Configuring SNMP Monitoring

This chapter describes how to configure Simple Network Management Protocol (SNMP) traps, recipients, community strings, group associations, user security model groups, and user access permissions.

Throughout this chapter, the term Cisco WAAS device is used to refer collectively to the WAAS Central Manager and WAEs in your network. The term WAE refers to WAE appliances, WAE Network Modules (the Cisco Network Modules-WAE family of devices), and Cisco Services Ready Engine service modules (SRE-SM) running WAAS.

This chapter contains the following sections:

- Understanding SNMP
- Checklist for Configuring SNMP
- Preparing for SNMP Monitoring
- Enabling SNMP Traps
- Defining SNMP Triggers to generate User-Defined Traps
- Specifying the SNMP Host
- Specifying the SNMP Community String
- Creating SNMP Views
- Creating an SNMP Group
- Creating an SNMP User
- Configuring SNMP Asset Tag Settings
- Configuring SNMP Contact Settings
- Configuring SNMP Trap Source Settings

Understanding SNMP

SNMP is an interoperable standards-based protocol that allows for external monitoring of Cisco WAAS devices through an SNMP agent.

An SNMP-managed network consists of the following primary components:
Managed device—A network node that contains an SNMP agent and resides on a managed network. Managed devices include routers, access servers, switches, bridges, hubs, computer hosts, and printers. Each WAAS device running the WAAS software has an SNMP agent.

SNMP agent—A software module that resides on a managed device. An agent has local knowledge of management information and translates that information into a form that is compatible with SNMP. The SNMP agent gathers data from the MIB, which is the repository for information about device parameters and network data. The agent can also send traps, or notification of certain events, to the management system.

Management station—Also known as the SNMP host, the management station uses SNMP to send the agent an SNMP Get request to obtain information from the WAAS device. The managed devices then collect and store management information and use SNMP to make this information available to the management station.

Before you can access this SNMP information, you must have deployed an SNMP management application on a management station. This SNMP management station is referred to as the SNMP host because it uses SNMP to send the device agent an SNMP Get request to obtain information from the WAAS device.

This section contains the following topics:

- SNMP Communication Process
- Supported SNMP Versions
- SNMP Security Models and Security Levels
- Supported MIBs
- Downloading MIB Files
- Enabling the SNMP Agent on a WAAS Device

SNMP Communication Process

The SNMP management station and the SNMP agent that resides on a WAAS device use SNMP to communicate as follows:

1. The SNMP management station (the SNMP host) uses SNMP to request information from the WAAS device.

2. After receiving these SNMP requests, the SNMP agent on the WAAS device accesses a table that contains information about the individual device. This table, or database, is called a MIB.

 Note The SNMP agent on the WAAS device only initiates communication with the SNMP host under unusual conditions; it will initiate communication when it has a trap it needs to send to the host. For more information on this topic, see Enabling SNMP Traps.

3. After locating the specified information in the MIB, the agent uses SNMP to send the information to the SNMP management station.

Figure 16-1 illustrates these SNMP operations for an individual WAAS device.
Supported SNMP Versions

The WAAS software supports the following versions of SNMP:

- Version 1 (SNMPv1)—This is the initial implementation of SNMP. See RFC 1157 for a full description of its functionality.
- Version 2 (SNMPv2c)—This is the second release of SNMP, described in RFC 1902. It provides additions to data types, counter size, and protocol operations.
- Version 3 (SNMPv3)—This is the most recent version of SNMP, defined in RFC 2271 through RFC 2275.

Each Cisco device running WAAS software contains the software necessary to communicate information about device configuration and activity using SNMP.

SNMP Security Models and Security Levels

SNMPv1 and SNMPv2c do not have any security (that is, authentication or privacy) features to keep SNMP packet traffic confidential. As a result, packets on the wire can be detected and SNMP community strings compromised.

To solve the security shortcomings of SNMPv1 and SNMPv2c, SNMPv3 provides secure access to WAAS devices by authenticating and encrypting packets over the network. The SNMP agent in the WAAS software supports SNMPv3 as well as SNMPv1 and SNMPv2c.

The following security features are provided in SNMPv3:

- Message integrity—Ensures that nothing has interfered with a packet during transmission.
- Authentication—Determines that the message is from a valid source.
- Encryption—Scrambles the contents of a packet to prevent it from being seen by an unauthorized source.
SNMPv3 provides security models as well as security levels. A security model is an authentication process that is set up for a user and the group in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level determines which security process is used when an SNMP packet is handled. Three security models are available: SNMPv1, SNMPv2c, and SNMPv3.

Table 16-1 describes the combinations of security models and security levels.

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for user authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for user authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for user authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>AuthNoPriv</td>
<td>Message Digest 5 (MD5) or Secure Hash Algorithm (SHA)</td>
<td>No</td>
<td>Provides authentication based on the Hash-Based Message Authentication Code (HMAC)-MD5 or HMAC-SHA algorithms.</td>
</tr>
<tr>
<td>v3</td>
<td>AuthPriv</td>
<td>MD5 or SHA</td>
<td>Yes</td>
<td>Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides Data Encryption Standard (DES) 56-bit encryption (packet authentication) based on the cipher block chaining (CBC)-DES (DES-56) standard.</td>
</tr>
</tbody>
</table>

The SNMPv3 agent can be used in the following modes:

- noAuthNoPriv mode (that is, no security mechanisms turned on for packets)
- AuthNoPriv mode (for packets that do not have to be encrypted using the privacy algorithm [DES 56])
- AuthPriv mode (for packets that must be encrypted; privacy requires that authentication be performed on the packet)

Using SNMPv3, users can securely collect management information from their SNMP agents without worrying that the data has been tampered with. Also, confidential information, such as SNMP set packets that change a Content Engine’s configuration, can be encrypted to prevent their contents from being exposed on the wire. Also, the group-based administrative model allows different users to access the same SNMP agent with varying access privileges.

