(config-if)# cable dynamic-secret mark</td>
</tr>
<tr>
<td>mark—Cable modems that fail the MIC verification are allowed online but are marked in the show cable modem displays so that the situation can be investigated.</td>
<td>Example:</td>
</tr>
<tr>
<td>reject—Cable modems that fail the MIC verification are not allowed to register.</td>
<td>Router(config-if)# cable dynamic-secret reject</td>
</tr>
<tr>
<td>Repeat Step 5 and Step 6 for each cable interface to be configured.</td>
<td>Example:</td>
</tr>
<tr>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
<td>Step 7 end</td>
</tr>
</tbody>
</table>

What to do next

Note

If you configure the Dynamic Shared Secret feature on any interface in a cable interface bundle, you should configure it on all interfaces in that same bundle.

Disabling the Dynamic Shared Secret on a Cable Interface

This section describes how to disable the Dynamic Shared Secret feature on a cable interface. The cable modem continues to be validated against any shared secret or secondary shared secrets that have been defined on the cable interface.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Example:</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Router(config)#

Step 2

interface cable interface
Example:

Router(config)# interface cable 3/0
Example:

Router(config-if)#

Step 3

no cable dynamic-secret
Example:

Router(config-if)# no cable dynamic-secret
Example:

Router(config-if)#

Step 4

drop
Example:

Router(config-if)# end
Example:

Router#

Excluding Cable Modems from the Dynamic Shared Secret Feature

This section describes how to exclude one or more cable modems from being processed by the Dynamic Shared Secret feature. The cable modem continues to be validated against any shared secret or secondary shared secrets that have been defined on the cable interface.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Excludes one or more cable modems from being processed by the Dynamic Shared Secret security checks, on the basis of their MAC addresses or OUI values:</td>
</tr>
<tr>
<td>cable dynamic-secret exclude {oui oui-id</td>
<td>modem mac-address}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# cable dynamic-secret exclude oui 00.01.B4</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>Repeat Step 2 and Step 3 for each cable interface to be configured.</td>
</tr>
</tbody>
</table>
Clearing the Lock on One or More Cable Modems

This section describes how to manually clear the lock on one or more cable modems. This forces the cable modems to reinitialize, and the cable modems must reregister with a valid DOCSIS configuration file before being allowed online. If you do not manually clear the lock (using the `clear cable modem lock` command), the cable modem is locked in its current restricted QoS profile and cannot reregister with a different profile until it has been offline for at least 24 hours.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>`clear cable modem {mac-addr</td>
<td>ip-addr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>mac-addr</code> — Specifies the MAC address for one particular cable modem to be cleared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>ip-addr</code> — Specifies the IP address for one particular cable modem to be cleared.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>all</code> — Clears the locks on all locked cable modems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>oui</code> — Clears the locks on all cable modems with a vendor ID that matches the specified Organizational Unique Identifier (OUI) string.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>reject</code> — Clears the locks on all cable modems that are currently in the reject state (which would occur if a locked cable modem went offline and attempted to reregister before 24 hours had elapsed).</td>
</tr>
</tbody>
</table>

Notes

- **OUI** — Specifies the organization unique identifier (OUI) of a vendor, so that a group of cable modems from this vendor are excluded from the Dynamic Shared Secret feature. The OUI should be specified as three hexadecimal bytes separated by either periods or colons.

Note

Repeat this command for each cable modem MAC address or OUI vendor to be excluded.

Example:

```
Router# clear cable modem oui 00.00.0C lock
```

Example:

```
Router# clear cable modem reject lock
```

To be excluded from the Dynamic Shared Secret feature.

You cannot specify a multicast MAC address.

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>cable dynamic-secret exclude modem 00d0.45ba.b34b</code></td>
<td>to be excluded from the Dynamic Shared Secret feature. (You cannot specify a multicast MAC address.)</td>
</tr>
</tbody>
</table>

Note

Repeat this command for each cable modem MAC address or OUI vendor to be excluded.

Example:

```
Router# cable dynamic-secret exclude modem 00d0.45ba.b34b
```

Step 3

Example:

```
Router(config)# exit
```

Example:

```
Router(config)# exit
```

Exits the interface configuration mode and returns to privileged EXEC mode.
Upgrading Firmware on the Cable Modems

This section describes how to upgrade firmware on cable modems by dynamically inserting the correct TLV values in the DOCSIS configuration file that is downloaded by the cable modem. The DOCSIS configuration file contains the following TLV values:

- Software Upgrade Filename (TLV 9)—Specifies the filename of the firmware.
- Upgrade IPv4 TFTP Server (TLV21)—Specifies the IPv4 address of the TFTP server from where the modem downloads the DOCSIS configuration file.
- Upgrade IPv6 TFTP Server (TLV58)—Specifies the IPv6 address of the TFTP server from where the modem downloads the DOCSIS configuration file.

The TFTP server addresses are inserted only when the software upgrade filename (TLV9) is specified and when the TFTP server address (TLV21/TLV58) is either not specified or set to 0.

Before you begin

The Dynamic Shared Secret feature must be enabled first before you can upgrade the firmware on cable modems. See Enabling and Configuring the Dynamic Shared Secret Feature, on page 12 for more information.

Note

The command to enable or disable the Dynamic Shared Secret feature is available at the MAC domain level. However, the command to upgrade the firmware on cable modems is available at the global level.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router# configure terminal

Example:
Purpose

Command or Action	Purpose
Router(config)# | Dynamically inserts the specific IPv4 or IPv6 TLV values in the DOCSIS configuration file to complete firmware upgrade on cable modems.

Step 2
cable dynamic-secret tftp insert-upgrade-server

Example:
Router(config)# cable dynamic-secret tftp insert-upgrade-server

Step 3
end

Example:
Router(config)# end

Example:
Router#

What to do next

Note

If you configure the Dynamic Shared Secret feature on an interface in a cable interface bundle, you should configure it on all the interfaces of that bundle.

How to Monitor the Dynamic Shared Secret Feature

This section describes the following procedures you can use to monitor and display information about the Dynamic Shared Secret feature:

Displaying Marked Cable Modems

When you configure a cable interface with the `cable dynamic-secret mark` command, cable modems that fail the dynamically generated CMTS MIC verification are allowed online, but are marked with an exclamation point (!) in the MAC state column in the `show cable modem` display. The exclamation point is also used to identify cable modems that were initially rejected, using the `cable dynamic-secret reject` command, but then reregistered using a valid DOCSIS configuration file.

For example, the following example shows that four cable modems are marked as having failed the CMTS MIC verification, but that they have been allowed online:

Router# show cable modems

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>IP Address</th>
<th>I/F</th>
<th>MAC</th>
<th>Prim RxPwr</th>
<th>Timing</th>
<th>Num BPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0010.9507.01db</td>
<td>144.205.151.130</td>
<td>C5/1/0/U5</td>
<td>online(pt)</td>
<td>1</td>
<td>0.25</td>
<td>938</td>
</tr>
</tbody>
</table>
You can also use the `show cable modem rogue` command to display only those cable modems that have been rejected for failing the dynamic shared-secret authentication checks:

```
Router# show cable modem rogue

MAC Address Vendor Interface       Spoof TFTP Count Dnld Dynamic Secret
AAAA.7b43.aa7f Vendor1 C4/0/0/5  2 Yes 45A94DC933F8F47A398F69EE6361B017
AAAA.7b43.aa7f Vendor1 C4/0/0/5  2 Yes D47BCB5494E993651CB0E66EF0B0A
BBBB.7b43.aa7f Vendor2 C4/0/0/5  2 No 8EB196423170B26684BF7530C99D271
AAAA.7b43.aa7f Vendor1 C4/0/0/5  2 No DF8FE30203010001A32630243012063
BBBB.7b43.aa7f Vendor2 C4/0/0/5  2 No 300E0603551D0FF04040320106
AAAA.7b43.aa7f Vendor1 C4/0/0/5  2 Yes 820101002D1A264CE212A1BB6C17283
DDDD.7b43.aa7f Vendor4 C4/0/0/5  2 Yes 7935B694DCA90BCE624CA92A519C214B9
AAAA.7b43.aa7f Vendor1 C4/0/0/5  2 No 3AB096D00D56ECD07D97AB62451CF
```

Router#

Displaying the Current Dynamic Secrets

In Cisco IOS XE Everest 16.5.1, the `verbose` option for the `show cable modem` command displays the dynamically generated shared secret (a 16-byte hexadecimal value) that was used in the cable modem’s previous registration cycle. The display also shows if the cable modem failed the dynamic shared-secret check or did not download the DOCSIS configuration file from the TFTP server. If a cable modem is offline, its dynamic secret is shown as all zeros.

For example, the following example shows a typical display for a single cable modem that failed the dynamic shared-secret check:

```
Router# show cable modem 00c0.73ee.bbbaa verbose

MAC Address : 00c0.73ee.bbbaa
IP Address : 3.18.1.6
Prim Sid : 2
QoS Profile Index : 6
Interface : C3/0/0/0
```
Upstream Power : 0.00 dBmV (SNR = 26.92 dBmV)
Downstream Power : 0.00 dBmV (SNR = ---- dBmV)
Timing Offset : 2812
Initial Timing Offset : 2812
Received Power : 0.00
MAC Version : DOC1.0
Provisioned Mode : DOC1.0
Capabilities : {Frag=N, Concat=N, PHS=N, Priv=BPI}
Sid/Said Limit : {Max Us Sids=0, Max Ds Saids=0}
Optional Filtering Support : {802.1P=N, 802.1Q=N}
Transmit Equalizer Support : {Taps/Symbol= 0, Num of Taps= 0}
Number of CPE IPs : 0(Max CPE IPs = 1)
CFG Max-CPE : 1
Flaps : 26(Feb 14 02:35:39)
Errors : 0 CRCs, 0 HC5es
Stn Mtn Failures : 6 aborts, 0 exhausted
Total US Flows : 1(1 active)
Total DS Flows : 1(1 active)
Total US Data : 0 packets, 0 bytes
Total US Throughput : 0 bits/sec, 0 packets/sec
Total DS Data : 0 packets, 0 bytes
Total DS Throughput : 0 bits/sec, 0 packets/sec
Active Classifiers : 0 (Max = NO LIMIT)
Dynamic Secret : A3D1028F36EBD54FDCC2F74719664D3F
Router#

The following example shows a typical display for a single cable modem that is currently offline (the Dynamic Secret field shows all zeros):

Router# show cable modem 00C0.6914.8601 verbose

MAC Address : 00C0.6914.8601
IP Address : 10.212.192.119
Prim SId : 6231
QoS Profile Index : 2
Interface : C5/1/0/U3
Upstream Power : 0.00 dBmV (SNR = 30.19 dBmV)
Downstream Power : 0.00 dBmV (SNR = ---- dBmV)
Timing Offset : 1831
Initial Timing Offset : 1831
Received Power : -2.25
MAC Version : DOC1.0
Provisioned Mode : DOC1.0
Capabilities : {Frag=N, Concat=Y, PHS=N, Priv=BPI}
Sid/Said Limit : {Max Us Sids=0, Max Ds Saids=0}
Optional Filtering Support : {802.1P=N, 802.1Q=N}
Transmit Equalizer Support : {Taps/Symbol= 0, Num of Taps= 0}
Number of CPE IPs : 4(Max CPE IPs = 4)
CFG Max-CPE : 4
Flaps : 2638(Feb 10 16:04:10)
Errors : 0 CRCs, 0 HC5es
Stn Mtn Failures : 108 aborts, 161 exhausted
Total US Flows : 1(1 active)
Total DS Flows : 1(1 active)
Total US Data : 236222 packets, 146630868 bytes
Total US Throughput : 0 bits/sec, 0 packets/sec
Total DS Data : 9 packets, 1114 bytes
Total DS Throughput : 0 bits/sec, 0 packets/sec
Active Classifiers : 0 (Max = NO LIMIT)
Dynamic Secret : 00000000000000000000000000000000
Router#
The Dynamic Secret field shown above is all zeros (“00000000000000000000000000000000”), which indicates that this cable modem is offline.

You can also use the following command to display all the dynamically generated shared secrets that are in use:

```
Router# show cable modem verbose | include Dynamic Secret
```

```
Dynamic Secret : 43433036434644344643303841313237
Dynamic Secret : 00000000000000000000000000000000
Dynamic Secret : 040B130C4361626C652064656D73
Dynamic Secret : 0D06092A864886F70D01010005003081
Dynamic Secret : 040B130C4361626C65204F7665726F746F72616C736573
Dynamic Secret : 00000000000000000000000000000000
Dynamic Secret : 040B130C4361626C652064656D73
Dynamic Secret : 0D06092A864886F70D01010005003081
Dynamic Secret : 040B130C4361626C65204F7665726F746F72616C736573
Dynamic Secret : 0D06092A864886F70D01010005003081
Dynamic Secret : 040B130C4361626C652064656D73
Dynamic Secret : 0D06092A864886F70D01010005003081
Dynamic Secret : 040B130C4361626C65204F7665726F746F72616C736573
Dynamic Secret : 0D06092A864886F70D01010005003081
Dynamic Secret : 040B130C4361626C652064656D73
Dynamic Secret : 0D06092A864886F70D01010005003081
```

Troubleshooting Cable Modems with Dynamic Shared Secret

If a cable modem is being marked as having violated the dynamic shared secret, you can enable the following debugs to get more information about the sequence of events that is occurring:

- **debug cable mac-address cm-mac-addr verbose**—Enables detailed debugging for the cable modem with the specific MAC address.
- **debug cable tlv**—Displays the contents of Type/Length/Value messages that are sent during the registration process.
- **debug cable dynamic-secret**—Displays debugging messages about dynamic shared secret operation.
• **debug tftp server events**—Displays debugging messages for the major events that occur with the Cisco CMTS router’s onboard TFTP server.

• **debug tftp server packets**—Displays a packet dump for the DOCSIS configuration files that the TFTP server downloads to a cable modem.

Tip

In addition, examine the messages in the router’s log buffer for any helpful information. Use the **show logging** command to display the contents of the router’s logging buffer to display these messages. You can limit the output to a specific hour and minute by using the **begin** output modifier. For example, to display only those messages that were recorded at 12:10, give the following command:

```
Router# show logging | begin 12:10
```

Note
The exact format for the **begin** output modifier depends on the timestamp you are using for your logging buffer.

Configuration Examples for Dynamic Shared Secret

This section lists a typical configuration for the Dynamic Shared Secret feature.

Note
These configurations also show a shared secret and secondary secret being configured on the cable interface. This is optional but highly recommended, because it adds an additional layer of security during the registration of cable modems.

Mark Configuration: Example

The following excerpt from a configuration for the cable interface on a Cisco CMTS router configures the cable interface so that cable modems that fail the CMTS MIC check are allowed to come online, but are marked with an exclamation point (!) in the **show cable modem** displays, so that the situation can be investigated further.

```
interface cable c5/1/0
  cable dynamic-secret mark
  ...
```
Lock Configuration: Example

The following excerpt from a configuration for the cable interface on a Cisco CMTS router configures the cable interface so that cable modems that fail the CMTS MIC check are allowed to come online, but are locked into a restrictive QoS configuration that limits the upstream and downstream service flows to a maximum rate of 10 kbps. A locked cable modem remains locked into the restrictive QoS configuration until the modem has remained offline for more than 24 hours, or until you have manually cleared it using the clear cable modem lock command.

```
cable qos permission create
cable qos permission update
...interface cable c3/0
cable dynamic-secret lock
...```

If you use the lock option without specifying a specific QoS profile, you must allow cable modems to create and update QoS profiles, using the cable qos permission command. If you do not do this and continue to use the lock option without specifying a particular QoS profile, locked cable modems will not be allowed to register until the lock clears or expires.

The following example is the same except that it specifies that the locked cable modem should be assigned QoS profile 90. The cable modem remains locked with this QoS profile until the modem has remained offline for more than 24 hours, or until you have manually cleared it using the clear cable modem lock command. Because a specific QoS profile is specified, you do not need to use the cable qos permission command.

```
interface cable c3/0
cable dynamic-secret lock 90
...```

When a locked modem is cleared, it is automatically reset so that it reregisters with the CMTS. It is allowed online with the requested QoS parameters if it registers with a valid DOCSIS configuration that passes the Dynamic Shared Secret checks. However, the modem is locked again if it violates the DOCSIS specifications again.

