

Start Up Configuration of the Cisco cBR Router

This document describes the basic start up configuration tasks that must be completed on a Cisco cBR Series Converged Broadband Router.

- Prerequisites for Configuring the Cisco CMTS, on page 2
- Booting and Logging onto the Cisco CMTS, on page 3
- First Time Boot Up with ROMMON, on page 3
- Configuration Register, on page 4
- Setting Environment Variables, on page 5
- Unsetting Environment Variables, on page 5
- Booting from the TFTP on the Cisco cBR, on page 6
- Listing Supported Devices, on page 6
- Booting from the Device on the Cisco cBR, on page 7
- Setting AUTOBOOT image in ROMMON, on page 7
- Verifying the ROMMON Version, on page 8
- Resetting the Cisco cBR, on page 9
- Configuring PTP, on page 9
- File Systems, on page 16
- Verification of Hardware Bring Up, on page 17
- Gigabit Ethernet Management Interface Overview, on page 25
- Gigabit Ethernet Port Numbering, on page 25
- IP Address Handling in ROMMON and the Management Ethernet Port, on page 25
- Gigabit Ethernet Management Interface VRF, on page 26
- Common Ethernet Management Tasks, on page 26
- Viewing the VRF Configuration, on page 26
- Setting a Default Route in the Management Ethernet Interface VRF, on page 27
- Setting the Management Ethernet IP Address, on page 27
- Telnetting over the Management Ethernet Interface, on page 27
- Pinging over the Management Ethernet Interface, on page 27
- Copy Using TFTP or FTP, on page 28
- NTP Server, on page 28
- SYSLOG Server, on page 28
- SNMP-Related Services, on page 28
- Domain Name Assignment, on page 28
- DNS service, on page 29

- RADIUS or TACACS+ Server, on page 29
- VTY lines with ACL, on page 29
- Configuring the AUX Port for Network Management, on page 29
- Preprovisioning the Supervisor in the Cisco cBR Chassis, on page 30
- Configuring the Gigabit Ethernet Interface for Network Management, on page 30
- Configuring the DTI Port on the Supervisor PIC, on page 31
- Configuring the TenGigabit Ethernet Interface for Network Management, on page 32
- Connecting the New Router to the Network, on page 33
- Setting Password Protection on the Cisco CMTS, on page 34
- Recovering Lost Password on the Cisco CMTS, on page 34
- Saving Your Configuration Settings, on page 36
- Reviewing Your Settings and Configurations, on page 37
- Recovering Unresponsive Modems, on page 37

Prerequisites for Configuring the Cisco CMTS

Complete these prerequisite steps before you power on and configure the Cisco CMTS:

- Ensure that your network supports reliable broadband data transmission. Your plant must be swept, balanced, and certified based on National Television Standards Committee (NTSC) or appropriate international cable plant recommendations. Ensure your plant meets all Data-over-Cable Service Interface Specifications (DOCSIS) downstream and upstream radio frequency (RF) requirements.
- Ensure that your Cisco CMTS is installed according to the instructions in the hardware installation guide available on Cisco.com.
- Ensure that all other required headend or distribution hub routing and network interface equipment is installed, configured, and operational (based on the supported services). This includes:
 - All routers
 - Servers (Dynamic Host Configuration Protocol (DHCP) servers, Trivial File Transfer Protocol (TFTP) servers, and time-of-day (ToD) servers)
 - Network management systems
 - Other configuration or billing systems
- Ensure that DHCP and DOCSIS configuration files have been created and pushed to appropriate servers so that each CM, when initialized, can:
 - Transmit a DHCP request
 - Receive an IP address
 - · Obtain TFTP and ToD server addresses
 - Download a DOCSIS configuration file (or updated software image if using Cisco uBR924 cable access routers or Cisco uBR910 cable data service units (DSUs) in your network)
- Ensure that customer premises equipment (CPE)—CMs or set-top boxes (STBs), PCs, telephones, or facsimile machines—meet requirements for your network and service offerings.
- Be familiar with your channel plan to assign appropriate frequencies. Outline your strategies for setting up bundling, if applicable to your headend or distribution hub. As appropriate, obtain:
 - Passwords
 - IP addresses
 - · Subnet masks

• Device names

After these prerequisites are met, you are ready to configure the Cisco CMTS. This includes, at a minimum:

- · Configuring a host name and password for the Cisco CMTS
- Configuring the CMTS to support IP over the cable plant and network backbone

Note If you plan to use service-class-based provisioning, the service classes must be configured at the CMTS before CMs attempt to make a connection.

Note Do not configure the **logging event link-status** command during system initialization. It may take long time or even stop the standby SUP from booting up.

Booting and Logging onto the Cisco CMTS

The Cisco CMTS is administered using the Cisco command interpreter, called the EXEC. You must boot and log in to the router before you can enter an EXEC command.

Step 1 Connect to the console port on the Supervisor PIC and the Supervisor card.

Step 2 Establish a terminal session. You can open terminal application (Hyper Terminal) on a PC as follows:

- a) Connect using: Direct to Com 1
- b) Set bits per second:9600
- c) Set data bits: 8
- d) Set parity: none
- e) Set stop bit: 1
- f) Set flow control: none

Type **no** when the following message is displayed:

```
Would you like to enter the initial dialog?[yes]: no Router>
```

First Time Boot Up with ROMMON

The Cisco cBR-8 boots up with ROMMON on the console with 9600 baud default configuration. It boots image either from TFTP or from local device. Local devices supported include the bootflash and USB.

Example of the boot up display:

```
Initializing Hardware ... `
```

```
System Bootstrap, Version 15.5(2r)S, RELEASE SOFTWARE
Copyright (c) 1994-2015 by cisco Systems, Inc.
Current image running: Boot ROMO
Last reset cause: PowerOn
CPUID: 0x000206d7
UCODE: 0x00000710_00000000
Viper version register: 0x14121111
Set Chassis Type to 13RU
Cisco cBR-8 platform with 50331648 Kbytes of main memory
rommon 1 >
```

Configuration Register

The **confreg** ROMMON command displays the configuration and allows modification of the settings.

```
rommon > confreg
          Configuration Summary
   (Virtual Configuration Register: 0x0)
enabled are:
 [ 0 ] break/abort has effect
 [ 1 ] console baud: 9600
boot: ..... the ROM Monitor
do you wish to change the configuration? y/n [n]: y
enable "diagnostic mode"? y/n [n]:
 enable "use net in IP bcast address"? y/n [n]:
enable "load rom after netboot fails"? y/n [n]:
enable "use all zero broadcast"? y/n [n]:
disable "break/abort has effect"? y/n [n]:
enable "ignore system config info"? y/n [n]:
change console baud rate? y/n [n]:
change the boot characteristics? y/n [n]:
          Configuration Summary
   (Virtual Configuration Register: 0x0)
enabled are:
 [ 0 ] break/abort has effect
 [ 1 ] console baud: 9600
boot: ..... the ROM Monitor
do you wish to change the configuration? y/n [n]:
Console baud rate options:
change console baud rate? y/n [n]: y
0=9600, 1=4800, 2=1200, 3=2400, 4=19200, 5=38400, 6=57600, 7=115200
enter rate [0]:
Boot characteristics options:
change the boot characteristics? y/n [n]: y
enter to boot:
0 = ROM Monitor
1 = the boot helper image
 2-15 = boot system
 [0]:
```

Setting Environment Variables

No Environment variables are required to boot the Cisco IOS-XE image.

There are variables set by default. The ROMMON command set displays the default variables.

```
rommon > set
PS1=rommon ! >
?=0
rommon >
```

To set a variable, the format is VARIABLE="value".

Theset command displays the new variable and the sync command saves the variable to NVRAM.

Note

If the variable value has a space in between, specify the value within quotes.

```
rommon > set
PS1=rommon ! >
?=0
rommon > IP_ADDRESS=1.2.3.4
rommon > IP_SUBNET_MASK=255.255.255.128
rommon > DEFAULT_GATEWAY=1.2.9.10
rommon > TFTP_SERVER=1.2.3.6
rommon > sync
```

Unsetting Environment Variables

The **unset** ROMMON command removes the Environment variables and the **sync** command saves the variable to NVRAM.

```
rommon 1 > set
PS1=rommon ! >
?=0
BSI=0
BOOT=bootflash:cbrsup-adventerprisek9.SSA.bin,12;
RANDOM NUM=1357042312
RET 2 RTS=17:45:06 PDT Sat Dec 31 2011
RET_2_RCALTS=1325378706
rommon 2 > unset BOOT
rommon 3 > sync
rommon 4 > set
PS1=rommon ! >
?=0
BSI=0
RANDOM NUM=1357042312
RET 2 RTS=17:45:06 PDT Sat Dec 31 2011
RET 2 RCALTS=1325378706
rommon 5 >
```

Booting from the TFTP on the Cisco cBR

ROMMON boots up with default environment variables. The BinOS image is booted up from TFTP over the management port. This requires a minimum set of environment variables: IP_ADDRESS, IP_SUBNET_MASK, DEFAULT_GATEWAY, and TFTP_SERVER.