Supported MIBs

This section describes the Cisco-specific MIBs that are supported by WAAS. The MIBs are listed in alphabetical order.

- CISCO-APPNAV-MIB
- CISCO-CDP-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-CONTENT-ENGINE-MIB
- CISCO-ENTITY-ASSET-MIB
- CISCO-PROCESS-MIB
CISCO-SMI
CISCO-WAN-OPTIMIZATION-MIB
ENTITY-MIB
EVENT-MIB
HOST-RESOURCES-MIB
IF-MIB
IP-MIB
IP-FORWARD-MIB
MIB-II
SNMP-FRAMEWORK-MIB
SNMP-NOTIFICATION-MIB
SNMP-TARGET-MIB
SNMP-USM-MIB
SNMPv2-MIB
SNMP-VACM-MIB

CISCO-APPNAV-MIB

This MIB provides information about AppNav objects. The following service context objects are supported when the WAAS device is in AppNav Controller mode:

- cAppNavServContextIndex
- cAppNavServContextName
- cAppNavServContextCurrOpState
- cAppNavServContextLastOpState
- cAppNavServContextIRState
- cAppNavServContextJoinState

The following AppNav controller group objects are supported:

- cAppNavACGIndex
- cAppNavACGName
- cAppNavACGServContextName

The following WAAS node group objects are supported:

- cAppNavSNGIndex
- cAppNavSNGName
- cAppNavSNGServContextName

The following AppNav controller objects are supported:

- cAppNavAClIndex
- cAppNavACIpAddrType
- cAppNavACIpAddr
- cAppNavACServContextName
Understanding SNMP

The following WAAS node objects are supported:

- cAppNavACACGName
- cAppNavACCCurrentCMState

The following WAAS node objects are supported:

- cAppNavSNIndex
- cAppNavSNIpAddrType
- cAppNavSNIpAddr
- cAppNavSNServContextName
- cAppNavSNSNGName
- cAppNavSNCCurrentCMState

CISCO-CDP-MIB

This MIB displays the ifIndex value of the local interface. For 802.3 repeaters on which the repeater ports do not have ifIndex values assigned, this value is a unique value for the port and is greater than any ifIndex value supported by the repeater. In this example, the specific port is indicated by the corresponding values of cdpInterfaceGroup and cdpInterfacePort, where these values correspond to the group number and the port number values of RFC 1516.

CISCO-CONFIG-MAN-MIB

This MIB represents a model of configuration data that exists in various locations:

- running—In use by the running system
- terminal—Saved to whatever hardware is attached as the terminal
- local—Saved locally in NVRAM or in flash memory
- remote—Saved to a server on the network

This MIB includes only operations that are specifically related to configuration, although some of the system functions can be used for general file storage and transfer.

CISCO-CONTENT-ENGINE-MIB

This is the MIB module for the Cisco WAE device from Cisco Systems, Inc. The following objects from this MIB are supported:

- cceAlarmCriticalCount
- cceAlarmMajorCount
- cceAlarmMinorCount
- cceAlarmHistTable

CISCO-ENTITY-ASSET-MIB

This MIB monitors the asset information of items in the entPhysicalTable-ENTITY-MIB (RFC 2037). This MIB lists the orderable part number, serial number, hardware revision, manufacturing assembly number and revision, firmware ID and revision (if any), and software ID and revision (if any) of relevant entities listed in entPhysicalTable-ENTITY-MIB.
Entities that have none of this data available are not listed in this MIB. The table in this MIB is sparsely populated. Therefore, some variables may not exist for a particular entity at a particular time. For example, a row that represents a powered-off module may have no values for software ID (ceAssetSoftwareID) and revision (ceAssetSoftwareRevision). Similarly, a power supply would probably never have firmware or software information listed in the table.

Although the data may have other items encoded in it, for example, a manufacturing date in the serial number, consider all data items to be a single unit. Do not decompose the items or parse them. Use only string equal and unequal operations on them.

CISCO-PROCESS-MIB

The CISCO-PROCESS-MIB displays memory and CPU usage on the device and describes active system processes. CPU utilization presents a status of how busy the system is. The numbers are a ratio of the current idle time over the longest idle time. (This information should be used as an estimate only.) The following objects from this MIB are supported:

- `cpmCPU>Total1minRev`—Displays the overall CPU percentage showing how busy the system was in the last 1 minute.
- `cpmCPU>Total5minRev`—Displays the overall CPU percentage showing how busy the system was in the last 5 minutes.

CISCO-SMI

This is the MIB module for Cisco Enterprise Structure of Management Information. There is nothing to query in this MIB; it describes the structure of Cisco MIBs.

CISCO-WAN-OPTIMIZATION-MIB

This MIB provides information about the status and statistics associated with optimization and the application accelerators.

