Global Configuration Mode Commands

Use global configuration mode for setting, viewing, and testing configuration of WAAS software features for the entire device. To enter this mode, enter the `configure` command from privileged EXEC mode. The prompt for global configuration mode consists of the hostname of the WAE followed by `(config)` and the pound sign (`#`). You must be in global configuration mode to enter global configuration commands.

```
WAE# configure
WAE(config)#
```

Commands entered in global configuration mode update the running configuration file as soon as they are entered. These changes are not saved into the startup configuration file until you enter the `copy running-config startup-config` EXEC mode command. Once the configuration is saved, it is maintained across WAE reboots.

You also can use global configuration mode to enter specific configuration modes. From global configuration mode you can enter the interface configuration mode, standard ACL configuration mode, or the extended ACL configuration mode.

To exit global configuration mode and return to privileged-level EXEC mode, use either the `exit` or `end` global configuration command:

```
WAE(config)# exit
WAE#
```
To configure AAA accounting on a WAAS device, use the `aaa accounting` global configuration command. To unconfigure AAA, use the `no` form of this command.

```
aaa accounting cms enable tacacs+
no aaa accounting cms enable tacacs+

aaa accounting commands {0 | 15} default {start-stop | stop-only | wait-start} tacacs
no aaa accounting commands {0 | 15} default {start-stop | stop-only | wait-start} tacacs

aaa accounting exec default {start-stop | stop-only | wait-start} tacacs
no aaa accounting exec default {start-stop | stop-only | wait-start} tacacs

aaa accounting system default {start-stop | stop-only} tacacs
no aaa accounting system default {start-stop | stop-only} tacacs
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cms enable tacacs+</code></td>
<td>Enables accounting for all commands executed internally by the Central Manager. This feature is disabled by default.</td>
</tr>
<tr>
<td><code>commands</code></td>
<td>Configures accounting for all commands at the specified privilege level.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies the user privilege level for a normal user.</td>
</tr>
<tr>
<td><code>15</code></td>
<td>Specifies the user privilege level for an administrative user.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Sets AAA accounting to use the default accounting list.</td>
</tr>
<tr>
<td><code>start-stop</code></td>
<td>Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested user process begins regardless of whether the start accounting notice was received by the accounting server.</td>
</tr>
<tr>
<td><code>stop-only</code></td>
<td>Sends a stop accounting notice at the end of the process requested by the user.</td>
</tr>
<tr>
<td><code>wait-start</code></td>
<td>Sends both a start and a stop accounting notice to the accounting server. However, the requested user service does not begin until the start accounting notice is acknowledged. The user cannot execute a CLI command or login until the user is on record. A stop accounting notice is also sent but does not need acknowledgement.</td>
</tr>
<tr>
<td><code>tacacs</code></td>
<td>Enables use of TACACS+ for accounting.</td>
</tr>
<tr>
<td><code>exec</code></td>
<td>Enables accounting for user EXEC processes (user shells). When enabled, the EXEC shell accounting reports EXEC terminal session (user shell) events and login and logout by an administrator to the EXEC shell.</td>
</tr>
<tr>
<td><code>system</code></td>
<td>Enables accounting for all system-level events not associated with users, such as reloads.</td>
</tr>
</tbody>
</table>
AAA accounting is disabled by default.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

The following example shows how to configure TACACS+ on the WAAS device. Specify that a start accounting notice should be sent at the beginning of the process and a stop accounting notice at the end of the process, and request that the user process should begin regardless of whether the start accounting notice was received by the accounting server:

```
WAE(config)# tacacs key abc
WAE(config)# tacacs server 192.168.50.1 primary
WAE(config)# aaa accounting system default start-stop tacacs
WAE# show aaa accounting
```

The following example shows that the WAAS device is set to record all user EXEC sessions. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of the session.

```
WAE(config)# aaa accounting exec default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by a normal user. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of each CLI command executed by a normal user.

```
WAE(config)# aaa accounting commands 0 default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by an administrative user. The command also specifies that a start accounting notice should be sent to the TACACS+ server at the beginning of the process and a stop accounting notice at the end of the process. The CLI command executed by the administrative user does not proceed until the start accounting notice has been acknowledged.

```
WAE(config)# aaa accounting commands 15 default wait-start tacacs
```

The following example shows the EXEC shell accounting report that is available on the TACACS+ server:

```
Wed Apr 14 11:19:19 2004 172.16.0.0 super10 pts/0 172.31.0.0 start
time_time=1081919558 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:19:23 2004 172.16.0.0 super10 pts/0 172.31.0.0
stop_time=1081919562 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:22:13 2004 172.16.0.0 normal20 pts/0 via5.abc.com start
time_start=1081919732 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:22:16 2004 172.16.0.0 normal20 pts/0 via5.abc.com stop
stop_time=1081919735 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:25:29 2004 172.16.0.0 admin ftp via5.abc.com start
start_time=1081919928
```
The following example shows the system accounting report that is available on the TACACS+ server:

```
Wed Apr 14 08:37:14 2004 172.16.0.0 unknown unknown 0.0.0.0 start start_time=1081909831
```

```
Wed Apr 14 10:19:18 2004 172.16.0.0 admin ttyS0 0.0.0.0 stop stop_time=1081915955
```

The following example shows the command accounting report that is available on the TACACS+ server:

```
Wed Apr 14 12:35:38 2004 172.16.0.0 admin ttyS0 0.0.0.0 start start_time=1081924137
```

```
Wed Apr 14 12:35:39 2004 172.16.0.0 admin ttyS0 0.0.0.0 stop stop_time=1081924137
```

In addition to command accounting, the WAAS device records any executed CLI command in the system log (syslog.txt). The message format is as follows:

```
ce_syslog(LOG_INFO, CESM_PARSER, PARSER_ALL, CESM_350232,  
"CLI_LOG %s: %s \n", __FUNCTION__, pd->command_line);
```

Related Commands

- `show aaa accounting`
(config) aaa authorization commands

To authorize commands issued through the CLI by a user on a WAAS device, use the **aaa authorization commands** global configuration command. To disable command authorization, use the **no** form of this command.

```
    aaa authorization commands level default tacacs+
```

```
    no aaa authorization commands level default tacacs+
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Configures command authorization for commands issued by the CLI user. Commands at the specified privilege level (0 or 15) are authorized. Level 0 authorizes EXEC commands, level 15 authorizes both EXEC and global configuration commands.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>AAA command authorization is disabled by default.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Command authorization enforces authorization through an external AAA server for each command executed by the user. All commands executed by a CLI user are authorized before they are executed. When command authorization is configured for level 0, only EXEC commands are authorized, regardless of user level (normal or super). When command authorization is configured for level 15, EXEC and global configuration commands are authorized, regardless of user level (normal or super). Once it is configured, command authorization configuration is displayed in the running config. When the running config is copied to the startup config, command authorization is configured as the last config so that during the reload, the startup config need not be authorized. Only commands executed through the CLI interface are subject to command authorization.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to configure command authorization for level 15 (authorization for both EXEC and global configuration commands) on the WAAS device:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE(config)# aaa authorization commands 15 default tacacs+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>show aaa authorization</th>
</tr>
</thead>
</table>
(config) accelerator epm

To enable the Endpoint Mapper (EPM) application accelerator, use the `accelerator epm` global configuration command. To disable the EPM application accelerator, use the `no` form of this command.

```
accelerator epm { enable | exception { coredump | debug | no-coredump } }
```

```
no accelerator epm { enable | exception { coredump | debug | no-coredump } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>(Optional) Enables the EPM application accelerator.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The EPM accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator epm enable` command to enable the acceleration of EPM traffic. The EPM accelerator must be enabled for the MAPI accelerator to operate.

Examples

The following example shows how to enable the EPM application accelerator:

```
WAE(config)# accelerator epm enable
```

Related Commands

- `(config) accelerator mapi`
- `show accelerator`
- `show statistics accelerator`
(config) accelerator http

To enable the HTTP application accelerator, use the accelerator http global configuration command. To disable the HTTP application accelerator, use the no form of this command.

```
accelerator http { enable | dre-hints { access-list acl | enable } | exception { coredump | debug | no-coredump } | metadatacache { access-list acl | enable } | conditional-response enable | filter-extension extension-list | redirect-response enable | request-ignore-no-cache enable | response-ignore-no-cache enable | unauthorized-response enable | max-age seconds | min-age seconds | filter-extension extension-list | https { access-list acl | enable } } | sharepoint-opt prefetch enable | suppress-server-encoding { access-list acl | enable }
```

```
no accelerator http { enable | dre-hints { access-list acl | enable } | exception { coredump | debug | no-coredump } | metadatacache { access-list acl | enable } | conditional-response enable | filter-extension extension-list | redirect-response enable | request-ignore-no-cache enable | response-ignore-no-cache enable | unauthorized-response enable | max-age seconds | min-age seconds | filter-extension extension-list | https { access-list acl | enable } } | sharepoint-opt prefetch enable | suppress-server-encoding { access-list acl | enable }
```

Syntax Description

<table>
<thead>
<tr>
<th>enable</th>
<th>(Optional) Enables the HTTP application accelerator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dre-hints</td>
<td>Configures HTTP and HTTPS DRE hints feature.</td>
</tr>
<tr>
<td>access-list acl</td>
<td>Configures the HTTP AO feature subnet to associate an access list to an HTTP AO feature. acl refers to an ACL that can be created by the ip access-list CLI. See (config ip access-list, page -654.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td>metadatacache</td>
<td>(Optional) Configures metadata caching.</td>
</tr>
<tr>
<td>enable</td>
<td>(Optional) Enables metadata caching.</td>
</tr>
<tr>
<td>conditional-response enable</td>
<td>(Optional) Enables caching of HTTP 304 messages.</td>
</tr>
<tr>
<td>redirect-response enable</td>
<td>(Optional) Enables caching of HTTP 301 messages.</td>
</tr>
<tr>
<td>request-ignore-no-cache enable</td>
<td>Configures the metadata cache to ignore cache-control on requests.</td>
</tr>
<tr>
<td>response-ignore-no-cache enable</td>
<td>Configures the metadata cache to ignore cache-control on responses.</td>
</tr>
<tr>
<td>unauthorized-response enable</td>
<td>(Optional) Enables caching of HTTP 401 messages.</td>
</tr>
<tr>
<td>max-age seconds</td>
<td>(Optional) Specifies the maximum number of seconds to retain HTTP header information in the cache. The default is 86400 seconds (24 hours). Valid time periods range from 5–2592000 seconds (30 days).</td>
</tr>
<tr>
<td>min-age seconds</td>
<td>(Optional) Specifies the minimum number of seconds to retain HTTP header information in the cache. The default is 60 seconds. Valid time periods range from 5–86400 seconds (24 hours).</td>
</tr>
</tbody>
</table>
(config) accelerator http

Defaults

The HTTP accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

The metadata caching feature is disabled by default for all response types. The default max-age is 86400 seconds (24 hours), the default min-age is 60 seconds, and the default filter extension list is empty (meaning that metadata caching is applied to all extension types).

The SharePoint optimization feature is disabled by default.

When suppress-server-encoding is enabled, it suppresses the server compression for both HTTP and HTTPS requests. The suppress server encoding feature is disabled by default.

The DRE hints feature applies to both HTTP and HTTPS requests. It is disabled by default.

The subnet feature is enabled after the subnet configuration is added.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the **accelerator http enable** command to enable the acceleration of HTTP traffic.

You can enable or disable each of three metadata caches (conditional-response, redirect-response, and unauthorized-response) separately. By default they are all enabled when you enable HTTP metadata caching. If you disable the HTTP accelerator, metadata caching is also disabled.

When you enable the suppress-server-encoding feature, the WAE removes the Accept-Encoding header from HTTP requests, preventing the web server from compressing HTTP data that it sends to the client. This allows the WAE to apply its own compression to the HTTP data, typically resulting in much better compression than the web server.

Use the SharePoint optimization feature when you need to access Microsoft Office documents stored on a SharePoint server 2010, using a web browser. Enabling this feature will prefetch the data from the server and serve it from the cache, which reduces latency and improves the user experience.

The DRE hint feature improves DRE performance. This feature is not automatically enabled when metadata caching or the suppress server encoding feature is enabled.
The options request-ignore-no-cache and response-ignore-no-cache are disabled by default. Because the HTTP accelerator is conservative in caching client request metadata and server response metadata, deployments may want to test with these settings enabled to improve the HTTP metadata cache hit ratio to achieve less latency.

If an existing subnet configuration gets modified or removed, the new configuration applies to new connections only, and does not impact the existing HTTP sessions. The change takes effect only after the change is updated in the kernel. Only one ACL is associated with each feature and a new subnet configuration replaces the old one. Use the no command to remove the subnet configuration. If the HTTP AO feature is globally disabled, the feature is not applied to any session. If the HTTP AO feature is globally enabled, and if the acl lookup result for this session is permit, the feature applies to the session; otherwise, it does not apply. HTTP AO bypass-list takes precedence over this feature.

Examples

The following example shows how to enable the HTTP application accelerator:

```
WAE(config)# accelerator http enable
```

The following example shows how to enable and configure the metadata cache to operate only on specific file types:

```
WAE(config)# accelerator http metadacache enable
WAE(config)# accelerator http metadacache filter-extension html,css,jpg,gif
```

Related Commands

- clear cache
- show accelerator
- show cache http-metadacache
- show statistics accelerator
(config) accelerator http object-cache enable

To turn on the CE (cache engine) for the WAE, use the accelerator http object-cache enable global configuration command. To disable the CE on the WAE, use the no form of this command.

```
accelerator http object-cache enable

no accelerator http object-cache enable
```

Syntax Description

This command has no arguments or keywords.

Command Default

The default is disabled.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

When accelerator http object cache is enabled, it turns on the CE.

Note

Turning on the CE with accelerator http object-cache enable starts Transparent caching in Basic mode. After using this command, you can also specify the type of caching you want the CE to perform: transparent, transparent standard, transparent advanced, bypass, or OTT (Over the Top caching). Each of these is listed below in Related Commands.

Examples

The following example shows how to enable HTTP object cache:

```
DT-HTTP-AO-DC-W594-52-18(config)# accelerator http object-cache enable
```

Related

- (config) accelerator http object-cache transparent enable
- (config) accelerator http object-cache transparent basic
- (config) accelerator http object-cache transparent standard
- (config) accelerator http object-cache transparent advanced
- (config) accelerator http object-cache transparent bypass
- (config) accelerator http object-cache connected enable
- (config) accelerator http object-cache ott enable
(config) accelerator http object-cache transparent enable

To enable transparent basic caching mode on the CE, use the `accelerator http object-cache transparent enable` global configuration command. To disable transparent basic caching mode on the CE, use the `no` form of this command.

```
accelerator http object-cache transparent enable
no accelerator http object-cache transparent enable
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>This command has no arguments or keywords.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>The default is enabled.</td>
</tr>
<tr>
<td>Command Modes</td>
<td>global configuration</td>
</tr>
<tr>
<td>Device Modes</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>Usage Guidelines</td>
<td>When transparent basic caching mode is enabled on the CE, the CE caches only responses marked explicitly as cacheable.</td>
</tr>
<tr>
<td>Examples</td>
<td>The following example shows how to enable transparent caching on the CE.</td>
</tr>
</tbody>
</table>

```
WAAS(config)# accelerator http object-cache transparent enable
```

Related

- (config) accelerator http object-cache enable
- (config) accelerator http object-cache transparent basic
- (config) accelerator http object-cache transparent standard
- (config) accelerator http object-cache transparent advanced
- (config) accelerator http object-cache transparent bypass
- (config) accelerator http object-cache ott enable
- (config) accelerator http object-cache connected enable
(config) accelerator http object-cache transparent basic

To enable transparent basic caching mode on the CE, use the `accelerator http object-cache transparent standard` global configuration command. To disable transparent basic caching mode on the CE, use the `no` form of this command.

```
accelerator http object-cache transparent basic

no accelerator http object-cache transparent basic
```

Syntax Description

This command has no arguments or keywords.

Command Default

The default is enabled.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

In transparent basic caching mode (which follows the standards set in RFC-2616), the CE:

- caches responses marked explicitly as cacheable (as in transparent caching mode)
- caches objects with no explicit cache marker with a `last-modified` date
- ignores “reload” headers from clients

Use the sub-mode facility (prompt “>”) to set transparent standard mode for all sites, or for a specified IPv4 address or hostname (domain):

- `no` - Turns off the command or resets it to its defaults.
- `default` - Sets the transparent basic cache mode as the default for all sites.
- `exit` - Exits the sub-mode options menu.
- `server parameter` - Specifies a particular server for transparent basic caching, either in octet format (“A.B.C.D.”), or with the server name in FQDN format (with a maximum of 255 total characters based on RFC-1035, and a maximum of 63 characters per label/segment).

A maximum of 512 host entries is supported for transparent basic caching mode.

Examples

The following example shows how to configure transparent basic as the default caching mode for a specified site:

```
accelerator http object-cache transparent basic
server * cisco.com
exit
```

Related

- (config) accelerator http object-cache transparent enable
(config) accelerator http object-cache transparent basic
(config) accelerator http object-cache transparent standard
(config) accelerator http object-cache transparent advanced
(config) accelerator http object-cache transparent bypass
(config) accelerator http object-cache ott enable
(config) accelerator http object-cache connected enable
(config) accelerator http object-cache transparent standard

To enable transparent standard caching mode on the CE, use the `accelerator http object-cache transparent standard` global configuration command. To disable transparent standard caching mode on the CE, use the `no` form of this command.

```plaintext
accelerator http object-cache transparent standard
no accelerator http object-cache transparent standard
```

Syntax Description This command has no arguments or keywords.

Command Default The default is enabled.

Command Modes

- global configuration

Device Modes application-accelerator

Usage Guidelines In transparent standard caching mode, the CE:

- caches responses marked explicitly as cacheable (for transparent caching mode)
- caches objects with no explicit cache marker and with a `last-modified` date
- ignores “reload” headers from clients

Use the sub-mode facility (prompt “>”) to set transparent standard mode for all sites, or for a specified IPv4 address or hostname (domain):

- `no` - Turns off the command or resets it to its defaults.
- `default` - Sets the transparent standard cache mode as the default for all sites.
- `exit` - Exits the sub-mode options menu.
- `server parameter` - Specifies a particular server for transparent standard caching, either in octet format (“A.B.C.D.”), or with the server name in FQDN format (with a maximum of 255 total characters based on RFC-1035, and a maximum of 63 characters per label/segment).

A maximum of 512 host entries is supported for transparent standard caching mode.

Examples The following example shows how to configure transparent standard as the default caching mode for a specified site:

```plaintext
accelerator http object-cache transparent standard
default
server 7.2.2.7
server www.cnn.com
exit
```
Related

(config) accelerator http object-cache transparent enable
(config) accelerator http object-cache transparent basic
(config) accelerator http object-cache transparent advanced
(config) accelerator http object-cache transparent bypass
(config) accelerator http object-cache ott enable
(config) accelerator http object-cache connected enable
(config) accelerator http object-cache transparent advanced

To enable transparent advanced caching mode on the CE, use the `accelerator http object-cache transparent advanced` global configuration command. To disable transparent advanced caching mode on the CE, use the `no` form of this command.

```
accelerator http object-cache transparent advanced

no accelerator http object-cache transparent advanced
```

Syntax Description

This command has no arguments or keywords.

Command Default

The default is disabled.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

In transparent advanced mode, the CE caches media files by MIME type, more aggressively, and caches all objects for longer times (when there is no specified expiration time).

Use the sub-mode facility (prompt “>”) to set transparent advanced mode for all sites, or for a specified IPv4 address or hostname (domain):

- **no** - Turns off the command or resets it to its defaults.
- **default** - Sets the transparent advanced cache mode as the default for all sites.
- **exit** - Exits the sub-mode options menu.
- **server parameter** - Specifies a particular server for transparent standard caching, either in octet format (“A.B.C.D.”), or with the server name in FQDN format (with a maximum of 255 total characters based on RFC-1035, and a maximum of 63 characters per label/segment).

A maximum of 512 host entries is supported for transparent advanced caching mode.

Examples

The following example shows how to configure transparent advanced caching as the default caching mode for all sites:

```
accelerator http object-cache transparent advanced
default
exit
```

Related

- (config) accelerator http object-cache enable
- (config) accelerator http object-cache transparent enable
(config) accelerator http object-cache transparent advanced
(config) accelerator http object-cache transparent basic
(config) accelerator http object-cache transparent standard
(config) accelerator http object-cache transparent bypass
(config) accelerator http object-cache ott enable
(config) accelerator http object-cache connected enable
(config) accelerator http object-cache transparent bypass

To turn off caching for a configured site, use the **accelerator http object-cache transparent bypass**
global configuration command. To turn on caching for a configured site, use the **no** form of this
command.

```
accelerator http object-cache transparent bypass

no accelerator http object-cache transparent bypass
```

Syntax Description
This command has no arguments or keywords.

Command Default
The default is enabled.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
Use this command to turn off caching for all configured sites or for a specific site.

Enables the transparent bypass mode of the CE for all sites or for a specific site. In this mode, caching
is turned off for all sites or for a specified site(s). Transparent bypass mode suppresses all caching so
that individual hostname rules are successfully applied.

Use the sub-mode facility (prompt “>”) to set transparent bypass mode for all configured sites or for a
specified IPv4 address or hostname (domain):

- **no** - Turns off the command or resets it to its defaults.
- **default** - Sets the transparent bypass mode as the default for all sites.
- **exit** - Exits the sub-mode options menu.
- **server parameter** - Specifies a particular server for transparent advanced caching, either in octet
 format (“A.B.C.D.”), or with the server name in FQDN format (with a maximum of 255 total
 characters based on RFC-1035, and a maximum of 63 characters per label/segment).

Examples
The following is an example of how to set transparent bypass mode for a specified site:
```
accelerator http object-cache transparent bypass
server 7.2.2.7
server www.cnn.com
exit
```

Related
(config) accelerator http object-cache enable
(config) accelerator http object-cache transparent enable
(config) accelerator http object-cache transparent bypass

(config) accelerator http object-cache transparent basic
(config) accelerator http object-cache transparent standard
(config) accelerator http object-cache transparent advanced
(config) accelerator http object-cache ott enable
(config) accelerator http object-cache connected enable
(config) accelerator http object-cache ott enable

In OTT (Over the Top caching) caching mode, the CE caches content of third-party websites, using a predefined set of rules. Use the **accelerator http object-cache ott enable** global configuration command to turn on OTT caching mode. To turn off OTT caching, use the **no** form of this command.

```
accelerator http object-cache ott enable
```

```
no accelerator http object-cache ott enable
```

Syntax Description
This command has no arguments or keywords.

Command Default
The default is enabled.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
OTT (Over the Top) Caching caches dynamic content by examining the URL related to a session and a site to determine if the object is identical to one previously stored in the CE cache.

OTT is used for streamed content, particularly video content, and for sites that use dynamic URLs based on session or authentication methods. Currently, the CE only uses OTT for one site, www.youtube.com.

⚠️ **Caution**
Though it is possible to enable OTT caching with this command, note that you must initially enable OTT from the WAAS CM, so that registration takes place and the activation file is loaded. Initially enabling OTT via the CLI would also invalidate the EULA.

Examples
The following example shows how to enable OTT caching:

```
WAAS(config)# accelerator http object-cache ott enable
```

Related
- (config) accelerator http object-cache enable
- (config) accelerator http object-cache transparent enable
- (config) accelerator http object-cache transparent basic
- (config) accelerator http object-cache transparent standard
- (config) accelerator http object-cache transparent advanced
- (config) accelerator http object-cache transparent bypass
(config) accelerator http object-cache connected enable
(config) accelerator http object-cache connected enable

To enable the CE to retrieve content from Akamai’s CDNs (Content Data Networks), use the `accelerator http object-cache connected enable` global configuration command. This enables Connected Cache mode. To turn off Connected Cache mode, use the `no` form of this command.

```
accelerator http object-cache connected enable
no accelerator http object-cache connected enable
```

Syntax Description
This command has no arguments or keywords.

Command Default
The default is disabled.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
The Connected Cache (CC) feature allows the CE to cache content that is delivered by an Edge server on the Akamai Intelligent Platform. Object caching is done on the client side WAAS device only. Prepositioning may be leveraged to cache HTTP websites delivered via the Akamai Intelligent Platform.

⚠️ **Caution**
Though it is possible to enable Connected Cache with this command, note that you must initially enable Connected Cache from the WAAS CM so that registration takes place and the activation file is loaded. Initially enabling Connected Cache via the CLI would also invalidate the EULA.

Examples
The following example shows how to enable the Connected Cache.

```
WAAS(config)# accelerator http object-cache connected enable
```

Related
- (config) accelerator http object-cache enable
- (config) accelerator http object-cache transparent enable
- (config) accelerator http object-cache transparent basic
- (config) accelerator http object-cache transparent standard
- (config) accelerator http object-cache transparent advanced
- (config) accelerator http object-cache transparent bypass
- (config) accelerator http object-cache ott enable
(config) accelerator http object-cache cws-check enable

To enable the Cisco Cloud Web Security feature, use the `accelerator http object-cache cws-check enable` global configuration command. To turn off the Cisco Cloud Web Security feature, use the `no` form of this command.

```
accelerator http object-cache cws-check enable
no accelerator http object-cache cws-check enable
```

Syntax Description
This command has no arguments or keywords.

Command Default
The default is disabled.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
The Cisco Cloud Web Security feature provides content scanning of HTTP and secure HTTP/S traffic and malware protection service to web traffic. Cisco Cloud Web Security servers scan the web traffic content and either allow or block the traffic based on the configured policies. Servers use credentials such as private IP addresses, usernames, and user groups to identify and authenticate users and redirect the traffic for content scanning.

This command enables the same feature that is displayed on the WAAS Central Manager Advanced Cache Settings screen, as the **Cisco Cloud Web Security present** check box.

Examples
The following example shows how to enable the Cisco Cloud Web Security feature.

```
WAAS(config)# accelerator http object-cache cws-check enable
```

Related
(config) accelerator http preposition proxy server

To configure a proxy that can be used by any HTTP/S preposition task, use the `accelerator http preposition proxy server` global configuration command. To disable command authorization, use the `no` form of this command.

```
accelerator http preposition proxy server ip address port port

no accelerator http preposition proxy server ip address port port
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server ip address</td>
<td>The specified server address, in FQDN format, for the proxy server.</td>
</tr>
<tr>
<td>port port</td>
<td>The specified server port number to connect to the proxy server. The port number is from 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

global configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

Use the `accelerator http preposition proxy server` command to configure a proxy server that can be used by an HTTP/S preposition task.

Related Commands

- (config-preposition) accelerator http preposition task task-name
- (config) accelerator http object-cache enable
(config) accelerator ica

To enable the ICA application accelerator, use the `accelerator ica` global configuration command. To disable the ICA application accelerator, use the `no` form of this command.

```
accelerator ica {enable | exception {coredump | debug | no-coredump} | wansecure-mode | session-limit limit {always | none} }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the ICA traffic accelerator.</td>
</tr>
<tr>
<td>exception</td>
<td>Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td>wansecure-mode</td>
<td>Configures the state of WAN Secure mode.</td>
</tr>
<tr>
<td>session-limit</td>
<td>Sets the session limit for the ICA AO. The maximum value that can be set is</td>
</tr>
<tr>
<td></td>
<td>the device TFO (Transport Flow Optimization) limit.</td>
</tr>
<tr>
<td>always</td>
<td>Enables WAN Secure mode for ICA.</td>
</tr>
<tr>
<td>none</td>
<td>Disables WAN Secure mode for ICA (default).</td>
</tr>
</tbody>
</table>

Defaults

The ICA accelerator is enabled by default. The default exception action is coredump. The default WAN Secure mode state is none.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator ica enable` command to enable the acceleration of ICA (Independent Computing Architecture) traffic with the transparent ICA accelerator. The ICA application accelerator provides WAN optimization on a WAAS device for ICA traffic which is used to access a virtual desktop infrastructure (VDI). This is done through a process that is both automatic and transparent to the client and server.

Use the `accelerator ica session-limit limit` command to limit the number of session for the ICA AO (application accelerator).

Warning

Make sure you have accurately measured the per ICA user bandwidth before changing the `accelerator ica session-limit limit` parameter. Failure to do so could lead to undesired overload scenarios.

Here are guidelines and limitations for the `accelerator session-limit limit` command:
- You must enter this command when the ICA AO is running.
- The new value takes effect only after the ICA AO is restarted.

Before an ICA AO restart, the `show statistics accelerator` output includes old and pending values for session limits counters; after an ICA AO restart, the output includes only new session limit values. Here is how the session limit counters are displayed for `show statistics accelerator` for each scenario:

- **Before ICA AO restart**—After you have entered a new session limit value, but before an ICA AO restart, the Connection Limit and Effective Limit counters will still show the old ICA session limit values. Another counter, New ICA Session Limit, shows the new (pending) value.

- **After ICA AO restart**—After you have entered a new session limit value, and after an ICA AO restart, the Connection Limit and Effective Limit counters will show the new ICA session limit value. The New ICA Session Limit counter is no longer needed, and is not included in the output.

- The maximum value that can be set is the device TFO limit.
- After you have saved the entered value to the startup configuration, the value is persistent across device reboots.

Use the `accelerator ica wansecure-mode always` command to enable WAN Secure mode for ICA. The WAN Secure mode configuration in both of the peer WAEs must match in order for the ICA accelerator to optimize connections.

WAN Secure mode requires that the SSL application accelerator is enabled. Use the `accelerator ssl enable` global configuration command to enable the SSL accelerator.

Examples

The following example shows how to enable the ICA application accelerator:

```
WAE(config)# accelerator ica enable
```

The following example shows how to set a session limit for the ICA application accelerator:

```
WAE(config)# accelerator ica session limit ?
default Set default session limit
WORD Session count (integer value)
```

```
WAE(config)# accelerator ica session limit 33
Setting session limit to 33. Changes will take effect after you restart ICA AO.
WARNING: Make sure you have accurately measured the per ICA user bandwidth before changing this parameter. Failure to do so could lead to undesired overload scenarios.
```

Related Commands

- `show accelerator`
- `show statistics accelerator`
- `(config) windows-domain`
(config) accelerator mapi

To enable the MAPI application accelerator, use the **accelerator mapi** global configuration command. To disable the MAPI application accelerator, or one of its options, use the **no** form of this command.

```
accelerator mapi { enable | encryption | read-opt | write-opt | reserved-pool-size
  maximum-percent max_percent | wansecure-mode { always | auto | none } |
  exception { coredump | debug | no-coredump } }

no accelerator mapi { enable | encryption | read-opt | write-opt | reserved-pool-size
  maximum-percent max_percent | wansecure-mode { always | auto | none } |
  exception { coredump | debug | no-coredump } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the MAPI traffic accelerator.</td>
</tr>
<tr>
<td>encryption</td>
<td>Enables the acceleration of encrypted MAPI traffic.</td>
</tr>
<tr>
<td>read-opt</td>
<td>Enables the read-ahead optimization of the MAPI traffic for mail reading.</td>
</tr>
<tr>
<td>write-opt</td>
<td>Enables the asynchronous write optimization of the MAPI traffic for mail sending.</td>
</tr>
<tr>
<td>reserved-pool-size</td>
<td>Configures the maximum reserved connection pool percent, specified as the percent of the device TFO connection limit, to restrict the maximum connections reserved for MAPI optimization during TFO overload. Range is from 5 to 50. Default is 15.</td>
</tr>
<tr>
<td>maximum-percent</td>
<td>max_percent</td>
</tr>
<tr>
<td>wansecure-mode</td>
<td>Configures the state of WAN Secure mode.</td>
</tr>
<tr>
<td>always</td>
<td>Enables WAN Secure mode for encrypted MAPI acceleration.</td>
</tr>
<tr>
<td>auto</td>
<td>Enables WAN Secure mode for encrypted MAPI acceleration only if encrypted traffic is received.</td>
</tr>
<tr>
<td>none</td>
<td>Disables WAN Secure mode for encrypted MAPI acceleration.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The MAPI accelerator is enabled by default and will start automatically if the Enterprise license is installed. Encrypted MAPI traffic acceleration is not enabled by default. The read optimization (**read-opt**) and write optimization (**write-opt**) features are enabled by default when the MAPI accelerator is enabled. The default maximum reserved connection pool percent is 15. The default WAN secure mode is auto. The default exception action is coredump.

Command Modes

- global configuration

Device Modes

- application-accelerator
Use the `accelerator mapi enable` command to enable MAPI acceleration. This feature supports Microsoft Outlook 2000–2007 clients. Secure connections that use message authentication (signing) or encryption are not accelerated and MAPI over HTTP is not accelerated.

You must enable the EPM accelerator before the MAPI accelerator can operate.

Use the `reserved-pool-size` keyword to restrict the maximum number of connections reserved for MAPI optimization during TFO overload. It is specified as a percent of the TFO connection limit of the platform. Valid percent ranges from 5%-50%. The default is 15% which would reserve approximately 0.5 connection for each client-server Association Group (AG) optimized by MAPI accelerator.

The client maintains at least one AG per server it connects to with an average of about 3 connections per AG. For deployments that observe a greater average number of connections per AG, or where TFO overload is a frequent occurrence, a higher value for the reserved pool size maximum percent is recommended.

Reserved connections would remain unused when the device is not under TFO overload. Reserved connections are released when the AG terminates.

The following example shows how to enable the MAPI application accelerator:

```
WAE(config)# accelerator mapi enable
```

Related Commands

- `accelerator epm`
- `show accelerator`
- `show statistics accelerator`
(config) accelerator object-cache enable

To enable a specified AO object cache, use the `accelerator ao-name object-cache enable` global configuration command.