Step 1 Type the **set** command and define the required environment variables.

```
rommon > set
PS1=rommon ! >
?=0
rommon > IP_ADDRESS=1.2.3.4
rommon > IP_SUBNET_MASK=255.255.255.128
rommon > DEFAULT_GATEWAY=1.2.9.10
rommon > TFTP_SERVER=1.2.3.6
rommon > sync
```

Step 2 Type the **sync** command to save the variables to NVRAM.

rommon 6 > sync

Step 3 Type the **boot** command to load the image.

rommon 7 > boot tftp:/tftpboot/username/cbrsup-universalk9.SSA.bin

Listing Supported Devices

The dev command lists the devices supported on the router.

```
usb1: External USB drive 1 rommon 2 >
```

Booting from the Device on the Cisco cBR

```
      Step 1
      Type the dir bootflash: command.

      rommon > dir bootflash:
      File System: EXT2/EXT3

      12
      691955580 -rw-r--r--
      cbrsup-xe315.SSA.bin

      45
      83475 -rw-r--r--
      reload.log.20120103004502

      Step 2
      Type the boot bootflash:imagename command.
```

Setting AUTOBOOT image in ROMMON

To set AUTOBOOT of an image from bootflash:, add the Environment Variable BOOT and then change the configuration register boot characteristics to boot and reset the system.

```
Step 1 Type the boot=bootflash:imagename command to load the image.
```

```
rommon > BOOT=bootflash:cbrsup-xe315-20150131.bin
```

Step 2 Type the **sync** command to copy the variables to NVRAM.

```
rommon > sync
```

Step 3 Type the **confreg** command to configure and modify the settings.

```
rommon > confreg
Configuration Summary
(Virtual Configuration Register: 0x0)
enabled are:
[ 0 ] break/abort has effect
[ 1 ] console baud: 9600
boot: ..... the ROM Monitor
do you wish to change the configuration? y/n [n]: y
enable "diagnostic mode"? y/n [n]:
enable "use net in IP bcast address"? y/n [n]:
enable "load rom after netboot fails"? y/n [n]:
enable "use all zero broadcast"? y/n [n]:
```

Step 4

disable "break/abort has effect"? y/n [n]: enable "ignore system config info"? y/n [n]: change console baud rate? y/n [n]: n change the boot characteristics? y/n [n]: y enter to boot: 0 = ROM Monitor 1 = the boot helper image 2-15 = boot system[0]: 2 Configuration Summary (Virtual Configuration Register: 0x2) enabled are: [0] break/abort has effect [1] console baud: 9600 boot: image specified by the boot system commands or default to: cisco2-Cisco cBR-8 do you wish to change the configuration? y/n [n]: You must reset or power cycle for new config to take effect Type the reset command for the new configuration to take effect. rommon > reset

What to do next

Verifying the ROMMON Version

Use the **showmon** command to display the version of ROMMON.

```
rommon > showmon
Current image running (0/1): Boot ROM0
System Bootstrap, Version 15.5(2r)S, RELEASE SOFTWARE
Copyright (c) 1994-2015 by cisco Systems, Inc.
```

```
Viper version register: 0x14121111
rommon >
```

Table 1: Feature History

Feature Name	Release Information	Feature Description
ROMMON Enhancements	Cisco IOS XE Dublin 17.12.1w	With this release, ROMMON autoupgrade takes place when the existing ROMMON version is older than version 16.7(9r)S. Manual ROMMON upgrade continues to be supported. In ROMMON version 16.7(9r)S, we remove DEV key support from cBR-8 routers. You need a challenge key if you need to run an engineer-signed image.

Running Private Cisco IOS XE Images

Use the **devkey** command to get the one-time token. The Cisco support team can use that token to generate the Dev Keys(same as Dev Mode).

rommon 1 > **devkey** E7B06AE8877E3421

Once the Dev Keys are available, configure the Dev Keys in the ROMMON prompt.

```
rommon2>DEVKEY0=AE079099BADAEA16C731A667A57BC06D32586C2767631965C607C4842F62F20Erommon3>DEVKEY1=3E926BB3EE3163C805AD908305C5118E3A1F7964BE400240B7850EAFC9773C6Frommon4>DEVKEY2=D9353C68B75EF526957D95E773A8E680AEE81E7C1DFCC2A56F2AF1B257B075CArommon5>DEVKEY3=07E48CFF98697CEA4129AF04894C7BC160DB552152B4A05210674CA38F08B247rommon7>DEVKEY4=E4D29277DC246F0427D711360E36B193BB9D2969F0B42EF5EE5019E7C80E0535rommon8>DEVKEY5=D45CC1D9B50FED89B17D1674938F9BD7AE1F10F23A46EB95FED5F5593D717F46rommon9>DEVKEY6=2778650684521852B0EFA3B5D95F92A3729F3A99645B802ACA781AA243BFC965rommon10>DEVKEY7=F5FA33BC31755EAD97EC376509D52FE89D397B119CE59D26EE310E0DF562003B
```

After setting the Dev Key, you can only boot a private IOS image once.

Note Saving tokens in the ROMMON environment does not work. It is necessary to generate the token every time a private image needs to run.

Resetting the Cisco cBR

Use the reset command to soft reset the Supervisor.

```
rommon > reset
Resetting ......
Initializing Hardware ...`
System Bootstrap, Version 15.5(2r)S, RELEASE SOFTWARE
Copyright (c) 1994-2015 by cisco Systems, Inc.
Current image running: Boot ROM0
Last reset cause: LocalSoftware
CPUID: 0x000206d7
UCODE: 0x00000710_00000000
Viper version register: 0x14121111
Set Chassis Type to 13RU
Cisco cBR-8 platform with 50331648 Kbytes of main memory
rommon >
```

Configuring PTP

The Cisco cBR supports Precision Time Protocol (PTP) boundary or ordinary clock (OC) subordinate mode when connected to the Ethernet ports of the DPIC card or Supervisor PIC card. This topic provides you with

a an overview of PTP, configuration options, commands to verify the configuration settings, and configuration examples.

Cisco cBR supports DPIC PTP subordinate configuration with the following restraints:

- Only subordinate mode is supported.
- Only one-step timestamping is supported

Overview of PTP

Precision Time Protocol (PTP) is a packet-based two-way message exchange protocol for synchronizing clocks between nodes in a network, thus providing an accurate time distribution over a network. PTP support is based on the IEEE 1588-2008 standard.

IEEE Standard 1588-2008 defines a method for distributing time around a network using the Precision Time Protocol (PTP) version 2. IEEE 1588-2008 is designed to provide precise timing and synchronization over packet-based Ethernet infrastructures without layer-1 support along the clocking path. PTP ensures that the best available clock is selected as the source of time (the grandmaster clock) for the network and that other clocks in the network are synchronized to the grandmaster.

PTP consists of two parts:

- The port state machine and the best primary clock algorithm: Provides a method to determine which
 ports in the network run as primary (providing time to other clocks to the network), which runs as
 subordinate (receiving time from other clocks in the network), and which are passive (neither primary
 nor subordinate).
- Mechanisms for subordinate ports to calculate the difference between the time of their own clocks and the time of their primary clock. To calculate the differences, PTP uses delay request and response mechanism and a peer delay mechanism.

An overview of clock synchronization is explained.

Figure 1: Clock Synchronization

After the primary-subordinate clock hierarchy is established, the clock synchronization process starts. The message exchange occurs in this sequence:

- 1. The primary clock sends a sync message. The time at which the sync message leaves the primary is time-stamped as t1.
- 2. The subordinate clock receives the sync message and is time-stamped as t2.
- 3. The subordinate sends the Delay request, which is time-stamped as t3 when it leaves the subordinate, and as t4 when the primary receives it.
- 4. The primary responds with a Delay request that contains the time stamp t4.

PTP employs a hierarchy of clock types to ensure that precise timing and synchronization is maintained between the source and the numerous PTP clients that are distributed throughout the network. The types of clock are the following:

Grandmaster clock

This clock is the highest-ranking clock within its PTP domain. PTP grandmasters can be deployed as either standalone devices or as plug-in modules or "blades" that can be integrated into an existing synchronization supply unit (SSU) or building integrated timing supply (BITS) shelf. Grandmasters are the primary reference source (PRS) for all other PTP elements within their PTP domain.

· Primary clock

The PTP primary has a precise clock, from a PRC or GPS. This clock drives the timestamp engine to derive accurate timestamps. The primary hosts PTP sessions with several subordinates.

· Subordinate clock

The subordinate is a network element that can recover the (Frequency and phase) clock from the timestamps that are obtained by messages that are exchanged with the PTP primary clock.

· Boundary clock

The Boundary clock acts as both PTP primary and subordinate. It is a subordinate to a grandmaster and derive the reference from the grandmaster. It then starts its own PTP sessions with several downstream subordinates. The advantage of placing a boundary clock is that it mitigates the number of network hops and resulting delays that occur in the packet network between the grandmaster and subordinates.

Transparent clock

They maintain precise internal clocking by measuring the exact time difference between the packet entry and exit and the correction field of PTP packet is updated accordingly. Hence, the delay that is introduced by the node will not affect the PTP subordinate.

PTP on Supervisor 250 Interfaces

Cisco cBR functions as a PTP subordinate when it has Supervisor 250 (CBR-SUP-250G) ports that are combined to form a port channel with an IPv6 address.