The following Transport Flow Optimization (TFO) statistics objects are supported:

- `cwoTfo>StatsTotalOptConn`
- `cwoTfo>StatsActiveOptConn`
- `cwoTfo>StatsMaxActiveConn`
- `cwoTfo>StatsActiveOptTCPPlusConn`
- `cwoTfo>StatsActiveOptTCPOnlyConn`
- `cwoTfo>StatsActiveOptTCPPrepConn`
- `cwoTfo>StatsActiveADCConn`
- `cwoTfo>StatsReservedConn`
- `cwoTfo>StatsPendingConn`
- `cwoTfo>StatsActivePTConn`
- `cwoTfo>StatsTotalNormalClosedConn`
- `cwoTfo>StatsResetConn`
- `cwoTfo>StatsLoadStatus`

The following general application accelerator statistics objects are supported:

- `cwoAoStatsName`
• cwoAoStatsIsConfigured
• cwoAoStatsIsLicensed
• cwoAoStatsOperationalState
• cwoAoStatsStartUpTime
• cwoAoStatsLastResetTime
• cwoAoStatsTotalHandledConn
• cwoAoStatsTotalOptConn
• cwoAoStatsTotalHandedOffConn
• cwoAoStatsTotalDroppedConn
• cwoAoStatsActiveOptConn
• cwoAoStatsPendingConn
• cwoAoStatsMaxActiveOptConn
• cwoAoStatsLoadStatus
• cwoAoStatsBwOpt

The following Server Message Block (SMB) application accelerator statistics objects are supported:
• cwoAoSmbxStatsBytesReadCache
• cwoAoSmbxStatsBytesWriteCache
• cwoAoSmbxStatsBytesReadServer
• cwoAoSmbxStatsBytesWriteServer
• cwoAoSmbxStatsBytesReadClient
• cwoAoSmbxStatsBytesWriteClient
• cwoAoSmbxStatsProcessedReqs
• cwoAoSmbxStatsActiveReqs
• cwoAoSmbxStatsTotalRemoteReqs
• cwoAoSmbxStatsTotalLocalReqs
• cwoAoSmbxStatsRemoteAvgTime
• cwoAoSmbxStatsLocalAvgTime
• cwoAoSmbxStatsMDCacheHitCount
• cwoAoSmbxStatsMDCacheHitRate
• cwoAoSmbxStatsMaxRACacheSize
• cwoAoSmbxStatsMaxMDCacheSize
• cwoAoSmbxStatsRAEvictedAge
• cwoAoSmbxStatsRTT
• cwoAoSmbxStatsTotalRespTimeSaving
• cwoAoSmbxStatsOpenFiles
• cwoAoSmbxStatsTotalFilesInRACache
• cwoAoSmbxStatsRdL4SignWANBytes
• cwoAoSmbxStatsWrL4SignWANBytes
Understanding SNMP

The following HTTP application accelerator statistics objects are supported:
- cwoAoHttpxStatsTotalSavedTime
- cwoAoHttpxStatsTotalRTT
- cwoAoHttpxStatsTotalMDCMTime
- cwoAoHttpxStatsEstSavedTime
- cwoAoHttpxStatsTotalSPSessions
- cwoAoHttpxStatsTotalSPPFSessions
- cwoAoHttpxStatsTotalSPPFObjects
- cwoAoHttpxStatsTotalSPRTTSaved
- cwoAoHttpxStatsTotalSPPFMissTime

The following Message Application Programming Interface (MAPI) application accelerator statistics objects are supported:
- cwoAoMapixStatsUnEncrALRT
- cwoAoMapixStatsUnEncrARRT
- cwoAoMapixStatsTotalUnEncrLRs
- cwoAoMapixStatsTotalUnEncrRRs
- cwoAoMapixStatsUnEncrAvgRedTime
- cwoAoMapixStatsEncrALRT
- cwoAoMapixStatsEncrARRT
- cwoAoMapixStatsTotalEncrLRs
- cwoAoMapixStatsTotalEncrRRs
- cwoAoMapixStatsEncrAvgRedTime

The following application statistics objects are supported:
- cwoAppStatsAppName
- cwoAppStatsOriginalBytes
- cwoAppStatsOptimizedBytes
- cwoAppStatsPTBytes

The following optimization policy map statistics objects are supported:
- cwoPmapStatsType
- cwoPmapStatsName
- cwoPmapStatsDescr
- cwoPmapStatsTotalConns
- cwoPmapStatsTotalBytes
- cwoPmapStatsTotalPTConns
- cwoPmapStatsTotalPTBytes
The following optimization class map statistics objects are supported:

- cwoCmapStatsType
- cwoCmapStatsName
- cwoCmapStatsDescr
- cwoCmapStatsTotalConns
- cwoCmapStatsTotalBytes
- cwoCmapStatsTotalPTConns
- cwoCmapStatsTotalPTBytes

The following optimization DRE cache statistics objects are supported:

- cwoDreCacheStatsStatus
- cwoDreCacheStatsAge
- cwoDreCacheStatsTotal
- cwoDreCacheStatsUsed
- cwoDreCacheStatsDataUnitUsage
- cwoDreCacheStatsReplacedOneHrDataUnit
- cwoDreCacheStatsDataUnitAge
- cwoDreCacheStatsSigblockUsage
- cwoDreCacheStatsReplacedOneHrSigblock
- cwoDreCacheStatsSigblockAge

