Configuring Application Acceleration

This chapter describes how to configure the optimization policies on your WAAS system that determine the types of application traffic that is accelerated over your WAN.

Throughout this chapter, the term WAAS device is used to refer collectively to the WAAS Central Managers and WAEs in your network. The term WAE refers to WAE and WAVE appliances, SM-SRE modules running WAAS, and vWAAS instances.

This chapter contains the following sections:

- About Application Acceleration, page 13-1
- Enabling and Disabling the Global Optimization Features, page 13-3
- Creating a New Traffic Optimization Policy, page 13-78
- Managing Application Acceleration, page 13-86

About Application Acceleration

The WAAS software comes with over 150 predefined optimization policies that determine the type of application traffic your WAAS system optimizes and accelerates. These predefined policies cover the most common type of application traffic on your network. For a list of the predefined policies, see Appendix A, “Predefined Optimization Policy.”

Each optimization policy contains the following elements:

- Application definition—Identifies general information about a specific application, such as the application name and whether the WAAS Central Manager collects statistics about this application.
- Class Map—Contains a matching condition that identifies specific types of traffic. For example, the default HTTP class map matches all traffic going to ports 80, 8080, 8000, 8001, and 3128. You can create up to 512 class maps and 1024 matching conditions.
- Policy—Combines the application definition and class map into a single policy. This policy also determines what optimization and acceleration features (if any) a WAAS device applies to the defined traffic. You can create up to 512 policies. A policy can also contain a differentiated services code point (DSCP) marking value that is applied to the traffic and that overrides a DSCP value set at the application or global level.

You can use the WAAS Central Manager GUI to modify the predefined policies and to create additional policies for other applications. For more information on creating optimization policies, see the “Creating a New Traffic Optimization Policy” section on page 13-78. For more information on viewing reports,
restoring policies, monitoring applications, and other functions, see the “Managing Application Acceleration” section on page 13-86.

Note

All application definitions configured in the WAAS Central Manager are globally applied to all WAAS devices that register with the WAAS Central Manager, regardless of the device group membership configuration.

WAAS policies can apply two kinds of optimizations to matched traffic:

- Layer 4 optimizations that include TFO, DRE, and LZ compression. These features can be applied to all types of TCP traffic.
- Layer 7 optimizations that accelerate application-specific protocols. The application accelerators control these kinds of optimizations.

For a given optimization policy, the DRE feature can use different caching modes (beginning with software version 4.4.1):

- **Bidirectional**—The peer WAEs maintain identical caches for inbound and outbound traffic. This caching mode is best suited where a significant portion of the traffic seen in one direction between the peers is also seen in the reverse direction. In software versions prior to 4.4.1, this mode is the only supported caching mode.
- **Unidirectional**—The peer WAEs maintain different caches for inbound and outbound traffic. This caching mode is best suited where a significant portion of the traffic seen in one direction between the peers is not seen in the reverse direction.
- **Adaptive**—The peer WAEs negotiate either bidirectional or unidirectional caching based on the characteristics of the traffic seen between the peers.

The predefined optimization policies are configured to use the optimal DRE caching mode, depending on the typical application traffic, though you can change the mode if you want.
Enabling and Disabling the Global Optimization Features

The global optimization features determine if TFO Optimization, Data Redundancy Elimination (DRE), and Persistent Compression are enabled on a device or device group. By default, all of these features are enabled. If you choose to disable one of these features, the device will be unable to apply the full WAAS optimization techniques to the traffic that it intercepts.

In addition, the global optimization features include each of the following application accelerators: CIFS, EPM, HTTP, ICA, MAPI, NFS, SMB, SSL, and video. By default, all of the application accelerators are enabled except SMB. Encrypted MAPI is also not enabled by default. The application accelerators also require specific licenses to operate. For information on installing licenses, see the “Managing Software Licenses” section on page 10-3.

You must enable the accelerator on both of the peer WAEs at either end of a WAN link for all application accelerators to operate.

To enable or disable a global optimization feature, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Acceleration > Enabled Features**.

The Enabled Features window appears. (See Figure 13-1.)

Note On WAAS Express devices, only a subset of the standard features are available. (See Figure 13-2.) On ISR-WAAS devices, the CIFS application accelerator is not available and the SMB application accelerator is enabled by default. In the Enabled Features window for a device group, two SMB Accelerator options are shown, one for ISR-WAAS devices and one for all other kinds of WAEs.
Figure 13-1 Enabled Features Window

Figure 13-1 shows the enabled features window for Cisco Wide Area Application Services.

Figure 13-2 shows the subset of standard features that are available for a WAAS Express device.

Figure 13-2 Enabled Features Window—WAAS Express
For WAAS Express, the following express versions of application accelerators are supported:

- CIFS accelerator express (See the “Configuring CIFS Accelerator Express” section on page 13-28)
- HTTP accelerator express (See the “Configuring HTTP Acceleration” section on page 13-8)
- SSL accelerator express (See the “Configuring SSL Acceleration” section on page 13-31)

Not all of the properties in the standard WAAS device are available in the WAAS Express version of the application accelerators.

Note: If you try to enable DRE on a WAAS Express device on which it is not supported, a message tells you that it is not supported.

The Restore Predefined Settings icon for WAAS Express applies the predefined settings for HTTP/HTTPS, CIFS, and SSL cipher list and peering service.

Step 3
Place a check next to the optimization features that you want to enable, and uncheck the features that you want to disable. For a description of each of the optimization features, see the “Key Services of Cisco WAAS” section on page 1-4.

Some features have additional settings that you can configure by clicking a link next to the setting name. Hover your cursor over the small target icon next to the link to see a pop-up window that shows the current settings.

Step 4
If you check the Data Redundancy Elimination check box, you can click the DRE Settings link as a shortcut to the DRE Settings Configuration window. For more information, see the “Configuring DRE Settings” section on page 13-7.

Step 5
If you check the CIFS Accelerator check box, you have the following option:

- CIFS Print Accelerator—Check this box to accelerate print traffic between clients and a Windows print server. This accelerator is enabled by default when you enable the CIFS accelerator.

Note: Do not disable CIFS Print Acceleration during a client session because this action can interfere with client use of print services. If you must disable CIFS Print Acceleration, disconnect and then reestablish the client session.

Step 6
If you check the HTTP Accelerator check box, you can click the HTTP Settings link as a shortcut to the HTTP/HTTPS Settings window. For more information, see the “Configuring HTTP Acceleration” section on page 13-8.

Step 7
If you check the ICA Accelerator check box, you can click the ICA Settings link as a shortcut to the ICA Acceleration Configuration window. For more information, see the “Configuring ICA Acceleration” section on page 13-29.

Step 8
If you check the MAPI Accelerator check box, you can click the MAPI Settings link as a shortcut to the MAPI Settings window.

Note: When you check the MAPI Accelerator check box, Encrypted MAPI Traffic Optimization is enabled by default.

For more information, see the “Configuring MAPI Acceleration” section on page 13-12.

Step 9
If you check the Encrypted MAPI Traffic Optimization check box, you can click the Mandatory Encryption Configuration link as a shortcut to the Encrypted Services Configuration window.
Note You must enable MAPI acceleration first for Encrypted MAPI acceleration to be enabled.

For more information, see the “Configuring Encrypted MAPI Acceleration” section on page 13-13.

Step 10 If you check the **SMB Accelerator** check box, you can click the **SMB Settings** link as a shortcut to the SMB Acceleration Configuration window. For more information, see the “Configuring SMB Acceleration” section on page 13-25.

Step 11 If you check the **SSL Accelerator** check box, you must configure additional settings to enable SSL acceleration. For more information, see the “Configuring SSL Acceleration” section on page 13-31.

Step 12 If you check the **Video Accelerator** check box, you can click the **Video Settings** link as a shortcut to the Video Acceleration Configuration window. For more information, see the “Configuring Video Acceleration” section on page 13-23.

Step 13 In the Advanced Settings area, uncheck the **Blacklist Operation** feature if you want to disable it. This feature allows a WAE to better handle situations in which TCP setup packets that have options are blocked or not returned to the WAE device. This behavior can result from network devices (such as firewalls) that block TCP setup packets that have options, and from asymmetric routes. The WAE can keep track of origin servers (such as those behind firewalls) that cannot receive optioned TCP packets and learns not to send out TCP packets with options to these blacklisted servers. WAAS is still able to accelerate traffic between branch and data center WAEs in situations where optioned TCP packets are dropped. We recommend leaving this feature enabled.

Step 14 If you want to change the default Blacklist Server Address Hold Time of 60 minutes, enter the new time in minutes in the Blacklist Server Address Hold Time field. The valid range is 1 minute to 10080 minutes (1 week).

When a server IP address is added to the blacklist, it remains there for configured hold time. After that time, subsequent connection attempts will again include TCP options so that the WAE can redetermine if the server can receive them. It is useful to retry sending TCP options periodically because network packet loss may cause a server to be erroneously blacklisted.

You can shorten or lengthen the blacklist time by changing the Blacklist Server Address Hold Time field.

Step 15 Click **Submit**.

The changes are saved to the device or device group.

To configure TFO optimization, DRE, and persistent compression from the CLI, use the **tfo optimize** global configuration command.

To configure CIFS acceleration from the CLI, use the **accelerator cifs** and **accelerator cifs preposition** global configuration commands.

To configure CIFS print acceleration from the CLI, use the **accelerator windows-print** global configuration command.

To configure EPM acceleration from the CLI, use the **accelerator epm** global configuration command.

To configure HTTP acceleration from the CLI, use the **accelerator http** global configuration command.

To configure ICA acceleration from the CLI, use the **accelerator ica** global configuration command.

To configure MAPI acceleration from the CLI, use the **accelerator mapi** global configuration command.

To configure NFS acceleration from the CLI, use the **accelerator nfs** global configuration command.

To configure SMB acceleration from the CLI, use the **accelerator smb** global configuration command.
To configure SSL acceleration from the CLI, use the `accelerator ssl` global configuration command.

To configure video acceleration from the CLI, use the `accelerator video` global configuration command.

To configure the Blacklist Operation feature from the CLI, use the `tfo auto-discovery` global configuration command.

To display status and statistics on the application accelerators from the CLI, use the `show accelerator` and `show statistics accelerator` EXEC commands. To display statistics on the CIFS print accelerator, use the `show statistics windows-print requests` EXEC command. To display statistics on the SMB print accelerator, use the `show statistics accelerator smb` EXEC command.

For details on configuring individual application accelerators, see the following sections:

- Configuring HTTP Acceleration, page 13-8
- Configuring MAPI Acceleration, page 13-12
- Configuring Encrypted MAPI Acceleration, page 13-13
- Configuring Video Acceleration, page 13-23
- Configuring CIFS Accelerator Express, page 13-28
- Configuring SMB Acceleration, page 13-25
- Configuring ICA Acceleration, page 13-29
- Configuring SSL Acceleration, page 13-31
- For CIFS: Chapter 12, “Configuring File Services”

Configuring DRE Settings

To enable DRE settings, check the **Data Redundancy Elimination** check box in the Enabled Features window (see Figure 13-1 on page 13-4).

To configure the DRE auto bypass and load monitor settings, follow these steps:

Step 1
From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2
Choose **Configure > Acceleration > DRE Settings**.

The DRE Settings window appears.

Step 3
Check the **Enable DRE auto bypass** check box to generate an alarm and automatically DRE bypass application traffic.

Step 4
Check the **Enable DRE Load Monitor** check box to enable load report.

- The **disk latency maximum** can be set from 1-1000; the default value is 5.
- The **DRE load threshold** can be set from 50-99; the default value is 95.

Step 5
Click **Submit**.

The changes are saved to the device or device group.

To enable DRE auto bypass from the CLI, use the `dre auto-bypass enable` global configuration command.
To enable DRE load monitor from the CLI, use the `dre load-monitor report` global configuration command.

Configuring HTTP Acceleration

The HTTP application accelerator accelerates HTTP traffic. To optimize HTTPS, you must enable both SSL and HTTP and also have protocol chaining enabled.

The default Web optimization policy is defined to send traffic to the HTTP accelerator. The Web optimization policy uses the HTTP class map, which matches traffic on ports 80, 8080, 8000, 8001, and 3128. If you expect HTTP traffic on other ports, add the other ports to the HTTP class map.

To enable the HTTP accelerator, check the HTTP Accelerator check box in the Enabled Features window (see Figure 13-1 on page 13-4).

To configure the HTTP acceleration settings, follow these steps:

Step 1
From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2
Choose **Configure > Acceleration > HTTP/HTTPS Settings**.
The HTTP Acceleration Settings window appears. (See Figure 13-3.)

Note
For WAAS Express, the HTTP acceleration settings are the same but the fields are laid out differently in the HTTP/HTTPS Settings window.
Step 3 Check the **Enable HTTP metadata cache** check box to enable the WAE to cache HTTP header (metadata) information. The default setting is enabled.

This box must be checked to enable any of the other settings in the Metadata Cache Settings area. If this box is not checked, no header caching is done.

For details on HTTP metadata caching, see the “About HTTP Metadata Caching” section on page 13-10.

Step 4 Check the **Enable HTTPS metadata cache** check box to enable the WAE to cache HTTPS header (metadata) information (HTTP as payload in SSL traffic). The default setting is checked (enabled).

For details on HTTP metadata caching, see the “About HTTP Metadata Caching” section on page 13-10.

Step 5 In the Maximum age of a cache entry field, enter the maximum number of seconds to retain HTTP header information in the cache. The default is 86400 seconds (24 hours). Valid time periods range from 5–2592000 seconds (30 days).

Step 6 In the Minimum age of a cache entry field, enter the minimum number of seconds to retain HTTP header information in the cache. The default is 60 seconds. Valid time periods range from 5 to 86400 seconds (24 hours).

Step 7 Check the **Enable local HTTP 301 redirect messages** check box to enable the WAE to cache and locally serve HTTP 301 messages. The default setting is checked.

Step 8 Check the **Enable local HTTP 401 Authentication-required messages** check box to enable the WAE to cache and locally serve HTTP 401 messages. The default setting is checked.

Step 9 Check the **Enable local HTTP 304 Not-Modified messages** check box to enable the WAE to cache HTTP 200 and 304 messages and locally serve HTTP 304 messages. The default setting is checked.
Chapter 13 Configuring Application Acceleration

Enabling and Disabling the Global Optimization Features

Step 10 To configure specific file extensions to which metadata caching is to be applied, enter the file extensions in the File extension filters field at the far right. Separate multiple extensions with a comma (for example: jpeg, gif, png) and do not include the dot at the beginning of the file extension.

By default, no file extension filters are defined and therefore metadata caching applies to all file types.

Step 11 Check the Enable Pre-fetch Optimization check box to allow the edge WAAS device to prefetch data. This setting is not enabled by default.

This optimization benefits Web browser-based Office applications when they access Microsoft Office documents (MS Word and Excel only) hosted on a Microsoft SharePoint Server 2010. For viewing Word documents, the client must have Microsoft Silverlight installed.

By checking this box, you are telling the edge WAAS device to prefetch the subsequent pages of the documents from the SharePoint server before the client actually requests them and serve them from the cache when the request from the client arrives. You can now seamlessly scroll through the document without having to wait for the content to load.

Note SharePoint prefetch optimization works with view in browser mode only.

Step 12 Check the Suppress server compression for HTTP and HTTPS check box to configure the WAE to suppress server compression between the client and the server. The default setting is checked.

By checking this box, you are telling the WAE to remove the Accept-Encoding value from HTTP and HTTPS request headers, preventing the web server from compressing HTTP and HTTPS data that it sends to the client. This allows the WAE to apply its own compression to the HTTP and HTTPS data, typically resulting in much better compression than the web server for most files. For some file types that rarely change, such as .css and .js files, this setting is ignored and web server compression is allowed.

Step 13 Check the Enable DRE Hints for HTTP and HTTPS check box to send DRE hints to the DRE module for improved DRE performance. The DRE hint feature is enabled by default.

Step 14 Click Submit.

The changes are saved to the device or device group.

To configure HTTP acceleration from the CLI, use the `accelerator http` global configuration command.

To show the contents of the metadata cache, use the `show cache http-metadatacache` EXEC command.

To clear the metadata cache, use the `clear cache http-metadatacache` EXEC command.

To enable or disable specific HTTP accelerator features for specific clients or IP subnets, use the HTTP accelerator subnet feature. For more details, see the “Using an HTTP Accelerator Subnet” section on page 13-11.

About HTTP Metadata Caching

The metadata caching feature allows the HTTP accelerator in the branch WAE to cache particular server responses and respond locally to clients. The following server response messages are cached:

- HTTP 200 OK (Applies to If-None-Match and If-Modified-Since requests)
- HTTP 301 redirect
- HTTP 304 not modified (Applies to If-None-Match and If-Modified-Since requests)
- HTTP 401 authentication required
Metadata caching is not applied in the following cases:

- Requests and responses that are not compliant with RFC standards
- URLs over 255 characters
- 301 and 401 responses with cookie headers
- HEAD method is used
- Pipelined transactions

The metadata caching feature is introduced in WAAS version 4.2.1, but version 4.2.1 is needed only on the branch WAE. This feature can interoperate with an HTTP accelerator on a data center WAE that has a lower version.

Using an HTTP Accelerator Subnet

The HTTP accelerator subnet feature allows you to selectively enable or disable specific HTTP optimization features for specific IP subnets by using ACLs. This feature can be applied to the following HTTP optimizations: HTTP metadata caching, HTTPS metadata caching, DRE hints, and suppress server compression.

To define IP subnets, use the `ip access-list` global configuration command. Refer to this command in the Cisco Wide Area Application Services Command Reference for information on configuring subnets. You can use both standard and extended ACLs.

To configure a subnet for an HTTP accelerator feature, follow these steps:

Step 1 Enable the global configuration for all the HTTP accelerator features that you want to use.

```
WAE(config)# ip access-list extended md_acl
WAE(config-ext-nacl)# permit ip 1.1.1.0 0.0.0.255 any
WAE(config-ext-nacl)# permit ip 2.2.2.0 0.0.0.255 3.3.3.0 0.0.0.255
WAE(config-ext-nacl)# exit
```

Step 2 Create an IP access list to use for a subnet of traffic.

Step 3 Associate the ACL with a specific HTTP accelerator feature. Refer to the `accelerator http` global configuration command in the Cisco Wide Area Application Services Command Reference for information on associating an ACL with an HTTP accelerator feature.

```
WAE(config)# accelerator http metadatacache access-list md_acl
```

In this example, the HTTP metadata cache feature applies to all the connections that match the conditions specified in the extended access-list md_acl.

In the following example, the HTTP suppress-server-encoding feature applies to all the connections that match the conditions specified in the standard access-list 10.

```
WAE(config)# ip access-list standard 10
WAE(config-std-nacl)# permit 1.1.1.0 0.0.0.255
WAE(config-std-nacl)# exit
WAE(config)# accelerator http suppress-server-encoding accesslist 10
```

For the features (DRE hints and HTTPS metadata cache in this example) that do not have an ACL associated with them, the global configuration is used and they are applicable to all the connections.
Configuring MAPI Acceleration

The MAPI application accelerator accelerates Microsoft Outlook Exchange traffic that uses the Messaging Application Programming Interface (MAPI) protocol.