In this scenario, the Cisco cBR router locks with the remote PTP server which is also configured with an IPv6 address, through the port channel.

Note

You can configure a maximum of two clock sources for PTP. If you configure three or more clock sources, the *ptpd_mcp_rp* process crashes when the PTP reaches the *PHASE ALIGNED* state.

Configure PTP Subordinate Through DPIC

Before you begin

You can configure PTP ports on Cisco cBR through the DPIC.

Configure the PTP subordinate using one of the following options:

Subordinate mode with single source

```
config terminal
  ptp clock ordinary domain <domain id>
  servo tracking-type R-DTI
  clock-port <name> slave
  delay-req interval < Interval>
  sync interval < Interval>
  sync one-step
  transport <ipv4/ipv6> unicast interface <loopback name> negotiation
  clock source <clock ip>
```

Subordinate mode with single source with profile G8275.2

```
config terminal
  ptp clock ordinary domain <domain id>
  servo tracking-type R-DTI
  clock-port <name> slave profile g8275.2
  delay-req interval < Interval>
  sync interval < Interval>
  sync one-step
  transport <ipv4/ipv6> unicast interface <loopback name> negotiation
  clock source <clock ip>
```

Subordinate mode with multiple clock source

```
config t
ptp clock ordinary domain <domain id>
servo tracking-type R-DTI
clock-port <name> slave
delay-req interval < Interval>
sync interval < Interval>
sync one-step
transport <ipv4/ipv6> unicast interface <loopback name> negotiation
clock source <clock ip>
clock source <clock ip> <local priority>
```

• Subordinate mode with multiple clock source with profile G8275.2

```
config t
ptp clock boundary domain <domain id>
servo tracking-type R-DTI
clock-port <name> profile g8275.2
delay-req interval < Interval>
sync interval < Interval>
sync one-step
transport ipv6 unicast interface <loopback name> negotiation
```

```
clock source <clock ip>
clock-port <name> profile g8275.2
delay-req interval < Interval>
sync interval < Interval>
sync one-step
transport ipv6 unicast interface <loopback name> negotiation
clock source <clock ip>
```

Configure Cisco cBR as PTP Subordinate

You can configure the Cisco cBR router to function as a PTP subordinate. The cBR router must have Supervisor 250 cards with an IPv6 port channel. Use the following sample commands to configure the router.

Step 1 Configure a port-channel on the Cisco cBR router using the following sample command:

```
router#config port-channel 16
    cmts.config('''
        interface port-channel 16
        ip address %s 255.255.0
        ipv6 address %s/64
        no shut
    ''' % (ipaddr_portchannel,ipaddr_portchannel_ipv6))
```

Step 2 Configure the two ports that belong to this port-channel using the following sample command:

For example, you can configure one port on SUP-A and another port on SUP-B:

```
router#config port
    cmts.config('''
        interface %s
        channel-group 16
        no shut
    ''' % cbr1588_mainint)
```

Configure the port-channel on the peer switch using the commands in Step 1.

```
Step 3 Configure PTP on Cisco cBR using the following sample command:
```

```
router#sh run | sec ptp
ptp clock ordinary domain 55
servo tracking-type R-DTI
clock-port dp-ptp slave
  delay-req interval -4
  sync interval -5
  sync one-step
  transport ipv6 unicast interface Lo1588 negotiation
  clock source ipv6 2001:10:90:3::93
```

Step 4 Verify the configuration by pinging the PTP server IPv6 address.

The source is Lo1588 interface.

Verifying PTP Subordinate Configuration

You can verify the PTP subordinate configuration by going through the following steps.

Step 1 Verify the PTP configuration by running the **show run** | **se ptp** command.

Example:

```
router# show run | se ptp
ptp clock ordinary domain 55
servo tracking-type R-DTI
clock-port slave-from-903 slave
delay-req interval -5
sync interval -5
sync one-step
transport ipv4 unicast interface Lo1588 negotiation
clock source 10.90.3.93
```

Step 2 To verify the PTP clock working state, use the **show ptp clock running** command.

The state PHASE_ALIGNED confirms a successful locking.

Example:

router# show pt	p clock runni	.ng				
PTP Ordinary Cl	lock [Domain 5	5]				
State	Ports	Pkts sent	Pkts rcvo	i R	edundancy Mode	
PHASE_ALIGNED	1	68938	138822	Н	ot standby	
PORT SUMMARY						
PTP Master						
Name	Tx Mode	Role	Transport	State	Sessions	Port Addr
slave-from-903 L06#	unicast	slave	Lo1588	Slave	1	10.90.3.93

PTP Subordinate Configuration Examples

The PTP subordinate example configurations are as follows:

• PTP subordinate mode with ipv4

```
config t
ptp clock ordinary domain 0
servo tracking-type R-DTI
clock-port slave-from-903 slave
delay-req interval -5
sync interval -5
sync one-step
transport ipv4 unicast interface Lo1588 negotiation
clock source 10.90.3.93
```

PTP subordinate mode with ipv6

```
config t
ptp clock ordinary domain 0
servo tracking-type R-DTI
clock-port slave-from-903 slave
delay-req interval -4
```

```
sync interval -5
sync one-step
transport ipv6 unicast interface Lo1588 negotiation
clock source ipv6 2001:10:90:3::93
```

• PTP subordinate mode with ipv4 with profile G8275.2

```
config t
   ptp clock ordinary domain 55
   servo tracking-type R-DTI
   clock-port slave-from-903 slave profile g8275.2
   delay-req interval -4
   sync interval -5
   sync one-step
   transport ipv4 unicast interface Lo1588 negotiation
   clock source 10.90.3.93
```

• PTP subordinate mode with ipv6 with profile G8275.2

```
config t
ptp clock ordinary domain 55
servo tracking-type R-DTI
clock-port slave-from-903 slave profile g8275.2
delay-req interval -4
sync interval -5
sync one-step
transport ipv6 unicast interface Lo1588 negotiation
clock source ipv6 2001:10:90:3::93
```

• PTP subordinate mode with ipv4 with 2 clock sources

```
config t
ptp clock ordinary domain 0
servo tracking-type R-DTI
clock-port slave-from-903 slave
delay-req interval -5
sync interval -5
sync one-step
transport ipv4 unicast interface Lo1588 negotiation
clock source 10.90.3.93
clock source 10.1.1.1 2
```

• PTP subordinate mode with ipv6 with 2 clock sources and with profile G8275.2

```
config t
ptp clock boundary domain 55
servo tracking-type R-DTI
clock-port 22 profile g8275.2
delay-req interval -4
sync interval -5
sync one-step
transport ipv6 unicast interface Lo1588 negotiation
clock source ipv6 2001:10:90:3::93
clock-port 33 profile g8275.2
delay-req interval -4
sync interval -5
sync one-step
transport ipv6 unicast interface Lo1588 negotiation
clock source ipv6 2001:158:158:158::7
```

Feature Information for PTP Subordinate

Use Cisco Feature Navigator to find information about the platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to the https://cfnng.cisco.com/ link. An account on the Cisco.com page is not required.

Note

The following table lists the software release in which a given feature is introduced. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 2: Feature Information for PTP Subordinate

Feature Name	Releases	Feature Information
PTP Subordinate Through DPIC	Cisco IOS-XE Release 16.8.1	This feature was introduced in Cisco IOS-XE Release 16.8.1 on Cisco cBR Series Converged Broadband Router.
PTP on Supervisor 250 Interfaces	Cisco IOS-XE Amsterdam 17.3.1	This feature was introduced in Cisco IOS-XE Release 17.3.1 on Cisco cBR Series Converged Broadband Router.

File Systems

The Cisco cBR-8 router runs on the Cisco IOS-XE image. Supported file systems include:

- **1.** IOS File System (IFS) in IOS
- 2. ext2, vfs, jffs2, tmpfs, autofs, and such common file systems in Linux

Features of the File Systems:

- 1. Both the Harddisk and USB are hot pluggable.
- 2. Harddisk is not accessible under Rommon.
- 3. Bootflash and USB disk are accessible under Rommon.
- 4. The dir, show, copy, delete, mkdir, rmdir, and fsck commands are supported for bootflash, harddisk and USB.

File System Table in the Supervisor

Name	Device	Size	Туре	Visible	Usage	Physical Description
bootflash	/dev/bootflash1	7800705024	ext2	IOS/Binos	image,IOScrasinfo,etc	Partition1 of bootflash (eUSB flash).
flash	/dev/bootflash1	7800705024	ext2	IOS	image	A copy of bootflash.
nvram	/dev/bootflash2	32M	N/A	IOS	configuretion, etc	Partition2 of bootflash (eUSB flash).

Name	Device	Size	Туре	Visible	Usage	Physical Description
harddisk	/dev/harddisk1	98394218496	ext2	IOS/Binos	tracelog,corefile,etc	Partition1 of the 100G harddisk.
usb0	/dev/usb11	8G	vfat	IOS/Binos	image	Two USBs can be inserted into one SUP.

Verification of Hardware Bring Up

Monitoring the Cisco cBR Chassis Using CLI

• show platform—Verify if the installed cards are in Ok or Inserted state.