```
accelerator ao-name object-cache enable
no accelerator ao-name object-cache enable
```

Syntax Description

- `accelerator ao-name` Name of application accelerator object cache: SMB or HTTP.

Command Default

The default is disabled.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Use the `accelerator ao-name object-cache enable` command to enable a specified AO object cache.

Note

To ensure that each AO object cache and the global object cache function successfully, note these guidelines:

- Each AO object cache can be enabled or disabled independent of whether or not the global object cache is enabled or disabled.
- You must disable all individual AO object caches **before** you use the `no object-cache enable` global configuration command to disable the global object cache.
- The `object-cache enable` global configuration command does not automatically enable individual AO object caches.
- You can enable or disable an individual AO object cache whether or not the associated AO is enabled or disabled.

Examples

The following example shows how to enable the MAPI object cache:

```bash
(config)# accelerator smb object-cache enable
```

Related

- (config) object-cache enable
- show cache object-cache
- show object-cache
- show statistics object-cache
(config) accelerator object-cache enable
(config) accelerator smb

To enable the SMB application accelerator, use the `accelerator smb` global configuration command. To disable the SMB application accelerator, use the `no` form of this command.

```
accelerator smb { [alarm digital-signing enable | metadata-cache-max-limit enable ] |
  batch-close-opt enable | change-notif size size | dir-opt { enable | aging seconds } |
  dre enable | dynamic-share name | enable | exception [coredump | debug | no-coredump ] |
  highest-dialect [ntlm0-12 | smb2-002 | smb2-1] exceed-action [handoff | mute ] |
  invalid-fid-opt enable | iobuf size mb | load-bypass enable | max-pkt-size size kb |
  metadata-opt { enable | cache-size mb [force] } | namedpipe-opt { enable | cache-size kb } |
  resp-cache lifetime seconds | sess-cache lifetime seconds | nf-cache { enable | aging seconds |
  bypass-patterns regex | size mb } | object-cache enable | oplock-opt { client-patterns name |
  enable } | office-opt enable | optimization bypass-pattern regex | print-opt enable |
  read-ahead enable | buffer-size mb [force] | exhaust-distance kb | extended-window kb |
  hit-threshold percentage | init-window kb | max-active div | wait-distance kb ] | signing |
  { enable | unwrap } | smb2-read-caching enable | smb2-write-opt { enable |
  smb2-quota-aging seconds | smb2-quota-threshold mb } | wansecure-mode { always | none } |
  write-opt { enable | quota-aging seconds | quota-threshold mb } ]
```

```
no accelerator smb { {alarm digital-signing enable | metadata-cache-max-limit enable } |
  batch-close-opt enable | change-notif size size | dir-opt { enable | aging seconds } |
  dre enable | dynamic-share name | enable |
  exception { coredump | debug | no-coredump } | highest-dialect {ntlm0-12 | smb2-002 |
  smb2-1} exceed-action { handoff | mute } | invalid-fid-opt enable | iobuf size mb |
  load-bypass enable | max-pkt-size size kb | metadata-opt { enable | cache-size mb [force] } |
  namedpipe-opt { enable | cache-size kb } | resp-cache lifetime seconds | sess-cache lifetime seconds |
  nf-cache { enable | aging seconds | bypass-patterns regex | size mb } |
  object-cache enable | oplock-opt { client-patterns name | enable } |
  office-opt enable | optimization bypass-pattern regex | print-opt enable |
  read-ahead enable | buffer-size mb [force] | exhaust-distance kb | extended-window kb |
  hit-threshold percentage | init-window kb | max-active div | wait-distance kb ] | signing |
  { enable | unwrap } | smb2-read-caching enable | smb2-write-opt { enable |
  smb2-quota-aging seconds | smb2-quota-threshold mb } |
  write-opt { enable | quota-aging seconds | quota-threshold mb } ]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm digital-signing enable</td>
<td>Enables the digital-signing alarm.</td>
</tr>
<tr>
<td>alarm metadata-cache-max-limit enable</td>
<td>Enables alarm for metadata cache maximum limit.</td>
</tr>
<tr>
<td>batch-close-opt enable</td>
<td>Enables asynchronous close optimization for SMB2 protocol.</td>
</tr>
<tr>
<td>change-notif size size</td>
<td>Sets the change notification table size. Valid values range from 1–2048 entries. The default is 10.</td>
</tr>
<tr>
<td>dir-opt enable</td>
<td>Enables directory listing optimization.</td>
</tr>
<tr>
<td>aging seconds</td>
<td>Configures metadata directory list aging time to the specified number of seconds. If the age of a metadata directory list exceeds this time when the metadata is requested, the entry is considered stale and is updated by retrieving it from the file server.</td>
</tr>
<tr>
<td>dre-hints dre enable</td>
<td>Enables DRE and LZ hints.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td><code>dynamic-share name</code></td>
<td>Adds the specified share to the existing dynamic share configuration. The share name must use the format //server/share and must not exceed 256 characters.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the SMB traffic accelerator.</td>
</tr>
<tr>
<td><code>exception</code></td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td><code>coredump</code></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td><code>debug</code></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td><code>no-coredump</code></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td><code>highest-dialect</code></td>
<td>Configures the highest dialect to be optimized.</td>
</tr>
<tr>
<td><code>ntlm0-12</code></td>
<td>Configures NTLM version 0.12 to be the highest dialect.</td>
</tr>
<tr>
<td><code>smb2-002</code></td>
<td>Configures SMB version 2.002 to be the highest dialect.</td>
</tr>
<tr>
<td><code>smb2-1</code></td>
<td>Configures SMB version 2.1 to be the highest dialect.</td>
</tr>
<tr>
<td><code>exceed-action</code></td>
<td>Configures the action if a request uses a dialect higher than the configured highest dialect to be optimized.</td>
</tr>
<tr>
<td><code>handoff</code></td>
<td>The connection is handed off to the generic application accelerator.</td>
</tr>
<tr>
<td><code>mute</code></td>
<td>The connection is removed from the negotiate request.</td>
</tr>
<tr>
<td><code>invalid-fid-opt enable</code></td>
<td>Enables SMB2 invalid file ID optimization. The SMB accelerator issues a local response to files with invalid file ID values.</td>
</tr>
<tr>
<td><code>iobuf size mb</code></td>
<td>Configures the IOBUF buffer size, in MB, from 50 to 1000.</td>
</tr>
<tr>
<td><code>load-bypass enable</code></td>
<td>Enables SMB object-cache load bypass.</td>
</tr>
<tr>
<td><code>max-pkt-size kb</code></td>
<td>Configures the maximum SMB packet size, in KB, from 64 to 16384.</td>
</tr>
<tr>
<td><code>metadata-opt enable</code></td>
<td>Enables metadata optimization.</td>
</tr>
<tr>
<td><code>cache-size mb</code></td>
<td>Configures metadata cache size, in MB, from 50 to 360000.</td>
</tr>
<tr>
<td><code>force</code></td>
<td>Forces the metadata cache size setting.</td>
</tr>
<tr>
<td><code>namedpipe-opt enable</code></td>
<td>Enables named pipe optimization.</td>
</tr>
<tr>
<td><code>cache-size kb</code></td>
<td>Configures the size of the named pipe cache, in KB, from 128 to 150000.</td>
</tr>
<tr>
<td><code>resp-cache lifetime seconds</code></td>
<td>Configures the response cache lifetime, in seconds, from 0 to 1024.</td>
</tr>
<tr>
<td><code>sess-cache lifetime seconds</code></td>
<td>Configures the session cache lifetime, in seconds, from 0 to 1024.</td>
</tr>
<tr>
<td><code>nf-cache enable</code></td>
<td>Enables not-found metadata cache optimization.</td>
</tr>
<tr>
<td><code>aging seconds</code></td>
<td>Configures the length of time, in seconds, that not-found metadata cache entries are held in the cache, from 1 to 60 (the default is 30).</td>
</tr>
<tr>
<td><code>bypass-patterns regex</code></td>
<td>Configures a case-insensitive regular expression that matches filenames to be bypassed by the not-found metadata cache.</td>
</tr>
<tr>
<td><code>size mb</code></td>
<td>Configures the maximum size of the not-found metadata cache, in MB, from 1 to 256 (the default is 32).</td>
</tr>
<tr>
<td><code>object-cache enable</code></td>
<td>Enables SMB object-caching.</td>
</tr>
<tr>
<td><code>office-opt enable</code></td>
<td>Enables Microsoft Office optimization.</td>
</tr>
<tr>
<td><code>oplock-opt enable</code></td>
<td>Enables Oplock optimization.</td>
</tr>
<tr>
<td><code>client patterns</code></td>
<td>Configures client patterns where oplock optimization will be applied.</td>
</tr>
</tbody>
</table>
CLI Commands

optimization

bypass-pattern regex

Configures a case-insensitive regular expression that matches filenames to be bypassed for all optimizations. If regular expression uses backslash, then a double-backslash needs to be used. Additionally, it must be a single regular expression, using a pipe `|` symbol as a delimiter within the expression.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>print opt enable</td>
<td>Enables SMB print optimization.</td>
</tr>
<tr>
<td>read-ahead enable</td>
<td>Enables read-ahead optimization.</td>
</tr>
<tr>
<td>buffer size mb</td>
<td>Configures read-ahead buffer size, in MB, from 50 to 10000.</td>
</tr>
<tr>
<td>force</td>
<td>Forces the read-ahead cache size setting.</td>
</tr>
<tr>
<td>exhaust-distance kb</td>
<td>Configures read-ahead window exhaust distance, in KB, from 128 to 1024 (the default is 196).</td>
</tr>
<tr>
<td>extended-window kb</td>
<td>Configures read-ahead window exhaust distance, in KB, from 256 to 3200 (the default is 640).</td>
</tr>
<tr>
<td>hit-threshold percentage</td>
<td>Configures read-ahead hit threshold, as a percentage from 10 to 100 (the default is 70).</td>
</tr>
<tr>
<td>init-window kb</td>
<td>Configures read-ahead initial window size, in KB, from 128 to 1024 (the default is 196).</td>
</tr>
<tr>
<td>max-active div</td>
<td>Configures read-ahead maximum active memory usage divisor, from 2 to 10 (the default is 4).</td>
</tr>
<tr>
<td>wait-distance kb</td>
<td>Configures read-ahead wait distance, in KB, from 128 to 3200 (the default is 512).</td>
</tr>
<tr>
<td>signing enable</td>
<td>Enables smb2 signing optimization. Should be enabled at the Edge WAE.</td>
</tr>
<tr>
<td>signing unwrap</td>
<td>Enable or disable signature verification (unwrap) of request packets at Edge WAE.</td>
</tr>
<tr>
<td>smb2-read-caching</td>
<td>Enables smb2 read caching optimization.</td>
</tr>
<tr>
<td>smb2-write enable</td>
<td>Enables smb2 asynchronous write optimization.</td>
</tr>
<tr>
<td>quota-aging seconds</td>
<td>Configures network share quota threshold aging time, in seconds, from 1 to 120 (the default is 60).</td>
</tr>
<tr>
<td>quota-threshold mb</td>
<td>Configure network share quota threshold, in MB, from 1 to 1024 (the default is 20).</td>
</tr>
<tr>
<td>wansecure-mode</td>
<td>Configures the state of WAN Secure mode.</td>
</tr>
<tr>
<td>always</td>
<td>Enables WAN Secure mode for signing optimization.</td>
</tr>
<tr>
<td>none</td>
<td>Disables WAN Secure mode for signing optimization.</td>
</tr>
<tr>
<td>write-opt enable</td>
<td>Enables asynchronous write optimization.</td>
</tr>
</tbody>
</table>

Defaults

The SMB accelerator is disabled by default.

Command Modes

- global configuration

Device Modes

- application-accelerator
Usage Guidelines

The enterprise license is required to start the SMB accelerator.

The EXEC mode command `show running-config` displays non-default settings only. Therefore, the command `no accelerator smb enable` does not show up in the running configuration if the SMB accelerator is disabled, while the `accelerator smb enable` command does display if the SMB accelerator is enabled.

Use the `object-cache enable` command to enable disk caching of SMB traffic.

Use the `accelerator smb signing unwrap enable` command to verify signature of the signed request packets at the Edge WAE. This checks whether the packet is modified/tampered while coming over the LAN. However, since the packet usually travels in the LAN from the Client to the Edge WAE, chances of man-in-middle attacks are less likely and you may choose to disable Edge side signature verification for request packets.

Use the `accelerator smb wansecure-mode always` command to enable WAN Secure mode for optimizing signed SMBv2 traffic. The default is “always”. The WAN Secure mode configuration for both the EDGE WAE and Core WAEs must match (be set at “always”) in order for the SMB accelerator to optimize signed SMBv2 connections. Even if one side has “none” set, then the signed connections would be handed over for generic optimization.

Use the `accelerator smb wansecure-mode none` to disable the wansecure-mode.

WAN Secure mode requires that the SSL application accelerator is enabled. Use the `accelerator ssl enable` global configuration command to enable the SSL accelerator.

Examples

The following example shows how to enable the SMB application accelerator:

```
WAE(config)# accelerator smb enable
```

The following example shows how to configure a case-insensitive regular expression that matches filenames to be bypassed for all optimizations:

```
WAE(config)# accelerator smb optimization bypass-pattern \\.pst|\.accd\[betr\]
```

This configuration would bypass files that contain .pst, .accdb, .accde, .accdt, and .accdr (Outlook PST files, and MS Access files).

Related Commands

- `show accelerator`
- `show statistics accelerator`
(config) accelerator smb preposition

To create a smb preposition directive, use the `accelerator smb preposition` global configuration command. To disable the SSL application accelerator, use the `no` form of this command.

```
accelerator smb preposition task-id {credentials | duration <min> | enable | exit | max-cache <percentage> | max-file-size <max-file-size> | min-file-size <min-file-size> | name <directive name> | no | pattern {contains | ends-with | equals | starts-with} | recursive | signing {kerberos | ntlm} | root <full path> | schedule {daily | date | monthly | now | weekly} | server <server name>}

no accelerator smb preposition task {enable | exception {coredump | debug | no-coredump}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>credentials</code></td>
<td>Sets user and password credentials. Use password 0 to use and show a password as a plaintext and password 1 to store and show a DES-encrypted password.</td>
</tr>
<tr>
<td><code>duration</code></td>
<td>Sets the maximum duration limit minutes that the task can run.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the directive (use <code>no enable</code> to disable).</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exit from this submode.</td>
</tr>
<tr>
<td><code>max-cache</code></td>
<td>Sets the maximum percentage of the cache that the task can occupy.</td>
</tr>
<tr>
<td><code>max-file-size</code></td>
<td>Sets maximum file size (KB) limit.</td>
</tr>
<tr>
<td><code>min-file-size</code></td>
<td>Sets minimum file size (KB) limit.</td>
</tr>
<tr>
<td><code>name</code></td>
<td>Sets the name of the directive.</td>
</tr>
<tr>
<td><code>no</code></td>
<td>Negate a command or set its defaults.</td>
</tr>
<tr>
<td><code>pattern</code></td>
<td>Sets a string filter on the file names.</td>
</tr>
<tr>
<td><code>recursive</code></td>
<td>Defines if the preposition is recursive.</td>
</tr>
<tr>
<td><code>signing</code></td>
<td>Enables signing using NTLM or Kerberos [Support SMBv2 dialect]</td>
</tr>
<tr>
<td><code>root</code></td>
<td>Adds a preposition root. Multiple roots are supported.</td>
</tr>
<tr>
<td><code>schedule</code></td>
<td>Sets the schedule to start the task.</td>
</tr>
<tr>
<td><code>server</code></td>
<td>Sets server name for the directive. Only one server is allowed.</td>
</tr>
</tbody>
</table>

Defaults

The accelerator SMB preposition is enabled by default.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the following guidelines when you create a smb preposition directive.

Root Directories
Special characters like ; | && : * ? < > " ` ! [] + = , are not allowed for top level shares. Additionally, when you create subdirectories inside the shares, the following special characters are not allowed: ; | && : * ? < > " ` !

Do not use the special character “;“ in files and directory names, else it will throw up errors. Additionally, we do not support extended Unicode characters in files and directories for release 6.2.1 and any such files or directories would be skipped and not prepositioned.

Pattern
Do not use a space or the following special characters when defining patterns:
; | && : * ? < > \ " ` !

Username
The following characters are not allowed to be used as username ; | && \ : / * ? < > ,] “ ` !.

Server Name
The following characters are not allowed to be used in server names ; | && , ~ : ! ` @ # $ % ^ & ' { } ()_"

Domain Name
The following characters are not allowed to be used as domain names ; | && \ : / * ? < > " ` !

Examples
The following example shows how to configure the accelerator SMB preposition directive:

```
WAE(config)# accelerator smb preposition 106
server "15.50.0.3"
credentials username "Administrator" domain "test" password 1/ zXnLzdloXuElwx3pDAWuQ==
root "/abcd##%"/
root "/abcd##% 12/
root "/abc/
schedule now
pattern exclude equals "@#$%^&()-_=+= nbe{}[]''',..qwe12.txt"
enable
recursive
exit
```

Related Commands
show accelerator
show statistics accelerator
(config) accelerator smb preposition dre

To enable DRE for smb preposition tasks, use the **accelerator smb preposition dre** global configuration command. Use the no form of the command to disable it.

```
accelerator smb preposition dre enable

no accelerator smb preposition dre enable
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables dre for smb preposition tasks.</th>
</tr>
</thead>
</table>

Defaults
The SMB preposition dre is disabled by default.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
Use the **accelerator smb preposition dre** command if you want to cache files in both Object Cache and DRE cache. If you do not enable this, files are cached only in Object Cache.

Examples
The following example shows how to enable dre for the SMB preposition task:

```
WAE(config)# accelerator smb preposition dre enable
```

Related Commands
- show accelerator
- show statistics accelerator
(config) accelerator ssl

To enable the SSL application accelerator, use the `accelerator ssl` global configuration command. To disable the SSL application accelerator, use the `no` form of this command.

```
accelerator ssl {enable | exception {coredump | debug | no-coredump}}
no accelerator ssl {enable | exception {coredump | debug | no-coredump}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>(Optional) Enables the SSL application accelerator.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The SSL accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator ssl enable` command to enable the acceleration of SSL traffic. To undo this command, for example to disable SSL acceleration after you have enabled it, use the `no` version of this command.

Examples

The following example shows how to enable the SSL application accelerator:

```
WAE(config)# accelerator ssl enable
```

Related Commands

- `show accelerator`
- `show statistics accelerator`
- `crypto delete`
- `crypto export`
- `crypto generate`
- `crypto import`
- `(config) crypto pki`
- `(config) crypto ssl`
(config-ca) ca-certificate
(config-ca) description
(config-ca) revocation-check
(config) alarm overload-detect

To detect alarm overload situations, use the **alarm overload-detect** global configuration command. To unconfigure alarm parameters, use the **no** form of this command.

```
alarm overload-detect [clear 1-999 [raise 10-1000] | enable | raise 10-1000 [clear 1-999]]
```

```
no alarm overload-detect [clear 1-999 [raise 10-1000] | enable | raise 10-1000 [clear 1-999]]
```

Syntax Description

- **clear 1-999**: Specifies the number of alarms per second at which the alarm overload state on the WAAS device is cleared. When the alarm drops below this threshold, the alarm is cleared and the SNMP traps and alarm notifications are again sent to your NMS.

 Note: The **alarm overload-detect clear** value must be less than the **alarm overload-detect raise** value.

- **raise 10-1000**: (Optional) Specifies the number of alarms per second at which the WAAS device enters an alarm overload state and SNMP traps and alarm notifications to your network management station (NMS) are suspended.

- **enable**: Enables the detection of alarm overload situations.

Defaults

- **clear**: 1 alarm per second
- **raise**: 10 alarms per second

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

In the alarm overload state, applications continue to raise alarms and these alarms are recorded within the WAAS device. Use the **show alarms** and **show alarms history** EXEC commands to display all the alarms in the alarm overload state.

Examples

The following example shows how to enable detection of alarm overload:

```
WAE(config)# alarm overload-detect enable
```

The following example shows how to set the threshold for triggering the alarm overload at 100 alarms per second:

```
WAE(config)# alarm overload-detect raise 100
```

The following example shows how to set the level for clearing the alarm overload at 10 alarms per second:
(config) alarm overload-detect

WAE(config)# alarm overload-detect clear 10

Related Commands show alarms
(config) asset

To set the tag name for the asset tag string, use the `asset` global configuration command. To remove the asset tag name, use the `no` form of this command.

```
asset tag name

no asset tag name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>tag name</th>
<th>Sets the asset tag name.</th>
</tr>
</thead>
</table>

Defaults

No default behaviors or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows how to configure a tag name for the asset tag string on a WAAS device:

```
WAE(config)# asset tag entitymib
```
(config) authentication configuration

To specify administrative login authorization parameters for a WAAS device, use the authentication configuration global configuration mode command. To selectively disable options, use the no form of this command.

```
authentication {configuration {local | radius | tacacs | windows-domain}
  enable [primary | secondary | tertiary | quaternary]

no authentication {configuration {local | radius | tacacs | windows-domain}
  enable [primary | secondary | tertiary | quaternary]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>configuration</th>
<th>Sets the administrative login authorization (configuration) parameters for the WAAS device.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>local</td>
<td>Selects the local database method for the WAAS device.</td>
</tr>
<tr>
<td></td>
<td>radius</td>
<td>Selects the RADIUS method for the WAAS device.</td>
</tr>
<tr>
<td></td>
<td>tacacs</td>
<td>Selects the TACACS+ method for the WAAS device.</td>
</tr>
<tr>
<td></td>
<td>windows-domain</td>
<td>Selects the Windows domain controller method for the WAAS device.</td>
</tr>
<tr>
<td></td>
<td>enable</td>
<td>Enables the specified methods for the WAAS device.</td>
</tr>
<tr>
<td></td>
<td>primary</td>
<td>(Optional) Specifies the first method that the WAAS device should use.</td>
</tr>
<tr>
<td></td>
<td>secondary</td>
<td>(Optional) Specifies the second method that the WAAS device should use.</td>
</tr>
<tr>
<td></td>
<td>tertiary</td>
<td>(Optional) Specifies the third method that the WAAS device should use if the primary and secondary methods fail.</td>
</tr>
<tr>
<td></td>
<td>quaternary</td>
<td>(Optional) Specifies the fourth method that the WAAS device should use if the primary, secondary, and tertiary methods all fail.</td>
</tr>
</tbody>
</table>

Defaults

The local authentication method is enabled by default.

Command Modes

global configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

The authentication command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

Note

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.
The `authentication login` command determines whether the user has any level of permission to access the WAAS device. The `authentication configuration` command authorizes the user with privileged access (configuration access) to the WAAS device.

The `authentication login local` and the `authentication configuration local` commands use a local database for authentication and authorization.

The `authentication login tacacs` and `authentication configuration tacacs` commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the `authentication` and `tacacs` commands. To enable TACACS+, use the `tacacs enable` command. For more information on TACACS+ authentication, see the `(config) tacacs` command.

The `authentication login radius` and `authentication configuration radius` commands use a remote RADIUS server to determine the level of user access.

By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The `primary` option specifies the first method to attempt for both login and configuration; the `secondary` option specifies the method to use if the primary method fails. The `tertiary` option specifies the method to use if both primary and secondary methods fail. The `quaternary` option specifies the method to use if the primary, secondary, and tertiary methods fail. If all methods of an `authentication login` or `authentication configuration` command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

Enforcing Authentication with the Primary Method

The `authentication fail-over server-unreachable` global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

Login Authentication and Authorization Through the Local Database

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.
Specifying RADIUS Authentication and Authorization Settings
To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the `radius-server` global configuration command. (See the `(config) radius-server` command.)

Use the `authentication login radius` global configuration command to enable RADIUS authentication for normal login mode.

Use the `authentication configuration radius` global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the `no` form of the `authentication` global configuration command (for example, use the `no authentication login radius enable` command to disable RADIUS authentication).

Specifying TACACS+ Authentication and Authorization Settings
To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the `tacacs` global configuration command. (See the `(config) tacacs` command.)

Server Redundancy
Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication
You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the `(config) windows-domain` command.)

Note
WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples
The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```
WAAS(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.
To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the **authentication login** global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary

Note
If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either **TACACS+** or **RADIUS** as the primary scheme for authentication, and specify **local** as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the **authentication configuration** global configuration command.

Note
Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary

Note
If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either **TACACS+** or **RADIUS** as the primary scheme for authorization (configuration), and specify **local** as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the **show authentication** command:

WAE# show authentication user

<table>
<thead>
<tr>
<th>Login Authentication:</th>
<th>Console/Telnet/Ftp/SSH Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>enabled (primary)</td>
</tr>
<tr>
<td>Windows domain</td>
<td>enabled</td>
</tr>
<tr>
<td>Radius</td>
<td>disabled</td>
</tr>
<tr>
<td>Tacacs+</td>
<td>disabled</td>
</tr>
</tbody>
</table>
Configuration Authentication: Console/Telnet/Ftp/SSH Session

<table>
<thead>
<tr>
<th>Authentication</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>enabled (primary)</td>
</tr>
<tr>
<td>Radius</td>
<td>disabled</td>
</tr>
<tr>
<td>Tacacs+</td>
<td>disabled</td>
</tr>
</tbody>
</table>

Related Commands

- `(config) radius-server`
- `show authentication`
- `show statistics radius`
- `show statistics tacacs`
- `(config) tacacs`
- `windows-domain`
- `(config) windows-domain`
(config)authentication enable

To configure “enable authentication” to use local "admin" user account password instead of using external authentication servers, use the authentication enable global configuration mode command. To disable this, use the no form of the command.

authentication enable local

no authentication enable local

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>local</th>
<th>Selects the local admin user account password to enable authentication information for the WAAS device.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th></th>
<th>When this command is configured, the local admin user account password is used for enable authentication by default.</th>
</tr>
</thead>
</table>

| Command Modes | global configuration | |

| Device Modes | application-accelerator | central-manager |

| Usage Guidelines | When a user who does not have privileged EXEC level types "enable" at the WAE>prompt, the request for enable access is not sent to the external authentication servers, but is processed on the WAE, using only the local admin user account password to verify the given password and provide access. |

| Note | Critical commands (e.g. configuration and management) require that the user be at the privileged EXEC level. To change to the privileged EXEC level, type "enable" at the WAE> prompt. |

| Examples | The following example shows how to configure enable authentication by using local admin user account password. |

WAE(config)# authentication enable local.

| Related | (config) authentication configuration show authentication |
(config) authentication content-request

To authenticate a request for content, use the `authentication content-request` global configuration mode command. To selectively disable options, use the `no` form of this command.

```
authentication content-request windows-domain-ctrl disconnected-mode enable
no authentication content-request windows-domain-ctrl disconnected-mode enable
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>windows-domain-ctrl</td>
<td>Selects a Windows domain controller for domain server authentication.</td>
</tr>
<tr>
<td>disconnected-mode enable</td>
<td>Enables authentication in the disconnected mode.</td>
</tr>
</tbody>
</table>

Defaults
The local authentication method is enabled by default.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
The `authentication` command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

Note
We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

The `authentication login` command determines whether the user has any level of permission to access the WAAS device. The `authentication configuration` command authorizes the user with privileged access (configuration access) to the WAAS device.

The `authentication login local` and the `authentication configuration local` commands use a local database for authentication and authorization.

The `authentication login tacacs` and `authentication configuration tacacs` commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the `authentication` and `tacacs` commands. To enable TACACS+, use the `tacacs enable` command. For more information on TACACS+ authentication, see the *(config) tacacs* command.

The `authentication login radius` and `authentication configuration radius` commands use a remote RADIUS server to determine the level of user access.
By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The primary option specifies the first method to attempt for both login and configuration; the secondary option specifies the method to use if the primary method fails. The tertiary option specifies the method to use if both primary and secondary methods fail. The quaternary option specifies the method to use if the primary, secondary, and tertiary methods fail. If all methods of an authentication login or authentication configuration command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

Enforcing Authentication with the Primary Method
The authentication fail-over server-unreachable global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the authentication fail-over server-unreachable command.

Login Authentication and Authorization Through the Local Database
Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.

Specifying RADIUS Authentication and Authorization Settings
To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the radius-server global configuration command. (See the (config) radius-server command.)

Use the authentication login radius global configuration command to enable RADIUS authentication for normal login mode.

Use the authentication configuration radius global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the no form of the authentication global configuration command (for example, use the no authentication login radius enable command to disable RADIUS authentication).

Specifying TACACS+ Authentication and Authorization Settings
To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the tacacs global configuration command. (See the (config) tacacs command.)
Server Redundancy

Authentication servers can be specified with the tacacs host or radius-server host global configuration commands. In the case of TACACS+ servers, the tacacs host hostname command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication

You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the windows-domain wins-server global configuration command. (See the (config) windows-domain command.)

Note WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples

The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

WAE(config)# authentication fail-over server-unreachable

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.

To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the authentication login global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary

Note If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the authentication configuration global configuration command.
Note Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the tertiary method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```plaintext
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

Note If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the `show authentication` command:

```plaintext
WAE# show authentication user
Login Authentication:                        Console/Telnet/Ftp/SSH Session
---------------------------------------------
local                                         enabled (primary)
Windows domain                                enabled
Radius                                        disabled
Tacacs+                                       disabled

Configuration Authentication:                 Console/Telnet/Ftp/SSH Session
---------------------------------------------
local                                         enabled (primary)
Radius                                        disabled
Tacacs+                                       disabled
```

Related Commands

- `(config) radius-server`
- `show authentication`
- `show statistics radius`
- `show statistics tacacs`
- `(config) tacacs`
- `windows-domain`
- `(config) windows-domain`
(config) authentication fail-over

To specify authentication failover if the primary authentication server is unreachable, use the authentication fail-over global configuration mode command. To disable this feature, use the no form of this command.

```
authentication fail-over server-unreachable

no authentication fail-over server-unreachable
```

Syntax Description

| server-unreachable | Specifies that the WAAS device is to query the secondary authentication database only if the primary authentication server is unreachable. |

Defaults

This feature is disabled by default. This means that the WAAS device tries the other authentication methods if the primary method fails for any reason, not just if the server is unreachable.

Command Modes

global configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

The authentication command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

Note

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.

The authentication fail-over server-unreachable global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the authentication fail-over server-unreachable command.
Examples

The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```
WAE(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.