- For WAAS Version 5.3.x and later, Microsoft Outlook 2000–2013 clients are supported.
- For WAAS Version 5.2.x and earlier, Microsoft Outlook 2000–2010 clients are supported.

Clients can be configured with Outlook in cached or noncached mode; both modes are accelerated. Secure connections that use message authentication (signing) are not accelerated, and MAPI over HTTP is not accelerated.

Note Microsoft Outlook 2007 and 2010 have encryption enabled by default. You must disable encryption to benefit from the MAPI application accelerator.

The EPM application accelerator must be enabled for the MAPI application accelerator to operate. EPM is enabled by default. Additionally, the system must define an optimization policy of type EPM, specify the MAPI UUID, and have an Accelerate setting of MAPI. This policy, MAPI for the Email-and-Messaging application, is defined by default.

EPM traffic, such as MAPI, does not normally use a predefined port. If your Outlook administrator has configured Outlook in a nonstandard way to use a static port, you must create a new basic optimization policy that accelerates MAPI traffic with a class map that matches the static port that was configured for Outlook.

Note If the WAE becomes overloaded with connections, the MAPI application accelerator continues to accelerate MAPI connections by using internally reserved connection resources. If the reserved resources are also exceeded, new MAPI connections are passed through until connection resources become available.

To enable the MAPI accelerator, check the MAPI Accelerator check box in the Enabled Features window (see Figure 13-1 on page 13-4).

Note When you enable MAPI acceleration, Encrypted MAPI acceleration is enabled by default.

To configure MAPI acceleration settings, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > MAPI Settings.

The MAPI Acceleration Settings window appears. (See Figure 13-4.)
In the **Reserved Pool Size Maximum Percent** field, enter the maximum percent of connections to restrict the maximum number of connections reserved for MAPI optimization during TFO overload. It is specified as a percent of the TFO connection limit of the platform. Valid percent ranges from 5%-50%. The default is 15%, which would reserve approximately 0.5 connection for each client-server Association Group (AG) optimized by the MAPI accelerator.

The client maintains at least one AG per server it connects to with an average of about 3 connections per AG. For deployments that observe a greater average number of connections per AG, or where TFO overload is a frequent occurrence, a higher value for reserved pool size maximum percent is recommended.

Reserved connections would remain unused when the device is not under TFO overload. Reserved connections are released when the AG terminates.

Step 4 Click **Submit**. The changes are saved to the device or device group.

Configuring Encrypted MAPI Acceleration

The Encrypted MAPI acceleration feature provides WAN optimization for secure MAPI application protocols using MS-Kerberos security protocol and Windows Active Directory identity for authentication of clients and/or servers in the domain.

Note

You must enable MAPI acceleration first for Encrypted MAPI acceleration to be enabled. Encrypted MAPI acceleration is enabled by default.

This section contains the following topics:

- Task Flow for Configuring Encrypted MAPI, page 13-14
- Configuring Encrypted MAPI Settings, page 13-14
- Configuring a Machine Account Identity, page 13-16
- Creating and Configuring a User Account, page 13-18
- Configuring Microsoft Active Directory, page 13-20
- Managing Domain Identities and Encrypted MAPI State, page 13-22
Task Flow for Configuring Encrypted MAPI

To configure Encrypted MAPI traffic acceleration, complete the tasks listed in Table 13-1. These tasks must be performed on both data center and branch WAEs unless specifically noted as not required (or optional).

Table 13-1 Tasks for Configuring Encrypted MAPI

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information and Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Configure DNS Settings.</td>
<td>To configure DNS settings, see the “Configuring the DNS Server” section on page 6-27.</td>
</tr>
<tr>
<td>2. Configure NTP Settings.</td>
<td>To synchronize the time with Active Directory, see the “Configuring NTP Settings” section on page 10-5.</td>
</tr>
<tr>
<td>3. Verify WAE devices are registered and online with the WAAS Central Manager.</td>
<td>To verify WAE devices are registered and online with the WAAS Central Manager, see the “Devices Window” section on page 17-6.</td>
</tr>
<tr>
<td>5. Verify WAN Secure mode is enabled.</td>
<td>To verify WAN Secure mode is enabled, use the <code>show accelerator wansecure</code> EXEC command.</td>
</tr>
<tr>
<td>6. Configure windows domain settings and perform domain join.</td>
<td>To configure Windows Domain Server Authentication settings, see the “Configuring Windows Domain Server Authentication Settings” section on page 7-16 section. Note that performing a domain join of the WAE is not required on branch WAE devices.</td>
</tr>
<tr>
<td>7. Configure domain identities (for machine account and optional user accounts).</td>
<td>To configure a machine account identity, see the “Configuring a Machine Account Identity” section on page 13-16. (Optional) To create a user account and configure a user account identity, see the “Creating and Configuring a User Account” section on page 13-18. Note that configuring domain identities is not required on branch WAE devices.</td>
</tr>
<tr>
<td>9. Enable Encrypted MAPI Traffic Optimization.</td>
<td>To enable Encrypted MAPI Traffic, see the “Enabling and Disabling the Global Optimization Features” section on page 13-3.</td>
</tr>
</tbody>
</table>

Configuring Encrypted MAPI Settings

To configure Encrypted MAPI acceleration, follow these steps:

Step 1 Configure DNS Settings.
The WAAS DNS server must be part of the DNS system of Windows Active Directory domains to resolve DNS queries for traffic encryption.

To configure DNS settings, see the “Configuring the DNS Server” section on page 6-27.

Step 2
Configure NTP Settings to synchronize the time with Active Directory.

The WAAS device has to be in synchronization with Active Directory for Encrypted MAPI acceleration. The WAAS NTP server must share time synchronization with the Active Directory Domain Controllers domains for which traffic encryption is desired. Out of sync time will cause Encrypted MAPI acceleration to fail.

To synchronize the time with Active Directory, see the “Configuring NTP Settings” section on page 10-5.

Step 3
Verify WAE devices are registered and online with the WAAS Central Manager.

To verify WAE devices are registered and online with the WAAS Central Manager, see the “Devices Window” section on page 17-6.

Step 4
Configure SSL Peering Service.

Note
SSL accelerator must be enabled and in the running state.

To configure SSL Peering Service, see the “Configuring SSL Peering Service” section on page 13-48.

Step 5
Verify WAN Secure mode is enabled.

The default mode is Auto. You can verify the state of WAN Secure mode using the following EXEC command:

```
show accelerator wansecure
```

If necessary, you can change the state of WAN Secure using the following global configuration command:

```
accelerator mapi wansecure-mode {always | auto | none}
```

Step 6
Configure Windows domain settings and perform a domain join. (A domain join automatically creates the machine account in Active Directory.)

Note
Performing a domain join of the WAE is not required on branch WAE devices.

Note
This step is optional on data center WAEs if only user accounts are used for domain identity configuration in the next step.

To configure Windows Domain Server Authentication settings, see the “Configuring Windows Domain Server Authentication Settings” section on page 7-16.

Note
Kerberos and NTLM authentication are used for Encrypted MAPI acceleration. For WAAS 5.3.1, encrypted NTLM traffic is supported for EMAPI, and the WAE device optimizes NTLM traffic for domains configured with NTLM authentication.

Step 7
Configure domain identities. (Not required for branch WAEs.)
You must have at least one account configured, either user or machine, that is configured with a domain identity. Each device can support up to 5 domain identities, 1 machine account identity and 4 user account identities. This allows a WAAS device to accelerate up to 5 domain trees. You must configure a domain identity for each domain with an exchange server that has clients to be accelerated.

a. Configure the machine account identity.
 A machine account for the core device was automatically created during the join process in the Windows Domain Server authentication procedure in the previous step. If you are using a machine account, a machine account identity must be configured for this account.
 Each device only supports one machine account identity.
 To configure a machine account identity, see the “Configuring a Machine Account Identity” section on page 13-16.

b. Create and configure optional user accounts.
 You may utilize up to four optional user accounts for additional security. Multiple user accounts provide greater security than having all of the core devices using a single user account. You are required to configure a user account identity for each user account, whether you are utilizing an existing user account or creating a new one.
 To create a user account and configure a user account identity, see the “Creating and Configuring a User Account” section on page 13-18.

Step 8 Enable Windows Domain Encrypted Service. (Enabled by default.)

a. From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

b. From the menu, choose Configure > Security > Windows Domain > Encrypted Services. The Encrypted Services window appears.

c. Check the Enable Encrypted Service check box.

d. Click Submit to save your changes.

Step 9 Enable Encrypted MAPI Traffic Optimization.

From the Enabled Features window, check the Encrypted MAPI Traffic Optimization check box (the MAPI Accelerator check box must also be checked), and click Submit. Encrypted MAPI traffic optimization is enabled by default.

For more information on the Enabled Features window, see the “Enabling and Disabling the Global Optimization Features” section on page 13-3.

Configuring a Machine Account Identity

To configure an identity for a machine account, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 From the menu, choose Configure > Security > Windows Domain > Encrypted Services. The Encrypted Services window appears.

Step 3 Click the Add Domain Identity button to add a machine account domain identity. (See Figure 13-5.)

Every WAAS device to be accelerated must have a domain identity.
a. Select Machine Account from the **Account Type** drop-down list.

Note
Windows domain join must be completed before creating the machine account domain identity. See the “Configuring Windows Domain Server Settings on a WAAS Device” section on page 7-17 for more information.

b. Enter the identity name in the **Identity Name** field. Alphanumeric characters only (cannot contain space, ?, |), not exceeding 32 characters.

Note
The domain identity must have sufficient privileges in the Windows Domain Active Directory to replicate the desired domain information to optimize encrypted traffic. To configure privileges, see the “Configuring Microsoft Active Directory” section on page 13-20.

Step 4
Click **Add Match Domain** to add the child domains of the domain (with which the device is registered) for which the Domain Identity should optimize the encrypted traffic. You can add up to 32 child domains.
If you do not want the Domain Identity to optimize the traffic for any of the child domains, you can delete the selected match domain items.

Note
This is available only on devices running WAAS 5.4 release.

Step 5
Click **OK**. The domain identity appears in the Encrypted Services Domain Identities list. (See Figure 13-6.)
Creating and Configuring a User Account

To create a user account and configure a user account identity, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 From the menu, choose Configure > Security > Windows Domain > Encrypted Services. The Encrypted Services window appears. (See Figure 13-7.)

Step 3 Click the Add Domain Identity button to add a user account domain identity. The Domain Identity window appears. (See Figure 13-8.)
a. Select user account from the **Account Type** drop-down list.

b. Enter the identity name in the **Identity Name** field. Alphanumeric characters only (cannot contain space, ?, |), not exceeding 32 characters.

c. Enter username and password information.

d. Enter the domain name.

e. Enter the Kerberos realm.

f. Click the **Add Match Domain** button to add the child domains of the selected domain, for which the Domain Identity should optimize the encrypted traffic. You can add up to 32 child domains. If you do not want the Domain Identity to optimize the traffic for any of the child domains, you can delete the selected match domain items.

Note The domain identity must have sufficient privileges in the Windows Domain Active Directory to replicate the desired domain information to optimize encrypted traffic. To configure privileges, see the “Configuring Microsoft Active Directory” section on page 13-20.

Step 4 Click **OK**. The domain identity appears in the Encrypted Services Domain Identities list.

Note Secure store encryption is used for the user account domain identity password. If secure store cannot be opened, an alarm is raised indicating that the configuration updates could not be stored on the device. Once secure store can be opened and the configuration updates are successfully stored on the device, the alarm is cleared.

To configure and verify Encrypted Services Domain Identities from the CLI, use the `windows-domain encrypted-service` global configuration command and the `show windows-domain encrypted-service` EXEC command.
Configuring Microsoft Active Directory

To grant Cisco WAAS permission to accelerate Exchange encrypted email sessions, follow these steps:

Step 1 Using an account with Domain Administrator privileges, launch the Active Directory Users and Computers application.

Step 2 Create a new group.

Note This group is for accounts that WAAS will use to optimize Exchange traffic. Normal users and computers should not be added to this group.

a. Right-click the Organizational Unit (OU) to contain the new group and choose **New > Group**. (See Figure 13-9.)

Figure 13-9 Active Directory—Add Group

b. Enter a name in the **Group name** fields and select the following attributes:
 - Group scope: Universal
 - Group type: Security

c. Click **OK**.

Step 3 Configure the permissions required by WAAS.

a. In the Active Directory Users and Computers application window, select **View > Advanced Features** from the menu bar.
b. Right-click on the root of the domain and choose **Properties**.

c. Select the **Security** tab. (See Figure 13-10.)

Figure 13-10
Active Directory—Security Tab

<table>
<thead>
<tr>
<th>Group or user names:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everyone</td>
</tr>
<tr>
<td>SELF</td>
</tr>
<tr>
<td>Authenticated Users</td>
</tr>
<tr>
<td>SYSTEM</td>
</tr>
<tr>
<td>NETWORK SERVICE</td>
</tr>
<tr>
<td>Organization Management (ADBU-EXCH:Organization Manager)</td>
</tr>
</tbody>
</table>

Permissions for Everyone

<table>
<thead>
<tr>
<th>Allow</th>
<th>Deny</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

- Full control
- Read
- Write
- Create all child objects
- Delete all child objects

For special permissions or advanced settings, click **Advanced**.

<table>
<thead>
<tr>
<th>Learn about access control and permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| ![Active Directory—Security Tab](image) |

d. Click **Add** in the Group or User Names section.

e. Enter the name of the new group that you created in this procedure in the **Enter the object names to select** field and click **OK** to add the new group to the list.

f. Select the new group in the Group or user names list and set the following permissions to **Allow**:
 - Replicating Directory Changes
 - Replicating Directory Changes All

g. Click **OK**.

Step 4

Add an account to the group.

User or workstation (computer) accounts must be added to the new group for WAAS Exchange Encrypted email optimization.

a. Right-click on the account you want to add and select the **Member Of** tab.

b. Click **Add**.

c. Choose the new group you created and click **OK**.

Active Directory permissions configuration is complete.
Managing Domain Identities and Encrypted MAPI State

This section contains the following topics:

- Editing an Existing Domain Identity, page 13-22
- Deleting an Existing Domain Identity, page 13-22
- Disabling Encrypted MAPI, page 13-23
- Encrypted MAPI Acceleration Statistics, page 13-23

Editing an Existing Domain Identity

You can modify the attributes of an existing domain identity on a WAAS device, if needed.

Note

If the password for a user account has been changed in Active Directory, you must edit the user account domain identity on the WAAS device to match the new Active Directory password.

The following restrictions apply:

- For a machine account identity, only the state of the domain identity (enabled or disabled) can be modified from a WAAS device.
- For a user account identity, only the state of the domain identity (enabled or disabled) and the password can be modified from a WAAS device.

To change the password for a user account domain identity on a WAAS device when the password for the account in Active Directory has changed, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 From the menu, choose Configure > Security > Windows Domain > Encrypted Services.

The Encrypted Services window appears.

Step 3 Select the user account domain identity to modify and click the Edit icon.

The Domain Identity window appears.

Step 4 Change the password in the password field. The password should be the same as the password for the account in Active Directory.

Step 5 Click OK.

Deleting an Existing Domain Identity

To delete a domain identity on a WAAS device, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 From the menu, choose Configure > Security > Windows Domain > Encrypted Services.

The Encrypted Services window appears.

Step 3 Select one or more domain identities to delete and click the Delete icon to remove the domain identity configured on the WAAS device.
A warning message appears if the domain identity is being used for optimizing encrypted traffic.

Step 4
Click OK to accept or Cancel to abort the procedure.

Disabling Encrypted MAPI

To disable Encrypted MAPI, follow these steps:

Step 1
From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2
Disable Encrypted Service.

b. Uncheck the Enable Encrypted Service check box.

c. Click Submit to save your changes.

Step 3
Disable Encrypted MAPI Traffic Optimization.

a. From the menu, choose Configure > Acceleration > Enabled Features.

b. Uncheck the Encrypted MAPI Traffic Optimization check box.

c. Click Submit to save your changes.

Encrypted MAPI Acceleration Statistics

To view statistics for Encrypted MAPI connections, see the “Using Predefined Reports to Monitor WAAS” section on page 17-40 and see the MAPI acceleration reports.

Configuring Video Acceleration

The video application accelerator accelerates Windows Media live video broadcasts that use RTSP over TCP. The video accelerator automatically splits one source video stream from the WAN into multiple streams to serve multiple clients on the LAN.

The video accelerator automatically causes the client that is requesting a UDP stream to do a protocol rollover to use TCP (if both the client and server allow TCP).

The default RTSP class map for the Streaming optimization policy is defined to send traffic to the video accelerator.

By default, the video accelerator sends any unaccelerated video traffic to be handled by the negotiated standard TCP optimization policy unless the video accelerator is explicitly configured to drop such traffic. You can choose to drop all unaccelerated video traffic or only traffic that is unaccelerated due to an overload condition.

To enable the video accelerator, check the Video Accelerator check box in the Enabled Features window (see Figure 13-1 on page 13-4).
To configure the video acceleration settings, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > Video Settings.

The Video Acceleration Configuration window appears. (See Figure 13-11.)

Figure 13-11 Video Acceleration Configuration Window

![Image of Video Acceleration Configuration Window]

Step 3 In the Client First Message Reception Timeout field, enter the number of seconds to wait for the first message from the client and the first response from the server, after the connection is accepted by the video accelerator, before timing out the connection. Valid values range from 10–180 seconds. The default is 60.

Step 4 In the drop-down list, choose which unaccelerated video traffic to drop, as follows:

- **All**—Drop all video traffic that is not being accelerated due to an unsupported transport or format, or overload. All Windows Media video-on-demand traffic and all non-Windows Media RTSP traffic is dropped.
- **Overload Only**—Drop all video traffic that is not being accelerated due to an accelerator overload only.
- **None**—Handle unaccelerated video connections with the negotiated TCP optimization policy. (The traffic is not dropped.)

Note Under some conditions, the video accelerator is not registered with the policy engine, such as when there is no valid license or in certain error conditions. If you configure the video accelerator to drop all unaccelerated video traffic, the policy engine drops all video traffic (even traffic that would have been accelerated if the video accelerator had been properly registered with the policy engine).

Step 5 Check the Enable transaction logs check box to enable transaction logging. This feature will generate a large amount of logging data. This box is unchecked by default. Click the More Settings link to go to the Windows Media Transaction Log Settings configuration page.
Step 6 Check the Enable log forwarding check box to enable forwarding of Windows Media logs to the upstream Windows Media Server. This box is checked by default.

Step 7 In the Client Idle Connection timeout field, enter the maximum number of seconds to wait after the initial client request, while the client connection is idle, before timing out the connection. Valid values range from 30–300 seconds. The default is 60.

Step 8 Click Submit.

The changes are saved to the device or device group.

To configure video acceleration from the CLI, use the accelerator video global configuration command.

Configuring SMB Acceleration

The SMB application accelerator handles optimizations of file server operations. These optimizations apply to both SMBv1 and SMBv2 unless SMBv2 is specifically stated. It can be configured to perform the following file server optimizations:

- **SMB Print Optimization**—A centralized print deployment reduces management overhead and increases cost savings. SMB Print Optimization optimizes print traffic by utilizing a centralized printer server, which resides in the data center. This removes the need for local print servers in the branches. The three most common uses for a centralized printer server are: to print from branch client to branch printer, to print from branch client to data center printer, and to print from data center client to branch printer.