Router# show platform

Chassis type: CBR-8-CCAP-CHASS

Slot	Туре	State	Insert time (ago)
1	CBR-CCAP-LC-40G	ok	03:22:58
1/1	CBR-RF-PIC	ok	03:19:40
SUP0	CBR-CCAP-SUP-160G	inserted	03:22:58
R0		ok, active	
FO		ok, active	
4		ok, active	
4/1	CBR-SUP-8X10G-PIC	ok	03:20:30
PO	PWR-2KW-DC-V2	ok	03:21:20
P1	PWR-2KW-DC-V2	ok	03:21:20
P2	PWR-2KW-DC-V2	ok	03:21:20
Р3	PWR-2KW-DC-V2	ok	03:21:20
P4	PWR-2KW-DC-V2	ok	03:21:20
P5	PWR-2KW-DC-V2	ok	03:21:20
P10	CBR-FAN-ASSEMBLY	ok	03:21:10
P11	CBR-FAN-ASSEMBLY	ok	03:21:10
P12	CBR-FAN-ASSEMBLY	ok	03:21:10
P13	CBR-FAN-ASSEMBLY	ok	03:21:10
P14	CBR-FAN-ASSEMBLY	ok	03:21:10

• show platform hardware slot slot serdes status—Verify if all the links are in locked state.

Router# show platform hardware slot F1 serdes status

```
Slot R1-Link A
  RX link locked
  58-bit scrambler, 20 Gbps
  0 Overruns, 0 Underruns
  0 Reframe, 0 Disparity
  0 Out of band, 0 Illegal control codes
Slot 3-Link A
  RX link locked
  58-bit scrambler, 20 Gbps
  0 Overruns, 0 Underruns
  0 Reframe, 0 Disparity
  0 Out of band, 0 Illegal control codes
Slot 5-Link A
```

RX link locked 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link B RX link locked 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link C RX link locked 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link D RX link locked 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link E RX link Init 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link F RX link Init 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link G RX link Init 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes Slot 5-Link H RX link Init 58-bit scrambler, 20 Gbps 0 Overruns, 0 Underruns 0 Reframe, 0 Disparity 0 Out of band, 0 Illegal control codes

• show environment all—Verify the environmental status of each FRU after installation.

This command displays the system temperature, voltage, fan, and power supply conditions.

Router# show environment all

Sensor List:	Environmental	Monitoring	
Sensor	Location	State	Reading
AVCC&1P2: Sen	s 4/1	Normal	81 mV

AVCC&1P2: Vin	4/1	Normal	12600 mV
AVCC&1P2: ADin	4/1	Normal	0 mV
VP1P35: Sens	4/1	Normal	8 mV
VP1P35: Vin	4/1	Normal	12650 mV
VP1P35: ADin	4/1	Normal	112 mV
VP1P0: Sens	4/1	Normal	15 mV
VP1P0: Vin	4/1	Normal	12625 mV
VP1P0: ADin	4/1	Normal	0 mV
MGTAVTT: Sens	4/1	Normal	21 mV
MGTAVTT: Vin	4/1	Normal	12625 mV
MGTAVTT: ADin	4/1	Normal	0 mV
VP1P8: Sens	4/1	Normal	41 mV
VP1P8: Vin	4/1	Normal	12600 mV
VP1P8: ADin	4/1	Normal	0 mV
VP3P3: Sens	4/1	Normal	39 mV
VP3P3: Vin	4/1	Normal	12625 mV
VP3P3: ADin	4/1	Normal	0 mV
Temp: RTMAC	4/1	Normal	34 Celsius
Temp: INLET	4/1	Normal	29 Celsius
Temp: OUTLET	4/1	Normal	27 Celsius
Temp: MAX6697	4/1	Normal	50 Celsius
Temp: TCXO	4/1	Normal	37 Celsius
Temp: SUP OUT	4/1	Normal	49 Celsius
Temp: 3882 1 P	4/1	Normal	44 Celsius
Temp: 3882 2 P	4/1	Normal	39 Celsius
Temp: 3882 3 P	4/1	Normal	39 Celsius
VP5P0. Sens	4/1	Normal	6 mV
VP5P0: Vin	4/1	Normal	12650 mV
VP5P0: ADin	4/1	Normal	0 mV
VP1P8: Sens	4/1	Normal	33 mV
VP1P8: Vin	4/1	Normal	12625 mV
VD1D8. ADin	1/1	Normal	0 mV
3D3c1D0, ADIN	1/1	Normal	2/ m7
3D3c1D0. Vin	1/1	Normal	12625 mV
3P3&1P0. ADin	4/1	Normal	0 mV
Temp: INIET PD	1/1	Normal	27 Coleine
Temp: INDET ID	1/1	Normal	27 Celsius
Temp: 6697-DC	4/1	Normal	38 Celeius
Temp: DUYOUT	4/1	Normal	49 Celsius
Temp: PHYIN	4/1	Normal	49 Celsius
Temp: SSD	4/1	Normal	40 Celsius
Temp. SSD	4/1	Normal	40 Celsius
Temp: 3002 1DD	4/1	Normal	42 Coloius
3992 DC1 0, VO	4/1	Normal	1100 mV
3002_FC1_0. VO	4/1	Normal	1190 mV
3002_ICI_I, VO	1/1	Normal	000 mV
3002_FC2_0. VO	4/1	Normal	13/0 mT
DS02_FC3_0. VO	4/1	Normal	7340 mV
PROC-PC1 1. VO	4/1	Normal	12500 mV
PSOC-PC1_1. VO	4/1	Normal	6007 mV
DSOC_DC1_2. VO	1/1	Normal	5000 mV
PROC-PC1_J. VO	4/1	Normal	3200 mV
PSOC-PC1_4. VO	4/1	Normal	1000 mV
PROC-PC1 6, VO	1/1	Normal	1010 mV
PSOC-PC1_0. VO	4/1	Normal	1010 IIIV 1801 mV
DSOC_DC1_7. VO	1/1	Normal	2000 mV
PSOC_PC1 0. VO	· / ⊥ / /1	Normal	1108 mt7
PSOC_PC1 10. V	¬/⊥ //1	Normal	1798 mtz
DOC_DC1 11. 17	¬/⊥ //1	Normal	2500 mt7
PSOC_PC1_11: V	ч/⊥ Λ/1	Normal	2000 IIIV
DOC_DC1 12: V	¬/⊥ //1	Normal	1002 mt7
LOUC-FUL_LO: V	⊐/⊥ //1	Normal	1223 IIIV
FSUC=FC1_14: V	±/⊥ //1	Normal	596 m17
FOUC-FUL_10: V	±/⊥ //1	Normal	1000
JUOZ FUC U: VU	7/ L	NOTINGT	TOOO IIIA

3882 PDC 1: VO	4/1	Normal	3300 mV
PSOC-DC1 0: VO	4/1	Normal	4998 mV
PSOC-DC1 1: VO	4/1	Normal	3280 mV
PSOC-DC1 2: VO	4/1	Normal	1005 mV
PSOC-DC1 3: VO	4/1	Normal	1801 mV
PSOC-DC1 4: VO	4/1	Normal	2500 mV
12 CUR: Sens	9	Normal	14 mV
12 CUR: Vin	9	Normal	12650 mV
12 CUR: ADin	9	Normal	267 mV
G0 CUR: Sens	9	Normal	69 mV
G0 CUR: Vin	9	Normal	12550 mV
G0 CUR: ADin	9	Normal	0 mV
G1 CUR: Sens	9	Normal	69 mV
G1 CUR: Vin	9	Normal	12575 mV
G1 CUR: ADin	9	Normal	0 mV
LB CUR: Sens	9	Normal	11 mV
LB CUR: Vin	9	Normal	12525 mV
LB CUR: ADin	9	Normal	0 mV
Temp: CAPRICA	9	Normal	40 Celsius
Temp: BASESTAR	9	Normal	47 Celsius
Temp: RAIDER	9	Normal	45 Celsius
Temp: CPU	9	Normal	31 Celsius
Temp: INLET	9	Normal	25 Celsius
Temp: OUTLET	9	Normal	35 Celsius
Temp: DIGITAL	9	Normal	31 Celsius
Temp: UPX	9	Normal	29 Celsius
Temp: LEOBEN1	9	Normal	31 Celsius
Temp: LEOBEN2	9	Normal	35 Celsius
Temp: 3.3-18	9	Normal	43 Celsius
Temp: BS_1V	9	Normal	45 Celsius
Freq: 5338-49	9	Normal	0 MHz
Freq: 5338-52	9	Normal	0 MHz
Freq: 5338-89	9	Normal	0 MHz
3882_1_0: VOUT	9	Normal	3299 mV
3882_1_1: VOUT	9	Normal	1800 mV
3882_2_0: VOUT	9	Normal	2500 mV
3882_2_1: VOUT	9	Normal	1199 mV
3882_3_0: VOUT	9	Normal	1419 mV
3882_4_0: VOUT	9	Normal	1350 mV
3882_5_0: VOUT	9	Normal	1000 mV
3882_6_0: VOUT	9	Normal	1021 mV
3882_7_0: VOUT	9	Normal	1199 mV
3882_7_1: VOUT	9	Normal	1000 mV
3882_8_0: VOUT	9	Normal	1000 mV
3882_9_0: VOUT	9	Normal	999 mV
V2978: VSENSE0	9	Normal	0 mV
V2978: VSENSE1	9	Normal	0 mV
V2978: VSENSE2	9	Normal	0 mV
V2978: VSENSE3	9	Normal	6000 mV
V2978: VSENSE4	9	Normal	2400 mV
V2978: VSENSE5	9	Normal	0 mV
V2978: VSENSE6	9	Normal	6598 mV
V2978: VSENSE7	9	Normal	4998 mV
V2978: VIN	9	Normal	25218 mV
PSOC_2_0: VOUT	9	Normal	12582 mV
PSOC_2_1: VOUT	9	Normal	4985 mV
PSOC_2_2: VOUT	9	Normal	3256 mV
PSOC_2_3: VOUT	9	Normal	1982 mV
PSOC_2_4: VOUT	9	Normal	1990 mV
PSOC_2_5: VOUT	9	Normal	1782 mV
PSOC_2_6: VOUT	9	Normal	1793 mV
PSOC_2_7: VOUT	9	Normal	1/86 mV
PSOC_2_8: VOUT	9	Normal	1483 mV
PSOC_2_9: VOUT	9	Normal	1193 mV