Reject Configuration: Example

The following excerpt from a configuration for the cable interface on a Cisco CMTS configures the cable interface so that cable modems that fail the CMTS MIC check are rejected and not allowed to register. The cable modem must reregister using a DOCSIS configuration file with a CMTS MIC that matches one of the shared secret or secondary secret values. When it does come online, the CMTS also prints a warning message on the console and marks the cable modem in the show cable modem command with an exclamation point (!), so that this situation can be investigated.

```
cable qos permission create
cable qos permission update
...interface cable c3/0
cable dynamic-secret lock
...```
interface cable c3/0
cable dynamic-secret reject

Disabled Configuration: Example

The following excerpt from a configuration for the cable interface on a Cisco uBR7100 series router disables the Dynamic Shared Secret feature. In this configuration, the CMTS uses the shared secret and secondary shared secret values unchanged when verifying the CMTS MIC value for each DOCSIS configuration file.

interface cable c1/0
no cable dynamic-secret

Additional References

For additional information related to Dynamic Shared Secret, refer to the following references:

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-RFIv1.1-I09-020830</td>
<td>Data-over-Cable Service Interface Specifications Radio Frequency Interface Specification, version 1.1</td>
</tr>
</tbody>
</table>

1. Not all supported standards are listed.

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified MIB objects are supported by the Dynamic Shared Secret feature.</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: <a href="http://www.cisco.com/go/mibs">http://www.cisco.com/go/mibs</a></td>
</tr>
</tbody>
</table>

2. Not all supported MIBs are listed.

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2233</td>
<td>DOCSIS OSI Objects Support</td>
</tr>
<tr>
<td>RFC 2665</td>
<td>DOCSIS Ethernet MIB Objects Support</td>
</tr>
<tr>
<td>RFC 2669</td>
<td>Cable Device MIB</td>
</tr>
</tbody>
</table>
3. Not all supported RFCs are listed.

Feature Information for Dynamic Shared Secret

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 2: Feature Information for Downstream Interface Configuration

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic shared secret</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Router.</td>
</tr>
</tbody>
</table>
Feature Information for Dynamic Shared Secret
Lawful Intercept Architecture

The Lawful Intercept (LI) feature supports service providers in meeting the requirements of law enforcement agencies to provide the ability to intercept Voice-over-Internet protocol (VoIP) or data traffic going through the edge routers. This document explains LI architecture, including Cisco Service Independent Intercept architecture and PacketCable Lawful Intercept architecture. It also describes the components of the LI feature and provides instructions on how to configure the LI feature in your system.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

- Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 27
- Prerequisites for Lawful Intercept, on page 28
- Restrictions for Lawful Intercept, on page 29
- Information About Lawful Intercept, on page 29
- How to Configure Lawful Intercept, on page 33
- Configuration Examples for Lawful Intercept, on page 37
- Additional References, on page 39
- Feature Information for Lawful Intercept, on page 40

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
Prerequisites for Lawful Intercept

Access to the Cisco LI MIB view should be restricted to the mediation device and to system administrators who need to be aware of lawful intercepts on the router. To access the MIB, users must have level-15 access rights on the router.

Communication with Mediation Device

For the router to communicate with the mediation device to execute a lawful intercept, the following configuration requirements must be met:

- The domain name for both the router and the mediation device must be registered in the Domain Name System (DNS).

In DNS, the router IP address is typically the address of the TenGigabitEthernet5/1/0 or TenGigabitEthernet4/1/0 interface (depending on the slot in which the Supervisor is installed) on the router.

- The mediation device must have an access function (AF) and an access function provisioning interface (AFPI).
You must add the mediation device to the Simple Network Management Protocol (SNMP) user group that has access to the CISCO-TAP2-MIB view. Specify the username of the mediation device as the user to add to the group.

When you add the mediation device as a CISCO-TAP2-MIB user, you can include the mediation device’s authorization password if you want. The password must be at least eight characters in length.

Restrictions for Lawful Intercept

General Restrictions
There is no command-line interface (CLI) available to configure LI on the router. All error messages are sent to the mediation device as SNMP notifications. All intercepts are provisioned using SNMPv3 only.

Lawful Intercept does not support SUP HA. LI configuration needs to be reapplied after SUP switchover. An SNMP trap will be generated for this event.

Lawful Intercept MIBs
Only the mediation device and users who need to know about lawful intercepts are allowed to access the LI MIBs.

Due to its sensitive nature, the Cisco LI MIBs are only available in software images that support the LI feature. These MIBs are not accessible through the Network Management Software MIBs Support page (http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml).

SNMP Notifications
SNMP notifications for LI must be sent to User Datagram Protocol (UDP) port 161 on the mediation device, not port 162 (which is the SNMP default).

Information About Lawful Intercept

Introduction to Lawful Intercept
LI is the process by which law enforcement agencies (LEAs) conduct electronic surveillance as authorized by judicial or administrative order. Increasingly, legislation is being adopted and regulations are being enforced that require service providers (SPs) and Internet service providers (ISPs) to implement their networks to explicitly support authorized electronic surveillance. The types of SPs or ISPs that are subject to LI mandates vary greatly from country to country. LI compliance in the United States is specified by the Commission on Accreditation for Law Enforcement Agencies (CALEA).

Cisco supports two architectures for LI: PacketCable and Service Independent Intercept. The LI components by themselves do not ensure customer compliance with applicable regulations but rather provide tools that can be used by SPs and ISPs to construct an LI-compliant network.
Cisco Service Independent Intercept Architecture

The Cisco Service Independent Intercept Architecture Version 3.0 document describes implementation of LI for VoIP networks using the Cisco BTS 10200 Softswitch call agent, version 5.0, in a non-PacketCable network. Packet Cable Event Message specification version 1.5-I01 is used to deliver the call identifying information along with version 2.0 of the Cisco Tap MIB for call content.

The Cisco Service Independent Intercept Architecture Version 2.0 document describes implementation of LI for VoIP networks using the Cisco BTS 10200 Softswitch call agent, versions 4.4 and 4.5, in a non-PacketCable network. Although not a PacketCable network, PacketCable Event Messages Specification version 108 is still used to deliver call identifying information, along with version 1.0 or version 2.0 of the Cisco Tap MIB for call content. The Cisco Service Independent Intercept Architecture Version 2.0 document adds additional functionality for doing data intercepts by both IP address and session ID, which are both supported in version 2.0 of the Cisco Tap MIB (CISCO-TAP-MIB).

The Cisco Service Independent Intercept Architecture Version 1.0 document describes implementation of LI for VoIP networks that are using the Cisco BTS 10200 Softswitch call agent, versions 3.5 and 4.1, in a non-PacketCable network. Although not a PacketCable network, PacketCable Event Message Specification version 103 is still used to deliver call identifying information, along with version 1.0 of the Cisco Tap MIB (CISCO-TAP-MIB) for call content. Simple data intercepts by IP address are also discussed.

PacketCable Lawful Intercept Architecture

The PacketCable Lawful Intercept Architecture for BTS Version 5.0 document describes the implementation of LI for VoIP using Cisco BTS 10200 Softswitch call agent, version 5.0, in a PacketCable network that conforms to PacketCable Event Messages Specification version 1.5-I01.

The PacketCable Lawful Intercept Architecture for BTS Versions 4.4 and 4.5 document describes the implementation of LI for VoIP using Cisco BTS 10200 Softswitch call agent, versions 4.4 and 4.5, in a PacketCable network that conforms to PacketCable Event Messages Specification version 108.

The PacketCable Lawful Intercept Architecture for BTS Versions 3.5 and 4.1 document describes the implementation of LI for voice over IP (VoIP) using Cisco Broadband Telephony Softswitch (BTS) 10200 Softswitch call agent, versions 3.5 and 4.1, in a PacketCable network that conforms to PacketCable Event Message Specification version 103.

The PacketCable Control Point Discovery Interface Specification document defines an IP-based protocol that can be used to discover a control point for a given IP address. The control point is the place where Quality of Service (QoS) operations, LI content tapping operations, or other operations may be performed.

Note

The Cisco cBR router does not support PacketCable Communications Assistance for Law Enforcement Act (CALEA).

Cisco cBR Series Routers

The Cisco cBR series router support two types of LI: regular and broadband (per-subscriber). Regular wiretaps are executed on access subinterfaces and physical interfaces. Wiretaps are not required, and are not executed, on internal interfaces. The router determines which type of wiretap to execute based on the interface that the target’s traffic is using.
LI on the Cisco cBR series routers can intercept traffic based on a combination of one or more of the following fields:

- Destination IP address and mask (IPv4 or IPv6 address)
- Destination port or destination port range
- Source IP address and mask (IPv4 or IPv6 address)
- Source port or source port range
- Protocol ID
- Type of Service (TOS)
- Virtual routing and forwarding (VRF) name, which is translated to a vrf-tableid value within the router.
- Subscriber (user) connection ID
- Cable modem
- MAC address

The LI implementation on the Cisco cBR series routers is provisioned using SNMP3 and supports the following functionality:

- Interception of communication content. The router duplicates each intercepted packet and then places the copy of the packet within a UDP-header encapsulated packet (with a configured CCCid). The router sends the encapsulated packet to the LI mediation device. Even if multiple lawful intercepts are configured on the same data flow, only one copy of the packet is sent to the mediation device. If necessary, the mediation device can duplicate the packet for each LEA.
- Interception of IPv4, IPv4 multicast, IPv6, and IPv6 multicast flows.
- Maximum interception time—The maximum value of cTap2MediationTimeout is 260640 minutes or 181 days from the current time. The minimum value for cTap2MediationTimeout is 1 minute from the current time.

LI includes two ways of setting a MAC-based tap:

- On CPE—Only intercepts traffic whose source or destination match the MAC address of the CPE device.
- On CM—Intercepts all of the traffic behind the CM, including the CM traffic itself. This form of intercept might generate a lot of traffic to the mediation device.

**VRF Aware LI**

VRF Aware LI is the ability to provision a LI wiretap on IPv4 data in a particular Virtual Private Network (VPN). This feature allows a LEA to lawfully intercept targeted data within that VPN. Only IPv4 data within that VPN is subject to the VRF-based LI tap.

VRF Aware LI is available for the following types of traffic:

- ip2ip
- ip2tag (IP to MPLS)
- tag2ip (MPLS to IP)
To provision a VPN-based IPv4 tap, the LI administrative function (running on the mediation device) uses the CISCO-IP-TAP-MIB to identify the name of the VRF table that the targeted VPN uses. The VRF name is used to select the VPN interfaces on which to enable LI in order to execute the tap.

The router determines which traffic to intercept and which mediation device to send the intercepted packets based on the VRF name (along with the source and destination address, source and destination port, and protocol).

**Note**  
When using the Cisco-IP-TAP-MIB, if the VRF name is not specified in the stream entry, the global IP routing table is used by default.

---

### Lawful Intercept- Redundant Mediation Devices

The Cisco cBR Series Converged Broadband Routers supports replicating Lawful Intercept (LI) packets to multiple Mediation Devices (MDs). To use this feature, multiple identical taps are configured. The Cisco cBR Series Converged Broadband Routers support up to two identical taps to replicate to two MDs. Only MAC- and CM-taps are supported with multiple MDs.

For a sample SNMP configuration command set to configure two identical taps to tap to two MDs, see Example: Configuring Lawful Intercept- Redundant Mediation Devices, on page 38.

#### Lawful Intercept MIBs

Due to its sensitive nature, the Cisco LI MIBs are only available in software images that support the LI feature. These MIBs are not accessible through the Network Management Software MIBs Support page (http://www.cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml).

#### Restricting Access to the Lawful Intercept MIBs

Only the mediation device and users who need to know about lawful intercepts should be allowed to access the LI MIBs. To restrict access to these MIBs, you must:

1. Create a view that includes the Cisco LI MIBs.
2. Create an SNMP user group that has read-and-write access to the view. Only users assigned to this user group can access information in the MIBs.
3. Add users to the Cisco LI user groups to define who can access the MIBs and any information related to lawful intercepts. Be sure to add the mediation device as a user in this group; otherwise, the router cannot perform lawful intercepts.

For more information, see the Creating a Restricted SNMP View of Lawful Intercept MIBs module.

**Note**  
Access to the Cisco LI MIB view should be restricted to the mediation device and to system administrators who need to be aware of lawful intercepts on the router. To access the MIB, users must have level-15 access rights on the router.
Service Independent Intercept

Cisco developed the Service Independent Intercept (SII) architecture in response to requirements that support lawful intercept for service provider customers. The SII architecture offers well-defined, open interfaces between the Cisco equipment acting as the content Intercept Access Point (IAP) and the mediation device. The modular nature of the SII architecture allows the service provider to choose the most appropriate mediation device to meet specific network requirements and regional, standards-based requirements for the interface to the law enforcement collection function.

The mediation device uses SNMPv3 to instruct the call connect (CC) IAP to replicate the CC and send the content to the mediation device. The CC IAP can be either an edge router or a trunking gateway for voice, and either an edge router or an access server for data.

Note

The Cisco cBR router does not support encryption of lawful intercept traffic.

To increase the security and to mitigate any SNMPv3 vulnerability, the following task is required:

Restricting Access to Trusted Hosts (without Encryption)

SNMPv3 provides support for both security models and security levels. A security model is an authentication strategy that is set up for a user and the group in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level will determine the security mechanism employed when handling an SNMP packet.

Additionally, the SNMP Support for the Named Access Lists feature adds support for standard named access control lists (ACLs) to several SNMP commands.

To configure a new SNMP group or a table that maps SNMP users to SNMP views, use the `snmp-server group` command in global configuration mode.

```
access-list my-list permit ip host 10.10.10.1
snmp-server group my-group v3 auth access my-list
```

In this example, the access list named `my-list` allows SNMP traffic only from 10.10.10.1. This access list is then applied to the SNMP group called `my-group`.

How to Configure Lawful Intercept

Although there are no direct user commands to provision lawful intercept on the router, you do need to perform some configuration tasks, such as providing access to LI MIBs, and setting up SNMP notifications. This section describes how to perform the required tasks:

Creating a Restricted SNMP View of Lawful Intercept MIBs

To create and assign users to an SNMP view that includes the Cisco lawful intercept MIBs, perform the steps in this section.

Before you begin

- You must issue the commands in global configuration mode with level-15 access rights.
SNMPv3 must be configured on the device.

### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
  Example:  
  Device> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Step 3** snmp-server view view-name MIB-name included | Creates an SNMP view that includes the CISCO-TAP2-MIB (where exampleView is the name of the view to create for the MIB).  
  Example:  
  Device(config)# snmp-server view exampleView ciscoTap2MIB included |
| **Step 4** snmp-server view view-name MIB-name included | Adds the CISCO-IP-TAP-MIB to the SNMP view.  
  Example:  
  Device(config)# snmp-server view exampleView ciscoIpTapMIB included |
| **Step 5** snmp-server view view-name MIB-name included | Adds the CISCO-802-TAP-MIB to the SNMP view.  
  Example:  
  Device(config)# snmp-server view exampleView cisco802TapMIB included |
| **Step 6** snmp-server group group-name v3 noauth read view-name write view-name | Creates an SNMP user group that has access to the LI MIB view and defines the group’s access rights to the view.  
  Example:  
  Device(config)# snmp-server group exampleGroup v3 noauth read exampleView write exampleView |
| **Step 7** snmp-server user user-name group-name v3 auth md5 auth-password | Adds users to the specified user group.  
  Example:  
  Device(config)# snmp-server user exampleUser exampleGroup v3 auth md5 examplePassword |
**Purpose**

**Command or Action**

<table>
<thead>
<tr>
<th>Step 8</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Device(config)# end</td>
</tr>
</tbody>
</table>

**Purpose**

Exits the current configuration mode and returns to privileged EXEC mode.

**Where to Go Next**

The mediation device can now access the lawful intercept MIBs and issue SNMP set and get requests to configure and run lawful intercepts on the router. To configure the router to send SNMP notification to the mediation device, see the Enabling SNMP Notifications for Lawful Intercept.

**Enabling SNMP Notifications for Lawful Intercept**

SNMP automatically generates notifications for lawful intercept events. To configure the router to send lawful intercept notifications to the mediation device, perform the steps in this section.

**Before you begin**

- You must issue the commands in global configuration mode with level-15 access rights.
- SNMPv3 must be configured on the router.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. snmp-server host ip-address community-string udp-port port notification-type
4. snmp-server enable traps snmp authentication linkup linkdown coldstart warmstart
5. end

**DETAILED STEPS**

| Command or Action |
|---|---|
| **Step 1** | enable |
| Example: | Device> enable |

Enables privileged EXEC mode.

- Enter your password if prompted.

| Command or Action |
|---|---|
| **Step 2** | configure terminal |
| Example: | Device# configure terminal |

Enters global configuration mode.

| Command or Action |
|---|---|
| **Step 3** | snmp-server host ip-address community-string udp-port port notification-type |
| Example: | |

Specifies the IP address of the mediation device and the password-like community-string that is sent with a notification request.
### Disabling SNMP Notifications

To disable SNMP notifications on the router, perform the steps in this section.

**Note**

To disable lawful intercept notifications, use SNMPv3 to set the CISCO-TAP2-MIB object `cTap2MediationNotificationEnable` to false(2). To reenable lawful intercept notifications through SNMPv3, reset the object to true(1).

#### SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **no snmp-server enable traps**
4. **end**

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Provisioning a MAC Intercept for Cable Modems Using SNMPv3

1. Configure the `c802tapStreamInterface` object.
2. Set the following bit flags in the `c802tapStreamFields` object:
   - `dstMacAddress` (bit 1)
   - `srcMacAddress` (bit 2)
   - `cmMacAddress` (bit 6)—The `cmMacAddress` bit field is newly introduced for cable modem support and determines whether the intercept is a CPE-based or CM-based intercept.
3. Configure the following objects with the same CM MAC address value:
   - `c802tapStreamDestinationAddress`
   - `c802tapStreamSourceAddress`

### Provisioning a MAC Intercept for a CPE Device Using SNMPv3

1. Configure the `c802tapStreamInterface` object.
2. Set the following bit flags in the `c802tapStreamFields` object:
   - `dstMacAddress` (bit 1)
   - `srcMacAddress` (bit 2)
3. Configure the following objects with the same CPE MAC address value:
   - `c802tapStreamDestinationAddress`
   - `c802tapStreamSourceAddress`

### Configuration Examples for Lawful Intercept

**Example: Enabling Mediation Device Access Lawful Intercept MIBs**

The following example shows how to enable the mediation device to access the lawful intercept MIBs. It creates an SNMP view (tapV) that includes four LI MIBs (CISCO-TAP2-MIB, CISCO-IP-TAP-MIB, CISCO-IP-TAP-MIB,
CISCO-802-TAP-MIB, and CISCO-USER-CONNECTION-TAP-MIB). It also creates a user group that has read, write, and notify access to MIBs in the tapV view.

