Preface 21

c h a p t e r 1

Using the WAAS Command-Line Interface 1-1

About the WAAS 1-1
 Command Line Interface 1-2
 Graphical User Interface 1-2
Using Command Modes 1-2
 Organization of the WAAS CLI 1-3
Using EXEC Mode 1-5
 EXEC Mode Levels 1-5
 EXEC Mode Command-Line Processing 1-5
Using Global Configuration Mode 1-6
 Configuration Submodes 1-6
 Exiting Configuration Mode 1-7
Using Interface Configuration Mode 1-7
Using ACL Configuration Modes 1-7
Using Preposition Configuration Mode 1-8
Using Virtual Blade Configuration Mode 1-8
Using PKI Certificate Authority Configuration Mode 1-8
Using PKI Global Settings Configuration Mode 1-8
Using SSL Accelerated Service Configuration Mode 1-9
Using SSL Cipher List Configuration Mode 1-9
Using SSL Global Service Configuration Mode 1-9
Using SSL Host Peering Service Configuration Mode 1-9
Using SSL Management Service Configuration Mode 1-10
Using WCCP Configuration Mode 1-10
Using AppNav Controller Group Configuration Mode 1-10
Using Service Node Group Configuration Mode 1-10
Using Service Node Configuration Mode 1-11
Using Service Context Configuration Mode 1-11
Using Class Map Configuration Mode 1-11
Using Policy Map Configuration Mode 1-11
Using Policy Class Map Configuration Mode 1-11
Command Modes Summary 1-12
Device Mode 1-14
clear windows-domain-log 3-28
clock 3-29
cms 3-30
cms secure-store 3-33
configure 3-36
copy cdrom 3-37
copy cdrom wow-recovery 3-38
copy compactflash 3-39
copy disk 3-40
copy ftp 3-41
copy http 3-44
copy monitoring-log 3-46
copy running-config 3-47
copy scp 3-49
copy startup-config 3-51
copy sysreport 3-52
copy system-status 3-54
copy tech-support 3-55
copy tftp 3-57
copy usb 3-58
copy virtual-blade 3-59
cpfile 3-60
crypto delete 3-61
crypto export 3-62
crypto generate 3-64
crypto import 3-66
crypto pki 3-68
debug aaa accounting 3-69
debug aaa authorization 3-71
debug accelerator 3-73
debug all 3-79
debug appnav-controller connection 3-81
debug appnav-controller drop capture 3-83
debug authentication 3-85
debug auto-discovery 3-87
debug buf 3-89
debug cdp 3-91
debug cli 3-93
debug cmm 3-95
debug cms 3-97
d debug connection 3-99
debug controllers 3-101
d debug dataserver 3-103
debug dhcp 3-105
debug directed-mode 3-107
d debug dre 3-109
d debug egress-method 3-111
debug encryption-service 3-113
d debug fda 3-115
d debug fdm 3-117
d debug filtering 3-119
d debug flow 3-121
d debug generic-gre 3-123
d debug hw-raid 3-125
d debug imd 3-127
d debug inline 3-129
d debug key-manager 3-131
d debug logging 3-133
d debug monapi 3-135
d debug nplogd 3-137
d debug ntp 3-139
d debug punt 3-141
d debug rbcp 3-143
d debug rmd 3-145
d debug rpc 3-147
d debug service-insertion 3-149
d debug service-policy 3-151
d debug snmp 3-153
d debug standby 3-155
d debug statistics 3-157
debug synq 3-159
debug tfo 3-161
debug translog 3-163
debug wafs 3-165
debug wccp 3-167
delfile 3-169
deltree 3-170
dir 3-171
disable 3-173
disk 3-174
dnslookup 3-177
enable 3-178
exit 3-179
find-pattern 3-180
help 3-182
install 3-183
less 3-185
license add 3-186
lls 3-187
ls 3-188
lsusb 3-190
mkdir 3-191
mkfile 3-192
monitor appnav-controller traffic 3-193
ntpdate 3-194
packet-capture 3-195
ping 3-197
pwd 3-198
reload 3-199
rename 3-200
restore 3-201
rmdir 3-205
scp 3-206
script 3-208
setup 3-209
show aaa accounting 3-210
show aaa authorization 3-212
show accelerator 3-213
show alarms 3-217
show appnav-controller flow-distribution 3-220
show arp 3-222
show authentication 3-223
show auto-discovery 3-225
show auto-register 3-226
show banner 3-227
show bmc 3-228
show bridge 3-230
show cache http-metadatacache 3-232
show cdp 3-234
show cifs 3-240
show class-map 3-242
show clock 3-244
show cms 3-246
show cms secure-store 3-249
show crypto 3-251
show debugging 3-253
show device-id 3-254
show device-mode 3-255
show directed-mode 3-257
show disks 3-258
show dre 3-265
show filtering list 3-266
show flash 3-268
show flow record 3-269
show hardware 3-270
show hosts 3-275
show inetd 3-276
show interception-method 3-277
show interface 3-278
show inventory 3-282
show ip access-list 3-283
show ip routes 3-285
show kdump 3-286
show kerberos 3-287
show key-manager 3-288
show license 3-289
show logging 3-290
show memory 3-291
show monitor 3-292
show ntp 3-293
show peer optimization 3-295
show policy-map 3-296
show policy-sub-class 3-297
show processes 3-299
show radius-server 3-301
show reload 3-303
show running-config 3-304
show service-insertion 3-306
show service-policy 3-312
show services 3-315
show smb-conf 3-316
show snmp 3-318
show ssh 3-324
show startup-config 3-325
show statistics accelerator 3-327
show statistics aom 3-376
show statistics application 3-380
show statistics appnav-controller 3-383
show statistics authentication 3-385
show statistics auto-discovery 3-386
show statistics cifs 3-389
show statistics class-default 3-391
show statistics class-map 3-392
show statistics connection 3-394
show statistics connection auto-discovery 3-398
show statistics connection closed 3-400
show statistics connection conn-id 3-403
show statistics connection egress-methods 3-406
show statistics connection optimized 3-410
show statistics connection pass-through 3-413
show statistics crypto ssl ciphers 3-415
show statistics datamover 3-416
show statistics directed-mode 3-418
show statistics dre 3-419
show statistics filtering 3-422
show statistics flow 3-425
show statistics generic-gre 3-428
show statistics icmp 3-429
show statistics ip 3-431
show statistics monitor appnav-controller traffic 3-434
show statistics netstat 3-436
show statistics pass-through 3-437
show statistics peer 3-439
show statistics policy-sub-class 3-442
show statistics punt 3-444
show statistics radius 3-445
show statistics service-insertion 3-447
show statistics services 3-448
show statistics sessions 3-449
show statistics snmp 3-450
show statistics synq 3-452
show statistics tacacs 3-453
show statistics tcp 3-455
show statistics tfo 3-459
show statistics udp 3-463
show statistics vn-service vpath 3-464
show statistics wccp 3-466
show statistics windows-domain 3-471
show statistics windows-print requests 3-473
show synq list 3-475
show sysfs volumes 3-476
show tacacs 3-477
show tcp 3-479
show tech-support 3-481
show telnet 3-484
show tfo tcp 3-485
show transaction-logging 3-487
show user 3-489
show users administrative 3-490
show version 3-492
show virtual-blade 3-493
show wccp 3-496
show windows-domain 3-503
show windows-domain encrypted services 3-505
shutdown 3-506
snmp trigger 3-509
ssh 3-513
tcpdump 3-514
telnet 3-516
terminal 3-517
test 3-518
tethereal 3-521
top 3-524
traceroute 3-526
transaction-log 3-528
type 3-529
type-tail 3-530
virtual-blade 3-532
vm 3-534
waas-tcptrace 3-536
whoami 3-538
windows-domain 3-539
write 3-542

Global Configuration Mode Commands 3-543
(config) aaa accounting 3-544
(config) aaa authorization commands 3-547
(config) accelerator cifs 3-548
(config) accelerator cifs preposition 3-550
(config) accelerator epm 3-552
(config) accelerator http 3-553
(config) accelerator ica 3-556
(config) accelerator mapi 3-558
(config) accelerator nfs 3-560
(config) accelerator smb 3-561
(config) accelerator ssl 3-564
(config) accelerator video 3-566
(config) accelerator windows-print 3-568
(config) alarm overload-detect 3-569
(config) asset 3-571
(config) authentication configuration 3-572
(config) authentication enable 3-577
(config) authentication content-request 3-578
(config) authentication fail-over 3-582
(config) authentication login 3-584
(config) authentication strict-password-policy 3-589
(config) auto-discovery 3-591
(config) auto-register 3-592
(config) banner 3-594
(config) bridge 3-596
(config) cdp 3-599
(config) central-manager 3-600
(config) class-map 3-602
(config) clock 3-604
(config) cms 3-608
(config) crypto pki 3-611
(config) crypto ssl 3-613
(config) device mode 3-615
(config) directed-mode 3-617
(config) disk disk-name 3-618
(config) disk encrypt 3-620
(config) disk error-handling 3-621
(config) disk logical shutdown 3-622
(config) disk object-cache extend 3-623
(config) dre 3-624
(config) end 3-625
(config) exec-timeout 3-626
(config) exit 3-627
(config) flow monitor 3-628
(config) help 3-629
(config) hostname 3-631
(config) inetd 3-633
(config) inline 3-634
(config) inline vlan-id-connection-check 3-635
(config) interception 3-636
(config) interception-method 3-638
(config) interface bvi 3-640
(config) interface GigabitEthernet 3-642
(config) interface InlineGroup 3-647
(config) interface PortChannel 3-650
(config) interface standby 3-652
(config) interface TenGigabitEthernet 3-654
(config) interface virtual 3-658
(config) ip 3-661
(config) ip access-list 3-664
(config) ip icmp rate-limit unreachable 3-667
(config) ip unreachables df 3-669
(config) kerberos 3-670
(config) kernel kdb 3-672
(config) kernel kdump enable 3-674
(config) line 3-675
(config) logging console 3-676
(config) logging disk 3-678
(config) logging facility 3-680
(config) logging host 3-682
(config) ntp 3-684
(config) peer 3-686
(config) policy-map 3-687
(config) port-channel 3-689
(config) primary-interface 3-690
(config) radius-server 3-692
(config) service-insertion 3-694
(config) service-policy 3-697
(config) smb-conf 3-699
(config) snmp-server access-list 3-702
(config) snmp-server community 3-703
(config) snmp-server contact 3-705
(config) snmp-server enable traps 3-706
(config) snmp-server group 3-709
(config) snmp-server host 3-711
(config) snmp-server location 3-713
(config) snmp-server mib 3-714
(config) snmp-server notify inform 3-716
(config) snmp-server trap-source 3-717
(config) snmp-server user 3-719
(config) snmp-server view 3-721
(config) sshd 3-722
(config) ssh-key-generate 3-724
(config) stats-collector logging 3-725
(config) system jumbomtu 3-726
(config) tacacs 3-727
(config) tcp 3-730
(config) telnet enable 3-732
(config) tfo exception 3-733
(config) tfo optimize 3-734
(config) tfo tcp adaptive-buffer-sizing 3-735
(config) tfo tcp keepalive 3-736
(config) tfo tcp optimized-mss 3-737
(config) tfo tcp optimized-receive-buffer 3-738
(config) tfo tcp optimized-send-buffer 3-739
(config) tfo tcp original-mss 3-740
(config) tfo tcp original-receive-buffer 3-741
(config) tfo tcp original-send-buffer 3-742
(config) threshold-monitor 3-743
(config) transaction-logs 3-746
(config) username 3-749
(config) virtual-blade 3-751
(config) vn-service vpath 3-753
(config) wccp access-list 3-754
(config) wccp flow-redirect 3-756
(config) wccp router-list 3-758
(config) wccp shutdown 3-760
(config) wccp tcp-promiscuous service-pair 3-762
(config) windows-domain 3-764

Interface Configuration Mode Commands 3-767
(config-if) autosense 3-769
(config-if) bandwidth 3-770
(config-if) bridge-group 3-772
(config-if) cdp 3-774
(config-if) channel-group 3-775
(config-if) description 3-776
(config-if) encapsulation dot1Q 3-777
(config-if) exit 3-778
(config-if) failover timeout 3-779
(config-if) full-duplex 3-781
(config-if) half-duplex 3-783
(config-if) inline 3-785
(config-if) ip 3-787
(config-if) ip access-group 3-789
(config-if) load-interval 3-791
(config-if) mtu 3-792
(config-if) shutdown 3-793
(config-if) standby 3-794

Standard ACL Configuration Mode Commands 3-796
(config-std-nacl) delete 3-799
(config-std-nacl) deny 3-800
Extended ACL Configuration Mode Commands 3-807

Extended ACL Configuration Mode Commands 3-807

Preposition Configuration Mode Commands 3-825

Virtual Blade Configuration Mode Commands 3-843

Cisco Wide Area Application Services Command Reference

OL-30046-01
SSL Management Service Configuration Mode Commands 3-899
 (config-ssl-mgmt) cipher-list 3-901
 (config-ssl-mgmt) peer-cert-verify 3-902
 (config-ssl-mgmt) version 3-903

WCCP Configuration Mode Commands 3-905
 (config-wccp-service) assignment-method 3-907
 (config-wccp-service) egress-method 3-909
 (config-wccp-service) enable 3-911
 (config-wccp-service) exit 3-912
 (config-wccp-service) failure-detection 3-913
 (config-wccp-service) password 3-915
 (config-wccp-service) redirect-method 3-916
 (config-wccp-service) router-list-num 3-918
 (config-wccp-service) weight 3-920

AppNav Controller Group Configuration Mode Commands 3-923
 (config-scg) appnav-controller 3-925
 (config-scg) description 3-926

Service Node Group Configuration Mode Commands 3-927
 (config-sng) description 3-929
 (config-sng) service-node 3-930

Service Node Configuration Mode Commands 3-931
 (config-sn) authentication 3-933
 (config-sn) description 3-934
 (config-sn) enable 3-935
 (config-sn) node-discovery enable 3-936
 (config-sn) shutdown 3-938

Service Context Configuration Mode Commands 3-939
 (config-scxt) appnav-controller-group 3-941
 (config-scxt) authentication 3-942
 (config-scxt) description 3-943
 (config-scxt) enable 3-944
 (config-scxt) service-node-group 3-946
 (config-scxt) service-policy 3-947
Class Map Configuration Mode Commands 3-949
 (config-cmap) description 3-951
 (config-cmap) match peer 3-952
 (config-cmap) match protocol 3-953
 (config-cmap) match tcp 3-955

Policy Map Configuration Mode Commands 3-957
 (config-pmap) class 3-959
 (config-pmap) description 3-960

Policy Map Class Configuration Mode Commands 3-961
 (config-pmap-c) distribute 3-963
 (config-pmap-c) monitor-load 3-964
 (config-pmap-c) optimize 3-966
 (config-pmap-c) pass-through 3-968
 (config-pmap-c) service-policy 3-970
 (config-pmap-c) set ip dscp 3-971

Appendix A

Acronyms and Abbreviations A-1
Preface

This preface describes who should read the Cisco Wide Area Application Services Command Reference, how it is organized, and its document conventions. It contains the following sections:

• Audience, page 21
• Document Organization, page 21
• Document Conventions, page 22
• Related Documentation, page 23
• Obtaining Documentation and Submitting a Service Request, page 24

Audience

This command reference is intended for administrators who want to use the command-line interface (CLI) of the Wide Area Application Services (WAAS) software to configure, manage, and monitor WAAS devices on a per-device basis. This guide assumes that the WAAS device is running the WAAS software. The guide provides descriptions and syntax of the WAAS CLI command.

Document Organization

This command reference includes the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Using the WAAS Command-Line Interface”</td>
<td>Describes how to use the command-line interface.</td>
</tr>
<tr>
<td>Chapter 2, “Cisco WAAS Software Command Summary”</td>
<td>Lists WAAS software commands, providing a brief description of each.</td>
</tr>
</tbody>
</table>
Chapter 3, “CLI Commands” Provides detailed information for the following types of CLI commands for the WAAS software:

- Commands you can enter after you log in to the WAAS device (EXEC mode).
- Configuration mode commands that you can enter after you log in to the WAAS device, and then access configuration mode and its subset of modes.

The description of each command includes the syntax of the command and any related commands, when appropriate.

Appendix A, “Acronyms and Abbreviations” Defines the acronyms used in this publication.

CLI COMMAND SUMMARY BY MODE Lists each command by command mode.

Document Conventions

This command reference uses these basic conventions to represent text and table information:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Commands, keywords, and button names are in boldface.</td>
</tr>
<tr>
<td>italic font</td>
<td>Variables for which you supply values are in italics. Directory names and filenames are also in italics.</td>
</tr>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the system displays are printed in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Variables you enter are printed in italic screen font.</td>
</tr>
<tr>
<td>plain font</td>
<td>Enter one of a range of options as listed in the syntax description.</td>
</tr>
<tr>
<td>^D or Ctrl-D</td>
<td>Hold the Ctrl key while you press the D key.</td>
</tr>
<tr>
<td>string</td>
<td>Defined as a nonquoted set of characters.</td>
</tr>
<tr>
<td>For example, when setting a community string for SNMP to “public,” do not use quotation marks around the string, or the string will include the quotation marks.</td>
<td></td>
</tr>
<tr>
<td>Vertical bars (</td>
<td>)</td>
</tr>
<tr>
<td>{ }</td>
<td>Elements in braces are required elements.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x y z}</td>
<td>Required keywords are grouped in braces and separated by vertical bars.</td>
</tr>
<tr>
<td>[x y z]</td>
<td>Optional keywords are grouped in brackets and separated by vertical bars.</td>
</tr>
<tr>
<td>[{ }]</td>
<td>Braces within square brackets indicate a required choice within an optional element.</td>
</tr>
</tbody>
</table>
Related Documentation

For additional information on the Cisco WAAS software and hardware, see the following documentation:

- *Release Note for Cisco Wide Area Application Services*
- *Cisco Wide Area Application Services Upgrade Guide*
- *Cisco Wide Area Application Services Command Reference* (this manual)
- *Cisco Wide Area Application Services Quick Configuration Guide*
- *Cisco Wide Area Application Services Configuration Guide*
- *Cisco Wide Area Application Services API Reference*
- *Cisco WAAS Troubleshooting Guide for Release 4.1.3 and Later*
- *Cisco Wide Area Application Services Monitoring Guide*
- *Cisco Wide Area Application Services vWAAS Installation and Configuration Guide*
- *Cisco WAAS Installation and Configuration Guide for Windows on a Virtual Blade*
- *Cisco WAAS on Service Modules for Cisco Access Routers*
- *Cisco SRE Service Module Configuration and Installation Guide*
- *Configuring Cisco WAAS Network Modules for Cisco Access Routers*
- *WAAS Enhanced Network Modules*
- *Regulatory Compliance and Safety Information for the Cisco Wide Area Virtualization Engines*
- *Cisco Wide Area Virtualization Engine 294 Hardware Installation Guide*
- *Cisco Wide Area Virtualization Engine 594 and 694 Hardware Installation Guide*
- *Cisco Wide Area Virtualization Engine 7541, 7571, and 8541 Hardware Installation Guide*
- *Cisco Wide Area Virtualization Engine 274 and 474 Hardware Installation Guide*
- *Cisco Wide Area Virtualization Engine 574 Hardware Installation Guide*
- *Regulatory Compliance and Safety Information for the Cisco Content Networking Product Series*
- *Cisco Wide Area Application Engine 7341, 7371, and 674 Hardware Installation Guide*
- *Installing the Cisco WAE Inline Network Adapter*
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Using the WAAS Command-Line Interface

This chapter describes how to use the WAAS CLI, including an explanation of CLI command modes, navigation and editing features, and help features.

This chapter includes the following sections:

- About the WAAS, page 1-1
- Using Command Modes, page 1-2
- Using Command-Line Processing, page 1-15
- Checking Command Syntax, page 1-16
- Using the no Form of Commands, page 1-17
- Using System Help, page 1-17
- Saving Configuration Changes, page 1-18
- WAAS Directories on a WAE, page 1-18
- Managing WAAS Files Per Device, page 1-21

About the WAAS

The Cisco WAAS software command-line interface (CLI) is used in combination with the WAAS Manager GUI to configure, monitor, and maintain a WAAS device. The CLI on a WAAS device can be accessed directly through the console port of an attached PC or remotely through a Telnet session on a PC running terminal emulation software.

Note

The WAAS software runs on a variety of WAE and WAVE appliances, WAE-NME and SM-SRE network modules, and as a virtual WAAS appliance (vWAAS).

Throughout this book, the term WAAS device refers collectively to a WAAS Central Manager and a WAE. The term WAE refers collectively to the supported platforms that are running the WAAS software unless otherwise noted.
Command Line Interface

The WAAS CLI allows you to configure, manage, and monitor WAAS devices on a per-device basis through a console connection or a terminal emulation program. The WAAS CLI also allows you to configure certain features that are only supported through the WAAS CLI (for example, configuring LDAP signing on a WAE).

The instructions and examples in this guide describe only those features that can be configured on an individual WAAS device using the WAAS CLI.

Graphical User Interface

In addition to the WAAS CLI, there are two WAAS graphical user interfaces (GUIs) that you access from your browser:

- The WAAS Central Manager GUI allows you to centrally configure, manage, and monitor a WAE or group of WAEs that are registered with the WAAS Central Manager. You also use this GUI to configure, manage, and monitor the WAAS Central Manager, which is the dedicated appliance on which the WAAS Central Manager GUI is running.

 Note When you use the WAAS Central Manager GUI, you have the added capability of centrally configuring settings and policies for groups of WAEs (device groups). When you use the WAAS CLI, you can only configure settings and policies on a per-device basis.

- The WAE Device Manager GUI allows you to remotely configure, manage, and monitor an individual WAE through your browser. In many cases, the same device settings can be found in both the WAE Device Manager GUI and the WAAS Central Manager GUI. For this reason, we strongly recommend that you always configure a WAE from the WAAS Central Manager GUI whenever possible.

The WAAS GUIs are the primary resources for configuration and monitoring WAEs. We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI, whenever possible. For more information about how to use the WAAS GUIs to configure, manage, and monitor your WAAS devices, see the Cisco Wide Area Application Services Configuration Guide.

We recommend that you be familiar with the basic concepts and terminology used in internetworking, in your network topology, and in the protocols that the devices in your network can use. We also recommend that you have a working knowledge of the operating systems on which you are running your WAAS network, such as Microsoft Windows, Linux, or Solaris. This guide is not a tutorial.

Using Command Modes

The CLI for WAAS software is similar to the CLI for Cisco IOS software. Like Cisco IOS software, the WAAS CLI is organized into different command and configuration modes. Each mode provides access to a specific set of commands. This section describes the command modes provided by the WAAS software CLI and includes the following topics:

- Organization of the WAAS CLI, page 1-3
- Using EXEC Mode, page 1-5
- Using Global Configuration Mode, page 1-6
Organization of the WAAS CLI

The WAAS software CLI is organized into multiple command modes. Each command mode has its own set of commands that allow you to configure, maintain, and monitor a WAAS Wide Area Application Engine (WAE). The commands available to you at any given time depend on the mode you are in. You can enter a question mark (?) at the system prompt to obtain a list of commands available for each command mode.

The WAAS command modes include the following:

- **EXEC mode**—Sets, views, and tests system operations. This mode is divided into two access levels: user and privileged. To use the privileged access level, enter the `enable` command at the user access level prompt, and then enter the privileged EXEC password when you see the password prompt.

- **Global configuration mode**—Sets, views, and tests the configuration of WAAS software features for the entire device. To use this mode, enter the `configure` command from privileged EXEC mode.

- **Interface configuration mode**—Sets, views, and tests the configuration of a specific interface. To use this mode, enter the `interface` command from global configuration mode.

- **Standard ACL configuration mode**—Creates and modifies standard access lists on a WAAS device for controlling access to interfaces or applications. To use this mode, enter the `ip access-list standard` command from global configuration mode.
Chapter 1 Using the WAAS Command-Line Interface

Using Command Modes

- Extended ACL configuration mode—Creates and modifies extended access lists on a WAAS device for controlling access to interfaces or applications. To use this mode, enter the `ip access-list extended` command.
- Preposition configuration mode—Creates and modifies preposition directives on a WAAS device for prepositioning files for CIFS (WAFS). To use this mode, enter the `accelerator cifs preposition` command.
- Virtual blade configuration mode—Configures virtual blades that reside in a WAE or WAVE device for additional services, including operating systems and applications, that work with the WAAS device. To use this mode, enter the `virtual-blade` command.
- PKI certificate authority configuration mode—Configures public key infrastructure (PKI) encryption certificate authorities on a WAAS device. To use this mode, enter the `crypto pki ca` command.
- PKI global settings configuration mode—Configures OCSP and revocation checking on a WAAS device. To use this mode, enter the `crypto pki global-settings` command.
- SSL accelerated service configuration mode—Enables and configures secure socket layer (SSL) acceleration on your WAAS system. To use this mode, enter the `crypto ssl service accelerated-service` command.
- SSL cipher list configuration mode—Configures SSL encryption cipher lists on a WAAS device. To use this mode, enter the `crypto ssl cipher-list` command.
- SSL global service configuration mode—Enables and configures basic SSL acceleration settings on your WAAS system. To use this mode, enter the `crypto ssl services global-settings` command.
- SSL host peering service configuration mode—Configures SSL encryption peering services on a WAAS device. To use this mode, enter the `crypto ssl services host-service peering` command.
- SSL management service configuration mode—Configures SSL encryption management service parameters on a WAAS device. To use this mode, enter the `crypto ssl management-service` command.
- WCCP configuration mode—Configures WCCP service parameters on a WAAS device. To use this mode, enter the `wccp tcp-promiscuous` command.
- AppNav Controller Group configuration mode—Configures an AppNav Controller Group that is part of an AppNav Cluster. To use this mode, enter the `service-insertion appnav-controller-group` command.
- Service Node Group configuration mode—Configures a WAAS Node Group that is part of an AppNav Cluster. To use this mode, enter the `service-insertion service-node-group` command.
- Service Node configuration mode—Configures a WAAS Node that is part of an AppNav Cluster. To use this mode, enter the `service-insertion service-node` command.
- Service Context configuration mode—Configures a service context for an AppNav Cluster. To use this mode, enter the `service-insertion service-context` command.
- Class Map configuration mode—Configures an AppNav or optimization class map. To use this mode, enter the `class-map` command.
- Policy Map configuration mode—Configures an AppNav or optimization policy map. To use this mode, enter the `policy-map` command.
- Policy Class Map configuration mode—Configures a service policy in an AppNav or optimization policy map. To use this mode, enter the `class` command from Policy Map configuration mode.