Note

If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

Related Commands

- (config) radius-server
- show authentication
- show statistics radius
- show statistics tacacs
- (config) tacacs
- windows-domain
- (config) windows-domain
(config) authentication login

To set the administrative login authentication parameters for a WAAS device, use the `authentication login` global configuration mode command. To selectively disable options, use the `no` form of this command.

```
authentication login {local | radius | tacacs | windows-domain}
  enable [primary | secondary | tertiary | quaternary]

no authentication login {local | radius | tacacs | windows-domain}
  enable [primary | secondary | tertiary | quaternary]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Selects the local database method for the WAAS device.</td>
</tr>
<tr>
<td>radius</td>
<td>Selects the RADIUS method for the WAAS device.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Selects the TACACS+ method for the WAAS device.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Selects the Windows domain controller method for the WAAS device.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified methods for the WAAS device.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Specifies the first method that the WAAS device should use.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Specifies the second method that the WAAS device should use.</td>
</tr>
<tr>
<td>tertiary</td>
<td>(Optional) Specifies the third method that the WAAS device should use if the primary and secondary methods fail.</td>
</tr>
<tr>
<td>quaternary</td>
<td>(Optional) Specifies the fourth method that the WAAS device should use if the primary, secondary, and tertiary methods all fail.</td>
</tr>
</tbody>
</table>

Defaults

The local authentication method is enabled by default.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

The `authentication` command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

Note

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.
The `authentication login` command determines whether the user has any level of permission to access the WAAS device. The `authentication configuration` command authorizes the user with privileged access (configuration access) to the WAAS device.

The `authentication login local` and the `authentication configuration local` commands use a local database for authentication and authorization.

The `authentication login tacacs` and `authentication configuration tacacs` commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the `authentication` and `tacacs` commands. To enable TACACS+, use the `tacacs enable` command. For more information on TACACS+ authentication, see the `config tacacs` command.

The `authentication login radius` and `authentication configuration radius` commands use a remote RADIUS server to determine the level of user access.

By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The `primary` option specifies the first method to attempt for both login and configuration; the `secondary` option specifies the method to use if the primary method fails. The `tertiary` option specifies the method to use if both primary and secondary methods fail. The `quaternary` option specifies the method to use if the primary, secondary, and tertiary methods fail. If all methods of an `authentication login` or `authentication configuration` command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

Enforcing Authentication with the Primary Method

The `authentication fail-over server-unreachable` global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

Login Authentication and Authorization Through the Local Database

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.
Specifying RADIUS Authentication and Authorization Settings
To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the `radius-server` global configuration command. (See the `(config) radius-server` command.)

Use the `authentication login radius` global configuration command to enable RADIUS authentication for normal login mode.

Use the `authentication configuration radius` global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the `no` form of the `authentication` global configuration command (for example, use the `no authentication login radius enable` command to disable RADIUS authentication).

Specifying TACACS+ Authentication and Authorization Settings
To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the `tacacs` global configuration command. (See the `(config) tacacs` command.)

Server Redundancy
Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication
You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the `(config) windows-domain` command.)

Note
WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples
The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```
WAE(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.
To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the "authentication login" global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary
```

Note If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the "authentication configuration" global configuration command.

Note Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

Note If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the "show authentication" command:

```
WAE# show authentication user
Login Authentication:                     Console/Telnet/Ftp/SSH Session
-----------------------------------------------------------------
local                                     enabled (primary)       
Windows domain                           enabled                   
Radius                                    disabled                  
Tacacs+                                   disabled                  

WAE# show authentication authentication
Login Authentication:                     Console/Telnet/Ftp/SSH Session
-----------------------------------------------------------------
local                                     enabled (primary)       
Windows domain                           enabled                   
Radius                                    disabled                  
Tacacs+                                    disabled                  
```

Cisco Wide Area Application Services Command Reference
(config) authentication login

Configuration Authentication: Console/Telnet/Ftp/SSH Session

local enabled (primary)
Radius disabled
Tacacs+ disabled

Related Commands

(config) radius-server
show authentication
show statistics radius
show statistics tacacs
(config) tacacs
windows-domain
(config) windows-domain
(config) authentication strict-password-policy

To activate the strong password policy on a WAAS device, use the **authentication strict-password-policy** global configuration command. To deactivate the strong password policy and use the standard password policy on a WAAS device, use the no form of this command.

```
authentication strict-password-policy [max-retry-attempts number]

no authentication strict-password-policy [max-retry-attempts number]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max-retry-attempts number</code></td>
<td>(Optional) Specifies the maximum number of failed login attempts allowed before the user is locked out. The range is 1–25; the default is 3.</td>
</tr>
</tbody>
</table>

Defaults
The strong password policy is enabled on the WAAS device.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
When you enable the strong password policy, your user passwords must meet the following requirements:

- The password must be 8 to 31 characters long.
- The password can include both uppercase and lowercase letters (A–Z and a–z), numbers (0–9), and special characters including ~`!@#$%^&*()_+-=\[\]{};:,</>.
- The password cannot contain all the same characters (for example, 99999).
- The password cannot contain consecutive characters (for example, 12345).
- The password cannot be the same as the username.
- Each new password must be different from the previous 12 passwords. User passwords expire within 90 days.
- The password cannot contain the characters ′ * | (apostrophe, double quote, or pipe) or any control characters.
- The password cannot contain dictionary words.

When you disable the strong password policy, user passwords must meet the following requirements:

- The password must have 1 to 31 characters.
- The password can include both uppercase and lowercase letters (A–Z and a–z), and numbers (0–9).
- The password cannot contain the characters ′ * | (apostrophe, double quote, or pipe) or any control characters.
Note When you enable the strong password policy, existing standard-policy passwords will still work. However, these passwords are subject to expiration under the strong password policy.

Examples

The following example shows how to enable the strong password policy:

```
WAE(config)# authentication strict-password-policy
```

The following example shows how to enable the strong password policy and set the maximum retry attempts to 5:

```
WAE(config)# authentication strict-password-policy max-retry-attempts 5
```

The following example shows how to disable the strong password policy:

```
WAE(config)# no authentication strict-password-policy
```

Related Commands

- clear users
- show authentication
- (config) authentication configuration
(config) auto-discovery

To configure a WAE to automatically discover origin servers (such as those servers behind firewalls) that cannot receive TCP packets with setup options and add these server IP addresses to a blacklist for a specified number of minutes, use the auto-discovery global configuration command. To disable auto-discovery, use the no form of this command.

```
auto-discovery blacklist { enable | hold-time minutes }

no auto-discovery blacklist { enable | hold-time minutes }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blacklist</td>
<td>Specifies the TFO auto-discovery blacklist server configuration.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the TFO auto-discovery blacklist operation.</td>
</tr>
<tr>
<td>hold-time minutes</td>
<td>Specifies the maximum time to hold the blacklisted server address in the cache. The range is 1–10080 minutes. The default is 60 minutes.</td>
</tr>
</tbody>
</table>

Defaults

The default auto-discovery blacklist hold time is 60 minutes.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the **auto-discovery blacklist hold-time** command to adjust the blacklist hold time for the TFO auto-discovery feature. With auto-discovery, the WAE keeps track of origin servers (such as those servers behind firewalls) that cannot receive TCP packets with options and learns not to send out TCP packets with options to these blacklisted servers. When a server IP address is added to the blacklist, it remains on the blacklist for the configured number of minutes. After the hold time expires, subsequent connection attempts will again include TCP options so that the WAE can re-determine if the server can receive them. Resending TCP options periodically is useful because network packet loss could cause a server to be blacklisted erroneously.

Examples

The following example shows how to enable TFO auto-discovery blacklist using the **auto-discovery** command:

```
WAE(config)# auto-discovery blacklist enable
```

Related Commands

- show statistics auto-discovery
(config) auto-register

To enable the discovery of a WAE and its automatic registration with the WAAS Central Manager through the Dynamic Host Configuration Protocol (DHCP), use the auto-register global configuration command. To disable the autoregistration feature on a WAE, use the no form of this command.

auto-register enable [FastEthernet slot/port | GigabitEthernet slot/port | TenGigabitEthernet slot/port]

no auto-register enable [FastEthernet slot/port | GigabitEthernet slot/port | TenGigabitEthernet slot/port] [preserve-ip]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>FastEthernet slot/port</th>
<th>GigabitEthernet slot/port</th>
<th>TenGigabitEthernet slot/port</th>
<th>preserve-ip</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the automatic registration of devices using DHCP with the WAAS Central Manager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FastEthernet slot/port</td>
<td>(Optional) Selects a Fast Ethernet interface for automatic registration using DHCP. Selects slot number and port number of the Fast Ethernet interface. Valid slot values depend on the hardware platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GigabitEthernet slot/port</td>
<td>(Optional) Selects a Gigabit Ethernet interface for automatic registration using DHCP. Selects slot number and port number of the Gigabit Ethernet interface. Valid slot values depend on the hardware platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TenGigabitEthernet slot/port</td>
<td>(Optional) Selects a TenGigabitEthernet interface for automatic registration using DHCP. Selects slot number and port number of the 10-Gigabit Ethernet interface. Valid slot values depend on the hardware platform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>preserve-ip</td>
<td>(Optional) Converts a dynamic IP address to a static IP address when you remove the automatic registration from an interface so that the interface remains configured with an IP address.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defaults

Automatic registration using DHCP is enabled on a WAE by default.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Autoregistration automatically configures network settings and registers WAEs with the WAAS Central Manager. On bootup, devices that run the WAAS software (with the exception of the WAAS Central Manager) automatically discover the WAAS Central Manager and register with it. You do not have to do any manual configuration on the device. Once the WAE is registered, you can approve the device and configure it remotely using the WAAS Central Manager GUI.

You can use the auto-register enable command to allow a WAE to discover the hostname of the WAAS Central Manager through DHCP and to automatically register the device with the WAAS Central Manager. Discovery and registration occur at bootup.
Note You must disable autoregistration when both device interfaces are configured as port-channel interfaces.

Note The DHCP that is used for autoregistration is not the same as the interface-level DHCP that is configurable through the `ip address dhcp` interface configuration command.

To assign a static IP address using the `interface` command, you must first disable the automatic registration of devices through DHCP by using the `no auto-register enable` command. If you want to keep the dynamic IP address that had been assigned to the interface, use the `preserve-ip` option to convert it to a static IP address.

After the WAE configures its network settings from DHCP, it needs to know the Central Manager hostname so it can register with the Central Manager.

The WAE queries the DNS server to obtain the Central Manager hostname. For autoregistration to work, you must configure the DNS server with the Central Manager hostname by configuring a DNS SRV (Service Location) record. For more information about autoregistration and how to configure the DNS SRV record, see the section on autoregistration in the “Planning Your WAAS Network” chapter of the Cisco Wide Area Application Services Configuration Guide.

Examples The following example shows how to enable autoregistration on GigabitEthernet port 1/0:

```
WAE(config)# auto-register enable GigabitEthernet 1/0
```

The following example shows how to disable autoregistration on all configured interfaces on the WAE without losing any IP addresses assigned by autoregistration DHCP:

```
WAE(config)# no auto-register enable preserve-ip
```

Related Commands `show auto-register`

`show running-config`

`show startup-config`
(config) banner

To configure the EXEC, login, and message-of-the-day (MOTD) banners, use the `banner` global configuration command. To disable the banner feature, use the `no` form of this command.

```
banner {enable | {{exec | login | motd} [message text]}}
```

```
no banner {enable | {{exec | login | motd} [message text]}}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables banner support on the WAE.</td>
</tr>
<tr>
<td><code>exec</code></td>
<td>Configures an EXEC banner.</td>
</tr>
<tr>
<td><code>login</code></td>
<td>Configures a login banner.</td>
</tr>
<tr>
<td><code>motd</code></td>
<td>Configures an MOTD banner.</td>
</tr>
<tr>
<td><code>message text</code></td>
<td>(Optional) Specifies a message to be displayed when an EXEC process is created. The message text is on a single line (980 characters maximum). The WAE translates the <code>\n</code> portion of the message to a new line when the banner is displayed to the user.</td>
</tr>
</tbody>
</table>

Defaults

Banner support is disabled by default.

Command Modes

Global configuration

Usage Guidelines

The `message` keyword is optional. If you enter a carriage return without specifying the `message` keyword, you will be prompted to enter your message text. For message text on one or more lines, press the `Return` key or enter delimiting characters (`\n`) to specify a message to appear on a new line. You can enter up to a maximum of 980 characters, including new-line characters (`\n`). Enter a period (`.`) at the beginning of a new line to save the message and return to the prompt for the global configuration mode.

Note

The EXEC banner content is obtained from the command-line input that you enter when prompted for the input.

After you configure the banners, enter the `banner enable` global configuration command to enable banner support on the appliance. Enter the `show banner` EXEC command to display information about the configured banners.

Examples

The following example shows how to use the `banner motd message` global configuration command to configure the MOTD banner. In this example, the MOTD message consists of a single line of text.

```
WAE(config)# banner motd message This is a WAAS 4.0.7 device
```

The following example shows how to use the `banner motd message` global command to configure a MOTD message that is longer than a single line. In this case, the WAE translates the `\n` portion of the message to a new line when the MOTD message is displayed to the user.
The following example shows how to use the `banner login message` global configuration command to configure a login message that is longer than a single line. In this case, WAE A translates the `\n` portion of the message to a new line in the login message that is displayed to the user.

```
WAE(config)# banner login message "This is login banner. \nUse your password to login"
```

The following example shows how to enable banner support:

```
WAE(config)# banner enable
```

The following example shows how to use the `banner exec` global configuration command to configure an interactive banner. The `banner exec` command is similar to the `banner motd message` commands except that for the `banner exec` command, the banner content is obtained from the command-line input that the user enters after being prompted for the input.

```
WAE(config)# banner exec
Please type your MOTD messages below and end it with '.' at beginning of line:
(plain text only, no longer than 980 bytes including newline)
This is the EXEC banner. \nUse your WAAS username and password to log in to this WAE. \n.
Message has 99 characters.
WAE(config)#
```

Assume that a WAE has been configured with the MOTD, login, and EXEC banners as shown in the previous examples. When a user uses an SSH session to log in to the WAE, the user will see a login session that includes a MOTD banner and a login banner that asks the user to enter a login password as follows:

```
This is the motd banner.
This is a WAAS 4.0.7 device
This is login banner.
Use your password to login.

Cisco Wide Area Application Services Engine

admin@wae's password:
```

After the user enters a valid login password, the EXEC banner is displayed, and the user is asked to enter the WAAS username and password as follows:

```
Last login: Fri Oct 1 14:54:03 2004 from client
System Initialization Finished.
This is the EXEC banner.
Use your WAAS username and password to log in to this WAE.
```

After the user enters a valid WAAS username and password, the WAE CLI is displayed. The CLI prompt varies depending on the privilege level of the login account. In the following example, because the user entered a username and password that had administrative privileges (privilege level of 15), the EXEC mode CLI prompt is displayed:

```
WAE#
```

Related Commands

- `show banner`
cdp

To configure the Cisco Discovery Protocol (CDP) options globally on all WAAS device interfaces, use the `cdp` global configuration command. To disable CDP, use the `no` form of this command.

```
cdp { enable | holdtime seconds | timer seconds }

no cdp { enable | holdtime seconds | timer seconds }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CDP globally.</td>
</tr>
<tr>
<td>holdtime seconds</td>
<td>Sets the length of time in seconds (10–255) that a receiver keeps CDP packets before they are discarded. The default is 180 seconds.</td>
</tr>
<tr>
<td>timer seconds</td>
<td>Sets the interval between the CDP advertisements in seconds (5–254). The default is 60 seconds.</td>
</tr>
</tbody>
</table>

Defaults

- **holdtime**: 180 seconds
- **timer**: 60 seconds

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows that when CDP is first enabled, the hold time is set to 10 seconds for keeping CDP packets, and then the rate at which CDP packets are sent (15 seconds) is set:

```
WAE(config)# cdp enable
WAE(config)# cdp holdtime 10
WAE(config)# cdp timer 15
```

Related Commands

- `(config-if) cdp`
- `clear arp-cache`
- `show cdp`
(config) central-manager

To specify the WAAS Central Manager role and port number, use the `central-manager` global configuration command in central-manager device mode. To specify the IP address or hostname of the WAAS Central Manager with which a WAE is to register, use the `central-manager` global configuration command in application-accelerator device mode. To negate these actions, use the `no` form of this command.

```
central-manager { address { hostname | ip-address } | role { primary | standby } | ui port port-num }
```

```
no central-manager { address { hostname | ip-address } | role { primary | standby } | ui port port-num }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specifies the hostname or IP address of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>role</td>
<td>Configures the WAAS Central Manager role to either primary or standby.</td>
</tr>
<tr>
<td>primary</td>
<td>Configures the WAAS Central Manager to be the primary WAAS Central Manager for the WAEs that are registered with it.</td>
</tr>
<tr>
<td>standby</td>
<td>Configures the WAAS Central Manager to be the standby WAAS Central Manager for the WAEs that are registered with it.</td>
</tr>
<tr>
<td>ui</td>
<td>Configures the WAAS Central Manager GUI port address.</td>
</tr>
<tr>
<td>port port-num</td>
<td>Configures the WAAS Central Manager GUI port (1–65535). The default is port 8443.</td>
</tr>
</tbody>
</table>

Note

The `address` option works in the application-accelerator device mode only. The `role` and `ui port` options work in the central-manager device mode only.

Defaults

The WAAS Central Manager GUI is preconfigured to use port 8443.

Command Modes

- global configuration

Device Modes

- application-accelerator
 - central-manager

Examples

The following example shows how to specify that the WAAS device named waas-cm is to function as the primary WAAS Central Manager for the WAAS network:
waas-cm(config)# central-manager role primary

The following example shows how to specify that the WAE should register with the WAAS Central Manager that has an IP address of 10.1.1.1. This command associates the WAE with the primary WAAS Central Manager so that the WAE can be approved as a part of the WAAS network.

WAE(config)# central-manager address 10.1.1.1

The following example shows how to configure a new GUI port to access the WAAS Central Manager GUI:

WAE(config)# central-manager ui port 8550

The following example shows how to configure the WAAS Central Manager as the standby WAAS Central Manager:

WAE(config)# central-manager role standby
Switching CDM to standby will cause all configuration settings made on this CDM to be lost.
Please confirm you want to continue [no]?yes
Restarting CMS services
(config) clock

To set the summer daylight saving time and time zone for display purposes, use the clock global configuration command. To disable this function, use the no form of this command.

```
clock (timezone timezone hoursoffset [minutesoffset]) |
    summertime timezone (date startday startmonth startyear endday endmonth endyear offset | recurring (1-4 startweekday startmonth startyear endday endmonth endyear offset | first startweekday startmonth startyear endday endmonth endhour offset | last startweekday startmonth startyear endday endhour offset) }

no clock (timezone timezone hoursoffset [minutesoffset]) |
    summertime timezone (date startday startmonth startyear endday endmonth endyear offset | recurring (1-4 startweekday startmonth startyear endday endmonth endhour offset | first startweekday startmonth startyear endday endmonth endhour offset | last startweekday startmonth startyear endday endhour offset) }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timezone timezone</td>
<td>Configures the name of the standard time zone and hours offset from UTC (-23 to +23). See Table 3-1 in the “Usage Guidelines” section.</td>
</tr>
<tr>
<td>hoursoffset</td>
<td>(Optional) Minutes offset (see Table 3-1 in the “Usage Guidelines” section) from UTC (0–59).</td>
</tr>
<tr>
<td>minutesoffset</td>
<td></td>
</tr>
<tr>
<td>summertime timezone</td>
<td>Configures the name of the summer or daylight saving time zone.</td>
</tr>
<tr>
<td>date</td>
<td>Configures the absolute summer time.</td>
</tr>
<tr>
<td>startday</td>
<td>Date (1–31) to start.</td>
</tr>
<tr>
<td>startmonth</td>
<td>Month (January through December) to start.</td>
</tr>
<tr>
<td>startyear</td>
<td>Year (1993–2032) to start.</td>
</tr>
<tr>
<td>starthour</td>
<td>Hour (0–23) to start in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>endday</td>
<td>Date (1–31) to end.</td>
</tr>
<tr>
<td>endmonth</td>
<td>Month (January through December) to end.</td>
</tr>
<tr>
<td>endyear</td>
<td>Year (1993–2032) to end.</td>
</tr>
<tr>
<td>endhour</td>
<td>Hour (0–23) to end in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>offset</td>
<td>Minutes offset from UTC (0–1439). The summer time offset specifies the number of minutes that the system clock moves forward at the specified start time and backward at the end time.</td>
</tr>
<tr>
<td>recurring</td>
<td>Configures the recurring summer time.</td>
</tr>
<tr>
<td>1-4</td>
<td>Configures the starting week number 1–4.</td>
</tr>
<tr>
<td>startweekday</td>
<td>Day of the week (Monday–Friday) to start.</td>
</tr>
<tr>
<td>endweekday</td>
<td>Weekday (Monday–Friday) to end.</td>
</tr>
<tr>
<td>first</td>
<td>Configures the summer time to recur beginning the first week of the month.</td>
</tr>
<tr>
<td>last</td>
<td>Configures the summer time to recur beginning the last week of the month.</td>
</tr>
</tbody>
</table>
Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
To set and display the local and UTC current time of day without an NTP server, use the *clock timezone* command with the *clock set* command. The *clock timezone* parameter specifies the difference between UTC and local time, which is set with the *clock set* EXEC command. The UTC and local time are displayed with the *show clock detail* EXEC command.

Note
Unexpected time changes can result in unexpected system behavior. We recommend reloading the system after changing the system clock.

Use the *clock timezone offset* command to specify a time zone, where *timezone* is the desired time zone entry listed in the table below and *0 0* is the offset (ahead or behind) UTC is in hours and minutes. (UTC was formerly known as Greenwich mean time [GMT]).

WAE(config)# clock timezone timezone 0 0

Note
The time zone entry is case sensitive and must be specified in the exact notation listed in Table 3-1. When you use a time zone entry from the time zone table, the system is automatically adjusted for daylight saving time.

Table 3-1 Time Zone—Offsets from UTC

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa/Algiers</td>
<td>+1</td>
</tr>
<tr>
<td>Africa/Cairo</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Casablanca</td>
<td>0</td>
</tr>
<tr>
<td>Africa/Harare</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Johannesburg</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Nairobi</td>
<td>+3</td>
</tr>
<tr>
<td>America/Buenos Aires</td>
<td>−3</td>
</tr>
<tr>
<td>America/Caracas</td>
<td>−4</td>
</tr>
<tr>
<td>America/Mexico_City</td>
<td>−6</td>
</tr>
<tr>
<td>America/Lima</td>
<td>−5</td>
</tr>
<tr>
<td>America/Santiago</td>
<td>−4</td>
</tr>
<tr>
<td>Atlantic/Azores</td>
<td>−1</td>
</tr>
<tr>
<td>Atlantic/Cape_Verde</td>
<td>−1</td>
</tr>
<tr>
<td>Asia/Almaty</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Baghdad</td>
<td>+3</td>
</tr>
<tr>
<td>Asia/Baku</td>
<td>+4</td>
</tr>
</tbody>
</table>
Table 3-1 Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia/Bangkok</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Colombo</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Dacca</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Hong_Kong</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Irkutsk</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Jerusalem</td>
<td>+2</td>
</tr>
<tr>
<td>Asia/Kabul</td>
<td>+4.30</td>
</tr>
<tr>
<td>Asia/Karachi</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Katmandu</td>
<td>+5.45</td>
</tr>
<tr>
<td>Asia/Krasnoyarsk</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Magadan</td>
<td>+11</td>
</tr>
<tr>
<td>Asia/Muscat</td>
<td>+4</td>
</tr>
<tr>
<td>Asia/New Delhi</td>
<td>+5.30</td>
</tr>
<tr>
<td>Asia/Rangoon</td>
<td>+6.30</td>
</tr>
<tr>
<td>Asia/Riyadh</td>
<td>+3</td>
</tr>
<tr>
<td>Asia/Seoul</td>
<td>+9</td>
</tr>
<tr>
<td>Asia/Singapore</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Taipei</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Tehran</td>
<td>+3.30</td>
</tr>
<tr>
<td>Asia/Vladivostok</td>
<td>+10</td>
</tr>
<tr>
<td>Asia/Yekaterinburg</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Yakutsk</td>
<td>+9</td>
</tr>
<tr>
<td>Australia/Adelaide</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Brisbane</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Darwin</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Hobart</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Perth</td>
<td>+8</td>
</tr>
<tr>
<td>Australia/Sydney</td>
<td>+10</td>
</tr>
<tr>
<td>Canada/Atlantic</td>
<td>–4</td>
</tr>
<tr>
<td>Canada/Newfoundland</td>
<td>–3.30</td>
</tr>
<tr>
<td>Canada/Saskatchewan</td>
<td>–6</td>
</tr>
<tr>
<td>Europe/Athens</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Berlin</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Bucharest</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Helsinki</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/London</td>
<td>0</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to specify the local time zone as Pacific Standard Time with an offset of 8 hours behind UTC:

```
WAE(config)# clock timezone US/Pacific -8 0
```

The following example shows how to negate the time zone setting on the WAAS device:

```
WAE(config)# no clock timezone
```

The following example shows how to configure daylight saving time:

```
WAE(config)# clock summertime US/Pacific date 10 October 2005 23:59 29 April 2006 23:59 60
```

Related Commands

- `clock`
- `show clock`

Table 3-1 Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe/Moscow</td>
<td>+3</td>
</tr>
<tr>
<td>Europe/Paris</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Prague</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Warsaw</td>
<td>+1</td>
</tr>
<tr>
<td>Japan</td>
<td>+9</td>
</tr>
<tr>
<td>Pacific/Auckland</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Fiji</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Guam</td>
<td>+10</td>
</tr>
<tr>
<td>Pacific/Kwajalein</td>
<td>-12</td>
</tr>
<tr>
<td>Pacific/Samoa</td>
<td>-11</td>
</tr>
<tr>
<td>US/Alaska</td>
<td>-9</td>
</tr>
<tr>
<td>US/Central</td>
<td>-6</td>
</tr>
<tr>
<td>US/Eastern</td>
<td>-5</td>
</tr>
<tr>
<td>US/East-Indiana</td>
<td>-5</td>
</tr>
<tr>
<td>US/Hawaii</td>
<td>-10</td>
</tr>
<tr>
<td>US/Mountain</td>
<td>-7</td>
</tr>
<tr>
<td>US/Pacific</td>
<td>-8</td>
</tr>
</tbody>
</table>
To schedule maintenance and enable the Centralized Management System (CMS) on a WAAS device, use the `cms` global configuration command. To negate these actions, use the `no` form of this command.

```
cms {database maintenance { full { enable | schedule weekday at time } } | regular { enable | schedule weekday at time } } | enable
```

```
no cms {database maintenance { full { enable | schedule weekday at time } } | regular { enable | schedule weekday at time } } | enable
```

```
cms rpc timeout { connection 5-1800 | incoming-wait 10-600 | transfer 10-7200 }
```

```
no cms rpc timeout { connection 5-1800 | incoming-wait 10-600 | transfer 10-7200 }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>database maintenance</td>
<td>Configures the embedded database clean or reindex maintenance routine.</td>
</tr>
<tr>
<td>full</td>
<td>Configures the full maintenance routine and cleans the embedded database tables.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified routine or process to be performed on the embedded database tables.</td>
</tr>
<tr>
<td>schedule weekday</td>
<td>Sets the schedule for performing the maintenance routine to a day of the week.</td>
</tr>
<tr>
<td>every-day</td>
<td>Every day</td>
</tr>
<tr>
<td>Mon</td>
<td>Every Monday</td>
</tr>
<tr>
<td>Tue</td>
<td>Every Tuesday</td>
</tr>
<tr>
<td>Wed</td>
<td>Every Wednesday</td>
</tr>
<tr>
<td>Thu</td>
<td>Every Thursday</td>
</tr>
<tr>
<td>Fri</td>
<td>Every Friday</td>
</tr>
<tr>
<td>Sat</td>
<td>Every Saturday</td>
</tr>
<tr>
<td>Sun</td>
<td>Every Sunday</td>
</tr>
<tr>
<td>at time</td>
<td>Sets the maintenance schedule time of day to start the maintenance routine (0–23:0–59) (hh:mm).</td>
</tr>
<tr>
<td>Mon</td>
<td>Every Monday</td>
</tr>
<tr>
<td>Tue</td>
<td>Every Tuesday</td>
</tr>
<tr>
<td>Wed</td>
<td>Every Wednesday</td>
</tr>
<tr>
<td>Thu</td>
<td>Every Thursday</td>
</tr>
<tr>
<td>Fri</td>
<td>Every Friday</td>
</tr>
<tr>
<td>Sat</td>
<td>Every Saturday</td>
</tr>
<tr>
<td>Sun</td>
<td>Every Sunday</td>
</tr>
<tr>
<td>regular</td>
<td>Configures the regular maintenance routine and reindexes the embedded database tables.</td>
</tr>
<tr>
<td>rpc timeout</td>
<td>Configures the timeout values for remote procedure call connections.</td>
</tr>
<tr>
<td>connection 5-1800</td>
<td>Specifies the maximum time to wait when making a connection. The timeout period is in seconds. The default for the WAAS Central Manager is 30 seconds; the default for a WAE is 180 seconds.</td>
</tr>
</tbody>
</table>
incoming-wait 10-600
Specifies the maximum time to wait for a client response. The timeout period is in seconds. The default is 30 seconds.

transfer 10-7200
Specifies the maximum time to allow a connection to remain open. The timeout period is in seconds. The default is 300 seconds.

Defaults
- **database maintenance regular**: enabled
- **database maintenance full**: enabled
- **connection**: 30 seconds for WAAS Central Manager; 180 seconds for a WAE
- **incoming wait**: 30 seconds
- **transfer**: 300 seconds

Command Modes
- global configuration

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
Use the **cms database maintenance** global configuration command to schedule routine full maintenance cleaning (vacuuming) or a regular maintenance reindexing of the embedded database. The full maintenance routine runs only when the disk is more than 90 percent full and only runs once a week. Cleaning the tables returns reusable space to the database system.

The **cms enable** global configuration command automatically registers the node in the database management tables and enables the CMS process. The **no cms enable** global configuration command only stops the management services on the WAAS device. Use the **cms deregister** EXEC command to de-register (remove) a WAAS device from the WAAS network.

Tip
If you are trying to register a device that had previously been registered with a WAAS Central Manager and the **cms enable** global configuration command fails, use the **cms deregister force** command. If you get an error saying that the management service is not enabled when you use the **cms deregister force** command, delete the device from the WAAS Central Manager.

Examples
The following example shows how to schedule a regular (reindexing) maintenance routine to start every Friday at 11:00 p.m on the WAAS device:

```
WAE(config)# cms database maintenance regular schedule Fri at 23:00
```

The following example shows how to enable the CMS process on a WAAS device:

```
WAE(config)# cms enable
Generating new RPC certificate/key pair
Restarting RPC services
Registering Wide Area Central Manager...
Registration complete.
```
(config) cms

Please preserve running configuration using 'copy running-config startup-config'. Otherwise management service will not be started on reload and node will be shown 'offline' in Wide Area Central Manager UI.

management services enabled

Related Commands

cms

show cms
(config) crypto pki

To configure public key infrastructure (PKI) encryption parameters on a WAAS device, use the `crypto pki` global configuration command. To negate these actions, use the `no` form of this command.

```
crypto pki {ca certificate-authority-name}
crypto pki global-settings [ocsp url url | revocation-check {ocsp-cert-url [none] | ocsp-url [none]}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca</td>
<td>Configures encryption certificate authority information. Using this command enables certificate authority configuration mode. See PKI Certificate Authority Configuration Mode Commands, page -831.</td>
</tr>
<tr>
<td>certificate-authority-name</td>
<td>Configures PKI encryption global settings. Using this command enables PKI global settings configuration mode. See PKI Certificate Authority Configuration Mode Commands, page -831.</td>
</tr>
<tr>
<td>global-settings</td>
<td>(Optional) Configures an OCSP URL.</td>
</tr>
<tr>
<td>ocsp url url</td>
<td>(Optional) Configures certificate revocation methods.</td>
</tr>
<tr>
<td>revocation-check</td>
<td>Specifies to use the URL from the certificate.</td>
</tr>
<tr>
<td>none</td>
<td>Specifies a null method that returns revocation success.</td>
</tr>
<tr>
<td>ocsp-url</td>
<td>Specifies to use the URL from the global OCSP setting.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

Use the `crypto pki` global configuration command to enter CA configuration mode or PKI global settings configuration mode.