```snmp-server view tapV ciscoTap2MIB included
snmp-server view tapV ciscoIpTapMIB included
snmp-server view tapV cisco802TapMIB included
snmp-server view tapV ciscoUserConnectionTapMIB included
snmp-server group tapGrp v3 noauth read tapV write tapV notify tapV
snmp-server user MDuser tapGrp v3 auth md5 MDpasswd
snmp-server engineID local 1234```

Example: Configuring Lawful Intercept- Redundant Mediation Devices

Lawful Intercept is configured using SNMPv3. The following example shows SNMP configuration command set to configure two identical taps to tap two MDs:

- **Setup MD1:**

  ```
  setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
cTap2MediationStatus.1 -i 4 \
cTap2MediationDestAddressType.1 -i 1 \
cTap2MediationTimeout.1 -o 07:E0:04:01:B:15:1A:0 \
cTap2MediationTransport.1 -i 1 \
cTap2MediationSrcInterface.1 -i 0 \
cTap2MediationDestAddress.1 -o 0a:0a:00:35 \
cTap2MediationDestPort.1 -g 63
  ```

- **Setup CM tap:**

  ```
  setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
c802tapStreamStatus.1.2 -i 4 \nc802tapStreamFields.1.2 -o 62 \nc802tapStreamInterface.1.2 -i -1 \nc802tapStreamDestinationAddress.1.2 -o "c8 fb 26 a5 55 98" \nc802tapStreamSourceAddress.1.2 -o "c8 fb 26 a5 55 98"
  ```

  ```
  setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
cTap2StreamStatus.1.2 -i 5 \
cTap2StreamType.1.2 -i 2 \
cTap2StreamInterceptEnable.1.2 -i 1 \
cTap2StreamStatus.1.2 -i 4
  ```

- **Setup MD2:**

  ```
  setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
cTap2MediationStatus.2 -i 4 \
cTap2MediationDestAddressType.2 -i 1 \
cTap2MediationTimeout.2 -o 07:E0:03:03:7:15:1A:0 \
cTap2MediationTransport.2 -i 1 \
cTap2MediationSrcInterface.2 -i 0 \
cTap2MediationDestAddress.2 -o 0a:0a:00:06 \
cTap2MediationDestPort.2 -g 63
  ```

- **Setup CM tap:**

  ```
  setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
c802tapStreamStatus.2.2 -i 4 \nc802tapStreamFields.2.2 -o 62 \nc802tapStreamInterface.2.2 -i -1 \nc802tapStreamDestinationAddress.2.2 -o "c8 fb 26 a5 55 98"
  ```
c802tapStreamSourceAddress.2.2 -o "c8 fb 26 a5 55 98"

setany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
cTap2StreamStatus.2.2 -i 5 \ncTap2StreamType.2.2 -i 2 \ncTap2StreamInterceptEnable.2.2 -i 1 \ncTap2StreamStatus.2.2 -i 4

• Get tapped packets count:

getmany -v3 -timeout 30 -retries 3 10.12.0.34 user1 \
cTap2StreamInterceptedPackets

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Configuring SNMP Support</td>
<td>Configuring SNMP Support</td>
</tr>
<tr>
<td>Security commands</td>
<td>Cisco IOS Security Command Reference</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PacketCable™ Control Point Discovery Interface Specification</td>
<td>PacketCable™ Control Point Discovery Interface Specification (PKT-SP-CPD-I02-061013)</td>
</tr>
<tr>
<td>RFC-3924</td>
<td>Cisco Architecture for Lawful Intercept in IP Networks</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-TAP2-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
<tr>
<td>• CISCO-IP-TAP-MIB</td>
<td></td>
</tr>
<tr>
<td>• CISCO-802-TAP-MIB</td>
<td></td>
</tr>
<tr>
<td>• CISCO-USER-CONNECTION-TAP-MIB</td>
<td></td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user</td>
<td></td>
</tr>
<tr>
<td>ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Lawful Intercept

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

Table 4: Feature Information for Lawful Intercept

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lawful intercept - Redundant mediation devices</td>
<td>Cisco IOS XE Everest</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series</td>
</tr>
<tr>
<td></td>
<td>16.6.1</td>
<td>Converged Broadband Routers.</td>
</tr>
</tbody>
</table>
Cable Monitoring Feature for Cisco cBR Series Routers

After you configure cable monitoring, the router forwards copies of selected packets on the cable interface to an external LAN analyzer attached to another interface on the Cisco CMTS router. This command can help in troubleshooting network and application problems.

Note
This feature does not monitor traffic for the purpose of preventing denial-of-service attacks and other types of network attacks. Even after configuring the cable monitoring feature, the traffic continues to its original destination, and only copies of the selected packets are forwarded to the CALEA server or LAN analyzer.

Note
This feature doesn't support line card high availability (LCHA).

Finding Feature Information
Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents
- Overview of Cable Monitor Command for cBR, on page 42
- Configuring Cable Monitoring for cBR Routers, on page 42
- Capturing Sniffed Packets, on page 44
- Cable Monitor Packet Struct, on page 47
- Feature Information for Cable Monitoring, on page 47
Overview of Cable Monitor Command for cBR

The cable monitor command sends copies of packets for specific types of traffic that is sent over a particular cable interface to a LAN analyzer, for use in troubleshooting network problems. This command can select packets to be forwarded using one or more of the following parameters:

- Either incoming or outbound packets
- Packets that match a specific MAC address (source and destination)
- Packets with a specific Service ID (SID)

Packets can also be timestamped to aid in troubleshooting. The packets are then forwarded out of the specified 10 Gigabit Ethernet port to the LAN analyzer for additional analysis.

The figure below illustrates a LAN packet analyzer attached to a Fast Ethernet port in a DOCSIS two-way configuration.

Figure 1: LAN Packet Analyzer in a DOCSIS Two-Way Configuration

Note

The WAN port used for cable monitoring should be exclusively used by the LAN packet analyzer.

Configuring Cable Monitoring for cBR Routers

To enable the cable traffic monitoring feature on a particular cable interface, use the following procedure, starting in privileged EXEC mode.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `cable monitor`
4. `sniff card <slot num> <ds/us> <sniff point> <filter> dest cmon-tunnel <cmon-tunnel num>`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| ```
Router> enable
``` | |
| Example: | |
| ```
Router#
``` | |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: | |
| ```
Router# configure terminal
``` | |
| Example: | |
| ```
Router(config)#
``` | |
| **Step 3** cable monitor | Enters cable monitor configuration mode. |
| Example: | |
| ```
Router(config)# cable monitor
``` | |
| Example: | |
| ```
Router(config-cable-monitor)#
``` | |
| **Step 4** sniff card <slot num> <ds/us> <sniff point> <filter> dest cmon-tunnel <cmon-tunnel num> | Configures the card to forward the sniffed packets. |
| Example: | |
| ```
Downstream traffic: For each channel
Router(config-cable-monitor)sniff card 3 outbound docsis integrated-Cable 3/0/0:0 dest cmon-tunnel 3
``` | • **slot number**—Slot number of the line card |
| Example: | |
| ```
Downstream traffic: For each wideband channel
Router(config-cable-monitor)sniff card 3 outbound pre-docsis wideband-Cable 3/0/0:0 dest cmon-tunnel 3
``` | • **ds/us**—Downstream or upstream |
| Example: | |
| ```
Downstream traffic: For each MAC address
Router(config-cable-monitor)sniff card 3 outbound docsis mac-address 0100.5e01.0101 dest cmon-tunnel 3
``` | • **sniff point**—Sniff point in downstream or upstream FPGA (field-programmable gate array) |
| Example: | |
| ```
Upstream traffic: For each channel
``` | • **filter**—Packet type filter |
| | • **dest cmon-tunnel**—Cable monitor tunnel for captured packets |
| | • **cmon-tunnel num**—Cable monitor tunnel number for capture packets |
Capturing Sniffed Packets

To forward the captured traffic to an external server, you should configure a tunnel. The external server might not be directly connected and can be away from CMTS.

To capture sniffed packets, you can follow one of these procedures:

- Capture output packets using an external host
- Capture packets by locating the hard disk

Capturing Sniffed Packets on an External Host

To forward the captured traffic to an external server, you should configure a tunnel. The external server might not be directly connected and can be away from CMTS.
SUMMARY STEPS

1. configure terminal
2. interface cmon-tunnel number
3. tunnel destination IP address, tunnel source IP address
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface cmon-tunnel number</td>
<td>Enters the interface cmon-tunnel mode to capture sniffed packets.</td>
</tr>
<tr>
<td>Example: Router(config)# interface CMON-Tunnel 3</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 tunnel destination IP address, tunnel source IP address</td>
<td>Configures destination IP address and the source IP address for an external host to capture output packets.</td>
</tr>
<tr>
<td>Example: Router(config-if)#tunnel destination 10.10.21.11</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#tunnel source 10.10.21.1</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# end</td>
<td></td>
</tr>
<tr>
<td>Example: Router#</td>
<td></td>
</tr>
</tbody>
</table>

Capturing Sniffed Packets on a Local Hard Drive

To forward the captured traffic to a local hard disk, use the following procedure.

SUMMARY STEPS

1. configure terminal
2. interface cmon-tunnel number
3. mode buffer
4. end
5. show platform software interface fp active name-string CMON-Tunnel number
6. test platform hardware qfp active feature docsis cmon-copy 3 QFP_ID
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal
Example:
Router#configure CMON-Tunnel 3
Example:
Router(config)#</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface cmon-tunnel number
Example:
Router(config)#interface CMON-Tunnel 3
Router(config-if)#</td>
<td>Enters the interface cmon-tunnel mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>mode buffer
Example:
Router(config-if)#mode buffer</td>
<td>Enables mode buffer in the cmon-tunnel to capture packets by locating the hard disk.</td>
</tr>
<tr>
<td>Step 4</td>
<td>end
Example:
Router(config-if)#end
Router#</td>
<td>Exits global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 5 | **show platform software interface fp active name-string CMON-Tunnel number**
Example:
Router#show platform software interface fp active name-string CMON-Tunnel3
Name: CMON-Tunnel3, ID: 131074, **QFP ID: 11745**, Schedules: 0
Type: CABLE-MONITOR, State: enabled, SNMP ID: 0, MTU: 0
IP Address: 0.0.0.0
IPV6 Address: ::
Flags: unknown
ICMP Flags: unreachables, no-redirects, no-info-reply, no-mask-reply
ICMP6 Flags: unreachables, no-redirects
SMI enabled on protocol(s): UNKNOWN
Authenticated-user: FRR
Monitor Type: 0, Instance ID: 3, Mode: 3
Monitor Tunnel Source: 0.0.0.0, Destination: 0.0.0.0
vNet Name: , vNet Tag: 0, vNet Extra Information: 0
Dirty: unknown
AOM dependency sanity check: PASS
AOM Obj ID: 24094 | Gets the QFP ID. |
| Step 6 | **test platform hardware qfp active feature docsis cmon-copy 3 QFP_ID** | Uses the QFP ID to copy the buffer to the harddisk. |
Cable Monitor Packet Struct

The cable monitor packet struct is described as follows:

- For post-docsis and pre-docsis sniffer points: Internal Header (16 Bytes) + Ethernet Header
- For docsis sniffer point: Internal Header (16 Bytes) + Docsis Header + Ethernet Header

If `remove-jib` is configured under CMON-Tunnel interface, the packets will not contain Internal Header.

Feature Information for Cable Monitoring

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable Monitoring</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Routers.</td>
</tr>
</tbody>
</table>
Source-Based Rate Limit

The Source-Based Rate Limit (SBRL) feature prevents congestion of packets on the forwarding processor (FP) to the Route Processor (RP) interface, which can be caused by denial of service (DoS) attacks directed at the Cisco CMTS or by faulty hardware.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

- Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 49
- Prerequisites for Source-Based Rate Limit, on page 50
- Restrictions for Source-Based Rate Limit, on page 50
- Information About Source-Based Rate Limit, on page 51
- How to Configure Source-Based Rate Limit, on page 51
- Verifying the Source-Based Rate Limit Configuration, on page 57
- Configuration Example for Source-Based Rate Limit, on page 62
- Default SBRL Configuration, on page 63
- Conversion of SBRL Subscriber-side Configuration from 16.8.x to 16.9.x, on page 63
- Conversion of Divert Rate Limit Configuration on the Cisco uBR10012 Router to SBRL Configuration on the Cisco cBR Series Routers, on page 64
- Additional References, on page 67
- Feature Information for Source-Based Rate Limit, on page 67

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
Table 6: Hardware Compatibility Matrix for the Cisco cBR Series Routers

<table>
<thead>
<tr>
<th>Cisco CMTS Platform</th>
<th>Processor Engine</th>
<th>Interface Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco cBR-8 Converged Broadband Router</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Supervisor:</td>
<td>Cisco cBR-8 CCAP Line Cards:</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-250G</td>
<td>• PID—CBR-LC-8D30-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-160G</td>
<td>• PID—CBR-LC-8D31-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-60G</td>
<td>• PID—CBR-RF-PIC</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-8X10G-PIC</td>
<td>• PID—CBR-RF-PROT-PIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G-R</td>
</tr>
</tbody>
</table>

Cisco cBR-8 Downstream PHY Modules:
- • PID—CBR-D30-DS-MOD
- • PID—CBR-D31-DS-MOD

Cisco cBR-8 Upstream PHY Modules:
- • PID—CBR-D30-US-MOD
- • PID—CBR-D31-US-MOD

Prerequisites for Source-Based Rate Limit

- You must configure Control-Plane Policing (CoPP) for WAN-side SBRL.

Restrictions for Source-Based Rate Limit

- WAN-IP and Subscriber MAC address entities are identified using a hash, and hash collisions can occur between two (or more) entities.
- On the WAN-side there is no special processing for hash collisions. Sources that hash-collide are rate-limited as if they are the same source.
- The QOS group 99 is reserved for SBRL and cannot be used for other class maps.
Information About Source-Based Rate Limit

Source-Based Rate Limit (SBRL) feature operates on the punt path in CPP. SBRL identifies and rate-limits the packet streams that can overload the punt path or RP.

Punted packets are sent from the FP to the RP through the FP-to-RP queues. Denial of service (DoS) can occur when:

• The FP-to-RP queues are congested
• The RP cannot process punted packets fast enough

In both cases, the valid punted packets are not processed properly. These situations can be caused deliberately by DoS attacks or by faulty external hardware.

Packet streams identified by SBRL are rate-limited according to configured parameters. Rate-limiting occurs in CPP before the packets reach the FP-to-RP queues. This protects the RP, and also allows other valid punted packets to reach the RP.

SBRL has a separate configuration for the WAN-side and the subscriber-side. WAN-side SBRL is disabled by default. Subscriber-side SBRL has default settings.

WAN-Side Source-Based Rate Limit

WAN-side SBRL uses Control Plane Policing (CoPP). CoPP specifies the WAN-side packet streams that are directed for SBRL. Both trusted and untrusted sites can be specified using CoPP. Using CoPP, you can specify unlimited trusted sites. Access control list (ACL) is used to specify the trusted sites.

Subscriber-Side Source-Based Rate Limit

All subscriber-side punts are processed by subscriber-side SBRL. Note that the CoPP processes all punted packets, but there is no dependency between CoPP and subscriber-side SBRL.

How to Configure Source-Based Rate Limit

This section contains the following:

Configuring WAN-Side Source-Based Rate Limit

You must enable WAN-side SBRL in two parts:

1. Configure Control Plane Policing (CoPP) to specify which packets are subject to SBRL.
2. Configure WAN-side SBRL to set the rate-limiting parameters for the specified punt-causes.

In the CoPP policy map, the special action `set qos-group 99` denotes that the packets matching a particular class are subject to WAN-side SBRL. This means that the QOS group 99 is globally reserved for SBRL, and must not be used in other policy-maps.

Packets matching a class without `set qos-group 99` bypass WAN-side SBRL. This means that CoPP is also used to specify trusted traffic streams that are not subject to WAN-side SBRL.
All punted packets are subject to CoPP. So, you must ensure that subscriber-side traffic does not match a trusted class.

WAN-side SBRL identifies traffic streams by hashing the punt cause, VRF index, and source IP address. This value is used as the index for rate-limiting. The router does not perform special processing for hash collisions, so hash-colliding streams are treated as if they are from the same stream.

By default, WAN-side SBRL is disabled.

Restrictions

- All the punted packets are subject to CoPP and punt-policing.

This section contains the following:

Configuring Control Plane Policing

Punted packets matching the trusted class bypass WAN-side SBRL. The rest of the WAN-side punts are sent to WAN-side SBRL.