Modes are accessed in this order: user EXEC mode, privileged EXEC mode, then global configuration mode. From global configuration mode, you can access the configuration submodes.
Using EXEC Mode

Use the EXEC mode to set, view, and test system operations. The user EXEC commands allow you to connect to remote devices, change terminal line settings on a temporary basis, perform basic tests, and list system information.

Most EXEC mode commands are one-time commands, such as `show` or `more` commands, which show the current configuration status, and `clear` commands, which clear counters or interfaces. EXEC mode commands are not saved across reboots of the WAE.

EXEC Mode Levels

The EXEC mode is divided into two access levels: user and privileged. The user EXEC mode is used by local and general system administrators, while the privileged EXEC mode is used by the root administrator. Use the `enable` and `disable` commands to switch between the two levels.

- **User level**—Access to the user-level EXEC command line requires a valid password. The user-level EXEC commands are a subset of the privileged-level EXEC commands. The user-level EXEC prompt is the hostname followed by a right angle bracket (`>`). You can change the hostname using the `hostname` global configuration command.

- **Privileged level**—The prompt for the privileged-level EXEC command line is the pound sign (`#`). To execute an EXEC command, enter the command at the EXEC system prompt and press the Return key. The following example shows how to access the privileged-level EXEC command line from the user level:

```
WAE> enable
WAE#
```

EXEC Mode Command-Line Processing

Common functions you can use when entering commands in EXEC mode include the following:

- **Edit**—To edit commands, use the `Delete` or `Backspace` keys when you enter commands at the EXEC prompt.

- **Abbreviate**—As a shortcut, you can abbreviate commands to the fewest letters that make them unique. For example, the letters `sho` can be entered for the `show` command.

- **Display multiple pages**—Certain EXEC commands display multiple screens with the following prompt at the bottom of the screen:

  ```
  --More--
  ```

 Press the `Spacebar` to continue the output, or press `Return` to display the next line. Press any other key to return to the prompt. Also, at the `--More--` prompt, you can enter a `?` to display the help message.

- **Exit**—To leave EXEC mode, use the `exit` command at the system prompt:

  ```
  WAE# exit
  WAE>
  ```

- **Comment**—Any command line that begins with an exclamation point (`!`) is considered a comment and is ignored.
Using Global Configuration Mode

Use global configuration mode to set, view, and test the configuration of WAAS software features for the entire device. To enter this mode, enter the `configure` command from privileged EXEC mode. The prompt for global configuration mode consists of the hostname of the WAE followed by (config) and the pound sign (#). You must be in global configuration mode to enter global configuration commands.

WAE# configure
WAE(config)#

Commands entered in global configuration mode update the running configuration file as soon as they are entered. These changes are not saved into the startup configuration file until you enter the `copy running-config startup-config` EXEC mode command. See the “Saving Configuration Changes” section on page 1-18. Once the configuration is saved, it is maintained across WAE reboots.

Configuration changes that you make in global configuration mode on a WAE are propagated to the Centralized Management System (CMS) database on the WAAS Central Manager. CLI changes are sent to the Central Manager after you exit out of configuration mode, or if all configuration mode sessions have been inactive for 10 minutes.

You must be in global configuration mode to enter specific subordinate configuration modes.

Configuration Submodes

Configuration submodes are used for the configuration of specific features within the scope of a given configuration mode. From global configuration mode, you can enter the following configuration submodes:

- Interface configuration mode
- Standard ACL configuration mode
- Extended ACL configuration mode
- Preposition configuration mode
- Virtual blade configuration mode
- PKI certificate authority configuration mode
- PKI global settings configuration mode
- SSL accelerated service configuration mode
- SSL cipher list configuration mode
- SSL global service configuration mode
- SSL host peering service configuration mode
- SSL management service configuration mode
- WCCP configuration mode
- AppNav Controller Group configuration mode
- Service Node Group configuration mode
- Service Node configuration mode
- Service Context configuration mode
- Class Map configuration mode
- Policy Map configuration mode
Chapter 1 Using the WAAS Command-Line Interface

Using Command Modes

- Policy Class Map configuration mode

Exiting Configuration Mode

Common functions used in configuration modes include the following:

- Exit current mode—To exit global configuration mode or any subordinate configuration mode, use the `exit` command or Ctrl-Z.
- Exit to privileged EXEC mode—To exit to privileged EXEC mode from global configuration mode or any subordinate configuration mode, use the `end` global configuration command:

```
WAE(config)# end
WAE#
```

Using Interface Configuration Mode

Use interface configuration mode to set, view, and test the configuration of WAAS software features on a specific interface. To enter this mode, enter the `interface` command from the global configuration mode. The following example shows how to enter interface configuration mode:

```
WAE# configure
WAE(config)# interface ?
GigabitEthernet  Select a gigabit ethernet interface to configure
InlineGroup      Select an inline group interface to configure
PortChannel      Ethernet Channel of interfaces
Standby          Standby groups
WAE(config)# interface gigabitethernet ?
<1-2>/ GigabitEthernet slot/port
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)#
```

To exit interface configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-if)# exit
WAE(config)#
```

Using ACL Configuration Modes

Use the ACL configuration modes to create and modify standard and extended access list configuration on a WAAS device. From global configuration mode, you can enter the standard and extended ACL configuration modes.

- Standard—To work with a standard access list, use the `ip access-list standard` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.
- Extended—To work with an extended access list, use the `ip access-list extended` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.

To exit an ACL configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-std-nacl)# exit
WAE(config)#
```
Using Command Modes

Chapter 1 Using the WAAS Command-Line Interface

Using Preposition Configuration Mode

Use preposition configuration mode to create and modify preposition directives on a WAAS device for prepositioning files for CIFS (WAFS). To enter this mode, use the `accelerator cifs preposition` command in the global configuration mode.

To exit preposition configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-preposition)# exit
WAE(config)#
```

Using Virtual Blade Configuration Mode

Use virtual blade configuration mode to configure virtual blades within your WAE or WAVE device. A WAAS virtual blade acts as a computer emulator with its own virtualized CPU, memory, firmware, disk drive, CD drive, and network interface card. It works with your WAAS system to provide additional services for the users on your network.

To enter this mode, use the `virtual blade` command from the global configuration mode.

To exit virtual blade configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-vb)# exit
WAE(config)#
```

Using PKI Certificate Authority Configuration Mode

Use PKI certificate authority configuration mode to add and configure a certificate authority.

To enter this mode, use the `crypto pki ca` command from the global configuration mode.

To exit PKI certificate authority configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-ca)# exit
WAE(config)#
```

Using PKI Global Settings Configuration Mode

Use PKI global settings configuration mode to configure OCSP and revocation checking.

To enter this mode, use the `crypto pki global-settings` command from the global configuration mode.

To exit PKI global settings configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-pki-global-settings)# exit
WAE(config)#
```
Using SSL Accelerated Service Configuration Mode

Use SSL accelerated service configuration mode to enable and configure SSL acceleration on your WAAS system, and define services to be accelerated on the SSL path.

To enter this mode, use the `crypto ssl service accelerated-service` command from the global configuration mode.

To exit SSL accelerated service configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-ssl-accelerated)# exit
WAE(config)#
```

Using SSL Cipher List Configuration Mode

Use SSL cipher list configuration mode to configure secure socket layer (SSL) encryption cipher lists on a WAAS device.

To enter this mode, use the `crypto ssl cipher-list` command from the global configuration mode.

To exit SSL cipher list configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-cipher-list)# exit
WAE(config)#
```

Using SSL Global Service Configuration Mode

Use SSL global service configuration mode to enable and configure basic SSL acceleration settings on your WAAS system.

To enter this mode, use the `crypto ssl services global-settings` command from the global configuration mode.

To exit SSL global service configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-ssl-global)# exit
WAE(config)#
```

Using SSL Host Peering Service Configuration Mode

Use SSL host peering service configuration mode to configure secure socket layer (SSL) encryption peering services on a WAAS device. SSL peering service configuration parameters control secure communications established by the SSL accelerator between WAE devices while optimizing SSL connections.

To enter this mode, use the `crypto ssl services host-service peering` command from the global configuration mode.

To exit SSL host peering service configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-ssl-peering)# exit
WAE(config)#
```
Using SSL Management Service Configuration Mode

Use SSL management service configuration mode to configure SSL parameters used for secure communications between the Central Manager and the WAE devices.

To enter this mode, use the `crypto ssl management-service` command from the global configuration mode.

To exit SSL management service configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-ssl-mgmt)# exit
WAE(config)#
```

Using WCCP Configuration Mode

Use WCCP configuration mode to configure the WCCP version 2 TCP promiscuous mode service.

To enter this mode, use the `wccp tcp-promiscuous` command from the global configuration mode.

To exit WCCP configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-wccp-service)# exit
WAE(config)#
```

Using AppNav Controller Group Configuration Mode

Use AppNav Controller Group configuration mode to configure an AppNav Controller Group that is part of an AppNav Cluster.

To enter this mode, use the `service-insertion appnav-controller-group` command from the global configuration mode.

To exit AppNav Controller Group configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-scg)# exit
WAE(config)#
```

Using Service Node Group Configuration Mode

Use Service Node Group configuration mode to configure a WAAS Node Group that is part of an AppNav Cluster.

To enter this mode, use the `service-insertion service-node-group` command from the global configuration mode.

To exit Service Node Group configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-sng)# exit
WAE(config)#
```
Using Service Node Configuration Mode

Use Service Node configuration mode to configure a WAAS Node that is part of an AppNav Cluster. To enter this mode, use the `service-insertion service-node` command from the global configuration mode. To exit Service Node configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-sn)# exit
WAE(config)#
```

Using Service Context Configuration Mode

Use Service Context configuration mode to configure a service context for an AppNav Cluster. To enter this mode, use the `service-insertion service-context` command from the global configuration mode. To exit Service Context configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-scxt)# exit
WAE(config)#
```

Using Class Map Configuration Mode

Use Class Map configuration mode to configure an AppNav or optimization class map. To enter this mode, use the `class-map` command from the global configuration mode. To exit Class Map configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-cmap)# exit
WAE(config)#
```

Using Policy Map Configuration Mode

Use Policy Map configuration mode to configure an AppNav or optimization policy map. To enter this mode, use the `policy-map` command from the global configuration mode. To exit Policy Map configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-pmap)# exit
WAE(config)#
```

Using Policy Class Map Configuration Mode

Use Policy Class Map configuration mode to configure a service policy in an AppNav or optimization policy map. To enter this mode, use the `class` command from the Policy Map configuration mode.
To exit Policy Class Map configuration mode, use the `exit` command to return to global configuration mode:

```
WAE(config-pmap-c)# exit
WAE(config)#
```

Command Modes Summary

Table 1-1 shows a summary of the WAAS command modes.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>user EXEC</td>
<td>Log in to WAE.</td>
<td><code>WAE></code></td>
<td>To exit, use the <code>end</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To enter privileged EXEC mode, use the <code>enable</code> command.</td>
</tr>
<tr>
<td>privileged EXEC</td>
<td>From user EXEC mode, use the <code>enable</code> EXEC command.</td>
<td><code>WAE#</code></td>
<td>To return to user EXEC mode, use the <code>disable</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To enter global configuration mode, use the <code>configure</code> command.</td>
</tr>
<tr>
<td>global configuration</td>
<td>From privileged EXEC mode, use the <code>configure</code> command.</td>
<td><code>WAE(config)#</code></td>
<td>To return to privileged EXEC mode, use the <code>exit</code> command or press Ctrl-Z.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to global configuration mode, use the <code>exit</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the <code>end</code> command or press Ctrl-Z.</td>
</tr>
<tr>
<td>interface configuration</td>
<td>From global configuration mode, use the <code>interface</code> command.</td>
<td><code>WAE(config-if)#</code></td>
<td></td>
</tr>
<tr>
<td>standard ACL configuration</td>
<td>From global configuration mode, use the <code>ip access-list standard</code> command.</td>
<td><code>WAE(config-std-nacl)#</code></td>
<td>To return to global configuration mode, use the <code>exit</code> command.</td>
</tr>
<tr>
<td>extended ACL configuration</td>
<td>From global configuration mode, use the <code>ip access-list extended</code> command.</td>
<td><code>WAE(config-ext-nacl)#</code></td>
<td>To return to privileged EXEC mode, use the <code>end</code> command or press Ctrl-Z.</td>
</tr>
<tr>
<td>preposition configuration</td>
<td>From global configuration mode, use the <code>accelerator cifs preposition</code> command.</td>
<td><code>WAE(config-preposition)#</code></td>
<td>To return to global configuration mode, use the <code>exit</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the <code>end</code> command or press Ctrl-Z.</td>
</tr>
<tr>
<td>virtual blade configuration</td>
<td>From global configuration mode, use the <code>virtual-blade</code> command.</td>
<td><code>WAE(config-vb)#</code></td>
<td>To return to global configuration mode, use the <code>exit</code> command.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the <code>end</code> command or press Ctrl-Z.</td>
</tr>
</tbody>
</table>
Table 1-1 WAAS Command Modes Summary (continued)

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKI certificate authority</td>
<td>From global configuration mode, use the crypto pki ca command.</td>
<td>WAE(config-ca)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the end command or press Ctrl-Z.</td>
</tr>
<tr>
<td>PKI global settings</td>
<td>From global configuration mode, use the crypto pki global-settings command.</td>
<td>WAE(config-pki-global-settings)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
<td></td>
<td>To return to privileged EXEC mode, use the end command or press Ctrl-Z.</td>
</tr>
<tr>
<td>SSL accelerated service configuration</td>
<td>From global configuration mode, use the crypto ssl service accelerated-service command.</td>
<td>WAE(config-ssl-accelerated)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>SSL cipher list configuration</td>
<td>From global configuration mode, use the crypto ssl cipher-list command.</td>
<td>WAE(config-cipher-list)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>SSL global service configuration</td>
<td>From global configuration mode, use the crypto ssl services global-settings command.</td>
<td>WAE(config-ssl-global)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>SSL host peering service</td>
<td>From global configuration mode, use the crypto ssl services host-service peering command.</td>
<td>WAE(config-ssl-peering)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>SSL management service configuration</td>
<td>From global configuration mode, use the crypto ssl management-service command.</td>
<td>WAE(config-ssl-mgmt)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>WCCP configuration</td>
<td>From global configuration mode, use the wccp tcp-promiscuous command.</td>
<td>WAE(config-wccp-service)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>AppNav Controller Group configuration</td>
<td>From global configuration mode, use the service-insertion appnav-controller-group command.</td>
<td>WAE(config-scg)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>Service Node Group configuration</td>
<td>From global configuration mode, use the service-insertion service-node-group command.</td>
<td>WAE(config-sng)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
</tbody>
</table>
Table 1-1 WAAS Command Modes Summary (continued)

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Node configuration</td>
<td>From global configuration mode, use the service-insertion service-node command.</td>
<td>WAE(config-sn)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td></td>
<td>Service Context configuration</td>
<td>WAE(config-scxt)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td></td>
<td>Class Map configuration</td>
<td>WAE(config-cmap)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>Policy Class Map configuration</td>
<td>From Policy Map configuration mode, use the class command.</td>
<td>WAE(config-pmap-c)#</td>
<td>To return to Policy Map configuration mode, use the exit command.</td>
</tr>
</tbody>
</table>

Device Mode

The WAAS software allows you to specify the device mode of a WAAS device. In a WAAS network, you must deploy a WAAS device in one of the following device modes:

- **WAAS Central Manager mode**—Mode that the WAAS Central Manager uses.
- **WAAS application accelerator mode**—Mode that a WAAS Accelerator (data center WAEs and branch WAEs that run the WAAS software) uses to optimize and accelerate traffic. (default)
- **WAAS AppNav Controller mode**—Mode for a WAAS device that is operating as an AppNav Controller (ANC) that is intercepting and distributing traffic to other WAAS devices operating in application accelerator mode.

The set of WAAS CLI commands that are available vary based on the device mode of the WAAS device.

Changing the Device Mode

To change the device mode of a WAAS device, use the **device mode** global configuration command as follows:

```
waas-cm(config)# device mode
   application-accelerator  Configure device to function as a WAAS Engine.
   central-manager         Configure device to function as a WAAS Central Manager.
```

For example, after you use the WAAS CLI to specify the basic network parameters for the designated WAAS Central Manager (the WAAS device named waas-cm) and assign it as a primary interface, you can use the **device mode** configuration command to specify its device mode as central-manager.
Using Command-Line Processing

Cisco WAAS software commands are not case sensitive. You can abbreviate commands and parameters as long as they contain enough letters to be different from any other currently available commands or parameters.

You can also scroll through the last 20 commands stored in the history buffer and enter or edit the command at the prompt. Table 1-2 lists and describes the function performed by the available WAAS command-line processing options.

<table>
<thead>
<tr>
<th>Keystroke Combinations</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-A</td>
<td>Jumps to the first character of the command line.</td>
</tr>
<tr>
<td>Ctrl-B or the Left Arrow key</td>
<td>Moves the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>Escapes and terminates prompts and tasks.</td>
</tr>
<tr>
<td>Ctrl-D</td>
<td>Deletes the character at the cursor.</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Jumps to the end of the current command line.</td>
</tr>
<tr>
<td>Ctrl-F or the Right Arrow key^</td>
<td>Moves the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl-K</td>
<td>Deletes from the cursor to the end of the command line.</td>
</tr>
</tbody>
</table>
Checking Command Syntax

The caret symbol (^) indicates that you have entered an incorrect command, keyword, or argument at a specific point in the command string.

To set the clock, for example, you can use context-sensitive help to check the syntax for setting the clock.

```
WAE# clock 1222
^%Invalid input detected at '^' marker.
WAE# clock ?
read-calendar    Read the calendar and update system clock
set              Set the time and date
update-calendar  Update the calendar with system clock
```

The help output shows that the `set` keyword is required. You can then check the syntax for entering the time.

```
WAE# clock set ?
<0-23>:  Current Time (hh:mm:ss)
```

Enter the current time in 24-hour format with hours, minutes, and seconds separated by colons.

```
WAE# clock set 13:32:00
% Incomplete command.
```

The system indicates that you need to provide additional arguments to complete the command. Press the **Up Arrow** to automatically repeat the previous command entry, and then add a space and question mark (?) to display the additional arguments.

```
WAE# clock set 13:32:00 ?
<1-31>: Day of the month
april
august
december
february
january    Month of the Year
```

Table 1-2 Command-Line Processing Keystroke Combinations (continued)

<table>
<thead>
<tr>
<th>Keystroke Combinations</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-L</td>
<td>Repeats the current command line on a new line.</td>
</tr>
<tr>
<td>Ctrl-N or the Down Arrow key¹</td>
<td>Enters the next command line in the history buffer.</td>
</tr>
<tr>
<td>Ctrl-P or the Up Arrow key¹</td>
<td>Enters the previous command line in the history buffer.</td>
</tr>
<tr>
<td>Ctrl-T</td>
<td>Transposes the character at the cursor with the character to the left of the cursor.</td>
</tr>
<tr>
<td>Ctrl-U; Ctrl-X</td>
<td>Deletes from the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl-W</td>
<td>Deletes the last word typed.</td>
</tr>
<tr>
<td>Esc-B</td>
<td>Moves the cursor back one word.</td>
</tr>
<tr>
<td>Esc-D</td>
<td>Deletes from the cursor to the end of the word.</td>
</tr>
<tr>
<td>Esc-F</td>
<td>Moves the cursor forward one word.</td>
</tr>
<tr>
<td>Delete key or Backspace key</td>
<td>Erases a mistake when entering a command; you must re-enter the command after using this key.</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.
Using the no Form of Commands

Almost every configuration command has a no form. The no form of a command is generally used to disable a feature or function, but it can also be used to set the feature or function to its default values. Use the command without the no keyword to reenable a disabled feature or to enable a feature that is disabled by default.

Using System Help

You can obtain help when you enter commands by using the following methods:

- For a brief description of the context-sensitive help system, enter help.
- To list all commands for a command mode, enter a question mark (?) at the system prompt.
- To obtain a list of commands that start with a particular character set, enter an abbreviated command immediately followed by a question mark (?).

WAE# cl?
 clear clock
To list the command keywords or arguments, enter a space and a question mark (?) after the command.

```plaintext
WAE# clock ?
read-calendar    Read the calendar and update system clock
set              Set the time and date
update-calendar  Update the calendar with system clock
```

Saving Configuration Changes

To avoid losing new configurations, save them to NVRAM using the **copy** or **write** commands, as shown in the following example:

```plaintext
WAE# copy running-config startup-config
or
WAE# write
```

See the **copy running-config startup-config** and **write** commands for more information about running and saved configuration modes.

WAAS Directories on a WAE

This section describes how to navigate the WAAS directories on a WAE and provides directory descriptions useful for troubleshooting and monitoring the WAE.

Navigating WAAS Directories

The WAAS CLI provides several commands for navigating among directories and viewing their contents. These commands are entered from privileged EXEC mode. **Table 1-3** lists and describes these commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd [directory-name]</td>
<td>Change Directory—Moves you from the current directory to the specified directory in the WAAS tree. If no directory is specified, <code>cd</code> takes you up one directory.</td>
</tr>
<tr>
<td>deltree directory-name</td>
<td>Remove Directory Tree—Deletes the specified directory and all subdirectories and files without displaying a warning message to you.</td>
</tr>
<tr>
<td>dir [directory-name]</td>
<td>Show Directory—Lists the size, date of last changes, and the name of the specified directory (or all directories if one is not specified) within the current directory path. The output from this command is the same as the <code>ls</code> command.</td>
</tr>
<tr>
<td>ls [directory-name]</td>
<td>Show Directory Names—Lists the names of directories in the current directory path.</td>
</tr>
</tbody>
</table>
The following example displays a detailed list of all the files for the WAE’s current directory:

WAE# dir
size time of last change name
-------- ------------------------- ---------------
4096 Fri Feb 24 14:40:00 2006 <DIR> actona
4096 Tue Mar 28 14:42:44 2006 <DIR> core_dir
4096 Wed Apr 12 20:23:10 2006 <DIR> crash
4506 Tue Apr 11 13:52:45 2006 dbupgrade.log
4096 Tue Apr 4 22:50:11 2006 <DIR> downgrade
4096 Sun Apr 16 09:01:56 2006 <DIR> errorlog
4096 Wed Apr 12 20:23:41 2006 <DIR> logs
16384 Thu Feb 16 12:25:29 2006 <DIR> lost+found
4096 Wed Apr 12 03:26:02 2006 <DIR> sa
24576 Sun Apr 16 23:38:21 2006 <DIR> service_logs
4096 Thu Feb 16 12:26:09 2006 <DIR> spool
9945390 Sun Apr 16 23:38:21 2006 syslog.txt
10026298 Thu Apr 6 12:25:00 2006 syslog.txt.1
10013564 Thu Apr 6 12:25:00 2006 syslog.txt.2
10055850 Thu Apr 6 12:25:00 2006 syslog.txt.3
10049181 Thu Apr 6 12:25:00 2006 syslog.txt.4
4096 Thu Feb 16 12:29:30 2006 <DIR> var
508 Sat Feb 25 13:18:35 2006 wdd.sh.signed

The following example displays only the detailed information for the logs directory:

WAE# dir logs
size time of last change name
-------- ------------------------- ---------------
4096 Thu Apr 6 12:13:30 2006 <DIR> actona
4096 Mon Mar 6 14:14:41 2006 <DIR> apache
4096 Sun Apr 16 23:36:40 2006 <DIR> emdb
4096 Thu Feb 16 11:51:51 2006 <DIR> export
4096 Wed Apr 12 20:33:43 2006 <DIR> rpc_httpd
0 Wed Apr 12 20:23:41 2006 <DIR> snmpd.log
4096 Sun Mar 19 18:47:29 2006 <DIR> tfo
Directory Descriptions

Several top-level directories of the WAAS software contain information used internally by the software and are not useful to you. These directories include the core_dir, crash, downgrade, errorlog, lost+found, sa, service_logs, spool, and var directories.

Table 1-4 describes the directories that contain information that is useful for troubleshooting or monitoring.

<table>
<thead>
<tr>
<th>Directory/File Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>actona</td>
<td>This directory contains the current software image installed on the WAAS device and any previous images that were installed.</td>
</tr>
<tr>
<td>logs</td>
<td>This directory contains application-specific logs used in troubleshooting. The actona subdirectory contains the commonly used Manager.log, Utilities.log, and Watchdog.log log files. See the Cisco Wide Area Application Services Configuration Guide for more details about how these log files are used.</td>
</tr>
<tr>
<td>syslog.txt</td>
<td>This file is the central repository for log messages. Important messages about the operation of WAAS or its components are sometimes logged in this file. They are often intermingled with routine messages that require no action. You may be requested to provide this file, the output of the <code>show tech-support</code> EXEC command, and perhaps other output to Cisco TAC personnel if a problem arises.</td>
</tr>
</tbody>
</table>

Note

The WAAS software uses the CONTENT file system for both the CIFS file system and the data redundancy elimination (DRE) cache.
Managing WAAS Files Per Device

The WAAS CLI provides several commands for managing files and viewing their contents per device. These commands are entered from privileged EXEC mode. Table 1-5 describes the WAAS file management commands.