The following optimization DRE performance statistics objects are supported:

- cwoDrePerfStatsEncodeCompressionRatio
- cwoDrePerfStatsEncodeCompressionLatency
- cwoDrePerfStatsEncodeAvgMsgSize
- cwoDrePerfStatsDecodeCompressionRatio
- cwoDrePerfStatsDecodeCompressionLatency
- cwoDrePerfStatsDecodeAvgMsgSize

The following optimization Akamai Connect statistics objects are supported:

- cwoAoHttpxStatsAKC
- cwoAoHttpxStatsAKCBypassEntry
- cwoAoHttpxStatsAKCStdEntry
- cwoAoHttpxStatsAKCBasicEntry
- cwoAoHttpxStatsAKCAdvEntry
- cwoAoHttpxStatsAKCTotalEntry

ENTITY-MIB

This is the MIB module for representing multiple logical entities supported by a single SNMP agent. This MIB is documented in RFC 2737. The following groups from this MIB are supported:

- entityPhysicalGroup
- entityLogicalGroup

The entConfigChange notification is supported.

EVENT-MIB

This MIB defines event triggers and actions for network management purposes. The MIB is published as RFC 2981.

HOST-RESOURCES-MIB

This MIB manages host systems. The term “host” implies any computer that communicates with other similar computers connected to the Internet. The HOST-RESOURCES-MIB does not necessarily apply to devices whose primary function is communications services (terminal servers, routers, bridges, monitoring equipment). This MIB provides attributes that are common to all Internet hosts, for example, personal computers and systems that run variants of UNIX. The following objects from this MIB are not supported:

- HrPrinterEntry
- hrSWOSIndex
- hrSWInstalledGroup

IF-MIB

This MIB supports querying for interface-related statistics including 64-bit interface counters. These counters include received and sent octets, unicast, multicast, and broadcast packets on the device interfaces. All the objects from ifXEntry are supported except for ifCounterDiscontinuityTime. This MIB is documented in RFC 2233.

Loopback interface information are not reported.

IP-MIB

This MIB module manages IP and ICMP implementations, excluding their management of IP routes.

IP-FORWARD-MIB

The MIB module is for the display of CIDR multi path IP Routes.

MIB-II

MIB-II is the Internet Standard MIB. The MIB-II is documented in RFC 1213 and is for use with network management protocols in TCP/IP-based internets. This MIB is found in the RFC1213-MIB file in the v1 directory on the download site (other MIBs are in the v2 directory). The following objects from this MIB are not supported:

- ifInUnknownProtos
- ifOutNUcastPkts
- ipRouteAge
- TcpConnEntry group
- egpInMsgs
- egpInErrors
- egpOutMsgs
- egpOutErrors
- EgpNeighEntry group
- egpAs
- atTable,
- ipRouteTable

SNMP-FRAMEWORK-MIB

This MIB is documented in RFC 2571.

SNMP-NOTIFICATION-MIB

This MIB is documented in RFC 3413.

SNMP-TARGET-MIB

This MIB is documented in RFC 3413.

SNMP-USM-MIB

This MIB is documented in RFC 2574.

SNMPv2-MIB

This MIB is documented in RFC 1907. WAAS supports the following notifications from this MIB:
- coldStart
- linkUp
- linkDown
- authenticationFailure

SNMP-VACM-MIB

This MIB is documented in RFC 2575.

Downloading MIB Files

You can download the MIB files for most of the MIBS that are supported by a device that is running the WAAS software from the following Cisco FTP site:

You can download the RFC1213-MIB file (for MIB-II) from the following Cisco FTP site:
ftp://ftp.cisco.com/pub/mibs/v1

The MIB objects that are defined in each MIB are described in the MIB files at the above FTP sites and are self-explanatory.
Enabling the SNMP Agent on a WAAS Device

By default, the SNMP agent on WAAS devices is disabled and an SNMP community string is not defined. The SNMP community string is used as a password for authentication when accessing the SNMP agent on a WAAS device. To be authenticated, the Community Name field of any SNMP message sent to the WAAS device must match the SNMP community string defined on the WAAS device.

The SNMP agent on a WAAS device is enabled when you define the SNMP community string on the device. The WAAS Central Manager GUI allows you to define the SNMP community string on a device or device group.

If the SNMPv3 protocol is going to be used for SNMP requests, the next step is to define an SNMP user account that can be used to access a WAAS device through SNMP. For more information on how to create an SNMPv3 user account on a WAAS device, see Creating an SNMP User.

Checklist for Configuring SNMP

Table 16-2 describes the process for enabling SNMP monitoring on a WAAS device or device group.