Note

The following example shows a simple trusted class.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password, if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 access-list access-list-number permit protocol {any</td>
<td>host {address</td>
</tr>
<tr>
<td>Example: Router(config)# access-list 130 permit ip 192.168.1.10 0.0.0.0 192.168.1.11 0.0.0.0 tos 4</td>
<td>Note Since all the punted packets are subject to CoPP, you must ensure that subscriber-side traffic does not match a trusted class.</td>
</tr>
<tr>
<td>Step 4 class-map class-map-name</td>
<td>Creates a class-map and enters QoS class-map configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# class-map match-all sbrl_v4_trusted</td>
<td></td>
</tr>
<tr>
<td>Step 5 match access-group access-list-index</td>
<td>Specifies access groups to apply to an identity policy. The range of is from 1 to 2799.</td>
</tr>
<tr>
<td>Example: Router(config-cmap)# match access-group 130</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit
Example: <code>Router(config-cmap)# exit</code>
Exits QoS class-map configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>policy-map policy-map-name
Example: <code>Router(config)# policy-map copp_policy</code>
Specifies a service policy and enters QoS policy-map configuration mode.</td>
</tr>
<tr>
<td>Step 8</td>
<td>class class-map-name
Example: <code>Router(config)# class sbrl_v4_trusted</code>
Enters QoS policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>police rate units pps conform-action action exceed-action action
Example: <code>Router(config-pmap-c)# police rate 1000 pps conform-action transmit exceed-action transmit</code>
Policies traffic destined for the control plane at a specified rate.
Note The rate is irrelevant if both the configured actions are transmit.</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit
Example: <code>Router(config-pmap-c)# exit</code>
Exits policy-map class police configuration mode</td>
</tr>
<tr>
<td>Step 11</td>
<td>class class-default
Example: <code>Router(config-pmap)# class class-default</code>
Specifies the action to take on the packets that do not match any other class in the policy map.</td>
</tr>
<tr>
<td>Step 12</td>
<td>set qos-group 99
Example: <code>Router(config-pmap-c)# set qos-group 99</code>
Enables WAN-side SBRL for the packets that match this class.</td>
</tr>
<tr>
<td>Step 13</td>
<td>exit
Example: <code>Router(config-pmap-c)# exit</code>
Exits policy-map class configuration mode</td>
</tr>
<tr>
<td>Step 14</td>
<td>exit
Example: <code>Router(config-pmap)# exit</code>
Exits policy-map configuration mode</td>
</tr>
<tr>
<td>Step 15</td>
<td>**control-plane [host</td>
</tr>
<tr>
<td>Step 16</td>
<td>**service-policy [input</td>
</tr>
</tbody>
</table>
Enabling WAN-Side Source-Based Rate Limit

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password, if prompted.</td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3: platform punt-sbrl wan punt-cause rate-per-1-sec rate</td>
<td>Configures WAN-side rate limit.</td>
</tr>
<tr>
<td>Example:</td>
<td>• punt-cause punt-cause—Specifies the punt-cause value in number 1 to 107 or string.</td>
</tr>
<tr>
<td>Router(config)# platform punt-sbrl wan punt-cause 10 rate-per-1-sec 4</td>
<td>• rate-per-1-sec rate—Specifies the rate in packets per second. The range is from 1 to 256, specified in powers-of-2.</td>
</tr>
</tbody>
</table>

Configuring WAN-Side Quarantine

The WAN-side quarantine extends the WAN-side SBRL configuration. When a traffic stream enters quarantine, all puncted packets in the stream are dropped for the configured period.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td>• Enter your password, if prompted.</td>
</tr>
<tr>
<td>Step 2: configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Subscriber-Side Source-Based Rate Limit

Purpose
Configures quarantine for the WAN-side packet stream.

- **punt-cause** — Specifies the punt-cause value in number 1 to 107 or string.
- **rate-per-1-sec** — Specifies the rate limit in packets per second. The range is from 1 to 256, specified in powers-of-2.
- **quarantine-time** — Specifies the quarantine time, in minutes. The range is from 1 to 60.
- **burst-factor** — Specifies the burst-factor, in number of packets. The range is from 50 to 1000.

Example
When \((\text{burst-factor} \times \text{rate})\) packets arrive at a rate faster than \(\text{rate}\), the packet stream enters quarantine.

For example, during a DoS attack, when the following occurs:

- Punited packets from a WAN-side source are arrive at 100 packets per second.
- WAN-side SBRL is configured with a rate of 4 packets per second, quarantine time of 10 minutes, and burst-factor of 500 packets.

The packet rate is significantly higher than the configured rate. Therefore, when 2000 \((4 \times 500)\) packets have arrived, the packet stream enters into quarantine. Quarantine is activated at 20 seconds \((2000 \text{ packets per } 100 \text{ packets per second})\), and all punted packets from the stream are dropped for 10 minutes. After 10 minutes, the quarantine is deactivated.

The quarantine calculations restart immediately. So, if the scanning attack is continuous, quarantine is reactivated after the next 20 seconds.

Restrictions
- All punted packets are subject to CoPP and punt-policing.
- The ARP-filter handles the subscriber-side ARP packets. ARP packets are not processed by subscriber-side SBRL.
- The maximum rate is 255. Due to this, the configured rate of 256 from 16.8.X will not transfer properly. A new command must be entered to transfer the configuration.

Subscriber-MAC address SBRL identifies traffic streams by hashing the punt cause and the source MAC address. The hash value is used as the index for rate-limiting. Hash-collision detection is performed so that all traffic streams are processed separately.

Default settings for subscriber-side SBRL are listed in this topic. Using the 'no' configuration returns the rate to the default value.
Rate-limiting is performed using a 2-color token-bucket algorithm. The rate is specified in packets-per-4-seconds, in the range \([1, 255]\). This translates to a packets-per-second rate in the range \([0.25, \sim 64]\). The optional bucket-size is specified in packets, in the range \([1, 255]\). If not specified, then bucket-size is set equal to rate.

The "no-drop" keyword disables rate-limiting for the specified punt-cause.

There is an optional quarantine configuration. When a traffic stream enters quarantine, all punted packets in the stream are dropped for the configured period. A traffic stream enters quarantine when \((\text{burst-factor} \times \text{rate})\) packets arrive at a rate faster than rate. An example would be that of a faulty cable modem that continuously sends DHCPv6 solicits.

- DHCPv6 solicits from the faulty cable modem arrive at 100 packets/second, and are all punted.
- Subscriber-side SBRL is configured with a rate-per-4-sec of 8 (i.e. 2 packets-per-sec), quarantine time of 10 minutes, and burst-factor of 500 packets.

The traffic stream rate is higher than the configured rate. Therefore, when approximately 1000 \((2 \times 500)\) packets have arrived, the traffic stream enters quarantine. The quarantine happens after about 10 seconds (1000 packets at 100 packets per second), and all punted packets from the stream are dropped for 10 minutes. After 10 minutes, the quarantine is deactivated. The quarantine calculations restart immediately, so if the traffic stream remains continuous, quarantine is reactivated after the next 10 seconds.

1. **enable**

   ```
   Router> enable
   ```

 Enables privileged EXEC mode. Enter your password, if prompted.

2. **configure terminal**

   ```
   Router# configure terminal
   ```

 Enters global configuration mode.

3. **platform punt-sbrl subscriber punt-cause rate-per-4-sec [rate [bucket-size] [quarantine-time] [burst-factor]]**

 Configures subscriber-MAC address SBRL.

 - **punt-cause** - Specifies the punt cause.
 - **rate-per-4-sec** - Specifies the rate in packets per 4-seconds. The range is from 1 to 255.
 - **bucket-size** - Specifies the bucket-size in packets. The range is from 1 to 255. If bucket-size is not entered, the bucket-size is set equal to the rate.
 - **quarantine-time** - Specifies the quarantine time, in minutes. The range is from 1 to 60.
 - **burst-factor** - Specifies the burst-factor, in number of packets. The range is from 50 to 1000.

Configuring Source-Based Rate Limit Ping-Bypass

Follow the steps below to configure source-based rate limit ping-bypass.
Configuring Punt Policing

The punt policer aggregates all packets (both subscriber-side and WAN-side) with the specified punt cause, and rate-limits them according to the configured parameters.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password, if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 platform punt-policer punt-cause punt-rate [high]</td>
<td>Configures punt policing.</td>
</tr>
<tr>
<td>Example:</td>
<td>• punt-cause—Punt cause. The range is from 1 to 107.</td>
</tr>
<tr>
<td>Router(config)# platform punt-policer 1 10</td>
<td>• punt-rate—Rate limit in packets per second. The range is from 10 to 146484.</td>
</tr>
<tr>
<td></td>
<td>• high—(Optional) Specifies that the punt policing is performed only for high priority traffic.</td>
</tr>
</tbody>
</table>

Verifying the Source-Based Rate Limit Configuration

- **show cable dp sbrl config**—Displays the SBRL configuration, including default settings. This is equivalent to **show running-config all | include punt-sbrl**.
Following is a sample output of the command:

```
Router# show cable dp sbrl config
platform punt-sbrl wan punt-cause for-us-data rate-per-1-sec 8
platform punt-sbrl wan punt-cause glean-adj rate-per-1-sec 4 quarantine-time 10
burst-factor 1000
platform punt-sbrl subscriber punt-cause for-us-data rate-per-4-sec 32 bucket-size 32
platform punt-sbrl subscriber punt-cause for-us-ctrl rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cable-l3-mobility rate-per-4-sec 16 bucket-size 16
platform punt-sbrl subscriber punt-cause sv-match-unknown rate-per-4-sec 4 bucket-size 4
platform punt-sbrl subscriber punt-cause cable-pre-reg rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-solicit rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-req rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv4-subrate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv4-disc-req rate-per-4-sec 8 bucket-size 8
```

- `show access-lists` — Displays the access list information for verifying CoPP configuration.

Following is a sample output of the command:

```
Router# show access-lists

Extended IP access list 120
  10 permit ip any any dscp af31
  20 permit ip any any dscp cs2
  30 permit ip any any dscp af21
  40 permit ip 68.86.0.0 0.1.255.255 any
IPv6 access list TRUSTEDV6
  permit ipv6 2001:558::/32 any sequence 10
```

- `show policy-map policy-map-name` — Displays the information for the policy map.

Following is a sample output of the command:

```
Router# show policy-map copp_policy

Policy Map copp_policy
  Class sbrl_trusted
    police rate 1000 pps
      conform-action transmit
      exceed-action transmit
  Class class-default
    set qos-group 99
```

- `show policy-map control-plane` — Displays the control plane policy map information.

Following is a sample output of the command:

```
Router# show policy-map control-plane

Control Plane

Service-policy input: copp_policy

Class-map: sbrl_trusted (match-any)
  0 packets, 0 bytes
  5 minute offered rate 0000 bps, drop rate 0000 bps
  Match: access-group 120
  Match: access-group name TRUSTEDV6
```
police:
 rate 1000 pps, burst 244 packets
 conformed 0 packets, 0 bytes; actions: transmit
 exceeded 0 packets, 0 bytes; actions: transmit
 conformed 0 pps, exceeded 0 pps

Class-map: class-default (match-any)
 28 packets, 4364 bytes
 5 minute offered rate 0000 bps, drop rate 0000 bps
 Match: any
 QoS Set
 qos-group 99
 Marker statistics: Disabled

• show platform hardware qfp active infrastructure punt sbrl—Displays the SBRL statistics.

Following is a sample output of the command:

Router# show platform hardware qfp active infrastructure punt sbrl

SBRL statistics

Subscriber MAC-addr drop-cnt evict-cnt quar MAC-Address ID punt-cause
--
 10000 10000 0 0010.88a3.0456 101 cable-l3-mobility

WAN-IPv4
 drop-cnt evict-cnt quar VRF cause IP-address
--
 456788 456788 0 0 050 1.2.0.66

WAN-IPv6
 drop-cnt evict-cnt quar VRF cause IP-address
--
 129334 129334 1 0 011 3046:1829:fe8b::d4d1
 965 965 0 0 011 2001:420:2c7f:fc01::3

...

Note

The value of quar is either 0 or 1. The value 1 indicates that quarantine is activated. The quar value is updated only when a packet from the source is dropped. If a source enters quarantine, and then stops sending packets, the quar value remains 1. However, the drop-cnt does not increment.
The SBRL statistics algorithm stores the data for the worst offenders. Sources that drop only a few packets are displayed in the table initially, but may be overwritten if the drop-cnt does not increase continuously. The evict-cnt increases in tandem with drop-cnt, but begins to decrease when a source is no longer being actively rate-limited. When the evict-cnt drops below 10, the record may be overwritten.

Note

The SBRL statistics algorithm stores the data for the worst offenders. Sources that drop only a few packets are displayed in the table initially, but may be overwritten if the drop-cnt does not increase continuously. The evict-cnt increases in tandem with drop-cnt, but begins to decrease when a source is no longer being actively rate-limited. When the evict-cnt drops below 10, the record may be overwritten.

- **show platform hardware qfp active infrastructure punt statistics type global-drop**—Displays the global punt policer statistics.

Following is a sample output of the command:

```
Router# show platform hardware qfp active infrastructure punt statistics type global-drop

Global Drop Statistics

Number of global drop counters = 22

<table>
<thead>
<tr>
<th>Counter ID</th>
<th>Drop Counter Name</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>INVALID_COUNTER_SELECTED</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>INIT_PUNT_INVALID_PUNT_MODE</td>
<td>0</td>
</tr>
<tr>
<td>002</td>
<td>INIT_PUNT_INVALID_PUNT_CAUSE</td>
<td>0</td>
</tr>
<tr>
<td>003</td>
<td>INIT_PUNT_INVALID_INJECT_CAUSE</td>
<td>0</td>
</tr>
<tr>
<td>004</td>
<td>INIT_PUNT_MISSING_FEATURE_HDR_CALLBACK</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>INIT_PUNT_EXT_PATH_VECTOR_REQUIRED</td>
<td>0</td>
</tr>
<tr>
<td>006</td>
<td>INIT_PUNT_EXT_PATH_VECTOR_NOT_SUPPORTED</td>
<td>0</td>
</tr>
<tr>
<td>007</td>
<td>INIT_INJ_INVALID_INJECT_CAUSE</td>
<td>0</td>
</tr>
<tr>
<td>008</td>
<td>INIT_INJ_MISSING_FEATURE_HDR_CALLBACK</td>
<td>0</td>
</tr>
<tr>
<td>009</td>
<td>PUNT_INVALID_PUNT_CAUSE</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>PUNT_INVALID_COMMON_HDR_Version</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>PUNT_INVALID_PLATFORM_HDR_VERSION</td>
<td>0</td>
</tr>
<tr>
<td>012</td>
<td>PUNT_PATH_NOT_INITIALIZED</td>
<td>0</td>
</tr>
<tr>
<td>013</td>
<td>PUNT_GPM_ALLOC_FAILURE</td>
<td>0</td>
</tr>
<tr>
<td>014</td>
<td>PUNT_TRANSITION_FAILURE</td>
<td>0</td>
</tr>
<tr>
<td>015</td>
<td>PUNT_DELAYED_PUNT_PKT_SB_NOT_IN_USE</td>
<td>0</td>
</tr>
<tr>
<td>016</td>
<td>PUNT_CAUSE_GLOBAL_POLICER</td>
<td>0</td>
</tr>
<tr>
<td>017</td>
<td>INJ_INVALID_INJECT_CAUSE</td>
<td>0</td>
</tr>
<tr>
<td>018</td>
<td>INJ_INVALID_COMMON_HDR_VERSION</td>
<td>0</td>
</tr>
<tr>
<td>019</td>
<td>INJ_INVALID_PLATFORM_HDR_VERSION</td>
<td>0</td>
</tr>
<tr>
<td>020</td>
<td>INJ_INVALID_PAL_HDR_FORMAT</td>
<td>0</td>
</tr>
<tr>
<td>021</td>
<td>PUNT_GPM_TX_LEN_EXCEED</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- **show platform hardware qfp active infrastructure punt summary [threshold threshold-value]**—Displays the punt path rate-limiting summary.

Following is a sample output of the command:

```
Router# show platform hardware qfp active infrastructure punt summary

Punt Path Rate-Limiting summary statistics

<table>
<thead>
<tr>
<th>Subscriber-side ID</th>
<th>punt cause</th>
<th>CPP punt</th>
<th>CoPP</th>
<th>ARPfilt/SBRL</th>
<th>per-cause</th>
<th>global</th>
</tr>
</thead>
<tbody>
<tr>
<td>017</td>
<td>IPv6 Bad hop limit</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>050</td>
<td>IPv6 packet</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>080</td>
<td>CM not online</td>
<td>335</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
The table below shows the punt causes and their corresponding packet counts:

<table>
<thead>
<tr>
<th>ID</th>
<th>Punt Cause</th>
<th>CPP Punt</th>
<th>CoPP</th>
<th>SBRL per-cause</th>
<th>global</th>
</tr>
</thead>
<tbody>
<tr>
<td>017</td>
<td>IPv6 Bad hop limit</td>
<td>471</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>018</td>
<td>IPv6 Hop-by-hop Options</td>
<td>29901</td>
<td>0</td>
<td>0</td>
<td>1430</td>
</tr>
<tr>
<td>024</td>
<td>Glean adjacency</td>
<td>111</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>025</td>
<td>Mcast PIM signaling</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>050</td>
<td>IPv6 packet</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- The `show platform software punt-policer` command displays the punt policer configuration and statistics. Following is a sample output of the command:

```
Router# show platform software punt-policer
```

The table below shows the per-punt cause policer configuration and packet counters:

<table>
<thead>
<tr>
<th>Punt Cause Description</th>
<th>Configured (pps)</th>
<th>Conform Packets Normal</th>
<th>Conform Packets High</th>
<th>Dropped Packets Normal</th>
<th>Dropped Packets High</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 IPv4 Options</td>
<td>4000</td>
<td>3000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3 Layer2 control and legacy</td>
<td>40000</td>
<td>10000</td>
<td>16038</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4 PPP Control</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5 CLNS IS-IS Control</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 HDLC keepalives</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7 ARP request or response</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>49165</td>
<td>0</td>
</tr>
<tr>
<td>8 Reverse ARP request or res...</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9 Frame-relay LMI Control</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10 Incomplete adjacency</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11 For-us data</td>
<td>40000</td>
<td>5000</td>
<td>279977</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12 Mcast Directly Connected ...</td>
<td>2000</td>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- The `show platform hardware qfp active infrastructure punt policer summary` command displays the punt policer summary. Following is a sample output of the command:

```
Router# show platform hardware qfp active infrastructure punt policer summary
```

The table below shows the QFP punt policer config summary:

<table>
<thead>
<tr>
<th>Policer Handle</th>
<th>Rate (pps)</th>
<th>PeakRate (pps)</th>
<th>ConformBurst (pps)</th>
<th>ExceedBurst (pps)</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>300000</td>
<td>0</td>
<td>2288</td>
<td>2288</td>
<td>0</td>
</tr>
<tr>
<td>002</td>
<td>4000</td>
<td>0</td>
<td>4000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>003</td>
<td>3000</td>
<td>0</td>
<td>3000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>004</td>
<td>40000</td>
<td>0</td>
<td>40000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>005</td>
<td>10000</td>
<td>0</td>
<td>10000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>006</td>
<td>2000</td>
<td>0</td>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>007</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>008</td>
<td>2000</td>
<td>0</td>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>009</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>010</td>
<td>2000</td>
<td>0</td>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>012</td>
<td>2000</td>
<td>0</td>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>013</td>
<td>1000</td>
<td>0</td>
<td>1000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>014</td>
<td>2000</td>
<td>0</td>
<td>2000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

...
Configuration Example for Source-Based Rate Limit

Example: WAN-Side SBRL Configuration

```plaintext
access-list 120 permit ip any any dscp af31
access-list 120 permit ip any any dscp cs2
access-list 120 permit ip any any dscp af21
access-list 120 permit ip 192.168.1.10 0.1.255.255 any

ipv6 access-list TRUSTEDV6
    permit ipv6 any any dscp af31
    permit ipv6 any any dscp cs2
    permit ipv6 any any dscp af21
    permit ipv6 2001:558::/32 any

class-map match-all sbrl_trusted_v4
    match access-group 120

class-map match-all sbrl_trusted_v6
    match access-group name TRUSTEDV6

policy-map copp_policy
    ! IPv4 trusted:
    !  Specified rate is irrelevant.
    !  No special action; these packets bypass WAN-side SBRL.
    class sbrl_trusted_v4
        police rate 1000 pps conform transmit exceed transmit
    ! IPv6 trusted:
    !  Specified rate is irrelevant.
    !  No special action; these packets bypass WAN-side SBRL.
    class sbrl_trusted_v6
        police rate 1000 pps conform transmit exceed transmit

    ! add other classes here, if necessary

    ! Special action to activate WAN-side SBRL for this class.
    class class-default
        set qos-group 99

control-plane
    service-policy input copp_policy

platform punt-sbrl wan punt-cause for-us-data rate-per-1-sec 4
platform punt-sbrl wan punt-cause glean-adj rate-per-1-sec 4 quarantine-time 10 burst-factor 1000
```

Example: Subscriber-Side SBRL Configuration

```plaintext
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-solicit rate-per-4-sec 2 bucket-size 8
platform punt-sbrl subscriber punt-cause sv-match-unknown rate-per-4-sec 4 bucket-size 10 quarantine-time 5 burst-factor 500
```
Default SBRL Configuration

Because of the dependency on CoPP, WAN-side SBRL is disabled by default. There is no default WAN-side SBRL configuration.