Table 1-5 WAAS File Management Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy *source</td>
<td>image*</td>
</tr>
<tr>
<td></td>
<td>• cdrom—Copies the file from the CDROM.</td>
</tr>
<tr>
<td></td>
<td>• compactflash—Copies the file from the CompactFlash card.</td>
</tr>
<tr>
<td></td>
<td>• disk—Copies the configuration or file from the disk.</td>
</tr>
<tr>
<td></td>
<td>• ftp—Copies the file from the FTP server.</td>
</tr>
<tr>
<td></td>
<td>• http—Copies the file from the HTTP server.</td>
</tr>
<tr>
<td></td>
<td>• running-config—Copies information from the current system configuration.</td>
</tr>
<tr>
<td></td>
<td>• startup-config—Copies information from the startup configuration.</td>
</tr>
<tr>
<td></td>
<td>• sysreport—Copies system information.</td>
</tr>
<tr>
<td></td>
<td>• system-status—Copies the system status for debugging reference.</td>
</tr>
<tr>
<td></td>
<td>• tech-support—Copies system information for technical support.</td>
</tr>
<tr>
<td></td>
<td>• tftp—Copies the software image from the TFTP server.</td>
</tr>
<tr>
<td></td>
<td>• usb—Copies files from an external USB drive.</td>
</tr>
<tr>
<td>cpfile source-filename destination-filename</td>
<td>Copy File—Makes a copy of a source file, and puts it in the current directory.</td>
</tr>
<tr>
<td>delfile filename</td>
<td>Remove File—Deletes the specified file from the current directory path.</td>
</tr>
<tr>
<td>less filename</td>
<td>Display File Using LESS—Displays the specified file on the screen using the LESS program. The filename is case sensitive. Enter q to stop viewing the file and return to the directory.</td>
</tr>
<tr>
<td>mkfile filename</td>
<td>Create File—Creates a file of the specified name in the current directory path.</td>
</tr>
<tr>
<td>rename old-filename new-filename</td>
<td>Rename File—Renames the specified file with a new filename.</td>
</tr>
<tr>
<td>type filename</td>
<td>Display File—Displays the content of the specified file on the screen.</td>
</tr>
<tr>
<td>type-tail filename line</td>
<td>Display End of File—Displays the last few lines of the specified file. Can also be used to view the last lines of a file continuously as new lines are added to the file, to start at a particular line in the file, or to include or exclude specific lines in the file.</td>
</tr>
<tr>
<td>find-pattern pattern</td>
<td>Find in a File—Searches a file for the specified pattern.</td>
</tr>
</tbody>
</table>

The following example shows how to save the currently running configuration to the startup configuration using the `copy` EXEC command:
The following example shows how to remove a file named sample from the directory named `test` using the `delfile` command:

```
WAE# cd test
WAE# ls
sample
sample2
WAE# delfile sample
WAE# ls
sample2
```

The following example shows how to view the last lines of the `Watchdog.log` file:

```
WAE# cd logs
WAE# cd actona
WAE# ls
Watchdog.log
WAE# type-tail Watchdog.log
WAE#
```
Cisco WAAS Software Command Summary

This chapter summarizes the Cisco WAAS 5.0.1 software commands.

Table 2-1 lists the WAAS commands (alphabetically) and indicates the command mode for each command. The commands used to access configuration modes are marked with an asterisk. Commands that do not indicate a particular mode are EXEC mode commands. The same command may have different effects when entered in a different command mode, so they are listed and documented separately. (See Chapter 1, “Using the WAAS Command-Line Interface” for a discussion about using CLI command modes.)

In Table 2-1, in the Device Mode column “All” indicates that the particular CLI command is supported in both central-manager mode and application-accelerator mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) aaa accounting</td>
<td>Configures AAA accounting.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) aaa authorization commands</td>
<td>Configures AAA authorization.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) accelerator cifs</td>
<td>Enables the CIFS application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator cifs preposition</td>
<td>Configures a CIFS application accelerator preposition directive.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator epm</td>
<td>Enables the EPM application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator http</td>
<td>Enables the HTTP application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator ica</td>
<td>Enables the ICA application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator mapi</td>
<td>Enables the MAPI application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator nfs</td>
<td>Enables the NFS application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) accelerator smb</td>
<td>Enables the SMB application accelerator.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(config) accelerator ssl</td>
<td>Enables the SSL application accelerator.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) accelerator video</td>
<td>Enables the video application accelerator.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) accelerator windows-print</td>
<td>Enables the Windows print accelerator</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) alarm overload-detect</td>
<td>Configures the detection of an alarm overload.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-scg) appnav-controller</td>
<td>Configures the IP address and description of an ANC to be added to the ANCG.</td>
<td>ANCG configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-scxt) appnav-controller-group</td>
<td>Configures the name of the ANCG.</td>
<td>service context configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config) asset</td>
<td>Configures the tag name for the asset tag string.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-wccp-service) assignment-method</td>
<td>Configures the WCCP assignment method.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-scxt) authentication</td>
<td>Configures the service context authentication key.</td>
<td>service context configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-sn) authentication</td>
<td>Configures the WN authentication key.</td>
<td>service node configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-sn) node-discovery enable</td>
<td>Configures the node discovery of the service node in the AppNav Cluster.</td>
<td>service node configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config) authentication configuration</td>
<td>Configures administrative authentication and authorization parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) authentication enable</td>
<td>Configures enable authentication to use local admin user account password instead of using external authentication servers.</td>
<td>global configuration</td>
<td>application- accelerator central manager</td>
</tr>
<tr>
<td>(config) authentication content-request</td>
<td>Configures request for content authentication and authorization parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) authentication fail-over</td>
<td>Configures authentication failover if the primary authentication server is unreachable.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) authentication login</td>
<td>Configures administrative login authentication and authorization parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) authentication strict-password-policy</td>
<td>Configures strong password policy parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) auto-discovery</td>
<td>Discovers origin servers that cannot receive TCP packets with options and adds the IP addresses to a blacklist for a specified number of minutes.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) auto-register</td>
<td>Enables the discovery of a primary interface on a WAE and its automatic registration with the WAAS Central Manager through DHCP.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>
Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-if) autosense</td>
<td>Sets the current interface to autosense.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) autostart</td>
<td>Sets a virtual blade to automatically start when the WAE is started.</td>
<td>virtual blade configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-if) bandwidth</td>
<td>Sets the specified interface bandwidth to 10, 100, or 1000 Mbps.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) banner</td>
<td>Configures message-of-the-day, login, login and EXEC banners.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) boot</td>
<td>Configures the boot image location and source for a virtual blade.</td>
<td>virtual blade configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) bridge</td>
<td>Creates a bridge interface for use by a virtual blade.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-if) bridge-group</td>
<td>Configures the bridge group for an interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ca) ca-certificate</td>
<td>Sets the certification authority file.</td>
<td>certification authority</td>
<td>All</td>
</tr>
<tr>
<td>cd</td>
<td>Changes the directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) cdp</td>
<td>Enables the Cisco Discovery Protocol (CDP) for the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) cdp</td>
<td>Enables CDP on an interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) central-manager</td>
<td>In application-accelerator mode, used to specify the IP address of the WAAS Central Manager with which the WAE needs to register. In central-manager mode, used to specify the WAAS Central Manager’s role and GUI port number.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) channel-group</td>
<td>Configures the port channel group for an interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-cipher-list) cipher</td>
<td>Configures a cipher suite on the cipher list.</td>
<td>cipher list configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) cipher-list</td>
<td>Configures secure socket layer (SSL) encryption cipher lists on a WAAS device.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-global) cipher-list</td>
<td>Configures secure socket layer (SSL) encryption cipher lists on a WAAS device.</td>
<td>SSL global service configuration</td>
<td>All</td>
</tr>
</tbody>
</table>

Table 2-1: Command Summary (continued)
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-ssl-peering) cipher-list</td>
<td>Configures secure socket layer (SSL) encryption cipher lists on a WAAS device.</td>
<td>SSL host peering service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-mgmt) cipher-list</td>
<td>Configures secure socket layer (SSL) encryption cipher lists on a WAAS device.</td>
<td>SSL management service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-pmap) class</td>
<td>Configures the service policy for a class map.</td>
<td>policy map configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config) class-map</td>
<td>Configures AppNav and optimization class maps.</td>
<td>global configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>clear arp-cache</td>
<td>Resets the ARP cache.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>clear cache</td>
<td>Resets the cached objects.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>clear cdp</td>
<td>Resets Cisco Discovery Protocol statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear cifs msg-signing-servers</td>
<td>Clears the list of message signing servers.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>clear connection</td>
<td>Resets one or more connections.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>clear dre</td>
<td>Clears DRE configurations.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear ip</td>
<td>Resets IP access list statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear license</td>
<td>Resets licensing configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear logging</td>
<td>Resets the syslog messages saved in a disk file.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear service-policy</td>
<td>Clears AppNav and optimization class and policy map counters.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>clear statistics</td>
<td>Resets statistics data.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear statistics accelerator</td>
<td>Resets all global statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear statistics connection</td>
<td>Resets connection statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear statistics monitor appnav-controller traffic</td>
<td>Resets traffic monitoring statistics for an AppNav Controller Interface Module.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>clear statistics vn-service vpath</td>
<td>Resets VPATH statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear transaction-log</td>
<td>Archives the working transaction log file.</td>
<td>privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>clear users</td>
<td>Resets user connections or unlocks users that have been locked out.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear windows-domain</td>
<td>Clears Windows domain server information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clear windows-domain-log</td>
<td>Clears user connections and unlocks users that have been locked out.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>client-cert-verify</td>
<td>Enables verification of client certificates.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>client-version-rollback-check</td>
<td>Disables the client SSL version rollback check.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>clock</td>
<td>Manages the system clock.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) clock</td>
<td>Sets the summer daylight saving time of day and time zone.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>cms</td>
<td>Configures the parameters for the Centralized Management System (CMS) embedded database.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>cms secure-store</td>
<td>Configures secure store encryption</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) cms</td>
<td>Schedules the maintenance and enables the Centralized Management System on a specific WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>configure*</td>
<td>Enters configuration mode from privileged EXEC mode.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy cdrom</td>
<td>Copies files from a CD-ROM.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy cdrom wow-recovery</td>
<td>Recovers Windows on a virtual blade without reloading the software.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy compactflash</td>
<td>Copies files from the Compact Flash card.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy disk</td>
<td>Copies configuration information or files from a disk.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy ftp</td>
<td>Copies files from an FTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy http</td>
<td>Copies files from an HTTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy monitoring-log</td>
<td>Copies SMB statistics data to the local disk or an FTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config</td>
<td>Copies information from the current system configuration.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy scp</td>
<td>Copies files from an SCP server.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy startup-config</td>
<td>Copies information from the startup configuration.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy sysreport</td>
<td>Copies system troubleshooting information.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy system-status</td>
<td>Copies the system status for debugging reference.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy tech-support</td>
<td>Copies system information for technical support.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy tftp</td>
<td>Copies the software image from the TFTP server.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy usb</td>
<td>Copies files from an external USB drive.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>copy virtual-blade</td>
<td>Copies software configuration or image data from a virtual blade disk image to an FTP server.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>cpfile</td>
<td>Copies a file to the current directory.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) cpu-list</td>
<td>Configures the CPU assignments that the virtual blade runs on.</td>
<td>virtual blade</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-preposition) credentials</td>
<td>Sets the username and password credentials.</td>
<td>preposition</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>crypto delete</td>
<td>Removes SSL certificate and key files.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>crypto export</td>
<td>Exports SSL certificate and key files.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>crypto generate</td>
<td>Generates a self-signed certificate or a certificate signing request.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>crypto import</td>
<td>Imports SSL certificate and key files.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>crypto pki</td>
<td>Initializes the PKI managed store.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>(config) crypto pki</td>
<td>Configures public key infrastructure (PKI) encryption parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) crypto ssl</td>
<td>Configures secure sockets layer (SSL) encryption parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>debug aaa accounting</td>
<td>Configures AAA accounting debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug aaa authorization</td>
<td>Configures AAA authorization debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug accelerator</td>
<td>Configures accelerator debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug all</td>
<td>Configures all debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug appnav-controller connection</td>
<td>Configures AppNav Controller debugging.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>debug appnav-controller drop capture</td>
<td>Configures AppNav Controller debugging</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>debug authentication</td>
<td>Configures authentication debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug auto-discovery</td>
<td>Configures auto discovery debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug buf</td>
<td>Configures buffer manager debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug cdp</td>
<td>Configures CDP debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug cli</td>
<td>Configures CLI debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug cmm</td>
<td>Configures cluster membership manager debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug cms</td>
<td>Configures CMS debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug connection</td>
<td>Configures connection debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug controllers</td>
<td>Configures interface controller capture debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>debug dataserver</td>
<td>Configures data server debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug dhcp</td>
<td>Configures DHCP debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug directed-mode</td>
<td>Configures directed mode debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug dre</td>
<td>Configures DRE debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug egress-method</td>
<td>Configures egress method debugging.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug encryption-service</td>
<td>Configures encryption service debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug fda</td>
<td>Configures flow distribution agent service debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug fdm</td>
<td>Configures flow distribution manager service debugging.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug filtering</td>
<td>Configures filtering debugging.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug flow</td>
<td>Configures network traffic flow debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug generic-gre</td>
<td>Configures generic GRE egress method debugging.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug hw-raid</td>
<td>Configures hardware RAID debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug imd</td>
<td>Configures interface manager debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug inline</td>
<td>Configures inline debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug key-manager</td>
<td>Configures key manager debugging.</td>
<td>privileged-level</td>
<td>central-manager</td>
</tr>
<tr>
<td>debug logging</td>
<td>Configures logging debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug monapi</td>
<td>Configures monitoring API debugging.</td>
<td>privileged-level</td>
<td>central-manager</td>
</tr>
<tr>
<td>debug nplogd</td>
<td>Configures NP log daemon debugging.</td>
<td>privileged-level</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>debug ntp</td>
<td>Configures NTP debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug punt</td>
<td>Configures punt handler debugging.</td>
<td>privileged-level</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>debug rbcp</td>
<td>Configures RBCP debugging.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug rmd</td>
<td>Configures route manager debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug rpc</td>
<td>Configures record remote procedure calls debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug service-insertion</td>
<td>Configures service-insertion module debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug service-policy</td>
<td>Configures service policy debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug snmp</td>
<td>Configures SNMP debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug standby</td>
<td>Configures standby debugging.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>debug statistics</td>
<td>Configures statistics debugging.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td>debug synq</td>
<td>Configures synq debugging.</td>
<td>privileged-level</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug tfo</td>
<td>Configures TFO flow optimization debugging.</td>
<td>privileged-level</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td>accelerator</td>
</tr>
<tr>
<td>debug translog</td>
<td>Configures transaction logging debugging.</td>
<td>privileged-level</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td>accelerator</td>
</tr>
<tr>
<td>debug wafs</td>
<td>Configures WAFS Device Manager debugging.</td>
<td>privileged-level</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td>accelerator</td>
</tr>
<tr>
<td>debug wccp</td>
<td>Configures WCCP information debugging.</td>
<td>privileged-level</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td>accelerator</td>
</tr>
<tr>
<td>(config-std-nacl) delete</td>
<td>Deletes a line from the standard ACL.</td>
<td>standard ACL</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-ext-nacl) delete</td>
<td>Deletes a line from the extended ACL.</td>
<td>extended ACL</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>delfile</td>
<td>Deletes a file.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td></td>
</tr>
<tr>
<td>deltree</td>
<td>Deletes a directory and its subdirectories.</td>
<td>privileged-level</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EXEC</td>
<td></td>
</tr>
<tr>
<td>(config-std-nacl) deny</td>
<td>Adds a line to a standard access list that specifies the type of packets</td>
<td>standard ACL</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>that you want the WAAS device to drop.</td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-ext-nacl) deny</td>
<td>Adds a line to an extended access-list that specifies the type of packets</td>
<td>extended ACL</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>that you want the WAAS device to drop.</td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-ca) description</td>
<td>Configures a description for the certification</td>
<td>certification</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>authority.</td>
<td>authority</td>
<td></td>
</tr>
<tr>
<td>(config-cmap) description</td>
<td>Configures the class map description.</td>
<td>class map</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td>accelerator</td>
</tr>
<tr>
<td>(config-if) description</td>
<td>Configures the description for an interface.</td>
<td>interface</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-pmap) description</td>
<td>Configures the policy map description.</td>
<td>policy map</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td>accelerator</td>
</tr>
<tr>
<td>(config-scg) description</td>
<td>Configures the ANC description.</td>
<td>ANCG</td>
<td>appnav-controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-scxt) description</td>
<td>Configures the service context description.</td>
<td>service context</td>
<td>appnav-controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td>(config-sn) description</td>
<td>Configures the WN description.</td>
<td>service node</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td>accelerator</td>
</tr>
<tr>
<td>(config-sng) description</td>
<td>Configures the WNG description.</td>
<td>service node</td>
<td>appnav-controller</td>
</tr>
<tr>
<td></td>
<td></td>
<td>group configuration</td>
<td></td>
</tr>
<tr>
<td>(config-vb) description</td>
<td>Configures a description for a virtual blade on your WAES.</td>
<td>virtual blade</td>
<td>application-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>configuration</td>
<td>accelerator</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(config-ssl-accelerated) description</td>
<td>Configures a description for SSL accelerated service.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) device</td>
<td>Configures the device emulation parameters used by the virtual blade on your WAE.</td>
<td>virtual blade configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) device mode</td>
<td>Specifies the device mode of the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>dir</td>
<td>Displays the files in a long list format.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) directed-mode</td>
<td>Configures the mode by which traffic is sent between two WAEs.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>disable</td>
<td>Turns off the privileged EXEC commands.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>disk</td>
<td>Configures the disks on the WAAS device.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) disk</td>
<td>Configures disk space for a virtual blade on the WAE hard drive.</td>
<td>virtual blade configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) disk disk-name</td>
<td>Disables a RAID-1 disk for online removal.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) disk encrypt</td>
<td>Enables disk encryption.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) disk error-handling</td>
<td>Configures how the disk errors should be handled.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) disk logical shutdown</td>
<td>Shuts down the RAID-5 logical disk drive.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) disk object-cache extend</td>
<td>Enables extended object cache.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-pmap-c) distribute</td>
<td>Configures the WAAS node group to which to distribute traffic in an AppNav policy rule.</td>
<td>policy map class configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>dnslookup</td>
<td>Resolves a DNS hostname.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) dre</td>
<td>Enables and configures DRE auto bypass and load monitor settings.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-preposition) dscp</td>
<td>Sets the DSCP marking value for a preposition task.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-preposition) duration</td>
<td>Sets the maximum duration for a preposition task.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-wccp-service) egress-method</td>
<td>Configures the WCCP egress method.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>enable*</td>
<td>Accesses the privileged EXEC commands.</td>
<td>user-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) enable</td>
<td>Enables or disables a preposition directive.</td>
<td>preposition</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-scxt) enable</td>
<td>Enables or disables the service context.</td>
<td>service context</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-sn) enable</td>
<td>Enables or disables a WN.</td>
<td>service node</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-wccp-service) enable</td>
<td>Enables or disables WCCP.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-if) encapsulation dot1Q</td>
<td>Sets the VLAN ID of traffic leaving an inline group interface.</td>
<td>interface configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) end</td>
<td>Exits configuration and privileged EXEC modes.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) exec-timeout</td>
<td>Configures the length of time that an inactive Telnet or SSH session remains open.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>exit</td>
<td>Exits from privileged EXEC mode.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) exit</td>
<td>Exits from global configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) exit</td>
<td>Exits from interface configuration mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) exit</td>
<td>Exits from standard ACL configuration mode.</td>
<td>standard ACL</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) exit</td>
<td>Exits from extended ACL configuration mode.</td>
<td>extended ACL</td>
<td>All</td>
</tr>
<tr>
<td>(config-wccp-service) exit</td>
<td>Exits from WCCP configuration mode.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-if) failover timeout</td>
<td>Configures the maximum time for the inline interface to transition traffic to another port after a failure event.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-wccp-service) failure-detection</td>
<td>Configure the WCCP failure detection timeout.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>find-pattern</td>
<td>Searches for a particular pattern in a file.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) flow monitor</td>
<td>Configures network traffic flow monitoring.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-if) full-duplex</td>
<td>Sets the current interface to the full-duplex mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-if) half-duplex</td>
<td>Sets the current interface to half-duplex mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>help</td>
<td>Provides assistance for the WAAS command-line interface in EXEC mode.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) help</td>
<td>Provides assistance for the WAAS command-line interface.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) hostname</td>
<td>Configures the hostname of the WAAS device in global configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) ignore-hidden-dir</td>
<td>Configures to ignore hidden directories in the set of files to be prepositioned.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) inetd</td>
<td>Enables FTP, RCP, and TFTP services.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) inline</td>
<td>Configures the ports on an interface module to operate in inline mode.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-if) inline</td>
<td>Configures inline interception for an inlineGroup interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) inline vlan-id-connection-check</td>
<td>Enables VLAN ID checking on intercepted traffic.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-ssl-accelerated) inservice</td>
<td>Enables the accelerated service.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>install</td>
<td>Installs a new image into Flash memory.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) interception</td>
<td>Configures an interception access list.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) interception-method</td>
<td>Configures an interception access list.</td>
<td>global configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-vb) interface</td>
<td>Bridges a virtual blade interface to an interface on your WAE.</td>
<td>virtual blade configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) interface bvi*</td>
<td>Configures a bridge virtual interface for use by a virtual blade.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) interface GigabitEthernet*</td>
<td>Configures a Gigabit Ethernet interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) interface InlineGroup*</td>
<td>Configures a Inline Group channel, or standby interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) interface PortChannel*</td>
<td>Configures a port channel interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) interface standby*</td>
<td>Configures a standby interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) interface TenGigabitEthernet*</td>
<td>Configures a 10-Gigabit Ethernet interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) interface virtual*</td>
<td>Configures a virtual interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ip</td>
<td>Configures the initial network device configuration settings (for example, the IP address of the default gateway) on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) ip</td>
<td>Configures the IP address, subnet mask, or DHCP IP address negotiation on the interface of the WAAS device or inline module.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) ip access-group</td>
<td>Controls the connections on a specific interface by applying a predefined access list.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ip access-list*</td>
<td>Creates and modifies the access lists for controlling access to interfaces or applications. Provides access to ACL configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ip icmp rate-limit unreachable</td>
<td>Limits the rate at which Internet Control Message Protocol (ICMP) destination unreachable messages are generated.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ip unreachable df</td>
<td>Enables the IP unreachable ICMP service.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) kerberos</td>
<td>Configures user authentication against a Kerberos database.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) kernel kdb</td>
<td>Enables the kernel debugger configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) kernel kdump enable</td>
<td>Enables the kernel crash dump mechanism.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>less</td>
<td>Displays the contents of a file using the LESS application.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>license add</td>
<td>Adds a software license.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) line</td>
<td>Specifies the terminal line settings.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) list</td>
<td>Displays a list of specified entries within the standard ACL</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) list</td>
<td>Displays a list of specified entries within the extended ACL</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td><code>lls</code></td>
<td>Displays the files in a long list format.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) <code>load-interval</code></td>
<td>Configures the statistics polling interval for an interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) <code>logging console</code></td>
<td>Configures system logging (syslog) to the console.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) <code>logging disk</code></td>
<td>Configures system logging (syslog) to a disk file.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) <code>logging facility</code></td>
<td>Sets the facility parameter for system logging (syslog).</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) <code>logging host</code></td>
<td>Configures system logging (syslog) to a remote host.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>ls</code></td>
<td>Lists the files and subdirectories in a directory on the device hard disk.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>lsusb</code></td>
<td>Lists the files and subdirectories in a directory on a USB storage device.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-global) <code>machine-cert-key</code></td>
<td>Configures a certificate and private key.</td>
<td>SSL global service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-cmap) <code>match peer</code></td>
<td>Configures a match condition based on peer ID for a class map.</td>
<td>class map configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-cmap) <code>match protocol</code></td>
<td>Configures a match condition based on layer 7 protocol for a class map.</td>
<td>class map configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-cmap) <code>match tcp</code></td>
<td>Configures a match condition based on source and/or destination IP address and port for a class map.</td>
<td>class map configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-preposition) <code>max-cache</code></td>
<td>Sets the maximum cache percentage that prepositioned files can use.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-preposition) <code>max-file-size</code></td>
<td>Sets the maximum size of a prepositioned file.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-vb) <code>memory</code></td>
<td>Configures memory for a virtual blade from the WAE system.</td>
<td>virtual blade configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-preposition) <code>min-file-size</code></td>
<td>Sets the minimum size of a prepositioned file.</td>
<td>preposition configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>mkdir</code></td>
<td>Makes a directory.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>mkfile</td>
<td>Makes a file (for testing).</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>monitor appnav-controller traffic</td>
<td>Enable traffic monitoring on an AppNav Controller Interface Module.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-pmap-c) monitor-load</td>
<td>Configures the application accelerator to monitor in an AppNav policy rule.</td>
<td>policy map class configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-std-nacl) move</td>
<td>Moves a line to a new position within the standard ACL</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) move</td>
<td>Moves a line to a new position within the extended ACL</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) mtu</td>
<td>Sets the interface Maximum Transmission Unit (MTU) packet size.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) name</td>
<td>Sets the name of a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) ntp</td>
<td>Configures the NTP server.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>ntpdate</td>
<td>Sets the NTP server name.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-pki-global-settings) ocsp</td>
<td>Configures the URL to be used as the global settings for the Online Certificate Status Protocol (OCSP) protocol revocation status checking.</td>
<td>PKI global-settings configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-pmap-c) optimize</td>
<td>Configures optimization actions in a WAAS optimization policy.</td>
<td>policy map class configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>packet-capture</td>
<td>Captures packets.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-pmap-c) pass-through</td>
<td>Configures the pass-through action in an AppNav or optimization policy rule.</td>
<td>policy map class configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-wccp-service) password</td>
<td>Configures the WCCP service password.</td>
<td>WCCP configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-preposition) pattern</td>
<td>Sets a file filter for a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config) peer</td>
<td>Enables/disables peer optimization.</td>
<td>global configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-ssl-peering) peer-cert-verify</td>
<td>Enables verification of peer certificates.</td>
<td>SSL host peering service configuration</td>
<td>All</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>(config-ssl-mgmt) peer-cert-verify</td>
<td>Enables verification of peer certificates.</td>
<td>SSL management service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) permit</td>
<td>Adds a line to a standard access list that specifies the type of packets that you want the WAAS device to permit for further processing.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) permit</td>
<td>Adds a line to an extended access list that specifies the type of packets that you want the WAAS device to permit for further processing.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>ping</td>
<td>Sends the echo packets.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) policy-map</td>
<td>Configures AppNav and optimization policy maps.</td>
<td>global configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config) port-channel</td>
<td>Configures the port channel load-balancing options.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) primary-interface</td>
<td>Configures a primary interface for the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) radius-server</td>
<td>Enables and disables WAAS print services and configures an administrative group.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>pwd</td>
<td>Displays the present working directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) radius-server</td>
<td>Configures the RADIUS parameters on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) recursive</td>
<td>Enables or disables recursion for a preposition directive.</td>
<td>preposition configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-wccp-service) redirect-method</td>
<td>Configures the WCCP redirect method.</td>
<td>WCCP configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>reload</td>
<td>Halts a device and performs a cold restart.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>rename</td>
<td>Renames a file.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>restore</td>
<td>Restores a device to its manufactured default status.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-ca) revocation-check</td>
<td>Configures the certification authority revocation checking method.</td>
<td>certification authority configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-pki-global-settings) revocation-check</td>
<td>Configures the global settings revocation checking method.</td>
<td>PKI global-settings configuration</td>
<td>All</td>
</tr>
<tr>
<td>rmdir</td>
<td>Removes a directory.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) root</td>
<td>Sets the root directory for a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-wccp-service) router-list-num</td>
<td>Configures the WCCP router list.</td>
<td>WCCP configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-preposition) scan-type</td>
<td>Sets the file scanning type for a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-preposition) schedule</td>
<td>Sets the schedule for a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>scp</td>
<td>Specifies the SCP client.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>script</td>
<td>Checks the errors in a script or executes a script.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-preposition) server</td>
<td>Sets the file server for a preposition directive.</td>
<td>preposition configuration</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>(config-ssl-accelerated) server-cert-key</td>
<td>Configures a certificate and private key.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) server-cert-verify</td>
<td>Enables verification of server certificates.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) server-domain</td>
<td>Configures the accelerated server domain and TCP port.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) server-ip</td>
<td>Configures the accelerated server IP address and TCP port.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) server-name</td>
<td>Configures the accelerated server hostname and TCP port.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) service-insertion</td>
<td>Configures AppNav entities.</td>
<td>global configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>(config-sng) service-node</td>
<td>Configures the IP address and description of a WN to be added to the WNG.</td>
<td>service node group configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-scxt) service-node-group</td>
<td>Configures the name of a WNG.</td>
<td>service context configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config) service-policy</td>
<td>Configures AppNav and optimization policy.</td>
<td>global configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-pmap-c) service-policy</td>
<td>Configures a nested policy map in an AppNav policy rule.</td>
<td>policy map class configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-scxt) service-policy</td>
<td>Configures the name of the AppNav policy.</td>
<td>service context configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>(config-pmap-c) set ip dscp</td>
<td>Configures the DSCP marking in a WAAS optimization policy.</td>
<td>policy map class configuration</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>setup</td>
<td>Configures the basic configuration settings. Invokes the interactive setup utility.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show aaa accounting</td>
<td>Displays the AAA accounting configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show aaa authorization</td>
<td>Displays the AAA authorization configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show accelerator</td>
<td>Displays the status and configuration of the application accelerators.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show alarms</td>
<td>Displays information on various types of alarms, their status, and history.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show appnav-controller flow-distribution</td>
<td>Displays ANC flow distribution information.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>show arp</td>
<td>Displays the ARP entries.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show authentication</td>
<td>Displays the authentication configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show auto-discovery</td>
<td>Displays auto-discovery information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show auto-register</td>
<td>Displays the status of the autoregistration feature for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show banner</td>
<td>Displays the message of the day, login, and EXEC banner settings.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show bmc</td>
<td>Displays the Baseboard Management Controller information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show bridge</td>
<td>Displays bridge interface information.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show cache http-metadatacache</td>
<td>Displays HTTP metadata cache information.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show cdp</td>
<td>Displays the CDP configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show cifs</td>
<td>Displays CIFS application accelerator information.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show class-map</td>
<td>Displays the matching criteria configured for a class map.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show clock</td>
<td>Displays the system clock.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show cms</td>
<td>Displays the management service information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show cms secure-store</td>
<td>Displays the secure disk encryption status.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show crypto</td>
<td>Displays crypto layer information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays the state of each debugging option.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show device-id</td>
<td>Displays the device ID.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show device-mode</td>
<td>Displays the device mode.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show directed-mode</td>
<td>Displays directed mode information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show disks</td>
<td>Displays the disk configurations.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show filtering list</td>
<td>Displays TFO flow information for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show flash</td>
<td>Displays the flash memory information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show flow record</td>
<td>Displays collection information for a WAE device.</td>
<td>EXEC</td>
<td>application-accelerator central-manager</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>show hardware</td>
<td>Displays the system hardware information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show hosts</td>
<td>Displays the IP domain name, name servers, IP addresses, and host table.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show inetcold</td>
<td>Displays the status of TCP/IP services.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show interception-method</td>
<td>Displays the interception method.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show interface</td>
<td>Displays the hardware interface information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show inventory</td>
<td>Displays the system inventory information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>Displays the information about access lists that are defined and applied to specific interfaces or applications.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ip routes</td>
<td>Displays the IP routing table.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show kdump</td>
<td>Displays the kernel crash dump information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show kerberos</td>
<td>Displays the Kerberos authentication configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show key-manager</td>
<td>Displays the key manager information for a WAAS device.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show license</td>
<td>Displays the license information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show logging</td>
<td>Displays the system logging configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show memory</td>
<td>Displays the memory blocks and statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show monitor</td>
<td>Displays the status of traffic monitoring on an AppNav Controller Interface Module.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show ntp</td>
<td>Displays the NTP configuration status.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show peer optimization</td>
<td>Displays the configured serial peers for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show policy-map</td>
<td>Displays the configured policy map rules.</td>
<td>privileged-level EXEC</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>show policy-sub-class</td>
<td>Displays the matching criteria and flows for an AppNav class map.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show processes</td>
<td>Displays the process status.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show radius-server</td>
<td>Displays the RADIUS server information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show reload</td>
<td>Displays scheduled reload information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show service-insertion</td>
<td>Displays information about the ANC configuration.</td>
<td>privileged-level EXEC</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>show service-policy</td>
<td>Displays optimization or AppNav policy information.</td>
<td>privileged-level EXEC</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>show services</td>
<td>Displays information related to services.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show smb-conf</td>
<td>Displays the smb-conf configurations.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show snmp</td>
<td>Displays the SNMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ssh</td>
<td>Displays the status and configuration of the Secure Shell (SSH) service.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show startup-config</td>
<td>Displays the startup configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics accelerator</td>
<td>Displays the application accelerator statistics information.</td>
<td>privileged-level EXEC</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>show statistics aoim</td>
<td>Displays AO (accelerator) Information Manager statistics.</td>
<td>privileged-level EXEC</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>show statistics application</td>
<td>Displays the status of the application statistics.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics appnav-controller</td>
<td>Displays statistics for an ANC.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>show statistics authentication</td>
<td>Displays the authentication statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics auto-discovery</td>
<td>Displays TFO auto-discovery statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics cifs</td>
<td>Displays the CIFS statistics information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics class-default</td>
<td>Displays statistics information about the class-default class map.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>show statistics class-map</td>
<td>Displays statistics information about class maps.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator appnav-controller</td>
</tr>
<tr>
<td>show statistics connection</td>
<td>Displays the connection statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection auto-discovery</td>
<td>Displays the auto-discovery connection statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection closed</td>
<td>Displays the closed connection statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection conn-id</td>
<td>Displays the connection ID statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection egress-methods</td>
<td>Displays detailed egress method-related information about the connection segments for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection optimized</td>
<td>Displays optimized information about the connection segments for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics connection pass-through</td>
<td>Displays pass through information about the connection segments for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics crypto ssl ciphers</td>
<td>Displays crypto SSL cipher usage statistics.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics datamover</td>
<td>Displays internal datamover information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics directed-mode</td>
<td>Displays directed mode statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics dre</td>
<td>Displays the Data Redundancy Elimination (DRE) statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>