- **Read Ahead optimization**—The SMB accelerator performs a read-ahead optimization on files that use the oplock feature. When a client sends a read request for a file, it is likely that it may issue more read requests for the same file. To reduce the use of network bandwidth to perform these functions over the WAN on the file server, the SMB accelerator performs read-ahead optimization by proactively reading more file data than what has been initially requested by the client.

- **Directory listing optimization**—A significant portion of the traffic on the network is for retrieving directory listings. The SMB accelerator optimizes directory listings from the file server through prefetching. For directory prefetching, a request from the client is expanded to prefetch up to 64 KB of directory listing content. The SMB accelerator buffers the pre-fetched directory listing data until the client has requested all the data. If the directory listing size exceeds 64 KB then a subsequent request from the client is expanded by the SMB accelerator again to prefetch content up to 64 KB. This continues until all the entries of the directory are returned to the client.

- **Metadata optimization**—The SMB accelerator optimizes fetching metadata from the file server through metadata prefetching. Additional metadata requests are tagged along with the client request and are sent to the file server to prefetch more information levels than what was requested by the client.

- **Named Pipe optimization**—The SMB accelerator optimizes frequent requests from Windows Explorer to the file server to retrieve share, server, and workstation information. Each of these requests involves a sequence of operations that include opening and binding to the named pipe, making the RPC request, and closing the named pipe. Each operation incurs a round trip to the file server. To reduce the use of network bandwidth to perform these functions over the WAN on the file server, the SMB accelerator optimizes the traffic on the network by caching named pipe sessions and positive RPC responses.
• Write optimization—The SMB accelerator performs write optimization by speeding up the write responses to the client by acknowledging the Write requests to the client whenever possible and, at the same time, streaming the Write request over the WAN to the server.

• Not-Found Metadata caching—Applications sometimes send requests for directories and files that do not exist on file servers. For example, Windows Explorer accesses the Alternate Data Streams (ADS) of the file it finds. With negative Not-Found (NF) metadata caching, the full paths to those nonexistent directories and files are cached so that further requests for the same directories and files get local denies to save the round-trips of sending these requests to the file servers.

• DRE-LZ Hints—The SMB accelerator provides DRE hints to improve system performance and resources utilization. At the connection level, the SMB accelerator uses the BEST_COMP latency sensitivity level for all connections, as it gives the best compression. At the message level, the SMB accelerator provides message-based DRE hints for each message to be transmitted over the WAN.

• Microsoft optimization—The SMB accelerator optimizes file operations for Microsoft applications by identifying lock request sequences for file name patterns supported by Microsoft Office applications.

• Invalid FID optimization—The SMB accelerator optimizes SMB2 clients by locally denying attempts to access files with invalid file handle values instead of sending such requests to the file servers.

• Batch Close optimization—The SMB accelerator performs asynchronous file close optimizations on SMB2 traffic.

• Read Cache optimization (SMBv2 only)—The SMB accelerator optimizes read operations in SMB2 by caching read response data so that the file can be served locally.

• Write optimization (SMBv2 only)—The SMB accelerator improves system performances by performing asynchronous write operations.

To enable the SMB accelerator, check the SMB Accelerator check box in the Enabled Features window.

Note

The CIFS accelerator and SMB accelerator are mutually exclusive. Both of these cannot be enabled at the same time.

To configure the SMB acceleration settings, follow these steps:

Step 1

From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2

Choose Configure > Acceleration > SMB Settings.

The SMB Settings window appears. (See Figure 13-12.)
Step 3 In the Highest Dialect Optimized drop-down list, choose the highest dialect to optimize. The available options are:

- NTLM 0.12 or NTLM 1.0
- SMB 2.0
- SMB 2.1

Step 4 In the Highest Dialect Optimized Exceed Action drop-down list, choose the action for the dialects that are higher than the one chosen as the highest dialect to optimize, as follows:

- Mute—The dialects higher than the one chosen as the highest dialect to optimize are removed from the negotiation list. This is the default selection.
- Handoff—If the negotiated dialect is higher than the chosen highest dialect to optimize, the connection is handed off to the generic accelerator.

Step 5 In the Bypass File Name Pattern text box, enter the patterns for the file names that you want the SMB accelerator to bypass optimization for. The files whose names match the specified expressions are not optimized.

Step 6 In the SMBV1 Optimization Settings tab, you can choose the following:

- Check the Meta Data Optimization check box to enable metadata optimization. This box is checked by default.
- Check the Microsoft Office Optimization check box to enable optimizations for all versions of Microsoft Office. The SMB accelerator does not perform read-ahead, write optimization, and lock-ahead for Microsoft Office if this optimization is disabled. This box is checked by default.
- Check the Named Pipe Optimization check box to enable named pipe optimization by caching named pipe sessions and positive RPS responses. This box is checked by default.
- Check the ‘Not Found’ Cache Optimization check box to enable caching pathnames of files not found. This box is checked by default.
- Check the Print Optimization check box to enable SMB to configure a centralized print deployment. This box is checked by default.
- Check the **Read Ahead Optimization** check box to enable the SMB to optimize the quantity of read-ahead data from the file. The SMB performs a read-ahead optimization only when the file is opened using the ops lock feature. This box is checked by default.

- Check the **Write Optimization** check box to enable the write optimization by speeding up the write responses to the client. This box is checked by default.

In the **SMBV2 Optimization Settings** tab, you can choose the following:

- Check the **Batch Close Optimization** check box to enable asynchronous file close optimizations. This box is checked by default.

- Check the **Invalid FID Optimization** check box to enable optimization of handling files with invalid file handle values. This box is checked by default.

- Check the **SMBV2 Read Cache Optimization** check box to enable read response caching. This box is checked by default.

- Check the **SMBV2 Write Optimization** check box to enable asynchronous write operations. This box is checked by default.

Step 7

Click **Submit** to save the changes.

To configure SMB acceleration from the CLI, use the `accelerator smb` global configuration command.

Configuring CIFS Accelerator Express

The CIFS application accelerator express handles optimizations of file server operations on a WAAS Express device. It interoperates with either the standard CIFS accelerator or the standard SMB accelerator on a standard WAAS device.

CIFS accelerator express can be configured to perform the following file server optimizations:

- **Write optimization**—CIFS accelerator express performs write optimization by speeding up the write responses to the client by acknowledging the Write requests to the client whenever possible and, at the same time, streaming the Write request over the WAN to the server.

- **Read Ahead optimization**—CIFS accelerator express performs a read-ahead optimization on files that use the oplock feature. When a client sends a read request for a file, it is likely that it may issue more read requests for the same file. To reduce the use of network bandwidth to perform these functions over the WAN on the file server, the SMB accelerator performs read-ahead optimization by proactively reading more file data than what has been initially requested by the client.

- **ADS Negative Cache**—Applications sometimes send requests for directories and files that do not exist on file servers. For example, Windows Explorer accesses the Alternate Data Streams (ADS) of the file it finds. With ADS Negative caching, the full paths to those nonexistent directories and files are cached so that further requests for the same directories and files get local denials to save the round-trips of sending these requests to the file servers.

To enable CIFS accelerator express, check the CIFS Accelerator Express check box in the Enabled Features window.

To configure the CIFS accelerator express settings, follow these steps:

Step 1

From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2

Choose **Configure > Acceleration > CIFS Settings**.
The CIFS Optimization Bypass Settings window appears.

Step 3 Check the **Write Optimization** check box to enable the write optimization by speeding up the write responses to the client. This box is checked by default.

Step 4 Check the **Read Ahead Optimization** check box to enable CIFS accelerator express to optimize the quantity of read-ahead data from the file. CIFS accelerator express performs a read-ahead optimization only when the file is opened using the ops lock feature. This box is checked by default.

Step 5 Check the **ADS Negative Cache** check box to enable caching pathnames of files not found. This box is checked by default.

Step 6 Click **Submit** to save the changes.

To configure CIFS accelerator express from the CLI, use the `accelerator cifs` global configuration command.

Configuring ICA Acceleration

The ICA application accelerator provides WAN optimization on a WAAS device for ICA (Independent Computing Architecture) traffic which is used to access a virtual desktop infrastructure (VDI). This is done through a process that is both automatic and transparent to the client and server.

ICA acceleration is enabled on a WAAS device by default.

To enable the ICA accelerator, check the ICA Accelerator check box in the Enabled Features window (see Figure 13-13 on page 13-30).

To configure the ICA acceleration settings, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Acceleration > ICA Settings**.

The ICA Acceleration Configuration window appears. (See Figure 13-11.)
Step 3 Check the **Enable Multi Stream ICA** check box to allow the client and server up to three additional TCP connections that optimize multi stream ICA traffic.

Step 4 In the WAN Secure Mode drop-down list, choose the mode, as follows:
- **None**—Disables WAN Secure mode for ICA. This is the default.
- **Always**—Enables WAN Secure mode for ICA.

Note The state of WAN Secure mode in both Branch WAE and Data Center WAE must match for connections to get optimized with the ICA accelerator.

Step 5 In the DSCP Settings (QoS) for ICA Streams section, check the **Enable DSCP Tagging** check box to configure DSCP values for MSI priority levels. These values override the defaults (the range is from 0 to 63).

Note Configure DSCP values for MSI priority levels in the descending order of the priority.

- **a.** Very-High Priority MSI—Typically real time traffic, such as audio (the default is af41)
- **b.** High Priority MSI—Typically interactive traffic (the default is af41)
- **c.** Medium Priority MSI—Typically bulk data (the default is af21)
- **d.** Low Priority MSI—Typically background traffic, such as printing (the default is 0—best effort)
- **e.** Non-MSI—(the default is af21)

Note MSI priority configuration might not apply to devices earlier than version 5.1.x.

Step 6 Click **Submit**.
Chapter 13 Configuring Application Acceleration

Enabling and Disabling the Global Optimization Features

The changes are saved to the device or device group.

To configure ICA acceleration from the CLI, use the `accelerator ica` global configuration command. To verify the status of WAN Secure mode from the CLI, use the `show accelerator wansecure` EXEC command.

Configuring ICA over SSL

The WAAS software supports optimizing ICA over SSL. This allows the client and server to use the ICA protocol over an encrypted connection. To support optimizing ICA over SSL, you must perform the following steps:

- Configure ICA acceleration. See the “Configuring ICA Acceleration” section on page 13-29.
- Configure SSL acceleration. See the “Configuring SSL Acceleration” section on page 13-31. When you are configuring SSL acceleration, be sure to enable protocol chaining.

Note

If protocol chaining is not enabled, the WAAS device will only optimize SSL traffic on the specified IP Address and Port.

Configuring SSL Acceleration

The SSL application accelerator optimizes traffic on Secure Sockets Layer (SSL) encrypted connections. If SSL acceleration is not enabled, the WAAS software DRE optimizations are not very effective on SSL encrypted traffic. The SSL application acceleration enables WAAS to decrypt and apply optimizations while maintaining the security of the connection.

Note

On a WAAS Express device, only SSL cipher list, SSL certificate authorities, and SSL peering service configuration is supported.

Note

The SSL accelerator does not optimize protocols that do not start their SSL/TLS handshake from the very first byte. The only exception is HTTPS that goes through a proxy (where the HTTP accelerator detects the start of SSL/TLS). In this case, both HTTP and SSL accelerators optimize the connection.

The SSL application accelerator supports SSL Version 3 (SSLv3) and Transport Layer Security Version 1 (TLSv1) protocols. If a TLSv1.1 or TLSv1.2 client request is received, negotiation to downgrade to TLS v1.0 occurs. If refused by the client, the traffic is passed through.

Table 13-2 provides an overview of the steps you must complete to set up and enable SSL acceleration.

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information and Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare for configuring SSL acceleration.</td>
<td>Identifies the information that you need to gather before configuring SSL acceleration on your WAAS devices. For more information, see the “Preparing to Use SSL Acceleration” section on page 13-32.</td>
</tr>
</tbody>
</table>
Preparing to Use SSL Acceleration

Before you configure SSL acceleration, you should know the following information:

- The services that you want to be accelerated on the SSL traffic
- The server IP address and port information
- The public key infrastructure (PKI) certificate and private key information, including the certificate common name and certificate authority signing information
- The cipher suites supported
- The SSL versions supported

Figure 13-14 shows how the WAAS software handles SSL application optimization.
When you configure SSL acceleration, you must configure SSL accelerated service on the server-side (Data Center) WAE devices. The client-side (Branch) WAE needs to have its secure store initialized and unlocked/opened, but does not need to have the SSL accelerated service configured. However, the SSL accelerator must be enabled on both Data Center and Branch WAEs for SSL acceleration services to work. The WAAS Central Manager provides SSL management services and maintains the encryption certificates and keys.

Enabling Secure Store, the Enterprise License, and SSL Acceleration

Before you can use SSL acceleration on your WAAS system, you must perform the following steps:

Step 1
Enable secure store encryption on the Central Manager.
To enable secure store encryption, see the “Configuring Secure Store Settings” section on page 10-10.

Step 2
Enable the Enterprise license.
To enable the Enterprise license, see the “Managing Software Licenses” section on page 10-3.

Step 3
Enable SSL acceleration on devices.
To enable the SSL acceleration feature, see the “Enabling and Disabling the Global Optimization Features” section on page 13-3.
Configuring SSL Global Settings

To configure the basic SSL acceleration settings, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Security > SSL > Global Settings.

The SSL Global Settings window appears (see Figure 13-15).

Figure 13-15 SSL Global Settings Window

Step 3 To configure a device to use the SSL settings from a particular device group, choose the device group from Select a Device Group drop-down list located in SSL global settings toolbar. A device can either use its own SSL settings, or SSL settings from a device group. However, it is not possible to configure a device to use SSL settings from multiple device groups.
Step 4 In the SSL version field, choose the type of SSL protocol to use. Choose SSL3 for the SSL version 3 protocol, choose TLS1 for the Transport Layer Security version 1 protocol, or choose All to accept both SSL3 and TLS1 SSL protocols.

Step 5 (Optional) Set the Online Certificate Status Protocol (OCSP) parameters for certificate revocation:
 a. In the OCSP Revocation check drop-down list, select the OCSP revocation method.
 Choose ocsp-url SSL accelerator to use OCSP responder specified in the OCSP Responder URL field to check the revocation status of certificates. Choose ocsp-cert-url to use the OCSP responder URL specified in the Certificate Authority certificate that signed the certificate.
 b. If the Ignore OCSP failures check box is enabled, the SSL accelerator will treat the OCSP revocation check as successful if it did not get a definite response from the OCSP responder.

Step 6 In the Cipher List field, choose a list of cipher suites to be used for SSL acceleration. For more information, see the “Working with Cipher Lists” section on page 13-39.

Step 7 Choose a certificate/key pair method (see Figure 13-16).

Figure 13-16 Configuring Service Certificate and Private Key

<table>
<thead>
<tr>
<th>Server Certificate and private key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate self-signed certificate and private key</td>
</tr>
<tr>
<td>Import existing certificate and optionally private key</td>
</tr>
<tr>
<td>Export certificate and key</td>
</tr>
<tr>
<td>Generate certificate signing request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Client Certificate and private key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import existing client certificate and optionally private key</td>
</tr>
</tbody>
</table>

- Click Generate Self-signed Certificate Key to have the WAAS devices use a self-signed certificate/key pair for SSL.
- Click Import Existing Certificate Key to upload or paste an existing certificate/key pair.
- Click Export Certificate Key to export the current certificate/key pair.
- Click Generate Certificate Signing Request to renew or replace the existing certificate/key pair. The certificate signing request (CSR) is used by the Certificate Authority to generate a new certificate.
 The file that you import or export must be in either a PKCS12 format or a PEM format.
- Click Import existing client certificate and optionally private key to use the client configured certificate.

For service certificate and private key configuration steps, see the “Configuring a Service Certificate and Private Key” section on page 13-35.

Step 8 Click Submit.

Configuring a Service Certificate and Private Key

To configure a service certificate and private key, follow these steps:
Step 1 To generate a self-signed certificate and private key (see Figure 13-17), follow these steps:

Figure 13-17 Self-Signed Certificate and Private Key

- Check the **Mark private key as exportable** check box to export this certificate/key in the WAAS Central Manager and device CLI later.
- Fill in the certificate and private key fields.

Step 2 To import an existing certificate or certificate chain and, optionally, private key (see Figure 13-18), follow these steps:

Note WAAS SSL feature only supports RSA signing/encryption algorithm and keys.
Figure 13-18 Importing Existing Certificate or Certificate Chain

a. Check the **Mark private key as exportable** check box to export this certificate/key in the WAAS Central Manager and device CLI later.

b. To import existing certificate or certificate chain and private key, perform one of the following:
 - Upload certificate and key in PKCS#12 format (also as Microsoft PFX format)
 - Upload certificate and private key in PEM format
 - Paste certificate and key in PEM format

If the certificate and private key are already configured, you can update the certificate only. In this case, the Central Manager constructs the certificate and private key pair using the imported certificate and current private key. This functionality can be used to update an existing self-signed certificate to one signed by the Certificate Authority, or to update an expiring certificate.

The Central Manager allows importing a certificate chain consisting of an end certificate that must be specified first, a chain of intermediate CA certificates that sign the end certificate or intermediate CA certificate, and end with a root CA.

The Central Manager validates the chain and rejects it if the validity date of the CA certificate is expired, or the signing order of certificates in the chain is not consequent.

c. Enter a pass-phrase to decrypt the private key, or leave this field empty if the private key is not encrypted.

Step 3 To export a configured certificate and private key (see Figure 13-19), follow these steps:
Enabling and Disabling the Global Optimization Features

Chapter 13 Configuring Application Acceleration

Figure 13-19 Export Certificate and Key

- Enter the encryption pass-phrase.
- Export current certificate and private key in either PKCS#12 or PEM formats. In case of PEM format both certificate and private key are included in single PEM file.

Note Central Manager will not allow exporting certificate and private key if the certificate and key were marked as non-exportable when they were generated or imported.

Step 4 To generate a certificate signing request from a current certificate and private key (see Figure 13-20), follow these steps:

Figure 13-20 Generate Certificate Signing Request

To update the current certificate with one signed by the Certificate Authority:

a. Generate PKCS#10 certificate signing request.

b. Send generated certificate signing request to Certificate Authority to generate and sign certificate.

c. Import certificate received from the Certificate Authority using the Importing existing certificate and optionally private key option.

Note The size of the key for a generated certificate request is the same as the size of the key in the current certificate.
Enabling and Disabling the Global Optimization Features

Step 5
To import an existing client certificate or certificate chain and, optionally, private key (see Figure 13-21), follow these steps:

Figure 13-21 Import existing client certificate and optionally private key

a. Check the **Mark private key as exportable** check box to export this certificate/key in the WAAS Central Manager and device CLI later.

b. To import existing client certificate and private key, perform one of the following:
 - Upload certificate and key in PKCS#12 format (also as Microsoft PFX format)
 - Upload certificate and private key in PEM format
 - Paste certificate and private key PEM content

 If the certificate and private key are already configured, you can update the certificate only. In this case, the Central Manager constructs the certificate and private key pair using the imported client certificate and current private key. This functionality can be used to update an existing self-signed certificate to one signed by the Certificate Authority, or to update an expiring certificate.