Subscriber-side SBRL has the following default settings:

```plaintext
platform punt-sbrl subscriber punt-cause for-us-data rate-per-4-sec 32 bucket-size 32
platform punt-sbrl subscriber punt-cause for-us-ctrl rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cable-13-mobility rate-per-4-sec 16 bucket-size 16
platform punt-sbrl subscriber punt-cause sv-match-unknown rate-per-4-sec 4 bucket-size 4
platform punt-sbrl subscriber punt-cause cable-pre-reg rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-solicit rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-req rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-sub rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv4-disc-req rate-per-4-sec 8 bucket-size 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv4-sub rate-per-4-sec 8 bucket-size 8
```

Conversion of SBRL Subscriber-side Configuration from 16.8.x to 16.9.x

In 16.9.x, several new punt-causes were added for DHCP packets on the subscriber-side. This means that the recommended configuration for 16.8.x does not match up with the default configuration in 16.9.x.

In 16.8.x, the cable-dhcp punt-cause is used by both subscriber-side and WAN-side DHCP punts. In 16.9.x, new punt-causes were added on the subscriber-side for DHCP packets, with the result that the cable-dhcp punt-cause is used ONLY for WAN-side DHCP punts. This means that configuring a rate for cable-dhcp on the subscriber-side is meaningless. The chart below shows the DHCP-related punt-causes for 16.8.x and 16.9.x. In 16.9.x, all the subscriber-side DHCP punt-causes have default SBRL settings.

Table 7: 16.8.x

<table>
<thead>
<tr>
<th>punt-cause</th>
<th>Origin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbl-dhcpv6-solicit</td>
<td>sub</td>
<td>DHCPv6 solicit</td>
</tr>
<tr>
<td>cbl-dhcpv6-req</td>
<td>sub</td>
<td>DHCPv6 request</td>
</tr>
<tr>
<td>cable-dhcp</td>
<td>sub/WAN</td>
<td>all other DHCP packets</td>
</tr>
</tbody>
</table>

Table 8: 16.9.x

<table>
<thead>
<tr>
<th>punt-cause</th>
<th>Origin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbl-dhcpv6-solicit</td>
<td>sub</td>
<td>DHCPv6 solicit</td>
</tr>
<tr>
<td>cbl-dhcpv6-req</td>
<td>sub</td>
<td>DHCPv6 request</td>
</tr>
</tbody>
</table>
Conversion of Divert Rate Limit Configuration on the Cisco uBR10012 Router to SBRL Configuration on the Cisco cBR Series Routers

Divert Rate Limit Configuration on the Cisco uBR10012 Router

The following is a sample Divert Rate Limit (DRL) configuration on the Cisco uBR10012 router:

```
service divert-rate-limit ip fib_rp_glean rate 4 limit 4
service divert-rate-limit ip fib_rp_dest rate 4 limit 4
service divert-rate-limit ip fib_rp_punt rate 4 limit 4
service divert-rate-limit ipv6 ipv6_rp_dest rate 4 limit 4
service divert-rate-limit ipv6 ipv6_rp_punt rate 4 limit 4
service divert-rate-limit ipv6 ipv6_rp_glean rate 4 limit 4
service divert-rate-limit ipv6 icmpv6 rate 4 limit 4
service divert-rate-limit trusted-site 0.0.0.0 0.0.0.0 tos 0x68 mask 0xFF
service divert-rate-limit trusted-site 0.0.0.0 0.0.0.0 tos 0x40 mask 0xFF
service divert-rate-limit trusted-site 68.86.0.0 255.254.0.0 tos 0x0 mask 0x0
service divert-rate-limit trusted-site 0.0.0.0 0.0.0.0 tos 0x48 mask 0xFF
service divert-rate-limit trusted-site-ipv6 ::/0 traffic-class 0x40 mask 0xFF
service divert-rate-limit trusted-site-ipv6 ::/0 traffic-class 0x48 mask 0xFF
service divert-rate-limit trusted-site-ipv6 ::/0 traffic-class 0x68 mask 0xFF
service divert-rate-limit trusted-site-ipv6 2001:558::/32 traffic-class 0x0 mask 0x0

interface Cablex/y/z
cable divert-rate-limit rate 4 limit 30
```

In Cisco IOS Release 12.2(33)SCH2, the `divert-rate-limit max-rate wan` command was introduced on the Cisco uBR10012 router. This configuration limits the aggregate rate of diverted packets on the WAN-side, on a per-divert-code basis. The following is the recommended best-practice configuration for the `divert-rate-limit max-rate wan` command:

```
service divert-rate-limit max-rate wan fib_rp_glean rate 5000
service divert-rate-limit max-rate wan fib_rp_punt rate 5000
service divert-rate-limit max-rate wan fib_rp_dest rate 40000

service divert-rate-limit max-rate wan ipv6_fib_glean rate 5000
service divert-rate-limit max-rate wan ipv6_fib_punt rate 5000
```

<table>
<thead>
<tr>
<th>punt-cause</th>
<th>Origin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cbl-dhcpv6-sub</td>
<td>sub</td>
<td>all other (sub-side) DHCPv6 packets</td>
</tr>
<tr>
<td>cbl-dhcpv4-disc-req</td>
<td>sub</td>
<td>DHCPv4 discover & request</td>
</tr>
<tr>
<td>cbl-dhcpv4-sub</td>
<td>sub</td>
<td>all other (sub-side) DHCPv4 packets</td>
</tr>
<tr>
<td>cable-dhcp</td>
<td>WAN</td>
<td>all (WAN-side) DHCP packets</td>
</tr>
</tbody>
</table>
service divert-rate-limit max-rate wan ipv6_fib_dest rate 40000

SBRL Configuration on the Cisco cBR Series Routers

The DRL functionality is called as Source-Based Rate Limit (SBRL) on the Cisco cBR Series Routers. The punt-path has three layers of protection:

- CoPP, on page 65
- SBRL, on page 66
- Punt Policer, on page 66

CoPP

CoPP is used to specify the trusted sites and activate WAN-side SBRL. However, since CoPP applies to all punted packets, you must ensure that cable-side punts do not match the trusted sites.

The following is a sample CoPP configuration, which is equivalent to the configuration on the Cisco uBR10012 router:

access-list 120 permit ip any any dscp af31
access-list 120 permit ip any any dscp cs2
access-list 120 permit ip any any dscp af21
access-list 120 permit ip 68.86.0.0 0.1.255.255 any
ipv6 access-list TRUSTEDV6
 permit ipv6 any any dscp af31
 permit ipv6 any any dscp cs2
 permit ipv6 any any dscp af21
 permit ipv6 2001:558::/32 any
class-map match-all sbrl_trusted_v4
 match access-group 120
class-map match-all sbrl_trusted_v6
 match access-group name TRUSTEDV6
policy-map copp_policy
 class sbrl_trusted_v4
 police rate 1000 pps conform transmit exceed transmit
 class sbrl_trusted_v6
 police rate 1000 pps conform transmit exceed transmit
 class class-default
 set qos-group 99
control-plane
 service-policy input copp_policy

Note

- The set qos-group 99 command activates SBRL for the specified class.
- The police rate for sbrl_trusted_vx is irrelevant, as both actions are set to transmit.
- You can add other trusted sites, as necessary.
SBRL

The following subscriber-side SBRL configuration is recommended. This configuration covers the expected subscriber-side punt-causes.

platform punt-sbrl subscriber punt-cause for-us-data rate-per-4-sec 32
platform punt-sbrl subscriber punt-cause for-us-ctrl rate-per-4-sec 8
platform punt-sbrl subscriber punt-cause sv-match-unknown rate-per-4-sec 4
platform punt-sbrl subscriber punt-cause cable-pre-reg rate-per-4-sec 8
platform punt-sbrl subscriber punt-cause cable-dhcp rate-per-4-sec 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-solicit rate-per-4-sec 8
platform punt-sbrl subscriber punt-cause cbl-dhcpv6-req rate-per-4-sec 8

The recommended subscriber-side SBRL configuration is the default configuration. All expected subscriber-side punt-causes have default settings.

For WAN-side SBRL, the Cisco cBR Series routers do not have separate IPv4 and IPv6 configurations as the punt causes are shared between IPv4 and IPv6. The limit cannot be configured as the hardware policer is used. Therefore, we recommend that you configure a higher rate initially. In the following sample configuration, glean-adj and for-us-data correspond to x_rp_glean and x_rp_dest, respectively on the Cisco uBR 10012 router.

platform punt-sbrl wan punt-cause for-us-data rate 8
platform punt-sbrl wan punt-cause glean-adj rate 8

Note

- The fib-punt punt cause is used in the Cisco uBR10012 router for packets destined to the management Ethernet. This punt cause is not used on the Cisco cBR Series routers.

- The Cisco cBR Series routers do not have an equivalent punt cause for ICMPV6. In the Cisco uBR10012 routers, ICMPv6 packets must be processed by the Route Processor to generate the checksum. In the Cisco cBR Series routers, ICMPv6 is processed in the control-plane. However, ICMPv6 punts can be identified and rate-limited (in aggregate) using CoPP.

Punt Policer

The punt policer operates on all punt causes and is fully configurable. The punt policer is not divided into WAN-side and subscriber-side. All packets with a given punt cause are aggregated and rate-limited as configured.

Following are the default settings (best-practice configuration) for the punt policer on the Cisco cBR Series routers:

<table>
<thead>
<tr>
<th>punt-cause</th>
<th>LO</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPP_PUNT_CAUSE_GLEAN_ADJ</td>
<td>2000</td>
<td>5000</td>
</tr>
<tr>
<td>CPP_PUNT_CAUSE_FOR_US</td>
<td>40000</td>
<td>5000</td>
</tr>
</tbody>
</table>
• The equivalent punt cause for `fib-glean` (on the Cisco uBR10012 router) is `GLEAN_ADJ/HI` on the Cisco cBR Series routers.

• The equivalent punt cause for `fib-dest` (on the Cisco uBR10012 router) is `FOR_US/LO` on the Cisco cBR Series routers.

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td>http://www.cisco.com/support</td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Source-Based Rate Limit

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfh link. An account on the Cisco.com page is not required.

Note

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.
Table 9: Feature Information for Source-Based Rate Limit

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-based rate limit</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Routers.</td>
</tr>
</tbody>
</table>
CHAPTER 5

Cable Duplicate MAC Address Reject

The Cable Duplicate MAC Address Reject feature is a DOCSIS 1.1-compliant security enhancement that helps to eliminate denial-of-service (DOS) attacks that are caused by cloned cable modems. A clone is presumed to be one of two physical cable modems on the same Cisco CMTS router with the same HFC interface MAC address. The cloned cable modem may be DOCSIS 1.0 or later, and may be semi-compliant or non-compliant with portions of the DOCSIS specifications.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

- Hardware Compatibility Matrix for the Cisco eBR Series Routers, on page 69
- Prerequisites for Cable Duplicate MAC Address Reject, on page 70
- Restrictions for Cable Duplicate MAC Address Reject, on page 71
- Information About Cable Duplicate MAC Address Reject, on page 71
- How to Configure EAE and BPI+ Enforcement Features, on page 74
- Configuration Example for EAE and BPI+ Enforcement Policies, on page 76
- Verifying EAE and BPI+ Enforcement Policies, on page 77
- System Messages Supporting Cable Duplicate MAC Address Reject, on page 77
- Additional References, on page 78
- Feature Information for Cable Duplicate MAC Address Reject, on page 78

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
Table 10: Hardware Compatibility Matrix for the Cisco cBR Series Routers

<table>
<thead>
<tr>
<th>Cisco CMTS Platform</th>
<th>Processor Engine</th>
<th>Interface Cards</th>
<th>Cisco IOS-XE Release 16.5.1 and Later Releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco cBR-8 Converged Broadband Router</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
<td>Cisco cBR-8 CCAP Line Cards:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Supervisor:</td>
<td>• PID—CBR-SUP-250G</td>
<td>• PID—CBR-LC-8D30-16U30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-SUP-160G</td>
<td>• PID—CBR-LC-8D31-16U30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-SUP-60G</td>
<td>• PID—CBR-RF-PIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-SUP-8X10G-PIC</td>
<td>• PID—CBR-RF-PROT-PIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisco cBR-8 Downstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-D30-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-D31-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cisco cBR-8 Upstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-D30-US-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• PID—CBR-D31-US-MOD</td>
</tr>
</tbody>
</table>

Prerequisites for Cable Duplicate MAC Address Reject

The Cable Duplicate MAC Address Reject feature entails the following behaviors and prerequisites on the DOCSIS-compliant network:

- The Cisco CMTS router requires that the legitimate cable modem is Baseline Privacy Interface Plus (BPI+) compliant, meaning that it can come to one of the following four online states when provisioned with a DOCSIS configuration file containing at least one BPI+ related type, length, value (TLV). For brevity, this document refers to these states as online(p_).
- The Cisco CMTS router gives priority to any cable modem that registers to the Cisco CMTS router in any of the following four states:
 - online(pt)
 - online(pk)
 - online(ptd)
 - online(pkd)

The Cisco CMTS router drops registration requests from another device that purports to use the same MAC address as an already operational modem that is in one of these four states.
Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 2 shows the hardware compatibility prerequisites for this feature.

Note
The hardware components introduced in a given Cisco IOS Release are supported in all subsequent releases unless otherwise specified.

Restrictions for Cable Duplicate MAC Address Reject

- If the cable modem is not provisioned to use DOCSIS BPI+, as characterized by not coming online with the above initialization states of online(p_), then the existing behavior of the Cisco CMTS router remains unchanged. The Cisco CMTS router does not attempt to distinguish between two cable modems if the provisioning system does not provide a DOCSIS configuration file specifying BPI+ be enabled.
- When this feature is enabled, the Cisco CMTS router issues security breach notice in a log message in the cable logging layer2events log, or the generic log if the cable logging layer2events command is not configured on the Cisco CMTS router.

Information About Cable Duplicate MAC Address Reject

The Cable Duplicate MAC Address Reject feature is enabled by default on the Cisco CMTS router, and has no associated configuration commands. This feature creates a new log message, which appears in the system log by default.

This document also describes the following security features that are associated with the Cable Duplicate MAC Address Reject feature:

Early Authentication and Encryption

The Early Authentication and Encryption (EAE) feature enables the Cisco CMTS router to authenticate DOCSIS 3.0 cable modems immediately after completion of the ranging process, and encrypt all of the registration packets including DHCP and TFTP traffic. This security feature, compatible only with DOCSIS 3.0 cable modems, was introduced to help multiple service operators (MSOs) prevent theft of service.

This feature is enabled only for cable modems that initialize on a downstream channel on which the Cisco CMTS router is transmitting MAC Domain Descriptor (MDD) messages. The Cisco CMTS router uses TLV type 6 in the MDD MAC message to signal EAE to a cable modem. If this feature is enabled, only the authenticated cable modems are allowed to continue their initialization process and subsequently admitted to the network. The early authentication and encryption process involves the following:

- Authentication of the cable modem (that is the BPI+ authorization exchanges) after the ranging process.
- Traffic encryption key (TEK) exchanges for the cable modem primary Security Association Identifier (SAID).
- Encryption of IP provisioning traffic and Multipart Registration Request (REG-REQ-MP) messages during cable modem initialization.

EAE Enforcement Policies

The Cisco CMTS router supports the following EAE enforcement policies:
• No EAE enforcement (Policy 1)—EAE is disabled and the Cisco CMTS router cannot enforce EAE on any cable modem.
• Ranging-based EAE enforcement (Policy 2)—EAE is enforced on all DOCSIS 3.0 cable modems that range with a B-INIT-RNG-REQ MAC message.
• Capability-based EAE enforcement (Policy 3)—EAE is enforced on all DOCSIS 3.0 cable modems that range with a B-INIT-RNG-REQ MAC message in which the EAE capability flag is set using the .
• Total EAE enforcement (Policy 4)—EAE is enforced on all cable modems irrespective of the EAE capability flag status.