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information and Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare for SNMP monitoring.</td>
<td>For more information, see Preparing for SNMP Monitoring.</td>
</tr>
<tr>
<td>2. Select the SNMP traps that you want to enable.</td>
<td>The WAAS Central Manager provides a wide-range of traps that you can enable on a WAAS device or device group. For more information, see Enabling SNMP Traps. To define additional traps, see the “Defining SNMP Triggers to generate User-Defined Traps” section on page 16-17.</td>
</tr>
<tr>
<td>3. Specify the SNMP host that receives the SNMP traps.</td>
<td>Specify the SNMP host to that the WAAS device or device group should send their traps to. You can specify multiple hosts so different WAAS devices send traps to different hosts. For more information, see Specifying the SNMP Host.</td>
</tr>
<tr>
<td>4. Specify the SNMP community string.</td>
<td>Specify the SNMP community string so external users can read or write to the MIB. For more information, see Specifying the SNMP Community String.</td>
</tr>
<tr>
<td>5. Set up SNMP views.</td>
<td>To restrict an SNMP group to a specific view, you must create a view that specifies the MIB subtree that you want the group to view. For more information, see Creating SNMP Views.</td>
</tr>
<tr>
<td>6. Create an SNMP group.</td>
<td>You must set up an SNMP group if are going to create any SNMP users or want to restrict a group to view a specific MIB subtree. For more information, see Creating an SNMP Group.</td>
</tr>
<tr>
<td>7. Create an SNMP user.</td>
<td>If the SNMPv3 protocol is going to be used for SNMP requests, you must create at least one SNMPv3 user account on the WAAS device in order for the WAAS device to be accessed through SNMP. For more information, see Creating an SNMP User.</td>
</tr>
<tr>
<td>8. Configure SNMP contact settings.</td>
<td>For more information, see Configuring SNMP Contact Settings.</td>
</tr>
</tbody>
</table>
Preparing for SNMP Monitoring

Before you configure your WAAS network for SNMP monitoring, complete the following preparation tasks:

- Set up the SNMP host (management station) that the WAAS devices will use to send SNMP traps.
- Determine if all your WAAS devices will be sending traps to the same host, or to different hosts. Write down the IP address or hostname of each SNMP host.
- Obtain the community string used to access the SNMP agents.
- Determine if you want to create SNMP groups so you can restrict views by group.
- Determine what additional SNMP traps you need.
- Clock synchronization between the devices in a WAAS network is important. On each WAAS device, be sure to set up a Network Time Protocol (NTP) server to keep the clocks synchronized.

Enabling SNMP Traps

To enable a WAAS device to send SNMP traps, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Monitoring > SNMP > General Settings**. The SNMP General Settings window appears. (See Figure 16-2.) Table 16-3 describes the fields in this window.
Enabling SNMP Traps

Table 16-3 SNMP General Settings

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traps</td>
<td></td>
</tr>
<tr>
<td>Enable Snmp Settings</td>
<td>Enables SNMP traps.</td>
</tr>
<tr>
<td>WAE</td>
<td></td>
</tr>
<tr>
<td>Disk Read</td>
<td>Enables disk read error trap.</td>
</tr>
<tr>
<td>Disk Write</td>
<td>Enables disk write error trap.</td>
</tr>
<tr>
<td>Disk Fail</td>
<td>Enables disk failure error trap.</td>
</tr>
<tr>
<td>Overload Bypass</td>
<td>Enables WCCP overload bypass error trap.</td>
</tr>
<tr>
<td>Transaction Logging</td>
<td>Enables transaction log write error trap.</td>
</tr>
<tr>
<td>SNMP</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td>Enables authentication trap.</td>
</tr>
<tr>
<td>Cold Start</td>
<td>Enables cold start trap.</td>
</tr>
<tr>
<td>LinkUp</td>
<td>Link up trap.</td>
</tr>
<tr>
<td>LinkDown</td>
<td>Link down trap.</td>
</tr>
</tbody>
</table>
Table 16-3 SNMP General Settings (continued)

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAE Alarm</td>
<td>Enables WAE alarm traps:</td>
</tr>
<tr>
<td></td>
<td>• Raise Critical—Enables raise-critical alarm trap</td>
</tr>
<tr>
<td></td>
<td>• Clear Critical—Enables clear-critical alarm trap</td>
</tr>
<tr>
<td></td>
<td>• Raise Major—Enables raise-major alarm trap</td>
</tr>
<tr>
<td></td>
<td>• Clear Major—Enables clear-major alarm trap</td>
</tr>
<tr>
<td></td>
<td>• Raise Minor—Enables raise-minor alarm trap</td>
</tr>
<tr>
<td></td>
<td>• Clear Minor—Enables clear-minor alarm trap</td>
</tr>
<tr>
<td>Entity</td>
<td>Enables SNMP entity traps.</td>
</tr>
<tr>
<td>Event</td>
<td>Enables the Event MIB.</td>
</tr>
<tr>
<td>Config</td>
<td>Enables CiscoConfigManEvent error traps.</td>
</tr>
</tbody>
</table>

Miscellaneous Settings

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIB Persistent Event</td>
<td>Enables persistence for the SNMP Event MIB. (This check box is not shown when the selected device is a Central Manager.)</td>
</tr>
<tr>
<td>Notify Inform</td>
<td>Enables the SNMP notify inform request. Inform requests are more reliable than traps but consume more resources in the router and in the network. Traps are unreliable because the receiver does not send any acknowledgment when it receives a trap. The sender cannot determine if the trap was received. However, an SNMP manager that receives an inform request acknowledges the message with an SNMP response. If the sender never receives a response, the inform request can be sent again. Thus, informs are more likely to reach their intended destinations.</td>
</tr>
</tbody>
</table>

Step 3 Check the appropriate check boxes to enable SNMP traps.

Step 4 Click **Submit**.