 The Central Manager allows importing a certificate chain consisting of an end certificate that must be specified first, a chain of intermediate CA certificates that sign the end certificate or intermediate CA certificate, and end with a root CA.

c. Enter a pass-phrase to decrypt the private key, or leave this field empty if the private key is not encrypted.

d. Click **Choose File** to navigate to the client configured certificate and **Import Client Cert** to successfully import the above certificate.

Working with Cipher Lists

Cipher lists are sets of cipher suites that you can assign to your SSL acceleration configuration. A cipher suite is an SSL encryption method that includes the key exchange algorithm, the encryption algorithm, and the secure hash algorithm.

To configure a cipher list, follow these steps:
Step 1
From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2
Choose Configure > Security > SSL > Cipher Lists.

The SSL Cipher Lists window appears (see Figure 13-22).

Note
For a WAAS Express device, the SSL Cipher Lists window shows the same name and cipher fields but in a slightly different format.

Step 3
Click Create to add a new cipher list.

The Creating New SSL Cipher List window appears (see Figure 13-23).

Note
For a WAAS Express device, click Add Cipher List to add a new cipher list.
Step 4 Type a name for your cipher list in the Cipher List Name field.

Step 5 Click **Add Cipher** to add cipher suites to your cipher list.

Note For a WAAS Express device, select the ciphers you wish to add. Skip to Step 12.

Step 6 Choose the cipher suite that you want to add in the Ciphers field.

Note If you are establishing an SSL connection to a Microsoft IIS server, do not select a DHE-based cipher suite.

Step 7 Choose the priority for the selected cipher suite in the Priority field.

Note When SSL peering service is configured, the priority associated with a cipher list on a core device takes precedence over the priority associated with a cipher list on an edge device.

Step 8 Click **Add** to include the selected cipher suite on your cipher list, or click **Cancel** to leave the list as it is.

Step 9 Repeat Step 5 through Step 8 to add more cipher suites to your list as desired.

Step 10 (Optional) To change the priority of a cipher suite, check the cipher suite check box and then use the up or down arrow buttons located below the cipher list to prioritize.
Working with Certificate Authorities

The WAAS SSL acceleration feature allows you to configure the Certificate Authority (CA) certificates used by your system. You can use one of the many well-known CA certificates that is included with WAAS or import your own CA certificate.

To manage your CA certificates, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Security > SSL > Certificate Authorities.

The SSL CA Certificate List window appears (see Figure 13-24).

Note For a WAAS Express device, the SSL CA Certificate List window shows the same Name, Issued To, Issuer, Expiry Date fields but in a slightly different format.

There is also an Aggregate Settings field configurable as Yes or No. To finish the procedure for WAAS Express, skip to Step 4.

Figure 13-24 SSL CA Certificate List Window

Step 3 Add one of the preloaded CA certificates that is included with WAAS as follows:

a. Click Well-known CAs.
b. Choose the pre-existing CA certificate you want to add and click **Import**. The CA certificate that you selected is added to the list on the SSL CA Certificate List display.

Step 4 Add your own CA certificate as follows:

a. Click **Create**. The Creating New CA Certificate window appears (see Figure 13-25).

Note For a WAAS Express device, click **Add CA** to add your own CA certificate. Enter the name and the URL, then click **Get CA Certificate**. Skip to **Step 6**.

Figure 13-25 Creating New CA Certificate Window

b. Type a name for the certificate in the Certificate Name field.

c. (Optional) Type a description of the CA certificate in the Description field.

d. Choose **disabled** in the Revocation check drop-down list to disable OCSP revocation of certificates signed by this CA. Check the **Ignore OCSP failures** check box to mark revocation check successful if the OCSP revocation check failed.

e. Add the certificate information by choosing one of the following methods:

- **Upload PEM File**

 If you are uploading a file, it must be in a Privacy Enhanced Mail (PEM) format. Browse to the file that you want to use and click **Upload**.

- **Paste PEM Encoded Certificate**

 If you are pasting the CA certificate information, paste the text of the PEM format certificate into the Paste PEM Encoded certificate field.

- **Get CA Certificate using SCEP**
This option automatically configures the certificate authority using Simple Certificate Enrollment Protocol. If you are using the automated certificate enrollment procedure, enter the CA URL and click **Get Certificate**. The contents of the certificate is displayed in text and PEM formats.

To complete the automated certificate enrollment procedure, you must configure the SSL auto enrollment settings in the “SSL Auto Enrollment” section on page 13-44.

f. Click **Submit** to save your changes.

Step 5 (Optional) To remove a Certificate Authority from the list, select it and then click the **Delete** icon located in the toolbar.

Step 6 Click **Submit** when you are done configuring the CA certificate list.

Note For a WAAS Express device, click **OK** to save the CA certificate configuration.

SSL Auto Enrollment

The WAAS SSL acceleration feature allows you to enroll certificates automatically for a device (or device group) using SCEP. Once the CA certificate has been obtained, SSL auto enrollment settings must be configured.

Note You must configure the applicable certificate authority before configuring auto enrollment settings.

To configure SSL auto enrollment settings, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Security > SSL > Auto Enrollment**.

The SSL Auto Enrollment Settings window appears (see **Figure 13-26**).
Step 3 Configure the following CA settings:

- CA URL
- CA—Select the appropriate CA from the list
- Challenge Password

Note CA, CA URL, and challenge password settings are mandatory for enabling SSL auto enrollment.

Step 4 Configure the following Certificate Signing Request settings:

- Common Name
- Organization and Organization Unit
- Location, State, and Country
- Email-Id

Step 5 Configure the key size: 512, 768, 1024, 1536, or 2048

Step 6 Check the Enable Enroll box.

Step 7 Click **Submit**.

You can then check the enrollment status in the Machine Certificate section on the SSL Global Settings page and on the Alerts page.
Configuring SSL Management Services

SSL management services are the SSL configuration parameters that affect secure communications between the Central Manager and the WAE devices (see Figure 13-14 on page 13-33). The certificate/key pairs used are unique for each WAAS device, and so SSL management services can only be configured for individual devices, not device groups.

To configure SSL management services, follow these steps:

Step 1
From the WAAS Central Manager menu, choose **Devices > device-name**.

Step 2
Choose **Configure > Security > Management Service**.
The Management Services window appears (see Figure 13-27).

Figure 13-27 SSL Management Services Window

Step 3
In the SSL version field, choose the type of SSL protocol to use. Choose **SSL3** for the SSL version 3 protocol, choose **TLS1** for the Transport Layer Security version 1 protocol, or choose **All** to use both SSL3 and TLS1 SSL protocols.

Note
Management service SSL version and cipher settings configured for the WAAS Central Manager are also applied to SSL connections between the WAAS Central Manager and the browser of the user.

Primary and standby Central Managers must share a common management service version or cipher list. Changing the management service version and cipher list settings may result in a loss of connectivity between primary Central Manager and standby Central Manager and WAE devices.
Table 13-3 shows the cipher lists supported with Internet Explorer and Mozilla Firefox:

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Internet Explorer</th>
<th>Firefox</th>
</tr>
</thead>
<tbody>
<tr>
<td>dhe-rsa-with-aes-256-cbc-sha</td>
<td>Supported in IE7/Vista</td>
<td>Supported</td>
</tr>
<tr>
<td>rsa-with-aes-256-cbc-sha</td>
<td>Supported in IE7/Vista</td>
<td>Supported</td>
</tr>
<tr>
<td>dhe-rsa-with-aes-128-cbc-sha</td>
<td>Supported in IE7/Vista</td>
<td>Supported</td>
</tr>
<tr>
<td>rsa-with-aes-128-cbc-sha</td>
<td>Supported in IE7/Vista</td>
<td>Supported</td>
</tr>
<tr>
<td>dhe-rsa-with-3des-ede-cbc-sha</td>
<td>Not enabled by default</td>
<td>Supported</td>
</tr>
<tr>
<td>rsa-with-3des-ede-cbc-sha</td>
<td>Not enabled by default</td>
<td>Supported</td>
</tr>
<tr>
<td>rsa-with-rc4-128-sha</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>rsa-with-rc4-128-md5</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>dhe-rsa-with-des-cbc-sha</td>
<td>Not Supported</td>
<td>Not enabled by default</td>
</tr>
<tr>
<td>rsa-export1024-with-rc4-56-sha</td>
<td>Supported</td>
<td>Not enabled by default</td>
</tr>
<tr>
<td>rsa-export1024-with-des-cbc-sha</td>
<td>Supported</td>
<td>Not enabled by default</td>
</tr>
<tr>
<td>dhe-rsa-export-with-des-cbc-sha</td>
<td>Not Supported</td>
<td>Not Supported</td>
</tr>
<tr>
<td>rsa-export-with-des-cbc-sha</td>
<td>Not Supported</td>
<td>NotSupported</td>
</tr>
<tr>
<td>rsa-export-with-rc4-40-md5</td>
<td>Supported</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Note: Both Mozilla Firefox and Internet Explorer support SSLv3 and TLSv1 protocols, however TLSv1 may not be enabled by default. Therefore, you need to enable it in your browser.

Configuring ciphers or protocols that are not supported in your browser will result in connection loss between the browser and the Central Manager. If this occurs, configure the Central Manager management service SSL settings to the default in the CLI to restore the connection.

Some browsers, such as Internet Explorer, do not correctly handle a change of SSL version and cipher settings on the Central Manager, which can result in the browser showing an error page after submitting changes. If this occurs, reload the page.

Step 4 In the Cipher List pane, choose a list of cipher suites to be used for SSL acceleration. See the “Working with Cipher Lists” section on page 13-39 for additional information.

Configuring SSL Admin Service

You can export the SSL CA signed certificate to enable trusted SSL communication between the WAAS Central Manager and the web browser. The default certificate for enabling SSL communication is the WAAS Central Manager self signed certificate. However, if you would like to use a different certificate, you need to configure it.

To configure the SSL certificate, follow these steps:
Enabling and Disabling the Global Optimization Features

Step 1
From the WAAS Central Manager menu, choose Devices>CM>Configure>Security>SSL Admin Service.
The default certificate is displayed.

Step 2
Select the PKI operation
a. Click Import Existing Certificate Key to upload or paste an existing certificate/key pair.
b. Click Export Certificate Key to export the current certificate/key pair.
The file that you import or export must be in either a PKCS12 format or a PEM format.
c. Click Generate Self-signed Certificate Key to have the Central Manager and WAAS device use a self-signed certificate/key pair for SSL.

Step 3
Click Submit to register the certificate.

The Central Manager now uses the selected certificate for SSL communication.

Configuring SSL Peering Service

SSL peering service configuration parameters control secure communications established by the SSL accelerator between WAE devices while optimizing SSL connections (see Figure 13-14 on page 13-33). The peering service certificate and private key is unique for each WAAS device and can only be configured for individual devices, not device groups.

To configure SSL peering service, follow these steps:

Step 1
From the WAAS Central Manager menu, choose Devices > device-name.

Step 2
Choose Configure > Security > Peering Service.
The Peering Service window appears (see Figure 13-28).

Note
For a WAAS Express device, the Peering Service window shows a subset of the fields in the standard Peering Service window in a slightly different format.

Cipher list Priority setting and Disable revocation check of peer certificates option are not applicable to WAAS Express.
Step 3 In the SSL Version field, choose the type of SSL protocol to use, or choose Inherited to use the SSL protocol configured in global SSL settings. Choose SSL3 for the SSL version 3 protocol, choose TLS1 for the Transport Layer Security version 1 protocol, or choose All to use both SSL3 and TLS1 SSL protocols.

Note For a WAAS Express device, only SSL3 and TLS1 are supported for the SSL Version.

Step 4 To enable verification of peer certificates check Enable Certificate Verification check box. If certificate verification is enabled, WAAS devices that use self-signed certificates will not be able to establish peering connections to each other and, thus, not be able to accelerate SSL traffic.

Step 5 Check the Disable revocation check for this service check box to disable OCSP certificate revocation checking.

Note For a WAAS Express device, this option is not applicable.

Step 6 In the Cipher List pane, choose a list of cipher suites to be used for SSL acceleration between the WAE device peers, or choose Inherited to use the cipher list configured in SSL global settings.

Note For a WAAS Express device, the list of cipher suites to be used for SSL acceleration is shown in the Cipher List pane.

See the “Working with Cipher Lists” section on page 13-39 for additional information.

Step 7 Click Submit.
Using SSL Accelerated Services

After you have enabled and configured SSL acceleration on your WAAS system, you must define at least one service to be accelerated on the SSL path. To configure SSL accelerated services, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > SSL Accelerated Services.

Step 3 To delete an accelerated service, select the service and click Delete.

Step 4 Click Create to define a new accelerated service. A maximum of 512 accelerated services are allowed. The Basic SSL Accelerated Services Configuration window appears (see Figure 13-29).
Step 5 Type a name for the service in the Service Name field.

Step 6 To enable this accelerated service, check the **In service** check box.

Step 7 To enable client version rollback check, check the **Client version rollback check** check box. Enabling the client version rollback check does not allow connections with an incorrect client version to be optimized.

Step 8 To match subject alternative names, enable the **Match Server Name Indication** checkbox. For more information, see the “Configuring SSL acceleration for SaaS applications” section on page 13-55.

Step 9 To enable protocol chaining, check the **Enable protocol chaining** check box. Enabling protocol chaining allows other protocols to be optimized over SSL.

Step 10 (Optional) Type a description of the service in the Description field.

Step 11 From the Server drop-down list, choose **IP Address, Hostname, or Domain** as the SSL service endpoint type. Type the server IP address, hostname, or domain of the accelerated server. Use the keyword **Any** to specify any server IP address. A maximum of 32 IP addresses, 32 hostnames, and 32 domains are allowed.
Hostname and domain server address types are supported only when using WAAS software version 4.2.x or later. Server IP address keyword Any is supported only when using WAAS Software version 4.2.x or later.

Step 12 Type the port associated with the service to be accelerated. Click **Add** to add each address. If you specify a server hostname, the Central Manager resolves the hostname to the IP address and adds it to the Server IP/Ports table.

Step 13 Click **Delete** to remove an IP address from the list.

Step 14 Choose a certificate and key pair method (see Figure 13-30).

Figure 13-30 Configuring Service Certificate and Private Key

<table>
<thead>
<tr>
<th>Server Certificate and private key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate self-signed certificate and private key</td>
</tr>
<tr>
<td>Import existing certificate and optionally private key</td>
</tr>
<tr>
<td>Export certificate and key</td>
</tr>
<tr>
<td>Generate certificate signing request</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Client Certificate and private key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import existing client certificate and optionally private key</td>
</tr>
</tbody>
</table>

- Click **Generate Self-signed Certificate Key** to have the WAAS devices use a self-signed certificate/key pair for SSL.
- Click **Import Existing Certificate Key** to upload or paste an existing certificate/key pair.

Note In case of SaaS applications, the certificate should have the Subject Alternative Name (SAN) information.

- Click **Export Certificate Key** to export the current certificate/key pair.
- Click **Generate Certificate Signing Request** to renew or replace the existing certificate/key pair. The certificate signing request (CSR) is used by the Certificate Authority to generate a new certificate.

 The file that you import or export must be in either a PKCS12 format or a PEM format.
- Click **Import existing client certificate and optionally private key** to use the client configured certificate.

For service certificate and private key configuration steps, see the “Configuring a Service Certificate and Private Key” section on page 13-35.
Note: If you change the certificate or key for an existing SSL accelerated service, you must uncheck the In service check box and click Submit to disable the service, then wait 5 minutes and check the In service check box and click Submit to reenable the service. Alternatively, at the WAE, you can use the no inservice SSL accelerated service configuration command, wait a few seconds, and then use the inservice command. If you are changing the certificate or key for multiple SSL accelerated services, you can restart all accelerated services by disabling and then reenabling the SSL accelerator.

Step 15 Click the Advanced Settings tab to configure SSL parameters for the service. The Advanced SSL Accelerated Services Configuration window appears (see Figure 13-31).

Figure 13-31 SSL Accelerated Services—Advanced Window

Step 16 (Optional) In the SSL version field, choose the type of SSL protocol to use, or choose Inherited to use the SSL protocol configured in global SSL settings. Choose SSL3 for the SSL version 3 protocol, choose TLS1 for the Transport Layer Security version 1 protocol, or choose All to use both SSL3 and TLS1 SSL protocols.

Step 17 (Optional) In the Cipher List field, choose a list of cipher suites to be used for SSL acceleration between the WAE device peers, or choose Inherited to use the cipher list configured in SSL global settings. For more information, see the “Working with Cipher Lists” section on page 13-39.

Step 18 (Optional) To set the Online Certificate Status Protocol (OCSP) parameters for certificate revocation, follow these steps:

a. To enable verification of client certificate check, check the Verify client certificate check box.
b. Check the **Disable revocation check for this service** check box to disable OCSP client certificate revocation checking.

c. To enable verification of server certificate check, check the **Verify server certificate** check box.

d. Check the **Disable revocation check for this service** check box to disable OCSP server certificate revocation checking.

Note

If the server and client devices are using self-signed certificates and certificate verification is enabled, WAAS devices will not be able to accelerate SSL traffic.

Step 19
Click **Submit** when you have finished configuring the SSL accelerated service.

Updating a certificate/key in a SSL Accelerated Service

If at some point you need to update a certificate or key in a SSL Accelerated Service, follow the steps below:

Step 1
From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2
Choose **Configure > Acceleration > SSL Accelerated Services**.

Step 3
Click **Edit SSL Accelerated Service** button in the **Name** column for the service in question.

Step 4
Choose a certificate and key pair method (see Figure 13-30) to either re-generate a self-signed certificate and private key or to import an updated certificate and/or key.

Step 5
Depending on the chosen method fill out the required details, then click **Generate** or **Import** and next click **Submit**.

Note
When you update a certificate for a SSL Accelerated Service and want it to be used by it, it is important to stop and start the configured SSL Accelerated Service. This step is required because the existing certificate and key are stored in memory on the accelerators. Updating the certificate/key via the steps described above is insufficient because it does not update the certificate/key in memory.
To ensure the updated certificate for the SSL Accelerated Service is used, make sure to follow the steps below as well.

Step 6
Click **Edit SSL Accelerated Service** button in the **Name** column for the service in question.

Step 7
Remove the check mark for **In service**, then click **Submit**.

Step 8
Click the **Edit SSL Accelerated Service** button in the **Name** column for the service in question for one last time.

Step 9
Enable the check mark for **In service** then click **Submit**.
Configuring SSL acceleration for SaaS applications

SaaS applications are typically served from multiple SSL server farms, with multiple hosts spanning across several data centers. For SSL services hosted in the enterprise data center, the IT administrator knows and controls the SSL server IP and can provide it to the data center WAAS. But for a SSL service that is hosted at a third-party SaaS provider in the cloud, the SSL server IP address is not controlled by the IT administrator because the cloud provider uses multiple Content Delivery Networks and data centers. Even for a single SaaS service there might be multiple server IP addresses that can change dynamically. This leads to inadvertent errors due to namespace/certificate mismatch for SaaS applications.