Table 2-1 Command Summary (continued)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show statistics filtering</td>
<td>Displays TFO flow statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics flow</td>
<td>Displays the flow statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics generic-gre</td>
<td>Displays the generic GRE tunnel statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics icmp</td>
<td>Displays the ICMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics ip</td>
<td>Displays the IP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics monitor appnav-controller traffic</td>
<td>Displays traffic monitoring statistics for an AppNav Controller Interface Module.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show statistics netstat</td>
<td>Displays the Internet socket connection statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics pass-through</td>
<td>Displays the pass-through statistics.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics peer</td>
<td>Displays the DRE peer statistics for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>show statistics policy-sub-class</td>
<td>Displays the statistics for an AppNav class map.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show statistics punt</td>
<td>Displays the punt statistics.</td>
<td>privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>show statistics radius</td>
<td>Displays the RADIUS authentication statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics service-insertion</td>
<td>Displays service context statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>appnav-controller</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show statistics services</td>
<td>Displays the services statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics sessions</td>
<td>Displays the dynamic match session statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td>show statistics snmp</td>
<td>Displays the SNMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics synq</td>
<td>Displays statistics for the SynQ module.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>show statistics tacacs</td>
<td>Displays the TACACS+ authentication and authorization statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics tcp</td>
<td>Displays the Transmission Control Protocol statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics tfo</td>
<td>Displays the Transport Flow Optimization (TFO) statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>show statistics udp</td>
<td>Displays the User Datagram Protocol (UDP) statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics vn-service vpath</td>
<td>Displays the VPATH statistics for a vWAAS device.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics wccp</td>
<td>Displays the WCCP statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application-accelerator</td>
</tr>
<tr>
<td>show statistics windows-domain</td>
<td>Displays the Windows domain configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show statistics windows-print requests</code></td>
<td>Displays the Windows print accelerator statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>show synq list</code></td>
<td>Displays connections for the SynQ module.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>show sysfs volumes</code></td>
<td>Displays the system file system (SYSFS) information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show tacacs</code></td>
<td>Displays the TACACS+ configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show tcp</code></td>
<td>Displays the TCP configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show tech-support</code></td>
<td>Displays the system information for Cisco technical support.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show telnet</code></td>
<td>Displays the Telnet services configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show tfo tcp</code></td>
<td>Displays TFO TCP buffer information.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>show transaction-logging</code></td>
<td>Displays the transaction logging information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>show user</code></td>
<td>Displays information about a particular user.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show users administrative</code></td>
<td>Displays the administrative users.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show version</code></td>
<td>Displays the software version.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>show virtual-blade</code></td>
<td>Displays virtual blade information on your WAE device.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td><code>show wccp</code></td>
<td>Displays the WCCP information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show windows-domain</code></td>
<td>Displays the Windows domain configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>(config-if) shutdown</code></td>
<td>Shuts down the specified interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config-sn) shutdown</code></td>
<td>Configures the WN shutdown timeout.</td>
<td>service node configuration</td>
<td>application-accelerator appnav-controller</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>Shuts down the device (stops all applications and operating system).</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) smb-conf</code></td>
<td>Manually configures parameters in the Samba configuration file, <code>smb-conf</code>.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server access-list</code></td>
<td>Configures an access control list to allow access through an SNMP agent.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server community</code></td>
<td>Enables SNMP, sets the community string, optionally names the group, and enables the read-write access with the community string.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server contact</code></td>
<td>Specifies the text for the system contact MIB object.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server enable traps</code></td>
<td>Enables the SNMP traps.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server group</code></td>
<td>Defines a user security model group.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server host</code></td>
<td>Specifies the hosts to receive SNMP traps.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server location</code></td>
<td>Specifies the path for MIB object <code>sysLocation</code>.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server mib</code></td>
<td>Configures the persistence for the SNMP Event MIB.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server notify inform</code></td>
<td>Configures the SNMP inform request.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server trap-source</code></td>
<td>Configures the SNMP trap source.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server user</code></td>
<td>Defines a user who can access the SNMP engine.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>(config) snmp-server view</code></td>
<td>Defines an SNMPv2 MIB view.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td><code>snmp trigger</code></td>
<td>Creates or deletes SNMP triggers on a MIB variable.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td><code>ssh</code></td>
<td>Allows secure encrypted communications between an untrusted client machine and a WAAS device over an insecure network.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) sshd</td>
<td>Configures the parameters for the Secure Shell (SSH) service.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ssh-key-generate</td>
<td>Generates an SSH host key.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) standby</td>
<td>Configures an interface to be a backup for another interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) stats-collector logging</td>
<td>Configures SMB statistics logging.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) system jumbomtu</td>
<td>Configures a jumbo MTU on all interfaces.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tacacs</td>
<td>Configures the TACACS+ parameters on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) tcp</td>
<td>Configures the TCP parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>tcpdump</td>
<td>Dumps the TCP traffic on the network.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>telnet</td>
<td>Starts the Telnet client.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) telnet enable</td>
<td>Enables the Telnet services.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>terminal</td>
<td>Sets the terminal output commands.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>test</td>
<td>Performs diagnostic tests and displays the results.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>tethereal</td>
<td>Analyzes network traffic from the command line.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) tfo exception</td>
<td>Configures TFO exception handling.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo optimize</td>
<td>Configures TFO optimization for DRE or full generic optimization on the WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp adaptive-buffer-sizing</td>
<td>Configures TFO optimization with TCP adaptive buffer sizing.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp keepalive</td>
<td>Configures TFO optimization with a TCP keepalive on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp optimized-mss</td>
<td>Configures TFO optimization with an optimized-side TCP maximum segment size on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) tfo tcp optimized-receive-buffer</td>
<td>Configures TFO optimization with an optimized-side receive buffer on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp optimized-send-buffer</td>
<td>Configures TFO optimization with an optimized-side send buffer on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-mss</td>
<td>Configures TFO optimization with an unoptimized-side TCP maximum segment size on the WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-receive-buffer</td>
<td>Configures TFO optimization with an unoptimized-side receive buffer on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-send-buffer</td>
<td>Configures TFO optimization with an unoptimized-side send buffer on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) threshold-monitor</td>
<td>Configures monitoring thresholds in an AppNav deployment.</td>
<td>global configuration</td>
<td>appnav-controller</td>
</tr>
<tr>
<td>top</td>
<td>Displays the current top CPU activities.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>traceroute</td>
<td>Traces the route to a remote host.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>transaction-log</td>
<td>Forces the transaction logging for TFO and export on a WAE.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) transaction-logs</td>
<td>Configures the transaction logging on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>type</td>
<td>Displays a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>type-tail</td>
<td>Displays the last several lines of a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) username</td>
<td>Establishes the username authentication.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-accelerated) version</td>
<td>Specifies the type of SSL protocol to use for accelerated services.</td>
<td>SSL accelerated service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-global) version</td>
<td>Specifies the type of SSL protocol to use for global services.</td>
<td>SSL global service configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ssl-peering) version</td>
<td>Specifies the type of SSL protocol to use for management services.</td>
<td>SSL host peering service configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-ssl-mgmt) version</td>
<td>Specifies the type of SSL protocol to use for management services.</td>
<td>SSL management service configuration</td>
<td>All</td>
</tr>
<tr>
<td>virtual-blade</td>
<td>Executes general operations on a virtual blade.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) virtual-blade</td>
<td>Configures virtual blades on your WAE device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>vm</td>
<td>Initializes the virtual machine, and configures the host clock sync setting.</td>
<td>privileged-level EXEC</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) vn-service vpath</td>
<td>Enables or disables VPATH interception for a vWAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-vb) vnc</td>
<td>Enables or disables the VNC server for the virtual blade on your WAE.</td>
<td>virtual blade configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) wccp access-list</td>
<td>Configures the IP access list for inbound Web Cache Coordination Protocol (WCCP) GRE-encapsulated traffic on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) wccp flow-redirect</td>
<td>Enables the WCCP flow protection feature on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) wccp router-list</td>
<td>Creates a router list on a WAE for use in the WCCP Version 2 services.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) wccp shutdown</td>
<td>Sets the maximum time interval after which the WAE will perform a clean shut down.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config) wccp tcp-promiscuous service-pair</td>
<td>Configures and enables the TCP promiscuous mode service on a WAE.</td>
<td>global configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>(config-wccp-service) weight</td>
<td>Configures the weight assigned to a WAE.</td>
<td>WCCP configuration</td>
<td>application- accelerator</td>
</tr>
<tr>
<td>waas-tcptrace</td>
<td>Lists WAAS devices in the path to a destination host.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>whoami</td>
<td>Displays the name of the current user.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Accesses Windows domain utilities.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) windows-domain</td>
<td>Configures Windows domain server options.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>write</td>
<td>Writes or erases the startup configurations to NVRAM or to a terminal session, or writes the MIB persistence configuration to disk.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
CHAPTER 3

CLI Commands

This chapter provides detailed information for the following types of CLI commands for the WAAS software:

- EXEC mode commands that you can enter after you log in to the WAAS device. See the “EXEC Mode Commands” section for a complete listing of commands.

- Global configuration mode commands that you can enter after you log in to the WAAS device and access global configuration mode. See the “Global Configuration Mode Commands” section for a complete listing of commands.

- Interface configuration mode commands that you can enter after you access interface configuration mode. See the “Interface Configuration Mode Commands” section for a complete listing of commands.

- Standard or extended ACL configuration mode commands that you can enter after you access the standard or extended ACL configuration modes. See the “Standard ACL Configuration Mode Commands” and “Extended ACL Configuration Mode Commands” sections for a complete listing of commands.

- Preposition configuration mode commands that you can enter after you access the preposition configuration mode. See the “Preposition Configuration Mode Commands” section for a complete listing of commands.

- Virtual blade configuration mode commands that you can enter after you access virtual blade configuration mode. See the “Virtual Blade Configuration Mode Commands” section for a complete listing of commands.

- PKI Certificate Authority configuration mode commands that you can enter after you access certificate authority configuration mode. See the “PKI Certificate Authority Configuration Mode Commands” section for a complete listing of commands.

- PKI Global Settings configuration mode commands that you can enter after you access PKI global settings configuration mode. See the “PKI Global Settings Configuration Mode Commands” section for a complete listing of commands.

- SSL accelerated service configuration mode commands that you can enter after you access SSL accelerated service configuration mode. See the “SSL Accelerated Service Configuration Mode Commands” section for a complete listing of commands.

- SSL cipher list configuration mode commands that you can enter after you access SSL cipher list configuration mode. See the “SSL Cipher List Configuration Mode Commands” section for a complete listing of commands.

- SSL global service configuration mode commands that you can enter after you access SSL global service configuration mode. See the “SSL Global Service Configuration Mode Commands” section for a complete listing of commands.
SSL host peering service configuration mode commands that you can enter after you access SSL host peering service configuration mode. See the “SSL Host Peering Service Configuration Mode Commands” section for a complete listing of commands.

SSL management service configuration mode commands that you can enter after you access SSL management service configuration mode. See the “SSL Management Service Configuration Mode Commands” section for a complete listing of commands.

WCCP configuration mode commands that you can enter after you access WCCP configuration mode. See the “WCCP Configuration Mode Commands” section for a complete listing of commands.

AppNav Controller Group configuration mode commands that you can enter after you access AppNav Controller Group configuration mode. See the “AppNav Controller Group Configuration Mode Commands” section for a complete listing of commands.

Service Node Group configuration mode commands that you can enter after you access Service Node Group configuration mode. See the “Service Node Group Configuration Mode Commands” section for a complete listing of commands.

Service Node configuration mode commands that you can enter after you access Service Node configuration mode. See the “Service Node Configuration Mode Commands” section for a complete listing of commands.

Service Context configuration mode commands that you can enter after you access Service Context configuration mode. See the “Service Context Configuration Mode Commands” section for a complete listing of commands.

Class Map configuration mode commands that you can enter after you access Class Map configuration mode. See the “Class Map Configuration Mode Commands” section for a complete listing of commands.

Policy Map configuration mode commands that you can enter after you access Policy Map configuration mode. See the “Policy Map Configuration Mode Commands” section for a complete listing of commands.

Policy Map Class configuration mode commands that you can enter after you access Policy Map Class configuration mode. See the “Policy Map Class Configuration Mode Commands” section for a complete listing of commands.

The description of each command includes the following:

- The syntax of the command, default values, command modes, usage guidelines, and examples.
- Any related commands, when appropriate

See Chapter 1, “Using the WAAS Command-Line Interface” for a discussion about using the CLI and about the CLI command modes.
EXEC Mode Commands

Use the EXEC mode for setting, viewing, and testing system operations. In general, the user EXEC commands allow you to connect to remote devices, change terminal line settings on a temporary basis, perform basic tests, and list system information.

The EXEC mode is divided into two access levels: user and privileged.

The user EXEC mode is used by local and general system administrators, while the privileged EXEC mode is used by the root administrator. Use the `enable` and `disable` commands to switch between the two levels. Access to the user-level EXEC command line requires a valid password.

The user-level EXEC commands are a subset of the privileged-level EXEC commands. The user-level EXEC prompt is the hostname followed by a right angle bracket (>). The prompt for the privileged-level EXEC command line is the pound sign (#). To execute an EXEC command, enter the command at the EXEC system prompt and press the Return key.

Note: You can change the hostname using the `hostname` global configuration command.

The following example shows how to access the privileged-level EXEC command line from the user level:

```
WAE> enable
WAE#
```

To leave EXEC mode, use the `exit` command at the system prompt:

```
WAE# exit
WAE>
```
cd

To change from one directory to another directory in the WAAS software, use the cd EXEC command.

```
cd directoryname
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>directoryname</code></td>
<td>Directory name.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

central-manager

Usage Guidelines

Use this command to navigate between directories and for file management. The directory name becomes the default prefix for all relative paths. Relative paths do not begin with a slash (/). Absolute paths begin with a slash (/).

Examples

The following example shows how to change to a directory using a relative path:

```
WAE(config)# cd local1
```

The following example shows how to change to a directory using an absolute path:

```
WAE(config)# cd /local1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>deltree</td>
</tr>
<tr>
<td>dir</td>
</tr>
<tr>
<td>lls</td>
</tr>
<tr>
<td>ls</td>
</tr>
<tr>
<td>mkdir</td>
</tr>
<tr>
<td>pwd</td>
</tr>
</tbody>
</table>
clear arp-cache

To clear the ARP cache, use the `clear arp-cache` EXEC command.

```
show running-config
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipaddress</code></td>
<td>(Optional) ARP entries for the IP address.</td>
</tr>
<tr>
<td><code>interface</code></td>
<td>(Optional) Clears all ARP entries on the designated interface.</td>
</tr>
<tr>
<td><code>GigabitEthernet slot/port</code></td>
<td>Clears the Gigabit Ethernet interface (slot/port).</td>
</tr>
<tr>
<td><code>PortChannel index</code></td>
<td>Clears the Port channel interface number (1-4).</td>
</tr>
<tr>
<td><code>Standby grpNumber</code></td>
<td>Clears the Standby group number (1-2).</td>
</tr>
<tr>
<td><code>TenGigabitEthernet slot/port</code></td>
<td>Clears the 10-Gigabit Ethernet interface (slot/port).</td>
</tr>
<tr>
<td>`InlinePort slot/grpnumber {lan</td>
<td>wan}`</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- EXEC

Device Modes

- application-accelerator

Examples

The following example shows how to clear the ARP cache on the WAAS device:

```
WAE# clear arp-cache
```

Related Commands

- `license add`
- `show interface`
- `show license`
- `show wccp`
clear bmc

To clear the BMC logs and events, use the clear bmc EXEC command.

 clear bmc [event-log]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>event-log</th>
<th>clears BMC system events and logs.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller

Examples

The following example shows how to clear the entries recorded in the BMC system event log on the WAAS device:

 WAE# clear bmc event-log

Related Commands

show bmc
clear cache

To clear cached objects, use the `clear cache` EXEC command.