A “Click Submit to Save” message appears in red next to the current settings when there are pending changes to be saved after you have applied default or device group settings. You can also revert to the previously configured window settings by clicking **Reset**. The Reset button is visible only when you apply default or device group settings to change the current device settings but the settings have not yet been submitted.

To enable SNMP traps from the CLI, you can use the `snmp-server enable traps` global configuration command.

To control access to the SNMP agent by an external SNMP server, use the `snmp-server access-list` global configuration command to apply an SNMP ACL.

Note If you are using an SNMP server ACL, you must permit the loopback interface.
If you override the device group settings from the SNMP General Settings window, the Central Manager deletes the SNMP community, SNMP group, SNMP user, SNMP view, and SNMP host settings. You are asked to confirm this behavior.

To define additional SNMP traps for other MIB objects of interest to your particular configuration, see **Defining SNMP Triggers to generate User-Defined Traps**.

Defining SNMP Triggers to generate User-Defined Traps

To define additional SNMP traps for other MIB objects of interest to your particular configuration, follow these steps to create additional SNMP triggers:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Monitoring > SNMP > Trigger**. The SNMP Trigger List Entries window appears. The columns in this window are the same as the parameters described in **Table 16-4**.

Step 3 In the taskbar, click the **Create New SNMP Trigger List Entry** icon. The Creating New SNMP Trigger window appears. **Table 16-4** describes the fields in this window.

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger Name</td>
<td>Custom defined name for the notification trigger that you want to monitor.</td>
</tr>
<tr>
<td>MIB Name</td>
<td>MIB variable name of the object that you want to monitor.</td>
</tr>
<tr>
<td>Wild Card</td>
<td>(Optional) Check this check box if the MIB Name value is a wildcard.</td>
</tr>
<tr>
<td></td>
<td>Note this check box is disabled when editing the SNMP Trigger.</td>
</tr>
<tr>
<td>Frequency</td>
<td>Number of seconds (60–600) to wait between trigger samples.</td>
</tr>
<tr>
<td>Test</td>
<td>Test used to trigger the SNMP trap. Choose one of the following tests:</td>
</tr>
<tr>
<td></td>
<td>• absent—A specified MIB object that was present at the last sampling is no longer present as of the current sampling.</td>
</tr>
<tr>
<td></td>
<td>• equal—The value of the specified MIB object is equal to the specified threshold.</td>
</tr>
<tr>
<td></td>
<td>• greater-than—The value of the specified MIB object is greater than the specified threshold value.</td>
</tr>
<tr>
<td></td>
<td>• less-than—The value of the specified MIB object is less than the specified threshold value.</td>
</tr>
<tr>
<td></td>
<td>• on-change—The value of the specified MIB object has changed since the last sampling.</td>
</tr>
<tr>
<td></td>
<td>• present—A specified MIB object is present as of the current sampling that was not present at the previous sampling.</td>
</tr>
<tr>
<td></td>
<td>• threshold—Configures a maximum and a minimum threshold for a MIB object.</td>
</tr>
</tbody>
</table>

Note

16-17
Table 16-4 Creating New SNMP Trigger Settings (continued)

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Type</td>
<td>(Optional) Sample type, as follows:</td>
</tr>
<tr>
<td></td>
<td>• absolute—The test is evaluated against a fixed integer value between zero and 2147483647.</td>
</tr>
<tr>
<td></td>
<td>• delta—The test is evaluated against the change in the MIB object value between the current sampling and the previous sampling.</td>
</tr>
<tr>
<td>Threshold Value</td>
<td>Threshold value of the MIB object. This field is not used if absent, on-change, or present is chosen in the Test drop-down list.</td>
</tr>
<tr>
<td>MIB Var1</td>
<td>(Optional) Names of up to three alternate MIB variables to add to the notification. Validation of these names is not supported, so be sure to enter them correctly.</td>
</tr>
<tr>
<td>MIB Var2</td>
<td></td>
</tr>
<tr>
<td>MIB Var3</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>Description of the trap.</td>
</tr>
</tbody>
</table>

Step 4
In the appropriate fields, enter the MIB name, frequency, test, sample type, threshold value, and comments.

Note
You can create valid triggers only on read-write and read-only MIB objects. If you create a trigger on a read-create MIB object, it is deleted from the Central Manager configuration after one one data feed poll cycle.

Step 5
Click Submit.

The new SNMP trigger is listed in the SNMP Trigger List window.
You can edit an SNMP trigger by clicking the Edit icon next to the MIB name in the SNMP Trigger List Entries window.
You can delete an SNMP trigger by clicking the Edit icon next to the MIB name and then clicking the Delete taskbar icon.

Note
If you delete any of the default SNMP triggers, they will be restored after a reload.

Note
When you upgrade a WAE from an earlier version to the 6.0 version, all triggers are deleted.

When you upgrade the Central Manager to 6.0, all the Device Group triggers will be copied to a WAE running a previous software version (if any) and all the Device Group triggers will be deleted. Also the Trigger Aggregate Settings will be set to false for all the WAES (running a version earlier than 6.0) that are being managed by the Central Manager (running version 6.0). This ensures that the DG triggers are no longer applied to any of the devices running a version earlier than 6.0.

Note
When you downgrade a WAE from a 6.0 to an earlier release all the IPv6 configurations will be removed. All the triggers and the monitor user configurations are deleted.
You can use the `snmp trigger` global configuration command to define SNMP traps from the CLI.