To avoid these errors and to ensure that these applications are optimized, follow the steps to configure the SSL accelerated services for SaaS applications:

Step 1
Create a SSL accelerated service for a SaaS application using steps 1 through 8 outlined in “Using SSL Accelerated Services” section on page 13-50.

Step 2
To match subject alternative names, enable the **Match Server Name Indication** checkbox. Alternately, use the `match sni` command on the core WAAS device. If enabled, the SSL accelerator parses the initial SSL connection setup message for the destination hostname(in the SSL protocol extension called Server Name Indication) and uses that to match it with the Subject Alternate Names (SAN)s list in the SSL certificate on the WAAS device.

Note
This setting is recommended for optimizing cloud-based SaaS applications to avoid namespace/certificate mismatch errors that are caused due to the changing nature of the SaaS server domains and IP addresses.

Note
Most modern browsers provide Server Name Indication (SNI) support. Ensure that you use a browser that supports SNI.

Note
The **Match Server Name Indication** option is available only on devices running WAAS 5.3.5 or later.

Step 3
Use the keyword **Any** to specify the server IP address of the accelerated server.

Step 4
Direct all SSL traffic for SaaS applications to port 443.
The above configuration overrides any wildcard configuration.

Note
If your have configured port 443 for traffic other than SaaS applications, you would need to review and reconfigure it appropriately.

Step 5
Click **Import Existing Certificate Key** to upload or paste a certificate/key pair. The certificate should be specifically used for the SaaS accelerated service and should contain the Subject Alternate Names for the server domains that need to be optimized. Identify the server domains that need to be added for optimizing SaaS applications by following the steps outlined in **Determining Server Domains used by SaaS applications, page 13-56**.
Note: You need to create a new certificate with the missing server domain names derived from the list at regular intervals to ensure that the connections are optimized.

Step 6: Click **Submit** to complete configuring the SSL accelerated service for the SaaS application.

Determining Server Domains used by SaaS applications

When you enable the **Match Server Name Indication** checkbox, you can log into the core WAAS device and use the `sh crypto ssl services accelerated-service <service name>` command to view the list of the server domain names that did not match the existing SSL certificate and hence were not optimized. If you wish to optimize any of these server domain names, select and add them to your certificate following the steps below.

This list contains a maximum of 128 server names.

Step 1

Identify the relevant servers to be added. Use the `sh crypto ssl services accelerated-service <service name>` to see additional details regarding the count and last seen information of the server name.

If you need additional information to view ip address and hostnames, use the `debug accelerator ssl sni` command to enable sni debugs.

Step 2

Log in to the Microsoft Management Console (MMC), OpenSSL or any other available customer tool to create a new Certificate Signing Request (CSR) with the relevant server domain names of the SaaS applications in the subject alternative names extension of the certificate. Refer to the highlighted area in the example certificate below.

Note: When you add the SAN to the certificate, domain names need to be separated by a comma. Note that a list of hostnames on a domain can be secured with a single certificate. For example, a.b.c.com and c.b.com can be added as *.b.c.com. However, for a new hostname on another domain, you will need to make a new entry. For example, for b.com you will need to add it as b.com or *.c.com. Additionally, you can also secure host names on different base domains in the same certificate, for example a.b.com and a.b.net.

Certificate:

```
Certificate:
   Data:
      Version: 3 (0x2)
      Serial Number: 00:10:09:9d:fa:9d:09:95
      Signature Algorithm: sha1WithRSAEncryption
      Issuer: C=US, ST=California, L=San Jose, O=Cisco Systems Inc, OU=WAAS, CN=Cisco_WAAS_CA/emailAddress=support@cisco.com
      Validity
         Not Before: Jul 31 06:49:56 2013 GMT
         Not After : Aug 30 06:49:56 2013 GMT
      Subject: C=US, ST=California, L=San Jose, O=Cisco Systems Inc, OU=WAAS, CN=Office365/emailAddress=support@cisco.com
      Subject Public Key Info:
         Public Key Algorithm: rsaEncryption
         Public-Key: (1024 bit)
         Modulus:
            00:c6:85:0d:f9:df:4e:4f:c4:53:d5:3e:0f:c4:cb:
```
Step 3 Submit the certificate to the Enterprise CA.

Step 4 Import the signed certificate from the Enterprise CA to the Trusted Root Certification Authorities store. The Enterprise root CA should be present in browser as trusted root CA.

Step 5 Uncheck the In service checkbox and click Submit to disable the accelerated service. Upload the new certificate and re-enable the service.

Akamai Connect and WAAS

The Akamai Connect feature is an HTTP/S object cache component added to Cisco WAAS. It is integrated into the existing WAAS software stack and is leveraged via the HTTP Application Optimizer. Akamai Connect helps reduce latency for HTTP/S traffic for business and web applications, and can improve performance for many applications including POS (Point of Sale), HD video, digital signage, and in-store order processing. It provides significant and measurable WAN data offload, and is compatible with existing WAAS functions such as DRE (deduplication), LZ (compression), TFO (Transport Flow Optimization), and SSL acceleration (secure/encrypted) for first and second pass acceleration.
Terms Used with Akamai Connect and WAAS

The following terms are used with Akamai Connect and WAAS:

- **Akamai Connect** - Akamai Connect is an HTTP/S object cache component added to Cisco WAAS, integrated into the existing WAAS software stack and leveraged via the HTTP Application Optimizer. WAAS with Akamai Connect helps to reduce latency for HTTP/S traffic for business and web applications.

- **Akamai Connected Cache** - Akamai Connected Cache is a component of Akamai Connect, which allows the cache engine (CE) to cache content that is delivered by an Edge server on the Akamai Intelligent Platform.

Industry-wide, the terms “mode” and “profile” and “policy” are sometimes used interchangeably to describe caching types and processes. This Guide uses these terms as follows:

- **Mode** - The version of transparent caching (Basic, Standard, Advanced, or Bypass).

- **Profile** - The set of host rules and caching types applied as a group, and which follows the CE order of precedence.

- **Policy** - The set of rules and the conditions of caching, applied either individually or as a group, to a device or device group.

Benefits of Adding Akamai Connect to WAAS

Here are some of the benefits of adding Akamai Connect to WAAS:

- Intelligent transparent object caching (by integrating Akamai’s cache).

- Seamless integration of Akamai Connect in WAAS software and configuration (with WAAS Central Manager and WAAS CLI).

- Integration with Akamai’s Edge Grid Network, which provides low-latency Content Delivery Network transfers (via Akamai Connected Cache).

- Significant and measurable WAN data offload.

- Cache prepositioning (warming) for websites that you specify.

- Hostname rules for cache control of specific websites or domains.

- First and second pass acceleration, as Akamai Connect works with WAAS middle-mile capabilities (including DRE, LZ, TFO, SSL acceleration)

- Dual-sided or single-sided network deployment, described in the following section, Dual-Sided or Single-Sided Network Deployment, page 13-58.

Dual-Sided or Single-Sided Network Deployment

Akamai Connect can be deployed in either a dual-sided or single-sided deployment scenario.

Dual-sided deployment provides the benefits of existing WAAS technology plus Akamai caching for HTTP and HTTPS traffic.
Figure 13-32 Dual-sided Deployment

- Transparent caching of customer-owned, Intranet web resources
- Caching in branch only.
- Includes prepositioning (for non-SSL content).

Single-sided deployment provides the benefits of HTTP object caching.

Figure 13-33 Single-sided Deployment

- Generic web resources that utilize proxy-specific HTTP cache-control headers.
- Caching in branch only.
- Includes prepositioning (for non-SSL content).
- Single-sided deployment is on by default with transparent caching in Standard mode.

Considerations for Using Akamai Connect with WAAS

Here are some considerations for using Akamai Connect with WAAS:

- You cannot view the contents of the cache, and cannot pin content to make it remain in the cache (for example, for prepositioned content).
- There is no separate cache for HTTPS content. However, data is stored differently for the same site if both HTTP and HTTPS are accessing. (The way the sites are stored in the cache is based on the URL, and this will change between HTTP and HTTPS.)
The Cache Engine (CE) has no explicit integration with AppNav. The AppNav status is based on the HTTP AO.

Note

The terms “mode” and “profile” and “policy” are sometimes used interchangeably to describe caching types and processes. This section uses these terms as follows:

Mode - The version of transparent caching (Basic, Standard, Advanced, or Bypass).

Profile - The set of host rules and caching types applied as a group, and which follows the CE order of precedence.

Policy - The set of rules and the conditions of caching, applied either singly or as a group, to device or device group.

Caching Types

WAAS supports transparent caching, Akamai Connected Cache, and OTT (Over the Top) caching.

Caching Types: Order of Precedence

When there are multiple caching modes and policies in use, the CE applies an order of precedence in the execution of these. A rule that is higher in the order of precedence is executed first, and any other rules that are applied to that domain or digital property is ignored. The order of precedence is:

1. Transparent caching rules
2. OTT/Akamai Connected Cache
3. Default Transparent policy

For example, if test.com is an Akamai Connected Cache property, but an Advanced mode cache rule is set for this site, then Advanced mode would take precedence and Akamai Connected Cache would be skipped.

Note

When cache prepositioning is turned on, it has the same priority as any other caching type.

Transparent Caching

Transparent caching (which conforms to the RFC-2616 standard) delivers content from an origin server to the client without any modification. Transparent caching sends a request from client to server with the associated authentication. No changes are made by proxy servers to either the headers or the returned packets along the way, although there are some headers that mark proxy actions that can be altered without the meaning of the cache control headers being altered.

There are four types of transparent caching modes: Basic, Standard, Advanced, and Bypass.

There are two modes in which transparent caching can operate: single-sided mode and dual-sided mode.

Note

When accessing transparent caching via HTTPS, the default caching mode is Basic mode. This ensures that no sensitive content is accidentally cached (in Basic mode, only content that you explicitly mark is cached). If you want content cached in a different mode with HTTPS, create a host rule that matches the...
Basic Mode

In Basic mode, the CE works in strict RFC-2616 behavior, and therefore only caches responses that are marked explicitly as cacheable with Cache-Control Headers or that have an Expire header - to service and accelerate traffic from a datacenter to a branch office over any type of IP network. Caching is only in the branch or local router, and content can be cached from the Internet regardless of the location of the original source.

Standard Mode (default)

In Standard mode (default), the CE also follows RFC-2616 behavior for cache control headers, but with the following differences from Basic mode:

- In Standard mode, the CE does not honor client cache override behavior (for example, must-revalidate and proxy-revalidate).
- If cache-control or expire headers are not present and Last Modified Time appears, the CE performs a heuristic based on the Last Modified Time and stores objects for 10% of their apparent age, up to a maximum of one day.

Caution

A properly configured website will work with Standard mode, but login pages, cookie setting pages, or dynamic content not properly marked as cacheable may break. It is recommended to test the website; this is especially important for a newly-created website or one that does not have many users.

Advanced Mode

In Advanced mode, the CE caches media types more aggressively, and caches all object types for longer times (when there is no explicit expiration time). Most of the benefit of Advanced mode over Standard mode occurs if the website does not already mark cacheable media content properly. Advanced mode is best suited to media-rich Intranet sites.

If cache-control or expire headers are not present and Last Modified Time appears, the CE performs a heuristic based on the Last Modified Time and stores objects for 20% of their apparent age, up to a maximum of one day.

For certain media file types, listed in the table below, Advanced Mode will cache these for a full day if the media type is not specified as uncacheable or the media type has no obvious age in the request. For all other media types, the system caches the object for a minimum of one hour to a maximum of seven days - regardless of whether the Last Modified Time is present.

| Advanced Mode: media types that may be cached for a full day (if not specified as uncacheable or has no obvious age in the request) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3g2 | 3gp | aac | aif | aiff | asf | asx | au | avi | bin | bmp |
| cab | carb | ctt | cdf | class | css | dcr | doc | docx | dtd | dv |
| dvd | dvr | dvr-ms | exe | flv | gcf | gff | gif | grv | hdml | hqx |
| ico | ini | jpeg | jpg | js | m1v | m4a | midi | mov | mp3 | mp4 |
| mpeg | mpg | mpv | nv | pct | pdf | png | ppc | ppt | ptxt | pws |
A properly configured website will work with Advanced mode, but Advanced mode may break the presentation of certain web pages with even minor caching misconfigurations. It is recommended to test the performance of this caching mode for your applications before you bring the CE into production. When testing, pay particular attention to dynamic URLs and to content that requires authentication to be presented to a client.

Bypass Mode

In Bypass mode, the CE turns off caching for one or more configured sites. When Transparent Bypass mode is set for a particular hostname, the caching for the hostname specified in a rule is suppressed. Bypass mode is useful when you want to turn off Akamai Connected Cache or OTT (Over the Top) caching for a site or for part of a site.

Example:

If you have servers of the type `images#.bar.com`, you could configure a bypass rule so that only `images2.bar.com` is excluded from caching. All other `images#.bar.com` servers would continue to be cached under existing rules.

Akamai Connected Cache

Akamai Connected Cache allows the CE to cache content that is delivered by an Edge server on the Akamai Intelligent Platform. This is content that is served by the worldwide Akamai CDN (Content Delivery Network); it is typically not cacheable by enterprise cache engines, but can be cached in Akamai CE based on interactions with network edge elements that are serving it.

<table>
<thead>
<tr>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>.qt</td>
</tr>
<tr>
<td>.swa</td>
</tr>
<tr>
<td>.swf</td>
</tr>
<tr>
<td>.tif</td>
</tr>
<tr>
<td>.txt</td>
</tr>
<tr>
<td>.vbs</td>
</tr>
<tr>
<td>.w32</td>
</tr>
<tr>
<td>.wav</td>
</tr>
<tr>
<td>.wbmp</td>
</tr>
<tr>
<td>.wma</td>
</tr>
<tr>
<td>.wml</td>
</tr>
<tr>
<td>.wmlc</td>
</tr>
<tr>
<td>.wmls</td>
</tr>
<tr>
<td>.wmlsc</td>
</tr>
<tr>
<td>.wmv</td>
</tr>
<tr>
<td>.xsd</td>
</tr>
<tr>
<td>.xsl</td>
</tr>
<tr>
<td>.xls</td>
</tr>
<tr>
<td>.xlsx</td>
</tr>
<tr>
<td>.zip</td>
</tr>
</tbody>
</table>

Akamai Connected Cache Features

The following list highlights Akamai Connected Cache features:
• Object caching is done on the client side WAAS device only.
• Prepositioning may be leveraged to cache HTTP websites delivered via the Akamai Intelligent Platform.
• During the enabling/registration of HTTP object cache, each WAE CE contacts the Akamai network to obtain credentials.
• The WAAS/Akamai CE determines which sites can be “Akamaized” by Akamai Connected Cache from the HTTP headers in the first reply. The CE and the Akamai Edge Server then exchange credentials and agree Akamai Connected Cache can occur. This will again be done via HTTP headers in HTTP request and responses.
• The Akamai Edge Servers can provide objects it is handling, and knows will not change, to allow WAEs with Akamai CE and the correct credentials to cache these objects. Users or other caches without valid credentials will not be allowed to cache.
• The Akamai Edge Server provides additional headers to allow the WAAS/Akamai CE to cache the objects for objects it handles. The CE does forward this back to the client. The headers passed between the CE and the client are similar to what a client or enterprise proxy server would see if the WAE was not in the path.

Akamai Connected Cache Requirements

Akamai Connected Cache is enabled by default when you check the Enable Akamai Connect check box at the Akamai Connect Cache Settings tab (Configure > Caching > Akamai Connect).

Akamai Connected Cache requires registration and an authentication key to operate. For how to disable/enable Akamai Connected Cache see Enabling Akamai Connected Cache, page 13-70.

OTT (Over the Top) Caching

OTT (Over the Top) Caching caches dynamic content by examining the URL related to a session and a site to determine if the object is identical to one previously stored in the CE cache. OTT is used for streamed content, particularly video content, and for sites that use dynamic URLs based on session or authentication methods.

OTT is a caching feature that Akamai has engineered to allow WAAS to cache and serve some popular sites that are normally not cacheable. This caching feature requires special metadata that is created and distributed by Akamai. OTT uses metadata logic to determine a unique cache key per video; this allows dynamic URLs to be cached.
This list provides some highlights of how the OTT functions with WAAS:

- Currently, the CE only uses OTT for one site, YouTube.
- Since YouTube is delivered via HTTPS, you need to follow the same process as you do for SAAS optimization. For more information, see Configuring SSL acceleration for SaaS applications, page 13-55. The domains that must be matched are *.youtube.com, *.ytimg.com, *.googlevideo.com and *.ggpht.com.
- OTT is disabled by default, but enabled once HTTP AO object cache is enabled. For how to enable/disable OTT, see Enabling OTT Caching, page 13-70.

Here is a workflow of the OTT feature with WAAS and Akamai Connect:

1. During the registration process the WAE CE provides metadata for YouTube.
2. A client goes to the YouTube site. (Note that the one client request actually requests the video in chunks, even with a dynamic ID. Each chunk not only contains part of the video, but has an associated audio/video quality, such as 360p, 480p or 720p).
3. The Akamai CE uses the metadata logic to determine a unique cache key per dynamic ID. The CE stores this for one day, even though YouTube usually expires the dynamic ID in approximately six hours.
4. Each time the video is played, the request reaches out to the origin server and fetches the dynamic ID. It then compares this with the dynamic ID and cache key pair in the cache.

 If the dynamic ID associated with the video has changed, the video will be served from the origin and this will result in a miss. A new cache key is generated for that ID and is then stored.

 If a match is found, the video is served out of cache.

Supported WAAS Platforms for Akamai Caching

The control of allocated resources to the Cache Engine is controlled by the WAAS Central Manager, but the overall resource pool and the amount of resources that can be allocated to the cache engine is controlled by the hardware platform, and the number of supported connections and users that the router is designed to service.

The following WAAS platforms support Akamai caching:

<table>
<thead>
<tr>
<th>Appliance</th>
<th>SM</th>
<th>vWAAS</th>
<th>ISR-WAAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVE-294</td>
<td>SM-700</td>
<td>vWAAS-200</td>
<td>ISR-WAAS-750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ISR-4451, ISR-4431, ISR-4351)</td>
</tr>
<tr>
<td>WAVE-594</td>
<td>SM-900</td>
<td>vWAAS-750</td>
<td>ISR-WAAS-1300</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ISR-4451, ISR-4431)</td>
</tr>
<tr>
<td>WAVE-694</td>
<td>SM-710</td>
<td>vWAAS-1300</td>
<td>ISR-WAAS-2500</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ISR-4451)</td>
</tr>
</tbody>
</table>
Note
If you are upgrading from earlier than 5.4 vWAAS, you will need a third disk and possibly memory added. For more information, see the Akamai Connect and vWAAS section of the Cisco Wide Area Application Services vWAAS Installation and Configuration Guide.