Start Up Configuration of the Cisco cBR Router

		_	
PSOC_2_10: VOU	9	Normal	995 mV
PSOC_2_11: VOU	9	Normal	987 mV
PSOC 2 12: VOU	9	Normal	994 mV
PSOC 2 13: VOU	9	Normal	707 mV
PSOC 2 14: VOU	9	Normal	592 mV
PROC 2 15, VOI	9	Normal	503 mV
F30C_2_13. V00	9	NOTINAL	393 IIIV
LTC4261: Power	9	Normal	340 Watts
PEM lout	PO	Normal	5 A
PEM Vout	PO	Normal	55 V DC
PEM Vin	PO	Normal	202 V AC
Temp: INLET	PO	Normal	26 Celsius
Temp: OUTLET	P0	Normal	48 Celsius
PEM Tout	 Р1	Normal	6 A
DEM Mont	тт р1	Normal	
PEM VOUL	P1	NOLIIIAL	
PEM VIN	PI	Normal	204 V AC
Temp: INLET	Pl	Normal	30 Celsius
Temp: OUTLET	P1	Normal	53 Celsius
PEM Iout	P2	Normal	3 A
PEM Vout	₽2	Normal	55 V DC
PEM Vin	P2	Normal	204 V AC
Temp: INLET	P2	Normal	25 Celsius
	D2	Normal	51 Colsius
Temp. COILEI	F2	Normal	JI CEISIUS
PSOC-MB2_0: VO	RU	Normal	12/58 mV
PSOC-MB2_1: VO	RO	Normal	4998 mV
PSOC-MB2_2: VO	R0	Normal	7082 mV
PSOC-MB2_3: VO	R0	Normal	3287 mV
PSOC-MB2 4: VO	R0	Normal	989 mV
PSOC-MB2 5: VO	R0	Normal	1047 mV
PSOC-MB2 6. VO	BO	Normal	1500 mV
PSOC_MB2 7: VO	DO	Normal	1800 mV
FSOC-MB2_7. VO	RU DO	Normar	1000 IIIV
PSOC-MB2_8: VO	RU	Normal	914 mV
PSOC-MB2_9: VO	RU	Normal	885 mV
PSOC-MB2_10: V	R0	Normal	994 mV
PSOC-MB2_11: V	R0	Normal	989 mV
PSOC-MB2 12: V	R0	Normal	1479 mV
PSOC-MB2 13: V	R0	Normal	989 mV
PSOC-MB2 14: V	R0	Normal	984 mV
PSOC-MB2 15. V	R O	Normal	890 mV
DCOC MB2 16. V	R0	Normal	2495
PSOC-MB2_16: V	RU	Normal	2485 IIIV
PSOC-MB2_1/: V	RU	Normal	1346 mV
PSOC-MB2_18: V	R0	Normal	1458 mV
PSOC-MB2_19: V	R0	Normal	1208 mV
PSOC-MB2_20: V	R0	Normal	1791 mV
PSOC-MB2 21: V	R0	Normal	3293 mV
PSOC-MB2 22: V	R0	Normal	3250 mV
PSOC-MB2 23: V	R0	Normal	3284 mV
$PSOC = MB2 24 \cdot V$	PO	Normal	/970 mt/
DGOC_MB2 25. V	DU	Normal	10,0 IIIV 1151 mV
FSOC-MB2_2J. V	RU DO	Normar	4451 1117
PSOC-MB3_0: VO	RU	Normal	4983 mV
PSOC-MB3_1: VO	RO	Normal	4979 mV
PSOC-MB3_2: VO	R0	Normal	1500 mV
PSOC-MB3 3: VO	R0	Normal	1192 mV
PSOC-MB3 4: VO	R0	Normal	705 mV
PSOC-MB3 5: VO	R0	Normal	752 mV
PSOC-MB3 6. VO	R0	Normal	579 mV
PSOC-MB3 7. 170	RÛ	Normal	1500 mV
1000 MD2 0. VO	D0	Normal	1501
FROC-MR3 8: VO	KU DO	NOTINAL	LOUL MV
PROC-WR3_9: VO	KU	Normal	1250 mV
PSOC-MB3_10: V	RO	Normal	1247 mV
PSOC-MB3_11: V	RO	Normal	1260 mV
PSOC-MB3 12: V	R0	Normal	1038 mV
PSOC-MB3 13: V	RO	Normal	1343 mV
PSOC-MB3 14: V	R0	Normal	670 mV
PSOC-MB3 15. V	RÛ	Normal	1800 mV
			III V

I

5000 M50 16 M			000
PSOC-MB3_16: V	RU	Normal	908 mv
PSOC-MB3_17: V	R0	Normal	823 mV
PSOC-MB3_18: V	RO	Normal	992 mV
PSOC-MB3 19: V	RO	Normal	984 mV
PSOC-MB3 20: V	R0	Normal	1046 mV
PSOC_MB3 21 · V	PO	Normal	1102 mT7
150C MB3_21. V	100	Normar	1100
PSOC-MB3_22: V	RU	Normal	1169 mV
PSOC-MB3_23: V	RU	Normal	1187 mV
PSOC-MB3_24: V	RO	Normal	1796 mV
PSOC-MB3 25: V	RO	Normal	1792 mV
PSOC-MB3 26: V	RO	Normal	1787 mV
PSOC-MB3 27 · V	BO	Normal	1034 mV
2002 MD1 0, VO	DO	Normal	1001 mV
3002_MB1_0: VO	RU	NOTINAL	1001 1110
3882_MB1_1: VO	RU	Normal	1022 mV
3882_MB2_0: VO	R0	Normal	1197 mV
3882 MB3 0: VO	RO	Normal	1045 mV
3882 MB3 1: VO	R0	Normal	996 mV
3882 MB4 0: VO	R0	Normal	898 mV
3882 MB5 0, VO	Þ0	Normal	13/18 mT7
3002_HD5_0. VO	DO	Normal	1250 mV
5002_MB0_0. VO	R0	NOTINAL	1330 1110
3882_MB6_1: VO	RU	Normal	3297 mV
3882_MB7_0: VO	RO	Normal	998 mV
3882_MB8_0: VO	RO	Normal	1501 mV
3882 MB8 1: VO	RO	Normal	1551 mV
3882 MB9 0: VO	RO	Normal	999 mV
3882 MB9 1 . VO	BU	Normal	3296 mV
15201 1. VOIT	DO	Normal	2500 mV
15301_1: VOUI	RU	Normal	2300 1110
15301_2: VOUT	RU	Normal	1200 mv
15301_3: VOUT	RO	Normal	1200 mV
AS_VRM: Sens	RO	Normal	40 mV
AS VRM: Vin	RO	Normal	12725 mV
AS VRM: ADin	RO	Normal	0 mV
Y0 VRM: Sens	RO	Normal	23 mV
YO_VRM· Vin	BU	Normal	12675 mV
YO VRM: ADin	R0	Normal	380 mV
CDU VCC: Sono	DO	Normal	6 m17
CPU_VCC: Sells	RU	NOTINAL	
CPU_VCC: Vin	RU	Normal	12/25 mV
CPU_VCC: ADin	RO	Normal	0 mV
5P0_BIAS: Sens	RO	Normal	19 mV
5P0 BIAS: Vin	R0	Normal	12700 mV
5P0 BIAS: ADin	R0	Normal	0 mV
7P0 BIAS: Sens	R0	Normal	45 mV
7PO BIAS: Vin	BO	Normal	12725 mV
7D0 DIAG: AD: ~	DO	Normal	0 mV
1PO_BIAS: ADIN	RU	NOTINAL	0 1110
IPU_AA: Sens	RU	Normal	37 mV
1P0_AA: Vin	RO	Normal	12700 mV
1P0_AA: ADin	RO	Normal	0 mV
1P0_RT: Sens	RO	Normal	16 mV
1P0 RT: Vin	RO	Normal	12725 mV
1P0 RT: ADin	RO	Normal	0 mV
1P2. Sens	BO	Normal	37 mV
102. 11-2	DO	Normal	10675 mV
1P2: VIII	RU	Normal	
IPZ: ADIN	RU	Normal	0 mV
0P9_T0: Sens	R0	Normal	7 mV
0P9_T0: Vin	R0	Normal	12750 mV
OP9 TO: ADin	RO	Normal	0 mV
1P05 CPU: Sens	RO	Normal	11 mV
1P05 CPU: Vin	R0	Normal	12700 mV
1005 CDII: ND:~	P.0	Normal	0 mV
1D0 CC. Cro: ADIN	D0	Normal	0 IIIV
iru_cc: Sens	KU - 0	NOTINAL	VIII OIL
1P0_CC: Vin	RU	Normal	12700 mV
1P0_CC: ADin	RO	Normal	0 mV
1P35 DDR: Sens	RO	Normal	6 mV
_			