To control access to the SNMP agent by an external SNMP server, use the `snmp-server access-list` global configuration command to apply an SNMP ACL.

Note
If you are using an SNMP server ACL, you must permit the loopback interface.

Aggregating SNMP Triggers

An individual WAE device can have custom SNMP triggers defined and can belong to device groups that have other custom SNMP triggers defined.

In the SNMP Trigger List Entries window, the Aggregate Settings radio button controls how SNMP triggers are aggregated for an individual device, as follows:

- Choose **Yes** if you want to configure the device with all custom SNMP triggers that are defined for itself and for device groups to which it belongs.
- Choose **No** if you want to limit the device to just the custom SNMP triggers that are defined for itself.

When you change the setting, you get the following confirmation message: “This option will take effect immediately and will affect the device configuration. Do you wish to continue?” Click **OK** to continue.

Specifying the SNMP Host

Hosts are listed in the order in which they have been created. The maximum number of SNMP hosts that can be created is four.

To specify the SNMP host, follow these steps:

Step 1
From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2
Choose **Configure > Monitoring > SNMP > Host**. The SNMP Hosts window appears.

Step 3
In the taskbar, click the **Create New SNMP Host** icon. The Creating New SNMP Host window appears. Table 16-5 describes the fields in this window.

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trap Host</td>
<td>Hostname or IP address of the SNMP trap host that is sent in SNMP trap messages from the WAE. This is a required field and now supports IPv6 addresses.</td>
</tr>
<tr>
<td>Community/User</td>
<td>Name of the SNMP community or user (64 characters maximum) that is sent in SNMP trap messages from the WAE. This is a required field.</td>
</tr>
</tbody>
</table>
Specifying the SNMP Community String

An SNMP community string is the password used to access an SNMP agent that resides on WAAS devices. There are two types of community strings: group and read-write. Community strings enhance the security of your SNMP messages.

Community strings are listed in the order in which they have been created. The maximum number of SNMP communities that can be created is ten. By default, an SNMP agent is disabled, and a community string is not configured. When a community string is configured, it permits read-only access to all agents by default.

To enable the SNMP agent and configure a community string to permit access to the SNMP agent, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Monitoring > SNMP > Community. The SNMP Community Strings window appears.

Step 3 In the taskbar, click the Create New SNMP Community String icon. The Creating New SNMP Community String window appears. Table 16-6 describes the fields in this window.

Table 16-5 SNMP Host Settings (continued)

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
</table>
| Authentication | Security model to use for sending notification to the recipient of an SNMP trap operation. Choose one of the following options from the drop-down list:
 - No-auth—Sends notification without any security mechanism.
 - v2c—Sends notification using Version 2c security.
 - v3-auth—Sends notification using SNMP Version 3 AuthNoPriv.
 - v3-noauth—Sends notification using SNMP Version 3 NoAuthNoPriv security.
 - v3-priv—Sends notification using SNMP Version 3 AuthPriv security. |
| Retry | Number of retries (1–10) allowed for the inform request. The default is 2 tries. |
| Timeout | Timeout for the inform request in seconds (1–1000). The default is 15 seconds. |

Step 4 Enter the hostname or IP address of an SNMP trap host, SNMP community or user name, security model to send notification, and retry count and timeout for inform requests.

Step 5 Click Submit.

To specify the SNMP host from the CLI, you can use the `snmp-server host` global configuration command.
Chapter 16 Configuring SNMP Monitoring

Creating SNMP Views

To configure a community string from the CLI, you can use the `snmp-server community` global configuration command.

Creating SNMP Views

To restrict a group of users to view a specific MIB tree, you must create an SNMP view using the WAAS Central Manager GUI. Once you create the view, you need to create an SNMP group and SNMP users that belong to this group as described in later sections.

Views are listed in the order in which they have been created. The maximum number of views that can be created is ten.

To create a Version 2 SNMP (SNMPv2) MIB view, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > `device-name` (or Device Groups > `device-group-name`).

Step 2 Choose Configure > Monitoring > SNMP > View. The SNMP Views window appears.
Step 3 In the taskbar, click the Create New View icon. The Creating New SNMP View window appears. Table 16-7 describes the fields in this window.

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>String representing the name of this family of view subtrees (64 characters maximum). The family name must be a valid MIB name such as ENTITY-MIB. This is a required field.</td>
</tr>
<tr>
<td>Family</td>
<td>Object identifier (64 characters maximum) that identifies a subtree of the MIB. This is a required field.</td>
</tr>
</tbody>
</table>
| View Type | View option that determines the inclusion or exclusion of the MIB family from the view. Choose one of the following two options from the drop-down list:
 • Included—The MIB family is included in the view.
 • Excluded—The MIB family is excluded from the view. |

Step 4 In the appropriate fields, enter the view name, the family name, and the view type.

Step 5 Click Submit.

Step 6 Create an SNMP group that will be assigned to this view as described in the section that follows.

To create an SNMP view from the CLI, you can use the `snmp-server view` global configuration command.

Creating an SNMP Group

You must set up an SNMP group if you are going to create any SNMP users or want to restrict a group of users to view a specific MIB subtree.

Groups are listed in the order in which they have been created. The maximum number of SNMP groups that can be created is ten.