```
clear cache {cifs | dre}
clear cache http-metadatacache https {conditional-response | redirect-response | unauthorized-response}
clear cache http-metadatacache {all | conditional-response | redirect-response | unauthorized-response} [url]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cifs</code></td>
<td>Clears the CIFS cache.</td>
</tr>
<tr>
<td><code>dre</code></td>
<td>Expires the DRE cache.</td>
</tr>
<tr>
<td><code>https</code></td>
<td>Clears cache entries for HTTPS metadata cache response types.</td>
</tr>
<tr>
<td><code>conditional-response</code></td>
<td>Clears cache entries for conditional responses (304).</td>
</tr>
<tr>
<td><code>redirect-response</code></td>
<td>Clears cache entries for redirect responses (301).</td>
</tr>
<tr>
<td><code>unauthorized-response</code></td>
<td>Clears cache entries for authorization required responses (401).</td>
</tr>
<tr>
<td><code>http-metadatacache</code></td>
<td>Clears the HTTP accelerator metadata cache.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Clears cache entries for all HTTP metadata cache response types.</td>
</tr>
<tr>
<td><code>url</code></td>
<td>Clears cache entries matching only the specified URL. If the URL string contains a question mark (?), it must be escaped with a preceding backslash (for example, \?).</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

After you use the `clear cache dre` command, the first 1 MB of data is not optimized. The Cisco WAAS software does not optimize the first 1 MB of data after a restart of the tcp proxy service. The data that is transmitted after the first 1 MB of data will be optimized according to the configured policy.

The `clear cache dre` command may cause the system to reboot, but you are asked to confirm before the command continues and you are given a chance to save any configuration changes that have been made to the running configuration.

The `clear cache dre` command does not delete the DRE cache contents but expires it by removing markers in the content to prevent reuse. If you want to delete the cache contents, use the `disk delete-data-partitions` command.
clear cache

The following example shows how to clear the CIFS cached objects on the WAAS device:

```plaintext
WAE# clear cache cifs
```

The following example shows how to clear the HTTP metadata cache for conditional responses:

```plaintext
WAE# clear cache http-metadatacache conditional-response
```

Related Commands

- `license add`
- `show cache http-metadatacache`
- `show interface`
- `show license`
- `show wccp`
clear cdp

To clear Cisco Discovery Protocol statistics, use the clear cdp EXEC command.

 clear cdp {counters | table}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>counters</td>
<td>Clears the CDP counters.</td>
</tr>
<tr>
<td>table</td>
<td>Clears the CDP tables.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to clear the CDP counter statistics on the WAAS device:

 WAE# clear cdp counters

Related Commands

license add
show interface
show license
show wccp
clear cifs msg-signing-servers

To clear the list of message signing servers, use the `clear cifs msg-signing-servers` EXEC command.

```
clear cifs msg-signing-servers {all | list}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears the full list of message signing servers.</td>
</tr>
<tr>
<td>list</td>
<td>Clears only those servers specified in the colon separated list. Specify servers by IP address or fully qualified domain name.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

This command operates only when the CIFS application accelerator is enabled.

Examples

The following example shows how to remove two message signing servers from the list:

```
WAE# clear cifs msg-signing-servers 10.11.12.13:10.11.20.34
```

Related Commands

- `show cifs`
clear connection

To reset one or more connections, use the clear connection EXEC command.

```
clear connection [client-ip {ip_address | hostname} | client-port port | flow-id id | server-ip {ip_address | hostname} | server-port port]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-ip</td>
<td>Resets the connections with the specified client IP address or hostname.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td>client-port</td>
<td>Resets the connections with the specified client port number. The port number is from 1 to 65535.</td>
</tr>
<tr>
<td>port</td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td>flow-id id</td>
<td>Resets the connection with the specified number identifier.</td>
</tr>
<tr>
<td>server-ip</td>
<td>Resets the connections with the specified server IP address or hostname.</td>
</tr>
<tr>
<td>server-port</td>
<td>Resets the connections with the specified server port number. The port number is from 1 to 65535.</td>
</tr>
<tr>
<td>port</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

appnav-controller

Examples

The following example shows how to reset connection number 45 on the WAAS device:

```
WAE# clear connection flow-id 45
```

The following example shows how to reset connections with server port 80 on the WAAS device:

```
WAE# clear connection server-port 80
```

Related Commands

show statistics connection
clear dre

To clear DRE configurations, use the clear dre EXEC command.

```
  clear dre auto-bypass [ip_address | hostname] port
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip_address</td>
<td>(Optional) IP address of a server.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Hostname of a server.</td>
</tr>
<tr>
<td>port</td>
<td>(Optional) A port number in the range from 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Examples

The following example shows how to clear all DRE auto-bypass entries:

```
  WAE# clear dre auto-bypass
```

The following example shows how to clear the DRE auto-bypass entry for a specific port on a specific server:

```
  WAE# clear dre auto-bypass server 1.2.3.4 17
```

Related Commands

- show dre
clear ip

To clear IP access list statistics, use the `clear ip` EXEC command.

```
clear ip access-list counters [acl-num \ acl-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Clears the access list statistical information.</td>
</tr>
<tr>
<td>counters</td>
<td>Clears the IP access list counters.</td>
</tr>
<tr>
<td>acl-num</td>
<td>(Optional) Counters for the specified access list, identified using a numeric identifier (standard access list: 1–99; extended access list: 100–199).</td>
</tr>
<tr>
<td>acl-name</td>
<td>(Optional) Counters for the specified access list, identified using an alphanumeric identifier of up to 30 characters, beginning with a letter.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows how to clear the IP access list counters on the WAAS device:

```
WAE# clear ip access-list counters
```

Related Commands

- `license add`
- `show interface`
- `show license`
- `show wccp`
clear license

To clear licensing configuration, use the clear license EXEC command.

```
clear license [license-name]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>license-name</td>
<td>Name of the software license to remove. The following license names are supported:</td>
</tr>
<tr>
<td></td>
<td>• Transport—Enables basic DRE, TFO, and LZ optimization.</td>
</tr>
<tr>
<td></td>
<td>• Enterprise—Enables the EPM, HTTP, MAPI, NFS, SSL, CIFS, and Windows Print application accelerators, the WAAS Central Manager, and basic DRE, TFO, and LZ optimization. You cannot remove this license if the video or virtualization licenses are installed. You must remove both of those licenses first.</td>
</tr>
<tr>
<td></td>
<td>• Video—Enables the video application accelerator.</td>
</tr>
<tr>
<td></td>
<td>• Virtual-Blade—Enables the virtualization feature.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>EXEC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to clear the licensing configuration on the WAAS device:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE# clear license</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>license add</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show interface</td>
</tr>
<tr>
<td></td>
<td>show license</td>
</tr>
<tr>
<td></td>
<td>show wccp</td>
</tr>
</tbody>
</table>
clear logging

To clear syslog messages saved in a disk file, use the clear logging EXEC command.

clear logging

Syntax Description This command has no arguments or keywords.

Defaults No default behavior or values.

Command Modes EXEC

Device Modes application-accelerator
central-manager

Usage Guidelines The clear logging command removes all current entries from the syslog.txt file but does not make an archive of the file. It puts a “Syslog cleared” message in the syslog.txt file to indicate that the syslog has been cleared.

Examples The following example shows how to clear all entries in the syslog.txt file on the WAAS device:

WAE# clear logging

Feb 14 12:17:18 WAE# exec_clear_logging:Syslog cleared

Related Commands license add
 show interface
 show license
 show wccp
clear service-policy

To clear class map and policy map counters for AppNav and optimization policies, use the `clear service-policy` EXEC command.

```
clear service-policy [type {appnav | waas}] counters
```

Syntax Description
- `type` Specifies the type of counters to clear.
- `appnav` Clears AppNav class map and policy map counters.
- `waas` Clears WAAS optimization class map and policy map counters.
- `counters` Clears the class map and policy map counters.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
- application-accelerator
- appnav-controller

Usage Guidelines
When specified without the `type` keyword, this command clears counters for both AppNav and WAAS optimization class maps and policy maps.

Examples
The following example shows how to clear both AppNav and WAAS optimization class map and policy map counters:

```
WAE# clear service-policy counters
```

The following example shows how to clear only AppNav class map and policy map counters:

```
WAE# clear service-policy type appnav counters
```

Related Commands
- `show class-map`
- `show policy-map`
- `show statistics class-map`
- `show statistics policy-sub-class`
clear statistics

To reset statistics data, use the clear statistics EXEC command.

clear statistics {all | aoim | appnav-controller all | authentication | auto-discovery {all | blacklist} | class-map {appnav | waas} | datamover | directed-mode | dre [global] | exporter | filtering | flow monitor type performance-monitor tcpstat-v1 | generic-gre | icmp | inline | ip | pass-through | peer dre | punt | radius | service-insertion {appnav-controller ip_address | appnav-controller-group | data-path | service-context | service-node ip_address | service-node-group name} | snmp | synq | tacacs | tcp | tfo | udp | wccp | windows-domain | windows-print}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears all statistics.</td>
</tr>
<tr>
<td>aoim</td>
<td>Clears all of the application accelerator information manager statistics.</td>
</tr>
<tr>
<td>appnav-controller all</td>
<td>Clears all of the AppNav Controller statistics.</td>
</tr>
<tr>
<td>authentication</td>
<td>Clears authentication statistics.</td>
</tr>
<tr>
<td>auto-discovery</td>
<td>Clears the auto-discovery statistics.</td>
</tr>
<tr>
<td>blacklist</td>
<td>Clears the auto-discovery statistics for the blacklist.</td>
</tr>
<tr>
<td>class-map</td>
<td>Clears all class map statistics.</td>
</tr>
<tr>
<td>appnav</td>
<td>Clears all statistics for AppNav class maps.</td>
</tr>
<tr>
<td>waas</td>
<td>Clears all statistics for WAAS class maps.</td>
</tr>
<tr>
<td>datamover</td>
<td>Clears all of the data mover statistics.</td>
</tr>
<tr>
<td>directed-mode</td>
<td>Clears the directed mode statistics.</td>
</tr>
<tr>
<td>dre</td>
<td>Clears the Data Redundancy Elimination (DRE) statistics.</td>
</tr>
<tr>
<td>exporter</td>
<td>Clears the exporter statistics.</td>
</tr>
<tr>
<td>global</td>
<td>(Optional) Clears the global DRE statistics.</td>
</tr>
<tr>
<td>filtering</td>
<td>Clears the filter table statistics.</td>
</tr>
<tr>
<td>flow</td>
<td>Clears the network traffic flow statistics.</td>
</tr>
<tr>
<td>monitor</td>
<td>Clears the monitor flow performance statistics.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Clears the tcpstat-v1 collector statistics.</td>
</tr>
<tr>
<td>generic-gre</td>
<td>Clears the generic GRE statistics.</td>
</tr>
<tr>
<td>icmp</td>
<td>Clears the ICMP statistics.</td>
</tr>
<tr>
<td>inline</td>
<td>Clears the inline interception statistics.</td>
</tr>
<tr>
<td>ip</td>
<td>Clears the IP statistics.</td>
</tr>
<tr>
<td>pass-through</td>
<td>Clears all of the pass-through statistics.</td>
</tr>
<tr>
<td>peer dre</td>
<td>Clears all peer DRE statistics.</td>
</tr>
<tr>
<td>punt</td>
<td>Clears all the punt statistics.</td>
</tr>
<tr>
<td>radius</td>
<td>Clears the RADIUS statistics.</td>
</tr>
<tr>
<td>service-insertion</td>
<td>Clears AppNav service-insertion statistics.</td>
</tr>
<tr>
<td>appnav-controller ip_address</td>
<td>Clears statistics for the AppNav Controller with the specified IP address.</td>
</tr>
<tr>
<td>appnav-controller-group</td>
<td>Clears statistics for the AppNav Controller group.</td>
</tr>
<tr>
<td>data-path</td>
<td>Clears statistics for the data path.</td>
</tr>
</tbody>
</table>
clear statistics

Clears statistics for the service context.

service-context

Clears statistics for the service node (WN) with the specified IP address.

service-node ip_address

Clears statistics for the service node group (WNG) with the specified name.

service-node-group name

Clears the SNMP statistics.

snmp

Clears the SynQ module statistics.

synq

Clears the TACACS+ statistics.

tacacs

Clears the TCP flow optimization (TFO) statistics.

tfo

Clears the TCP statistics.

tcp

Clears the UDP statistics.

udp

Clears the WCCP statistics.

wccp

Clears all of the Windows domain statistics.

windows-domain

Clears all of the Windows print statistics.

windows-print

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

appnav-controller

central-manager

Usage Guidelines

The `clear statistics` command clears all statistical counters from the parameters given. Use this command to monitor fresh statistical data for some or all features without losing cached objects or configurations.

Not all command options are applicable for a device in central-manager mode.

Examples

The following example shows how to clear all authentication, RADIUS and TACACS+ information on the WAAS device:

```
WAE# clear statistics radius
WAE# clear statistics tacacs
WAE# clear statistics authentication
```

Related Commands

- clear statistics accelerator
- clear statistics connection
clear statistics accelerator

To clear all global statistics, use the clear statistics accelerator EXEC command.

 clear statistics accelerator { cifs | epm | generic | http | mapi | nfs | smb | ssl | video }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cifs</td>
<td>Clears the statistics for the CIFS application accelerator.</td>
</tr>
<tr>
<td>epm</td>
<td>Clears the statistics for the EPM application accelerator.</td>
</tr>
<tr>
<td>generic</td>
<td>Clears the statistics for generic accelerator.</td>
</tr>
<tr>
<td>http</td>
<td>Clears the statistics for the HTTP application accelerator.</td>
</tr>
<tr>
<td>mapi</td>
<td>Clears the statistics for the MAPI application accelerator.</td>
</tr>
<tr>
<td>nfs</td>
<td>Clears the statistics for the NFS application accelerator.</td>
</tr>
<tr>
<td>ssl</td>
<td>Clears the statistics for the SSL application accelerator.</td>
</tr>
<tr>
<td>smb</td>
<td>Clears the statistics for the SMB application accelerator, except for statistics on signed SMB bytes counters. To clear statistics for signed SMB bytes (read from/written to LAN, read from/written to WAN), use clear statistics accelerator generic, which clears all accelerator statistics, including signed SMB bytes counters.</td>
</tr>
<tr>
<td>video</td>
<td>Clears the statistics for the video application accelerator.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example shows how to clear the statistics for the CIFS application accelerator on the WAAS device:

 WAE# clear statistics accelerator cifs

Related Commands

- clear statistics
- clear statistics connection
clear statistics connection

To clear connection statistics, use the `clear statistics connection` EXEC command.

```
clear statistics connection conn-id connection_id
```

```
clear statistics connection optimized [client-ip {ip_address | hostname} | client-port port | cifs | epm | http | ica | mapi | nfs | smb | ssl | tfo | video | wansecure | dre | peer-id peer_id | server-ip {ip_address | hostname} | server-port port]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>conn-id</td>
<td><code>connection_id</code> clears connection statistics for the connection with the specified number identifier.</td>
</tr>
<tr>
<td>optimized</td>
<td>Clears connection statistics for optimized connections.</td>
</tr>
<tr>
<td>client-ip</td>
<td>(Optional) Clears connection statistics for the client with the specified IP address or hostname.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td>client-port</td>
<td>(Optional) Clears the connection statistics for the client with the specified port number. The port number is from 1 to 65535.</td>
</tr>
<tr>
<td>port</td>
<td></td>
</tr>
<tr>
<td>cifs</td>
<td>(Optional) Clears connection statistics for connections optimized by the CIFS application accelerator.</td>
</tr>
<tr>
<td>epm</td>
<td>(Optional) Clears connection statistics for connections optimized by the EPM application accelerator.</td>
</tr>
<tr>
<td>http</td>
<td>(Optional) Clears connection statistics for connections optimized by the HTTP application accelerator.</td>
</tr>
<tr>
<td>ica</td>
<td>(Optional) Clears connection statistics for connections optimized by the ICA application accelerator.</td>
</tr>
<tr>
<td>mapi</td>
<td>(Optional) Clears connection statistics for connections optimized by the MAPI application accelerator.</td>
</tr>
<tr>
<td>nfs</td>
<td>(Optional) Clears connection statistics for connections optimized by the NFS application accelerator.</td>
</tr>
<tr>
<td>smb</td>
<td>(Optional) Clears connection statistics for connections optimized by the SMB application accelerator.</td>
</tr>
<tr>
<td>ssl</td>
<td>(Optional) Clears connection statistics for connections optimized by the SSL application accelerator.</td>
</tr>
<tr>
<td>tfo</td>
<td>(Optional) Clears connection statistics for connections optimized by the TFO application accelerator.</td>
</tr>
<tr>
<td>video</td>
<td>(Optional) Clears connection statistics for connections optimized by the video application accelerator.</td>
</tr>
<tr>
<td>wansecure</td>
<td>(Optional) Clears connection statistics for connections optimized by the WAN secure application accelerator.</td>
</tr>
<tr>
<td>dre</td>
<td>(Optional) Clears connection statistics for connections optimized by the DRE feature.</td>
</tr>
<tr>
<td>peer-id</td>
<td>(Optional) Clears the connection statistics for the peer with the specified identifier. The peer ID is from 0 to 4294967295.</td>
</tr>
<tr>
<td>peer_id</td>
<td></td>
</tr>
</tbody>
</table>
clear statistics connection

server-ip (Optional) Clears the connection statistics for the server with the specified IP address or hostname.

server-port port (Optional) Clears the connection statistics for the server with the specified port number. The port number is from 1 to 65535.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator

Examples
The following example shows how to clear the connection 1 statistics on the WAAS device:

```
WAE# clear statistics connection conn-id 1
```

Related Commands
clear statistics
clear statistics accelerator
clear statistics monitor appnav-controller traffic

To clear traffic monitoring statistics for an AppNav Controller Interface Module, use the `clear statistics monitor appnav-controller traffic` EXEC command.

```
clear statistics monitor appnav-controller traffic
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
appnav-controller

Examples
The following example shows how to clear the traffic monitoring statistics:

```
ANC# clear statistics monitor appnav-controller traffic
```

Related Commands

- `monitor appnav-controller traffic`
- `show statistics monitor appnav-controller traffic`
clear statistics vn-service vpath

To clear VPATH statistics for your vWAAS device, use the `clear statistics vn-service vpath` EXEC command.

```
clear statistics vn-service vpath
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
The `clear statistics vn-service vpath` command removes all current entries from the `syslog.txt` file but does not make an archive of the file. It puts a “Syslog cleared” message in the `syslog.txt` file to indicate that the syslog has been cleared.

Examples
The following example shows how to clear all VPATH entries in the `syslog.txt` file on the vWAAS device:

```
WAE# clear statistics vn-service vpath
```

Related Commands
- `show statistics vn-service vpath`
- `(config) vn-service vpath`
clear transaction-log

To archive a working transaction log file, use the clear transaction-log EXEC command.

```
clear transaction-log {accelerator | flow}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>accelerator</th>
<th>flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clears the accelerator transaction log file.</td>
<td>Clears the TFO transaction log.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator

Examples
The following example shows how to archive the flow transaction log file on the WAAS device:

```
WAE# clear transaction-log flow
```

Related Commands
license add
show interface
show license
show wccp
clear users

To clear user connections or to unlock users that have been locked out, use the `clear users` EXEC command.

```
clear users [administrative | locked-out { all | username username }]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrative</td>
<td>(Optional) Clears the connections (logins) of administrative users authenticated through a remote login service.</td>
</tr>
<tr>
<td>locked-out</td>
<td>(Optional) Unlocks specified locked-out user accounts.</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all user accounts.</td>
</tr>
<tr>
<td>username username</td>
<td>Specifies the account username.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

central-manager

Usage Guidelines

The `clear users administrative` command clears the connections for all administrative users who are authenticated through a remote login service, such as TACACS. This command does not affect an administrative user who is authenticated through the local database. Only locally authenticated administrative users can run this command.

The `clear users locked-out` command unlocks user accounts that have been locked out. If a strong password policy is enabled (see the `(config) authentication strict-password-policy` command) a user account will be locked out if the user fails three consecutive login attempts. (This restriction does not apply to the admin account.)

Examples

The following example shows how to clear the connections of all authenticated users:

```
WAE(config)# clear users
```

The following example shows how to clear the connections of all administrative users authenticated through a remote login service (it does not affect administrative users authenticated through the local database):

```
WAE(config)# clear users administrative
```

The following example shows how to unlock all locked-out user accounts:

```
WAE(config)# clear users locked-out all
```
clear users

The following example shows how to unlock the account for username darcy:

WAE(config)# clear users locked-out username darcy

Related Commands
clear arp-cache
(config) authentication strict-password-policy
clear windows-domain

To clear Windows domain server information for a WAAS device, use the `clear windows-domain` EXEC command.

```
clear windows-domain encryption-service blacklist { identity tagName | service spn }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>identity tagName</td>
<td>Clears identity information.</td>
</tr>
<tr>
<td>service spn</td>
<td>Clears service information.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Use the `clear windows-domain` EXEC command to clear Windows domain server information.

Examples

The following example shows how to clear the Windows domain server information:

```
WAE(config)# clear windows-domain encryption-service blacklist identity some-id
```

Related Commands

- `show windows-domain`
clear windows-domain-log

To clear the Windows domain server log file, use the clear windows-domain-log EXEC command.

 clear windows-domain-log

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to clear all entries in the Windows domain log file on the WAAS device:

 WAE# clear windows-domain-log

Related Commands
license add
show interface
show license
show wccp
To set clock functions or update the calendar, use the `clock` EXEC command.

```
clock {read-calendar | set time day month year | update-calendar}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read-calendar</code></td>
<td>Reads the calendar and updates the system clock.</td>
</tr>
<tr>
<td><code>set time day month year</code></td>
<td>Sets the time and date. Current time in hh:mm:ss format (hh: 00–23; mm: 00–59; ss: 00–59). Day of the month (1–31). Month of the year (January, February, March, April, May, June, July, August, September, October, November, December), Year (1993–2035).</td>
</tr>
<tr>
<td><code>update-calendar</code></td>
<td>Updates the calendar with the system clock.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
If you have an outside source on your network that provides time services (such as a NTP server), you do not need to set the system clock manually. When setting the clock, enter the local time. The WAAS device calculates the UTC based on the time zone set by the `clock timezone` global configuration command.

Two clocks exist in the system: the software clock and the hardware clock. The software uses the software clock. The hardware clock is used only at bootup to initialize the software clock.

The `set` keyword sets the software clock.

Examples
The following example shows how to set the software clock on the WAAS device:

```
WAE# clock set 13:32:00 01 February 2005
```

Related Commands
`show clock`
To configure the Centralized Management System (CMS) embedded database parameters for a WAAS device, use the `cms` EXEC command.

```
cms { config-sync | deregister [force] | lcm { enable | disable } | maintenance { full | regular } | recover { identity word | restore filename | validate } }
cyms database { backup { config} | create | delete }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-sync</td>
<td>Sets the node to synchronize configuration with the WAAS Central Manager.</td>
</tr>
<tr>
<td>deregister</td>
<td>Removes the device registration record and its configuration on the WAAS Central Manager.</td>
</tr>
<tr>
<td>force</td>
<td>(Optional) Forces the removal of the node registration. This option is available only on WAEs and the standby Central Manager. If disk encryption is enabled, it is disabled and encrypted file systems are erased after a reload.</td>
</tr>
<tr>
<td>lcm</td>
<td>Configures local/central management on a WAAS device that is registered with the WAAS Central Manager.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables synchronization of the WAAS network configuration of the device with the local CLI configuration.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables synchronization of the WAAS network configuration of the device with the local CLI configuration.</td>
</tr>
<tr>
<td>maintenance</td>
<td>Cleans and reindexes the embedded database tables.</td>
</tr>
<tr>
<td>full</td>
<td>Specifies a full maintenance routine for the embedded database tables.</td>
</tr>
<tr>
<td>regular</td>
<td>Specifies a regular maintenance routine for the embedded database tables.</td>
</tr>
<tr>
<td>recover</td>
<td>Recovers the identity of a WAAS device.</td>
</tr>
<tr>
<td>identity word</td>
<td>Specifies the identity of the recovered device (identification key set on the Central Manager).</td>
</tr>
<tr>
<td>restore filename</td>
<td>Restores the database management tables using the backup local filename.</td>
</tr>
<tr>
<td>validate</td>
<td>Validates the database files.</td>
</tr>
<tr>
<td>database</td>
<td>Creates, backs up, deletes, restores, or validates the CMS-embedded database management tables or files.</td>
</tr>
<tr>
<td>backup</td>
<td>Backs up the database management tables.</td>
</tr>
<tr>
<td>config</td>
<td>Backs up only configuration tables.</td>
</tr>
<tr>
<td>create</td>
<td>Creates the embedded database management tables.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the embedded database files.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC
Device Modes

application-accelerator

central-manager

Usage Guidelines

Use the `cms config-sync` command to enable registered WAAS devices and standby WAAS Central Manager to contact the primary WAAS Central Manager immediately for a getUpdate (get configuration poll) request before the default polling interval of 5 minutes. For example, when a node is registered with the primary WAAS Central Manager and activated, it appears as Pending in the WAAS Central Manager GUI until it sends a getUpdate request. The `cms config-sync` command causes the registered node to send a getUpdate request at once, and the status of the node changes as Online.

Use the `cms database create` command to initialize the CMS database for a device that is already registered with the WAAS Central Manager. Then use the `cms enable` command to enable the CMS. For a device that is not registered with a WAAS Central Manager, use only the `cms enable` command to initialize the CMS database tables, register the node, and enable the CMS.

Note

For a vWAAS device, the model type must be configured before enabling management services.

Before a node can join a WAAS network, it must first be registered and then activated. Activate the node by using the WAAS Central Manager GUI.

The `cms deregister` command removes the node from the WAAS network by deleting registration information and database tables.

The `cms deregister force` command forces the removal of the node from the WAAS network by deleting registration information and database tables. If disk encryption is enabled on the device, it is disabled after you confirm this action. All data in encrypted file systems and imported certificates and private keys for the SSL accelerator are lost after a reload.

To back up the existing management database for the WAAS Central Manager, use the `cms database backup` command. For database backups, specify the following items:

- Location, password, and user ID
- Dump format in PostgreSQL plain text syntax

The naming convention for backup files includes the time stamp and the WAAS version number.

After the backup is complete, use the `copy disk ftp` command to move the backup file to a remote system.

Note

For information on the procedure to back up and restore the CMS database on the WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.

Note

Do not run multiple instances of the `cms database backup` command simultaneously on a device. If a backup is in progress, you must wait for it to finish before using the command again.

When you use the `cms recover identity word` command when recovering lost registration information, or replacing a failed node with a new node that has the same registration information, you must specify the device recovery key that you configured in the Modifying Config Property, System.device.recovery.key window of the WAAS Central Manager GUI.
All CMS-related commands are disabled when running the **cms restore** command.

Use the **lcm** command to configure local/central management (LCM) on a WAE. The LCM feature allows settings that are configured using the device CLI or GUI to be stored as part of the WAAS network-wide configuration data (enable or disable).

When you enter the **cms lcm enable** command, the CMS process running on WAES and the standby WAAS Central Manager detects the configuration changes that you made on these devices using CLIs and sends the changes to the primary WAAS Central Manager.

When you enter the **cms lcm disable** command, the CMS process running on the WAES and the standby WAAS Central Manager does not send the CLI changes to the primary WAAS Central Manager. Settings configured using the device CLIs will not be sent to the primary WAAS Central Manager.

If LCM is disabled, the settings configured through the WAAS Central Manager GUI will overwrite the settings configured from the WAES; however, this rule applies only to those local device settings that have been overwritten by the WAAS Central Manager when you have configured the local device settings. If you (as the local CLI user) change the local device settings after the particular configuration has been overwritten by the WAAS Central Manager, the local device configuration will be applicable until the WAAS Central Manager requests a full device statistics update from the WAES (clicking the **Force full database update** button from the Device Dashboard window of the WAAS Central Manager GUI triggers a full update). When the WAAS Central Manager requests a full update from the device, the WAAS Central Manager settings will overwrite the local device settings.

Examples

The following example shows how to back up the cms database management tables on the WAAS Central Manager named waas-cm:

```
waas-cm# cms database backup
creating backup file with label 'backup'
backup file local1/acns-db-9-22-2002-17-36.dump is ready. use 'copy' commands to move the backup file to a remote host.
```

The following example shows how to validate the cms database management tables on the WAAS Central Manager named waas-cm:

```
waas-cm# cms database validate
Management tables are valid
```

Related Commands

```
(config) cms
```
cms secure-store

To configure secure store encryption, use the `cms secure-store` EXEC commands.