Examples

The following example puts WAAS into CA configuration mode, editing the “my-ca” certification authority. The mode change is indicated by the system prompt:

```
WAE(config)# crypto pki my-ca
WAE(config-ca)#
```

Related Commands

- `(config) crypto ssl`
- `(config-ca) ca-certificate`
(config-crypto) description

(config-crypto) revocation-check
(config) crypto ssl

To configure secure sockets layer (SSL) encryption parameters on a WAAS device, use the `crypto ssl` global configuration command. To negate these actions, use the `no` form of this command.

```
crypto ssl {cipher-list cipher-list-name | management-service | services {accelerated-service service-name | global-settings | host-service peering}}

no crypto ssl {cipher-list cipher-list-name | management-service | services {accelerated-service service-name | global-settings | host-service peering}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cipher-list cipher-list-name</code></td>
<td>Configures the SSL cipher suite list. Using this command enables SSL cipher list configuration mode. See the SSL Cipher List Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>management-service</code></td>
<td>Configures SSL management services. Using this command enables SSL management service configuration mode. See the SSL Management Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>services</code></td>
<td>Configures other SSL services (accelerated, global, and host peering).</td>
</tr>
<tr>
<td><code>accelerated-service service-name</code></td>
<td>Configures SSL accelerated services. Using this command enables SSL accelerated service configuration mode. See the SSL Accelerated Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>global-settings</code></td>
<td>Configures SSL service global settings. Using this command enables SSL service global configuration mode. See the SSL Global Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>host-service peering</code></td>
<td>Configures SSL host peering services. Using this command enables SSL host peering service configuration mode. See the SSL Host Peering Service Configuration Mode Commands chapter.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Use the `crypto ssl` global configuration command to enter SSL cipher list configuration mode, SSL management service configuration mode, SSL accelerated service configuration mode, SSL service global configuration mode, or SSL host peering service configuration mode.

Examples

The following example puts the WAAS device into SSL cipher list configuration mode, editing the mylist cipher suite list. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl cipher-list mylist
WAE(config-cipher-list)#
```
The following example puts the WAAS device into SSL management service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl management-service
WAE(config-ssl-mgmt)#
```

The following example puts the WAAS device into SSL accelerated service configuration mode, editing the myservice accelerated service. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)#
```

The following example puts the WAAS device into SSL global service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services global-settings
WAE(config-ssl-global)#
```

The following example puts the WAAS device into SSL host peering service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services host-service peering
WAE(config-ssl-peering)#
```

Related Commands
(config) crypto pki
(config) device mode

To configure the device mode for the WAAS device, use the `device mode` global configuration command. To reset the mode of operation on your WAAS device, use the `no` form of this command.

```
device mode { application-accelerator | application-accelerator profile branch | central-manager }
no device mode { application-accelerator | application-accelerator profile branch | central-manager }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-accelerator</td>
<td>Configures the WAAS device to function as a WAAS Accelerator. All of the branch and data center WAAs that are doing traffic optimization must be operating in this mode.</td>
</tr>
<tr>
<td>application-accelerator profile branch</td>
<td>For use with WAVE-7541, WAVE-7571 and WAVE-8541, which enables the device to function as a branch device, to configure resource pre-allocation resources for various WAAS services to be branch traffic scenario and branch services. The branch profile-enabled connection count used for computing memory for pre-allocation is 3/4 of the TFO limit for WAVE-7571 and WAVE-8541.</td>
</tr>
<tr>
<td>central-manager</td>
<td>Configures the WAAS device to function as a WAAS Central Manager.</td>
</tr>
</tbody>
</table>

Defaults

The default device operation mode is application-accelerator.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager
- application-accelerator profile branch

Usage Guidelines

If the WAAS device is operating with an Accelerator only image, you will not be able to convert it to central-manager mode until after you update it with a Full image and reboot. You can use the `show version` EXEC command to check the type of software image the WAE is running.

Examples

The following example shows how to specify central manager as the device mode of a WAAS device:

```
WAE(config)# device mode central-manager
```
The following example shows how to specify application accelerator as the device mode of a WAAS device:

```
WAE(config)# device mode application-accelerator
```

To change the device mode from central-manager to application-accelerator you must first use the `cms deregister` command in EXEC mode to disable the Centralized Management System on the Central Manager. Then use the `device mode` command in global configuration mode, as shown in the following example:

```
WAE# cms deregister
WAE(config)# device mode application-accelerator
WAE# copy running-config startup-config
```

Related Commands
`show device-mode`
(config) disk disk-name

To disable the disk for online removal, use the `disk disk-name` global configuration command. To reenable the disk, use the `no` form of this command.

```
disk disk-name disk00 shutdown [force]
no disk disk-name disk00 shutdown [force]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>diskxx</th>
<th>Name of the disk (disk00-disk05).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>shutdown</td>
<td>Disables the disk for maintenance.</td>
</tr>
<tr>
<td></td>
<td>force</td>
<td>(Optional) Forces a disk to be reenabled when used with the <code>no</code> form of this command. This option is not available on RAID-5 systems.</td>
</tr>
</tbody>
</table>

Defaults

Disks are enabled.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

You can replace a failed disk or perform a scheduled disk maintenance on the WAE-612. Use the `disk disk-name diskxx shutdown` global configuration command to manually shut down a disk for a scheduled disk maintenance. (For the schedule disk maintenance procedure, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 14.)

Examples

The following example shows how to disable disk00 for online removal using the `disk disk-name` command:

```
WAE(config)# disk disk-name disk00 shutdown
```

Related Commands

- `(config) disk error-handling`
- `(config) disk object-cache extend`
- `disk`
- `show disks`
(config) disk cache

To configure Akamai cache and Object cache partitions, use the `disk cache` global configuration command. If disk configuration is not required, use the `restore factory-default` command.

```
disk cache {default | Akamai-OC-equal | Akamai-weight1 | OC-weight1 | Akamai-weight2 | OC-weight2}{force}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Sets the available partition to predefined values for Akamai cache and Object cache.</td>
</tr>
<tr>
<td>Akamai-OC-equal</td>
<td>Sets the available partition size to 50% each for both Akamai cache and Object cache.</td>
</tr>
<tr>
<td>Akamai-weight1</td>
<td>Sets size of partition to 60% for Akamai cache and 40% for Object cache.</td>
</tr>
<tr>
<td>OC-weight1</td>
<td>Sets size of partition to 60% for Object cache and 40% for Akamai cache.</td>
</tr>
<tr>
<td>Akamai-weight2</td>
<td>Sets size of partition to 80% for Akamai cache and 20% for Object cache.</td>
</tr>
<tr>
<td>OC-weight2</td>
<td>Sets size of partition to 80% for Object cache and 20% for Akamai cache.</td>
</tr>
<tr>
<td>force</td>
<td>Changes the mode to the user defined configuration, without warning the user that existing cache data will be lost.</td>
</tr>
</tbody>
</table>

Command Default

The “default” configuration for disk cache management sets the available partition to predefined values for Akamai cache and Object cache.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Upgrading 294,594,694:

When you upgrade to software version 6.1.1, and configure the device/s for data cache management for the first time and perform a reload, all the data-cache is lost on reload.

Upgrading vWAAS/ISR-WAAS/SM-SRE:

When you upgrade to software version 6.1.1, and configure the device/s for data cache management for the first time and perform a reload, both data and system partitions are re-created. Logs and Data Cache are cleaned up, but software version and CM registration information is preserved.

Fresh deployment in all models:

When you do a fresh deployment of 6.1.1, and configure the device/s for data cache management for the first time and perform a reload, only Akamai and object-cache data is lost.

Second/Subsequent configuration in all models:
Configuring DCM for second/subsequent times cleans only the Akamai and object cache partitions. All other partitions are retained.

The status of data cache can be displayed using the `show disk cache-details` EXEC mode command. If data-cache is enabled, the show running configuration will display the config.

Data Cache Management is not supported on the following hardware platforms.

- 7541, 7571 and 8541, vWAAS 6K and 12K.

Examples

The following example shows how to set the available partition size equally among Akamai cache and Object cache:

```
WAE(config)# disk cache Akamai-Oc-equal
```

Related Commands

`show disks`
(config) disk encrypt

To enable disk encryption, use the `disk encrypt` global configuration command. To disable disk encryption, use the `no` form of this command.

```
disk encrypt enable

no disk encrypt enable
```

<table>
<thead>
<tr>
<th>Syntax/Description</th>
<th>enable</th>
<th>Enables disk encryption.</th>
</tr>
</thead>
</table>

Defaults

Disk encryption is disabled by default.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

To view the encryption status details, use the `show disks details` EXEC command. While the file system is initializing, you will see the following message: "System initialization is not finished, please wait..." You may also view the disk encryption status to check whether a disk is enabled or disabled in the Central Manager GUI, Device Home window.

Note

If you are using a No Payload Encryption (NPE) image, the disk encryption feature has been disabled for use in countries where disk encryption is not permitted.

Examples

The following example shows how to enable disk encryption using the `disk encrypt` command:

```
WAЕ(config)# disk encrypt enable
```

Related Commands

- `disk`
- `show disks`
(config) disk error-handling

To configure how disk errors are handled on a WAAS device, use the `disk error-handling` global configuration command. To disable automatic remapping of disk errors, use the `no` form of this command.

```
disk error-handling remap

no disk error-handling remap
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>remap</th>
<th>Sets the disk to attempt to remap disk errors automatically.</th>
</tr>
</thead>
</table>

Defaults
The disk is configured to remap disk errors automatically.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to disable automatic remapping of disk errors:

```
WAES(config)# no disk error-handling remap
```

Related Commands
disk

show disks
(config) disk logical shutdown

To shut down the RAID-5 logical disk drive, use the `disk logical shutdown` global configuration command. To reenable the RAID-5 logical disk drive, use the `no` form of this command.

```
disk logical shutdown

no disk logical shutdown [force]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>(Optional) Forces RAID Logical drive to be reenabled when used with the</td>
</tr>
<tr>
<td></td>
<td><code>no</code> form of this command.</td>
</tr>
</tbody>
</table>

Defaults

The RAID-5 array is configured by default.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

This command is supported on WAE-7541, WAE-7571, and WAE-8541 models only.

Use this command to operate the WAE in diskless mode. In diskless mode, the partitions and disks are not mounted and cannot be used.

You must reload the device for this command to take effect.

After a multiple disk failure or RAID controller failure, and after the drives are replaced and the RAID disk is rebuilt, the logical disk may remain in the error state. To reenable the disk, use the `no disk logical shutdown force` command, then reload the WAE.

Examples

The following example shows how shutdown the RAID-5 logical disk drive using the `disk logical shutdown` command:

```
WAE(config)# disk logical shutdown
```

Related Commands

- (config) disk disk-name
(config) disk object-cache extend

To enable extended object cache, use the disk object-cache extend global configuration command. To disable this feature, use the no form of this command.

```
disk object-cache extend

no disk object-cache extend
```

Syntax Description
This command has no arguments or keywords.

Command Default
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
Extended Object Cache is supported only on 674-4G, 674-8G and 694 models. When extended object cache is enabled, the object cache space is increased only after saving the configuration and performing a reload.

The status of extended object cache can be displayed using the show disk details EXEC mode command. The output of this command states whether extended object cache is enabled or disabled.

This feature is supported only on WAE-674-4G, and WAE-674-8G models.

When a device is changed to AppNav mode, a warning message tells the user that changing the Device mode to AppNav Controller, will forcefully disable disk object-cache extend. The new configuration will take effect after a reload. If the user confirms, the system proceeds with reloading the system configuration and the extended object cache is disabled.

Examples
The following example shows how to enable extended object cache:
```
WAE(config)# disk object-cache extend
Cumulative disk space for all VBs will be reduced to 30GB.
Are you sure want to enable [yes/no]?
```

Related Commands
- (config) disk object-cache extend
(config) dre

To enable and configure DRE (Data Redundancy Elimination) auto bypass and load monitor settings, use the dre global configuration command. To disable DRE settings, use the no form of this command.

```

no dre { auto-bypass [ cache-percent | comp-threshold | enable ] | load-monitor [ report | disk-max-latency | threshold ] }
```

Syntax Description

- **auto-bypass**: Configures DRE auto bypass settings.
- **cache-percent**
 - `percent_no`: Sets the cache size percent threshold for bypass trigger (1-99).
- **comp-threshold**
 - `comp_threshold`: Sets the DRE compression ratio threshold for bypass trigger (1-50).
- **enable**: Enables DRE auto bypass.
- **load-monitor**: Configures load monitor settings.
- **report**: Enables load report.
- **disk-max-latency**
 - `disk-max-latency`: Sets the disk latency maximum (1-1000). Default is 5.
- **threshold**
 - `threshold`: Sets the DRE load threshold (50-99). Default is 95.

Defaults

Enabled by default.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Use the `dre auto-bypass` global configuration command to generate an alarm and automatically DRE bypass application traffic.

Examples

The following example shows how to enable DRE auto bypass using the dre command:

```
WAЕ(config)# dre auto-bypass enable
```

Related Commands

(config) dre
(config) end

To exit global configuration mode, use the **end** global configuration command.

```
end
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

Use the **end** command to exit global configuration mode after completing any changes to the running configuration. To save new configurations to NVRAM, use the **write** command.

In addition, you can press **Ctrl-Z** to exit global configuration mode.

Examples

The following example shows how to exit global configuration mode on a WAAS device:

```
WAES(config)# end
WAES#
```

Related Commands

(config) exit
(config) exec-timeout

To configure the length of time that an inactive Telnet or SSH session remains open on a WAAS device, use the exec-timeout global configuration command. To revert to the default value, use the no form of this command.

\texttt{exec-timeout \textit{timeout}}

\texttt{no exec-timeout \textit{timeout}}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{timeout}</td>
<td>Timeout in minutes (0–44640). A value of 0 sets the logout timeout to infinite.</td>
</tr>
</tbody>
</table>

Defaults
The default is 15 minutes.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
A Telnet session or Secure Shell (SSH) session with the WAAS device can remain open and inactive for the interval of time specified by the exec-timeout command. When the exec-timeout interval elapses, the WAAS device automatically closes the Telnet or SSH session.

Examples
The following example shows how to configure a timeout of 100 minutes:

\texttt{WAE(config)# exec-timeout 100}

The following example shows how to negate the configured timeout of 100 minutes and revert to the default value of 15 minutes:

\texttt{WAE(config)# no exec-timeout}

Related Commands
(config) telnet enable
(config) exit

To terminate global configuration mode and return to the privileged-level EXEC mode, use the exit command.

exit

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
All modes

Device Modes
application-accelerator
central-manager

Usage Guidelines
This command is equivalent to pressing Ctrl-Z or entering the end command.

Examples
The following example shows how to terminate global configuration mode and return to the privileged-level EXEC mode:

WAE(config)# exit
WAE#

Related Commands
(config) end
(config) flow exporter

To configure the collector server destination for the exported information, use the `flow exporter` global configuration command.

```
flow exporter exporter name { description | destination ip_address} exit | export-protocol { ipfix | netflowv9} | no | transport }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>Provides a description for the exporter.</td>
</tr>
<tr>
<td>destination</td>
<td>Specifies the destination for the flow records</td>
</tr>
<tr>
<td>exit</td>
<td>Exits from this submode</td>
</tr>
<tr>
<td>export-protocol</td>
<td>Specifies the export protocol for the flow records - IPFIX or Netflow-v9 (default).</td>
</tr>
<tr>
<td>no</td>
<td>Negates a command or set its defaults</td>
</tr>
<tr>
<td>transport</td>
<td>Specifies the transport protocol for the flow records. The default port is 2055.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables flow monitoring.</td>
</tr>
<tr>
<td>host ip_address</td>
<td>Specifies the IP address of the collection control agent.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
For information about how to configure flow monitoring on the WAE, see the Cisco Wide Area Application Services Configuration Guide, Chapter 15.

Examples
The following example shows how to enable flow monitoring using the `flow exporter` command:

```
WAE(config)# flow exporter exporter name
WAE(config-flow_exporter)# destination 2.2.2.2
WAE(config-flow_exporter)# description descriptive name
WAE(config-flow_exporter)# export-protocol ?
   IPFIX   IPFIX export protocol
   netflow-v9 Netflow v9 export protocol (default)
WAE(config-flow_exporter)# export-protocol ipFIX
WAE(config-flow_exporter)# transport udp ?
   <1-65535> Specify the UDP port number (default is 2055)
WAE(config-flow_exporter)# transport udp 12000
WAE(config-flow_exporter)# exit
```
Related Commands debug flow
(config) flow record

To configure WAAS-specific flow information to be sent to the collector, use the flow record global configuration command.

```
flow record record name {collect | exit | no}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect</td>
<td>Collects flow information.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits from this submode.</td>
</tr>
<tr>
<td>no</td>
<td>Negates a command or sets its defaults.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

For information about how to configure a flow record for flow monitoring on the WAE, see the Cisco Wide Area Application Services Configuration Guide, Chapter 15.

Examples

The following example shows how to create a flow record using the flow record command:

```
WAE(config)# flow record waas all
WAE(config)# collect waas
WAE(config)# exit
```

Related Commands

(config) flow monitor

(config) flow exporter
To enable network traffic flow monitoring and to register the WAE with the tcpstat-v1 collector for traffic analysis (in case of NetQoS), use the `flow monitor` global configuration command. To disable the network traffic flow configuration, use the `no` form of this command.

```
flow monitor tcpstat-v1 {enable | host ip_address}
no flow monitor tcpstat-v1 {enable | host ip_address}
flow monitor monitor name {description | enable | exporter | record | rename}
```

Syntax Description

- **tcpstat-v1**: Sets the tcpstat-v1 collector configuration.
- **enable**: Enables flow monitoring.
- **host ip_address**: Specifies the IP address of the collection control agent.
- **description**: Provides a description for the monitor.
- **exporter**: Specifies the exporter.
- **record**: Specifies the record to be exporter.
- **rename**: Renames this monitor.

Defaults

The default configuration has no host address configured and the feature is disabled.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

For information about how to configure flow monitoring on the WAE, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 15.

Examples

The following example shows how to enable flow monitoring (for NetQos) using the `flow monitor` command:

```
WAE(config)# flow monitor tcpstat-v1 enable
```

For Netflowv9, the following example shows how to specify which flow record should go to which flow exporter using the `flow monitor` command:

```
WAE(config)# flow monitor MonitorName
WAE(config-flow_monitor)# exporter ExporterName
WAE(config-flow_monitor)# record RecordName
WAE(config-flow_monitor)# enable
```

Related Commands

- `debug flow`
(config) help

To obtain online help for the command-line interface, use the help global configuration command. To disable help, use the no form of this command.

help
no help

Syntax Description
This command has no arguments or keywords.

 Defaults
No default behavior or values.

 Command Modes
EXEC and global configuration

 Device Modes
application-accelerator
central-manager

Usage Guidelines
You can obtain help at any point in a command by entering a question mark (?). If nothing matches, the help list will be empty, and you must use the backspace key until entering a ? shows the available options.

Two styles of help are provided:
• Full help is available when you are ready to enter a command argument (for example, show ?) and describes each possible argument.
• Partial help is provided when you enter an abbreviated command and you want to know what arguments match the input (for example, show stat?).

Examples
The following example shows the output of the help global configuration command:

WAE# configure
WAE(config)# help
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument.
2. Partial help is provided when an abbreviated argument is entered.

The following example shows how to use full help to see what WCCP command arguments are available:

WAE# configure
WAE(config)# wccp ?
access-list Configure an IP access-list for inbound WCCP encapsulate traffic
flow-redirect Redirect moved flows
router-list Router List for use in WCCP services
shutdown WCCP Shutdown parameters
tcp-promiscuous TCP promiscuous mode service

The following example shows how to use partial help to determine the syntax of a WCCP argument:

WAE(config)# wccp tcp ?
 service-pair Pair of TCP promiscuous services

Related Commands show running-config
(config) hostname

To configure the network hostname on a WAAS device, use the `hostname` global configuration command. To reset the hostname to the default setting, use the `no` form of this command.

```
hostname name

no hostname name
```

Syntax Description

| name | New hostname for the WAAS device; the name is case sensitive. The name may be from 1 to 30 alphanumeric characters. |

Defaults

The default hostname is the model number of the WAAS device (for example WAE-612).

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Use this command to configure the hostname for the WAAS device. The hostname is used for the command prompts and default configuration filenames. This name is also used for routing, so it conforms to the following rules:

- It can use only alphanumeric characters and hyphens (-).
- The maximum length is 30 characters.
- The following characters are considered illegal and cannot be used when naming a device: @, #, $, %, ^, &, *, (), |, ", /, <, >.

Examples

The following example shows how to change the hostname of the WAAS device to `sandbox`:

```
WAE(config)# hostname sandbox
Sandbox(config)#
```

The following example shows how to remove the hostname:

```
Sandbox(config)# no hostname
WAE(config)#
```

Related Commands

- `dnslookup`
- `(config) ip`
- `(config-if) ip`
show hosts
To enable FTP services on a WAAS device, use the **inetd enable** global configuration command. To disable these same services, use the **no** form of this command.

```plaintext
inetd enable {ftp}
no inetd enable {ftp}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables services.</td>
</tr>
<tr>
<td>ftp</td>
<td>Enables FTP services.</td>
</tr>
</tbody>
</table>

Defaults

FTP is enabled.

Command Modes

global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Inetd (an Internet daemon) is a program that listens for connection requests or messages for certain ports and starts server programs to perform the services associated with those ports. Use the **inetd enable** command with the **ftp** keywords to enable and disable services on the WAAS device. To disable the service, enter the **no** form of the **inetd enable** command. Use the **show inetd** EXEC command to see whether current **inetd** sessions are enabled or disabled.

Examples

The following example shows how to enable an FTP service session on the WAAS device:

```plaintext
WAE(config)# inetd enable ftp
```

The following example shows how to disable FTP services:

```plaintext
WAE(config)# no inetd enable ftp
```

Related Commands

- **show inetd**
To enable VLAN ID checking on intercepted traffic, use the `inline vlan-id-connection-check` global configuration command. To disable VLAN ID checking, use the `no` form of this command.

```
inline vlan-id-connection-check

no inline vlan-id-connection-check
```

Syntax Description
This command has no arguments or keywords.

Defaults
VLAN ID checking is enabled.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to enable VLAN ID checking of the intercepted traffic on the WAAS device:

```
WAE(config)# inline vlan-id-connection-check
```

The following example shows how to disable VLAN ID checking:

```
WAE(config)# no inline vlan-id-connection-check
```

Related Commands
- `(config) interface InlineGroup`
- `(config) interface GigabitEthernet`
- `(config) interface TenGigabitEthernet`
- `(config-if) encapsulation dot1Q`
(config) interception

To configure traffic interception with an access list, use the interception global configuration command. To disable the interception access list, use the no form of this command.

```
interception access-list {acl-num | acl_name}
no interception access-list {acl-num | acl_name}
```

Syntax Description

- **acl_num**
 - Numeric identifier that identifies the ACL to apply to traffic interception. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.

- **acl_name**
 - Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to traffic interception.

Defaults

No default behaviors or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Use the interception command to apply an access list (ACL) to traffic interception. Packets permitted by the ACL are intercepted for WAAS optimization (on an application accelerator device) or for distribution (on an ANC). Packets denied by the ACL are passed through by WAAS. You can define ACLs by using the ip access-list standard or ip access-list extended configuration commands.

Note

On an ANC the tcp ... established extended ACL rule type is not supported.

If you specify an interception ACL that is not defined, it is considered to be a “permit any” ACL and all traffic is intercepted.

An interception ACL works both with WCCP and inline interception modes.

When used with interface ACLs and WCCP ACLs, the interface ACL is applied first, the WCCP ACL is applied second, and then the interception ACL is applied last.

Examples

The following example shows how to define and apply an ACL that intercepts all traffic except WWW traffic from a particular client:

```
dc-wae(config)# ip access-list extended iacl
```
dc-wae(config-ext-nacl)# deny tcp host 10.74.2.132 any eq www
dc-wae(config-ext-nacl)# permit ip any any
dc-wae(config-ext-nacl)# exit

dc-wae(config)# interception access-list iacl

Related Commands

(config) ip access-list

show ip access-list
(config) interception-method

To configure the traffic interception method, use the interception-method global configuration command. To disable the interception method, use the no form of this command.

```
interception-method {inline | appnav-controller | wccp } [force]
```

```
no interception-method {inline | appnav-controller | wccp } [force]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inline</td>
<td>Enables inline traffic interception. For vWAAS with WAAS Version 6.2.1 and later, this parameter is also available for vWAAS.</td>
</tr>
<tr>
<td>appnav-controller</td>
<td>Enables a WAAS node to receive traffic for optimization from an AppNav Controller in an AppNav deployment. (Available only on devices in application-accelerator device mode.)</td>
</tr>
<tr>
<td>wccp</td>
<td>Enables WCCP traffic interception.</td>
</tr>
<tr>
<td>force</td>
<td>Forces the configuration without prompting.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

- **global configuration**

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

You must use the interception-method command to enable a traffic interception method before configuring other traffic interception settings. Other settings that are specific to a particular traffic interception method are not available until after you use this command to enable the method.

When you are changing the traffic interception method, all configuration settings for the current method are removed before the new method is enabled. You are prompted to confirm before the command proceeds.

Examples

The following example shows how to enable WCCP interception:

```
dc-wae(config)# interception-method wccp
Inline interception method will be removed. Proceed?[yes]: yes
```

Related Commands

- (config) interface InlineGroup
- (config) wccp tcp-promiscuous service-pair
- show interception-method
(config) interface GigabitEthernet

To configure a Gigabit Ethernet interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface GigabitEthernet slot/port [autosense | bandwidth {10 | 100 | 1000} | cdp enable |
channel-group index | description text | full-duplex | half-duplex |
ip {access-group {acl-num | acl_name} | [in | out] |
address [ip_address netmask {secondary} | dhcp [client-id id][hostname name]] | |
ipv6 [address [autoconfig | dhcp | use-link-local-only | ip_address] | nd [dad-transmits range]] | |
load-interval seconds | mtu mtu-size | shutdown | standby group-index [primary] ]
```

```
no interface GigabitEthernet slot/port [autosense | bandwidth {10 | 100 | 1000} | cdp enable |
channel-group index | description text | full-duplex | half-duplex |
ip {access-group {acl-num | acl_name} | [in | out] |
address [ip_address netmask {secondary} | dhcp [client-id id][hostname name]] | |
ipv6 [address [autoconfig | dhcp | use-link-local-only | ip_address] | nd [secondary]] | |
load-interval seconds | mtu mtu-size | shutdown | standby group-index [primary] ]
```

Syntax Description

<table>
<thead>
<tr>
<th>GigabitEthernet</th>
<th>Selects a Gigabit Ethernet interface to configure (slot and port number). The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>slot/port</code></td>
<td>(Optional) Sets the GigabitEthernet interface to automatically sense the interface speed.</td>
</tr>
<tr>
<td><code>autosense</code></td>
<td>(Optional) Sets the bandwidth of the specified interface.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>(Optional) Sets the bandwidth of the specified interface.</td>
</tr>
<tr>
<td><code>10</code></td>
<td>Sets the bandwidth of the interface to 10 megabits per second (Mbps).</td>
</tr>
<tr>
<td><code>100</code></td>
<td>Sets the bandwidth of the interface to 100 Mbps.</td>
</tr>
<tr>
<td><code>1000</code></td>
<td>Sets the bandwidth of the interface to 1000 Mbps. This option is not available on all ports and is the same as autosense.</td>
</tr>
<tr>
<td><code>cdp enable</code></td>
<td>(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.</td>
</tr>
<tr>
<td><code>channel-group index</code></td>
<td>(Optional) Assigns the interface to the EtherChannel with the specified index (1-7).</td>
</tr>
<tr>
<td><code>description text</code></td>
<td>Enters a description of the interface.</td>
</tr>
<tr>
<td><code>full-duplex</code></td>
<td>(Optional) Sets the interface to full-duplex operation.</td>
</tr>
<tr>
<td><code>half-duplex</code></td>
<td>(Optional) Sets the interface to half-duplex operation.</td>
</tr>
<tr>
<td><code>ip</code></td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td><code>access-group</code></td>
<td>Configures access control for IP packets on this interface using access control list (ACL).</td>
</tr>
<tr>
<td><code>acl_num</code></td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td><code>acl_name</code></td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
</tbody>
</table>
in
Applies the specified ACL to inbound packets on the current interface.

out
Applies the specified ACL to outbound packets on the current interface.

address ip-address netmask
Sets the interface IP address and netmask.

secondary
(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

dhcp
(Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).

client-id id
(Optional) Specifies the client identifier.

hostname name
(Optional) Specifies the hostname.

ipv6
(Optional) Enables IPv6 configuration commands for the interface.

address
Sets the interface IPv6 address

autoconfig
Obtain IPv6 address using auto configuration.

dhcp
Sets the IP address to the address that is negotiated over DHCP.

use-link-local-only
Enable IPv6 on interface using single link-local address.

ipv6 address
Specify IPv6 address in X:X:X:X::X/0-128 format.

nd
Sets neighbor discovery parameters for the interface.

secondary
(Optional) Specifies that the configured address is a secondary IPv6 address. If this keyword is omitted, the configured address is the primary IPv6 address.

load-interval seconds
(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.

mtu mtusize
(Optional) Sets the interface Maximum Transmission Unit (MTU) size in bytes (576–1500).

shutdown
(Optional) Shuts down this interface.

standby group-index
(Optional) Sets the standby group number to group-index.

primary
(Optional) Sets this interface as the active interface in the standby group.

Defaults
The first attached interface in a standby group is defined as the active interface. There are no other default behaviors or values.

Command Modes
- global configuration

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
Although the CLI contains the **no interface** option, you cannot apply the **no** command to an interface. The software displays the following error message: Removing of physical interface is not permitted.
To configure an interface bandwidth on a WAAS device, use the **bandwidth** interface configuration command. The bandwidth is specified in megabits per second (Mbps). Using this option automatically enables autosense on the interface.

Note
Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 30 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Using the **cdp enable** command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the **cdp enable** command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface GigabitEthernet 1/0), use the **show running-config** or **show startup-config** commands. The **autosense**, **bandwidth**, **full-duplex**, **half-duplex**, **ip**, and **shutdown** commands are listed separately in this command reference.

Note
When you use the **ip address** command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.

Configuring Multiple Secondary IP Addresses on a Single Physical Interface
Use the **interface secondary** global configuration command to configure more than one IP address on the same interface. By configuring multiple IP addresses on a single interface, the WAAS device can be present in more than one subnet. This configuration allows you to optimize the response time because the content goes directly from the WAAS device to the requesting client without being redirected through a router. The WAAS device becomes visible to the client because they are configured on the same subnet.

You can assign up to four secondary addresses to an interface. These addresses become active only after you configure the primary address. No two interfaces can have the same IP address in the same subnetwork. To set these secondary IP addresses, use the **ip address** command.

If a WAAS device has one physical interface that has multiple secondary IP addresses assigned to it, the egress traffic uses the source IP address that is chosen by IP routing. If the secondary IP addresses of a WAAS device in the same subnet as the primary IP address, then the egress traffic uses the primary IP address only. If the secondary IP addresses are in a different subnet than the primary IP address, then the destination IP address determines which IP address on the WAAS device is used for the egress traffic.

Configuring Interfaces for DHCP
When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the **ip address dhcp client-id id hostname name** interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and the hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.
You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

Defining Interface Descriptions

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters. This feature is supported for the Gigabit Ethernet, 10 Gigabit Ethernet, port-channel and standby interfaces.

After you define the description for an interface, use the `show EXEC` commands to display the defined interface descriptions. Enter the `show interface interface type slot/port EXEC` command to display the defined description for a specific interface on the WAE.

Configuring a Standby Group

You can associate an interface with a standby group by using the `standby group-index interface` configuration command. To make an interface the active interface in a standby group, use the `standby group-index primary interface` configuration command. If you have already associated an interface with a standby group but have not made it the primary interface, you cannot specify the command again to add the primary designation. First, remove the interface from the standby group, then reassign it, specifying the `primary` option at the same time.

A physical interface can be a member of a standby group or a port channel, but not both.

If a device has only two interfaces, you cannot assign an IP address to both a standby group and a port channel. On such a device, only one virtual interface can be configured with an IP address.

Examples

The following example shows how to configure an attribute of an interface with a single CLI command:

```
WAE(config)# interface GigabitEthernet 1/0 full-duplex
```

The following example shows that an interface can be configured in a sequence of CLI commands:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# full-duplex
WAE(config-if)# exit
```

The following example shows how to enable a shut down interface:

```
WAE(config)# no interface GigabitEthernet 1/0 shutdown
```

The following example shows how to add an interface to a channel group:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# channel-group 1
WAE(config-if)# exit
```

The following example shows how to remove an interface from a channel group:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# no channel-group 1
WAE(config-if)# exit
```

The following example shows how to assign a secondary IP address on a Gigabit Ethernet interface on a WAAS device:

```
WAE# configure
```
The following example shows how to configure a description for a Gigabit Ethernet interface:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# description This is a GigabitEthernet interface.
```

The following example shows how to assign an IPv6 global address on a Gigabit Ethernet interface:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# ipv6 address 2001:db8::8:800:200c:417a/64
```

Related Commands

- (config) interface InlineGroup
- (config) interface PortChannel
- (config) interface standby
- (config) interface TenGigabitEthernet
- (config) interface virtual
- show interface
- show running-config
- show startup-config
(config) interface InlineGroup

To configure an InlineGroup interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface InlineGroup slot/grpnumber [autosense | bandwidth {10 | 100 | 1000} | cdp enable |
    encapsulation dot1q VLAN | full-duplex | half-duplex | inline [vlan {all | native | vlan_list}] |
    ip {access-group {acl-num | acl_name} {in | out} | load-interval seconds | shutdown}
```

```
no interface InlineGroup slot/grpnumber [autosense | bandwidth {10 | 100 | 1000} | cdp enable |
    encapsulation dot1q VLAN | full-duplex | half-duplex | inline [vlan {all | native | vlan_list}] |
    ip {access-group {acl-num | acl_name} {in | out} | load-interval seconds | shutdown}
```

Syntax Description

- **slot/grpnumber**: Slot and inline group number for the selected interface. The slot and inline group number are separated with a forward slash character (/). Valid slot and inline group values depend on the hardware platform.

- **autosense**: (Optional) Sets the Gigabit Ethernet interface to automatically sense the interface speed.

- **bandwidth**: (Optional) Sets the bandwidth of the specified interface.

 - **10**: Sets the bandwidth of the interface to 10 megabits per second (Mbps).
 - **100**: Sets the bandwidth of the interface to 100 Mbps.
 - **1000**: Sets the bandwidth of the interface to 1000 Mbps. This option is not available on all ports and is the same as autosense.

- **cdp enable**: (Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.

- **encapsulation dot1q VLAN**: (Optional) Sets the 802.1Q VLAN ID to be assigned to traffic leaving the WAE through this interface. The VLAN ID can range from 1–4094.

- **full-duplex**: (Optional) Sets the interface to full duplex.

- **half-duplex**: (Optional) Sets the interface to half duplex.

 - **Note**: We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices.

- **inline**: (Optional) Enables inline interception for an InlineGroup of interfaces.

- **vlan**: (Optional) Modifies the VLAN list parameters.

 - **all**: Applies the command to all tagged and untagged packets.
 - **native**: Specifies untagged packets.

- **vlan_list**: Comma-separated list of VLAN IDs. Restricts the inline feature to the specified set of VLANs.

- **ip**: (Optional) Enables IP configuration commands for the interface.

- **access-group**: Configures access control for IP packets on this interface using access control list (ACL).

 - **acl_num**: Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.

 - **acl_name**: Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.
In

Applies the specified ACL to inbound packets on the current interface.

Out

Applies the specified ACL to outbound packets on the current interface.

Load-interval seconds

(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.

Shutdown

(Optional) Shuts down this interface.

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

An InlineGroup interface is a logical grouping of a pair of Ethernet ports that are physically contained on the optional Cisco WAE Inline Network Adapter or Cisco Interface Module.

You can have multiple InlineGroup interfaces, which allows for multiple bypass-enabled paths for traffic to pass through the WAE appliance, making multiple-router deployments possible. The InlineGroup interfaces provide failover capability and can be assigned to any set of VLANs. (For examples of InlineGroup interface configurations, see the (config-if) inline command.)

You can configure the InlineGroup interface for link speed (bandwidth or autosense) and mode of operation (half-duplex or full-duplex).

Note

If the VLAN ID that you set with the encapsulation dot1q option does not match the VLAN ID expected by the router subinterface, you may not be able to connect to the inline interface IP address.

The inline adapter supports only a single VLAN ID for each inline group interface. If you have configured a secondary address from a different subnet on an inline interface, you must have the same secondary address assigned on the router subinterface for the VLAN.

Note

We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices. Use of half-duplex impedes system ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full duplex is configured.

Related Commands

(config) interface GigabitEthernet
(config) interface PortChannel
(config) interface standby
(config) interface TenGigabitEthernet
(config) interface virtual
show interface
show running-config
show startup-config
To configure a port-channel interface, use the `interface PortChannel` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```plaintext
interface PortChannel index [description text | ip {access-group {acl-num | acl_name} {in | out} | address ip-address netmask} | ipv6 {address autoconfig use-link-local only | ipv6 address} | nd dad-transmits range} | load-interval seconds | shutdown | standby index ]
```

Syntax Description

Syntax Description	PortChannel index	description text	ip	access-group	acl_num	acl_name	in	out	address ip-address netmask	ipv6	nd	dad-transmits range	load-interval seconds	shutdown	standby index			
--------------------	-------------------	-----------------	----	--------------	--------	---------	----	----	---------------------------	------	----	----------------------	---------------------	---------	==============			
Configures an EtherChannel with an interface number of 1–7.	(Optional) Enters a description of the interface.	(Optional) Enables IP configuration commands for the interface.	Configures access control for IP packets on this interface using an access control list (ACL).	Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.	Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.	Applies the specified ACL to inbound packets on the current interface.	Applies the specified ACL to outbound packets on the current interface.	Sets the interface IP address and netmask.	(Optional) Enables IPv6 configuration commands for the interface.	Sets the ipv6 address of the interface.	Obtain IPv6 address using auto configuration.	Enable IPv6 on interface using single link-local address.	Specify IPv6 address in X:X:X:X::X/0-128 format	Sets neighbor discovery parameters of the interface.	Number of attempts by which duplicate address should be detected.	(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.	(Optional) Shuts down this interface.	(Optional) Includes the port-channel interface in the specified standby group (1-3).