Workflow: Using Akamai Connect

1. Before you register Akamai Connect, confirm that your WAAS configuration has all relevant components to work with Akamai Connect, as described in Confirming Your WAAS Configuration for Akamai Connect, page 13-65.
2. Enable Akamai Connect, as described in Enabling Akamai Connect, page 13-66.
3. Register and activate Akamai Connect, as described in Activating the Akamai Connect License, page 13-67.
4. Enable Akamai Connected Cache, as described in Enabling Akamai Connected Cache, page 13-70.
5. (Optional) Enable Over the Top caching, as described in Enabling OTT Caching, page 13-70.
6. If needed, set up HTTP proxy for connections to the Akamai Network (using the WAAS CM as proxy or configuring external HTTP proxy), as described in Using HTTP Proxy for Connections to the Akamai Network, page 13-70.
7. If needed, de-register and re-register a WAAS device, as described in De-Registering and Re-Registering a WAAS Device, page 13-69.
8. If needed, replace an expired Akamai Connect license, as described in Replacing an Inactive or Expired Akamai Connect License, page 13-69.
9. Set caching policies (one policy for all sites or individual policies for specific sites), as described in Setting Caching Policies, page 13-72.
12. View cache prepositioning task status, as described in Viewing Cache Prepositioning Task Status, page 13-77.
13. (Optional) Copy cache prepositioning tasks, as described in Copying Cache Prepositioning Tasks, page 13-77.

Registering, Activating, Enabling Akamai Connect

This section describes how to register, activate and enable Akamai Connect, as well as how to de-register and re-register a WAAS device, and replace an inactive or expired Akamai Connect license.

Confirming Your WAAS Configuration for Akamai Connect

Before you begin the registration process to activate Akamai Connect, confirm that your WAAS configuration has the following:

- The WAAS CM and WAAS appliances are updated to software version 5.5.1.
- A verified NTP service that is within 30 seconds of the NTP standard server (NTP.org). For how to configure the NTP server, see Configuring an NTP Server, page 10-34.

- A working public DNS server configured on the WAAS devices and the WAAS CM. For how to configure the DNS server, see Configuring the DNS Server, page 6-27.

- The ability for the WAAS CM to reach Akamai’s Luna system via HTTPS on port 443. (The custom hostname is in your activation file.)

- The ability for WAAS devices to make a connection to the Akamai Management Gateway (AMG) to get the authentication key. The WAAS device configured for Akamai Connect needs the correct network connectivity to access the AMG every day to get correct credentials and updated metadata. WAAS will make an HTTPS connection on port 443 to the AMG to get this information.

If the WAAS devices cannot go direct to the Internet, you can configure them to use the WAAS CM as a proxy. For more information, see

Note The Akamai Connected Cache feature will stop functioning if WAAS loses communication with the AMG for more than 48 hours.

Enabling Akamai Connect

To enable Akamai Connect, follow these steps. For more information on Akamai Connect, see Akamai Connect and WAAS, page 13-57.

Step 1
From the WAAS Central Manager menu, from either the Device Groups or Devices tab, choose Configure > Caching > Akamai Connect.

The Akamai Connect screen appears, with two tabs: Cache Settings and Cache Prepositioning.

Step 2
Choose the Cache Settings tab.

Note If you are configuring the Akamai Connect feature for a device group, the device group should have only devices that support Akamai Connect. For more information, see Supported WAAS Platforms for Akamai Caching, page 13-64.

Also note that Virtual Blade must be stopped on the devices configured for Akamai Connect.

Step 3
Check the Enable Akamai Connect check box to turn on the Akamai Connect cache engine. When the EULA (End-User License Agreement) appears, click Accept.

When you create settings for the first time, either at the device or the group level, the Akamai license upload file is displayed, and you can select the license file supplied and click Submit. For more information on activating the Akamai Connect license, see Activating the Akamai Connect License, page 13-67.

Note Turning on the CE starts active caching in Standard mode. If you want Advanced or Bypass mode, you must specify it. This step is described in Setting Caching Policies, page 13-72.

Step 4
Continue to Edit Settings and/or Advanced Cached Settings.
Chapter 13 Configuring Application Acceleration

Akamai Connect and WAAS

Note
To edit any settings, including advanced settings and cache preposition, the Akamai Connect feature must remain enabled.

Activating the Akamai Connect License

Before you begin the registration process to activate Akamai Connect, confirm the readiness of your WAAS configuration, as described in Confirming Your WAAS Configuration for Akamai Connect, page 13-65.

To receive and activate the Akami Connect activation file, follow these steps:

Step 1 Purchase a license for the Cache Engine from your Cisco account representative or reseller.

Step 2 The account representative or reseller enters the order into the Cisco Commerce Workspace (CCW) system. The order must specify an email address for eDelivery of the Activation file.

Step 3 CCW contacts the Akamai Luna Portal to request a license or licenses for the number and type of Akamai licenses entered.

Step 4 Akamai generates and sends the license(s) to the CCW system in the form of a single activation file.

Step 5 The CCW system sends an email, with the activation file attached, to the email address specified in the order. The order of priority for selecting the email address in a CCW order is:

- Priority1: eDelivery email address
- Priority2: end customer email address
- Priority3: shipping contact email address

Note
If you do not provide an email address in your order, you will not receive an activation file.

Step 6 Enable Akamai Caching on each WAE. There are two paths available to reach the Akamai Connect screen. You can use either one to enable Akamai Connect to use any of the transparent caching methods, Akamai Connected Cache, or OTT. If this is the first time you are navigating to the Akamai Connect screen, you will be prompted to provide the activation file for licensing.

- From the WAAS CM choose Device/Device Group > Configure > Caching > Akamai Connect.
- OR
- From the WAAS CM choose Home > Admin > Licenses > Akamai Connect. This path can be used later to add more licenses, if needed.

The Akamai Connect screen is displayed.

Step 7 At the Upload Akamai Connect License file field, click Browse, highlight the activation file and click OK.

Step 8 Click Upload. The authentication data in the activation file is transmitted to the Akamai Luna portal.

Step 9 After the device message is sent to the Luna portal:

- The Luna portal sends the Entitlement Code to the WAAS Central Manager and the Akamai Management Gateway (AMG).
- The WAAS Central Manager sends the Entitlement Code to WAAS.
The AMG rolls out the Entitlement Code to Edge Servers on the Akamai Grid Network. The Entitlement Code is maintained on Luna, on the AMG, and on the WAAS device. WAAS connects to the AMG using a proxy/DNS server that can resolve the address `amg.terra.akamai.com`.

Step 10

The list titled **Status of devices with Akamai Connect feature configured** displays the following types of status for one, some, or all devices.

- Akamai Device Status - ActivationInProgress, Active
- Operational Status - Disconnected, Connected, or Running
- Connectivity to Akamai - Activating, Activated, or Connected

The device registration, operational status, and connectivity to Akamai proceed through a set of status indicators for the three status categories: Akamai Device Status/Operational Status/Connectivity to Akamai:

- ActivationInProgress /Disconnected /Activating
- ActivationInProgress /Connected /Activating
- Active /Connected /Activated
- Active /Connected /Connected

Note
The activation process for WAAS devices may take between 15-60 minutes to complete, and for this time period, the Connectivity to Akamai status displays as Activating. During this time, device(s) may not be able to communicate with the Akamai Network, because they are not recognized by the AMGs until the activation process is complete, and the Connectivity to Akamai status displays as Connected.

Step 11

For the last steps in the registration process, Luna sends the Connected Cache credentials to the AMG and to the Edge Servers on the Akamai Grid network. The AMG forwards Connected Cache credentials on to WAAS. With the Connected Cache credentials on both WAAS and the Edge Servers, the Connected Cache is enabled, and caching requests can be served by the Edge servers. This authenticated connection can then service requests for Connected Cache and OTT caching from the Akamai Grid network Edge Servers.

Step 12

The registration of each WAE begins. The WAAS CM provides information to the Akamai Luna Portal for each device that will be running Akamai Connect.

Note

Connected Operational Status can take several minutes to complete. Rollout of the activation to the Edge servers can take up to 45 minutes to complete. A device may take from a few minutes to up to two hours to show an Active Activation Status, depending on when the request was made, traffic conditions, and other variables.

Step 13

Each WAE that has been sent the entitlement code will try to make an SSL connection to the AMG using `amg.terra.akamai.com`. The Luna Portal will push out the Akamai Connected Cache credentials to the AMG and Akamai Grid Network (to the Akamai Edge Servers).

- The AMG will push the Akamai Connected Cache credentials out to each of the WAEs that are configured for Akamai Connected Cache. If OTT is enabled, the OTT metadata needed to help cache YouTube objects is also processed at this time.
- The Akamai Connected Cache credentials are sent by the WAE CE when going to the origin server. If the WAE CE has valid credentials according to the Akamai Edge Server, the Akamai Edge Server then provides objects to the WAE CE that are not normally cacheable to other devices.
Step 14 The WAE CE will request new credentials daily and will be good for two days. The connections are always established from WAE or WAAS CM over TCP 443 to the AMG.

- For security, firewalls are usually deployed by performing statefull inspection on traffic from within the company to the outside. They are also configured to block unknown traffic from the outside to the inside. Since connection should not initiate from AMG to any WAAS CM or WAE at any time, there should not be an issue. If there is, then a hole will need to be made to allow the WAAS CM or WAE to speak to any device on port 443.

Note The Devices listing on the All Devices screen includes a column titled Akamai Connect, which shows the status of each device: Active, Not Supported, Connected, Disconnected.

Step 15 As needed, configure HTTP proxy or external HTTP proxy, as described in Using HTTP Proxy for Connections to the Akamai Network, page 13-70.

De-Registering and Re-Registering a WAAS Device

When you de-register a WAAS device from the WAAS CM, the WAAS CM will trigger the removal of the device record on the Akamai side, thereby invalidating the entitlement key used by the CE to talk to AMG devices. On the WAAS side, the CE will continue operating in transparent cache mode.

When you re-register a WAAS device with the WAAS CM, one of two things will happen:

- The WAAS CM will auto-assign the device to device groups (that are so marked). If any of these device groups have Akamai Connect/HTTP cache settings, the WAAS CM will trigger registration with Akamai.

- If no device group is configured with Akamai Connect/HTTP cache settings, the registration is done individually.

After the device is registered, it will get a new entitlement key.

Replacing an Inactive or Expired Akamai Connect License

If your license has become inactive or expired, follow these steps to replace your license:

Step 1 When a license is inactive or expired, a notification is displayed in one of two WAAS CM screens:

- At the Home > Admin > Licenses > Akamai Connect screen: “Akamai Connect License is Inactive. Please remove current license and import valid license.”

- At the Home > Monitor > Troubleshoot > Akamai Diagnostics screen: “Akamai Connect License is Inactive. Please remove existing license and import new one using Akamai License page.”

Step 2 Remove the inactive or expired license.

Step 3 To upload a new license file, at the Home > Admin > Licenses > Akamai Connect screen, click Choose File to browse to the new license file and click Upload.

Step 4 If you import an expired license, you will see the message: “Unable to communicate to Akamai server (Error: License is inactive or expired). See Central Manager log file for detailed error information.”
Step 5 To obtain a new license, contact your Cisco account representative or reseller.

Enabling Akamai Connected Cache

You can configure Akamai Connected Cache cache engine settings at the device group level (to apply a configuration to all registered devices) or the device level (to apply a configuration to a particular registered device).

To enable Akamai Connected Cache, follow these steps. For more information on Akamai Connected Cache, see Akamai Connected Cache, page 13-62.

Step 1 To enable Akamai caching, check the Akamai Connected Cache check box. The default is enabled. When you enable Akamai connected cache, it is enabled for all suitable Akamaized content.

Step 2 Click Submit.

Step 3 After you enable Akamai Connected Cache, you can set a caching policy for all sites, or an individual caching policy for specific sites, as described in Setting Caching Policies, page 13-72.

Step 4 After you enable Akamai Connected Cache, you can configure cache prepositioning, as described in Configuring Cache Prepositioning, page 13-74.

Enabling OTT Caching

To enable OTT caching, follow these steps. For more information on OTT caching, see OTT (Over the Top) Caching, page 13-63.

Step 1 To enable Over the Top (OTT) caching, check the Over the Top Cache check box. In the initial release, OTT caching applies only to YouTube.

Step 2 Click Submit or continue to Advanced Cache Settings. For more information on Advanced Cache Settings, see

Using HTTP Proxy for Connections to the Akamai Network

When using Akamai Connect, the WAAS CM and WAAS device(s) must be able to communicate with the Akamai Network: with the Akamai Luna API servers to provision entries for WAAS devices, and with the Akamai AMG devices for Akamai Connected Cache and OTT features.

However, some WAAS deployments may disallow outgoing connections to the Internet for the WAAS CM or WAAS device(s). For these deployments, the WAAS device(s) may use an HTTP proxy to contact the Akamai Network.

You can set up the following proxy configurations:

- No HTTP proxy use
- Using the WAAS CM as HTTP Proxy
Configuring External HTTP Proxy

For these three proxy configurations, WAAS supports five deployment scenarios:

<table>
<thead>
<tr>
<th>Deployment Scenario</th>
<th>Deployment Connections</th>
<th>WAAS CM to Luna API Servers</th>
<th>WAAS HTTP Cache Engine to Akamai AMG</th>
</tr>
</thead>
<tbody>
<tr>
<td>No HTTP proxy use</td>
<td>Direct/ Direct</td>
<td>Direct</td>
<td>Direct</td>
</tr>
<tr>
<td>WAAS CM as HTTP proxy</td>
<td>Direct/ WAAS CM as proxy</td>
<td>Direct</td>
<td>WAAS CM as HTTP proxy</td>
</tr>
<tr>
<td>External HTTP proxy</td>
<td>Direct/ External HTTP proxy</td>
<td>Direct</td>
<td>External HTTP proxy</td>
</tr>
<tr>
<td>External HTTP proxy</td>
<td>External HTTP proxy/ Direct</td>
<td>External HTTP proxy</td>
<td>Direct</td>
</tr>
<tr>
<td>External HTTP proxy</td>
<td>External HTTP proxy/ External HTTP proxy</td>
<td>External HTTP proxy</td>
<td>External HTTP proxy</td>
</tr>
</tbody>
</table>

The following considerations apply to all HTTP proxy deployments:

- You configure HTTP proxy from the WAAS CM; there are no CLI commands for HTTP proxy. Configuring HTTP proxy settings does not require restart of the WAAS CM.
- HTTP Proxy must support HTTP Connect method for tunneling HTTPS connections.
- Configuring the HTTP proxy setting does not require restart of the WAAS CM.

Note

WAAS v5.5.1 does not support HTTP proxy user authentication. It is recommended that you restrict access to proxy using IP address ACLs.

Using the WAAS CM as HTTP Proxy

Note the following considerations when using the WAAS CM as a proxy to the Akamai network:

- When using Akamai Connected Cache, each WAAS CE device is communicating with the Akamai network. Some WAAS deployments may disallow WAE devices to establish outgoing connections to the Internet (i.e., private networks). In this case, the WAE device may use the WAAS CM device(s) as proxy for all connections to the Akamai network.
- You may still have to allow a hole for the WAAS CM to make communications on TCP port 443 outbound.
- There is no option for the WAAS CM to use a proxy device to get to the Internet.
- All connections are made from the WAAS CE device or WAAS CM out to the Akamai network; never from the Akamai network to the WAAS CE device or WAAS CM.
- You configure this feature from the WAAS CM only, not the CLI.

To use the WAAS CM as HTTP proxy, follow these steps:

Step 1 From Devices or Device Groups, navigate to Configure > Caching > Akamai Connect.

Step 2 Choose the Cache Settings tab.

Step 3 Check the **Use HTTP proxy for connections to Akamai network** check box.
Step 4 At the **HTTP Proxy**: dropdown list, select **Central Manager as HTTP Proxy**.

Step 5 Click **Submit**.

Configuring External HTTP Proxy

When using the Akamai Connected Cache, WAAS devices are communicating with the Akamai Network. Some deployments may disallow outgoing connections to the Internet for WAAS devices. For these deployments, WAAS devices can use an HTTP proxy to contact the Akamai Network. For more information on HTTP proxy, see Using HTTP Proxy for Connections to the Akamai Network, page 13-70.

Note
HTTP proxy must support HTTP CONNECT for tunneling HTTPS connections.

To configure external HTTP proxy, follow these steps:

Step 1 From Devices or Device Groups, navigate to **Configure > Caching > Akamai Connect**.

Step 2 Check the **Use HTTP proxy for connections to Akamai network** check box.

Step 3 At the **HTTP Proxy**: dropdown list, select **External HTTP Proxy**.

Step 4 Specify a Proxy Host and a Proxy Port:
- **Proxy Host** field - Enter a hostname or address.
- **Proxy Port** - Enter a value between 1-65,555.

Note
If the WAAS CM is already using an external HTTP proxy, there is no option displayed to use the WAAS CM as proxy; these fields will display the currently configured HTTP proxy.

Step 5 Click **Submit**.

Setting Caching Policies

For how to set one caching policy for all sites, or set individual caching policies for a specific site., follow these steps:

Step 1 From Devices or Device Groups, navigate to **Configure > Caching > Akamai Connect**.

Step 2 Choose the **Cache Settings** tab.

Step 3 In the **Advanced Cache Settings** section, at the **Default Transparent Caching Policy** drop-down list, choose a caching policy:
- **Basic**
- **Standard** (default)
- **Advanced**
- **Bypass**
Step 4 To set a default caching policy for all sites, choose a caching policy and click Submit. To enable transparent caching for a specific site, see Step 5.

Step 5 To enable transparent caching for a specific site, change the Default Transparent Caching Policy to Bypass.

Step 6 At the Site Specific Transparent Caching Policy section, click Add Hostname/IP. The Site Caching Policy Task dialog box opens.

a. In the Hostname/IP field, specify the hostname of the site to be configured. The hostname can be a specific server, or a domain name that contains a wildcard, such as *.cisco.com.

b. At the Transparent Caching Policy drop-down list, select the cache policy for this site: Basic, Standard, Advanced, or Bypass.

c. Click OK. The new hostname/IP is added as a line item to the Site Specific Transparent Caching Policy table.

Note The policy you set for a specific site takes precedence over the default caching policy set for all sites.

You can configure up to 512 hostnames for each site-specific transparent caching policy.

Step 7 Configure Cisco Cloud Web Security (CWS) user policy. For more information see Setting Cisco Cloud Web Security User Policy, page 13-73.

Step 8 Configure HTTP Proxy:

- To configure WAAS CM as HTTP proxy, see Using the WAAS CM as HTTP Proxy, page 13-71
- To configure external HTTP proxy, see Configuring External HTTP Proxy, page 13-72.

Setting Cisco Cloud Web Security User Policy

The Cisco Cloud Web Security feature provides content scanning of HTTP and secure HTTP/S traffic and malware protection service to web traffic. CWS servers scan web traffic content and either allow or block the traffic based on configured policies. Servers use credentials such as private IP addresses, user names, and user groups to identify and authenticate users and redirect the traffic for content scanning.

Traffic is transparently proxied by an ASA or ISR to cloud-based CWS servers (called towers), where the web traffic is scanned and if deemed acceptable is provided to the origin server. All traffic coming back is through the CWS tower.