```
    cms secure-store { init | open | change | clear | reset | mode { user-passphrase | auto-passphrase } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>Initializes secure store encryption on the WAE device and opens the secure store. This option is valid only on WAE devices.</td>
</tr>
<tr>
<td>open</td>
<td>Activates secure store encryption (the WAAS device encrypts the stored data using secure store encryption). On WAEs, secure store encryption must already be initialized using the <code>cms secure-store init</code> command. This option is valid on all types of devices. On the Central Manager, this command is valid only when in user-provided passphrase mode and it prompts you to enter the secure store encryption pass phrase.</td>
</tr>
<tr>
<td>change</td>
<td>Changes the secure store encryption pass phrase and encryption key. On the Central Manager, this command prompts you to enter the current pass phrase, new pass phrase, and confirm the new pass phrase. The WAAS device uses the pass phrase to generate the encryption key for secure disk encryption. After this option is used, the Central Manager is in user-provided passphrase mode. This option is valid only on the primary Central Manager and WAE devices.</td>
</tr>
<tr>
<td>clear</td>
<td>Disables secure store encryption. This option is valid only on WAE devices.</td>
</tr>
<tr>
<td>reset</td>
<td>Resets secure store to the uninitialized state. You must initialize but not open secure store encryption and you must be in user-provided passphrase mode, to use this option. This option is valid only on primary Central Manager devices.</td>
</tr>
<tr>
<td>mode</td>
<td>Sets the secure store mode of opening. This option is valid only on primary Central Manager devices.</td>
</tr>
<tr>
<td>user-passphrase</td>
<td>Sets secure store to require a user-provided pass phrase to open after a reboot.</td>
</tr>
<tr>
<td>auto-passphrase</td>
<td>Sets secure store to automatically open after a reboot by using a unique system-generated pass phrase.</td>
</tr>
</tbody>
</table>

Defaults

A new Central Manager is configured for auto-generated pass phrase mode with the secure store open.

Command Modes

`EXEC`

Device Modes

- `application-accelerator`
- `central-manager`
Secure store encryption provides strong encryption and key management for your WAAS system. The WAAS Central Manager and WAE devices use secure store encryption for handling passwords, managing encryption keys, and for data encryption.

On a new Central Manager, secure store is initialized and open and in auto-generated passphrase mode. The only options are to change the pass phrase (which sets the secure store to user-provided passphrase mode) or to change to user-provided passphrase mode. To change to user-provided passphrase mode, use the `cms secure-store mode user-passphrase` command.

For secure store on the Central Manager, the data is encrypted using a key encryption key generated from the pass phrase with SHA-1 hashing and an AES 256-bit algorithm. When you enable secure store on a WAE device, the data is encrypted using a 256-bit key encryption key generated by SecureRandom, a cryptographically strong pseudorandom number. You can use your own password to enable secure store, but it is not necessary in auto-generated passphrase mode (the default), where the Central Manager generates a unique password automatically. A user-supplied password must conform to the following rules:

- Be 8 to 64 characters in length
- Contain characters only from the allowed set: A-Za-z0-9-%'!#$^&*()|;:,"<>/
- Contain at least one digit
- Contain at least one lowercase and one uppercase letter

If you are using the user-provided passphrase mode, when you reboot the Central Manager, you must manually reopen secure store using the `cms secure-store open` command. Until you open the secure store, a critical alarm is displayed on the Central Manager and services that use encryption (such as the SSL application accelerator) are not available. If you are using the auto-generated passphrase mode (the default), the Central Manager automatically opens the secure store after a reboot by using its own generated pass phrase.

The secure store passphrase mode on the primary Central Manager is replicated to the standby Central Manager (within the standard replication time). If the primary Central Manager is switched to auto-generated passphrase mode, the standby Central Manager secure store changes to the open state. If the primary Central Manager is switched to user-provided passphrase mode or the passphrase is changed, the standby Central Manager secure store changes to the initialized but not open state and an alarm is raised. You must manually open the secure store on the standby Central Manager.

When you enable secure store on a WAE, the WAE initializes and retrieves a new encryption key from the Central Manager. The WAE uses this key to encrypt user passwords, CIFS preposition and dynamic share credentials, and CIFS password credentials stored on the WAE. When you reboot the WAE after enabling secure store, the WAE retrieves the key from the Central Manager automatically, allowing normal access to the data that is stored in the WAAS persistent storage. If key retrieval fails, an alarm is raised and secure store will be in the initialized but not open state. You must open secure store manually.

If you have made any other CLI configuration changes on a WAE within the datafeed poll rate time interval (5 minutes by default) before you entered the `cms secure-store` command, you will lose those prior configuration changes and you will need to redo them.

Use the `cms secure-store reset` command if you reload a Central Manager that is configured in user-provided passphrase mode and you forget the secure store password. This command deletes all encrypted data, certificate and key files, and key manager keys. The secure store is left in the open state using auto-generated passphrase mode. For the complete procedure for resetting the secure store, see the “Resetting Secure Store Encryption on a Central Manager” section on page 9-17 in the Cisco Wide Area Application Services Configuration Guide.
Examples

The following example shows how to change the pass phrase mode of the secure store encryption on the WAAS Central Manager:

```
waas-cm# cms secure-store mode user-passphrase
Stopping cms.
Do you wish to switch to User-provided passphrase mode? [yes]/no : y
```

The passphrase must adhere to the following rules

* 1) Must be between 8 to 64 characters in length *
* 2) Allowed character set is A-Za-z0-9-%!$^&*()|;,:<>* *
* 3) Must contain at least one digit *
* 4) Must contain at least one lowercase and one uppercase letter *

Enter new passphrase:
Confirm passphrase:

Starting cms.

Related Commands

```
show cms secure-store
```
configure

To enter global configuration mode, use the `configure` EXEC command. You must be in global configuration mode to enter global configuration commands.

```
configure
```

To exit global configuration mode, use the `end` or `exit` commands. You can also press `Ctrl-Z` to exit from global configuration mode.

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
appnav-controller
central-manager

Examples
The following example shows how to enable global configuration mode on a WAAS device:

```
WAE# configure
WAE(config)#
```

Related Commands
```
(config) end
(config) exit
show running-config
show startup-config
```
copy cdrom

To copy software release files from a CD-ROM, use the `copy cdrom` EXEC command.

```
copy cdrom install filedir filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install filedir filename</td>
<td>Installs the software release from the directory location and filename specified.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Examples

The following example shows how to copy a software release file from a CD-ROM:

```
WAE# copy cdrom install
```

Related Commands

- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `write`
copy cdrom wow-recovery

To recover Windows on WAAS on a virtual blade from a CD, use the `copy cdrom wow-recovery` EXEC command.

```
copy cdrom wow-recovery filedir filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wow-recovery filedir filename</code></td>
<td>Recovers Windows on WAAS installation files on the virtual blade from the directory location and Windows filename.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

Use the `copy cdrom wow-recovery` command to recover the Windows on WAAS system files of a virtual blade. This command allows you to recover Windows on your virtual blade while the WAAS software is running, without having to restart your WAE device.

This command is available only on platforms that have a CD-ROM drive. For platforms without a CD-ROM drive, use the `copy usb wow-recovery` EXEC command.

Examples

The following example shows how to recover Windows on a virtual blade from a CD:

```
WAE# copy cdrom wow-recovery WoW_RECOVERY
```

Related Commands

- `copy ftp`
- `copy cdrom`
- `copy usb`
- `virtual-blade`
- `(config) virtual-blade`

copy compactflash

To copy software release files from a CompactFlash card, use the **copy compactflash** EXEC command.

```
copy compactflash install filename
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install filename</td>
<td>Installs a software release from an image filename.</td>
</tr>
</tbody>
</table>

| Defaults | No default behaviors or values. |

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>EXEC</th>
</tr>
</thead>
</table>

| Device Modes | application-accelerator
| | appnav-controller
| | central-manager |

Examples

The following example shows how to copy a software release file from a CompactFlash card:

```
WAE# copy compactflash install
```

Related Commands

- install
- reload
- show running-config
- show startup-config
- write
copy disk

To copy the configuration or image data from a disk to a remote location using FTP or to the startup configuration, use the `copy disk` EXEC command.

```
copy disk {ftp {hostname | ip-address} remotefiledir remotefilename localfilename | startup-config filename}
```

Syntax Description

- `ftp` : Copies to a file on an FTP server.
- `hostname` : Hostname of the FTP server.
- `ip-address` : IP address of the FTP server.
- `remotefiledir` : Directory on the FTP server to which the local file is copied.
- `remotefilename` : Name of the local file once it has been copied to the FTP server.
- `localfilename` : Name of the local file to be copied.
- `startup-config filename` : Copies the existing configuration file from the disk to the startup configuration (NVRAM).

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Use the `copy disk ftp` EXEC command to copy files from a SYSFS partition to an FTP server. Use the `copy disk startup-config` EXEC command to copy a startup-configuration file to NVRAM.

Examples

The following example shows how to copy a startup-configuration file to NVRAM:

```
WAE# copy disk startup-config
```

Related Commands

- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `write`
copy ftp

To copy software configuration or image data from an FTP server, use the `copy ftp` EXEC command.

```
copy ftp disk {hostname | ip-address} remotefiledir remotefilename localfilename

copy ftp install {hostname | ip-address} remotefiledir remotefilename

copy ftp virtual-blade vb_num disk vb_disk {hostname | ip-address} remotefiledir remotefilename

copy ftp wow-recovery {hostname | ip-address} remotefiledir remotefilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk</code></td>
<td>Copies a file to a local disk.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the specific server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the specific server.</td>
</tr>
<tr>
<td><code>remotefiledir</code></td>
<td>Directory on the FTP server where the image file to be copied is located.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Name of the file to be copied.</td>
</tr>
<tr>
<td><code>localfilename</code></td>
<td>Name of the copied file as it appears on the local disk.</td>
</tr>
<tr>
<td><code>install</code></td>
<td>Copies the file from an FTP server and installs the software release or</td>
</tr>
<tr>
<td></td>
<td>firmware file to the local device.</td>
</tr>
<tr>
<td><code>virtual-blade</code></td>
<td>Specifies the virtual blade number of the virtual blade disk image to</td>
</tr>
<tr>
<td><code>vb_num</code></td>
<td>copy to.</td>
</tr>
<tr>
<td><code>disk</code></td>
<td>Specifies the virtual blade disk number of the virtual blade disk image to</td>
</tr>
<tr>
<td><code>vb_disk</code></td>
<td>copy to.</td>
</tr>
<tr>
<td><code>wow-recovery</code></td>
<td>Recovers the Windows operating system for use on a virtual blade.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy ftp disk` EXEC command to copy a file from an FTP server to a SYSFS partition on the WAAS device. To show progress, this command prints a number sign (#) for each 1 MB of data that is copied.

Use the `copy ftp install` EXEC command to install an image file from an FTP server on a WAAS device. Part of the image goes to a disk and part goes to flash memory. This command can also be used to install a BIOS or other firmware update by specifying the appropriate update file.
You can also use the **copy ftp install** EXEC command to redirect your transfer to a different location. A username and a password have to be authenticated with a primary domain controller (PDC) before the transfer of the software release file to the WAAS device is allowed.

Use the **copy ftp wow-recovery** EXEC command to copy a Windows operating system image from an FTP server to a virtual blade partition on the WAAS device.

To show progress, this command prints a number sign (#) for each 1 MB of data that is copied.

Examples

The following example shows how to copy an image file from an FTP server and install the file on the local device:

```
WAE# copy ftp install 10.1.1.1 cisco/waas/4.1 WAAS-4.1.1-k9.bin
Enter username for remote ftp server:biff
Enter password for remote ftp server:******
Initiating FTP download...
printing one # per 1MB downloaded
Sending:USER biff
Password required for biff.
Sending:PASS ******
User biff logged in.
Sending:TYPE I
Type set to I.
Sending:PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending:CWD //ftp-sj.cisco.com/cisco/waas/4.0
CWD command successful.
Sending PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending:RETR WAAS-4.1.1-k9.bin
Opening BINARY mode data connection for ruby.bin (87376881 bytes).
#########################################################################
writing flash component:
..................................................................
The new software will run after you reload.
```

The following example shows how to upgrade the BIOS. All output is written to a separate file (`/local1/.bios_upgrade.txt`) for traceability. The hardware-dependent files that are downloaded from Cisco.com for the BIOS upgrade are automatically deleted from the WAAS device after the BIOS upgrade procedure has been completed.

```
WAE# copy ftp install upgradeserver /bios/update53/derived/ bios.bin
Enter username for remote ftp server:myusername
Enter password for remote ftp server:******
Initiating FTP download...
.
.
Primary BIOS flashed successfully
Cleanup BIOS related files that were downloaded....
The new software will run after you reload.
```

The following example shows how to copy a Windows image file from an FTP server and install the file on the virtual blade:

```
WAE# copy ftp wow-recovery 10.1.1.1 /cisco/waas/4.1 windows.iso
Enter username for remote ftp server:biff
Enter password for remote ftp server:******
Initiating FTP download...
```
Related Commands

- install
- reload
- show running-config
- show startup-config
- write
Copy http

To copy configuration or image files from an HTTP server to the WAAS device, use the **copy http EXEC** command.

```
copy http install {hostname | ip-address} remotefiledir remotefilename [port portnum] [proxy proxy_portnum] [username username password]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>install</td>
<td>Copies the file from an HTTP server and installs the software release file to the local device.</td>
</tr>
<tr>
<td>hostname</td>
<td>Name of the HTTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the HTTP server.</td>
</tr>
<tr>
<td>remotefiledir</td>
<td>Remote file directory.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename.</td>
</tr>
<tr>
<td>port</td>
<td>Port number (1–65535) to connect to the HTTP server (the default is 80).</td>
</tr>
<tr>
<td>proxy</td>
<td>Allows the request to be redirected to an HTTP proxy server.</td>
</tr>
<tr>
<td>proxy_portnum</td>
<td>HTTP proxy server port number (1–65535).</td>
</tr>
<tr>
<td>username</td>
<td>Username to access the HTTP proxy server.</td>
</tr>
<tr>
<td>password</td>
<td>Password to access the HTTP proxy server.</td>
</tr>
</tbody>
</table>

Defaults

HTTP server port: 80

Command Modes

EXEC

Device Modes

application-accelerator
apnav-controller
central-manager

Usage Guidelines

Use the **copy http install EXEC** command to install an image file from an HTTP server and install it on a WAAS device. It transfers the image from an HTTP server to the WAAS device using HTTP as the transport protocol and installs the software on the device. Part of the image goes to a disk and part goes to flash memory. Use the **copy http central EXEC** command to download a software image into the repository from an HTTP server.

You can also use the **copy http install EXEC** commands to redirect your transfer to a different location or HTTP proxy server by specifying the **proxy hostname | ip-address** option. A username and a password have to be authenticated with a primary domain controller (PDC) before the transfer of the software release file to the WAAS device is allowed.
Examples

The following example shows how to copy an image file from an HTTP server and install the file on the WAAS device:

```
WAE# copy http install 10.1.1.1 //ftp-sj.cisco.com/cisco/waas/4.0 WAAS-4.0.0-k9.bin
Enter username for remote ftp server: biff
Enter password for remote ftp server: *****
Initiating FTP download...
printing one # per 1MB downloaded
Sending:USER biff
Password required for biff.
Sending:PASS *****
User biff logged in.
Sending:TYPE I
Type set to I.
Sending:PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending:CWD //ftp-sj.cisco.com/cisco/waas/4.0
CWD command successful.
Sending RETR WAAS-4.0.0-k9.bin
Opening BINARY mode data connection for ruby.bin (87376881 bytes).
.................................................................
writing flash component:
.................................................................
The new software will run after you reload.
```

The following example shows how to upgrade the BIOS. All output is written to a separate file (/local1/bios_upgrade.txt) for traceability. The hardware-dependent files that are downloaded from Cisco.com for the BIOS upgrade are automatically deleted from the WAAS device after the BIOS upgrade procedure has been completed.

```
WAE# copy ftp install upgradeserver /bios/update53/derived/ bios.bin
Enter username for remote ftp server: myusername
Enter password for remote ftp server: *****
Initiating FTP download...
.
.
```

Related Commands

- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `write`
copy monitoring-log

To copy SMB statistics data to the local disk or an FTP server, use the **copy monitoring-log** EXEC command.

```
copy monitoring-log {disk filename | ftp {hostname | ip-address} remotefiledir remotefilename}
```

Syntax Description

- **disk filename**
 - Copies the statistics in CSV format to the specified local disk file in the /local/local1 directory.

- **ftp**
 - Copies the statistics in CSV format to the specified remote file on an FTP server.

- **hostname**
 - Name of the FTP server.

- **ip-address**
 - IP address of the FTP server.

- **remotefiledir**
 - Remote file directory.

- **remotefilename**
 - Remote filename.

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Use this command to write the last 14 days of statistics data that has been collected by the **stats-collector logging** global configuration command. The data is written as a CSV file compressed in tar archive format.

Examples

The following example shows how to copy statistics data to an FTP server:

```
WAE# copy monitoring-log ftp 10.1.1.1 mydir mystats
```

Related Commands

- (config) **stats-collector logging**
copy running-config

To copy a configuration or image data from the current configuration, use the `copy running-config` EXEC command.

```
copy running-config {disk filename | startup-config | tftp {hostname | ip-address} remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk filename</code></td>
<td>Copies the current system configuration to a disk file. Specify the name of the file to be created on a disk.</td>
</tr>
<tr>
<td><code>startup-config</code></td>
<td>Copies the running configuration to startup configuration (NVRAM).</td>
</tr>
<tr>
<td><code>tftp</code></td>
<td>Copies the running configuration to a file on a TFTP server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Remote filename of the configuration file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy running-config` EXEC command to copy the running system configuration of the WAAS device to a SYSFS partition, flash memory, or TFTP server. The `copy running-config startup-config` EXEC command is equivalent to the `write memory` EXEC command.

Examples

The following example shows how to copy the current system configuration to startup configuration (NVRAM):

```
WAE# copy running-config startup-config
```

Related Commands

install
reload
show running-config
show startup-config
copy running-config

write
copy scp

To securely copy configuration or image files from a source to a destination location, use the `copy scp` EXEC command.

```
copy scp { {disk { hostname | ip-address} remote_dir remote_file local_file } | {install { hostname | ip-address} remote_dir remote_file } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk</code></td>
<td>Copies the current system configuration to a disk file.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the SCP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the SCP server.</td>
</tr>
<tr>
<td><code>remote_dir</code></td>
<td>Remote directory where the system information file is to be created on the SCP server.</td>
</tr>
<tr>
<td><code>remote_file</code></td>
<td>Remote filename of the system information file to be created on the SCP server.</td>
</tr>
<tr>
<td><code>local_file</code></td>
<td>Name of the copied file as it appears on the local disk.</td>
</tr>
<tr>
<td><code>install</code></td>
<td>Copies the file from a source server and installs the software release or firmware file to the local device.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the SCP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the SCP server.</td>
</tr>
<tr>
<td><code>remote_dir</code></td>
<td>Remote directory where the system information file is to be created on the SCP server.</td>
</tr>
<tr>
<td><code>remote_file</code></td>
<td>Remote filename of the system information file to be created on the SCP server.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy scp disk` EXEC command to copy a file from an SCP server to a SYSFS partition on the WAAS device.

Use the `copy scp install` EXEC command to install a software release or firmware file from an SCP server on a WAAS device.
Examples

The following example shows how to securely install the software release or firmware file from a source to a destination location:

```
WAE#copy scp install 2.43.65.21 /work/admin ruby.test.bin
Enter username for remote scp server: admin

WARNING!!!
READ THIS BEFORE ATTEMPTING TO LOGON

This System is for the use of authorized users only. Individuals using this computer without authority, or in excess of their authority, are subject to having all of their activities on this system monitored and recorded by system personnel. In the course of monitoring individuals improperly using this system, or in the course of system maintenance, the activities of authorized users may also be monitored. Anyone using this system expressly consents to such monitoring and is advised that if such monitoring reveals possible criminal activity, system personnel may provide the evidence of such monitoring to law enforcement officials.

Cisco Acceptable Use Policy:
http://www.in.cisco.com/infosec/policies/acceptableuse.shtml
```

```
admin@2.43.65.21's password:
ruby.test.bin 100% .......................... 432 MB 00:13
Backing up existing version WAAS 5.1.0-b67, built on 02:20:49 Nov 29 2012 by damaster
Converting Manifest files ... Done
Rebuilding image based on current software ... Done
Backing up flash configuration ... Done
Reclaiming unused flash safe state sectors ... SSMGR RETURNING: 4 (Success) Done.
Detected OE574
Installing phase3 bootloader...
Installing WAAS 64-bit image.
buildsysimg: short write on /swstore/comp.basesystem: Inappropriate ioctl for device
/swstore/default_ruby_installer.sh: problem running buildsysimg
Remove /swstore/backup to free up space.
Installing system image to flash... The new software will run after you reload.
```

Related Commands

install
copy sysreport
copy tech-support
copy startup-config

To copy configuration or image data from the startup configuration, use the `copy startup-config` EXEC command.

```bash
copy startup-config {disk filename | running-config | tftp {hostname | ip-address} remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk filename</code></td>
<td>Copies the startup configuration to a disk file. Specify the name of the startup configuration file to be copied to the local disk.</td>
</tr>
<tr>
<td><code>running-config</code></td>
<td>Copies the startup configuration to running configuration.</td>
</tr>
<tr>
<td><code>tftp</code></td>
<td>Copies the startup configuration to a file on a TFTP server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Remote filename of the startup configuration file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy startup-config` EXEC command to copy the startup configuration file to a TFTP server or to a SYSFS partition.