Defaults

No default behavior or values.
(config) interface PortChannel

Command Modes
- global configuration

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
Port channels (EtherChannels) for the WAAS software support the grouping of multiple same-speed network interfaces into one virtual interface. This configuration allows you to set or remove a virtual interface that consists of up to four physical interfaces. Port channels also provide interoperability with Cisco routers, switches, and other networking devices or hosts that support port channels, load balancing, and automatic failure detection and recovery based on the current link status of each interface.

You must configure port channels on the switch or router if you configure it on the WAE.

You cannot add an interface that already has a configured IP address, or is configured as primary or secondary, to a port channel.

You cannot remove a port-channel interface that is configured as the primary interface on a WAE.

Note
You cannot use the inline Ethernet interfaces that are located on the Cisco WAE Inline Network Adapter to form a port-channel interface. However, you can use the interfaces on a Cisco Interface Module to form a port-channel interface.

Note
No two interfaces can have IP addresses in the same subnet.

Examples
The following example shows how to create a port-channel interface. The port channel is port channel 1 and is assigned an IP address of 10.10.10.10 and a netmask of 255.0.0.0:

```plaintext
WAE# configure
WAE(config)# interface PortChannel 1
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
```

The following example shows how to remove a port-channel interface:

```plaintext
WAE(config)# interface PortChannel 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
WAE(config)# no interface PortChannel 1
```

Related Commands
- (config) interface GigabitEthernet
- (config) interface InlineGroup
- (config) interface standby
- (config) interface TenGigabitEthernet
- (config) interface virtual
- (config) port-channel
show interface
show running-config
show startup-config
(config) interface standby

To configure a standby interface, use the `interface standby` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface standby group-index { description text | ip address ip_address netmask | ipv6 { address { autoconfig | use-link-local only | ipv6 address } | nd dad-transmits range } | load-interval seconds | shutdown }
```

```
no interface standby group-index { description text | ip address ip_address netmask | ipv6 { address { autoconfig | use-link-local only | ipv6 address } | nd dad-transmits range } | load-interval seconds | shutdown }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group-index</code></td>
<td>Standby group interface. Specify a group index of 1–3, depending on the platform.</td>
</tr>
<tr>
<td><code>description text</code></td>
<td>Enters a description of the interface.</td>
</tr>
<tr>
<td><code>ip address ip_address netmask</code></td>
<td>Specifies the IP address and netmask of the interface.</td>
</tr>
<tr>
<td><code>ipv6</code></td>
<td>(Optional) Enables IPv6 configuration commands for the interface.</td>
</tr>
<tr>
<td><code>address</code></td>
<td>Sets the ipv6 address of the interface.</td>
</tr>
<tr>
<td><code>autoconfig</code></td>
<td>Obtain IPv6 address using auto configuration.</td>
</tr>
<tr>
<td><code>use-link-local only</code></td>
<td>Enable IPv6 on interface using single link-local address.</td>
</tr>
<tr>
<td><code>ipv6 address</code></td>
<td>Specify IPv6 address in X:X:X:X: : X/0-128 format</td>
</tr>
<tr>
<td><code>nd</code></td>
<td>Sets neighbor discovery parameters of the interface.</td>
</tr>
<tr>
<td><code>dad-transmits range</code></td>
<td>Number of attempts by which duplicate address should be detected.</td>
</tr>
<tr>
<td><code>load-interval seconds</code></td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>Shuts down this interface.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

WAVE-294/594/694/7541/7571/8541 devices support up to two standby groups.

A standby group cannot be removed if it is configured as the system primary interface.

A standby group can have up to two member interfaces.
Note: No two interfaces can have IP addresses in the same subnet.

Related Commands:

- (config) interface GigabitEthernet
- (config) interface InlineGroup
- (config) interface PortChannel
- (config) interface TenGigabitEthernet
- (config) interface virtual
- show interface
- show running-config
- show startup-config
(config) interface TenGigabitEthernet

To configure a TenGigabitEthernet interface, use the interface global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the no form of this command.

```
interface TenGigabitEthernet slot/port [cdp enable] [channel-group index] [description text] [ip {access-group {acl-num | acl_name} {in | out}] [address {ip_address netmask} [(secondary)]] [ipv6 {address {autoconfig | use-link-local only} [ipv6_address] [nd dad-transmits range]}] [dhcp [client-id id][hostname name]]] [load-interval seconds] [mtu mtusize] [shutdown] [standby group-index [primary] ]

no interface TenGigabitEthernet slot/port [cdp enable] [channel-group index] [description text] [ip {access-group {acl-num | acl_name} {in | out}] [address {ip_address netmask} [(secondary)]] [ipv6 {address {autoconfig | use-link-local only} [ipv6_address] [nd dad-transmits range]}] [dhcp [client-id id][hostname name]]] [load-interval seconds] [mtu mtusize] [shutdown] [standby group-index [primary] ]
```

Syntax Description

- **slot/port**
 TenGigabitEthernet interface to configure (slot and port number). The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.

- **cdp enable**
 (Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.

- **channel-group index**
 (Optional) Assigns the interface to the EtherChannel with the specified index (1–7).

- **description text**
 Enters a description of the interface.

- **ip**
 (Optional) Enables IP configuration commands for the interface.

- **access-group**
 Configures access control for IP packets on this interface using access control list (ACL).

 - **acl_num**
 Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.

 - **acl_name**
 Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.

 - **in**
 Applies the specified ACL to inbound packets on the current interface.

 - **out**
 Applies the specified ACL to outbound packets on the current interface.

- **address ip-address netmask**
 Sets the interface IP address and netmask.

 - **secondary**
 (Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

 - **dhcp**
 (Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).

 - **client-id id**
 (Optional) Specifies the client identifier.

 - **hostname name**
 (Optional) Specifies the hostname.

 - **ipv6**
 (Optional) Enables IPv6 configuration commands for the interface.

 - **address**
 Sets the ipv6 address of the interface.
(config) interface TenGigabitEthernet

<table>
<thead>
<tr>
<th>autoconfig</th>
<th>Obtain IPv6 address using auto configuration.</th>
</tr>
</thead>
<tbody>
<tr>
<td>use-link-local only</td>
<td>Enable IPv6 on interface using single link-local address.</td>
</tr>
<tr>
<td>ipv6 address</td>
<td>Specify IPv6 address in X::X::X::X/0-128 format</td>
</tr>
<tr>
<td>nd</td>
<td>Sets neighbor discovery parameters of the interface.</td>
</tr>
<tr>
<td>dad-transmits range</td>
<td>Number of attempts by which duplicate address should be detected.</td>
</tr>
<tr>
<td>load-interval seconds</td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>mtu mtusize</td>
<td>(Optional) Sets the interface Maximum Transmission Unit (MTU) size in bytes (576–1500).</td>
</tr>
<tr>
<td>shutdown</td>
<td>(Optional) Shuts down this interface.</td>
</tr>
<tr>
<td>standby group-index</td>
<td>(Optional) Sets the standby group number to group-index.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Sets this interface as the active interface in the standby group.</td>
</tr>
</tbody>
</table>

Defaults
The first attached interface in a standby group is defined as the active interface. There are no other default behaviors or values.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
Although the CLI contains the no interface option, you cannot apply the no command to an interface. The software displays the following error message: Removing of physical interface is not permitted.

Note
Changing the MTU can cause network disruption for up to 30 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Using the cdp enable command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the cdp enable command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface TenGigabitEthernet 1/0), use the show running-config or show startup-config commands. The ip and shutdown commands are listed separately in this command reference.

Note
When you use the ip address command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.
Configuring Multiple Secondary IP Addresses on a Single Physical Interface

Use the `interface secondary` global configuration command to configure more than one IP address on the same interface. By configuring multiple IP addresses on a single interface, the WAAS device can be present in more than one subnet. This configuration allows you to optimize the response time because the content goes directly from the WAAS device to the requesting client without being redirected through a router. The WAAS device becomes visible to the client because they are configured on the same subnet.

You can assign up to four secondary addresses to an interface. These addresses become active only after you configure the primary address. No two interfaces can have the same IP address in the same subnetwork. To set these secondary IP addresses, use the `ip address` command.

If a WAAS device has one physical interface that has multiple secondary IP addresses assigned to it, the egress traffic uses the source IP address that is chosen by IP routing. If the secondary IP addresses of a WAAS device in the same subnet as the primary IP address, then the egress traffic uses the primary IP address only. If the secondary IP addresses are in a different subnet than the primary IP address, then the destination IP address determines which IP address on the WAAS device is used for the egress traffic.

Configuring Interfaces for DHCP

When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the `ip address dhcp client-id id hostname name` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and the hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.

Note

You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

Defining Interface Descriptions

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters. This feature is supported for the Gigabit Ethernet, 10 Gigabit Ethernet, port-channel and standby interfaces.

After you define the description for an interface, use the `show EXEC` commands to display the defined interface descriptions. Enter the `show interface interface type slot/port EXEC` command to display the defined description for a specific interface on the WAE.

Configuring a Standby Group

You can associate an interface with a standby group by using the `standby group-index interface` interface configuration command. To make an interface the active interface in a standby group, use the `standby group-index primary interface` interface configuration command. If you have already associated an interface with a standby group but have not made it the primary interface, you cannot specify the command again to add the primary designation. First, remove the interface from the standby group, and then reassign it, specifying the `primary` option at the same time.

A physical interface can be a member of a standby group or a port channel, but not both.
If a device has only two interfaces, you cannot assign an IP address to both a standby group and a port channel. On such a device, only one virtual interface can be configured with an IP address.

Examples

The following example shows how to configure an attribute of an interface with a single CLI command:

```
WAE(config)# interface TenGigabitEthernet 1/0 ip access-group 1 in
```

The following example shows that an interface can be configured in a sequence of CLI commands:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# ip access-group 1 in
WAE(config-if)# exit
```

The following example shows how to enable a shut down interface:

```
WAE(config)# no interface TenGigabitEthernet 1/0 shutdown
```

The following example shows how to add an interface to a channel group:

```
WAE# configure
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# channel-group 1
WAE(config-if)# exit
```

The following example shows how to remove an interface from a channel group:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# no channel-group 1
WAE(config-if)# exit
```

The following example shows how to assign a secondary IP address on a TenGigabitEthernet interface:

```
WAE# configure
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```

The following example shows how to configure a description for a TenGigabitEthernet interface:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# description This is a TenGigabitEthernet interface.
```

Related Commands

- `(config) interface GigabitEthernet`
- `(config) interface InlineGroup`
- `(config) interface PortChannel`
- `(config) interface standby`
- `(config) interface virtual`
- `show interface`
- `show running-config`
- `show startup-config`
(config) interface virtual

To configure a virtual interface, use the interface virtual global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the no form of this command.

```
interface virtual slot/port { cdp enable | description text } 
  ip { access-group { acl-num | acl_name } { in | out } | address { ip_address netmask [secondary] } | 
  ipv6 { address { autoconfig | use-link-local-only | ipv6 address } | nd dad-transmits range } | 
  load-interval seconds | mtu mtusize | shutdown }
```

```
no interface virtual slot/port (cdp enable | description text |
  ip { access-group { acl-num | acl_name } { in | out } | address { ip_address netmask [secondary] } | 
  ipv6 { address { autoconfig | use-link-local-only | ipv6 address } | nd dad-transmits range } | 
  load-interval seconds | mtu mtusize | shutdown }
```

Syntax Description

```
slot/port
```
vWAAS interface to configure (slot and port number). The slot range is 1–2; the port range is 0. The slot number and port number are separated with a forward slash character (/).

```
cdp enable
```
(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.

```
description text
```
Enters a description of the interface.

```
ip
```
(Optional) Enables IP configuration commands for the interface.

```
access-group
```
Configures access control for IP packets on this interface using access control list (ACL).

```
acl_num
```
Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.

```
acl_name
```
Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.

```
in
```
Applies the specified ACL to inbound packets on the current interface.

```
out
```
Applies the specified ACL to outbound packets on the current interface.

```
address ip-address netmask
```
Sets the interface IP address and netmask.

```
secondary
```
(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.

```
dhcp
```
(Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).

```
client-id id
```
(Optional) Specifies the client identifier.

```
hostname name
```
(Optional) Specifies the hostname.

```
ipv6 address
```
Specify IPv6 address in X:X:X:X::X/0-128 format

```
nd
```
Sets neighbor discovery parameters of the interface.

```
dad-transmits range
```
Number of attempts by which duplicate address should be detected.
Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the `cdp enable` command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface virtual 1/0), use the `show running-config` or `show startup-config` commands.

Note
When you use the `ip address` command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.

Configuring Interfaces for DHCP
When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the `ip address dhcp client-id id hostname name` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and the hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.

Note
You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

Defining Interface Descriptions
You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters.
After you define the description for an interface, use the `show` EXEC commands to display the defined interface descriptions. Enter the `show interface virtual` EXEC command to display the defined description for a virtual interface on the WAE.

Examples

The following example shows how to assign a secondary IP address on a virtual interface on a vWAAS device:

```
WAE# configure
WAE(config)# interface virtual 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```

The following example shows how to configure a description for a virtual interface:

```
WAE(config)# interface virtual 1/0
WAE(config-if)# description This is a virtual interface.
```

Related Commands

- `(config) interface GigabitEthernet`
- `(config) interface InlineGroup`
- `(config) interface PortChannel`
- `(config) interface standby`
- `(config) interface TenGigabitEthernet`
- `show interface`
- `show running-config`
- `show startup-config`
(config) ip

To change the initial network device configuration settings, use the `ip` global configuration command. To delete or disable these settings, use the `no` form of this command.

```
(ip) ip {access list | default-gateway [management] ip-address | domain-name name1 name2 name3 | ftp management | host hostname ip-address | icmp | name-server [interface | ip-addresses]| ntp | radius management | tacacs management | path-mtu-discovery enable | route [management] dest_addrs net_addrs gateway_addrs | tftp management | unreachable}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access list</td>
<td>Specifies the access lists on a WAAS device.</td>
</tr>
<tr>
<td>default-gateway</td>
<td>Specifies the IP address of the default gateway (if not routing IP).</td>
</tr>
<tr>
<td>ip-address</td>
<td>Specifies that the default gateway or net route is for the management interface.</td>
</tr>
<tr>
<td>domain-name</td>
<td>Specifies domain names (up to three can be specified).</td>
</tr>
<tr>
<td>name1 name2 name3</td>
<td>Specifies domain names (up to three can be specified).</td>
</tr>
<tr>
<td>ftp management,</td>
<td>Configures the device to use the management interface (IPv4 or IPv6) for FTP traffic.</td>
</tr>
<tr>
<td>management-v6</td>
<td>Adds an entry to the /etc/hosts file on the device, mapping the specified hostname to the specified IP address of the host.</td>
</tr>
<tr>
<td>host hostname ip-address</td>
<td>Configures ICMP options.</td>
</tr>
<tr>
<td>name-server</td>
<td>Configures the device to use the management interface (IPv4 or IPv6) for name-server queries.</td>
</tr>
<tr>
<td>interface</td>
<td>Specifies the address of the name server and IP addresses of the name servers (IPv4 or IPv6 address up to a maximum of three).</td>
</tr>
<tr>
<td>management,</td>
<td>Configures the device to use the management interface (IPv4 or IPv6) for NTP.</td>
</tr>
<tr>
<td>management-v6</td>
<td>Configures the device to use the management interface for radius traffic.</td>
</tr>
<tr>
<td>radius management,</td>
<td>Configures the device to use the management interface (IPv4 or IPv6) for tacacs traffic.</td>
</tr>
<tr>
<td>management-v6</td>
<td>Enables RFC 1191 Path Maximum Transmission Unit (MTU) discovery.</td>
</tr>
<tr>
<td>route dest_addrs net_addrs gateway_addrs</td>
<td>Specifies the net route (destination route address, netmask address, and gateway address).</td>
</tr>
</tbody>
</table>
(config) ip

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tftp management, management-v6</td>
<td>Configures the device to use the management interface (IPv4 or IPv6) for TFTP traffic.</td>
</tr>
<tr>
<td>unreachable</td>
<td>Enables ICMP destination unreachable messages.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager. (Management interface commands are not available when device is on central manager mode)

Usage Guidelines

To define a default gateway, use the `ip default-gateway` command. If you have designated a management interface, you can configure a different default gateway for the management interface by using the `management` keyword. To remove the IP default gateway, use the `no` form of this command. The WAAS device uses the default gateway to route IP packets when there is no specific route found to the destination.

To define a default domain name, use the `ip domain-name` command. To remove the IP default domain name, use the `no` form of this command. You can enter up to three domain names. If a request arrives without a domain name appended in its hostname, the proxy tries to resolve the hostname by appending `name1`, `name2`, and `name3` in that order until one of these names succeeds.

To add an entry to the `/etc/hosts` file on the device, mapping a hostname to an IP address, use the `ip host` command. A given hostname can be mapped only to a single IP address, while an IP address can have multiple hostnames mapped to it, each one through a separate issuance of this command. To remove the entry from the `/etc/hosts` file, use the `no` form of this command. You can use the `show hosts` EXEC command to display the contents of the `/etc/hosts` file.

To specify the address of one or more name servers to use for name and address resolution, use the `ip name-server ip-addresses` command. To disable IP name servers, use the `no` form of this command. For proper resolution of the hostname to the IP address or the IP address to the hostname, the WAAS device uses DNS servers. Use the `ip name-server` command to point the WAAS device to a specific DNS server. You can configure up to three servers.

Path MTU autodiscovery discovers the MTU and automatically sets the correct value. Use the `ip path-mtu-discovery enable` command to start this autodiscovery utility. By default, this feature is disabled because the WAE does not receive ICMP packets. When this feature is disabled, the sending device uses a packet size that is smaller than 576 bytes and the next hop MTU. Existing connections are not affected when this feature is turned on or off.

Use the `ip route` command to add a specific static route for a network or host. Any IP packet designated for the specified destination uses the configured route.

To configure static IP routing, use the `ip route` command. To remove the route, use the `no` form of this command. Do not use the `ip route 0.0.0.0 0.0.0.0` command to configure the default gateway; use the `ip default-gateway` command instead.
Examples

The following example shows how to configure a default gateway for the WAAS device:

WAE(config)# ip default-gateway 192.168.7.18

The following example shows how to configure a default gateway for the management interface on the WAAS device, if it is different from the standard default gateway:

WAE(config)# ip default-gateway management 192.168.10.35

The following example shows how to configure a static IP route for the WAAS device:

WAE(config)# ip route 172.16.227.128 255.255.255.0 172.16.227.250

The following example shows how to configure a default domain name for the WAAS device:

WAE(config)# ip domain-name cisco.com

The following example shows how to add an entry to the /etc/hosts file on the WAAS device:

WAE(config)# ip host corp-B7 10.11.12.140

The following example shows how to configure a name server for the WAAS device:

WAE(config)# ip name-server 10.11.12.13

Related Commands

show hosts
show ip routes
(config) ip access-list

To create and modify access lists on a WAAS device for controlling access to interfaces or applications, and to define subnets, use the ip access-list global configuration command. To disable an access list, use the no form of this command.

```
  ip access-list {standard {acl-name | acl-num} | extended {acl-name | acl-num} | logging}
  no ip access-list {standard {acl-name | acl-num} | extended {acl-name | acl-num} | logging}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>Enables standard ACL configuration mode. The CLI enters the standard ACL configuration mode in which all subsequent commands apply to the current standard access list. The (config-std-nacl) prompt appears:</td>
</tr>
<tr>
<td></td>
<td>WAE(config-std-nacl)#</td>
</tr>
<tr>
<td></td>
<td>See the “Standard ACL Configuration Mode Commands” section for details about working with entries in a standard access list and the commands available from the standard ACL configuration mode (config-std-nacl)#.</td>
</tr>
<tr>
<td>extended</td>
<td>Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access list. The (config-ext-nacl) prompt appears:</td>
</tr>
<tr>
<td></td>
<td>WAE(config-ext-nacl)#</td>
</tr>
<tr>
<td></td>
<td>See the “Extended ACL Configuration Mode Commands” section for details about working with entries in an extended access list and the commands available from the extended ACL configuration mode (config-ext-nacl)#.</td>
</tr>
<tr>
<td>acl-name</td>
<td>Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td>acl-num</td>
<td>Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For standard access lists, the valid range is 1 to 99; for extended access lists, the valid range is 100 to 199.</td>
</tr>
<tr>
<td>logging</td>
<td>Enables logging for all IP access lists.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one permit entry.

Command Modes

global configuration

Device Modes

application-accelerator
central-manager
Usage Guidelines

Within ACL configuration mode, you can use the editing commands (list, delete, and move) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, use the exit command at the ACL configuration mode prompt.

To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. You must include at least one permit entry to create a valid access list.

Note

IP ACLs that are defined on a router take precedence over the IP ACLs that are defined on the WAE. IP ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

After creating an access list, you can include the access list in an access group using the access-group command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a permit any condition statement.

To work with access lists, enter either the ip access-list standard or ip access-list extended global configuration command. Identify the new or existing access list with a name up to 30 characters long beginning with a letter, or with a number. If you use a number to identify a standard access list, it must be between 1 and 99; for an extended access list, use a number from 100 to 199. You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

After you identify the access list, the CLI enters the appropriate configuration mode and all subsequent commands apply to the specified access list. The prompt for each configuration mode is shown in the following examples.

WAE(config)# ip access-list standard test
WAE(config-std-nacl)# exit
WAE(config)# ip access-list extended test2
WAE(config-ext-nacl)#

To define a subnet, use either a standard or an extended ACL. In an HTTP AO subnet configuration, the access-list option must have at least one condition statement in it for it to exist. The list is terminated by an implicit deny any (standard access list) or deny ip any any (extended access list) condition statement. This statement applies to HTTP AO optimizations unless the ACL has an explicit permit all statement in it. If an acl name or acl number does not exist (if no condition statements exist in the access list), it is considered as an implicit permit any (standard access list) or permit ip any any (extended access list) condition statement. We recommend that you explicitly add permit any or deny any at the end of the ACL to make all the conditions clear for the subnet feature.

Use the ip access-list logging command to log denied packets.

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it but limit host administrative access using SSH:

WAE(config)# ip access-list extended example
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group example in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...!
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group example in
exit
... 
ip access-list extended example
   permit tcp any any eq www
   permit tcp host 10.1.1.5 any eq ssh
exit
... 
The following example shows how to configure an ACL to define a subnet:

```
WAE(config)# ip access-list extended md_acl
WAE(config-ext-nacl)# permit ip 2.57.34.0 0.0.0.255 2.57.34.0 0.0.0.255
WAE(config-ext-nacl)# exit
WAE(config)# ip access-list standard 10
WAE(config-std-nacl)# deny 1.1.1.0 0.0.0.255
WAE(config-std-nacl)# permit any
WAE(config-std-nacl)# exit
```
(config) ip icmp rate-limit unreachable

To limit the rate at which Internet Control Message Protocol (ICMP) destination unreachable messages are generated, use the `ip icmp rate-limit unreachable` command in global configuration mode. To remove the rate limit, use the no form of this command.

```
ip icmp rate-limit unreachable df microseconds
no ip icmp rate-limit unreachable df microseconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Limits the rate ICMP destination unreachable messages are sent when Type 3 code 4, destination unreachable, don't fragment (DF) bit sent and fragmentation required, is specified in the IP header of the ICMP destination unreachable message.</td>
</tr>
<tr>
<td>microseconds</td>
<td>Time limit (in microseconds) in which one ICMP destination unreachable message is sent. The range is 250 microseconds to 1000000 microseconds.</td>
</tr>
</tbody>
</table>

**Defaults**
The default value is one ICMP destination unreachable message per 500 microseconds.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
This feature is enabled by default. The `no ip icmp rate-limit unreachable df` command turns off the previously configured rate limit.

The software maintains two timers: one for general destination unreachable messages and one for DF destination unreachable messages. Both share the same time limits and defaults. If the df option is not configured, the `ip icmp rate-limit unreachable` command sets the time values for DF destination unreachable messages. If the df option is configured, its time values remain independent from those of general destination unreachable messages.

**Examples**
The following example sets the rate of the ICMP destination unreachable message to one message every 10 microseconds:

```
WAE(config)# ip icmp rate-limit unreachable df 10
```

The following example turns off the previously configured rate limit:

```
WAE(config)# no ip icmp rate-limit unreachable df
```

**Related Commands**
clear arp-cache
(config) ip icmp rate-limit unreachable

(config-if) ip access-group
show ip access-list
(config) ip unreachable df
(config) ip unreachables df

To enable the generation of Internet Control Message Protocol (ICMP) unreachable messages, use the ip unreachables df command in global configuration mode. To disable this function, use the no form of this command.

```
 ip unreachables df
 no ip unreachables df
```

### Syntax Description

| Syntax Description | df | Limits the rate ICMP destination unreachable messages are sent when Type 3 code 4, destination unreachable, don't fragment (DF) bit sent and fragmentation required, is specified in the IP header of the ICMP destination unreachable message. |

| Defaults | The default value is one ICMP destination unreachable message per 500 microseconds. |

| Command Modes | global configuration |

| Device Modes | application-accelerator |

### Usage Guidelines

If the software receives a nonbroadcast packet destined for itself that uses an unknown protocol, it sends an ICMP protocol unreachable message back to the source. Similarly, if the software receives a packet that it is unable to deliver to the ultimate destination because it knows of no route to the destination address, it sends an ICMP host unreachable message to the source. This feature is enabled by default.