Start Up Configuration of the Cisco cBR Router

1P35 DDR: ADin	RO	Normal	0 mV
1P35 RLD: Sens	RO	Normal	0 mV
1P35 RLD: Vin	RO	Normal	12675 mV
1P35 RLD: ADin	R0	Normal	2047 mV
3P3 CCC: Sens	RO	Normal	16 mV
3P3 CCC: Vin	RO	Normal	12700 mV
3P3 CCC: ADin	RO	Normal	1375 mV
1PO R: Sens	RO	Normal	29 mV
1PO R. Vin	RO	Normal	12700 mV
1PO R. ADin	RO	Normal	0 mV
1P5 A0. Sens	PO	Normal	/1 m\7
1P5 A0: Vin	PO	Normal	12700 mV
1P5 A0. ADin	PO	Normal	0 mV
1DE. Cono	R0 D0	Normal	24 m17
IPJ: Sells	RU	Normal	19675 mV
1DE: ND:	RU	Normal	12075 IIIV
IP5: ADin	RU	Normal	U mV
2P5: Sens	RU	Normal	5 mV
2P5: Vin	RU	Normal	12/00 mV
2P5: ADin	RU	Normal	0 mV
1P8_A: Sens	RU	Normal	10 mV
1P8_A: Vin	RO	Normal	12675 mV
1P8_A: ADin	R0	Normal	947 mV
1P0_BV: Sens	R0	Normal	24 mV
1P0_BV: Vin	R0	Normal	12700 mV
1P0_BV: ADin	R0	Normal	0 mV
3P3: Sens	R0	Normal	16 mV
3P3: Vin	RO	Normal	12725 mV
3P3: ADin	RO	Normal	0 mV
1P2 B: Sens	RO	Normal	41 mV
1P2 B: Vin	RO	Normal	12725 mV
1P2 B: ADin	RO	Normal	0 mV
ADM1075: Power	RO	Normal	329 Watts
Temp: Y0 DIE	RO	Normal	33 Celsius
Temp: BB DIE	RO	Normal	29 Celsius
Temp: VP DIE	RO	Normal	26 Celsius
Temp: RT-E DIE	RO	Normal	31 Celsius
Temp: INLET 1	RO	Normal	23 Celsius
Temp: INLET 2	RO	Normal	22 Celsius
Temp: OUTLET 1	RO	Normal	25 Celsius
Temp: 3882 1	RO	Normal	46 Celsius
Temp: 3882 1A	RO	Normal	43 Celsius
Temp: 3882 1B	RO	Normal	43 Celsius
Temp: 3882 2	RO	Normal	41 Celsius
Temp: 3882 24	RO	Normal	40 Celsius
Temp: 3882 2B	RO	Normal	41 Celsius
Temp: 3882 3	PO	Normal	37 Coleius
Temp: 3002_3	DO	Normal	34 Coloius
Temp: 3002_3A	RU DO	Normal	33 Coloius
Temp: 3002_35	R0 D0	Normal	16 Celsius
Temp: 3882_4	RU	Normal	46 Celsius
Temp: 3882_4A	RU	Normal	38 Celsius
Temp: 3882_4B	RU	Normal	35 Celsius
Temp: 3882_5	RU	Normal	32 Celsius
Temp: 3882_5A	RU	Normal	23 Celsius
Temp: 3882_5B	KU	Normal	23 Celsius
'Temp: 3882_6	KU	Normal	37 Celsius
Temp: 3882_6A	RU	Normal	30 Celsius
Temp: 3882_6B	RO	Normal	32 Celsius
Temp: 3882_7	RO	Normal	38 Celsius
Temp: 3882_7A	RO	Normal	35 Celsius
Temp: 3882_7B	RO	Normal	35 Celsius
Temp: 3882_8	RO	Normal	47 Celsius
Temp: 3882_8A	RO	Normal	45 Celsius
Temp: 3882_8B	RO	Normal	41 Celsius
Temp: 3882 9	RO	Normal	37 Celsius

more -	2002 07	DO	Nermal	22	Coloine
remp:	3082_9A	KU	NOTINAL	33	Ceisius
Temp:	3882_9B	RO	Normal	32	Celsius
Temp:	8314_1	R0	Normal	40	Celsius
Temp:	8314_2	R0	Normal	36	Celsius
Temp:	3536_1A	R0	Normal	26	Celsius
Temp:	3536_1B	R0	Normal	26	Celsius
Temp:	15301_1A	R0	Normal	31	Celsius
Temp:	15301_1B	R0	Normal	32	Celsius
Temp:	15301_2A	R0	Normal	28	Celsius
Temp:	15301_2B	R0	Normal	34	Celsius
Temp:	15301_3A	RO	Normal	38	Celsius
Temp:	15301 3B	R0	Normal	45	Celsius
Temp:	AS DIE	R0	Normal	70	Celsius
Temp:	XPT1 DTL	RO	Normal	42	Celsius
Temp:	XPT1 DTR	R0	Normal	42	Celsius
Temp:	XPT1 DBL	R0	Normal	42	Celsius
Temp:	XPT1 DBR	R0	Normal	42	Celsius
Temp:	XPT2 DTL	RO	Normal	42	Celsius
Temp:	XPT2 DTR	R0	Normal	42	Celsius
Temp:	XPT2 DBL	R0	Normal	42	Celsius
Temp:	XPT2 DBR	RO	Normal	42	Celsius
Temp:	XPT3 DTL	R0	Normal	42	Celsius
Temp:	XPT3 DTR	R0	Normal	42	Celsius
Temp:	XPT3 DBL	R0	Normal	42	Celsius
Temp:	XPT3 DBR	RO	Normal	42	Celsius
Freq:	MAX3674	RO	Normal	500) MHz
Freq:	S0420D	R0	Normal	24	MHz
	~				

• show facility-alarm status —Verify the chassis status.

System Totals Critical: 4 Major: 1 Minor: 8

Router# show facility-alarm status

Source	Time	Severity	Description [Index]
slot 3/0	Apr 13 2015 16:25:	58 CRITICAL	Active Card Removed
OIR Alarm [0]			
Power Supply Bay 3	Apr 13 2015 13:41:	56 CRITICAL	Power Supply/FAN
Module Missing [0]			
Power Supply Bay 4	Apr 13 2015 13:41:	56 CRITICAL	Power Supply/FAN
Module Missing [0]			
Power Supply Bay 5	Apr 13 2015 13:41:	56 CRITICAL	Power Supply/FAN
Module Missing [0]			
Cable3/0/15-US0	Apr 13 2015 17:32:	53 MINOR	Physical Port Link
Down [0]			
Cable3/0/15-US1	Apr 13 2015 17:32:	53 MINOR	Physical Port Link
Down [0]			
Cable3/0/15-US2	Apr 13 2015 17:32:	53 MINOR	Physical Port Link
Down [0]			
Cable3/0/15-US3	Apr 13 2015 17:32:	53 MINOR	Physical Port Link
Down [0]			
Cable3/0/15-US4	Apr 13 2015 17:32:	53 MINOR	Physical Port Link
Down [0]			

Gigabit Ethernet Management Interface Overview

The purpose of this interface is to allow users to perform management tasks on the router; it is basically an interface that should not and often cannot forward network traffic but can otherwise access the router, often via Telnet and SSH, and perform most management tasks on the router.

The following aspects of the Management Ethernet interface should be noted:

- Each SUP has a Management Ethernet interface, but only the active SUP has an accessible Management Ethernet interface (the standby SUP can be accessed using the console port, however).
- IPv4, IPv6, and ARP are the only routed protocols supported for the interface.
- The interface provides a method of access to the router even when some software processes are down.
- The Ethernet Management Interface cannot be used as a Lawful Intercept MD source interface.
- The Management Ethernet interface is part of its own VRF.

Gigabit Ethernet Port Numbering

The Gigabit Ethernet Management port is always GigabitEthernet0.

In a dual SUP configuration, the Management Ethernet interface on the active SUP will always be Gigabit Ethernet 0, while the Management Ethernet interface on the standby SUP will not be accessible using the Cisco IOS-XE CLI in the same telnet session. The standby SUP can be telnetted to through the console port, however.

The port can be accessed in configuration mode like any other port on the Cisco cBR Series Routers:

```
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface gigabitethernet0
Router(config-if)#
```

IP Address Handling in ROMMON and the Management Ethernet Port

Assuming the IOS-XE process has not begun running on the Cisco cBR Series Router, the IP address that was set in ROMMON acts as the IP address of the Management Ethernet interface. In cases where the IOS-XE process is running and has taken control of the Management Ethernet interface, the IP address specified when configuring the Gigabit Ethernet 0 interface in the IOS-XE CLI becomes the IP address of the Management Ethernet interface. The ROMMON-defined IP address is only used as the interface address when the IOS-XE process is inactive.