The EAE enforcement policies are mutually exclusive. By default, EAE is disabled on the Cisco CMTS router.

EAE Exclusion

You can exclude cable modems from EAE enforcement using the cable privacy eae-exclude command in the global configuration mode. Cable modems in the EAE exclusion list are always exempted from EAE enforcement. You can remove cable modems from the exclusion list using the no form of the cable privacy eae-exclude command.

BPI+ Security and Cloned Cable Modems

The BPI+ Security and Cloned Cable Modems feature prioritizes cable modems that are online with BPI+ security over new cable modem registration requests that use the same cable modem MAC address. As a result, the legitimate cable modem with BPI+ security certificates that match the HFC MAC address does not experience service disruption, even if a non-compliant cable modem with the same HFC MAC address attempt to register.

The cloned cable modem detection function requires that a cable modem use DOCSIS 1.1 or a later version and should be provisioned with BPI+ enabled. That is, one BPI+ type, length, value (TLV) must be included in the DOCSIS configuration file. All DOCSIS 1.0, DOCSIS 1.1, and later cable modems that are provisioned without DOCSIS BPI+ enabled continue to use the legacy DOCSIS behavior, and experience a DoS attack when a cloned cable modem appears on the Cisco CMTS router.

This cloned cable modem detection function mandates that a cable modem provisioned with BPI+ and DOCSIS 1.1 QoS must register with BPI+ and not use BPI. The commonly available non-DOCSIS-compliant cable modems contain an option to force registration in BPI as opposed to BPI+ mode even when DOCSIS 1.1 QoS and BPI+ are specified in the DOCSIS configuration file.

Logging of Cloned Cable Modems

Cloned cable modems are detected and tracked with system logging. The Logging of Cloned Cable Modem feature is enabled by default. Due to the large number of DOCSIS Layer 2 messages typically seen in a production network, a separate log is available to segregate these messages. By default, cloned cable modem messages are placed in the cable logger, cable layer2events logging. If you disable this feature using the no form of the cable logging layer2events command in global configuration mode, then the cloned cable modem messages are placed in the system log (syslog).

A cloned cable modem might attempt dozens of registration attempts in a short period of time. In order to suppress the number of log messages generated, the Cisco CMTS router suppresses clone detected messages for approximately 3 minutes under certain conditions.
The log message provides the cable interface and MAC address of the cable modem attempting to register when another physical modem with that same MAC address is already in a state of online(p_) elsewhere on the Cisco CMRS router.

DOCSIS 3.0 BPI+ Policy Enforcement

The DOCSIS 3.0 BPI+ Policy Enforcement feature was introduced to prevent cable modem MAC address cloning and theft of service. This feature enables a Cisco CMRS router to validate the MAC address of each cable modem. To enforce BPI+ on cable modems, you must configure one of the following enforcement policies per MAC domain on the router:

- 1.1 Style Configuration File Parameters and Capability (Policy 1)—The Cisco CMRS router enforces BPI+ on cable modems that register with a DOCSIS 1.1 configuration file with parameters indicating BPI+ is enabled with or without TLV 29. To configure this policy, the privacy support modem capability TLV (type 5.6) in the DOCSIS configuration file must be set to BPI+ support. This policy forces BPI+ on a cable modem that is BPI+ capable and provisioned with DOCSIS 1.1 configuration file. A cable modem that signals these capabilities during registration is blocked from accessing the network until the modem completes BPI+ negotiation.

- 1.1 Style Configuration File Parameters (Policy 2)—The Cisco CMRS router enforces BPI+ on cable modems that register with a DOCSIS 1.1 configuration file with parameters indicating BPI+ is enabled with or without TLV 29. A cable modem that registers with this type of configuration file is blocked from accessing the network until the modem completes BPI+ negotiation.

- 1.1 Style Configuration File (Policy 3)—The Cisco CMRS router enforces BPI+ on cable modems that register with a DOCSIS 1.1 configuration file. This means that if you provision a DOCSIS 1.1 configuration file with security disabled (privacy flag is not present in the configuration file), all DOCSIS 1.1 and 2.0 cable modems are blocked from accessing the network. Only the DOCSIS 3.0 cable modems that have security enabled implicitly will pass this check if the privacy flag is not present in the configuration file.

- Total enforcement (Policy 4)—The Cisco CMRS router enforces BPI+ on all cable modems. This means that all cable modems that do not run BPI+ are blocked from accessing the network.

You can configure only one enforcement policy at a time per MAC domain. If you configure one policy after another, the latest policy supersedes the already existing policy. For example, if you want Policy 2 to take over Policy 1, you can directly configure the former without disabling the latter.

Note

These enforcement policies are implemented based on CableLabs Security Specification, CM-SP-SECv3.0-113-100611. You can configure these enforcement policies using the **cable privacy bpi-plus-policy** command in cable interface configuration mode. The cable modems that do not comply with the configured policy can still come online but they cannot access the DOCSIS network and some dual stack cable modems may not get both the IPv4 and IPv6 addresses.

Policies 1, 2, and 3 support a mixed network of DOCSIS 1.0 (including DOCSIS Set-top Gateway), DOCSIS 1.1, and later cable modems. Policy 4 is the most effective configuration for preventing cable modem MAC address cloning as this policy enforces BPI+ on all cable modems. Policy 4 blocks all DOCSIS 1.0 cable modems as they do not register in BPI+ mode. Therefore, if Policy 4 is used, you must upgrade all authorized DOCSIS 1.0 cable modems or remove them from the network.
BPI+ Policy Enforcement Exclusion

You can exclude cable modems (DOCSIS 1.0 and later versions) from BPI+ policy enforcement based on their MAC addresses, using the cable privacy bpi-plus-exclude command in global configuration mode. You can exclude a maximum of 30 cable modems per MAC domain.

How to Configure EAE and BPI+ Enforcement Features

This section provides information on how to configure the following BPI+ enforcement features:

Configuring EAE Enforcement Policies

By default, EAE is disabled on the Cisco CMTS router. You can configure EAE enforcement policies using the cable privacy eae-policy command in cable interface configuration mode.

Note
EAE enforcement policies are enabled only for the DOCSIS 3.0 cable modems that initialize on a downstream channel.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
Example:
Router> enable
- Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode.
Example:
Router# configure terminal |
| **Step 3** interface cable {slot/cable-interface-index | slot/subslot/cable-interface-index} | Enters interface configuration mode.
Example:
Router(config)# interface cable 6/0/1 |
| **Step 4** cable privacy eae-policy {capability-enforcement | disable-enforcement | ranging-enforcement | total-enforcement} | Specifies EAE enforcement policies on DOCSIS 3.0 cable modems.
Example:
Router(config-if)# cable privacy eae-policy total-enforcement |
Configuring BPI+ Enforcement Policies

The BPI+ enforcement policies are configured per MAC domain to prevent cable modem MAC address cloning and theft of service.

Before you begin

The customer premise equipment (CPE) must use DHCP to acquire IP addresses to access the network, or the statically assigned IP addresses must be managed appropriately.

Note

Only a single enforcement policy can be applied per MAC domain.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface cable `{slot/subslot/port</td>
<td>slot/port}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface cable 5/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 cable privacy bpi-plus-policy `{capable-enforcement</td>
<td>d11-enabled-enforcement</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-if)# cable privacy bpi-plus-policy</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>total-enforcement</td>
<td>Returns to Privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Step 5

Example:
```
Router(config-if)# end
```

Configuring AES-128 for non-MTC DOCSIS3.0 Cable Modem

This feature is enabled by default. To disable this feature, follow the steps below:

```
enable
configure terminal
no cable privacy non-mtc-aes128
end
```

Verifying AES-128 for non-MTC DOCSIS3.0 Cable Modem

To verify whether AES-128 is supported for non-MTC DOCSIS3.0 Cable Modem, use `show running-config` command as shown in the example below:

```
Router# show running-config | include cable privacy non-mtc-aes128
no cable privacy non-mtc-aes128
```

Troubleshooting Tips

Use the following debug commands to troubleshoot BPI+ policy enforcement configuration:

- `debug cable mac-address`—Provides debugging information about a specific cable modem.
- `debug cable bpiatp`—Enables debugging of the BPI handler.

Configuration Example for EAE and BPI+ Enforcement Policies

The following example shows how to configure an EAE enforcement policy on the Cisco cBR-8 router:

```
Router# configure terminal
Router(config)# interface cable 8/1/0
Router (config-if)# cable privacy eae-policy capability-enforcement
Router (config-if)# cable privacy eae-policy ranging-enforcement
Router (config-if)# cable privacy eae-policy total-enforcement
```

The following example shows how to configure a BPI+ enforcement policy at slot/subslot/port 5/1/0 on the Cisco cBR-8 router:

```
Router# configure terminal
```
Verifying EAE and BPI+ Enforcement Policies

Use the following show commands to verify EAE and BPI+ enforcement configurations:

- `show interface cable privacy`
- `show cable privacy`
- `show cable modem access-group`

To verify which EAE policy is configured on the Cisco CMTS router, use the `show interface cable privacy` command.

To verify which cable modems are excluded from EAE enforcement on the Cisco CMTS router, use the `show cable privacy` command.

To verify BPI+ enforcement policies, use the `show interface cable privacy` command.

A character "*" is placed before the online state to identify modems that have not satisfied the bpi-plus-policy.

What to Do Next

The Cloned Cable Modem Detection feature relates to multiple BPI+ certificate and DOCSIS 1.1 factors.

System Messages Supporting Cable Duplicate MAC Address Reject

The following example illustrates logged events for the Cloned Cable Modem Detection feature on a Cisco cBR-8 router.

In the below scenario, there are two cable modems with MAC addresses that have been cloned:

- For MAC address 000f.66f9.48b1, the legitimate cable modem is on C5/0/0 upstream 0, and the cloned cable modem is on C7/0/0.
- For MAC address 0013.7116.e726, the legitimate cable modem is on C7/0/0 upstream 0, and the cloned cable modem is also on the same interface.
- In the below example, the CMMOVED message occurred because the cloned cable modem for MAC address 000f.66f9.48b1 came online before the legitimate cable modem.
- There is no CMMOVED message for the cable modem on interface C7/0/0 with MAC address 0013.7116.e726 because the legitimate cable modem came online with state of online(pt) before the cloned cable modem attempted to come online.

```
Dec 5 13:08:18: %CBR-6-CMMOVED: Cable modem 000f.66f9.48b1 has been moved from interface Cable7/0/0 to interface Cable5/0/0.
Dec 5 13:08:44: %CBR-5-CLONED_CM_DETECTED: Cloned CM with MAC address 0013.7116.e726 connection attempt rejected on Cable7/0/0 U0
```
Dec 5 13:10:48: %CBR-5-CLONED_CM_DETECTED: Cloned CM with MAC address 000f.66f9.48b1 connection attempt rejected on Cable7/0/0 U1
Dec 5 13:12:37: %CBR-5-CLONED_CM_DETECTED: Cloned CM with MAC address 0013.7116.e726 connection attempt rejected on Cable7/0/0 U0
Dec 5 13:18:28: %CBR-5-CLONED_CM_DETECTED: Cloned CM with MAC address 0013.7116.e726 connection attempt rejected on Cable7/0/0 U0
Dec 5 13:18:28: %CBR-5-CLONED_CM_DETECTED: Cloned CM with MAC address 0013.7116.e726 connection attempt rejected on Cable7/0/0 U0

The following example of the `show cable modem` command illustrates additional cable modem information for the above scenario involving the specified MAC addresses:

```
Router# show cable modem 000f.66f9.48b1
MAC Address   IP Address   I/F   State  Prim RxPwr  Timing  Num BPI  Enb
000f.66f9.48b1 4.222.0.253  C5/0/0/U0  online(pt)  24  0.50  1045  1  Y
```

Additional References

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to</td>
<td>http://www.cisco.com/cisco/</td>
</tr>
<tr>
<td>download documentation, software, and tools. Use these resources to install</td>
<td>web/support/index.html</td>
</tr>
<tr>
<td>and configure the software and to troubleshoot and resolve technical issues</td>
<td></td>
</tr>
<tr>
<td>with Cisco products and technologies. Access to most tools on the Cisco</td>
<td></td>
</tr>
<tr>
<td>Support and Documentation website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Feature Information for Cable Duplicate MAC Address Reject

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Table 11: Feature Information for Cable Duplicate MAC Address Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature Name</td>
</tr>
<tr>
<td>Cable Duplicate MAC Address Reject</td>
</tr>
<tr>
<td>Feature Name</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>AES-128 for non-MTC DOCSIS 3.0 Cable Modem</td>
</tr>
</tbody>
</table>
CHAPTER 6

Cable ARP Filtering

This document describes the Cable ARP Filtering feature for the Cisco Cable Modem Termination System (CMTS). This feature enables service providers to filter Address Resolution Protocol (ARP) request and reply packets, to prevent a large volume of such packets from interfering with the other traffic on the cable network.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

• Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 81
• Prerequisites for Cable ARP Filtering, on page 82
• Restrictions for Cable ARP Filtering, on page 82
• Information About Cable ARP Filtering, on page 83
• How to Configure Cable ARP Filtering, on page 85
• Configuration Examples for Cable ARP Filtering, on page 92
• Additional References, on page 94
• Feature Information for Cable ARP Filtering, on page 95

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
Prerequisites for Cable ARP Filtering

No special equipment or software is needed to use the Cable ARP Filtering feature.

Restrictions for Cable ARP Filtering

Cisco cBR-8 Router Restrictions

- The Cisco cBR-8 router maintains ARP filtering statistics on the Supervisor (SUP) module. Statistics are viewed with the `show cable arp-filter` command for a specified interface. When a switchover event occurs, as in SUP Redundancy, these ARP filtering statistics are reset to zero.

- The Cable ARP Filter feature is not configurable per subinterface.

FP ARP Filter Restrictions

- The FP microcode must be enhanced to provide the rate limiting functionality for ARP filtering in FP.
- The ARP Filter in FP feature is not configurable per subinterface.
Information About Cable ARP Filtering

Overview

Theft-of-service and denial-of-service (DNS) attacks have become increasingly common in cable broadband networks. In addition, virus attacks are becoming more common, and users are often unaware that their computers have become infected and are being used to continue the attacks on the network.

One sign that often appears during these attacks is an unusually high volume of Address Resolution Protocol (ARP) packets. The user or virus repeatedly issues ARP requests, trying to find the IP addresses of additional computers that might be vulnerable to attack.

ARP requests are broadcast packets, so they are broadcast to all devices on that particular network segment. In some cases, a router can also forward ARP broadcasts to an ARP proxy for further processing.

This problem is also made worse because some low-end routers commonly used by subscribers for home networks can also incorrectly respond to all ARP requests, which generates even more traffic. Until these customer premises equipment (CPE) devices can be upgraded with firmware that is compliant to the appropriate Request for Comments (RFC) specifications, service providers need to be able to deal with the incorrectly generated or forwarded traffic.

In addition, the Cisco CMTS router automatically monitors ARP traffic and enters the IP addresses found in ARP requests into its own ARP table, in the expectation that a device will eventually be found with that IP address. Unacknowledged IP addresses remain in the router’s ARP table for 60 seconds, which means that a large volume of ARP traffic can fill the router’s ARP table.

This process can create a large volume of ARP traffic across the network. In some situations, the volume of ARP requests and replies can become so great that it can throttle other traffic and occupy most of the Cisco CMTS router’s processing time, hampering efforts by technicians to recover their network.

The router cannot use fast-switching to process ARP packets, but must instead forward them to the route processor (RP). Because of this, processing a large volume of ARP traffic can also prevent the router from handling normal traffic.

Filtering ARP Traffic

To control the volume of ARP traffic on a cable interface, you can configure the `cable arp filter` command to specify how many ARP packets are allowed per Service ID (SID) during a user-specified time period. You can configure separate thresholds for ARP request packets and for ARP reply packets.

When a cable interface is configured to filter ARP packets, it maintains a table of the number of ARP request or reply packets that have been received for each SID. If a SID exceeds the maximum number of packets during the window time period, the Cisco CMTS drops the packets until a new time period begins.

Note

If using bundled cable interfaces, the Cable ARP Filtering feature is configured on the primary and subordinate interfaces separately. This allows you to configure the feature only on the particular interfaces that require it. In addition, you can configure the feature with different threshold values, allowing you to customize the feature for each interface’s traffic patterns.
Monitoring Filtered ARP Traffic

After ARP filtering has been enabled on a cable interface, you can then use the service `divert-rate-limit` command to display the devices that are generating excessive amounts of ARP traffic. These devices could be generating this traffic for any of the following reasons:

- Cable modems that are running software images that are either not DOCSIS-compliant or that have been hacked to allow theft-of-service attacks.
- CPE devices that are either performing a theft-of-service or denial-of-service attack, or that have been infected with a virus that is searching for other computers that can be infected.
- Routers or other devices that mistakenly reply to or forward all ARP requests.

After identifying the specific devices that are generating this traffic, you can use whatever techniques are allowed by your service level agreements (SLAs) to correct the problem.

Linksys Wireless-Broadband Router (BEFW11S4)

The Linksys Wireless-B Broadband Router, Model number BEFW11S4 version 4 with 1.44.2 firmware, incorrectly sends its own ARP reply packet for every ARP request packet it receives, instead of replying only to the ARP requests that are specifically for itself. Customers with these routers should upgrade the firmware to the latest revision to fix this bug. To upgrade the firmware, go to the download section on the Linksys website.

It is extremely important that non-compliant CPE devices be updated to firmware that correctly handles ARP and other broadcast traffic. Even one or two non-compliant devices on a segment can create a significant problem with dropped packets, impacting all of the other customers on that segment.