### Examples

The following example enables the generation of ICMP unreachable messages, as appropriate, on an interface:

```
WAE(config)# interface ethernet 0
WAE(config)# ip unreachables df
```

### Related Commands

- clear arp-cache
- (config-if) ip access-group
- show ip access-list
- (config) ip icmp rate-limit unreachable
(config) ipv6

To change the initial network device configuration settings, use the `ipv6` global configuration command. To delete or disable these settings, use the `no` form of this command.

```
ipv6 {default-gateway [management] ip-v6 address | route [management] ip-v6 address}
no ipv6 {default-gateway [management] ip-v6 address | route [management] ip-v6 address}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default-gateway ip-address</code></td>
<td>Specifies the IPv6 address of the default gateway, in the X:X:X:X format.</td>
</tr>
<tr>
<td><code>route ip-v6 address</code></td>
<td>Specifies the net route and the IPv6 address.</td>
</tr>
<tr>
<td><code>management</code></td>
<td>Specifies that the default gateway or net route is for the management interface.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

To define a default gateway, use the `ip default-gateway` command. If you have designated a management interface, you can configure a different default gateway for the management interface by using the `management` keyword. The WAAS device uses the default gateway to route IP packets when there is no specific route found to the destination. To remove the IP default gateway, use the `no` form of this command.

Use the `ip route` command to add a specific static route for a network or host. Any IP packet designated for the specified destination uses the configured route. If you have designated a management interface, you can configure a different `ip route` for the management interface by using the `management` keyword.

To configure static IP routing, use the `ip route` command. To remove the route, use the `no` form of this command.

**Examples**

The following example shows how to configure a default gateway for the WAAS device:

```
WAAS(config)# ipv6 default-gateway 2013:1:1:10::1
```

The following example shows how to configure a default gateway for the management interface on the WAAS device, if it is different from the standard default gateway:

```
WAAS(config)# ipv6 default-gateway management 2013:1:2:10::1
```

The following example shows how to configure a static IP route for the WAAS device:
(config) ipv6

WAE(config)# ipv6 route 2000:2:3:4::6/128 2013:1:1:10::1

Related Commands

- (config) ip
- show ip routes

Cisco Wide Area Application Services Command Reference
(config) kerberos

To authenticate a user that is defined in the Kerberos database, use the kerberos global configuration command. To disable authentication, use the no form of this command.

    kerberos {dns}.
    no kerberos {dns}.

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>dns</th>
<th>Enables or disables DNS lookup for Kerberos.</th>
</tr>
</thead>
</table>

Defaults

- kerberos-realm: NULL string
- port-number: 88

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

All Windows 2000 domains are also Kerberos realms. Because the Windows 2000 domain name is also a DNS domain name, the Kerberos realm name for the Windows 2000 domain name is always in uppercase letters. This capitalization follows the recommendation for using DNS names as realm names in the Kerberos Version 5 protocol document (RFC-1510) and affects only interoperability with other Kerberos-based environments.

Note

Your Windows domain server must have a Reverse DNS Zone configured for this command to execute successfully.

- The KDC server and all hosts with Kerberos authentication configured must interact within a 5-minute window or authentication will fail. All hosts, especially the KDC, should be running NTP. For information about configuring NTP, see the (config) ntp command.
- The KDC server and Admin server must have the same IP address. The default port number for both servers is port 88.
- The kerberos command modifies the krb5.conf file.

Examples

The following example shows how to configure the WAAS device to authenticate with a specified KDC in a specified Kerberos realm. The configuration is then verified.

    WAE(config)# kerberos ?
    local-realm    Set local realm name
    realm          Add domain to realm mapping
    server         Add realm to host mapping
WAE(config)# kerberos local-realm WAE.ABC.COM
WAE(config)# kerberos realm wae.abc.com WAE.ABC.COM
WAE(config)# kerberos server wae.abc.com 10.10.192.50
WAE(config)# exit
WAE# show kerberos
    Kerberos Configuration:
    -----------------------------
    Local Realm: WAE.ABC.COM
    DNS suffix: wae.abc.com
    Realm for DNS suffix: WAE.ABC.COM
    Name of host running KDC for realm:
    Master KDC: 10.10.192.50
    Port: 88

Related Commands  show kerberos
(config) kernel kdb

To enable access to the kernel debugger (kdb), use the kernel kdb global configuration command. To disable access to the kernel debugger, use the no form of this command.

    kernel kdb
    no kernel kdb

Syntax Description
This command has no arguments or keywords.

Defaults
The kernel debugger is disabled by default.

Command Modes
    global configuration

Device Modes
    application-accelerator
    central-manager

Usage Guidelines
Once enabled, kdb is automatically activated if kernel problems occur, or you can manually activate it from the local console for the WAAS device. Once activated, all normal functioning of the WAAS device is suspended until kdb is manually deactivated. The kdb prompt looks like this:

    [0]kdb>

To deactivate kdb, enter the go command at the kdb prompt. If kdb was automatically activated because of kernel problems, the system generates a core dump and restarts. If you activated kdb manually for diagnostic purposes, the system resumes normal functioning in whatever state it was when you activated kdb. In either case, if you enter the reboot command, the system restarts and normal operation resumes.

kdb is disabled by default and you must enter the kernel kdb command in global configuration mode to enable it. If kdb has been previously enabled, you can enter the no kernel kdb global configuration command to disable it. When kdb is enabled, you can activate it manually from the local console by pressing Ctrl-_, followed by Ctrl-B. On a vWAAS device, kdb can be enabled by pressing the Esc key and typing kdb.

The WAAS device is often unattended at many sites, and it is desirable for the WAAS device to automatically reboot after generating a core dump instead of requiring user intervention. Disabling the kernel debugger allows automatic recovery.

Examples
The following example shows how to enable, and then disable, access to the kernel debugger:

    WAE(config)# kernel kdb
    WAE(config)# no kernel kdb
Related Commands  

(config) kernel kdump enable
(config) kernel kdump enable

To enable the kernel crash dump mechanism, use the **kernel kdump enable** global configuration command. To disable the kernel crash dump mechanism, use the **no** form of this command.

```
kernel kdump enable

no kernel kdump enable
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
The kernel crash dump mechanism is enabled by default.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
A kernel crash dump file is stored in the following disk location:
/local/local1/crash/timestamp/vmcore

The analysis of the kernel crash dump file is stored in the following file:
/local/local1/crash/timestamp/analysis.txt

**Examples**
The following example shows how to enable, and then disable, the kernel crash dump mechanism:

```
WAE(config)# kernel kdump enable
WAE(config)# no kernel kdump enable
```

**Related Commands**

```
(config) kernel kdb
show kdump
```
(config) line

To specify terminal line settings, use the `line` global configuration command. To configure the WAAS device to not check for the carrier detect signal, use the `no` form of this command.

```
line console carrier-detect
no line console carrier-detect
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>console</th>
<th>Configures the console terminal line settings.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>carrier-detect</td>
<td>Sets the device to check the carrier detect signal before writing to the console.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

central-manager

**Examples**

The following example shows how to set the WAAS device to check for the carrier detect signal:

```
WAE(config)# line console carrier-detect
```
(config) logging console

To set system logging to console, use the `logging console` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging console { enable | priority loglevel }
```

```
no logging console { enable | priority loglevel }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables system logging.</td>
</tr>
<tr>
<td><code>priority loglevel</code></td>
<td>Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:</td>
</tr>
<tr>
<td></td>
<td>• <code>alert</code>—Immediate action needed. Priority 1.</td>
</tr>
<tr>
<td></td>
<td>• <code>critical</code>—Immediate action needed. Priority 2.</td>
</tr>
<tr>
<td></td>
<td>• <code>debug</code>—Debugging messages. Priority 7.</td>
</tr>
<tr>
<td></td>
<td>• <code>emergency</code>—System is unusable. Priority 0.</td>
</tr>
<tr>
<td></td>
<td>• <code>error</code>—Error conditions. Priority 3.</td>
</tr>
<tr>
<td></td>
<td>• <code>information</code>—Informational messages. Priority 6.</td>
</tr>
<tr>
<td></td>
<td>• <code>notice</code>—Normal but significant conditions. Priority 5.</td>
</tr>
<tr>
<td></td>
<td>• <code>warning</code>—Warning conditions. Priority 4.</td>
</tr>
</tbody>
</table>

### Defaults

- Logging: on
- Priority of message for console: warning (4)
- Log file: `/local1/syslog.txt`

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`
- `central-manager`

### Usage Guidelines

Use the `logging` command to set specific parameters of the system log file.

You can configure logging to send various levels of messages to the console using the `logging console priority` option.

### Examples

The following example shows how to send messages that have a priority code of “error” (Level 3) to the console:

```
WAE(config)# logging console priority error
```
The following example shows how to disable sending of messages that have a priority code of “error” (level 3) to the console:

```plaintext
WAЕ(config)# no logging console error
```

**Related Commands**
- clear arp-cache
- show logging
(config) logging disk

To system logging to a disk file, use the logging disk global configuration command. To disable logging functions, use the no form of this command.

logging disk {enable | filename filename | priority loglevel | recycle size}

no logging disk {enable | filename filename | priority loglevel | recycle size}

Syntax Description

<table>
<thead>
<tr>
<th>enable</th>
<th>Enables system logging.</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename filename</td>
<td>Sets the name of the syslog file.</td>
</tr>
</tbody>
</table>
| priority loglevel | Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:
  • alert—Immediate action needed. Priority 1.
  • critical—Immediate action needed. Priority 2.
  • debug—Debugging messages. Priority 7.
  • emergency—System is unusable. Priority 0.
  • error—Error conditions. Priority 3.
  • information—Informational messages. Priority 6.
  • notice—Normal but significant conditions. Priority 5.
  • warning—Warning conditions. Priority 4. |
| recycle size     | Overwrites syslog.txt when it surpasses the recycle size (1000000–50000000 bytes). |

Defaults

Logging: on

Priority of message for disk log file: debug (7)

Log file: /local1/syslog.txt

Log file recycle size: 10,000,000 bytes

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Use the logging command to set specific parameters of the system log file.

The no logging disk recycle size command sets the file size to the default value. Whenever the current log file size surpasses the recycle size, the log file is rotated. The log file cycles through at most five rotations, and they are saved as [log file name].[1-5] under the same directory as the original log. The rotated log file is the one configured using the logging disk filename command.
Examples

The following example shows how to send messages that have a priority code of “error” (level 3) to a file:

```plaintext
WAE(config)# logging disk priority error
```

Related Commands

- clear arp-cache
- show logging
(config) logging facility

To set the facility parameter for system logging, use the `logging facility` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging facility facility

no logging facility facility
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility parameter for syslog messages. Use one of the following keywords:</td>
<td></td>
</tr>
<tr>
<td><code>auth</code> — Authorization system</td>
<td></td>
</tr>
<tr>
<td><code>daemon</code> — System daemons</td>
<td></td>
</tr>
<tr>
<td><code>kernel</code> — Kernel</td>
<td></td>
</tr>
<tr>
<td><code>local0</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local1</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local2</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local3</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local4</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local5</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local6</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>local7</code> — Local use</td>
<td></td>
</tr>
<tr>
<td><code>mail</code> — Mail system</td>
<td></td>
</tr>
<tr>
<td><code>news</code> — USENET news</td>
<td></td>
</tr>
<tr>
<td><code>syslog</code> — Syslog itself</td>
<td></td>
</tr>
<tr>
<td><code>user</code> — User process</td>
<td></td>
</tr>
<tr>
<td><code>uucp</code> — UUCP system</td>
<td></td>
</tr>
</tbody>
</table>

**Defaults**

- Logging: on

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Examples**

The following example shows how to set the facility parameter to authorization system for syslog messages:

```
WAE(config)# logging facility auth
```
Related Commands

- clear arp-cache
- show logging
(config) logging host

To configure system logging to a remote host, use the logging host global configuration command. To disable logging functions, use the no form of this command.

```
logging host {hostname | ip-address} [port port_num | priority loglevel | rate-limit message_rate]
no logging host {hostname | ip-address} [port port_num | priority loglevel | rate-limit message_rate]
```

**Syntax Description**

- `hostname` Hostname of the remote syslog host. Specify up to four remote syslog hosts.
  - **Note** To specify more than one syslog host, use multiple command lines; specify one host per command.

- `ip-address` IP (IPV4/IPv6) address of the remote syslog host. Specify up to four remote syslog hosts.
  - **Note** To specify more than one syslog host, use multiple command lines; specify one host per command.

- `port port_num` (Optional) Specifies the port to be used when logging to a host. The default port is 514.

- `priority loglevel` (Optional) Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:
  - alert—Immediate action needed. Priority 1.
  - emergency—System is unusable. Priority 0.
  - error—Error conditions. Priority 3.
  - notice—Normal but significant conditions. Priority 5.

- `rate-limit message_rate` (Optional) Sets the rate limit (in messages per second) for sending messages to a host. Rate limit is 0-10000 (in messages per second). Setting the rate limit to 0 disables rate limiting.

**Defaults**

- Logging: on
- Priority of message for a host: warning (4)

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

Use the **logging** command to set specific parameters of the system log file.

To configure the WAAS device to send varying levels of event messages to an external syslog host, use the **logging host** option.

You can configure a WAAS device to send varying levels of messages to up to four remote syslog hosts using the **logging host hostname** command.

Examples

The following example shows how to send messages that have a priority code of “error” (level 3) to the remote syslog host that has an IP address of 172.31.2.160:

```
WAE(config)# logging host 172.31.2.160 priority error
```

Related Commands

- clear arp-cache
- show logging
(config) ntp

To configure the NTP server and to allow the system clock to be synchronized by a time server, use the `ntp` global configuration command. To disable this function, use the `no` form of this command.

```
ntp [authenticate | authentication-key key-num [md5 authentication-key] |
 server {ip-address | hostname} [ip-addresses | hostnames] |
 server-with-authentication {ip-address | hostname} key key-num]

ntp [authenticate | authentication-key authentication-key [md5 encryption-type] |
 server {ip-address | hostname} [ip-addresses | hostnames] |
 server-with-authentication {ip-address | hostname} authentication-key]

no ntp [authenticate | authentication-key key-num [md5 authentication-key] |
 server {ip-address | hostname} [ip-addresses | hostnames] |
 server-with-authentication {ip-address | hostname} key key-num]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate</td>
<td>(Optional) Authenticates the NTP server.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>(Optional) Sets the ID of the NTP authentication key. Maximum of 4 authentication keys can be configured. The ID must be a positive integer.</td>
</tr>
<tr>
<td>key-num</td>
<td></td>
</tr>
<tr>
<td>md5 authentication-key</td>
<td>(Optional) Sets the value for the NTP authentication key (type MD5). The key value must be from 0 to 4294967295.</td>
</tr>
<tr>
<td>server</td>
<td>(Optional) Sets the NTP server IP address for the WAAS device.</td>
</tr>
<tr>
<td>ip-address</td>
<td>NTP server IPv4 or IPv6 address (maximum of 4).</td>
</tr>
<tr>
<td>hostname</td>
<td>NTP server hostname (maximum of 4).</td>
</tr>
<tr>
<td>ip-addresses</td>
<td>(Optional) IP address of the time server that provides the clock synchronization (maximum of 4).</td>
</tr>
<tr>
<td>hostnames</td>
<td>(Optional) Hostname of the time server that provides the clock synchronization (maximum of 4).</td>
</tr>
<tr>
<td>server-with-authentication</td>
<td>(Optional) Sets the authentication NTP server IP address for the WAAS device.</td>
</tr>
<tr>
<td>key key-num</td>
<td>(Optional) Sets the NTP authentication key ID for the authentication NTP server.</td>
</tr>
</tbody>
</table>

### Defaults

The default NTP version number is 3.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager
Usage Guidelines

Note

Unexpected time changes can result in unexpected system behavior. We recommend reloading the system after enabling an NTP server.

Examples

The following example shows how to specify the NTP server IP address as the time source for a WAAS device. It also removes this configuration.

```
WAE(config)# ntp 172.16.22.44
WAE(config)# no ntp 172.16.22.44
OR
WAE(config)# ntp 2012:3:3:3::8
WAE(config)# ntp 2012:3:3:3::8
clock
(config) clock
show clock
show ntp
```
(config) object-cache enable

To confirm repurposing of SMB resources if the disk has not already been partitioned for object cache, use the object-cache enable global configuration command. To disable this function, use the “no” form of the command.

- object-cache enable
- no object-cache enable

**Syntax Description**

This command has no arguments or keywords.

**Command Default**

The default is disabled.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

When object cache is enabled, you are prompted to confirm the repurposing of SMB resources if the disk has not already been partitioned for object cache.

If this is the first time disk resources are being assigned to object cache, the object-cache enable command will prompt you to reboot the device, since the disk partitioning only takes effect on the next reboot. The configuration is then saved, and the object cache does not have to be re-enabled on the next reboot.

**Note**

To ensure success of the object-cache enable command, verify the following two conditions:

- Disk assignments have been made to object cache before you use this command.
- Use this command before you use the accelerator smb global configuration command.

**Examples**

The following example shows how to enable object cache:

(config)# object-cache enable

**Related**

(config) accelerator object-cache enable

show cache object-cache

show object-cache

show statistics object-cache
To enable peer optimization, use the **peer** global configuration command. To disable peer optimization, use the **no** form of this command.

```
peer device-id deviceid [description description] optimization enable
no peer device-id deviceid [description description] optimization enable
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>device-id deviceid</th>
<th>Configures the device ID of the peer device with which to enable or disable optimization.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>description hostname</td>
<td>(Optional) Configures a string that is the device description of the peer device. You should use the hostname of the peer WAE for the description.</td>
</tr>
<tr>
<td></td>
<td>optimization enable</td>
<td>Enables optimization with the specified peer.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use the **no peer** command to disable optimization between peer devices in a serial cluster.

Use the **peer** command to reenable optimization between peer devices if it has been disabled previously.

The `deviceid` is a hexadecimal string (for example, d4:65:01:40:40:8a) that you can obtain with the `show device-id` or `show hardware` EXEC commands.

You can configure optimization for only one peer device with this command.

**Examples**

The following example shows how to disable optimization with a serial peer device:

```
WAE(config)# no peer device-id d4:65:01:40:40:8a description wae-sj-dc2 optimization enable
```

**Related Commands**

- `show device-id`
- `show hardware`
- `(config) interception`
(config) policy-map

To configure an optimization policy map, use the `policy-map` global configuration command. To unconfigure settings, use the `no` form of this command.

```
policy-map type {waas} policymap-name [rename new-name]
no policy-map type {waas} policymap-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>waas</th>
<th>Configuration a WAAS optimization policy map.</th>
</tr>
</thead>
<tbody>
<tr>
<td>policymap-name</td>
<td>Policy map name (up to 40 alpha-numeric characters and hyphen, beginning with a letter).</td>
<td></td>
</tr>
<tr>
<td>rename new-name</td>
<td>(Optional) Renames the policy map with the specified new name.</td>
<td></td>
</tr>
</tbody>
</table>

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
Use the `policy-map` command to add or modify policy maps that associate policy actions with class maps. This command invokes the Policy Map configuration mode, which is indicated by a different prompt (`config-pmap`). For more information on Policy Class Map configuration mode commands, see the “Policy Map Configuration Mode Commands” section. To return to global configuration mode, enter the `exit` command.

You can delete a policy map by using the `no` form of this command.

The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one. For a list of the default applications, class maps, and policy rules, see the *Cisco Wide Area Application Services Configuration Guide*.

**Note**
We strongly recommend that you use the WAAS Central Manager GUI to centrally configure policy maps for your WAAS devices. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Examples**
The following example shows how to configure a WAAS optimization policy map:

```
waed(config)# policy-map type waas myPolicy
waed(config-pmap)# description My optimization policy
waed(config-pmap)# class httpx
```
(config) policy-map

waec(config-pmap-c)# optimize full accelerate http application Web

Related Commands

(config) service-policy
To configure port channel load-balancing on a WAAS device, use the `port-channel` global configuration command. To set load balancing on the port channel to its default method, use the `no` form of this command.

```bash
port-channel load-balance {src-dst-ip | src-dst-ip-port}
no port-channel load-balance {src-dst-ip | src-dst-ip-port}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>load-balance</code></td>
<td>Configures the load-balancing method.</td>
</tr>
<tr>
<td><code>src-dst-ip</code></td>
<td>Specifies the load-balancing method based on a combination of source and</td>
</tr>
<tr>
<td></td>
<td>destination IP addresses.</td>
</tr>
<tr>
<td><code>src-dst-ip-port</code></td>
<td>Specifies the load-balancing method based on a combination of source and</td>
</tr>
<tr>
<td></td>
<td>destination IP addresses/ports.</td>
</tr>
</tbody>
</table>

### Defaults

src-dst-ip-port is the default load-balancing method.

### Command Modes

global configuration

### Device Modes

application-accelerator

central-manager

### Examples

The following example shows how to configure src-dst-ip load balancing on a port channel and then disable it:

```bash
WAE(config)# port-channel load-balance src-dst-ip
WAE(config)# no port-channel load-balance src-dst-ip
```

### Related Commands

(config) interface PortChannel
(config) primary-interface

To configure the primary interface for a WAAS device, use the `primary-interface` global configuration command. To remove the configured primary interface, use the `no` form of this command.

```plaintext
primary-interface { GigabitEthernet slot/port | PortChannel index | Standby group-index | TenGigabitEthernet slot/port } { IPv4 | IPv6 } [management]

no primary-interface { GigabitEthernet slot/port | PortChannel index | Standby group-index | TenGigabitEthernet slot/port } { IPv4 | IPv6 } [management]

primary-interface virtual slot/port { IPv4 | IPv6 } [management]

no primary-interface virtual slot/port { IPv4 | IPv6 } [management]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GigabitEthernet slot/port</code></td>
<td>Selects a Gigabit Ethernet interface as the primary interface of the WAAS device. Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td><code>PortChannel index</code></td>
<td>Selects a port channel interface as the primary interface of the WAAS device. Specify the port channel index number (1–4).</td>
</tr>
<tr>
<td><code>Standby group-index</code></td>
<td>Selects a standby group as the primary interface of the WAAS device. Specify the standby group number (1–3).</td>
</tr>
<tr>
<td><code>TenGigabitEthernet slot/port</code></td>
<td>Selects a TenGigabitEthernet interface as the primary interface of the WAAS device. Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td><code>IPv4</code></td>
<td>Configures interface for IPv4 traffic.</td>
</tr>
<tr>
<td><code>IPv6</code></td>
<td>Configures interface or IPv6 traffic.</td>
</tr>
<tr>
<td><code>management</code></td>
<td>Designates the specified interface for management traffic.</td>
</tr>
<tr>
<td><code>virtual</code></td>
<td>Selects the virtual interface as the primary interface. Specify the slot range (1–2) and the port range as 0.</td>
</tr>
</tbody>
</table>

### Defaults

The default primary interface is the Gigabit Ethernet 0/0 or 1/0 interface, depending on the hardware platform. If this interface is not configured, then the first operational interface on which a link beat is detected becomes the default primary interface. Interfaces with lower number IDs are polled first (for example, Gigabit Ethernet 1/0 is checked before 2/0). The Gigabit Ethernet interfaces are polled before the port-channel interfaces.

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`
- `central-manager`

### Usage Guidelines

You can change the primary interface without disabling the WAAS device. To change the primary interface, reenter the command string and specify a different interface.
Note

If you use the `restore factory-default preserve basic-config` command, the configuration for the primary interface is not preserved. If you want to reenable the WAAS device after using the `restore factory-default preserve basic-config` command, make sure to reconfigure the primary interface after the factory defaults are restored.

Setting the primary interface to be a Standby group does not imply that Standby functionality is available. You must configure Standby interfaces using the `interface standby` global configuration command.

Examples

The following example shows how to specify the Gigabit Ethernet slot 1, port 0 as the primary interface, for IPv6 traffic, on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 1/0 IPv6
```

The following example shows how to specify the Gigabit Ethernet slot 2, port 0 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 2/0 IPv6
```

The following example shows how to specify port channel interface 1 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface portchannel 1 IPv6
```

The following example shows how to specify the Gigabit Ethernet slot 1, port 0 as the primary interface, for IPv6 traffic, on a WAAS device and designate it to be used for management traffic:

```
WAE(config)# primary-interface GigabitEthernet 1/0 IPv6 management
```

To configure a primary interface to be used as a management interface, you should have configured it with an ip and default-gateway address.

Related Commands

- `(config) interface GigabitEthernet`
- `(config) interface TenGigabitEthernet`

(config) radius-server

To configure a set of RADIUS authentication server settings on the WAAS device, use the `radius-server` global configuration command. To disable RADIUS authentication server settings, use the `no` form of this command.

```
radius-server { host hostname | ip-addr | ipv6 {ipv6-address} [primary] | key keyword | retransmit retries | timeout seconds }

no radius-server { host hostname | hostipaddr | ipv6 {ipv6-address} [primary] | key keyword | retransmit retries | timeout seconds }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host hostname</code></td>
<td>Specifies a RADIUS server. You can have a maximum of 5 servers.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IPv4 address of the RADIUS server.</td>
</tr>
<tr>
<td><code>ipv6</code></td>
<td>IPv6 address of the RADIUS server.</td>
</tr>
<tr>
<td><code>primary</code></td>
<td>(Optional) Sets the server as the primary server.</td>
</tr>
<tr>
<td><code>key keyword</code></td>
<td>Specifies the encryption key shared with the RADIUS servers. You can have a maximum of 15 characters.</td>
</tr>
<tr>
<td><code>retransmit retries</code></td>
<td>Specifies the number of transmission attempts (1–3) to an active server for a transaction. The default is 2.</td>
</tr>
<tr>
<td><code>timeout seconds</code></td>
<td>Specifies the time to wait for a RADIUS server to reply. The range is from 1 to 20 seconds. The default is 5 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

- `retransmit retries`: 2
- `timeout seconds`: 5

### Command Modes

- **global configuration**

### Device Modes

- `application-accelerator`
- `central-manager`

### Usage Guidelines

RADIUS authentication is disabled by default. You can enable RADIUS authentication and other authentication methods at the same time. You can also specify which method to use first. (See the (config) `authentication configuration` command.)

You can configure multiple RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the RADIUS farm, in the order in which they were configured. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.
Examples

The following example shows how to specify a RADIUS server, specify the RADIUS key, and accept retransmit defaults. You can verify the configuration using the `show radius-server` command.

```
WAE(config)# radius-server host 172.16.90.121
WAE(config)# radius-server key myradiuskey
WAE# show radius-server
Radius Configuration:---------------------
Radius Authentication is on
 Timeout = 5
 Retransmit = 3
 Key = ****
 Servers

```

Related Commands  `show radius-server`
(config) service-policy

To configure optimization service policy, use the `service-policy` global configuration command. To unconfigure settings, use the `no` form of this command.

```
service-policy { optimize policy-map-name | type waas { config { remove-all | restore-predefined } | set ip dscp dscp-marking } }

no service-policy { optimize policy-map-name | type { waas { config { remove-all | restore-predefined } | set ip dscp dscp-marking } }
```

**Syntax Description**

- **optimize**
  - `policy-map-name` Specifies the active optimization policy map.
- **type**
  - Specifies an operation on optimization policies.
- **waas**
  - Specifies an operation on optimization policies.
- **set ip dscp dscp-marking**
  - Specifies the default DSCP marking value, as shown in Table 3-2.

**Defaults**

The default DSCP marking value is copy.

**Command Modes**

- global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

The DSCP field in an IP packet enables different levels of service to be assigned to network traffic. Levels of service are assigned by marking each packet on the network with a DSCP code. DSCP is the combination of IP Precedence and Type of Service (ToS) fields. For more information, see RFC 2474.

A DSCP value is assigned in a policy rule and applies to all traffic associated with a class map. If a DSCP value is not assigned or defined, the default DSCP value is applied to traffic. The global default DSCP value is copy, which copies the DSCP value from the incoming packet and uses it for the outgoing packet.

*Table 3-2 lists the valid DSCP marking values that you can specify.*

**Table 3-2 DSCP Marking Values**

<table>
<thead>
<tr>
<th>DSCP Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 63</td>
<td>Marks packets with a numeric dscp from 0 to 63.</td>
</tr>
<tr>
<td>af11</td>
<td>Marks packets with AF11 dscp (001010).</td>
</tr>
<tr>
<td>af12</td>
<td>Marks packets with AF11 dscp (001100).</td>
</tr>
<tr>
<td>af13</td>
<td>Marks packets with AF13 dscp (001110).</td>
</tr>
<tr>
<td>af21</td>
<td>Marks packets with AF21 dscp (010010).</td>
</tr>
<tr>
<td>af22</td>
<td>Marks packets with AF22 dscp (010100).</td>
</tr>
</tbody>
</table>
Table 3-2  DSCP Marking Values (continued)

<table>
<thead>
<tr>
<th>DSCP Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>af23</td>
<td>Marks packets with AF23 dscp (010110).</td>
</tr>
<tr>
<td>af31</td>
<td>Marks packets with AF31 dscp (011010).</td>
</tr>
<tr>
<td>af32</td>
<td>Marks packets with AF32 dscp (011100).</td>
</tr>
<tr>
<td>af33</td>
<td>Marks packets with AF33 dscp (011110).</td>
</tr>
<tr>
<td>af41</td>
<td>Marks packets with AF41 dscp (100010).</td>
</tr>
<tr>
<td>af42</td>
<td>Marks packets with AF42 dscp (100100).</td>
</tr>
<tr>
<td>af43</td>
<td>Marks packets with AF43 dscp (100110).</td>
</tr>
<tr>
<td>cs1</td>
<td>Marks packets with CS1 (precedence 1) dscp (001000).</td>
</tr>
<tr>
<td>cs2</td>
<td>Marks packets with CS2 (precedence 2) dscp (010000).</td>
</tr>
<tr>
<td>cs3</td>
<td>Marks packets with CS3 (precedence 3) dscp (011000).</td>
</tr>
<tr>
<td>cs4</td>
<td>Marks packets with CS4 (precedence 4) dscp (100000).</td>
</tr>
<tr>
<td>cs5</td>
<td>Marks packets with CS5 (precedence 5) dscp (101000).</td>
</tr>
<tr>
<td>cs6</td>
<td>Marks packets with CS6 (precedence 6) dscp (110000).</td>
</tr>
<tr>
<td>cs7</td>
<td>Marks packets with CS7 (precedence 7) dscp (111000).</td>
</tr>
<tr>
<td>copy</td>
<td>Copies the DSCP value from the incoming packet to the outgoing packet. (default)</td>
</tr>
<tr>
<td>default</td>
<td>Marks packets with default dscp (000000).</td>
</tr>
<tr>
<td>ef</td>
<td>Marks packets with EF dscp (101110).</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the default DSCP marking value to copy:

```bash
WAE(config)# service-policy type waas set ip dscp copy
```

The following example shows how to restore optimization policies:

```bash
WAE(config)# service-policy type waas config restore-predefined
```

Related Commands

- `show service-policy`

- `(config) policy-map`
(config) smb-conf

To manually configure the parameters for a WAAS device Samba configuration file, smb.conf, use the `smb-conf` global configuration command. To return a parameter to its default value, use the `no` form of this command.

```
smb-conf section {global} name attr-name value attr-value
no smb-conf section {global} name attr-name value attr-value
```

**Syntax Description**
- `global` Specifies one of the global print parameters.
- `name attr-name` Specifies the name of the parameter in the specified section that you want to manually configure (up to 80 characters).
- `value attr-value` Specifies the value of the parameter (up to 255 characters).

See Table 3-3 for a description of the parameters for the global, print$, and printers, including the names and default values.

**Defaults**
No default behavior or values.

**Command Modes**
- global configuration

**Device Modes**
- application-accelerator
- central-manager

**Usage Guidelines**
Legacy print services are no longer supported in WAAS 4.4.x and later.

The `smb.conf` file contains a variety of samba Configuration parameters. Global parameters apply to the server. Service level parameters, which define default settings for all other sections and shares, allow you to avoid the need to set the same value repeatedly. You can override these globally set share settings and specify other values for each individual section or share.

**Table 3-3 Samba Configuration Parameters**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>global parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idmap uid</td>
<td>70000-200000</td>
<td>Range of user IDs allocated for mapping UNIX users to NT user SIDs.</td>
</tr>
<tr>
<td>idmap gid</td>
<td>70000-200000</td>
<td>Range of group IDs allocated for mapping UNIX groups to NT group SIDs.</td>
</tr>
</tbody>
</table>
### Table 3-3 Samba Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>winbind enum users</td>
<td>no</td>
<td>Parameter that does not enumerate domain users using MSRPC.</td>
</tr>
<tr>
<td>winbind enum groups</td>
<td>no</td>
<td>Parameter that does not enumerate domain groups using MSRPC.</td>
</tr>
<tr>
<td>winbind cache time</td>
<td>10</td>
<td>Time that a domain user or group information remains in the cache before expiring.</td>
</tr>
<tr>
<td>winbind use default domain</td>
<td>yes</td>
<td>Use the default domain for users and groups.</td>
</tr>
<tr>
<td>lpq cache time</td>
<td>0</td>
<td>Cache time for the results of the <code>lpq</code> command.</td>
</tr>
<tr>
<td>log file</td>
<td>/local/local1/errorlog/samba.log</td>
<td>Location where print-related errors are logged.</td>
</tr>
<tr>
<td>max log size</td>
<td>50</td>
<td>Maximum number of errors the log file can contain. After 50 errors, for each new error logged, the oldest error is removed.</td>
</tr>
<tr>
<td>socket options</td>
<td>TCP_NODELAY</td>
<td>Controls on the network layer of the operating system that allows the connection with the client to be tuned. This option is typically used to tune your Samba server for optimal performance for your local network.</td>
</tr>
<tr>
<td></td>
<td>SO_RCVBUF=8192</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_SNDBUF=8192</td>
<td></td>
</tr>
<tr>
<td>smb ports</td>
<td>50139</td>
<td>Available ports on the Samba server.</td>
</tr>
<tr>
<td>local master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a local master browser on a subnet.</td>
</tr>
<tr>
<td>domain master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a domain master browser for its given workgroup.</td>
</tr>
<tr>
<td>preferred master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a preferred master browser for its workgroup</td>
</tr>
<tr>
<td>dns proxy</td>
<td>no</td>
<td>DNS proxy that is not enabled.</td>
</tr>
<tr>
<td>template homedir</td>
<td>/local/local1/</td>
<td>Home directory on File Engine or WAE.</td>
</tr>
<tr>
<td>template shell</td>
<td>/admin-shell</td>
<td>Directory of the administrative shell.</td>
</tr>
<tr>
<td>comment</td>
<td>Comment:</td>
<td>Optional description of the print server (or share) that is visible when a client queries the server. This parameter can also be set by the <code>windows-domain comment</code> command.</td>
</tr>
<tr>
<td>netbios name</td>
<td>MYFILEENGINE</td>
<td>Name of the Samba server hosting print services. This parameter can also be set by the <code>windows-domain netbios-name</code> command.</td>
</tr>
<tr>
<td>realm</td>
<td>CISCO</td>
<td>Active Directory domain name. Always uppercase. This parameter can also be set by the <code>windows-domain realm</code> command.</td>
</tr>
<tr>
<td>wins server</td>
<td>10.10.10.1</td>
<td>IP address of the Windows domain server used to authenticate user access to print services. This parameter can also be set by the <code>windows-domain wins-server</code> command.</td>
</tr>
<tr>
<td>password server</td>
<td>10.10.10.10</td>
<td>Optional IP address of the password server used for authentication of users. This parameter can also be set by the <code>windows-domain password-server</code> command.</td>
</tr>
</tbody>
</table>
**Examples**

The following example shows how to change the maximum size of the Samba error log file from the default of 50 errors to 75 errors:

```
WAE# smb-conf global max log size 75
```

The following example shows how to change the realm from the default of CISCO to MYCOMPANYNAME:

```
WAE# smb-conf global realm MYCOMPANYNAME
```

The following example shows how to enable LDAP server signing:

```
WAE# smb-conf global name "ldap ssl" value "yes"
```

**Table 3-3 Samba Configuration Parameters (continued)**

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>domain</td>
<td>Use Windows domain server for authentication. This parameter can also be set by the <code>windows-domain security</code> command.</td>
</tr>
<tr>
<td>client schannel</td>
<td>no</td>
<td>Secure channel indicator used for Windows domain server authentication.</td>
</tr>
<tr>
<td>ldap ssl</td>
<td>none</td>
<td>Defines whether or not Samba should use SSL when connecting to the LDAP server. The default is unconfigured. If set to “off,” SSL is never used when querying the directory server. To enable the LDAPv3 StartTLS extended operation (RFC2830), set to “yes”.</td>
</tr>
</tbody>
</table>

**Related Commands**

`show smb-conf`

`windows-domain`

`(config) windows-domain`
(config) snmp-server access-list

To configure a standard access control list on a WAAS device to allow access through an SNMP agent, use the `snmp-server access-list` global configuration command. To remove a standard access control list, use the `no` form of this command.

```
(1) snmp-server access-list {num | name}
```

```
(2) no snmp-server access-list {num | name}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>num</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard access list number (1–99).</td>
<td>Standard access list name. You can use a maximum of 30 characters.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

If you are using an SNMP server ACL, you must permit the loopback interface.

**Examples**

The following example shows how to allow the SNMP agent to check against access control list 12 before accepting or dropping packets:

```
WAE(config)# snmp-server access-list 12
```

**Note**

You must first create access list 12 using the `ip access-list standard` global configuration command.

**Related Commands**

- (config) ip access-list
- show running-config
(config) snmp-server community

To enable the SNMP agent on a WAAS device and to set up the community access string to permit access to the SNMP agent, use the `snmp-server community` global configuration command. To disable the SNMP agent and remove the previously configured community string, use the `no` form of this command.