For this reason, the IP addresses specified in ROMMON and in the IOS-XE CLI can be identical and the Management Ethernet interface will function properly in single SUP configurations.

In dual SUP configurations, however, users should never configure the IP address in the ROMMON on either SUP0 or SUP1 to match each other or the IP address as defined by the IOS-XE CLI. Configuring matching

IP addresses introduces the possibility for an active and standby Management Ethernet interface having the same IP address with different MAC addresses, which will lead to unpredictable traffic treatment.

Gigabit Ethernet Management Interface VRF

Placing the management Ethernet interface in its own VRF has the following effects on the Management Ethernet interface:

- Many features must be configured or used inside the VRF, so the CLI may be different for certain Management Ethernet functions on the Cisco cBR Series Routers than on Management Ethernet interfaces on other routers.
- The VRF prevents route leakage and avoids unnecessary traffic through the management port.

The Management Ethernet interface VRF supports both IPv4 and IPv6 address families.

Common Ethernet Management Tasks

Because users can perform most tasks on a router through the Management Ethernet interface, many tasks can be done by accessing the router through the Management Ethernet interface.

This section documents tasks that might be common or slightly tricky on the Cisco cBR Series Routers. It is not intended as a comprehensive list of all tasks that can be done using the Management Ethernet interface.

Viewing the VRF Configuration

The VRF configuration for the Management Ethernet interface is viewable using the **show running-config vrf** command.

This example shows the default VRF configuration:

```
Router# show running-config vrf
Building configuration...
Current configuration : 351 bytes
vrf definition Mgmt-intf
!
address-family ipv4
exit-address-family
!
address-family ipv6
exit-address-family
!
(some output removed for brevity)
```

Setting a Default Route in the Management Ethernet Interface VRF

To set a default route in the Management Ethernet Interface VRF, use the **ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0** *next-hop-IP-address* command.

Setting the Management Ethernet IP Address

The IP address of the Management Ethernet port is set like the IP address on any other interface.

Below are two simple examples of configuring an IPv4 address and an IPv6 address on the Management Ethernet interface.

IPv4 Example

Router(config)# interface GigabitEthernet 0
Router(config-if)# ip address A.B.C.D A.B.C.D

IPv6 Example

```
Router(config)# interface GigabitEthernet 0
Router(config-if)# ipv6 address X:X:X:X:X /prefix-length
```

Telnetting over the Management Ethernet Interface

Telnetting can be done through the VRF using the Management Ethernet interface.

In the following example, the router telnets to 172.17.1.1 through the Management Ethernet interface VRF:

Router# telnet 172.17.1.1 /vrf Mgmt-intf

Pinging over the Management Ethernet Interface

Pinging other interfaces using the Management Ethernet interface is done through the VRF.

In the following example, the router pings the interface with the IP address of 172.17.1.1 through the Management Ethernet interface:

```
Router# ping vrf Mgmt-intf 172.17.1.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.17.1.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/1 ms
```

Copy Using TFTP or FTP

To copy a file using TFTP through the Management Ethernet interface, the **ip tftp source-interface GigabitEthernet 0** command must be entered before entering the **copy tftp** command because the **copy tftp** command has no option of specifying a VRF name.

Similarly, to copy a file using FTP through the Management Ethernet interface, the **ip ftp source-interface GigabitEthernet 0** command must be entered before entering the **copy ftp** command because the **copy ftp** command has no option of specifying a VRF name.

TFTP Example

Router(config) # ip tftp source-interface gigabitethernet 0

FTP Example

Router(config) # ip ftp source-interface gigabitethernet 0

NTP Server

To allow the software clock to be synchronized by a Network Time Protocol (NTP) time server over the Management Ethernet interface, enter the **ntp server vrf Mgmt-intf** command and specify the IP address of the device providing the update.

The following CLI provides an example of this procedure.

Router(config) # ntp server vrf Mgmt-intf 172.17.1.1

SYSLOG Server

To specify the Management Ethernet interface as the source IP or IPv6 address for logging purposes, enter the **logging host** *ip-address* **vrf Mgmt-intf** command.

The following CLI provides an example of this procedure.

Router(config) # logging host ip-address vrf Mgmt-intf

SNMP-Related Services

To specify the Management Ethernet interface as the source of all SNMP trap messages, enter the **snmp-server source-interface traps gigabitEthernet 0** command.

The following CLI provides an example of this procedure:

Router(config)# snmp-server source-interface traps gigabitEthernet 0

Domain Name Assignment

The IP domain name assignment for the Management Ethernet interface is done through the VRF.

To define the default domain name as the Management Ethernet VRF interface, enter the ip domain-name vrf Mgmt-intf *domain* command.

Router(config) # ip domain-name vrf Mgmt-intf cisco.com

DNS service

To specify the Management Ethernet interface VRF as a name server, enter the **ip name-server vrf Mgmt-intf** *IPv4/IPv6 address* command.

RADIUS or TACACS+ Server

To group the Management VRF as part of a AAA server group, enter the **ip vrf forward Mgmt-intf** command when configuring the AAA server group.

The same concept is true for configuring a TACACS+ server group. To group the Management VRF as part of a TACACS+ server group, enter the **ip vrf forwarding Mgmt-intf** command when configuring the TACACS+ server group.

RADIUS Server Group Configuration

Router(config)# aaa group server radius hello
Router(config-sg-radius)# ip vrf forwarding Mgmt-intf

TACACS+ Server Group Configuration

```
Router(config)# aaa group server tacacs+ hello
Router(config-sg-tacacs+)# ip vrf forwarding Mgmt-intf
```

VTY lines with ACL

To ensure an access control list (ACL) is attached to vty lines that are and are not using VRF, use the **vrf-also** option when attaching the ACL to the vty lines.

```
Router(config)# line vty 0 4
Router(config-line)#access-class 90 in vrf-also
```

Configuring the AUX Port for Network Management

- **Step 1** AUX port is used for IOSd command prompt. Type the set command at the rommon prompt.
- **Step 2** Verify if BOOT_PARAM is defined. It must not be defined.
- **Step 3** If the BOOT_PARAM is defined, do the following:
 - a) Type unset BOOT_PARAM.
 - b) Type sync.
 - c) Type reset.

Step 4 Boot with the latest image. The AUX port will show IOS command prompt.

Preprovisioning the Supervisor in the Cisco cBR Chassis

Preprovisioning on the Cisco cBR allows you to configure the Supervisors without their physical presence in the chassis.

Pro	ced	ure
-----	-----	-----

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	card slot/1 sup-pic-8x10g	Preprovisions the Supervisor in the Cisco cBR chassis.
	Example:	• <i>slot</i> —Identifies the chassis slot number for the
	Router(config)# card 4/1 sup-pic-8x10g	Supervisor PIC. The valid values are 4 and 5.

Configuring the Gigabit Ethernet Interface for Network Management

You must configure the GigabitEthernet0 interface and enable it to use the NME port.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface GigabitEthernet0	Enters the Gigabit Ethernet interface configuration mode.
	Example:	
	Router(config)# interface GigabitEthernet0	

Start Up Configuration of the Cisco cBR Router

	Command or Action	Purpose
Step 4	<pre>vrf forwarding vrf-name Example: Router(config-if)# vrf forwarding Mgmt-intf</pre>	 Associates a Virtual Routing and Forwarding (VRF) instance with the interface. <i>vrf-name</i>—The interface name to be associated with the specified VRF.
Step 5	<pre>ip address ip-address subnet-mask Example: Router(config-if)# ip address 192.71.0.1 255.255.255.0</pre>	 Sets the IP address of the Gigabit Ethernet interface. <i>ip-address</i>—IP address of the Gigabit Ethernet interface. <i>subnet -mask</i>—Subnet mask for the network.
Step 6 Step 7	<pre>no shutdown Example: Router(config-if)# no shutdown speed 1000 [negotiate] Example: Router(config-if)# speed 1000</pre>	Enables the Gigabit Ethernet interface. Configures the speed for the Gigabit Ethernet interface.
Step 8 Step 9	duplex full Example: Router(config-if)# duplex full negotiation auto	Configures full duplex operation on the Gigabit Ethernet interface. Selects the auto-negotiation mode.
Step 10	Example: Router(config-if) # negotiation auto end Example: Router(config-if) # end	Exits Gigabit Ethernet interface configuration mode. Returns to privileged EXEC mode.

Configuring the DTI Port on the Supervisor PIC

The Cisco cBR router can run in standalone mode, which uses internal clock and does not require any external reference clock source. The Cisco cBR router also supports DTI server as an external clocking source. To use a DTI server as a reference clock source, you must enable the DTI port on the Supervisor PIC.

Procedure

	Command or Action	Purpose	
Step 1	enable	Enables privileged EXEC mode.	
	Example:	Enter your password if prompted.	