Note the following considerations when using the Cisco CWS option:

- CWS can be used only when one WAAS device is present in the path.
- When you enable CWS, the Akamai Cache Engine always adds an “if modified since” header to the request so that the response needs to go remote to the origin server (in this case, the Scansafe tower) - so all requests get scanned and no security is bypassed. If a 304 Not Modified is returned, then the Akamai Cache Engine provides the object from the cache. If a 200 Okay is returned, then the object is fetched from the origin server.
- CWS does not work with Akamai Connected Cache, because the Akamai Connected Cache credentials passed by the WAE CE to the Akamai Edge Server associates an IP address to the credentials. The CWS tower would change the source IP address from the client to its own when going out to the origin server, negating any benefit from Connected Cache.
• CWS is only designed for single-sided flows.
• If preposition is enabled and is possible that the flow may be redirected to a CWS tower, follow these recommendations:
 - (Preferred choice) configure a white-list on the ISR or CWS tower to bypass the WAE IP address.
 - On the CWS tower, configure a user or group that the WAE will fall into for authentication and allow it access to all sites on which the preposition is occurring.

To enforce the Cisco CWS user policy, follow these steps:

Step 1 Navigate to **Configure > Caching > Akamai Connect > Cache Settings** tab.

Step 2 At the Advanced Settings section, check the **Cisco Cloud Web Security present** check box.

Step 3 Click **Submit**.

Configuring Cache Prepositioning

Cache prepositioning, also known as “cache warming,” allows you to specify a policy to pre-fetch and cache content at a specified time. Cache prepositioning runs at the same priority as other caching types (e.g., Akamai Connected Cache or OTT).

Note

You can only preposition content requested via HTTP. Any HTTPS requests encountered in the job will fail, but the preposition task will continue and any objects available via HTTP will be retrieved.

When a scheduled fetch operation begins or is complete, it is added to the Cache Preposition Status table. Here is a workflow of how to configure cache prepositioning at the **Cache Prepositioning** tab (**Configure > Caching > Akamai Connect**):

• Enable DRE for preposition connections (optional).
• Create a new cache preposition task: specify task name, base URLs for prepositioning, include/exclude types, download rate, and recursion depth.
• Specify the task’s recursion delay time and recursion hostnames.
• Create a schedule for the cache preposition task: specify schedule name, frequency (yearly, monthly, weekly, daily), and start time.
• View cache preposition task status information, including start/end time, byte/object count, refresh bytes/count, store bytes/count, and uncacheable bytes/count.

To configure a cache preposition task, follow these steps:

Step 1 From Devices or Device Groups, navigate to **Configure > Caching > Akamai Connect**.

Step 2 Choose the **Cache Prepositioning** tab. At this tab you can add, edit, or delete cache prepositioning tasks, as well as monitor cache preposition task status.

Step 3 (Optional) Check the **Preposition with DRE** check box to enable DRE for preposition connections. The default is disabled, to not negatively impact the DRE byte cache for data that will be stored at the object level.
Step 4 Click Add Cache Preposition Task. The Cache Prepositioning Task dialog box opens, where you can specify the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Name | The name of the preposition task. Preposition task name is an alphanumeric identifier up to 47 characters. Special characters like ‘\{ }’?"<>[]&*’ are not allowed. Note the following when specifying a task:
 • You can configure up to 10 URLs per task.
 • You can configure up to 10 schedules per task.
 • You can configure up to 50 tasks per device/device group. |
| URL(s) | The base URL(s) for prepositioning. The maximum length for the URL is 900 characters. Characters not allowed in the URL are space, double quotes ("), ASCII characters are allowed in the range of ASCII 33 through ASCII 125.
 • Use a space to separate multiple URLs.
 • You can configure up to 10 URLs per task. |
| Include Types| The object type(s) to include in caching, such as .jsp or .asp, each separated by a comma. The list of object name patterns to be included has a total pattern field limit of 47 characters. |
| Exclude Types| The object type(s) to exclude from caching, such as .jsp or .asp, each separated by a comma. The list of object name patterns to be excluded has a total pattern field limit of 47 characters. |
| Download Rate| The maximum download rate, in KBps. Select any value between 0-10,000,000 KBps. The default is 20 KBps. A selection of 0 indicates unlimited, or no enforced rate limiting. |
| Recursion Depth| The depth of the link level at which the content is retrieved. Recursion depth is active only if you check the Recursive Task check box. Select 1, 2, 3, 5, 8, 13, or 21 from the drop-down list, or enter any custom value between 1-1000. The default is 1.
 Note: A greater number of specified levels of links means a greater amount of data stored in the cache, sometimes exponentially more. If the amount of requested pre-fetched data becomes larger than the cache, the newly requested data will flush all previously stored data, and may slow down other operations that attempt to use the cache. |
Step 5
At the **Advanced Settings** section of the **Cache Prepositioning Task** dialog box, you can specify recursion delay time and recursion hostnames:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursion Delay Time</td>
<td>The delay time, in seconds, between requests during recursive download. This simulates user wait time. Recursive delay time is necessary because some servers use the lack of time between requests to detect and restrict web spiders.</td>
</tr>
<tr>
<td></td>
<td>• Enter a value between 0-600 seconds. The default is 2 seconds.</td>
</tr>
<tr>
<td></td>
<td>• A value of zero provides the best performance when there are no web spider restrictions.</td>
</tr>
<tr>
<td>Recursion Domains</td>
<td>The list of server domain suffixes for which recursive spidering is permitted. If the list is empty, then spidering is only permitted within the same domain as the specified URL.</td>
</tr>
<tr>
<td></td>
<td>You can configure up to ten servers:</td>
</tr>
<tr>
<td></td>
<td>• The server name is up to 255 characters.</td>
</tr>
<tr>
<td></td>
<td>• Server names are separated by comma or space.</td>
</tr>
</tbody>
</table>

Step 6
At the **Cache Prepositioning Schedule** section, click **Add Schedule**. The Cache Prepositioning Schedule dialog box opens, where you specify the following:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule Name</td>
<td>The name of the schedule for this preposition task. Schedule name is an alphanumeric identifier up to 256 characters. The Schedule Name allows you to provide your own representation of a schedule. For example, for a schedule that occurs each Monday, Wednesday and Friday at 10:30AM, you could name this schedule “Weekly MWF 10:30AM” or “Every Week - MON-WED-FRI at 10:30AM.”</td>
</tr>
<tr>
<td>Frequency</td>
<td>The specified time for prepositioning: yearly, daily, weekly, or monthly days. If you choose monthly days, a calendar with check boxes opens so you can check one, some or all days in the month for this schedule.</td>
</tr>
<tr>
<td>Start Time (HH:MM)</td>
<td>From the two drop-down lists, choose the hour and minute for the task schedule to start.</td>
</tr>
</tbody>
</table>
Viewing Cache Prepositioning Task Status

Two tables are provided in the Cache Prepositioning section to show the status of a cache prepositioning task. To view the status of a cache preposition task you have configured, select the task from the first table, the cache preposition listing table. The second table, the cache prepositioning status table, displays information on the selected task.

- For an individual device, the cache prepositioning status table shows the selected task status for the current device.
- For a device group, the cache prepositioning status table shows the status of the selected cache preposition task, for all devices under that device group.

The following types of information are displayed for the selected task:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Name</td>
<td>The name of the selected device.</td>
</tr>
<tr>
<td>Start Time</td>
<td>The date, hour, and minute for the task schedule to start.</td>
</tr>
<tr>
<td>End Time</td>
<td>The date, hour, and minute for the task schedule to end.</td>
</tr>
<tr>
<td>Byte Count</td>
<td>The total number of bytes in cache during the most recent preposition task run.</td>
</tr>
<tr>
<td>Object Count</td>
<td>The total count of objects in cache during the most recent preposition task run.</td>
</tr>
<tr>
<td>Refresh Bytes</td>
<td>The number of bytes refreshed in cache during the most recent preposition task run.</td>
</tr>
<tr>
<td>Refresh Count</td>
<td>The count of objects refreshed in cache during the most recent preposition task run.</td>
</tr>
<tr>
<td>Store Bytes</td>
<td>The number of unmodified bytes for objects found in cache during the most recent task run.</td>
</tr>
<tr>
<td>Store Count</td>
<td>The count of unmodified objects found in cache during the most recent task run.</td>
</tr>
<tr>
<td>Uncacheable Bytes</td>
<td>The number of bytes of uncacheable objects encountered during the most recent task run.</td>
</tr>
<tr>
<td>Uncacheable Count</td>
<td>The count of uncacheable objects encountered during the most recent task run.</td>
</tr>
<tr>
<td>Status</td>
<td>The status of the task, such as Scheduled, Complete, or Error.</td>
</tr>
<tr>
<td>Error</td>
<td>If the task status is “Error,” an error message describing the task status is displayed.</td>
</tr>
</tbody>
</table>

Copying Cache Prepositioning Tasks

You can copy cache prepositioning tasks that have a device or device group enabled with Akamai Connect, with WAAS running v5.5.1 or 5.4.1. Use the following methods to copy cache prepositioning tasks:

- Device to device
- Device to device group
Creating a New Traffic Optimization Policy

Table 13-4 provides an overview of the steps that you must complete to create a new traffic optimization policy.

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information and Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prepare for creating an optimization policy.</td>
<td>Provides the tasks you need to complete before creating a new optimization policy on your WAAS devices. For more information, see the “Preparing to Create an Optimization Policy” section on page 13-79.</td>
</tr>
<tr>
<td>2. Create an application definition.</td>
<td>Identifies general information about the application you want to optimize, such as the application name and whether the WAAS Central Manager collects statistics about this application. For more information, see the “Creating an Application Definition” section on page 13-79.</td>
</tr>
</tbody>
</table>
Preparing to Create an Optimization Policy

Before you create a new optimization policy, complete the following preparation tasks:

- Review the list of optimization policies on your WAAS system and make sure that none of these policies already cover the type of traffic you want to define. To view a list of the predefined policies that come bundled with the WAAS system, see Appendix A, “Predefined Optimization Policy.”
- Identify a match condition for the new application traffic. For example, if the application uses a specific destination or source port, you can use that port number to create a match condition. You can also use a source or destination IP address for a match condition.
- Identify the device or device group that requires the new optimization policy. We recommend you create optimization policies on device groups so the policy is consistent across multiple WAAS devices.

Creating an Application Definition

The first step in creating an optimization policy is to set up an application definition that identifies general information about the application, such as the application name and whether you want the WAAS Central Manager to collect statistics about the application. You can create up to 255 application definitions on your WAAS system.

To create an application definition, follow these steps:

Step 1

From the WAAS Central Manager menu, choose **Configure > Acceleration > Applications.**

The Applications window appears, which displays a list of all applications on your WAAS system. It also lists the device or device group from which it gets the settings. From this window, you can perform the following tasks:

- Select an application and click the **Edit** icon in the task bar to modify or click the **Delete** icon in the task bar to delete.
- Determine if your WAAS system is collecting statistics on an application. The Enable Statistics column displays Yes if statistics are being collected for the application.
- Create a new application as described in the steps that follow.

Click the **Add Application** icon in the task bar. The Application window appears.
Creating a New Traffic Optimization Policy

Step 2 Enter a name for this application.
The name cannot contain spaces and special characters.

Step 3 (Optional) Enter a comment in the Comments field.
The comment you enter appears in the Applications window.

Step 4 Check the Enable Statistics check box to allow the WAAS Central Manager to collect data for this application. To disable data collection for this application, uncheck this box.

The WAAS Central Manager GUI can display statistics for up to 25 applications and 25 class maps. An error message is displayed if you try to enable more than 25 statistics for either. However, you can use the WAAS CLI to view statistics for all applications that have policies on a specific WAAS device. For more information, refer to the Cisco Wide Area Application Services Command Reference.

If you are collecting statistics for an application and decide to disable statistics collection, then reenable statistics collection at a later time, the historical data will be retained, but a gap in data will exist for the time period when statistics collection was disabled. An application cannot be deleted if there is an optimization policy using it. However, if you delete an application that you had collected statistics for, then later recreate the application, the historical data for the application will be lost. Only data since the recreation of the application will be displayed.

Note The WAAS Central Manager does not start collecting data for this application until you finish creating the entire optimization policy.

Step 5 Click OK.
The application definition is saved and is displayed in the application list.

Creating an Optimization Policy

After you create an application definition, you need to create an optimization policy that determines the action a WAAS device takes on the specified traffic. For example, you can create an optimization policy that makes a WAAS device apply TCP optimization and compression to all application traffic that travels over a specific port or to a specific IP address. You can create up to 512 optimization policies on your WAAS system.

The traffic matching rules are contained in the application class map. These rules, known as match conditions, use Layer 2 and Layer 4 information in the TCP header to identify traffic.

To create an optimization policy, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > Optimization Policies.
The Optimization Policies window appears. (See Figure 13-36.)
Note
For a WAAS Express device, the Optimization Policies window shows a subset of the fields in the standard Optimization Policies window.

Enable Service Policy option, DSCP option, and the Protocol column in the list of policy rules are not applicable to WAAS Express.

Figure 13-36 Optimization Policies Window

This window displays information about all optimization policies that reside on the selected device or device group and the position of each policy. The position determines the order in which WAAS refers to that policy when determining how to handle application traffic. To change the position of a policy, see the “Modifying the Position of an Optimization Policy” section on page 13-90. This window also displays the class map, source and destination IP addresses, source and destination ports, protocol, application, action, and accelerate assigned to each policy.

Note
If there are version 4.x devices, you can click the Legacy View taskbar icon to view the policies as they appear in a 4.x device.

From the Optimization Policies window, you can perform the following tasks:

- Configure a description, configure the Enable Service Policy setting, and configure the DSCP setting. This DSCP setting field configures DSCP settings at the device (or device group) level.

Note
The device will only use this policy setting to determine what optimizations are done if Enable Service Policy is set.

- Select one or more optimization policies that you want to delete, and click the Delete icon to delete the checked policies.
- Select an optimization policy and click the Edit icon to modify the checked policy.
Creating a New Traffic Optimization Policy

- Restore predefined policies and class maps. For more information, see the “Restoring Optimization Policies and Class Maps” section on page 13-89.
- Create an optimization policy as described in the steps that follow.

Step 3
Click the **Add Policy Rule** icon in the taskbar to create a new optimization policy.

The Optimization Policy Rule pop-up window appears. (See Figure 13-37.)

Figure 13-37 Add Optimization Policy Rule Window

Step 4
Choose the class map from the Class-Map Name drop-down list to select an existing class map for this policy or click **Create New** to create a new class map for this policy. For information on creating a new class map, see the “Creating an Optimization Class Map” section on page 13-84.

Step 5
From the Action drop-down list, choose the action that your WAAS device should take on the defined traffic. Table 13-5 describes each action.

Note
For a WAAS Express device, only a subset of the actions are available. These include: Passthrough, TFO Only, TFO with LZ, TFO with DRE, and TFO with DRE and LZ.

Table 13-5 Action Descriptions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passthrough</td>
<td>Prevents the WAAS device from optimizing the application traffic defined in this policy by using TFO, DRE, or compression. Traffic that matches this policy can still be accelerated if an accelerator is chosen from the Accelerate drop-down list.</td>
</tr>
<tr>
<td>TFO Only</td>
<td>Applies a variety of transport flow optimization (TFO) techniques to matching traffic. TFO techniques include BIC-TCP, window size maximization and scaling, and selective acknowledgement. For a more detailed description of the TFO features, see the “TFO Optimization” section on page 1-4.</td>
</tr>
<tr>
<td>TFO with DRE (Adaptive Cache)</td>
<td>Applies both TFO and DRE with adaptive caching to matching traffic.</td>
</tr>
<tr>
<td>TFO with DRE (Unidirectional Cache)</td>
<td>Applies both TFO and DRE with unidirectional caching to matching traffic.</td>
</tr>
<tr>
<td>TFO with DRE (Bidirectional Cache)</td>
<td>Applies both TFO and DRE with bidirectional caching to matching traffic.</td>
</tr>
</tbody>
</table>
Chapter 13 Configuring Application Acceleration

Creating a New Traffic Optimization Policy

Note
When ICA acceleration is enabled, all connections are processed with the DRE mode as unidirectional. Acceleration type is shown as TIDL (TCP optimization, ICA acceleration, DRE, LZ).

Note
When configuring optimization policies on a device group, if the device group contains devices running a WAAS version prior to 4.4.1 and you are configuring an action that includes Unidirectional or Adaptive caching, the caching mode is converted to bidirectional. Similarly, when devices running WAAS versions prior to 4.4.1 join a device group that is configured with optimization policies that use Unidirectional or Adaptive caching, the caching mode is converted to bidirectional. In such cases, we recommend that you upgrade all devices to the same software version or create different device groups for devices with incompatible versions.

Step 6
From the Accelerate drop-down list, choose one of the following additional acceleration actions that your WAAS device should take on the defined traffic:

- **None**—No additional acceleration is done.
- **MS PortMapper**—Accelerate using the Microsoft Endpoint Port Mapper (EPM).
- **CIFS Adaptor**—Accelerate using the CIFS or SMB Accelerators.
- **HTTP Adaptor**—Accelerate using the HTTP Accelerator.
- **MAPI Adaptor**—Accelerate using the MAPI Accelerator.
- **NFS Adaptor**—Accelerate using the NFS Accelerator.
- **Video Adaptor**—Accelerate using the Video Accelerator.
- **ICA Adaptor**—Accelerate using the ICA Accelerator.

Note
For a WAAS Express device, the available accelerators are CIFS Express and HTTP Express.

Step 7
Specify the application that you want to be associated with this policy by doing either of the following:

Table 13-5 Action Descriptions (continued)

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFO with LZ Compression</td>
<td>Applies both TFO and the LZ compression algorithm to matching traffic. LZ compression functions similarly to DRE but uses a different compression algorithm to compress smaller data streams and maintains a limited compression history.</td>
</tr>
<tr>
<td>TFO with DRE (Adaptive Cache) and LZ</td>
<td>Applies TFO, DRE with adaptive caching, and LZ compression to matching traffic.</td>
</tr>
<tr>
<td>TFO with DRE (Unidirectional Cache) and LZ</td>
<td>Applies TFO, DRE with unidirectional caching, and LZ compression to matching traffic.</td>
</tr>
<tr>
<td>TFO with DRE (Bidirectional Cache) and LZ</td>
<td>Applies TFO, DRE with bidirectional caching, and LZ compression to matching traffic.</td>
</tr>
</tbody>
</table>

1. When configuring a device running a WAAS version prior to 4.4.1, options that include Unidirectional or Adaptive caching are not shown in the Action list.
Creating a New Traffic Optimization Policy

- From the Application drop-down list, choose an existing application like the one that you created in the “Creating an Application Definition” section on page 13-79. This list displays all predefined and new applications on your WAAS system.

- Click New Application to create an application. You can specify the application name and enable statistics collection. After specifying the application details, click OK to save the new application and return to the Optimization Policy window. The new application is automatically assigned to this device or device group.

Step 8 (Optional) Choose a value from the DSCP Marking drop-down list. You can choose copy, which copies the DSCP value from the incoming packet and uses it for the outgoing packet. If you choose inherit-from-name from the drop-down list, the DSCP value defined at the application or global level is used.

DSCP is a field in an IP packet that enables different levels of service to be assigned to network traffic. Levels of service are assigned by marking each packet on the network with a DSCP code and associating a corresponding level of service. DSCP is the combination of IP Precedence and Type of Service (ToS) fields. For more information, see RFC 2474.

DSCP marking does not apply to pass-through traffic.

Note For a WAAS Express device, the DSCP Marking drop-down list is not shown.