ARP Filtering in FP

ARP filter feature is performed on SUP FP complex. When enabled, this FP complex filters ARP packets for identified ARP offenders, decreasing the ARP punt rate and RP CPU usage. It also provides the user with clearer separation in ARP filtering by utilizing source MAC addresses instead of SIDs.

The filter logic now filters by source MAC address instead of by SID. Currently, the modem MAC addresses are excluded from having their ARPs filtered, but Multimedia Terminal Adapters (MTAs) and other non-offending CPEs can still (statistically) have ARPs filtered because all ARPs appear to come from the same SID. Therefore, filtering by source MAC address will isolate the filtering to the offensive devices. By doing so, a customer who has Voice-over-IP (VoIP) service via an MTA and an infected CPE will not have MTA issues while being contacted by the service provider in regards to the infected CPE.

ARP offenders will still be allowed to use ARP to avoid complete loss of Internet connectivity through their configured or provisioned gateway address. Because of this, it is expected that the “ARP Input” process will still show a few percentage points of CPU usage, but the net interrupt CPU usage will decrease.

ARP filtering in FP is enabled by default on Cisco cBR-8 router.
Filtering ARP Traffic in FP

When ARP traffic in FP is enabled, a lightweight algorithm executing on the RP is used to identify ARP offenders by the source MAC address or the SID. All offending source MAC addresses or SIDs are then programmed by the ARP Filter control module into the FP ucode divert rate limiting module (ARP offenders are still allowed to perform ARP transactions, but only at the configured filtering rate).

Offending source MAC addresses or SIDs are filtered in FP for a minimum of 50 minutes (ten 5-minute intervals with no occurring offenses). Utilizing the existing ARP Filter CLI tools, the cable operator can obtain enough information about the modem and CPE to contact the end user to request the necessary anti-virus software installation or firmware upgrade for the CPE.

Note

If the offending device is not “repaired” or shut off, it will remain in the FP ARP Filter indefinitely.

The FP ARP rate limiter is designed to filter a maximum of 16,000 ARP offenders. If this pool of 16,000 filterable entities is exhausted, then the entity is filtered on the RP. The CLI statistics will distinguish mac addresses filtered on the RP verses FP.

Because of possible mac address hash collisions, ARP offenders that cannot be programmed into the FP ARP rate limiter will still be filtered in FP by SID. Since the hash is done by source mac address and SID, such devices can actually moved back to mac address filtering by deleting the associated modem and forcing it back online with a new SID (this merely a possibility and is not expected to be a common practice).

ARP packets with a source mac address that is not “known” to the CMTS as a modem or CPE will be filtered by their SID in FP. Therefore, there will never be an unusual ARP packet source that will NOT be filtered in FP. False ARP packets with invalid operation codes will be filtered as if they are an ARP Reply.

How to Configure Cable ARP Filtering

Use the following procedures to determine whether ARP filtering is required and to configure ARP filtering on one or more cable interfaces.

Monitoring ARP Processing

Use the following steps to monitor how the router is processing ARP traffic and whether the volume of ARP packets is a potential problem.

Step 1

To discover the CPU processes that are running most often, use the `show process cpu sorted` command and look for the ARP Input process:

Example:

```
Router# show process cpu sorted
CPU utilization for five seconds: 99%/28%; one minute: 93%; five minutes: 90%
PID Runtime(ms) Invoked uSecs 5Sec 1Min 5Min TTY Process
19 139857888 44879804 3116 31.44% 28.84% 28.47% 0 ARP Input
154 7430964 49856254 1490 20.29% 19.46% 15.78% 0 SNMP ENGINE
91 70251936 1070352 65635 8.92% 9.62% 9.59% 0 CEF process
56 17413012 97458877 178 3.01% 3.67% 3.28% 0 C10K BPE IP Enqu
```
In this example, the ARP Input process has used 31.44 percent of the CPU for the past five seconds. Total CPU utilization is also at 99 percent, indicating that a major problem exists on the router.

Note As a general rule, the ARP Input process should use no more than one percent of CPU processing time during normal operations. The ARP Input process could use more processing time during certain situations, such as when thousands of cable modems are registering at the same time, but if it uses more than one percent of processing time during normal operations, it probably indicates a problem.

Step 2 To monitor only the ARP processes, use the `show process cpu | include ARP` command:

Example:

```
Router# show process cpu | include ARP

19 139857888 44879804 3116 31.44% 28.84% 28.47% 0 ARP Input
110 0 1 0 0.00% 0.00% 0.00% 0 RARP Input
```

Step 3 To monitor the number of ARP packets being processed, use the `show ip traffic` command.

Example:

```
Router# show ip traffic | begin ARP

ARP statistics:
Rcvd: 11241074 requests, 390880354 replies, 0 reverse, 0 other
Sent: 22075062 requests, 10047583 replies (2127731 proxy), 0 reverse
```

Repeat this command to see how rapidly the ARP traffic increases.

Step 4 If ARP traffic appears to be excessive, use the `show cable arp-filter` command to display ARP traffic for each cable interface, to identify the interfaces that are generating the majority of the traffic.

Example:

```
Router# show cable arp-filter Cable5/0/0

ARP Filter statistics for Cable5/0/0:
Rcvd Replies: 177387 total, 0 unfiltered, 0 filtered
Sent Requests For IP: 68625 total, 0 unfiltered, 0 filtered
Sent Requests Proxied: 7969175 total, 0 unfiltered, 0 filtered
```

In the above example, the unfiltered and filtered counters show zero, which indicates that ARP filtering has not been enabled on the cable interface. After ARP filtering has been enabled with the `cable arp filter` command, you can identify the specific devices that are generating excessive ARP traffic by using the `service divert-rate-limit` command (see the Identifying the Sources of Major ARP Traffic, on page 88).

Enabling ARP Filtering

Use the following procedure to enable ARP filtering on a particular cable interface.
Cable ARP Filtering

Enabling ARP Filtering

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example: <code>Router> enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example: <code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface cable x/y
Example: <code>Router(config)# interface cable 5/1</code></td>
<td>Enters interface configuration mode for the specified cable interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>cable arp filter reply-accept number window-size
Example: <code>Router(config-if)# cable arp filter reply-accept 2 2</code></td>
<td>Configures the cable interface to accept only the specified number of ARP reply packets every window-size seconds for each active Service ID (SID) on that interface. The cable interface drops ARP reply packets for a SID that would exceed this number. (The default behavior is to accept all ARP reply packets.)</td>
</tr>
<tr>
<td>Step 5</td>
<td>cable arp filter request-send number window-size
Example: <code>Router(config-if)# cable arp filter request-send 3 1</code></td>
<td>Configures the cable interface to send only the specified number of ARP request packets every window-size seconds for each active SID on that interface. The cable interface drops ARP requests for a SID that would exceed this number. (The default behavior is to send all ARP request packets.) Note Repeat Step 3 through Step 5 to enable ARP filtering on other cable interfaces. Primary and subordinate interfaces in a cable bundle must be configured separately.</td>
</tr>
<tr>
<td>Step 6</td>
<td>end
Example: <code>Router(config-if)# end</code></td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Identifying the Sources of Major ARP Traffic

After you have begun filtering ARP traffic on a cable interface, use the following procedure to identify the cable modems or CPE devices that are generating or forwarding major amounts of ARP traffic.

Tip

The Linksys Wireless-B Broadband Router, Model number BEFW11S4 version 4 with 1.44.2 firmware, has a known problem in which it incorrectly generates an ARP reply for every ARP request packet it receives. See the Linksys Wireless-Broadband Router (BEFW11S4) guide for information on how to resolve this problem.

Step 1

To discover the devices that are responsible for generating or forwarding more ARP requests on a specific cable interface than a specified minimum number of packets, use the `show cable arp-filter requests-filtered` command where `number` is the threshold value for the number of packets being generated:

Example:

```
show cable arp-filter cable interface requests-filtered number
```

For example, to display the devices that have generated more than 100 ARP request packets, enter the following command:

Example:

```
Router# show cable arp-filter cable 5/1/0 requests-filtered 100
```

<table>
<thead>
<tr>
<th>Sid</th>
<th>MAC Address</th>
<th>IP Address</th>
<th>Req-Filtered</th>
<th>Req-For-IP-Filtered</th>
<th>Rep-Filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0006.2854.72d7</td>
<td>10.3.81.4</td>
<td>12407</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>81</td>
<td>00c0.c726.6b14</td>
<td>10.3.81.31</td>
<td>743</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 2

Repeat the `show cable arp-filter` command to show how quickly the devices are generating the ARP packets.

Step 3

To discover the devices that are responsible for generating or forwarding more ARP replies on a specific cable interface than a specified minimum number of packets, use the `show cable arp-filter replies-filtered` command where `number` is the threshold value for the number of packets being generated:

Example:

```
show cable arp-filter cable interface replies-filtered number
```

For example, to display the devices that have generated more than 200 ARP reply packets, enter the following command:

Example:

```
Router# show cable arp-filter cable 5/0/0 replies-filtered 200
```

<table>
<thead>
<tr>
<th>Sid</th>
<th>MAC Address</th>
<th>IP Address</th>
<th>Req-Filtered</th>
<th>Req-For-IP-Filtered</th>
<th>Rep-Filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0006.53b6.562f</td>
<td>10.11.81.16</td>
<td>0</td>
<td>0</td>
<td>2358</td>
</tr>
<tr>
<td>191</td>
<td>0100.f31c.990a</td>
<td>10.11.81.6</td>
<td>0</td>
<td>0</td>
<td>11290</td>
</tr>
</tbody>
</table>

Step 4

(Optional) If a particular cable modem is generating or forwarding excessive ARP replies, contact the customer to see if they are using a Linksys Wireless-B Broadband Router, Model number BEFW11S4. If so, this router could be running...
Identifying the Sources of Major ARP Traffic

old firmware that is incorrectly generating excessive ARP packets, and the customer should upgrade their firmware. For more information, see the Linksys Wireless-Broadband Router (BEFW11S4) guide

Step 5 Repeat this command during each filter period (the time period you entered with the **cable arp filter** command) to show how quickly the devices are generating the ARP packets.

Step 6 (Optional) The ARP reply and request packet counters are 16-bit counters, so if a very large number of packets are being generated on an interface, these counters could wrap around to zero in a few hours or even a few minutes. Clearing the ARP counters eliminates stale information from the display and makes it easier to see the worst offenders when you suspect ARP traffic is currently creating a problem on the network.

To eliminate the modems that are not currently triggering the ARP filters and to isolate the worst current offenders, use the **clear counters cable interface** command to reset all of the interface counters to zero. Then the **show cable arp-filter** commands clearly identify the SIDs of the modems that are currently forwarding the most ARP traffic.

For example, the following example indicates that a number of modems are forwarding a large enough volume of ARP traffic that they have triggered the ARP packet filters:

Example:

```
Router# show cable arp-filter cable 5/1/0 requests-filtered 10

Sid   MAC Address     IP Address     Req-Filtered  Req-For-IP-Filtered  Rep-Filtered
1     0006.2854.72d7  10.3.81.4       8              0                  0
23    0007.0e02.b747  10.3.81.31      32             0                  0
57    0007.0e03.2c51  10.3.81.31      12407          0                  0
...  
81    00C0.c726.6b14 10.3.81.31      23             0                  0

SID 57 shows the largest number of packets, but it is not immediately apparent if this modem is causing the current problems. After clearing the counters though, the worst offenders are easily seen:

**Example:**

```
Router# clear counter cable 5/1/0
```

Clear **show interface** counters on this interface [confirm] y

```
08:17:53.968: %CLEAR-5-COUNTERS: Clear counter on interface Cable5/1/0 by console
```

```
Router# show cable arp cable 5/1/0

ARP Filter statistics for Cable3/0:
 Replies Rcvd: 0 total. 0 unfiltered, 0 filtered
 Requests Sent For IP: 0 total. 0 unfiltered, 0 filtered
 Requests Forwarded: 0 total. 0 unfiltered, 0 filtered
```

```
Router# show cable arp-filter cable 5/1/0 requests-filtered 10

Sid MAC Address IP Address Req-Filtered Req-For-IP-Filtered Rep-Filtered
57 0007.0e03.2c51 10.3.81.31 20 0 0
81 00C0.c726.6b14 10.3.81.31 12 0 0
```

```
Router# show cable arp-filter cable 5/1/0 requests-filtered 10

Sid MAC Address IP Address Req-Filtered Req-For-IP-Filtered Rep-Filtered
57 0007.0e03.2c51 10.3.81.31 31 0 0
81 00C0.c726.6b14 10.3.81.31 18 0 0
```
Step 7  (Optional) If the Req-For-IP-Filtered column shows the majority of ARP packets, use the `show cable arp-filter ip-requests-filtered` command to display more details about the CPE device that is generating this traffic. Then use the `debug cable mac-address` and `debug cable arp filter` commands to display detailed information about this particular traffic; for example:

**Example:**

```
Router# show cable arp-filter c5/0/0 ip-requests-filtered 100

Sid MAC Address IP Address Req-Filtered Req-For-IP-Filtered Rep-Filtered
1 0007.0e03.1f59 50.3.81.3 0 37282 0

Router# debug cable mac-address 0007.0e03.1f59

Router# debug cable arp filter

Apr 23 23:03:23.565: ARP for IP Filter=F sid 1 s 0000.0000.0049 d 0005.00e5.3610 sip 50.3.81.13 dip 50.3.82.173 prot 6 len 46 SrcP 445 DstP 445
Apr 23 23:03:23.565: ARP for IP Filter=F sid 1 s 0000.0000.0049 d 0005.00e5.3610 sip 50.3.81.13 dip 50.3.82.174 prot 6 len 46 SrcP 445 DstP 445
Apr 23 23:03:23.565: ARP for IP Filter=F sid 1 s 0000.0000.0049 d 0005.00e5.3610 sip 50.3.81.13 dip 50.3.82.175 prot 6 len 46 SrcP 445 DstP 445

[additional output omitted]...
```

This example shows that the CPE device at IP address 50.3.81.13 is sending packets to TCP port 445 to every IP address on the 50.3.82.0 subnet, in a possible attempt to find a computer that has Microsoft Windows file-sharing enabled.

Step 8  After determining the specific devices that are generating excessive ARP traffic, you can take whatever action is allowed by your company’s service level agreements (SLAs) to correct the problem.

**Examples**

In this example, two cable interfaces, C5/0/0 and C7/0/0, are joined in the same bundle, which means the interfaces share the same broadcast traffic. Separate devices on each interface are generating excessive ARP traffic:

- The device at MAC address 000C.2854.72D7 on interface C7/0/0 is generating or forwarding a large volume of ARP requests. Typically, this device is a cable modem that is forwarding the ARP requests that are being generated by a CPE device behind the modem. The CPE device could be attempting a theft-of-service or denial-of-service attack, or it could be a computer that has been infected by a virus and is trying to locate other computers that can be infected.
- The device at MAC address 000C.53B6.562F on Cable 5/0/0 is responding to a large number of ARP requests, which could indicate that the device is a router that is running faulty software.

The following commands identify the device on the C7/0/0 interface that is generating the excessive ARP requests:

```
Router# show cable arp-filter c7/0/0

ARP Filter statistics for Cable7/0/0:
 Replies Rcvd: 3 total. 3 unfiltered, 0 filtered
 Requests Sent For IP: 0 total. 0 unfiltered, 0 filtered
 Requests Forwarded: 27906 total. 562 unfiltered, 27344 filtered

Router# show cable arp-filter c7/0/0 requests-filtered 100

```
The following commands identify the device on the C5/0/0 interface that is generating the excessive ARP replies:

Router# `show cable arp-filter c5/0/0`

ARP Filter statistics for Cable5/0/0:
Replies Rcvd: 2400 total. 456 unfiltered, 1944 filtered
Requests Sent For IP: 0 total. 0 unfiltered, 0 filtered
Requests Forwarded: 26 total. 26 unfiltered, 0 filtered

Router# `show cable arp-filter c5/0/0 replies-filtered 100`

<table>
<thead>
<tr>
<th>Sid</th>
<th>MAC Address</th>
<th>IP Address</th>
<th>Req-Filtered</th>
<th>Req-For-IP-Filtered</th>
<th>Rep-Filtered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>000C.2854.72d7</td>
<td>50.3.81.4</td>
<td>62974</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>000C.53b6.562f</td>
<td>50.3.81.6</td>
<td>0</td>
<td>0</td>
<td>2097</td>
</tr>
</tbody>
</table>

**Clearing the Packet Counters**

To clear the packet counters on an interface, which includes the ARP packet counters, use the `clear counters cable interface` command. You can also clear the packet counters on all interfaces by using the `clear counters` command without any options. This allows you to use the `show cable arp` commands to display only the CPE devices that are currently generating the most traffic.

---

**Note**
The `clear counters` command clears all of the packet counters on an interface, not just the ARP packet counters.

**Identifying ARP Offenders in FP**

When the FP ARP Filter feature is enabled, use the `show cable arp-filter interface` command to generate a list of ARP offenders.

**cBR-8 Outputs in FP**

When the FP ARP Filter feature is enabled, the cBR-8 output formatting displays the modem and the CPE addresses on a single line, in addition to the following columns:

- **M/S**—This column shows if packets are being filtered by MAC address or SID. A majority of these columns will show MAC address.
- **Rate**—This column shows the packet rate for FP-filtered packets in the last 5 minutes monitoring time window. Rate is not calculated for RP-filtered packets.
- **Pro**—This column will identify the processor that performed the filtering with either “RP” or “FP.” On the cBR-8, it is expected that 99.9% of Pro fields will show “FP.”

The following is a sample output for an ARP request on a cBR-8 in FP:

Router# `show cable arp-filter Bundle1 requests-filtered 40`

<table>
<thead>
<tr>
<th>Sid</th>
<th>CPE Mac</th>
<th>CPE IP</th>
<th>Modem MAC</th>
<th>Modem IP</th>
<th>M/S</th>
<th>Rate</th>
<th>Pro</th>
<th>REQS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This sample output demonstrates the following:

- **SID 4** shows a CPE filtered in FP. The threshold specified is low enough to show the packets that were filtered on the RP as the offender was being identified. A high enough threshold would not have shown the RP-filtered packets. The ARP packet rate of 25 is shown for FP-filtered packets.
- **SID 5** shows a CPE filtered on the RP. This is extremely unusual and only occurs when the maximum number of FP-filterable entities has been reached.
- **SID 6** shows a modem filtered in FP (CPE MAC or CPE IP are not shown).
- **SID 7** shows ARP packets from an “unknown” source MAC address filtered by SID in FP.

The counts for requests, replies, and requests for IP will no longer be shown on a single line in order to keep the line concise and less than 90 characters in length.

The “REQs” column is now stated as “REPs” in the case of ARP replies. The column will show “REQ-IP” in cases involving ARP requests for IP.

Requests being sent by the CMTS due to encroaching IP packets, “ip-requests-filtered”, will still be filtered on the RP and not in FP, with Access Control Lists (ACLs) used to defeat IP-based scanning traffic, and the IP punt rate limiting feature for cBR-8 used to decrease the punt rate for such traffic. The ARP Filter can still be used to perform analysis of these IP traffic streams.

## Configuration Examples for Cable ARP Filtering

This section provides the following examples of how to configure the Cable ARP Filtering features:

### ARP Filtering Configuration on an Individual Cable Interface: Example

The following example shows a typical configuration of a cable interface that is configured for the Cable ARP Filtering feature:

```plaintext
! interface Cable5/0/0
 ip address 192.168.100.1 255.255.255.0 secondary
 ip address 192.168.110.13 255.255.255.0
 cable downstream annex B
 cable downstream modulation 256qam
 cable downstream interleave-depth 32
 cable downstream channel-id 0
 cable upstream 0 frequency 6000000
 cable upstream 0 power-level 0
 cable upstream 0 channel-width 3200000 200000
 cable upstream 0 minislot-size 16
 cable upstream 0 modulation-profile 6 7
 no cable upstream 0 shutdown
 cable upstream 1 frequency 26000000
 cable upstream 1 power-level 0
 cable upstream 1 channel-width 3200000 200000
 cable upstream 1 minislot-size 4
 cable upstream 1 modulation-profile 6 7
```
ARP Filtering Configuration on Bundled Cable Interfaces: Example

The following example shows a typical configuration of a cable interface bundle that is also using the Cable ARP Filtering feature. Both the primary and subordinate interface are configured separately, allowing you to configure the feature only on the particular interfaces that require it. In addition, you can configure the feature with different threshold values, allowing you to customize the feature for each interface’s traffic patterns.

! interface Cable5/0/0
description Master cable interface
ip address 10.3.130.1 255.255.255.0 secondary
ip address 10.3.131.1 255.255.255.0 secondary
ip address 10.3.132.1 255.255.255.0 secondary
ip address 10.3.133.1 255.255.255.0 secondary
ip address 10.3.81.1 255.255.255.0
ip helper-address 10.14.0.4
load-interval 30
cable bundle 1 master
cable downstream annex B
cable downstream modulation 64qam
cable downstream interleave-depth 32
cable downstream frequency 441000000
cable downstream channel-id 0
cable upstream 0 frequency 5008000
no cable upstream 0 shutdown
cable upstream 0 channel-width 1600000
cable upstream 0 minislot-size 4
cable upstream 0 modulation-profile 1
cable upstream 1 frequency 15008000
cable upstream 1 power-level 0
cable upstream 1 channel-width 3200000 2000000
cable upstream 1 minislot-size 4
cable upstream 1 modulation-profile 6 7
cable upstream 1 shutdown
cable upstream 1 spectrum-group 25
cable upstream 1 channel-width 3200000 2000000
cable upstream 1 minislot-size 4
cable upstream 1 modulation-profile 1
cable upstream 2 frequency 21008000
no cable upstream 2 shutdown
cable upstream 2 channel-width 3200000 2000000
cable upstream 2 minislot-size 16
cable upstream 2 modulation-profile 1
cable upstream 3 spectrum-group 25
cable upstream 3 channel-width 3200000 2000000
cable upstream 3 minislot-size 4
cable upstream 3 modulation-profile 1
cable upstream 3 shutdown
cable upstream 4 frequency 21008000
no cable upstream 4 shutdown
cable upstream 4 channel-width 3200000 2000000
cable upstream 4 minislot-size 16
cable upstream 4 modulation-profile 1
cable upstream 5 spectrum-group 25
cable upstream 5 channel-width 3200000 2000000
cable upstream 5 minislot-size 4
cable upstream 5 modulation-profile 1
cable upstream 5 shutdown
cable arp filter request-send 4 2
cable arp filter reply-accept 4 2
end
ARP Filtering in FP Default Configuration: Example

The following example shows the default configuration of a cable interface for the ARP Filtering in FP feature.

interface Bundle1
  cable arp filter request-send 3 2
  cable arp filter reply-accept 3 2
end

Additional References

The following sections provide references related to the Cable ARP Filtering feature.
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>

Feature Information for Cable ARP Filtering

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable ARP Filtering</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Routers.</td>
</tr>
</tbody>
</table>
CHAPTER 7

Subscriber Management Packet Filtering Extension for DOCSIS 2.0

The Cisco converged broadband router supports management of data packet filtering based on the subscriber’s preferences and criteria. Packet filtering enhances security to the cable network by allowing only the specific packets to flow to the Customer Premise Equipment (CPE) while dropping the unwanted data packets from the cable network.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

• Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 97
• Prerequisites for Configuring Subscriber Management Packet Filtering, on page 98
• Restriction for Configuring Subscriber Management Packet Filtering, on page 98
• Information About Configuring Subscriber Management Packet Filtering, on page 99
• How to Configure Subscriber Management Packet Filtering, on page 99
• Configuration Examples for Subscriber Management Packet Filtering, on page 102
• Additional References, on page 103
• Feature Information for Subscriber Management Packet Filtering, on page 104

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
Table 14: Hardware Compatibility Matrix for the Cisco cBR Series Routers

<table>
<thead>
<tr>
<th>Cisco CMTS Platform</th>
<th>Processor Engine</th>
<th>Interface Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco cBR-8 Converged Broadband Router</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Supervisor:</td>
<td>Cisco cBR-8 CCAP Line Cards:</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-250G</td>
<td>• PID—CBR-LC-8D30-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-160G</td>
<td>• PID—CBR-LC-8D31-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-60G</td>
<td>• PID—CBR-RF-PIC</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-8X10G-PIC</td>
<td>• PID—CBR-RF-PROT-PIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-CCAP-LC-40G-R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco cBR-8 Downstream PHY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D30-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D31-DS-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco cBR-8 Upstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D30-US-MOD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• PID—CBR-D31-US-MOD</td>
</tr>
</tbody>
</table>

Prerequisites for Configuring Subscriber Management Packet Filtering

The software prerequisites for the subscriber management packet filtering feature are:

• The latest software image is loaded and working on the Cable Modem Termination System (CMTS) and the cable modems (CM).
• The configuration information on the main supervisor (SUP) and the standby SUP should be the same before the switchover.

Restriction for Configuring Subscriber Management Packet Filtering

• This feature can define up to 254 filtering groups. The number of filters in each group is 255.
Information About Configuring Subscriber Management Packet Filtering

A filter group specifies what filters are applied to the packets going to or coming from each specific CM or CPE device. It defines the rules or criteria to filter or drop a packet. Every packet that has to be filtered can either be accepted to send or filtered to be dropped. The criteria to filter a packet depends on the subscriber’s preferences. The filter group can be applied to different subscriber management groups.

Cable subscriber management can be established using the following configuration methods:

- CMTS router configuration (via CLI)
- SNMP configuration

The process of configuring the subscriber management packet filtering is:

1. The packet filter group defines the action for a packet. The packet can be let to go to the CPE or dropped off the cable network based on the subscriber’s packet criteria.
2. The CM sends a registration request to the CMTS. The registration request contains provisioning information that defines the association of a Packet Filtering Group (PFG) with the CM and its subscribers.
3. The specific downstream or upstream PFGs are used to bind the CM, CPE, embedded Multimedia Terminal Adaptor (eMTA), embedded Set-Top Box (eSTB) and embedded portal server (ePS) to a specific PFG.
4. The CMTS identifies the CPE device based on the CPE’s DHCP information.

Note

For the filter group to work for CMs, a CM must re-register after the CMTS router is configured.

How to Configure Subscriber Management Packet Filtering

This section describes the configuration tasks that are performed to manage subscriber packet filtering on the Cisco CMTS platforms. You can use the command-line interface (CLI) commands to complete the configuration.

Configuring the Filter Group

This section describes the tasks to configure the packet filter group. Follow the summary steps to complete the configuration.

To create, configure, and activate a DOCSIS filter group that filters packets on the basis of the TCP/IP and UDP/IP headers, use the cable filter group command in global configuration mode.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Defining the Upstream and Downstream MTA Filter Group

This section describes the configuration tasks to define the upstream and downstream subscriber management filter groups for an embedded Multimedia Terminal Adaptor (eMTA.) Follow the summary steps to complete the configuration.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 cable filter group group-id index-index-num [option option-value]</td>
<td>Creates, configures, and activates a DOCSIS filter group that filters packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# cable filter group 10 index 10 src-ip 10.7.7.7</td>
<td></td>
</tr>
</tbody>
</table>
### Defining the Upstream and Downstream STB Filter Group

This section describes the configuration tasks to define the upstream and downstream subscriber management filter groups for a Set-Top Box (STB.) Follow the summary steps to complete the configuration.

#### Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>cable submgmt default filter-group stb {downstream</td>
<td>upstream} group-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# cable submgmt default filter-group stb downstream 20</td>
<td></td>
</tr>
</tbody>
</table>

### Defining the Upstream and Downstream PS Filter Group

This section describes the configuration tasks to define the upstream and downstream subscriber management filter groups for a Portal Server (PS.) Follow the summary steps to complete the configuration.
### Configuration Examples for Subscriber Management Packet Filtering

This section describes a sample configuration example for configuring the subscriber management packet filtering.

### Configuring the Filter Group: Example

The following example shows configuration of a filter group that drops packets with a source IP address of 10.7.7.7 and a destination IP address of 10.8.8.8, and a source port number of 2000 and a destination port number of 3000. All protocol types and ToS and TCP flag values are matched:

```
Router(config)# cable filter group 10 index 10 src-ip 10.7.7.7
Router(config)# cable filter group 10 index 10 src-mask 255.255.0.0
Router(config)# cable filter group 10 index 10 dest-ip 10.8.8.8
Router(config)# cable filter group 10 index 10 dest-mask 255.255.0.0
```
Defining the Upstream and Downstream MTA Filter Group: Example

The following example shows configuration of an upstream and downstream MTA filter group.

Router# configure terminal
Router(config)# cable submgmt default filter-group mta downstream 10

Defining the Upstream and Downstream STB Filter Group: Example

The following example shows configuration of an upstream and downstream STB filter group.

Router# configure terminal
Router(config)# cable submgmt default filter-group stb downstream 20

Defining the Upstream and Downstream PS Filter Group: Example

The following example shows configuration of an upstream and downstream portal server filter group.

Router# configure terminal
Router(config)# cable submgmt default filter-group ps downstream 10

Additional References

The following sections provide references related to configuring the subscriber management packet filtering feature.

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Feature Information for Subscriber Management Packet Filtering

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

Note

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 15: Feature Information for Subscriber Management Packet Filtering

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscriber management packet filtering</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Router</td>
</tr>
</tbody>
</table>
CHAPTER 8

MAC Filtering

This feature enables/disables MAC address filter on the backhaul interface.

Finding Feature Information

Your software release may not support all the features that are documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release. The Feature Information Table at the end of this document provides information about the documented features and lists the releases in which each feature is supported.

Contents

- Hardware Compatibility Matrix for the Cisco cBR Series Routers, on page 105
- Information About MAC Filtering, on page 106
- How to Configure MAC Filtering, on page 107
- Configuration Examples for MAC Filtering, on page 110
- Feature Information for MAC Filtering, on page 110

Hardware Compatibility Matrix for the Cisco cBR Series Routers

Note

The hardware components that are introduced in a given Cisco IOS-XE Release are supported in all subsequent releases unless otherwise specified.
### Table 16: Hardware Compatibility Matrix for the Cisco cBR Series Routers

<table>
<thead>
<tr>
<th>Cisco CMTS Platform</th>
<th>Processor Engine</th>
<th>Interface Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco cBR-8 Converged Broadband Router</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
<td>Cisco IOS-XE Release 16.5.1 and Later Releases</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Supervisor:</td>
<td>Cisco cBR-8 CCAP Line Cards:</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-250G</td>
<td>• PID—CBR-LC-8D30-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-160G</td>
<td>• PID—CBR-LC-8D31-16U30</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-CCAP-SUP-60G</td>
<td>• PID—CBR-RF-PIC</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-SUP-8X10G-PIC</td>
<td>• PID—CBR-RF-PROT-PIC</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Downstream PHY Modules:</td>
<td>• PID—CBR-CCAP-LC-40G</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-D30-DS-MOD</td>
<td>• PID—CBR-CCAP-LC-40G-R</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-D31-DS-MOD</td>
<td>Cisco cBR-8 Upstream PHY Modules:</td>
</tr>
<tr>
<td></td>
<td>Cisco cBR-8 Upstream PHY Modules:</td>
<td>• PID—CBR-D30-US-MOD</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-D30-US-MOD</td>
<td>• PID—CBR-D31-US-MOD</td>
</tr>
<tr>
<td></td>
<td>• PID—CBR-D31-US-MOD</td>
<td></td>
</tr>
</tbody>
</table>

### Information About MAC Filtering

With this feature, only the packet whose destination MAC address is the MAC address of the router interface can be forwarded. It supports 32 unicast filter entries per interface. It is disabled by default.

---

**Note**

When port-channel is enabled, MAC filtering must be enabled on backhaul interface to take effect.

---

**Note**

When both dot1q l2vpn and MAC filtering are enabled on backhaul interface, only 1 unicast filter entry is supported per backhaul interface. The MAC filtering is only supported for non-l2vpn unicast packets.
How to Configure MAC Filtering

This section describes the configuration tasks that are performed to manage MAC filtering. You can use the command-line interface (CLI) commands to complete the configuration.

Configuring MAC Filtering

To configure MAC filtering, follow the steps below:

```
enable
configure terminal
interface tenGigabitEthernet slot/subslot/port
mac-addr-filter
end
```

Verifying MAC Filtering

To verify the MAC filtering configuration on the backhaul interface, use the `show running-config interface` command as shown below:

```
Router# show running-config interface tenGigabitEthernet 4/1/0
Building configuration...

Current configuration : 73 bytes
!
interface TenGigabitEthernet4/1/0
 no ip address
 mac-addr-filter
end
```

To verify the MAC filtering status on a specific SUP slot and SUP-PIC bay, use the `show platform software iomd` command as shown below:

```
Router# show platform software iomd 4/4 mac-filter
IOMD (Input Output Module Driver) Mac Filter Status

port: 0 promiscuous mode: enable unicast: enable multicast: enable broadcast: enable
 Input Drop cnt: 0 Total Drop cnt: 0
 Index Entry Number: 1 Mode Action Entry MAC Entry MASK Match
 Count 00 enable pass c4:14:3c:16:7c:04 ff:ff:ff:ff:ff

port: 1 promiscuous mode: enable unicast: enable multicast: enable broadcast: enable
 Input Drop cnt: 0 Total Drop cnt: 0
 Index Entry Number: 1 Mode Action Entry MAC Entry MASK Match
 Count 00 enable pass c4:14:3c:16:7c:04 ff:ff:ff:ff:ff
```
### MAC Filtering

#### Verifying MAC Filtering

<table>
<thead>
<tr>
<th>Port</th>
<th>Mode</th>
<th>Action</th>
<th>Entry MAC</th>
<th>Entry MASK</th>
<th>Match Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:05</td>
<td>ff:ff:ff:ff:ff</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:06</td>
<td>ff:ff:ff:ff:ff</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:07</td>
<td>ff:ff:ff:ff:ff</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:08</td>
<td>ff:ff:ff:ff:ff</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:09</td>
<td>ff:ff:ff:ff:ff</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Enable</td>
<td>Pass</td>
<td>c4:14:3c:16:7c:0a</td>
<td>ff:ff:ff:ff:ff</td>
<td>0</td>
</tr>
</tbody>
</table>
### If the MAC filtering is disabled, the output of the `show platform software iomd` command is shown as below:

```plaintext
Router# show platform software iomd 4/5 mac-filter
IOMD (Input Output Module Driver) MAC filter Status

<table>
<thead>
<tr>
<th>port: 0</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 1</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 2</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 3</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 4</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 5</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 6</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>port: 7</th>
<th>promiscuous mode: enable</th>
<th>unicast: enable</th>
<th>multicast: enable</th>
<th>broadcast: enable</th>
<th>Input Drop cnt: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number: 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Configuration Examples for MAC Filtering

This section describes a sample configuration example for configuring the MAC filtering.

```
router> enable
router# configure terminal
router(config)# interface tenGigabitEthernet 4/1/0
router(config-if)# mac-addr-filter
router(config-if)# end
```

Feature Information for MAC Filtering

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the www.cisco.com/go/cfn link. An account on the Cisco.com page is not required.

Note

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Filtering</td>
<td>Cisco IOS XE Everest 16.6.1</td>
<td>This feature was integrated into Cisco IOS XE Everest 16.6.1 on the Cisco cBR Series Converged Broadband Routers.</td>
</tr>
</tbody>
</table>