Procedure

Command or Action	Purpose
Router> enable	
configure terminal	Enters global configuration mode.
Example:	
Router# configure terminal	
cable clock dti	Configures the DTI clock reference mode for the Supervisor
Example:	PIC.
Router(config)# cable clock dti	
	Command or Action Router> enable configure terminal Example: Router# configure terminal cable clock dti Example: Router(config)# cable clock dti

Configuring the TenGigabit Ethernet Interface for Network Management

You must configure the TenGigabitEthernet interface and enable it to use the NME port.

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Router> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Router# configure terminal	
Step 3	interface TenGigabitEthernet	Enters the TenGigabit Ethernet interface configuration mode.
	Example:	
	Router(config)# interface TenGigabitEthernet4/1/0	
Step 4	ip address ip-address subnet-mask	Sets the IP address of the TenGigabit Ethernet interface.
	Example:	
	Router(config-if)# ip address 1.2.3.4 255.255.255.0	
Step 5	load-interval seconds	Changes the length of time for which data is used to
	Example:	compute load statistics.
	Router(config-if)# load-interval 30	
Step 6	no shutdown	Enables the TenGigabit Ethernet interface.
	Example:	
	Router(config-if) # no shutdown	

	Command or Action	Purpose
Step 7	end	Exits TenGigabit Ethernet interface configuration mode.
	Example:	Returns to privileged EXEC mode.
	Router(config-if)# end	

Connecting the New Router to the Network

Connect the new router to the network using a n Ethernet interface. After the router successfully resolves its host name, new router sends a TFTP broadcast requesting the file name-confg or name.cfg. The router name must be in all lowercase, even if the true host name is not. The file is downloaded to the new router, where the configuration commands take effect immediately. If the configuration file is complete, the new router should be fully operational.

To save the complete configuration to NVRAM, use the following commands in privileged EXEC mode:

	Command or Action	Purpose		
Step 1	enable password	Enters privileged mode on the new router.		
Step 2	copy running-config startup-config	Saves the information from the name-config file into your startup configuration. On most platforms, this step saves the configuration to NVRAM.		
		Note Verify that the existing and new routers (or access servers) are connected before entering the copy running-config startup-config EXEC command to save configuration changes. Use the ping EXEC command to verify connectivity. If an incorrect configuration file is downloaded, the new router will load NVRAM configuration information before it can enter AutoInstall mode.		
		If the configuration file is a minimal configuration file, the new router comes up, but with only one interface operational. Use the following commands to connect to the new router and configure it.		
Step 3	telnet existing	Establishes a Telnet connection to the existing router.		
Step 4	telnet newrouter	From the existing router, establishes a Telnet connection to the new router.		
Step 5	enable password	Enters privileged EXEC mode.		
Step 6	setup	Enters setup mode to configure the new router.		

Procedure

Setting Password Protection on the Cisco CMTS

Note For security purposes, the EXEC has two levels of access to commands: user EXEC mode and privileged EXEC mode. The commands available at the user level are a subset of those available at the privileged level.

\mathcal{P}

Tip Because many privileged-level EXEC commands are used to set operating parameters, password-protect these commands to prevent unauthorized use.

Note An enable secret password can contain from 1 to 25 uppercase and lowercase alphanumeric characters. An enable password can contain any number of uppercase and lowercase alphanumeric characters. A number cannot be the first character. Spaces are valid password characters; for example, "two words" is a valid password. Leading spaces are ignored. Trailing spaces are recognized. Alphanumeric characters are recognized as uppercase or lowercase.

Passwords should be different for maximum security. If you enter the same password for both during the setup script, the system accepts it, but you receive a warning message indicating that you should enter a different password.

At the EXEC prompt, enter one of the following two commands to set password protection:

- enable secret password—a very secure encrypted password.
- enable—is a less secure and nonencrypted password.

To gain access to privileged-level commands, enter the desired password.

Recovering Lost Password on the Cisco CMTS

Complete the following steps to recover or replace a lost enable, enable secret, or console login password:

Step 1	Attach an ASCII terminal to the console port on your Cisco CMTS.
Step 2	Configure the terminal to operate at 9600 baud, 8 data bits, no parity, and 1 stop bits.
Step 3	If you can log in to the router as a nonprivileged user, enter the show version command to display the existing configuration register value. Note the value for later use. If you cannot log in to the router at all, continue with the next step.
Step 4	Press the Break key or send a Break from the console terminal.
	• If Break is enabled, the router enters the ROM monitor, indicated by the ROM monitor prompt (rommon n>), where n is the number of the command line. Proceed to configuring the register.

• If Break is disabled, power cycle the router (turn the router off or unplug the power cord, and then restore power). Within 60 seconds of restoring the power to the router, press the **Break** key or send a **Break**. This action causes the router to enter the ROM monitor and display the ROM monitor prompt (rommon 1>).

Step 5	To set the configuration register on a Cisco CMTS, use the configuration register utility by entering the confreg command at the ROM monitor prompt as follows:	
	rommon 1>	confreg
	Answer yes to the <i>enable ignore system config info</i> ? prompt and note the current configuration register settings.	
Step 6	Initialize the router by entering the reset command as follows:	
	rommon 2> reset	
	The router initializes, the configuration register is set to $0x142$, the router boots the system image from Flash memory and enters the System Configuration dialog (setup), as follows:	
	Syste	m Configuration Dialog
Step 7	Enter no in response to the System Configuration dialog prompts until the following message appears:	
	Press RETURN to get started!	
Step 8	Press Return. The user EXEC prompt appears as follows:	
	Router>	
Step 9	Enter the enable command to enter privileged EXEC mode.	
Step 10	Enter the show startup-config command to display the passwords in the configuration file as follows:	
	Router# show startup-config	
Step 11	Scan the configuration file display looking for the passwords; the enable passwords are usually near the beginning of the file, and the console login or user EXEC password is near the end. The passwords displayed will look something like this:	
	enable secret 5 \$1\$0RPP\$s9syZt4uKn3SnpuLDrhuei enable password 23skiddoo	
	password onramp	
	Note	The enable secret password is encrypted and cannot be recovered; it must be replaced. The enable and console passwords can be encrypted text or clear text.
	Proceed to the next step to replace an enable secret, console login, or enable password. If there is no enable secret password, note the enable and console login passwords if they are not encrypted and proceed to set the configuration register to the original value.	
	Caution	Do not perform the next step unless you have determined that you must change or replace the enable, enable secret, or console login passwords. Failure to follow the steps as presented here could cause your router configuration to be erased.
Step 12	(Optional) Enter the configure memory command to load the startup configuration file into running memory. This action allows you to modify or replace passwords in the configuration.	

Router# configure memory

Step 13 Enter the **configure terminal** command for configuration mode:

Router# configure terminal

Step 14 To change all three passwords, enter the following commands:

Router(config)# enable secret newpassword1 Router(config)# enable password newpassword2 Router(config)# line con 0

Router(config) # password newpassword3

Change only the passwords necessary for your configuration. You can remove individual passwords by using the **no** form of the previous commands. For example, entering the **no enable secret** command removes the enable secret password.

Step 15 You must configure all interfaces to not be administratively shut down as follows:

Router(config) # interface gigabitethernet 0

Router(config) # no shutdown

Enter the equivalent commands for all interfaces that were originally configured. If you omit this step, all interfaces are administratively shut down and unavailable when the router is restarted.

- **Step 16** Use the **config-register** command to set the configuration register to the original value noted earlier.
- **Step 17** Press Ctrl-Z or type end to exit configuration mode:

Router(config) # end

- **Caution** Do not perform the next step unless you have changed or replaced a password. If you skipped changing or replacing the enable, enable secret, or console login passwords previously, then proceed now to reload. Failure to observe this sequence causes the system to erase your router configuration file.
- **Step 18** Enter the **copy running-config startup-config** command to save the new configuration to nonvolatile memory:

Router# copy running-config startup-config

Step 19 Enter the **reload** command to reboot the router:

Router# reload

Step 20 Log in to the router with the new or recovered passwords.

Saving Your Configuration Settings

To store the configuration or changes to your startup configuration in NVRAM, enter the **copy running-config** startup-config command at the *Router#* prompt.

This command saves the configuration settings you set using configuration mode, the Setup facility, or AutoInstall.

Note

If you do not save your settings, your configuration will be lost the next time you reload the router.

Example

Router# copy running-config startup-config

Reviewing Your Settings and Configurations

- To view the current configuration of a Cisco CMTS, run the **show running-config** command at the command-line interface (CLI) prompt in EXEC mode or privileged EXEC mode.
- To review changes you make to the configuration, use the EXEC show startup-config command to display the information stored in NVRAM.

Recovering Unresponsive Modems

If the cable modem does not respond to pings from the Cisco Converged Broadband Router, the modem DSBG, DSID, and the BPI index values on the Cisco Converged Broadband Router may be incorrect. To recover the unresponsive modem, run the **cable reconciliation enable** command to generate the correct DSBG, DSID, and the BPI index values. The following CLI provides an example of this procedure:

```
Router# configure terminal
Router# cable reconciliation enable
Router# end
```

To set the time when the **cable reconciliation enable** command should run, run the **cable reconcilation time** *hours* command, where *hours* is the time in the 24 hour format. The following CLI provides an example of this procedure:

```
Router# configure terminal
Router# cable reconciliation time 23
Router# end
```