```
snmp-server community string [group groupname | rw]
```

```
no snmp-server community string [group groupname | rw]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>Community string that acts like a password and permits access to the SNMP agent. You can use up to a maximum of 64 characters.</td>
</tr>
<tr>
<td>group</td>
<td>(Optional) Specifies the group name to which the community string belongs. You can use a maximum of 64 characters.</td>
</tr>
<tr>
<td>groupname</td>
<td>(Optional) Specifies the group name to which the community string belongs. You can use a maximum of 64 characters.</td>
</tr>
<tr>
<td>rw</td>
<td>(Optional) Enables read-write access to this community string.</td>
</tr>
</tbody>
</table>

**Defaults**

The SNMP agent is disabled and a community string is not configured. When configured, an SNMP community string by default permits read-only access to all objects.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Examples**

The following example shows how to enable the SNMP agent and assign the community string `comaccess` to SNMP:

```
WAE(config)# snmp-server community comaccess
```

The following example shows how to disable the SNMP agent and remove the previously defined community string:

```
WAE(config)# no snmp-server community
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
ssh
(config) snmp-server contact

To set the system server contact string on a WAAS device, use the `snmp-server contact` global configuration command. To remove the system contact information, use the `no` form of this command.

```
(snmp-server contact line

no snmp-server contact line
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact <code>line</code></td>
<td>Specifies the text for MIB-II object <code>sysContact</code>. This is the identification of the contact person for this managed node.</td>
</tr>
</tbody>
</table>

**Defaults**

No system contact string is set.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

The system contact string is the value stored in the MIB-II system group `sysContact` object.

**Examples**

The following example shows how to set a system contact string and then remove it:

```
WAE(config)# snmp-server contact Dial System Operator at beeper # 27345
WAE(config)# no snmp-server contact
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
- (config) snmp-server notify inform
- (config) snmp-server user
- (config) snmp-server view
- ssh
(config) snmp-server enable traps

To enable the WAAS device to send SNMP traps, use the `snmp-server enable traps` global configuration command. To disable all SNMP traps or only SNMP authentication traps, use the `no` form of this command.

```
 snmp-server enable traps [alarm [clear-critical | clear-major | clear-minor | raise-critical | raise-major | raise-minor]
 snmp-server enable traps config | entity | event
 snmp-server enable traps content-engine [disk-fail | disk-read | disk-write | overload-bypass | transaction-log]
 snmp-server enable traps snmp [authentication | cold-start | linkdown | linkup]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>(Optional) Enables WAAS alarm traps.</td>
</tr>
<tr>
<td>clear-critical</td>
<td>(Optional) Enables clear-critical alarm traps.</td>
</tr>
<tr>
<td>clear-major</td>
<td>(Optional) Enables clear-major alarm traps.</td>
</tr>
<tr>
<td>clear-minor</td>
<td>(Optional) Enables clear-minor alarm traps.</td>
</tr>
<tr>
<td>raise-critical</td>
<td>(Optional) Enables raise-critical alarm traps.</td>
</tr>
<tr>
<td>raise-major</td>
<td>(Optional) Enables raise-major alarm traps.</td>
</tr>
<tr>
<td>raise-minor</td>
<td>(Optional) Enables raise-minor alarm traps.</td>
</tr>
<tr>
<td>config</td>
<td>Enables CiscoConfigManEvent traps.</td>
</tr>
<tr>
<td>entity</td>
<td>Enables SNMP entity traps.</td>
</tr>
<tr>
<td>event</td>
<td>Enables Event MIB traps.</td>
</tr>
<tr>
<td>content-engine</td>
<td>Enables SNMP WAAS traps.</td>
</tr>
<tr>
<td>disk-fail</td>
<td>(Optional) Enables disk failure error traps.</td>
</tr>
<tr>
<td>disk-read</td>
<td>(Optional) Enables disk read error traps.</td>
</tr>
<tr>
<td>disk-write</td>
<td>(Optional) Enables disk write error traps.</td>
</tr>
<tr>
<td>overload-bypass</td>
<td>(Optional) Enables WCCP overload bypass error traps.</td>
</tr>
<tr>
<td>transaction-log</td>
<td>(Optional) Enables transaction log write error traps.</td>
</tr>
<tr>
<td>snmp</td>
<td>Enables SNMP-specific traps.</td>
</tr>
<tr>
<td>authentication</td>
<td>(Optional) Enables authentication trap.</td>
</tr>
<tr>
<td>cold-start</td>
<td>(Optional) Enables cold start trap.</td>
</tr>
<tr>
<td>linkdown</td>
<td>(Optional) Enables link down trap.</td>
</tr>
<tr>
<td>linkup</td>
<td>(Optional) Enables link up trap.</td>
</tr>
</tbody>
</table>

**Defaults**

This command is disabled by default. No traps are enabled.

**Command Modes**

global configuration
Device Modes

application-accelerator
central-manager

Usage Guidelines

In the WAAS software the following six generic alarm traps are available in the CISCO-CONTENT-ENGINE-MIB:

<table>
<thead>
<tr>
<th>Name of Alarm Trap</th>
<th>Severity</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cceAlarmCriticalRaised</td>
<td>Critical</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmCriticalCleared</td>
<td>Critical</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMajorRaised</td>
<td>Major</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMajorCleared</td>
<td>Major</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMinorRaised</td>
<td>Minor</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMinorCleared</td>
<td>Minor</td>
<td>Cleared</td>
</tr>
</tbody>
</table>

Note

By default, these six general alarm traps are disabled.

These six general alarm traps provide SNMP and Node Health Manager integration. You can enable or disable each of these six alarm traps through the WAAS CLI.

To configure traps, you must enter the `snmp-server enable traps` command. If you do not enter the `snmp-server enable traps` command, no traps are sent.

The `snmp-server enable traps` command is used with the `snmp-server host` command. Use the `snmp-server host` command to specify which host or hosts receive SNMP traps. To send traps, you must configure at least one host using the `snmp-server host` command.

To allow a host to receive a trap, you must enable both the `snmp-server enable traps` command and the `snmp-server host` command for that host.

You must enable SNMP with the `snmp-server community` command.

To disable the sending of the MIB-II SNMP authentication trap, you must enter the command `no snmp-server enable traps snmp authentication`.

Examples

The following example shows how to enable the WAAS device to send all traps to the host 172.31.2.160 using the community string public:

```
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.31.2.160 public
```

The following example shows how to disable all traps:

```
WAE(config)# no snmp-server enable traps
```

Related Commands

- (config) `snmp-server community`
- (config) `snmp-server contact`
(config) snmp-server enable traps

(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view

ssh
(config) snmp-server group

To define a user security model group for a WAAS device, use the snmp-server group global configuration command. To remove the specified group, use the no form of this command.

```
snmp-server group name {v1 [notify name] [read name] [write name] |
v2c [notify name] [read name] [write name] |
v3 {auth [notify name] [read name] [write name] |
noauth [notify name] [read name] [write name] |
priv [notify name] [read name] [write name]} }

no snmp-server group name {v1 [notify name] [read name] [write name] |
v2c [notify name] [read name] [write name] |
v3 {auth [notify name] [read name] [write name] |
noauth [notify name] [read name] [write name] |
priv [notify name] [read name] [write name] }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group name</td>
<td>Specifies the SNMP group. You can enter a maximum of 64 characters.</td>
<td></td>
</tr>
<tr>
<td>v1</td>
<td>Specifies the group using the Version 1 Security Model.</td>
<td></td>
</tr>
<tr>
<td>notify name</td>
<td>(Optional) Specifies a notify view name for the group that enables you to specify a notify, inform, or trap. You can enter a maximum of 64 characters.</td>
<td></td>
</tr>
<tr>
<td>read name</td>
<td>(Optional) Specifies a read view name for the group that enables you to view only the contents of the agent. You can enter a maximum of 64 characters.</td>
<td></td>
</tr>
<tr>
<td>write</td>
<td>(Optional) Specifies a write view name for the group that enables you to enter data and configure the contents of the agent. You can enter a maximum of 64 characters.</td>
<td></td>
</tr>
<tr>
<td>v2c</td>
<td>Specifies the group using the Version 2c Security Model.</td>
<td></td>
</tr>
<tr>
<td>v3</td>
<td>Specifies the group using the User Security Model (SNMPv3).</td>
<td></td>
</tr>
<tr>
<td>auth</td>
<td>Specifies the group using the AuthNoPriv Security Level.</td>
<td></td>
</tr>
<tr>
<td>noauth</td>
<td>Specifies the group using the noAuthNoPriv Security Level.</td>
<td></td>
</tr>
<tr>
<td>priv</td>
<td>Specifies the group using the AuthPriv Security Level.</td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

The default is that no user security model group is defined.

### Command Modes

**global configuration**

### Device Modes

**application-accelerator**

**central-manager**

### Usage Guidelines

The maximum number of SNMP groups that can be created is 10.
Select one of three SNMP security model groups: Version 1 (v1) Security Model, Version 2c (v2c) Security Model, or the User Security Model (v3 or SNMPv3). Optionally, you then specify a notify, read, or write view for the group for the particular security model chosen. The v3 option allows you to specify the group using one of three security levels: auth (AuthNoPriv Security Level), noauth (noAuthNoPriv Security Level), or priv (AuthPriv Security Level).

Examples

The following example shows how to define a user security model group named acme that uses the SNMP version 1 security model and a view name of mymib for notifications:

```
WAE(config)# snmp-server group acme v1 notify mymib
```

Related Commands

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
- (config) snmp-server notify inform
- (config) snmp-server user
- (config) snmp-server view
- ssh
To specify the recipient of a host SNMP trap operation, use the
snmp-server host global configuration command. To remove the specified host, use the no form of this command.

```
 snmp-server host
 { hostname | ipv4-address/ipv6-address } communitystring
 [v2c [retry number] [timeout seconds]]
 [v3 { auth [retry number] [timeout seconds]]
 | noauth [retry number] [timeout seconds]]
 | priv [retry number] [timeout seconds]]
```

```
 no snmp-server host
 { hostname | ip-address } communitystring
 [v2c [retry number] [timeout seconds]]
 [v3 { auth [retry number] [timeout seconds]]
 | noauth [retry number] [timeout seconds]]
 | priv [retry number] [timeout seconds]]
```

### Syntax Description
- **hostname**: Hostname of the SNMP trap host that will be sent in the SNMP trap messages from the WAAS device.
- **ipv4-address/ipv6-address**: IPv4/IPv6 address of the SNMP trap host that will be sent in the SNMP trap messages from the WAE.
- **communitystring**: Password-like community string sent in the SNMP trap messages from the WAE. You can enter a maximum of 64 characters.
- **v2c**: (Optional) Specifies the Version 2c Security Model.
- **retry number**: (Optional) Sets the count for the number of retries (1–10) for the inform request. (The default is 2 tries.)
- **timeout seconds**: (Optional) Sets the timeout for the inform request (1–1000 seconds). The default is 15 seconds.
- **v3**: (Optional) Specifies the User Security Model (SNMPv3).
- **auth**: Sends a notification using the AuthNoPriv Security Level.
- **noauth**: Sends a notification using the noAuthNoPriv Security Level.
- **priv**: Sends a notification using the AuthPriv Security Level.

### Defaults

This command is disabled by default. No traps are sent. If enabled, the default version of the SNMP protocol used to send the traps is SNMP Version 1.

- **retry number**: 2 retries
- **timeout**: 15 seconds

### Command Modes
- global configuration

### Device Modes
- application-accelerator
- central-manager
Usage Guidelines

If you do not enter an `snmp-server host` command, no traps are sent. To configure the WAAS device to send SNMP traps, you must enter at least one `snmp-server host` command. To enable multiple hosts, you must enter a separate `snmp-server host` command for each host. The maximum number of `snmp-server host` commands is four.

When multiple `snmp-server host` commands are given for the same host, the community string in the last command is used.

The `snmp-server host` command is used with the `snmp-server enable traps` command to enable SNMP traps.

You must enable SNMP with the `snmp-server community` command.

Examples

The following example shows how to send the SNMP traps defined in RFC 1157 to the host specified by the IP address 172.16.2.160. The community string is comaccess:

```
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.16.2.160 comaccess
```

The following example shows how to remove the host 172.16.2.160 from the SNMP trap recipient list:

```
WAE(config)# no snmp-server host 172.16.2.160
```

Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server location`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `ssh`
(config) snmp-server location

To set the SNMP system location string on a WAAS device, use the **snmp-server location** global configuration command. To remove the location string, use the **no** form of this command.

```
 snmp-server location line
 no snmp-server location line
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>location line</th>
<th>Specifies the text for MIB-II object <code>sysLocation</code>. This string describes the physical location of this node.</th>
</tr>
</thead>
</table>

**Defaults**

No system location string is set.

**Command Modes**

global configuration

**Device Modes**

application-accelerator  
central-manager

**Usage Guidelines**

The system location string is the value stored in the MIB-II system group system location object. You can see the system location string with the `show snmp` EXEC command.

**Examples**

The following example shows how configure a system location string:

```
 WAAS(config)# snmp-server location Building 3/Room 214
```

**Related Commands**

| (config) snmp-server community  
| (config) snmp-server contact  
| (config) snmp-server enable traps  
| (config) snmp-server group  
| (config) snmp-server host  
| (config) snmp-server mib  
| (config) snmp-server notify inform  
| (config) snmp-server user  
| (config) snmp-server view  
| ssh |
(config) snmp-server mib

To configure persistence for the SNMP Event MIB, use the `snmp-server mib` global configuration command. To disable the Event MIB, use the `no` form of this command.

```
 snmp-server mib persist event
 no snmp-server mib persist event
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>persist</td>
<td>Configures MIB persistence.</td>
</tr>
<tr>
<td>event</td>
<td>Enables MIB persistence for the Event MIB.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

The Event MIB can set the threshold on any MIB variables supported by the WAAS software and store the threshold permanently on the disk.

The WAAS software implementation of SNMP supports the following MIBs:

- ACTONA-ACTASTORE-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-CDP-MIB
- CISCO-CONTENT-ENGINE-MIB (partial)
- CISCO-ENTITY-ASSET-MIB
- CISCO-SMI
- CISCO-TC
- ENTITY-MIB
- EVENT-MIB
- HOST-RESOURCES-MIB
- MIB-II
- SNMP-COMMUNITY-MIB
- SNMP-FRAMEWORK-MIB
- SNMP-NOTIFICATION-MIB
- SNMP-TARGET-MIB
- SNMP-USM-MIB
• SNMPv2
• SNMP-VACM-MIB

Note The WAAS software supports six generic alarm traps in the CISCO-CONTENT-ENGINE-MIB for SNMP and Node Health Manager integration.

Examples The following example shows how to set persistence for the Event MIB:

```
WAE(config)# snmp-server mib persist event
```

Related Commands

```
(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
ssh
```
(config) snmp-server monitor user

To specify the user to be used for active monitoring of triggers, use the **snmp-server monitor-user** global configuration command. To disable the user from monitoring, use the **no** form of this command.

**snmp-server monitor-user existing snmpv3 user**

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Using the **snmp-server monitor-user** global configuration command, you can specify the user that will be used for active monitoring of triggers. Any SNMP V3 user can be configured as a Monitor User. This user should have sufficient permission to run a query on the objects specified in triggers. No priv key should be associated with this user, because this user monitors triggers internally.

**Examples**
The following example shows how to specify the user that is to be used for active monitoring of triggers:

```
WAE(config)# snmp-server monitor-user acme admin
```

**Related Commands**

- (config) snmp-server user
- (config) snmp-server trigger
- (config) snmp-server trap-source
(config) snmp-server notify inform

To configure the SNMP notify inform request on a WAAS device, use the snmp-server notify inform global configuration command. To return the setting to the default value, use the no form of this command.

```
 snmp-server notify inform

 no snmp-server notify inform
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
If you do not enter the snmp-server notify inform command, the default is an SNMP trap request.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to configure an SNMP notify inform request versus the default SNMP trap:

```
WAE(config)# snmp-server notify inform
```

**Related Commands**
(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server user
(config) snmp-server view
ssh
(config) snmp-server trap-source

To set the source interface from which SNMP traps are sent on a WAAS device, use the snmp-server trap-source global configuration command. To remove the trap source configuration, use the no form of this command.

```
snmp-server trap-source { GigabitEthernet slot/port | PortChannel index | Standby grpnumber | TenGigabitEthernet slot/port }
```

```
no snmp-server trap-source { GigabitEthernet slot/port | PortChannel index | Standby grpnumber | TenGigabitEthernet slot/port }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>GigabitEthernet slot/port</th>
<th>PortChannel index</th>
<th>Standby grpnumber</th>
<th>TenGigabitEthernet slot/port</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selects a Gigabit Ethernet interface to configure as the trap source. The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</td>
<td>Selects a port channel (1–4) to configure as the trap source.</td>
<td>Selects a standby group (1–3) to configure as the trap source.</td>
<td>Selects a TenGigabitEthernet interface to configure as the trap source. The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</td>
</tr>
</tbody>
</table>

### Defaults

No system trap source is set.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Examples

The following example shows how to configure gigabit Ethernet interface 1/0 as the trap source:

```
WAES(config)# snmp-server trap-source gigabitethernet 1/0
```

### Related Commands

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server mib
- (config) snmp-server notify inform
(config) snmp-server user

(config) snmp-server view

(config) snmp-server trigger
To configure thresholds for a user-selected MIB object for monitoring purposes on a WAAS device, use the `snmp-server trigger` global configuration command. To remove access, use the `no` form of this command.

```plaintext
snmp-server trigger {trigger name | mib varname [wildcard] | wait-time
[absent [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
equal [absolute threshold value | delta threshold value] |
greater-than [absolute threshold value | delta threshold value] |
less-than [absolute threshold value | delta threshold value] |
on-change [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
present [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
threshold lower threshold value |
}
}

no snmp-server trigger {trigger name | mib varname [wildcard] | wait-time
[absent [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
equal [absolute threshold value | delta threshold value] |
greater-than [absolute threshold value | delta threshold value] |
less-than [absolute threshold value | delta threshold value] |
on-change [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
present [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3]
[LINE] |
threshold lower threshold value |
}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trigger name</td>
<td>Configures a custom defined name for the notification trigger that you want to monitor.</td>
</tr>
<tr>
<td>mibvar</td>
<td>Configures a threshold for a MIB object. Specifies the name of the MIB object that you want to monitor or the MIB object for which you want to remove a monitoring threshold.</td>
</tr>
<tr>
<td>wildcard</td>
<td>(Optional) Treats the specified MIB variable name as having a wildcard.</td>
</tr>
<tr>
<td>wait-time</td>
<td>(Optional) Number of seconds, 60–600, to wait between trigger samples.</td>
</tr>
<tr>
<td>absent</td>
<td>(Optional) Applies the absent existence test.</td>
</tr>
<tr>
<td>LINE</td>
<td>(Optional) Description of the threshold being created.</td>
</tr>
<tr>
<td>mibvar1 mibvar1</td>
<td>(Optional) Adds a MIB object to the notification.</td>
</tr>
<tr>
<td>mibvar2 mibvar2</td>
<td>(Optional) Adds a MIB object to the notification.</td>
</tr>
<tr>
<td>mibvar3 mibvar3</td>
<td>(Optional) Adds a MIB object to the notification.</td>
</tr>
<tr>
<td>equal</td>
<td>Applies the equality threshold test.</td>
</tr>
<tr>
<td>absolute value</td>
<td>(Optional) Specifies an absolute value sample type.</td>
</tr>
</tbody>
</table>
(config) snmp-server trigger

**delta value**
Specifies a delta sample type.

**greater-than**
Applies the greater-than threshold test.

**less-than**
Applies the less-than threshold test.

**on-change**
Applies the changed existence test.

**present**
(Optional) Applies the present test.

**threshold**
Configures a maximum and minimum threshold for a MIB object.

---

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Using the `snmp-server trigger` global configuration command, you can define additional SNMP traps for other MIB objects of interest to your particular configuration. You can select any MIB object from any of the support MIBs for your trap. The trap can be triggered based on a variety of tests:

- **absent**—A specified MIB object that was present at the last sampling is no longer present as of the current sampling.
- **equal**—The value of the specified MIB object is equal to the specified threshold.
- **greater-than**—The value of the specified MIB object is greater than the specified threshold value.
- **less-than**—The value of the specified MIB object is less than the specified threshold value.
- **on-change**—The value of the specified MIB object has changed since the last sampling.
- **present**—A specified MIB object is present as of the current sampling that was not present at the previous sampling.
- **threshold**—Min value and Max values specifying the lower and upper thresholds.

The threshold value can be based on an *absolute* sample type or on a *delta* sample type. An absolute sample type is one in which the test is evaluated against a fixed integer value between zero and 4294967295. A delta sample type is one in which the test is evaluated against the change in the MIB object value between the current sampling and the previous sampling.

After you configure SNMP traps, you must use the `snmp-server enable traps event` global configuration command for the event traps you just created to be generated. To save the MIB data using the `write mib-data` EXEC command.

**Note**
You can create valid triggers only on read-write and read-only MIB objects. If you try to create a trigger on a read-create MIB object, you receive an error message.
The following example shows how to create a threshold for the MIB object `esConTabIsConnected` so that a trap is sent when the connection from the Edge WAE to the Core WAE is lost:

```
WAE(config)# snmp-server trigName esConTabIsConnected ?
 <60-600> The number of seconds to wait between trigger sample
 wildcard Option to treat the MIB variable as wildcarded
WAE(config)# snmp-server trigName esConTabIsConnected wildcard 600 ?
 absent Absent existence test
 equal Equality threshold test
 greater-than Greater-than threshold test
 less-than Less-than threshold test
 on-change Changed existence test
 present Present present test
 threshold Threshold test
WAE(config)# snmp-server trigName esConTabIsConnected wildcard 600 less-than?
 absolute Absolute sample type
 delta Delta sample type
WAE(config)# snmp-server trigName esConTabIsConnected wildcard 600 less-than absolute ?
 <0-4294967295> Less-than threshold value
WAE(config)# snmp-server trigName esConTabIsConnected wildcard 600 less-than absolute 1 ?
 LINE Trigger-comment
 mibvar1 Optional mib object to add to the notification
WAE(config)# snmp-server trigName esConTabIsConnected wildcard 600 less-than absolute 1
 "Lost the connection with the core server."
WAE(config)# snmp-server enable traps event
```

Once you have configured the WAE to send SNMP traps, you can view the results of these newly created traps using the `show snmp events` EXEC command.

You can also delete user-created SNMP traps. The following example shows how to delete the trap set for `esConTabIsConnected` that we created in the previous example.

```
WAE# snmp trigName delete esConTabIsConnected
```

### Related Commands

- `show snmp`
- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server host`
- `(config) snmp-server location`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `write`
(config) snmp-server user

To define a user who can access the SNMP server, use the `snmp-server user` global configuration command. To remove access, use the `no` form of this command.

```
snmp-server user name group
 [auth {md5 password [priv password] | sha password [priv password]} |
 remote octetstring [auth {md5 password [priv password] |
 sha password [priv password]}]]]

no snmp-server user name group
 [auth {md5 password [priv password] | sha password [priv password]} |
 remote octetstring [auth {md5 password [priv password] |
 sha password [priv password]}]]]
```

**Syntax Description**

- **name group**
  Name and group of the SNMP user. Use letters, numbers, dashes, and underscores, but no blanks. The name specifies the user on the SNMP host who wants to communicate with the SNMP agent on the WAAS device. You can enter a maximum of 32 characters for the name. The group specifies the group to which the SNMP user belongs. You can enter a maximum of 64 characters for the group.

- **auth** (Optional) Configures user authentication parameters.

- **md5 password**
  Configures HMAC MD5 user authentication password.

- **priv password** (Optional) Alphanumeric string (256 characters maximum) that configures the authentication HMAC-MD5 user private password. The following special characters are not supported: space, backwards single quote ('), double quote ("), pipe (|), or question mark (?).

  **Note** For SNMPv3 users using WAAS Software Version 6.x and later, the private password must be a minimum of 8 alphanumeric characters and a maximum of 256 alphanumeric characters.

- **sha password**
  Configures the HMAC-SHA authentication password. You can enter a maximum of 256 characters.

- **remote octetstring** (Optional) Specifies the globally unique identifier (engineID) for a remote SNMP entity (for example, the SNMP network management station) for at least one of the SNMP users (10 to 64 characters, not counting colons).

  To send an SNMPv3 inform message, you must configure at least one SNMPv3 user with a remote SNMP ID option on the WAAS device. The SNMP ID is entered in octet string form. For example, if the IP address of a remote SNMP entity is 192.147.142.129, then the octet string would be 00:00:63:00:00:00:a1:c0:93:8e:81. (Colons will be removed in the show running-config command output.)

**Defaults**

No default behavior or values.
(config) snmp-server user

Command Modes
- global configuration

Device Modes
- application-accelerator
- central-manager

Examples
The following example shows how to create an SNMPv3 user account on the WAAS device. The SNMPv3 user is named acme and belongs to the group named admin. Because this SNMP user account has been set up with no authentication password, the SNMP agent on the WAAS device does not perform authentication on SNMP requests from this user.

WAE(config)# snmp-server user acme admin

Related Commands
- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
- (config) snmp-server notify inform
- (config) snmp-server view
- (config) snmp-server monitor user
- ssh
(config) snmp-server view

To define an SNMPv2 MIB view on a WAAS device, use the `snmp-server view` global configuration command. To remove the MIB view definition, use the `no` form of this command.

```
snmp-server view viewname MIBfamily {excluded | included}

no snmp-server view viewname MIBfamily {excluded | included}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>viewname MIBfamily</code></td>
<td>Name of this family of view subtrees and a subtree of the MIB. You can enter a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>excluded</code></td>
<td>Excludes the MIB family from the view.</td>
</tr>
<tr>
<td><code>included</code></td>
<td>Includes the MIB family in the view.</td>
</tr>
</tbody>
</table>

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to define an SNMPv2 MIB view:

```
WAE(config)# snmp-server view fileview ciscoFileEngineMIB included
```

**Related Commands**
(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
ssh
(config) sshd

To enable the SSH daemon on a WAAS device, use the `sshd` global configuration command. To disable the SSH daemon on a WAAS device, use the `no` form of this command.

```
sshd [allow-non-admin-users | enable | password-guesses number | timeout seconds]

no sshd [allow-non-admin-users | enable | password-guesses number | timeout seconds]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>allow-non-admin-users</code></td>
<td>Allows nonadministrative users to gain SSH access to the chosen device (or device group). By default, this option is disabled. <strong>Note</strong> Nonadministrative users are nonsuperuser administrators. All nonsuperuser administrators have restricted access to a WAAS device because their login accounts have a privilege level of 0. Superuser administrators have full access to a WAAS device because their login accounts have the highest level of privileges, a privilege level of 15.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the SSH daemon on a WAAS device.</td>
</tr>
<tr>
<td><code>password-guesses</code></td>
<td>Specifies the maximum number of allowable password guesses per connection (1–3). The default is 3.</td>
</tr>
<tr>
<td><code>number</code></td>
<td></td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Configures the number of seconds for which an SSH session will be active during the negotiation (authentication) phase between the client and server before it times out. The SSH login grace time value in seconds is 1–99999. The default is 300. If you have established an SSH connection to the WAAS device but have not entered the username when prompted at the login prompt, the connection will be terminated by the WAAS device if the grace period expires even after a successful login.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

By default, the SSH daemon is disabled on a WAAS device. If you use the `sshd enable` command to enable the SSH daemon on a WAAS device, the following default settings are used:

- `password-guesses number`: 3 guesses
- `timeout seconds`: 300 seconds
- `version`: ssh version 2 protocol is enabled

**Note** The SSH version 1 protocol is no longer supported. Only the SSH version 2 protocol is supported by the WAAS device.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager
Usage Guidelines

Before you enable the `sshd` command, use the `ssh-key-generate` command to generate a private and a public host key, which the client uses to verify the server identity.

Although the `sshd password-guesses` command specifies the number of allowable password guesses from the SSH server side, the actual number of password guesses for an SSH login session is determined by the combined number of allowable password guesses of the SSH server and the SSH client. Some SSH clients limit the maximum number of allowable password guesses to three (or to one in some cases), even though SSH server side allows more than this number of guesses.

When you enter the `sshd password-guesses` command and specify $n$ allowable password guesses, certain SSH clients interpret this number as $n+1$. For example, when configuring the number of guesses to two by issuing the command `sshd password-guesses 2` for a particular device, SSH sessions from some SSH clients will allow three password guesses.

**Note**

You can use the Telnet daemon with the WAAS device. SSH does not replace Telnet.

Examples

The following example shows how to enable and configure a Secure Shell daemon on the WAAS device:

```
WAE(config)# sshd enable
WAE(config)# sshd timeout 20
```

Related Commands

`sshd enable`
(config) ssh-key-generate

To generate the SSH host key for a WAAS device, use the ssh-key-generate global configuration command. To remove the SSH key, use the no form of this command.

```
ssh-key-generate [key-length length]
no ssh-key-generate [key-length length]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>key-length length</th>
<th>(Optional) Configures the length of the SSH key. The number of bits is 768–2048.</th>
</tr>
</thead>
</table>

### Defaults

key-length length: 1024 bits

### Command Modes

global configuration

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Before you enter the sshd enable command, enter the ssh-key-generate command to generate a private and a public host key, which the client programs use to verify a server identity.

When you use an SSH client and log in to a WAAS device, the public key for the SSH daemon that is running on the device is recorded in the client machine known_hosts file in your home directory. If you regenerate the host key by specifying the number of bits in the key-length command option, you must delete the old public key entry associated with the WAAS device in the known_hosts file before running the SSH client program to log in to the WAAS device. When you use the SSH client program after deleting the old entry, the known_hosts file is updated with the new SSH public key for the WAAS device.

### Examples

The following example shows how to generate an SSH public key and then enables the SSH daemon on the WAAS device:

```
WAE(config)# ssh-key-generate key-length 860
Ssh host key generated successfully
Saving the host key to box ...
Host key saved successfully
WAE(config)# sshd enable
Starting ssh daemon ...
Ssh daemon started successfully
```

### Related Commands

(config) sshd
(config) stats-collector logging

To configure the statistics collector for the SMB accelerator, use the `stats-collector logging` global configuration command. To unconfigure the statistics collector, use the `no` form of this command.