For the DSCP marking value, you can choose to use the global default values (see the “Defining Default DSCP Marking Values” section on page 13-90) or select one of the other defined values. You can choose copy, which copies the DSCP value from the incoming packet and uses it for the outgoing packet.

Step 9 Click OK.

The new policy appears in the Optimization Policies window. (See Figure 13-36 on page 13-81.)

Creating an Optimization Class Map

You can create an optimization class map in two ways:

- At the device context, choose Configure > Acceleration > Optimization Class-Map, then click the Add Class-Map taskbar icon.

- While adding or editing a policy rule, as described in the “Creating an Optimization Policy” section on page 13-80, click the Create New button next to the Class-Map Name drop-down list.

The Optimization Class-Map pane opens. To define an optimization class map for an optimization policy, follow these steps:

Step 1 Enter a name for this application class map. The name cannot contain spaces or special characters.

Note You must create a unique class map name across all types. For example, you cannot use the same name for an optimization class map and an AppNav class map.
For WAAS Express, the class map name cannot contain the following prefixes (case sensitive): Class, optimize, passthrough, application, accelerate, tfo, dre, lz, or sequence-interval. Existing class map names containing any of these prefixes must be changed manually.

Step 2 (Optional) Enter a description.

Step 3 From the Type drop-down list, choose the class map type. Choose Application Affinity unless you want to match all TCP traffic, when you should choose Any TCP Traffic.

Once you have chosen the type, you can enter the match conditions.

Step 4 Click the **Add Match Condition** icon to enter the conditions. (See Figure 13-38.)

For a WAAS Express device, **Protocol** and **EPM Custom UUID** settings are not applicable.

Step 5 Enter a value in one of the destination or source condition fields to create a condition for a specific type of traffic.

For example, to match all traffic going to IP address 10.10.10.2, enter that IP address in the Destination IP Address field.

To specify a range of IP addresses, enter a wildcard subnet mask in either the destination or source IP Wildcard field in dotted decimal notation (such as 0.0.0.255 for /24).

If you want to match traffic that uses dynamic port allocation, choose the application identifier from the Protocol drop-down list. For example, to match Microsoft Exchange Server traffic that uses the MAPI protocol, choose **mapi**. If you want to enter a custom EPM UUID, choose **epm-uuid** and enter the UUID in the EPM Custom UUID field.
Managing Application Acceleration

This section contains the following topics:

- Modifying the Accelerator Load Indicator and CPU Monitoring Threshold, page 13-86
- Viewing a List of Applications, page 13-87
- Viewing a Policy Report, page 13-88
- Viewing a Class Map Report, page 13-89
- Restoring Optimization Policies and Class Maps, page 13-89
- Monitoring Applications and Class Maps, page 13-89
- Defining Default DSCP Marking Values, page 13-90
- Modifying the Position of an Optimization Policy, page 13-90
- Modifying the Acceleration TCP Settings, page 13-92

Modifying the Accelerator Load Indicator and CPU Monitoring Threshold

This section contains the procedures for modifying the accelerator load threshold and CPU load monitoring.

Modifying the Accelerator Load Indicator Threshold

To modify the accelerator load indicator threshold for a WAE device or device group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > Accelerator Threshold. The Accelerator Threshold window appears.

Step 3 In the Accelerator Load Indicator Threshold field, enter a percent value between 80 and 100. The default is 95.

Step 4 Click Submit.
Modifying the CPU Load Monitoring

High CPU utilization can adversely affect current optimized connections. To avoid CPU overload, you can enable CPU load monitoring and set the load monitoring threshold. When the average CPU utilization on the device exceeds the set threshold for 2 minutes, the device stops accepting new connections and passes any new connections through. When the average CPU utilization falls below the threshold for 2 minutes, the device resumes accepting optimized connections.

Note
When a CPU overload condition occurs, the polling interval is reduced to an interval of 2 seconds. Although the average CPU utilization may fall below the threshold during this time and the overload condition cleared, the CPU alarm may still be present. The CPU alarm is only cleared when the overload condition does not reappear in the next 2 minute interval poll.

To modifying the CPU load monitoring threshold for a WAE device or device group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).
Step 2 Choose Configure > Acceleration > Accelerator Threshold. The Accelerator Threshold window appears.
Step 3 To enable CU Load Monitoring, check the Enable check box. The default is enabled.
Step 4 In the CPU Load Monitoring Threshold field, enter a percent value between 80 and 100. The default is 95.
Step 5 Click Submit.

Enabling the softirq Monitoring

Select the Enable softirq Monitoring checkbox to enable softirq monitoring. To disable deselect the checkbox.

Viewing a List of Applications

To view a list of applications that reside on a WAE device or device group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).
Step 2 Choose Configure > Acceleration > Optimization Policies. The Optimization Policies window appears.
Step 3 Click the Application column header to sort the column by application name so you can more easily locate a specific application.

Note If there are version 4.x devices, you can click the Legacy View taskbar icon to view the policies as they appear in a 4.x device.
To edit an optimization policy, check the box next to the application and click the **Edit** taskbar icon.

If you determine that one or more policies are not needed, check the box next to each unneeded application and click the **Delete** taskbar icon.

If you determine that a new policy is needed, click the **Add Policy Rule** taskbar icon to create the policy (see the “Creating an Optimization Policy” section on page 13-80).

Viewing a Policy Report

To view a report of the policies that reside on each WAE device or device group, follow these steps:

Step 1

From the WAAS Central Manager menu, choose **Configure > Acceleration > Optimization Policy Report**. (See Figure 13-39.)

The Policy Report for Devices tab appears. This report lists each device (or device group) and the overall policy count on the device (or device group) referencing this application. It includes both active policies (those in use by the device or device group), and backup policies (those not in use by the device when the device gets its config from a device group). When the device is deassigned from the device group, the backup policies are applied back to the device and become active again.

An application cannot be deleted unless the No of Policies field is 0.

Figure 13-39 Optimization Policy Report

Step 2

Select the **Policy Report for Device-Groups** tab to view the number of devices per device group and the number of active policies in the device group.

Step 3

To see the optimization policies that are defined on a particular device or group, click the device or group to view the policies in the Optimization Policies window.

To view a class map report, see the “Viewing a Class Map Report” section on page 13-89.
Viewing a Class Map Report

To view a report of the class maps that reside on each WAE device or device group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Configure > Acceleration > Optimization Policy Report.

Step 2 Click the Class-Map Report tab to view a report of the devices and device groups on which the class map is configured.

Step 3 Select the class map and click the View icon to see the devices or device groups on which the class maps reside.

Restoring Optimization Policies and Class Maps

The WAAS system allows you to restore the predefined policies and class maps that shipped with the WAAS system. For a list of the predefined policies, see Appendix A, “Predefined Optimization Policy.”

If you made changes to the predefined policies that have negatively impacted how a WAAS device handles application traffic, you can override your changes by restoring the predefined policy settings.

To restore predefined policies and class maps, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Acceleration > Optimization Policies.

The Optimization Policies window appears.

Step 3 Click the Restore Default taskbar icon to restore over 150 policies and class maps that shipped with the WAAS software and remove any new policies that were created on the system. If a predefined policy has been changed, these changes are lost and the original settings are restored.

Monitoring Applications and Class Maps

After you create an optimization policy, you should monitor the associated application to make sure your WAAS system is handling the application traffic as expected.

To monitor an application, you must have enabled statistics collection for that application, as described in the “Creating an Application Definition” section on page 13-79.

To monitor a class map, from the WAAS Central Manager menu, choose Configure > Acceleration > Monitor Classmaps. Select the class map on which to enable statistics and click the Enable button.

The WAAS Central Manager GUI can display statistics for up to 25 applications and 25 class maps. An error message is displayed if you try to enable more than 25 statistics for either. However, you can use the WAAS CLI to view statistics for all applications that have policies on a specific WAAS device. For more information, refer to the Cisco Wide Area Application Services Command Reference.
You can use the TCP Summary report to monitor a specific application. For more information, see the “TCP Summary Report” section on page 17-41.

Most charts can be configured to display Class Map data by clicking the chart Edit icon and choosing the Classifier series.

Defining Default DSCP Marking Values

According to policies that you define in an application definition and an optimization policy, the WAAS software allows you to set a DSCP value on packets that it processes.

A DSCP value is a field in an IP packet that enables different levels of service to be assigned to the network traffic. The levels of service are assigned by marking each packet on the network with a DSCP code and associating a corresponding level of service. The DSCP marking determines how packets for a connection are processed externally to WAAS. DSCP is the combination of IP Precedence and Type of Service (ToS) fields. For more information, see RFC 2474. DSCP values are predefined and cannot be changed.

This attribute can be defined at the following levels:

- Global—You can define global defaults for the DSCP value for each device (or device group) in the Optimization Policies page for that device (or device group). This value applies to the traffic if a lower level value is not defined.
- Policy—You can define the DSCP value in an optimization policy. This value applies only to traffic that matches the class maps defined in the policy and overrides the application or global DSCP value.

This section contains the following topic:

- Defining the Default DSCP Marking Value, page 13-90

Defining the Default DSCP Marking Value

To define the global default DSCP marking value, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Acceleration > Optimization Policies**. The Optimization Policies window appears.

Step 3 Choose a value from the DSCP drop-down list. The default setting is copy, which copies the DSCP value from the incoming packet and uses it for the outgoing packet.

Step 4 Click **OK** to save the settings.

Modifying the Position of an Optimization Policy

Each optimization policy has an assigned position that determines the order in which a WAAS device refers to the policy in an attempt to classify traffic. For example, when a WAAS device intercepts traffic, it refers to the first policy in the list to try to match the traffic to an application. If the first policy does not provide a match, the WAAS device moves on to the next policy in the list.
You should consider the position of policies that pass through traffic unoptimized because placing these policies at the top of the list can cancel out optimization policies that appear farther down the list. For example, if you have two optimization policies that match traffic going to IP address 10.10.10.2, and one policy optimizes this traffic and a second policy in a higher position passes through this traffic, then all traffic going to 10.10.10.2 will go through the WAAS system unoptimized. For this reason, you should make sure that your policies do not have overlapping matching conditions, and you should monitor the applications you create to make sure that WAAS is handling the traffic as expected. For more information on monitoring applications, see Chapter 17, “Monitoring and Troubleshooting Your WAAS Network.”

To modify the position of an optimization policy, follow these steps:

Step 1
From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2
Choose Configure > Acceleration > Optimization Policies. The Optimization Policies window appears. (See Figure 13-40.)

Note
For a WAAS Express device, all policies are grouped under the waas_global category.

For a list of predefined policies, see Appendix A, “Predefined Optimization Policy.”

Figure 13-40 Optimization Policies Window

![Figure 13-40](image)

Step 3
Modify the position of the optimization policy in any of the following ways:

- Select the policy you would like to move and use the up and down arrow (↑, ↓) icons in the taskbar to move that policy higher or lower in the list.
- Select the policy you would like to move and use the Move To button to specify the exact position.
- Select the policy and drag and drop it into the desired position

Note
The Save Moved Rows icon must be clicked to save the new policy positions.
You can also create a new optimization policy at a particular position by selecting the policy above the location and then clicking the Insert button.

If a device goes through all the policies in the list without making a match, then the WAAS device passes through the traffic unoptimized.

Note

For a WAAS Express device, the class-default policy should be last. This policy cannot be modified or deleted.

Step 4

Click the **Save Moved Rows** icon to save any changes you made to policy positions.

Step 5

If you determine that a policy is not needed, follow these steps to delete the policy:

- a. Select the policy you want to delete.
- b. Click the **Delete** icon in the taskbar.

Note

A default policy which maps to a default class map matching any traffic cannot be deleted.

Step 6

If you determine that a new policy is needed, click the **Add Policy** taskbar icon to create the policy (see the “Creating an Optimization Policy” section on page 13-80).

Modifying the Acceleration TCP Settings

In most cases, you do not need to modify the acceleration TCP settings because your WAAS system automatically configures the acceleration TCP settings based on the hardware platform of the WAE device. WAAS automatically configures the settings only under the following circumstances:

- When you first install the WAE device in your network.
- When you enter the **restore factory-default** command on the device. For more information about this command, see the *Cisco Wide Area Application Services Command Reference*.

The WAAS system automatically adjusts the maximum segment size (MSS) to match the advertised MSS of the client or server for each connection. The WAAS system uses the lower of 1432 or the MSS value advertised by the client or server.

If your network has high BDP links, you may need to adjust the default buffer settings automatically configured for your WAE device. For more information, see the “Calculating the TCP Buffers for High BDP Links” section on page 13-94.

If you want to adjust the default TCP adaptive buffering settings for your WAE device, see the “Modifying the TCP Adaptive Buffering Settings” section on page 13-94.

To modify the acceleration TCP settings, follow these steps:

Step 1

From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2

Choose **Configure > Acceleration > TCP Settings**. The Acceleration TCP Settings window appears.

Step 3

Keep the **Send TCP Keepalive** check box checked.
Checking the Send TCP Keepalive check box allows this WAE device or group to disconnect the TCP connection to its peer device if no response is received from the TCP keepalive exchange. In this case, the two peer WAE devices will exchange TCP keepalives on a TCP connection and if no response is received for the keepalives for a specific period, the TCP connection will be torn down. When the keepalive option is enabled, any short network disruption in the WAN will cause the TCP connection between peer WAE devices to be disconnected.

If the Send TCP Keepalive check box is not checked, TCP keepalives will not be sent and connections will be maintained unless they are explicitly disconnected. By default, this setting is enabled.

Step 4
Modify the TCP acceleration settings as needed. See Table 13-6 for a description of these settings.

For information on how to calculate these settings for high BDP links, see the “Calculating the TCP Buffers for High BDP Links” section on page 13-94.

Table 13-6 TCP Settings

<table>
<thead>
<tr>
<th>TCP Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimized Side</td>
<td></td>
</tr>
<tr>
<td>Maximum Segment Size</td>
<td>Maximum packet size allowed between this WAAS device and other WAAAS devices participating in the optimized connection. The default is 1432 bytes.</td>
</tr>
<tr>
<td>Send Buffer Size</td>
<td>Allowed TCP sending buffer size (in kilobytes) for TCP packets sent from this WAAS device to other WAAS devices participating in the optimized connection. The default is 32 KB.</td>
</tr>
<tr>
<td>Receive Buffer Size</td>
<td>Allowed TCP receiving buffer size (in kilobytes) for incoming TCP packets from other WAAS devices participating in the optimized connection. The default is 32 KB.</td>
</tr>
<tr>
<td>Original Side</td>
<td></td>
</tr>
<tr>
<td>Maximum Segment Size</td>
<td>Maximum packet size allowed between the origin client or server and this WAAS device. The default is 1432 bytes.</td>
</tr>
<tr>
<td>Send Buffer Size</td>
<td>Allowed TCP sending buffer size (in kilobytes) for TCP packets sent from this WAAS device to the origin client or server. The default is 32 KB.</td>
</tr>
<tr>
<td>Receive Buffer Size</td>
<td>Allowed TCP receiving buffer size (in kilobytes) for incoming TCP packets from the origin client or server. The default is 32 KB.</td>
</tr>
</tbody>
</table>

Step 5
If you are deploying the WAE across a high Bandwidth-Delay-Product (BDP) link, you can set recommended values for the send and receive buffer sizes by clicking the **Set High BDP recommended values** button. For more information about calculating TCP buffers for high BDP links, see the “Calculating the TCP Buffers for High BDP Links” section on page 13-94.

Step 6
Click **Submit**.

Note
If the original and optimized maximum segment sizes are set to their default values and you configure a jumbo MTU setting, the segment sizes are changed to the jumbo MTU setting minus 68 bytes. If you have configured custom maximum segment sizes, their values are not changed if you configure a jumbo MTU. For more information on jumbo MTU, see the “Configuring a Jumbo MTU” section on page 6-22.
To configure TCP keepalives from the CLI, use the `tfo tcp keepalive` global configuration command.

To configure TCP acceleration settings from the CLI, use the following global configuration commands: `tfo tcp optimized-mss`, `tfo tcp optimized-receive-buffer`, `tfo tcp optimized-send-buffer`, `tfo tcp original-mss`, `tfo tcp original-receive-buffer`, and `tfo tcp original-send-buffer`.

To show the TCP buffer sizes, use the `show tfo tcp` EXEC command.

Calculating the TCP Buffers for High BDP Links

WAAS software can be deployed in different network environments, involving multiple link characteristics such as bandwidth, latency, and packet loss. All WAAS devices are configured to accommodate networks with maximum Bandwidth-Delay-Product (BDP) of up to the values listed below:

- WAE-512—Default BDP is 32 KB
- WAE-612—Default BDP is 512 KB
- WAE-674 —Default BDP is 2048 KB
- WAE-7341 —Default BDP is 2048 KB
- WAE-7371 —Default BDP is 2048 KB
- All WAVE platforms—Default BDP is 2048 KB

If your network provides higher bandwidth or higher latencies are involved, use the following formula to calculate the actual link BDP:

\[
\text{BDP [Kbytes]} = (\text{link BW [Kbytes/sec]} \times \text{Round-trip latency [Sec]})
\]

When multiple links 1..N are the links for which the WAE is optimizing traffic, the maximum BDP should be calculated as follows:

\[
\text{MaxBDP} = \text{Max (BDP(link 1),...,BDP(link N))}
\]

If the calculated MaxBDP is greater than the DefaultBDP for your WAE model, the Acceleration TCP settings should be modified to accommodate that calculated BDP.

Once you calculate the size of the Max BDP, enter a value that is equal to or greater than twice the Max BDP in the Send Buffer Size and Receive Buffer Size for the optimized connection on the Acceleration TCP Settings window.

Note

These manually configured buffer sizes apply only if TCP adaptive buffering is disabled. TCP adaptive buffering is normally enabled, and allows the WAAS system to dynamically vary the buffer sizes. For more information on TCP adaptive buffering, see the “Modifying the TCP Adaptive Buffering Settings” section on page 13-94.

Modifying the TCP Adaptive Buffering Settings

In most cases, you do not need to modify the acceleration TCP adaptive buffering settings because your WAAS system automatically configures the TCP adaptive buffering settings based on the network bandwidth and delay experienced by each connection. Adaptive buffering allows the WAAS software to dynamically vary the size of the send and receive buffers to increase performance and more efficiently use the available network bandwidth.
To modify the acceleration TCP adaptive buffering settings, follow these steps:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Choose Configure > Acceleration > TCP Adaptive Buffering Settings. The TCP Adaptive Buffering Settings window appears.</td>
</tr>
<tr>
<td>Step 3</td>
<td>To enable TCP adaptive buffering, check the Enable check box. The default is enabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td>In the Send Buffer Size and Receive Buffer Size fields, enter the maximum size in kilobytes of the send and receive buffers.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Click Submit.</td>
</tr>
</tbody>
</table>

To configure the TCP adaptive buffer settings from the CLI, use the `tfo tcp adaptive-buffer-sizing` global configuration command:

```
WAE(config)# tfo tcp adaptive-buffer-sizing receive-buffer-max 8192
```

To disable TCP adaptive buffering from the CLI, use the `no tfo tcp adaptive-buffer-sizing enable` global configuration command.

To show the default and configured adaptive buffer sizes, use the `show tfo tcp` EXEC command.