To define a user security model group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Monitoring > SNMP > Group. The SNMP Group Strings for WAE window appears.

Step 3 In the taskbar, click the Create New SNMP Group String icon. The Creating New SNMP Group String for WAE window appears. Table 16-8 describes the fields in this window.
Creating an SNMP User

Users are listed in the order in which they have been created. The maximum number of users that can be created is ten.

To define a user who can access the SNMP engine, follow these steps:
Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Monitoring > SNMP > User. A list of SNMP users for the device or device group appears.

Step 3 In the taskbar, click the Create New SNMP User icon. The Creating New SNMP User window appears. Table 16-9 describes the fields in this window.

Table 16-9 SNMP User Settings

<table>
<thead>
<tr>
<th>GUI Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>String representing the name of the user (32 characters maximum) who can access the device or device group. This is a required field.</td>
</tr>
<tr>
<td>Group</td>
<td>Name of the group (64 characters maximum) to which the user belongs. This is a required field.</td>
</tr>
<tr>
<td>Remote SNMP ID</td>
<td>Globally unique identifier for a remote SNMP entity (10 to 64 characters). To send an SNMPv3 message to the WAE, at least one user with a remote SNMP ID must be configured on the WAE. The SNMP ID must be entered in octet string format. Only hexadecimal characters and the colon (:) are allowed in this field. If any colons appear in the entered string, they are removed when the page is submitted.</td>
</tr>
<tr>
<td>Authentication Algorithm</td>
<td>Authentication algorithm that ensures the integrity of SNMP packets during transmission. Choose one of the following three options from the drop-down list:</td>
</tr>
<tr>
<td></td>
<td>• No-auth—Requires no security mechanism to be turned on for SNMP packets.</td>
</tr>
<tr>
<td></td>
<td>• MD5—Provides authentication based on the hash-based Message Authentication Code Message Digest 5 (HMAC-MD5) algorithm.</td>
</tr>
<tr>
<td></td>
<td>• SHA—Provides authentication based on the hash-based Message Authentication Code Secure Hash (HMAC-SHA) algorithm.</td>
</tr>
<tr>
<td>Authentication Password</td>
<td>Alphanumeric string (256 characters maximum) thatconfigures the user authentication (HMAC-MD5 or HMAC-SHA) password. The number of characters is adjusted to fit the display area if it exceeds the limit for display. The following special characters are not supported: space, backwards single quote (‘), single quote (‘), double quote (“), pipe (</td>
</tr>
<tr>
<td>Confirmation Password</td>
<td>Authentication password for confirmation. The reentered password must be the same as the one entered in the previous field.</td>
</tr>
</tbody>
</table>
In the appropriate fields, enter the username, the group to which the user belongs, the engine identity of the remote entity to which the user belongs, the authentication algorithm used to protect SNMP traffic from tampering, the user authentication parameters, and the authentication parameters for the packet.

Step 5 Click Submit.

To create an SNMP user from the CLI, you can use the `snmp-server user` global configuration command.

Additionally, if you want to set up a monitor user to monitor the configured triggers, you can select it from the Monitor User Settings drop-down box.

Any SNMP V3 user can be configured as a Monitor User. All the SNMP users created with a group having V3 authentication other than v3-private are eligible to be a Monitor User. A monitor user cannot be deleted, while being in that role. Similarly the corresponding monitor user group also cannot be deleted when a monitor user is configured with that group.

To create a monitor user from the CLI, you can use the `snmp-server monitor user` global configuration command.

Configuring SNMP Asset Tag Settings

To configure SNMP asset tag settings, which create values in the CISCO-ENTITY-ASSET-MIB, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Monitoring > SNMP > Asset Tag. The SNMP Asset Tag Settings window appears.

Step 3 In the Asset Tag Name field, enter a name for the asset tag.
Step 4

Click Submit.

To configure SNMP asset tag settings from the CLI, you can use the asset tag global configuration command.

Configuring SNMP Contact Settings

To configure SNMP contact settings, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).</td>
</tr>
<tr>
<td>2</td>
<td>Choose Configure > Monitoring > SNMP > Contact Information. The SNMP Contact Settings window appears.</td>
</tr>
<tr>
<td>3</td>
<td>Enter a contact name and location in the provided fields.</td>
</tr>
<tr>
<td>4</td>
<td>Click Submit.</td>
</tr>
</tbody>
</table>

To configure SNMP contact settings from the CLI, you can use the `snmp-server contact` global configuration command.

Configuring SNMP Trap Source Settings

To configure the source interface from which SNMP traps are sent, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>From the WAAS Central Manager menu, choose Devices > device-name. (This setting is not supported from device groups.)</td>
</tr>
<tr>
<td>2</td>
<td>Choose Configure > Monitoring > SNMP > Trap Source. The SNMP Trap Source Settings window appears.</td>
</tr>
</tbody>
</table>
| 3 | From the Trap Source drop-down list, choose the interface to be used as the trap source. From the available physical, standby, and port-channel interfaces, only those with IP addresses are shown in the list. For vWAAS devices, virtual interfaces with assigned IP addresses are shown in the list.

Note: An interface assigned as a trap source cannot be removed until it is unassigned as a trap source. |
| 4 | Click Submit. |

To configure SNMP trap source settings from the CLI, you can use the `snmp-server trap-source` global configuration command.