```
stats-collector logging {enable | rate {10 | 30}}

no stats-collector logging {enable | rate {10 | 30}}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the statistics collector.</td>
</tr>
<tr>
<td>`rate {10</td>
<td>30}`</td>
</tr>
</tbody>
</table>

**Defaults**

The statistics collector is disabled. The collection interval is set to 30 seconds.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

This command configures periodic statistics logging for the SMB application accelerator. After enabling logging, you can disable it with the `no` form of the command. Statistics for the most recent 14 days are saved.

**Examples**

The following example shows how to enable statistics collection:

```
WAE(config)# stats-collector logging enable
```

The following example shows how to disable statistics collection:

```
WAE(config)# no stats-collector logging enable
```

**Related Commands**

- `copy monitoring-log`
(config) system jumbomtu

To configure a jumbo MTU on all devices interfaces, use the system jumbomtu global configuration command. To remove the jumbo MTU, use the no form of this command.

    system jumbomtu size
    no system jumbomtu size

**Syntax Description**

| size | Configures the size of the MTU (576–9000 or 9216 bytes, depending on platform). |

**Defaults**

MTU size is 1500 bytes.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

This command is available only on the following platforms: WAVE-294/594/694/7541/7571/8541, and vWAAS. This command changes the MTU setting for all interfaces on the device, including logical interfaces with at least one physical member, and may cause current active connections to time out. After you change the MTU using this command, you cannot change the MTU of individual interfaces.

**Examples**

The following example shows how to configure a jumbo MTU:

WAE(config)# system jumbomtu 9000
Changing system mtu setting will change the MTU values on all the interfaces. This may cause current active connections in the device to timeout.
Are you sure you want to do this? (y/n) [n]y

**Related Commands**

show interface
To enable user authentication with a TACACS+ server, use the **authentication** global configuration command. (See the `(config) authentication configuration` command.)
When AAA Command Authorization is enabled for a device through the Central Manager GUI, TACACS+ CLI configuration changes are not allowed and `tacacs` commands will fail.

You can use the TACACS+ remote database to maintain login and configuration privileges for administrative users. The `tacacs host` command allows you to configure the network parameters required to access the remote database.

Use the `tacacs key` command to specify the TACACS+ key, used to encrypt the packets transmitted to the server. This key must be the same as the one specified on the server daemon. The maximum number of characters in the key must not exceed 32 printable ASCII characters. An empty key string is the default. All leading spaces are ignored; spaces within and at the end of the key string are not ignored. Double quotes are not required even if there are spaces in the key.

**Note** If you configure a TACACS+ key on the WAAS device (the TACACS+ client), make sure that you configure an identical key on the external TACACS+ server. Do not use the following characters: backwards single quote (‘), double quote (“), pipe (|), closing bracket (]), number sign (#), or backslash (\).

The `tacacs timeout` is the number of seconds that the WAAS device waits before declaring a timeout on a request to a particular TACACS+ server. The range is from 1 to 20 seconds, with 5 seconds as the default. The number of times that the WAAS device repeats a retry-timeout cycle before trying the next TACACS+ server is specified by the `tacacs retransmit` command. The default is two retry attempts.

Three unsuccessful login attempts are permitted. TACACS+ logins may appear to take more time than local logins depending on the number of TACACS+ servers and the configured timeout and retry values.

Use the `tacacs password ascii` command to specify the TACACS+ password type as ASCII. The default password type is PAP (Password Authentication Protocol). When the `no tacacs password ascii` command is used to disable the ASCII password type, the password type is once again reset to PAP.

If you do not use the `primary` keyword to specify the primary server, the primary server is the first one configured. If you remove the primary server by using the `no tacacs host` command, the first configured server (other than the removed server) becomes the primary server.

You can configure multiple TACACS+ servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+, in the order in which they were configured. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

**Examples**

The following example shows how to configure the key used in encrypting packets:

```
WAE(config)# tacacs key human789
```

The following example shows how to configure the host named spearhead as the primary TACACS+ server:

```
WAE(config)# tacacs host spearhead primary
```

The following example shows how to set the timeout interval for the TACACS+ server:

```
WAE(config)# tacacs timeout 10
```
The following example shows how to set the number of times that authentication requests are retried (retransmitted) after a timeout:

WAE(config)# tacacs retransmit 5

The following example shows the password type to be PAP by default:

WAE# show tacacs

Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)

TACACS+ Configuration:
------------------------
TACACS+ Authentication is off
Key = *****
Timeout = 5
Retransmit = 2

Password type: pap

Server Status
-------------- -----
10.107.192.148 primary
10.107.192.168
10.77.140.77

You can configure the password type to be ASCII using the `tacacs password ascii` command. You can then verify the changes using the `show tacacs` command.

WAE(config)# tacacs password ascii
WAE(config)# exit
WAE# show tacacs

Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)

TACACS+ Configuration:
------------------------
TACACS+ Authentication is off
Key = *****
Timeout = 5
Retransmit = 2

Password type: ascii

Server Status
-------------- -----
10.107.192.148 primary
10.107.192.168
10.77.140.77

Related Commands

- `(config) authentication configuration`  
- `show authentication`  
- `show statistics authentication`  
- `show statistics tacacs`  
- `show tacacs`
(config) tcp

To configure TCP parameters on a WAAS device, use the tcp global configuration command. To disable TCP parameters, use the no form of this command.

```
tcp { cwnd-base segments | ecn enable | increase-xmit-timer-value value | init-ss-threshold value | keepalive-probe-cnt count | keepalive-probe-interval seconds | keepalive-timeout seconds}

no tcp { cwnd-base segments | ecn enable | increase-xmit-timer-value value | init-ss-threshold value | keepalive-probe-cnt count | keepalive-probe-interval seconds | keepalive-timeout seconds}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cwnd-base segments</code></td>
<td>Sets initial send congestion window in segments (1–10).</td>
</tr>
<tr>
<td><code>ecn enable</code></td>
<td>Enables TCP explicit congestion notification.</td>
</tr>
<tr>
<td><code>increase-xmit-timer-value</code></td>
<td>Specifies the factor (1-3) used to modify the length of the retransmit timer by 1 to 3 times the base value determined by the TCP algorithm. Note: Use this keyword with caution. The keyword can improve throughput when TCP is used over slow reliable connections but should never be changed in an unreliable packet delivery environment.</td>
</tr>
<tr>
<td><code>init-ss-threshold value</code></td>
<td>Sets initial slow-start threshold value (2-10).</td>
</tr>
<tr>
<td><code>keepalive-probe-cnt count</code></td>
<td>Specifies the length of time that the WAAS device keeps an idle connection open. The number of probe counts is 1–10.</td>
</tr>
<tr>
<td><code>keepalive-probe-interval</code></td>
<td>Specifies the number of times that the WAAS device retries a connection. The keepalive probe interval is in seconds (1–300).</td>
</tr>
<tr>
<td><code>keepalive-timeout</code></td>
<td>Specifies the length of time that the WAAS device keeps a connection open before disconnecting. The keepalive timeout is in seconds (1–3600).</td>
</tr>
</tbody>
</table>

### Defaults

- `tcp cwnd-base`: 2
- `tcp increase-xmit-timer-value`: 1
- `tcp init-ss-threshold`: 2 segments
- `tcp keepalive-probe-cnt`: 4
- `tcp keepalive-probe-interval`: 75 seconds
- `tcp keepalive-timeout`: 90 seconds

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager
Usage Guidelines

The following are the usage guidelines for this command:

⚠️ Caution

Be careful using these parameters. In nearly all environments, the default TCP settings are adequate. Fine tuning of TCP settings is for network administrators who are experienced and have a full understanding of TCP operation details. See the Cisco Wide Area Application Services Configuration Guide for more information.

Use the `tcp keepalive-probe-cnt` global configuration command to specify how many times the WAAS device should attempt to connect to the device before closing the connection. The count can be from 1 to 10. The default is 4 attempts.

Use the `tcp keepalive-probe-interval` global configuration command to specify how often the WAAS device is to send out a TCP keepalive. The interval can be from 1 to 120 seconds. The default is 75 seconds.

Use the `tcp keepalive-timeout` global configuration command to wait for a response (the device does not respond) before the WAAS device logs a miss. The timeout can be from 1 to 120 seconds. The default is 90 seconds.

Examples

The following example shows how to enable a TCP explicit congestion notification:

```bash
WAES(config)# tcp ecn enable
```

Related Commands

- `clear arp-cache`
- `show statistics tcp`
- `show tcp`
(config) telnet enable

To enable Telnet on a WAAS device, use the **telnet enable** global configuration command. To disable this feature, use the **no** form of this command.

```
telnet enable
no telnet enable
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
By default, the Telnet service is enabled on a WAAS device.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Use terminal emulation software to start a Telnet session with a WAAS device. You must use a console connection instead of a Telnet session to define device network settings on the WAAS device. However, after you have used a console connection to define the device network settings, you can use a Telnet session to perform subsequent configuration tasks.

**Note**
Messages transported between the client and the device are not encrypted.

**Examples**
The following example shows how to enable the use of Telnet on the WAAS device:
```
WAE(config)# telnet enable
```

**Related Commands**
telnet
show telnet
(config) tfo exception

To configure exception handling for Traffic Flow Optimization (TFO), use the `tfo exception` global configuration command. To disable TFO exception handling configuration, use the `no` form of this command.

```
tfo exception { coredump | debug | no-coredump }
no tfo exception { coredump | debug | no-coredump }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coredump</td>
<td></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

### Defaults

The default is coredump.

### Command Modes

global configuration

### Device Modes

application-accelerator

### Examples

The following example shows how to write TFO exception handling to a core file using the `tfo exception` command:

```
WAE(config)# tfo exception coredump
```

### Related Commands

- `(config) tfo optimize`
(config) tfo optimize

To configure a WAE for Traffic Flow Optimization (TFO), use the `tfo optimize` global configuration command. To disable TFO optimization, use the `no` form of this command.

```
tfo optimize {DRE {yes | no} compression {LZ | none} | full}
no tfo optimize {DRE {yes | no} compression {LZ | none} | full}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>DRE</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Configures TFO optimization with or without Data Redundancy Elimination (DRE).</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>Enables DRE.</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>Disables DRE.</td>
</tr>
<tr>
<td>compression</td>
<td></td>
<td>Configures TFO optimization with or without generic compression.</td>
</tr>
<tr>
<td>LZ</td>
<td></td>
<td>Configures TFO optimization with Lempel-Ziv (LZ) compression.</td>
</tr>
<tr>
<td>none</td>
<td></td>
<td>Configures TFO optimization with no compression.</td>
</tr>
<tr>
<td>full</td>
<td></td>
<td>Configures TFO optimization with DRE and LZ compression. Using this keyword is the same as specifying the <code>tfo optimize DRE yes compression LZ</code> command.</td>
</tr>
</tbody>
</table>

**Defaults**

The default TFO optimization on a WAAS device is `tfo optimize full`.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows to configures TFO optimization with DRE and full compression using the `tfo optimize` command:

```
WAE(config)# tfo optimize DRE yes compression full
```

**Related Commands**

`show statistics tfo`
(config) tfo tcp adaptive-buffer-sizing

To configure a WAE for Traffic Flow Optimization (TFO) with TCP adaptive buffering, use the `tfo tcp adaptive-buffer-sizing` global configuration command. To disable adaptive buffer sizing or to unconfigure the buffer size, use the `no` form of this command.

```
tfo tcp adaptive-buffer-sizing {enable | receive-buffer-max size | send-buffer-max size}
```

```
no tfo tcp adaptive-buffer-sizing {enable | receive-buffer-max size | send-buffer-max size}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables TCP adaptive buffer sizing.</td>
</tr>
<tr>
<td><code>receive-buffer-max size</code></td>
<td>Sets the maximum size of the receive buffer. Valid values range from 1 to 32768 KB.</td>
</tr>
<tr>
<td><code>send-buffer-max size</code></td>
<td>Sets the maximum size of the send buffer. Valid values range from 1 to 32768 KB.</td>
</tr>
</tbody>
</table>

### Defaults

Adaptive buffering is enabled by default. The default maximum send and receive buffer sizes depend on the WAE device model.

### Command Modes

- global configuration

### Device Modes

- application-accelerator

### Usage Guidelines

If you would rather use preallocated and unchanging send and receive buffers, you can configure them with the following global configuration commands: `tfo tcp optimized-receive-buffer`, `tfo tcp optimized-send-buffer`, `tfo tcp original-receive-buffer`, and `tfo tcp original-send-buffer`. You can turn off adaptive buffer sizing by using the `no tfo tcp adaptive-buffer-sizing` command.

### Examples

The following example shows how to configure a WAE for Traffic Flow Optimization (TFO) with TCP adaptive buffering using the `tfo tcp adaptive-buffer-sizing` command:

```
WAE(config)# tfo tcp adaptive-buffer-sizing enable
```

### Related Commands

- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
- show tfo tcp
(config) tfo tcp keepalive

To configure a WAE for Traffic Flow Optimization (TFO) with TCP keepalives, use the `tfo tcp keepalive` global configuration command. To disable TFO TCP keepalives, use the `no` form of this command.

```
 tfo tcp keepalive
 no tfo tcp keepalive
```

Syntax Description
This command has no arguments or keywords.

Defaults
Keepalives are disabled by default.

Command Modes
```
global configuration
```

Device Modes
```
application-accelerator
```

Usage Guidelines
This command enables TCP keepalives on the TFO optimized sockets (the connection between two peer WAEs).

Examples
The following example shows how to configure a WAE for Traffic Flow Optimization with TCP keepalives using the `tfo tcp keepalive` command:

```
WAE(config)# tfo tcp keepalive
```

Related Commands
```
 (config) tfo tcp optimized-mss
 (config) tfo tcp optimized-receive-buffer
 (config) tfo tcp optimized-send-buffer
 (config) tfo tcp original-mss
 (config) tfo tcp original-receive-buffer
 (config) tfo tcp original-send-buffer
```
(config) tfo tcp optimized-mss

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side TCP maximum segment size, use the tfo tcp optimized-mss global configuration command. To disable this function, use the no form of this command.

```
tfo tcp optimized-mss segment-size
no tfo tcp optimized-mss segment-size
```

**Syntax Description**

| segment-size | Optimized side TCP max segment size (512–9216). |

**Defaults**

The default value of the segment size is 1432 bytes. If a jumbo MTU is configured, the default segment size is the jumbo MTU value – 68 bytes.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

This command sets the TCP maximum segment size on TFO optimized sockets (the connection between two peer WAEs).

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with an optimized-side TCP maximum segment size of 512 using the tfo tcp optimized-mss command:

```
WAE(config)# tfo tcp optimized-mss 512
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp optimized-receive-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side receive buffer, use the `tfo tcp optimized-receive-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp optimized-receive-buffer buffer-size
no tfo tcp optimized-receive-buffer buffer-size
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>buffer-size</code></th>
<th>Receive buffer size in kilobytes. Valid values range from 1 to 32768 KB.</th>
</tr>
</thead>
</table>

**Defaults**

32 KB

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB optimized-side receive buffer using the `tfo tcp optimized-receive-buffer` command:

```
WAE(config)# tfo tcp optimized-receive-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp optimized-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side send buffer, use the `tfo tcp optimized-send-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp optimized-send-buffer buffer-size
no tfo tcp optimized-send-buffer buffer-size
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Buffer-Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buffer-size</code></td>
<td>Send buffer size in kilobytes. Valid values range from 1 to 32768 KB.</td>
</tr>
</tbody>
</table>

**Defaults**

32 KB

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

The buffer should be equal to or greater than twice the Bandwidth Delay Product (BDP). The BDP is equivalent to the bandwidth (in bits per second) * latency (in seconds). For example, for a 45-Mbps link with a 150-ms (0.15 sec) round-trip delay, the BDP is 45 Mbps * 0.15 sec = 6.75 Mb, or 0.844 MB (844 KB). In this case, you could set the buffer size to 2000 KB.

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB optimized-side send buffer using the `tfo tcp optimized-send-buffer` command:

```
WAE(config)# tfo tcp optimized-send-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-mss

To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side TCP maximum segment size, use the **tfo tcp original-mss** global configuration command. To disable this function, use the **no** form of this command.

```
tfo tcp original-mss segment-size
no tfo tcp original-mss segment-size
```

**Syntax Description**

| segment-size | Original (end-point) side TCP max segment size (512–9216). |

**Defaults**
The default value of the segment size is 1432 bytes. If a jumbo MTU is configured, the default segment size is the jumbo MTU value – 68 bytes.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Examples**
The following example shows how to configure a WAE for Traffic Flow Optimization with a 1432 byte unoptimized-side TCP maximum segment size using the **tfo tcp original-mss** command:

```
WAE(config)# tfo tcp original-mss 1432
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-receive-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side receive buffer, use the `tfo tcp original-receive-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp original-receive-buffer buffer-size

no tfo tcp original-receive-buffer buffer-size
```

**Syntax Description**

- `buffer-size`: Receive buffer size in kilobytes. Valid values range from 1 to 32768 KB.

**Defaults**

- 32 KB

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB unoptimized-side receive buffer using the `tfo tcp original-receive-buffer` command:

```
WAE(config)# tfo tcp original-receive-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side send buffer, use the `tfo tcp original-send-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp original-send-buffer buffer-size
no tfo tcp original-send-buffer buffer-size
```

**Syntax Description**

| buffer-size | Send buffer size in kilobytes. Valid values range from 1 to 32768 KB. |

**Defaults**

32 KB

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB unoptimized-side receive buffer using the `tfo tcp original-send-buffer` command:

```
WAE(config)# tfo tcp original-send-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
(config) threshold-monitor

To configure monitoring thresholds, use the `threshold-monitor` global configuration command. To restore default settings, use the `no` form of this command.

```
threshold-monitor { system { load { monitoring threshold percent } } |
 cpu { higher threshold percentage | lower threshold percentage |
 win size size | sampling intervals interval } | enable }
```

```
no threshold-monitor { system { load load monitoring threshold percent } |
 cpu { higher threshold percentage | lower threshold percentage |
 win size size | sampling intervals interval } | enable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system load</td>
<td>Sets the system load threshold to the specified percentage (80–100) of rated connection capacity.</td>
</tr>
<tr>
<td>cpu</td>
<td>Configures the threshold value for CPU load monitoring.</td>
</tr>
<tr>
<td>cpu utilization higher threshold percent</td>
<td>Sets the high threshold percentage (80-100) above which the system goes into the overloaded state when it is normal. But in the overloaded state, it doesn't go back to the normal state until the CPU utilization goes below the low threshold. The default CPU high threshold is 95 percent.</td>
</tr>
<tr>
<td>cpu utilization lower threshold percent</td>
<td>Sets the low threshold percentage (80-100) below which the system goes into the normal state when it is overloaded. This value has to be lower than the high threshold. The default CPU lower threshold is 90 percent.</td>
</tr>
<tr>
<td>win-size size</td>
<td>Configures the sampling window size for the moving average. It is the number of the most recent CPU utilization samples taken in calculating the latest CPU utilization percentage. The result is the average of the given number of samples.</td>
</tr>
<tr>
<td>sampling-intervals interval</td>
<td>Configures the sampling rate for the normal state and the overloaded state.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables CPU load monitoring.</td>
</tr>
</tbody>
</table>

### Defaults

- The system load percentage is 95 percent of rated connection capacity for the device.
- The CPU load percentage is 95 percent of the total CPU usage.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
(config) threshold-monitor

Usage Guidelines

The system load percentage threshold refers to the percentage of connection capacity used for application accelerators and TFO connections on a WAE. If the configured load threshold for any application accelerator or TFO connections is exceeded on a WAE, the connection threshold exceeded alarm is raised. This alarm is cleared when the connection count falls to 10 percent less than the configured threshold (85 percent by default).

The CPU load threshold refers to the CPU load utilization on a WAE. When the average CPU utilization on the device exceeds the set threshold for 2 minutes, the device stops accepting new connections and passes any new connections through. When the average CPU utilization falls below the threshold for 2 minutes, the device resumes accepting optimized connections. You can disable CPU load monitoring by using the no form of the CPU enable command.

Examples

The following example shows how to configure a system load threshold of 90 percent:

WAE(config)# threshold-monitor system load 90

Related Commands

show statistics accelerator
show statistics connection
show statistics tfo
To establish username authentication on a WAAS device, use the `username` global configuration command. To disable this feature, use the `no` form of this command.

```
username name {passwd | privilege {0 | 15}}
no username name {passwd | privilege {0 | 15}}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Username.</td>
</tr>
<tr>
<td>passwd</td>
<td>Configures the password interactively.</td>
</tr>
<tr>
<td>privilege</td>
<td>Sets the user privilege level.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the user privilege level for the normal user.</td>
</tr>
<tr>
<td>15</td>
<td>Specifies the user privilege level for the superuser.</td>
</tr>
</tbody>
</table>

**Defaults**

The default administrator account is as follows:

- Username: admin
- Password: default
- Privilege: superuser (15)

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`
- `central-manager`

**Usage Guidelines**

**Note**

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure passwords and privilege levels for users on your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure and administer users on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

**Examples**

The following example demonstrates how passwords and privilege levels are reconfigured:

```
WAE(config)# username bwhidney passwd
Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure user accounts.
New WAAS password:
Retype new WAAS password:

WAE(config)# username abeddoe privilege 15
Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure
```
(config) username

user accounts.

Related Commands show user
To configure an IP access list on a WAE for inbound WCCP GRE encapsulated traffic, use the \texttt{wccp access-list} global configuration command. To disable this feature, use the \texttt{no} form of this command.

\texttt{wccp access-list \{acl-number | ext-acl-number | acl-name\}}

\texttt{no wccp access-list \{acl-number | ext-acl-number | acl-name\}}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>acl-number: Standard IP access list number (1–99).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ext-acl-number: Extended IP access list number (100–199).</td>
</tr>
<tr>
<td></td>
<td>acl-name: Name of the access list. You can use a maximum of 30 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>WCCP access lists are not configured by default.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
</table>

| Usage Guidelines             | The \texttt{wccp access-list number} global configuration command configures an access control list to allow access to WCCP applications. See the \textit{Cisco Wide Area Application Services Configuration Guide} for a detailed description of how to use standard IP ACLs to control WCCP access on a WAE. |

\textbf{Note} WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the \texttt{interception-method} command.

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to configure the WAE to apply IP access list number 10 to the inbound WCCP traffic:</th>
</tr>
</thead>
</table>

\texttt{WAE(config)\# wccp access-list 10}

The following example shows sample output from the \texttt{show ip access-list} EXEC command from a WAE that has several WCCP access lists configured:

\texttt{WAE(config)\# show ip access-list}

Space available:
40 access lists
489 access list conditions

Standard IP access list 10
1 deny 10.1.1.1
2 deny any
(implicit deny any: 0 matches)
total invocations: 0
Standard IP access list 98

(config) wccp access-list

1 permit any
   (implicit deny any: 0 matches)
   total invocations: 0
Extended IP access list 100
1 permit icmp any any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list 101
1 permit ip any any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list 102
1 permit icmp 0.0.1.1 255.255.0.0 any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list 111
1 permit gre 0.1.1.1 255.0.0.0 any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list 112
1 permit ip any any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list 113
1 permit gre 0.1.1.1 255.0.0.0 any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list ext_acl_2
1 permit gre any any
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0
Extended IP access list extended_ip_acl
1 permit tcp any eq 2 any eq exec
   (implicit fragment permit: 0 matches)
   (implicit deny ip any any: 0 matches)
   total invocations: 0

Interface access list references:
  PortChannel     2    inbound   extended_ip_acl
  PortChannel     2    outbound  101

Application access list references:
  snmp-server                     standard  2
  UDP ports: none (List Not Defined)
  WCCP                            either    10
  Any IP Protocol

Related Commands  show ip access-list
                  show wccp
(config) wccp router-list

To configure a router list for WCCP Version 2, use the wccp router-list global configuration command. To disable this function, use the no form of this command.

wccp router-list number ip-address

no wccp router-list number ip-address

---

Syntax Description

| number | Router list number (1–7). |
| ip-address | IP address of the router to add to the list. You can specify up to 32 IP addresses, each separated by the space character. |

---

Defaults

Disabled

---

Command Modes

global configuration

---

Device Modes

application-accelerator

---

Usage Guidelines

Each router list can contain up to 32 routers and you can have up to 8 router lists.

---

Note

The WAAS Central Manager uses router list number 8 for a default router list that contains the default gateway.

---

Note

The ip wccp global configuration command must be used to enable WCCP on each router that is included on the router list.

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the interception-method command.

---

Examples

The following example shows that router list number 2 is created and contains a single router (the WCCP Version 2-enabled router with IP address 192.168.68.98):

WAE(config)# wccp router-list 2 192.168.68.98

The following example shows how to delete the router list number 2 created in the previous example:

WAE(config)# no wccp router-list 2 192.168.68.98

The following example shows how to create a router list (router list 1) with two routers and then configure the WAE to accept redirected TCP traffic from the WCCP Version 2-enabled router on router list 1:
(config) wccp router-list

WAE(config)# wccp router-list 1 10.10.10.2 10.10.10.3
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# router-list-num 1
WAE(config-wccp-service)# enable

Related Commands

(config) wccp tcp-promiscuous service-pair
(config) wccp shutdown

To set the maximum time interval after which the WAE will perform a clean shutdown of the WCCP, use the `wccp shutdown` global configuration command. To disable the clean shutdown, use the `no` form of this command.

```
wccp shutdown max-wait seconds
```

```
no wccp shutdown max-wait seconds
```

**Syntax Description**

- `max-wait seconds` Sets the clean shutdown time interval. The time is in seconds (0–86400). The default is 120 seconds.

**Defaults**

The maximum time interval before a clean shutdown is 120 seconds.

**Command Modes**

- Global configuration

**Device Modes**

- Application accelerator

**Usage Guidelines**

To prevent broken TCP connections, the WAE performs a clean shutdown of the WCCP after you enter the `reload` command or disable WCCP. The WAE does not reboot until either all connections have been serviced or the configured `max-wait` interval has elapsed.

**Note**

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` command.

**Examples**

The following example shows how to configure the WAE to wait 1000 seconds:

```
WAE(config)# wccp shutdown max-wait 1000
```

The following example shows how to shut down WCCP Version 2 on the WAE by entering the `no enable` WCCP command. After you enter this command, the WAE waits 1000 seconds before it shuts down WCCP Version 2.

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# no enable
```

A countdown message appears, indicating how many seconds remain before WCCP will be shut down on the WAE:

```
WCCP clean shutdown initiated
Waiting for shutdown ok (999 seconds) . Press ^C to skip waiting
WCCP clean shutdown wait time expired
```
(config) wccp shutdown

Related Commands  (config) wccp tcp-promiscuous service-pair
(config) wccp tcp-promiscuous service-pair

To configure the Web Cache Coordination Protocol (WCCP) Version 2 TCP promiscuous mode service, use the `wccp tcp-promiscuous service-pair` global configuration command. To negate these actions, use the `no` form of this command.

```
wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
no wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
```

**Syntax Description**

- `service-pair serviceID serviceID+1` Specifies a pair of IDs for the WCCP service on devices configured as application accelerators. Valid values are two consecutive numbers from 1-100, inclusive.
- `serviceID` Specifies one ID for the WCCP service. A valid value is from 1-100, inclusive.

**Defaults**

No default behavior or values.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use the `wccp tcp-promiscuous service-pair` command to configure and enable the WCCP interception method. This command initiates the WCCP configuration mode as indicated by the `(config-wccp-service)` prompt. For more information on WCCP configuration mode commands, see the “WCCP Configuration Mode Commands” section.

Within WCCP configuration mode, you can use the various commands (egress-method, failure-detection, and so on) to define WCCP settings. To return to global configuration mode, enter the `exit` command.

You must use the `enable` WCCP configuration command to enable the WCCP service.

You must configure two WCCP service IDs on WAEs operating in application-acceleration mode.

**Note**

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` global configuration command.

**Examples**

The following example shows how to configure WCCP service IDs 61 and 62 and put a WAE into WCCP configuration mode:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)#
```
(config) wccp tcp-promiscuous service-pair

**Related Commands**

- (config) wccp router-list
- (config) wccp shutdown
- show wccp
(config) windows-domain

To configure Windows domain server options on a WAAS device, use the windows-domain global configuration command. To disable this feature, use the no form of this command.

```
windows-domain {administrative group {normal-user | super-user} groupname |
 comment string | encryption-service {enable | identity name [default | enable |
 machine-account | match | password | user-account]} | ldap-sign-and-seal enable |
 machine-account-password lifespan duration | netbios-name name | password-server |
 {hostname | ipaddress} | realm kerberos-realm |
 wins-server {hostname | ipaddress} | workgroup name | security ADS}
```

```
o windows-domain {administrative group {normal-user | super-user} groupname |
 comment string | encryption-service {enable | identity name | ldap-sign-and-seal enable |
 machine-account-password lifespan duration | netbios-name name | password-server {hostname |
 ipaddress} | realm kerberos-realm | wins-server |
 {hostname | ipaddress} | workgroup name | security ADS}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrative</td>
</tr>
<tr>
<td>group</td>
</tr>
<tr>
<td>normal-user</td>
</tr>
<tr>
<td>super-user</td>
</tr>
<tr>
<td>groupname</td>
</tr>
<tr>
<td>comment string</td>
</tr>
<tr>
<td>encryption-service</td>
</tr>
<tr>
<td>enable</td>
</tr>
<tr>
<td>identity name</td>
</tr>
<tr>
<td>default</td>
</tr>
<tr>
<td>machine-account</td>
</tr>
<tr>
<td>match</td>
</tr>
<tr>
<td>password</td>
</tr>
<tr>
<td>user-account name</td>
</tr>
<tr>
<td>ldap-sign-and-seal</td>
</tr>
<tr>
<td>enable</td>
</tr>
<tr>
<td>machine-account-password</td>
</tr>
<tr>
<td>lifespan duration</td>
</tr>
<tr>
<td>netbios-name name</td>
</tr>
<tr>
<td>password-server</td>
</tr>
<tr>
<td>hostname</td>
</tr>
<tr>
<td>ipaddress</td>
</tr>
</tbody>
</table>
(config) windows-domain

**realm kerberos-realm**

Specifies the Kerberos realm to use for authentication. The realm is used as the Active Directory Service (ADS) equivalent of the NT4 domain. This argument is valid only when Kerberos ADS mode is used.

The value is an IP address or name (in uppercase letters) of the Kerberos realm. The Kerberos realm is typically set to the DNS name of the Kerberos server or Active Directory domain. The default value is a null string.

Example: kerberos-realm = MYBOX.MYCOMPANY.COM

---

**wins-server**

Specifies the Windows Internet Naming Service (WINS) server.

---

**hostname**

Hostname of the WINS server.

---

**ipaddress**

IP address of the WINS server.

---

**workgroup name**

Specifies the name of the workgroup (or domain) in which the WAAS device resides.

---

**security**

Sets Kerberos authentication.

---

**ADS**

Specifies the Active Directory Service.

---

**Defaults**

Windows domain options are disabled by default.

---

**Command Modes**

global configuration

---

**Device Modes**

application-accelerator

central-manager

---

**Usage Guidelines**

Use this global configuration command to set the Windows domain server parameters for a WAAS device.

When you enable Kerberos authentication, the default realm is DOMAIN.COM and the security is ADS. If you disable Kerberos authentication, the security is domain.

---

**Note**

WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

---

**Examples**

The following example shows how to configure the Windows domain server at 10.10.24.1 for a WAAS device with a NetBIOS name of myWaasDevice in the ABC domain. It also identifies the password server:

```
WAE(config)# windows-domain wins-server 10.10.24.1
WAE(config)# windows-domain password-server 10.10.100.4
WAE(config)# windows-domain netbios-name myWaasDevice
WAE(config)# windows-domain workgroup ABC
```

The following example shows how to configure the windows domain server when Kerberos authentication is enabled using the kerberos command:

```
WAE(config)# windows-domain realm ABC.COM
```
WAE(config)# windows-domain security ADS

=============== checking new config using testparm ===============

Load smb config files from /state/actona/conf/smb.conf
Processing section "[print$]"
Processing section "[printers]"
Loaded services file OK.

WAE(config)# exit
WAE# show windows-domain
Login Authentication for Console/Telnet Session: enabled

Windows domain Configuration:
-------------------------------
  Workgroup: 
  Comment: 
  Net BIOS: MYWAASDEVICE 
  Realm: ABC 
  WINS Server: 10.10.10.1 
  Password Server: 10.10.10.10 
  Security: ADS

Related Commands
  (config) kerberos
  show windows-domain
  windows-domain
(config) windows-domain