Examples

The following example shows how to copy the startup configuration file to the running configuration:

```bash
WAE# copy startup-config running-config
```

Related Commands

- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `write`
To copy system troubleshooting information from the device, use the `copy sysreport` EXEC command.

```
copy sysreport disk filename [start-date {day month | month day} year [end-date {day month | month day} year]]
copy sysreport ftp {hostname | ip-address} remotedirectory remotefilename [start-date {day month | month day} year [end-date {day month | month day} year]]
copy sysreport scp {hostname | ip-address} remotedirectory remotefilename [start-date {day month | month day} year [end-date {day month | month day} year]]
copy sysreport tftp {hostname | ip-address} remotefilename [start-date {day month | month day} year [end-date {day month | month day} year]]
copy sysreport usb filename [start-date {day month | month day} year [end-date {day month | month day} year]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>disk filename</code></td>
<td>Copies system information to a disk file. Specify the name of the file to be created on a disk. Note that .tar.gz is appended to the filename that you specify.</td>
</tr>
<tr>
<td><code>ftp hostname</code></td>
<td>Copies system information to a FTP server.</td>
</tr>
<tr>
<td><code>ftp ip-address</code></td>
<td>Hostname of the server.</td>
</tr>
<tr>
<td><code>ftp remotedirectory</code></td>
<td>IP address of the server.</td>
</tr>
<tr>
<td><code>ftp remotefilename</code></td>
<td>Remote directory where the system information file is to be created on the server.</td>
</tr>
<tr>
<td><code>ftp remotefilename</code></td>
<td>Remote filename of the system information file to be created on the server.</td>
</tr>
<tr>
<td><code>scp hostname</code></td>
<td>Copies system information to a SCP server.</td>
</tr>
<tr>
<td><code>scp ip-address</code></td>
<td>Hostname of the server.</td>
</tr>
<tr>
<td><code>scp remotedirectory</code></td>
<td>IP address of the server.</td>
</tr>
<tr>
<td><code>scp remotefilename</code></td>
<td>Remote directory where the system information file is to be created on the server.</td>
</tr>
<tr>
<td><code>scp remotefilename</code></td>
<td>Remote filename of the system information file to be created on the server.</td>
</tr>
<tr>
<td><code>start-date</code></td>
<td>(Optional) Specifies the start date of the information in the generated system report.</td>
</tr>
<tr>
<td><code>day month</code></td>
<td>Start date day of the month (1–31) and month of the year (January, February, March, April, May, June, July, August, September, October, November, December). You can alternately specify the month first, followed by the day.</td>
</tr>
<tr>
<td><code>year</code></td>
<td>Start date year (1993–2035).</td>
</tr>
<tr>
<td><code>end-date</code></td>
<td>(Optional) Specifies the end date of information in the generated system report. If omitted, this date defaults to today. The report includes files through the end of this day.</td>
</tr>
<tr>
<td><code>day month</code></td>
<td>End date day of the month (1–31) and month of the year (January, February, March, April, May, June, July, August, September, October, November, December). You can alternately specify the month first, followed by the day.</td>
</tr>
</tbody>
</table>
copy sysreport

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>year</td>
<td>End date year (1993–2035).</td>
</tr>
<tr>
<td>tftp</td>
<td>Copies system information to a TFTP server.</td>
</tr>
<tr>
<td>start-date</td>
<td>(Optional) Specifies the start date of the information in the generated system report.</td>
</tr>
<tr>
<td>day month</td>
<td>Start date day of the month (1–31) and month of the year (January, February, March, April, May, June, July, August, September, October, November, December). You can alternately specify the month first, followed by the day.</td>
</tr>
<tr>
<td>end-date</td>
<td>(Optional) Specifies the end date of information in the generated system report. If omitted, this date defaults to today. The report includes files through the end of this day.</td>
</tr>
<tr>
<td>usb filename</td>
<td>Copies system information to a USB flash drive installed in a WAVE-294/594/694/7541/7571/8541 device. Specify the name of the file to be created on the USB flash drive. Note that .tar.gz is appended to the filename that you specify.</td>
</tr>
</tbody>
</table>

Defaults

If **end-date** is not specified, today is used.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

The `copy sysreport` command consumes significant CPU and disk resources and can adversely affect system performance while it is running.

Examples

The following example shows how to copy system information to the file mysysinfo on the local WAAS device:

```
WAE# copy sysreport disk mysysinfo start-date 1 April 2006 end-date April 30 2006
```

The following example shows how to copy system information by FTP to the file foo in the root directory of the FTP server named myserver:

```
WAE# copy sysreport ftp myserver / foo start-date 1 April 2006 end-date April 30 2006
```

Related Commands

- `show running-config`
- `show startup-config`
copy system-status

To copy status information from the system for debugging, use the `copy system-status` EXEC command.

```plaintext
copy system-status disk filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk filename</td>
<td>Specifies the name of the file to be created on the disk.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy system-status` EXEC command to create a file on a SYSFS partition that contains hardware and software status information.

Examples

The following example shows how to copy the system status to a disk file:

```
WAE# copy system-status disk file1
```

Related Commands

install
reload
show running-config
show startup-config
write
copy tech-support

To copy the configuration or image data from the system to use when working with Cisco TAC, use the `copy tech-support` EXEC command.

```
copy tech-support {disk filename | ftp {hostname | ip-address} remotedirectory remotefilename | scp {hostname | ip-address} remotedirectory remotefilename | tftp {hostname | ip-address} remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>Copies system information for technical support to a disk file. Specify the name of the file to be created on disk.</td>
</tr>
<tr>
<td>filename</td>
<td></td>
</tr>
<tr>
<td>ftp</td>
<td>Copies system information for technical support to an FTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the server.</td>
</tr>
<tr>
<td>remotedirectory</td>
<td>Remote directory of the system information file to be created on the server. Use the complete pathname.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the system information file to be created on the server.</td>
</tr>
<tr>
<td>scp</td>
<td>Copies system information for technical support to an SCP server</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the server.</td>
</tr>
<tr>
<td>remotedirectory</td>
<td>Remote directory of the system information file to be created on the server. Use the complete pathname.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the system information file to be created on the server.</td>
</tr>
<tr>
<td>tftp</td>
<td>Copies system information for technical support to a TFTP server.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `copy tech-support tftp` EXEC command to copy technical support information to a TFTP server or to a SYSFS partition.

Examples

The following example shows how to copy system information for tech support to a disk file:

```
WAE# copy tech-support disk file1
```
Related Commands

install
reload
show running-config
show startup-config
write
copy tftp

To copy configuration or image data from a TFTP server, use the `copy tftp` EXEC command.

```
copy tftp disk {hostname | ip-address} remotefilename localfilename

copy tftp running-config {hostname | ip-address} remotefilename

copy tftp startup-config {hostname | ip-address} remotefilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>Copies an image from a TFTP server to a disk file.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the remote image file to be copied from the TFTP server. Use the complete pathname.</td>
</tr>
<tr>
<td>localfilename</td>
<td>Name of the image file to be created on the local disk.</td>
</tr>
<tr>
<td>running-config</td>
<td>Copies an image from a TFTP server to the running configuration.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Copies an image from a TFTP server to the startup configuration.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator

appnav-controller

central-manager

Examples

The following example shows how to copy configuration or image data from a TFTP server to the running configuration:

```
WAE# copy tftp running-config
```

Related Commands

install

reload

show running-config

show startup-config

write
copy usb

To copy files from an external USB drive, use the **copy usb** EXEC command.

```
copy usb { install | wow-recovery filename }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>usb</code></td>
<td>Copies the file from an external USB drive</td>
</tr>
<tr>
<td><code>install</code></td>
<td>Installs a software release from an image filename.</td>
</tr>
<tr>
<td><code>wow-recovery filename</code></td>
<td>Restores the Windows on WAAS recovery file on the virtual blade from the specified file on the USB drive. Not available on devices in appnav-controller mode.</td>
</tr>
</tbody>
</table>

| Defaults | No default behaviors or values. |

| Command Modes | EXEC |

| Device Modes | application-accelerator
appearance-controller
central-manager |

Usage Guidelines

Use the `copy usb wow-recovery` command to recover the Windows on WAAS system files of a virtual blade. This command allows you to recover Windows on your virtual blade while the WAAS software is running, without having to restart your WAE device.

This command is available only on platforms without a CD-ROM drive. For platforms with a CD-ROM drive, use the `copy cdrom wow-recovery install` EXEC command.

Examples

The following example shows how to recover Windows on a virtual blade from an external USB:

```
WAE# copy usb wow-recovery WoW_RECOVERY
```

Related Commands

```
copy cdrom wow-recovery  
copy ftp  
install  
reload  
show running-config  
show startup-config  
write
```
copy virtual-blade

To copy software configuration or image data from a virtual blade disk image to an FTP server, use the `copy virtual-blade` EXEC command.

```
copy virtual-blade vb_num disk vb_disk ftp {hostname \ ip-address} remotefiledir remotefilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vb_num</code></td>
<td>Virtual blade number of the virtual blade disk image to copy to.</td>
</tr>
<tr>
<td><code>disk vb_disk</code></td>
<td>Specifies the virtual blade disk number of the virtual blade disk image to copy to.</td>
</tr>
<tr>
<td><code>ftp</code></td>
<td>Writes to an FTP server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the specific server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the specific server.</td>
</tr>
<tr>
<td><code>remotefiledir</code></td>
<td>Directory where the image file to be copied is located.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Name of the file to be copied.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to copy an image file from a virtual blade to an FTP server:

```
WAE# copy virtual-blade 1 disk 1 ftp 10.75.16.234 / file.img
```

Related Commands

- `copy ftp`
- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `write`
To make a copy of a file, use the `cpfile` EXEC command.

```
cpfile oldfilename newfilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oldfilename</code></td>
<td>Name of the file to copy.</td>
</tr>
<tr>
<td><code>newfilename</code></td>
<td>Name of the copy to be created.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Only SYSFS files can be copied.

Examples

The following example shows how to create a copy of a file:

```
WAE# cpfile fe512-194616.bin fd512-194618.bin
```

Related Commands

- `deltree`
- `dir`
- `lls`
- `ls`
- `mkdir`
- `pwd`
- `rename`
crypto delete

To remove SSL certificate and key files, use the **crypto delete** EXEC command.

```
crypto delete { ca-certificate filename | pkcs12 { filename | admin } }
```

Syntax Description

- **ca-certificate filename**: Deletes a certificate authority certificate file.
- **pkcs12 filename**: Deletes a PKCS12 format file. (PKCS12 files contain both the private encryption key and the public key certificate.)
- **admin**: Deletes the certificate and key for the Central Manager admin service, if a custom certificate and key were installed. This option can be used only on the Central Manager.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

central-manager

Usage Guidelines

Use the crypto delete EXEC command to remove a certificate from your WAE’s secure store. If you only want to disassociate a certificate from an accelerated service, use **no server-cert-key** in crypto ssl services accelerated-service mode.

If you use the **crypto delete pkcs12 admin** command to delete a custom certificate and key that were installed for the Central Manager admin service, the admin service uses its built-in self-signed certificate.

Examples

The following example shows how to delete the CA certificate file mycert.ca:

```
WAE# crypto delete ca-certificate mycert.ca
```

Related Commands

- **crypto export**
- **crypto generate**
- **crypto import**
crypto export

To export SSL certificate and key files, use the `crypto export` EXEC command.

```
crypto export {ca-certificate | pkcs12 {factory-self-signed | admin | filename} {pem-cert-key | pem-cert-only | pem-key-only | pkcs12}} {disk pathname | ftp address | sftp address | terminal | tftp address}
```

Syntax Description

- **ca-certificate filename** Exports a certificate authority certificate file.
- **pkcs12** Exports a PKCS12 format file. (PKCS12 files contain both the private encryption key and the public key certificate.)
- **factory-self-signed** Specifies that the SSL PKCS file is to be self-signed.
- **admin** Specifies that the certificate and key are for the Central Manager admin service. This option can be used only on the Central Manager.
- **filename** Name of the PKCS12 file to be exported.
- **pem-cert-key** Exports both the certificate and key in PEM format.
- **pem-cert-only** Exports only the certificate in PEM format.
- **pem-key-only** Exports only the key in PEM format.
- **pkcs12** Exports both the certificate and key in PKCS12 format.
- **disk pathname** Exports to a disk. Type the disk filename including the full path.
- **ftp address** Exports to FTP. Type the FTP server’s IP address or hostname.
- **sftp address** Exports to secure FTP. Type the secure FTP server’s IP address or hostname.
- **terminal** Exports to a terminal. (Not available for `crypto export pkcs12`.)
- **tftp address** Exports to TFTP. Type the TFTP server’s IP address or hostname.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to export a CA certificate file named mycert.ca to an FTP server:

```
WAE# crypto export ca-certificate mycert.ca ftp 1.2.3.4 dir1 mycert.ca
```

The following example shows how to export the certificate and private key from a PKCS12 file named myfile.p12 to a PEM file on the local1 directory on the hard drive:

```
WAE# crypto export pkcs12 myfile.p12 pkcs12 disk /local1/myfile.p12
```
Related Commands

- crypto delete
- crypto generate
- crypto import
crypto generate

To generate a self-signed certificate or a certificate signing request, use the `crypto generate` EXEC command.

```
crypto generate {csr rsa modulus \{1024 | 1536 | 2048 | 512 | 768\}\}\{disk pathname | ftp address | sftp address | terminal | tftp address\} self-signed-cert filename \{exportable\} rsa modulus \{1024 | 1536 | 2048 | 512 | 768\}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>csr</code></td>
<td>Generates a certificate signing request (CSR).</td>
</tr>
<tr>
<td><code>rsa modulus</code></td>
<td>Specifies the size of the RSA modulus to be used for the CSR.</td>
</tr>
<tr>
<td>`1024</td>
<td>1536</td>
</tr>
<tr>
<td><code>disk pathname</code></td>
<td>Generates the file to a disk. Type the disk filename including the full path.</td>
</tr>
<tr>
<td><code>ftp address</code></td>
<td>Generates the file to FTP. Type the FTP server’s IP address or hostname.</td>
</tr>
<tr>
<td><code>sftp address</code></td>
<td>Generates the file to secure FTP. Type the secure FTP server’s IP address or hostname.</td>
</tr>
<tr>
<td><code>terminal</code></td>
<td>Generates the file to a terminal.</td>
</tr>
<tr>
<td><code>tftp address</code></td>
<td>Generates the file to TFTP. Type the TFTP server’s IP address or hostname.</td>
</tr>
<tr>
<td><code>self-signed-cert filename</code></td>
<td>Generates a self-signed SSL encryption certificate. The filename of the self-signed certificate to be generated must have the .p12 file extension.</td>
</tr>
<tr>
<td><code>exportable</code></td>
<td>(Optional) Allows the self-signed certificate to be exported.</td>
</tr>
<tr>
<td><code>rsa modulus</code></td>
<td>Specifies the size of the RSA modulus to be used when generating the self-signed certificate.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example shows how to create an exportable self-signed certificate. The certificate file is named myfile.p12 and is created using a 512-bit RSA modulus.

```
WAE# crypto generate self-signed-cert myfile.p12 exportable rsa modulus 512
Generating a 512 bit RSA private key
.............************
.............************
-----
You are about to be asked to enter information that will be incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
```

Country Name (2 letter code) [US]: US
State or Province Name (full name) [California]: <cr> (Press Enter to accept the default.)
Locality Name (eg, city) [San Jose]: San Jose
Organization Name (eg, company) [Cisco Systems]:
Organizational Unit Name (eg, section) [ADBU]:
Common Name (eg, YOUR name) [www.cisco.com]:
Email Address [tac@cisco.com]:

WAE#

Related Commands
- crypto delete
- crypto export
- crypto import
crypto import

To import SSL certificates and key files, use the `crypto import` EXEC command.

```plaintext
crypto import ca-certificate filename { disk pathname | ftp host | http host | scep url | sftp host | terminal | tftp host }
crypto import pkcs12 {filename | admin} [exportable] [ignore-cert-chain-order] pem-cert-key { disk pathname | ftp host | http host | scep url | sftp host | terminal | tftp host }
crypto import pcs12 {filename | admin} [exportable] [ignore-cert-chain-order] pkcs12 { disk pathname | ftp host | http host | sftp host | terminal | tftp host }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ca-certificate filename</td>
</tr>
<tr>
<td>pkcs12 filename</td>
</tr>
<tr>
<td>admin</td>
</tr>
<tr>
<td>exportable</td>
</tr>
<tr>
<td>ignore-cert-chain-order</td>
</tr>
<tr>
<td>pem-cert-key</td>
</tr>
<tr>
<td>pkcs12</td>
</tr>
<tr>
<td>disk pathname</td>
</tr>
<tr>
<td>ftp address</td>
</tr>
<tr>
<td>sftp address</td>
</tr>
<tr>
<td>scep url</td>
</tr>
<tr>
<td>terminal</td>
</tr>
<tr>
<td>tftp address</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

The Central Manager admin service uses a self-signed certificate and key by default. You can use the `crypto import pkcs12 admin` command to import a custom certificate and key in PKCS12 or PEM format. If you delete the custom certificate and key, the self-signed certificate and key again become active.

Note

DSA certificates and keys cannot be imported.

Examples

The following example shows how to import a CA certificate file named mycert.ca from a TFTP server:

```
WAE# crypto import ca-certificate mycert.ca tftp 00.00.00.00
```

Related Commands

- `crypto delete`
- `crypto export`
- `crypto generate`
crypto pki

To initialize the PKI managed store, use the crypto pki EXEC command.

```
crypto pki managed-store initialize
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>managed-store</th>
<th>Specifies managed store commands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>initialize</td>
<td>Initializes the PKI managed store.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example shows how to initialize the PKI managed store:

```
WAE# crypto pki managed-store initialize
```

Related Commands

- crypto export
- crypto generate
- crypto import
debug aaa accounting

To monitor and record AAA accounting debugging, use the **debug aaa accounting** EXEC command. To disable debugging, use the **undebug** form of this command.

```
depbug aaa accounting
undebug aaa accounting
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

Examples

The following example shows how to enable AAA accounting debug monitoring:

```
WAE# debug aaa accounting
```

Related Commands

`show debugging`
debug aaa authorization

To monitor and record AAA authorization debugging, use the debug aaa authorization EXEC command. To disable debugging, use the undebug form of this command.

 debug aaa authorization
 undebug aaa authorization

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
• For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

Examples

The following example shows how to enable AAA authorization debug monitoring:

```
WAE# debug aaa authorization
```

Related Commands

`show debugging`
debug accelerator

To monitor and record accelerator debugging, use the `debug accelerator` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug accelerator generic [connection | misc | shell | stats | all]
undebug accelerator generic [connection | misc | shell | stats | all]

debug accelerator http [bypass-list | cli | conditional-response | connection | dre-hints | metadatacache | redirect-response | shell | subnet | supress-server-encoding | transaction | unauthorized-response | all]
undebug accelerator http [bypass-list | cli | conditional-response | connection | dre-hints | metadatacache | redirect-response | shell | subnet | supress-server-encoding | transaction | unauthorized-response | all]

debug accelerator mapi [all | Common-flow | DCERPC-layer | EMSMDB-layer | IO | ROP-layer | ROP-parser | RCP-parser | shell | Transport | Utilities]
undebug accelerator mapi [all | Common-flow | DCERPC-layer | EMSMDB-layer | IO | ROP-layer | ROP-parser | RCP-parser | shell | Transport | Utilities]

debug accelerator ica [all | ao-connectionmgr | ao-parser | cgp | connection | crypto | detectionparser | failure | hash | ica | initialization | io | main | pipe | shell]
undebug accelerator ica [all | ao-connectionmgr | ao-parser | cgp | connection | crypto | detectionparser | failure | hash | ica | initialization | io | main | pipe | shell]

debug accelerator nfs [async-write | attributes-cache | nfs-v3 | read-ahead | rpc | shell | utils | all]
undebug accelerator nfs [async-write | attributes-cache | nfs-v3 | read-ahead | rpc | shell | utils | all]

debug accelerator smb [cli | cmd-close | cmd-create | cmd-lock | cmd-others | cmd-query-info | cmd-read | cmd-set-info | cmd-write | flow | large-data-flush | lock-manager | meta-data | named-pipe | not-found-cache | packeter | parser | read-ahead | shell | vfn | all]
undebug accelerator smb [cli | cmd-close | cmd-create | cmd-lock | cmd-others | cmd-query-info | cmd-read | cmd-set-info | cmd-write | flow | large-data-flush | lock-manager | meta-data | named-pipe | not-found-cache | packeter | parser | read-ahead | shell | vfn | all]

debug accelerator ssl [accelerated-svc | alarm | all | am | am-generic-svc | bio | ca | ca-pool | cipherlist | client-to-server | dataserver | flow-shutdown | generic | oeps | oom-manager | openssl-internal | parser | peering-svc | session-cache | shell | sm-alert | sm-generic | sm-io | sm-pipethrough | synchronization | verify | waas-to-waas]
debug accelerator ssl [accelerated-svc | alarm | all | am | am-generic-svc | bio | ca | ca-pool | cipherlist | client-to-server | dataserver | flow-shutdown | generic | ocs | oom-manager | openssl-internal | parser | peering-svc | session-cache | shell | sm | sm-generic | sm-io | sm-pipethrough | synchronization | verify | waas-to-waas]

debug accelerator video [all | gateway | shell | windows-media]
[client-ip ip-addr | server-ip ip-addr]]

undebug accelerator video [all | gateway | shell | windows-media]
[client-ip ip-addr | server-ip ip-addr]]

debug accelerator wansecure [all | flow | mux | ocs | shell | ssl]

undebug accelerator wansecure [all | flow | mux | ocs | shell | ssl]

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generic</td>
<td>Enables generic accelerator debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Enables accelerator connection debugging.</td>
</tr>
<tr>
<td>misc</td>
<td>Enables generic accelerator miscellaneous debugging.</td>
</tr>
<tr>
<td>shell</td>
<td>Enables accelerator shell debugging.</td>
</tr>
<tr>
<td>stats</td>
<td>Enables generic accelerator statistics debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all accelerator debugging of a specified type.</td>
</tr>
<tr>
<td>http</td>
<td>Enables HTTP accelerator debugging.</td>
</tr>
<tr>
<td>bypass-list</td>
<td>Enables HTTP accelerator bypass list debugging.</td>
</tr>
<tr>
<td>cli</td>
<td>Enables configuration CLI debugging.</td>
</tr>
<tr>
<td>conditional-response</td>
<td>Enables HTTP accelerator metadata cache conditional response debugging.</td>
</tr>
<tr>
<td>dre-hints</td>
<td>Enables HTTP accelerator DRE hinting debugging.</td>
</tr>
<tr>
<td>metadatcache</td>
<td>Enables HTTP accelerator metadata cache debugging.</td>
</tr>
<tr>
<td>redirect-response</td>
<td>Enables HTTP accelerator metadata cache redirect response debugging.</td>
</tr>
<tr>
<td>subnet</td>
<td>Enables HTTP accelerator subnet configuration debugging.</td>
</tr>
<tr>
<td>supress-server-encoding</td>
<td>Enables HTTP accelerator supress-server-encoding debugging.</td>
</tr>
<tr>
<td>transaction</td>
<td>Enables HTTP accelerator transaction debugging.</td>
</tr>
<tr>
<td>unauthorized-response</td>
<td>Enables HTTP accelerator metadata cache unauthorized response debugging.</td>
</tr>
<tr>
<td>ica</td>
<td>Enables ICA accelerator debugging.</td>
</tr>
<tr>
<td>ao-connectionmgr</td>
<td>Enables ICA AO-ConnectionMgr debugging.</td>
</tr>
<tr>
<td>ao-parser</td>
<td>Enables ICA AO-Parser debugging.</td>
</tr>
<tr>
<td>cgp</td>
<td>Enables ICA CGP debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Enables ICA AO-Connection debugging.</td>
</tr>
<tr>
<td>crypto</td>
<td>Enables ICA CRYPTO debugging.</td>
</tr>
<tr>
<td>detectionparser</td>
<td>Enables ICA detectionparser debugging.</td>
</tr>
<tr>
<td>failure</td>
<td>Enables ICA allocation failure debugging.</td>
</tr>
</tbody>
</table>
### debug accelerator

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td>Enables ICA HASH debugging.</td>
</tr>
<tr>
<td>ica</td>
<td>Enables ICA parsing debugging.</td>
</tr>
<tr>
<td>initialization</td>
<td>Enables ICA initialization debugging.</td>
</tr>
<tr>
<td>io</td>
<td>Enables ICA IO debugging.</td>
</tr>
<tr>
<td>main</td>
<td>Enables ICA main debugging.</td>
</tr>
<tr>
<td>pipe</td>
<td>Enables ICA pipe debugging.</td>
</tr>
<tr>
<td>shell</td>
<td>Enables ICA shell debugging.</td>
</tr>
<tr>
<td>mapi</td>
<td>Enables MAPI accelerator debugging.</td>
</tr>
<tr>
<td>Common-flow</td>
<td>Enables MAPI common flow debugging.</td>
</tr>
<tr>
<td>DCERPC-layer</td>
<td>Enables MAPI DCERPC layer flow debugging.</td>
</tr>
<tr>
<td>EMSMDB-layer</td>
<td>Enables MAPI EMSMDB layer flow debugging.</td>
</tr>
<tr>
<td>IO</td>
<td>Enables MAPI IO flow debugging.</td>
</tr>
<tr>
<td>ROP-layer</td>
<td>Enables MAPI ROP layer flow debugging.</td>
</tr>
<tr>
<td>ROP-parser</td>
<td>Enables MAPI ROP parser flow debugging.</td>
</tr>
<tr>
<td>RCP-parser</td>
<td>Enables MAPI RCP parser flow debugging.</td>
</tr>
<tr>
<td>shell</td>
<td>Enables MAPI shell flow debugging.</td>
</tr>
<tr>
<td>Transport</td>
<td>Enables MAPI transport flow debugging.</td>
</tr>
<tr>
<td>Utilities</td>
<td>Enables MAPI utilities flow debugging.</td>
</tr>
<tr>
<td>nfs</td>
<td>Enables NFS accelerator debugging.</td>
</tr>
<tr>
<td>async-write</td>
<td>Enables NFS asynchronous write optimization debugging.</td>
</tr>
<tr>
<td>attributes-cache</td>
<td>Enables NFS attributes cache debugging.</td>
</tr>
<tr>
<td>nfs-v3</td>
<td>Enables NFS version 3 layer debugging.</td>
</tr>
<tr>
<td>read-ahead</td>
<td>Enables NFS read ahead optimization debugging.</td>
</tr>
<tr>
<td>rpc</td>
<td>Enables NFS RPC layer debugging.</td>
</tr>
<tr>
<td>shell</td>
<td>Enables NFS shell debugging.</td>
</tr>
<tr>
<td>utils</td>
<td>Enables NFS utilities debugging.</td>
</tr>
<tr>
<td>smb</td>
<td>Enables SMB accelerator debugging.</td>
</tr>
<tr>
<td>cmd-close</td>
<td>Enables SMB close commands debugging.</td>
</tr>
<tr>
<td>cmd-create</td>
<td>Enables SMB create commands debugging.</td>
</tr>
<tr>
<td>cmd-lock</td>
<td>Enables SMB lock commands debugging.</td>
</tr>
<tr>
<td>cmd-others</td>
<td>Enables SMB other commands debugging.</td>
</tr>
<tr>
<td>cmd-query-info</td>
<td>Enables SMB query-info commands debugging.</td>
</tr>
<tr>
<td>cmd-read</td>
<td>Enables SMB read commands debugging.</td>
</tr>
<tr>
<td>cmd-set-info</td>
<td>Enables SMB set-info commands debugging.</td>
</tr>
<tr>
<td>cmd-write</td>
<td>Enables SMB write commands debugging.</td>
</tr>
<tr>
<td>flow</td>
<td>Enables SMB flow debugging.</td>
</tr>
<tr>
<td>large-data-flush</td>
<td>Enables SMB large data flush debugging.</td>
</tr>
<tr>
<td>lock-manager</td>
<td>Enables SMB lock manager debugging.</td>
</tr>
<tr>
<td>meta-data</td>
<td>Enables SMB meta data debugging.</td>
</tr>
<tr>
<td>named-pipe</td>
<td>Enables SMB named pipe debugging.</td>
</tr>
<tr>
<td>not-found-cache</td>
<td>Enables SMB not-found metadata cache debugging.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td><code>debug packeter</code></td>
<td>Enables SMB packeter debugging.</td>
</tr>
<tr>
<td><code>debug parser</code></td>
<td>Enables SMB parser debugging.</td>
</tr>
<tr>
<td><code>debug read-ahead</code></td>
<td>Enables SMB read-ahead debugging.</td>
</tr>
<tr>
<td><code>debug shell</code></td>
<td>Enables SMB shell debugging.</td>
</tr>
<tr>
<td><code>debug vfn</code></td>
<td>Enables SMB VFN debugging.</td>
</tr>
<tr>
<td><code>debug ssl</code></td>
<td>Enables SSL accelerator debugging.</td>
</tr>
<tr>
<td><code>debug accelerated-svc</code></td>
<td>Enables accelerated service debugging.</td>
</tr>
<tr>
<td><code>debug alarm</code></td>
<td>Enables SSL AO alarm debugging.</td>
</tr>
<tr>
<td><code>debug am</code></td>
<td>Enables SSL auth manager debugging.</td>
</tr>
<tr>
<td><code>debug am-generic-svc</code></td>
<td>Enables SSL am generic service debugging.</td>
</tr>
<tr>
<td><code>debug bio</code></td>
<td>Enables SSL bio layer debugging.</td>
</tr>
<tr>
<td><code>debug ca</code></td>
<td>Enables SSL cert auth module debugging.</td>
</tr>
<tr>
<td><code>debug ca-pool</code></td>
<td>Enables SSL cert auth pool debugging.</td>
</tr>
<tr>
<td><code>debug cipherlist</code></td>
<td>Enables SSL cipher list debugging.</td>
</tr>
<tr>
<td><code>debug client-to-server</code></td>
<td>Enables SSL client-to-server datapath debugging.</td>
</tr>
<tr>
<td><code>debug dataserver</code></td>
<td>Enables SSL dataserver debugging.</td>
</tr>
<tr>
<td><code>debug flow-shutdown</code></td>
<td>Enables SSL flow shutdown debugging.</td>
</tr>
<tr>
<td><code>debug ocsp</code></td>
<td>Enables SSL ocsp debugging.</td>
</tr>
<tr>
<td><code>debug oom-manager</code></td>
<td>Enables SSL oom-manager debugging.</td>
</tr>
<tr>
<td><code>debug openssl-internal</code></td>
<td>Enables SSL openssl internal debugging.</td>
</tr>
<tr>
<td><code>debug parser</code></td>
<td>Enables SSL accelerator parser debugging.</td>
</tr>
<tr>
<td><code>debug peering-svc</code></td>
<td>Enables SSL peering service debugging.</td>
</tr>
<tr>
<td><code>debug session-cache</code></td>
<td>Enables SSL session cache debugging.</td>
</tr>
<tr>
<td><code>debug shell</code></td>
<td>Enables SSL shell debugging.</td>
</tr>
<tr>
<td><code>debug sm-alert</code></td>
<td>Enables SSL session manager alert debugging.</td>
</tr>
<tr>
<td><code>debug sm-generic</code></td>
<td>Enables SSL session manager generic debugging.</td>
</tr>
<tr>
<td><code>debug sm-io</code></td>
<td>Enables SSL session manager i/o debugging.</td>
</tr>
<tr>
<td><code>debug sm-pipethrough</code></td>
<td>Enables SSL session manager pipethrough debugging.</td>
</tr>
<tr>
<td><code>debug synchronization</code></td>
<td>Enables SSL synchronization debugging.</td>
</tr>
<tr>
<td><code>debug verify</code></td>
<td>Enables SSL certificate verification debugging.</td>
</tr>
<tr>
<td><code>debug waas-to-waas</code></td>
<td>Enables SSL waas-to-waas datapath debugging.</td>
</tr>
<tr>
<td><code>debug video</code></td>
<td>Enables video accelerator debugging.</td>
</tr>
<tr>
<td><code>debug gateway</code></td>
<td>Enables debugging of the media independent gateway module of the video accelerator.</td>
</tr>
<tr>
<td><code>debug windows-media</code></td>
<td>Enables debugging of the Windows Media module of the video accelerator.</td>
</tr>
<tr>
<td><code>client-ip ip-addr</code></td>
<td>Specifies the client IP address.</td>
</tr>
<tr>
<td><code>server-ip ip-addr</code></td>
<td>Specifies the server IP address.</td>
</tr>
<tr>
<td><code>wansecure</code></td>
<td>Enables WANSECURE debugging.</td>
</tr>
<tr>
<td><code>flow</code></td>
<td>Enables WANSECURE flow debugging.</td>
</tr>
<tr>
<td><code>mux</code></td>
<td>Enables WANSECURE mux debugging.</td>
</tr>
<tr>
<td><code>ocsp</code></td>
<td>Enables WANSECURE ocsp debugging.</td>
</tr>
</tbody>
</table>
debug accelerator

<table>
<thead>
<tr>
<th>shell</th>
<th>Enables WANSECURE shell debugging.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssl</td>
<td>Enables WANSECURE ssl debugging.</td>
</tr>
</tbody>
</table>

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Usage Guidelines**
The output associated with the `debug accelerator name module` command for an application accelerator is written to the file `nameao-errorlog.current`, where `name` is the accelerator name. The accelerator information manager debug output is written to the file `aoin-errorlog.current`.

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.
debug accelerator

Examples

The following example shows how to enable all accelerator debug monitoring:

```
WAE# debug accelerator all
```

Related Commands

```
show debugging
```
**debug all**

To monitor and record all debugging, use the `debug all` EXEC command. To disable debugging, use the `undebug all` form of this command.

```plaintext
debug all
undebug all
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**
The following example shows how to enable all debug monitoring:

```
WAE# debug all
```

**Related Commands**
`show debugging`
debug appnav-controller connection

To enable connection-specific debugging on an AppNav Controller Interface Module, use the debug appnav-controller connection EXEC command. To disable debugging, use the undebug form of this command.

```
donotuse debug appnav-controller connection access-list acl-name
```

```
donotuse undebug appnav-controller connection
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list acl-name</td>
<td>Enables access list connection debugging. Access list name is an alphanumeric identifier up to 30 characters, beginning with a letter.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

The ACL specified in this command is shared by the monitor appnav-controller traffic and packet-capture commands.

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardles of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable connection-specific debug monitoring for an AppNav Controller Interface Module:

```
WAE# debug appnav-controller connection access-list myacl
```

**Related Commands**

`show debugging`
debug appnav-controller drop capture

To enable debugging on an AppNav Controller Interface Module to capture dropped packets, use the `debug appnav-controller drop capture` EXEC command. To disable debugging, use the `no` form of this command.

```
dehug appnav-controller drop capture index index limit limit

no debug appnav-controller drop capture
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>The number of the index; the default index value is 255.</td>
</tr>
<tr>
<td><code>limit</code></td>
<td>The maximum size of the packet capture file. The default limit is 65535.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

appnav-controller

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

To display the index, use the `show controllers np counters direct-access drop` command.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to a new log file in PCAP format.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
• For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to show dropped packets for the AppNav Controller Interface Module using an index of 20 and a limit of 500:

```
WAE# debug appnav-controller drop capture index 20 limit 500
WAE# show debugging
Appnav Controller Drop Capture enabled
 Index = 20
 Limit = 500
```

**Related Commands**

`show debugging`
debug authentication

To monitor and record authentication debugging, use the debug authentication EXEC command. To disable debugging, use the undebug form of this command.

```
debug authentication {user | windows-domain}
undebug authentication {user | windows-domain}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>Enables debugging of the user login against the system authentication.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Enables Windows domain authentication debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable user authentication debug monitoring, verify that it is enabled, and then disable debug monitoring:

```
WAE# debug authentication user
WAE# show debugging
Debug authentication (user) is ON
WAE# no debug authentication user
```

**Related Commands**

- `show debugging`
debug auto-discovery

To trace connections in the auto discovery module, use the **debug auto-discovery** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug auto-discovery
undebug auto-discovery
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Usage Guidelines**
Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.
Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable auto discovery connection debugging:

```
WAE# debug auto-discovery connection
```

**Related Commands**

`show debugging`
debug buf

To monitor and record buffer manager debugging, use the `debug buf` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug buf {all | dmbuf | dmsg}
undebug buf {all | dmbuf | dmsg}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>Enables all buffer manager debugging.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dmbuf</td>
<td>Enables only dmbuf debugging.</td>
</tr>
<tr>
<td></td>
<td>dmsg</td>
<td>Enables only dmsg debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
• For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the debug and undebug commands only at the direction of Cisco Systems technical support personnel.

Examples

The following example shows how to enable all buffer manager debug monitoring:

```
WAE# debug buff all
```
**debug cdp**

To monitor and record CDP debugging, use the **debug cdp** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug cdp {adjacency | events | ip | packets}
undebug cdp {adjacency | events | ip | packets}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>adjacency</th>
<th>Enables CDP neighbor information debugging.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>events</td>
<td>Enables CDP events debugging.</td>
</tr>
<tr>
<td></td>
<td>ip</td>
<td>Enables CDP IP debugging.</td>
</tr>
<tr>
<td></td>
<td>packets</td>
<td>Enables packet-related CDP debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears. Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable CDP events debug monitoring:

```
WAE# debug cdp events
```

### Related Commands

- `show debugging`
debug cli

To monitor and record CLI debugging, use the debug cli EXEC command. To disable debugging, use the undebug form of this command.

```
debug cli {all | bin | parser}
undebug cli {all | bin | parser}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all CLI debugging.</td>
</tr>
<tr>
<td>bin</td>
<td>Enables CLI command binary program debugging.</td>
</tr>
<tr>
<td>parser</td>
<td>Enables CLI command parser debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
• For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all CLI debug monitoring:

```
WAE# debug cli all
```

**Related Commands**

`show debugging`
debug cmm

To monitor and record cluster membership manager debugging, use the `debug cmm` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug cmm {all | cli | events | ipc | misc | packets | shell | timers}
undebug cmm {all | cli | events | ipc | misc | packets | shell | timers}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables all cluster membership manager (CMM) debugging.</td>
</tr>
<tr>
<td><code>cli</code></td>
<td>Enables CMM CLI debugging.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Enables CMM state machine event debugging.</td>
</tr>
<tr>
<td><code>ipc</code></td>
<td>Enables CMM ipc message debugging.</td>
</tr>
<tr>
<td><code>misc</code></td>
<td>Enables CMM miscellaneous debugging.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>Enables CMM packet debugging.</td>
</tr>
<tr>
<td><code>shell</code></td>
<td>Enables CMM infra debugging.</td>
</tr>
<tr>
<td><code>timers</code></td>
<td>Enables CMM state machine timer debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).
If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all cmm debug monitoring:

```
WAE# debug cmm all
```

### Related Commands

- `show debugging`
**debug cms**

To monitor and record CMS debugging, use the **debug cms** EXEC command. To disable debugging, use the **undebug** form of this command.

```plaintext
debug cms
undebug cms
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable CMS debug monitoring:

```
WAE# debug cms
```

### Related Commands

- **show debugging**
Chapter 3      CLI Commands

debug connection

To enable connection-specific debugging, use the debug connection EXEC command. To disable debugging, use the undebug form of this command.

```
debug connection {all | access-list acl-name}
undebug connection {all | access-list acl-name}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all connection-specific debugging.</td>
</tr>
<tr>
<td>access-list acl-name</td>
<td>Enables access list connection debugging. Access list name is an alphanumeric identifier up to 30 characters, beginning with a letter.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all connection-specific debug monitoring:

```
WAE# debug connection all
```

### Related Commands

- `show debugging`
debug controllers

To monitor and record interface controller capture debugging, use the `debug controllers` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug controllers NP {crash-dump | dump-cfg}
undebug controllers NP {crash-dump | dump-cfg}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crash-dump</code></td>
<td>Requests a crash dump that is saved to a file.</td>
</tr>
<tr>
<td><code>dump-cfg</code></td>
<td>Captures the NP configuration into NPSL format.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.##`, where `##` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to request a crash dump:

```
WAE# debug controllers NP crash-dump
```

**Related Commands**

`show debugging`
debug dataserver

To monitor and record data server debugging, use the debug dataserver EXEC command. To disable debugging, use the undebug form of this command.

```
debug dataserver { all | clientlib | server }
undebug dataserver { all | clientlib | server }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all data server debugging.</td>
</tr>
<tr>
<td>clientlib</td>
<td>Enables data server client library module debugging.</td>
</tr>
<tr>
<td>server</td>
<td>Enables data server module debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all data server debug monitoring:

```
WAE# debug dataserver all
```

**Related Commands**

`show debugging`
**debug dhcp**

To monitor and record DHCP debugging, use the `debug dhcp` EXEC command. To disable debugging, use the `undebug dhcp` form of this command.

```
debug dhcp
undebug dhcp
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable DHCP debug monitoring:

```
WAE# debug dhcp
```

**Related Commands**

**show debugging**
debug directed-mode

To trace directed mode connections setup, use the debug directed-mode EXEC command. To disable debugging, use the undebug form of this command.

  debug directed-mode connection
  undebug directed-mode connection

Syntax Description

connection (Optional) Enables directed mode connection debugging.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears. Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable directed mode connection debugging:

```
WAE# debug directed-mode connection
```

**Related Commands**

`show debugging`
**debug dre**

To monitor and record DRE debugging, use the `debug dre` EXEC command. To disable debugging, use the `undebug` form of this command.

```

```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation</td>
<td>Enables DRE chunk-aggregation debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables the debugging of all DRE commands.</td>
</tr>
<tr>
<td>cache</td>
<td>Enables DRE cache debugging.</td>
</tr>
<tr>
<td>chunking</td>
<td>Enables DRE chunking debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Enables DRE connection debugging.</td>
</tr>
<tr>
<td>acl</td>
<td>ACL to limit connections traced.</td>
</tr>
<tr>
<td>core</td>
<td>Enables DRE core debugging.</td>
</tr>
<tr>
<td>lz</td>
<td>Enables DRE lz debugging.</td>
</tr>
<tr>
<td>message</td>
<td>Enables DRE message debugging for a specified connection.</td>
</tr>
<tr>
<td>misc</td>
<td>Enables DRE other debugging for a specified connection.</td>
</tr>
<tr>
<td>nack</td>
<td>Enables DRE NACK debugging.</td>
</tr>
<tr>
<td>packet</td>
<td>Enables DRE packet debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. 
The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the debug and undebug commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all DRE debug monitoring:

```
WAE# debug dre all
```

**Related Commands**

- show debugging
debug egress-method

To monitor and record egress method debugging, use the **debug egress-method** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug egress-method connection
undebug egress-method connection
```

**Syntax Description**

- **connection** *(Optional)* Enables egress method connection debugging.

**Defaults**

No default behavior or values.

**Command Modes**

- **EXEC**

**Device Modes**

- application-accelerator

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is logging disk priority notice).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all egress method debug monitoring:

```
WAE# debug egress-method connection
```

**Related Commands**

`show debugging`
debug encryption-service

To monitor and record encryption service debugging, use the `debug encryption-service` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug encryption-service { all | application-layer | cfgmgr | dcerpc-layer | gss | io | secure-store
 | server | shell | transport-lib | utilities }

undebug encryption-service { all | application-layer | cfgmgr | dcerpc-layer | gss | io | secure-store | server | shell | transport-lib | utilities }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables debugging of all encryption services components.</td>
</tr>
<tr>
<td><code>application-layer</code></td>
<td>Enables debugging of the encryption services application layer.</td>
</tr>
<tr>
<td><code>cfgmgr</code></td>
<td>Enables debugging of the encryption services configuration manager.</td>
</tr>
<tr>
<td><code>dcerpc-layer</code></td>
<td>Enables debugging of the encryption services dcerpc layer.</td>
</tr>
<tr>
<td><code>gss</code></td>
<td>Enables debugging of the encryption services gss.</td>
</tr>
<tr>
<td><code>io</code></td>
<td>Enables debugging of the encryption services io.</td>
</tr>
<tr>
<td><code>secure-store</code></td>
<td>Enables debugging of the encryption services secure store.</td>
</tr>
<tr>
<td><code>server</code></td>
<td>Enables debugging of the encryption services server.</td>
</tr>
<tr>
<td><code>shell</code></td>
<td>Enables debugging of the encryption services shell.</td>
</tr>
<tr>
<td><code>transport-lib</code></td>
<td>Enables debugging of the encryption services transport library.</td>
</tr>
<tr>
<td><code>utilities</code></td>
<td>Enables debugging of the encryption services utilities.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. 
The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the debug and undebug commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable debugging of all encryption services components:

```
WAE# debug encryption-services all
```

**Related Commands**

show debugging
**debug fda**

To monitor and record flow distribution agent debugging, use the `debug fda` EXEC command. To disable debugging, use the `undebug` form of this command.

```plaintext
debug fda {all | events | infra | messages}
undebug fda {all | events | infra | messages}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all flow distribution agent debugging.</td>
</tr>
<tr>
<td>events</td>
<td>Enables only flow distribution agent event debugging.</td>
</tr>
<tr>
<td>infra</td>
<td>Enables only flow distribution agent infra debugging.</td>
</tr>
<tr>
<td>messages</td>
<td>Enables only flow distribution agent message debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
• For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.

• For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the debug and undebug commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all flow distribution agent debug monitoring:

WAE# debug fda all

**Related Commands**

show debugging
debug fdm

To monitor and record flow distribution manager debugging, use the `debug fdm` EXEC command. To disable debugging, use the `undebug` form of this command.

```
depth fdm { all | events | infra | messages }
undebug fdm { all | events | infra | messages }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables all flow distribution manager debugging.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Enables only flow distribution manager event debugging.</td>
</tr>
<tr>
<td><code>infra</code></td>
<td>Enables only flow distribution manager infra debugging.</td>
</tr>
<tr>
<td><code>messages</code></td>
<td>Enables only flow distribution manager message debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

appnav-controller

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undepug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all flow distribution manager debug monitoring:

```plaintext
WAE# debug fdm all
```

**Related Commands**

`show debugging`
debug filtering

To trace filtering connections setup, use the `debug filtering` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug filtering connection
undebug filtering connection
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection</td>
<td>(Optional) Enables filtering module connection debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

Examples
The following example shows how to enable filtering module connection debugging:

```
WAE# debug filtering connection
```

Related Commands
`show debugging`
debug flow

To monitor and record network traffic flow debugging, use the `debug flow` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug flow monitor type performance-monitor tcpstat-v1
undebug flow monitor type performance-monitor tcpstat-v1
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>Enables monitor flow performance debugging commands.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Enables tcpstat-v1 debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable network traffic flow debug monitoring:

```
WAE# debug flow monitor type performance-monitor tcpstat-v1
```

**Related Commands**

`show debugging`
debug generic-gre

To monitor and record generic GRE egress method debugging, use the debug generic-gre EXEC command. To disable debugging, use the unddebug form of this command.

```
 debug generic-gre
 unddebug generic-gre
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.
Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable generic GRE egress method debug monitoring:

```
WAE# debug generic-gre
```

**Related Commands**

`show debugging`
**debug hw-raid**

To monitor and record hardware RAID debugging, use the **debug hw-raid** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug hw-raid {all | cli | daemon}
undebug hw-raid {all | cli | daemon}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables all hardware RAID debug commands.</td>
</tr>
<tr>
<td><code>cli</code></td>
<td>Enables hardware RAID CLI debugging.</td>
</tr>
<tr>
<td><code>daemon</code></td>
<td>Enables hardware RAID daemon debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
• For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all hardware RAID debug monitoring:

```
WAE# debug hw-raid all
```

### Related Commands

- `show debugging`
debug imd

To monitor and record interface manager debugging, use the **debug imd** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug imd {all | cli | infra | nprm | stats}
undebug fdm {all | cli | infra | nprm | stats}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>all</th>
<th>cli</th>
<th>infra</th>
<th>nprm</th>
<th>stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all interface manager debugging.</td>
<td>Enables only interface manager cli debugging.</td>
<td>Enables only interface manager infra debugging.</td>
<td>Enables only interface manager nprm debugging.</td>
<td>Enables only interface manager stats debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
appnav-controller
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:
For filtering on critical debug messages only, use the logging disk priority critical global configuration command.

For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.

For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.

Regardles of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the debug and undebug commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all interface manager debug monitoring:

```
WAE# debug imd all
```

**Related Commands**

show debugging
debug inline

To enable inline module debugging, use the `debug inline` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug inline {debug | info | warn}
undebug inline {debug | info | warn}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>debug</th>
<th>Sets the debug level to debug.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>info</td>
<td>Sets the debug level to info.</td>
</tr>
<tr>
<td></td>
<td>warn</td>
<td>Sets the debug level to warn.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where # is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to set the log level for inline modules to warning level:

```
WAE# debug inline warn
```

**Related Commands**

- **show debugging**
**debug key-manager**

To monitor and record key manager debugging, use the `debug key-manager` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug key-manager
undebug key-manager
```

### Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Key Manager</th>
<th>(Optional) Enables key manager debugging.</th>
</tr>
</thead>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

central-manager (primary only)

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
· For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable monitoring API debug monitoring:

```
WAE# debug key-manager
```

**Related Commands**  
`show debugging`
debug logging

To monitor and record logging debugging, use the debug logging EXEC command. To disable debugging, use the undebug form of this command.

debug logging all
undebug logging all

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all logging debugging.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all logging debug monitoring:

```text
WAE# debug logging all
```

**Related Commands**

- `show debugging`
debug monapi

To monitor and record monitor API debugging, use the debug monapi EXEC command. To disable debugging, use the undebug form of this command.

```
debug monapi
undebug monapi
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
central-manager (primary only)

**Usage Guidelines**
Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.
Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable monitoring API debug monitoring:

```
WAE# debug monapi
```

**Related Commands**  `show debugging`
debug nplogd

To monitor and record NP log daemon debugging, use the debug nplogd EXEC command. To disable debugging, use the undebug form of this command.

debug nplogd all
undebug nplogd all

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
appnav-controller

Usage Guidelines
Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears. Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.
Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable NP log daemon debug monitoring:

```
WAE# debug nplogd all
```

**Related Commands**

`show debugging`
**debug ntp**

To monitor and record NTP debugging, use the `debug ntp` EXEC command. To disable debugging, use the `undebug` form of this command.

```
 debug ntp
 undebug ntp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
• For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable NTP debug monitoring:

```
WAE# debug ntp
```

**Related Commands**

`show debugging`
debug punt

To monitor and record punt handler debugging, use the `debug punt` EXEC command. To disable debugging, use the undebug form of this command.

```
debug punt { all | module | packets | socket }
undebug punt { all | module | packets | socket }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all punt handler debugging.</td>
</tr>
<tr>
<td>module</td>
<td>Enables only punt handler module debugging.</td>
</tr>
<tr>
<td>packets</td>
<td>Enables only punt handler packet debugging.</td>
</tr>
<tr>
<td>socket</td>
<td>Enables only punt handler socket call debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all punt handler debug monitoring:

```
WAE# debug punt all
```

**Related Commands**

- `show debugging`
debug rbcp

To monitor and record RBCP debugging, use the debug rbcp EXEC command. To disable debugging, use the undebug form of this command.

debug rbcp
undebug rbcp

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator

Usage Guidelines
Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the logging disk priority detail global configuration command.
Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable RBCP debug monitoring:

WAE# debug rbcp

**Related Commands**

`show debugging`
debug rmd

To monitor and record route manager debugging, use the `debug rmd` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug rmd { all | cli | infra | nprm }
undebug rmd { all | cli | infra | nprm }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all route manager debugging.</td>
</tr>
<tr>
<td>cli</td>
<td>Enables only route manager cli debugging.</td>
</tr>
<tr>
<td>infra</td>
<td>Enables only route manager infra debugging.</td>
</tr>
<tr>
<td>nprm</td>
<td>Enables only route manager nprm debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all route manager debug monitoring:

```
WAE# debug rmd all
```

**Related Commands**

- `show debugging`
debug rpc

To monitor and record remote procedure calls (RPC) debugging, use the debug rpc EXEC command. To disable debugging, use the undebug form of this command.

```
debug rpc {detail | trace}
undebug rpc {detail | trace}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>Displays RPC logs of priority detail or higher.</td>
</tr>
<tr>
<td>trace</td>
<td>Displays RPC logs of priority trace or higher.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable RPC detail debug monitoring:

```
WAE# debug rpd detail
```

**Related Commands**

`show debugging`
**debug service-insertion**

To trace connections in the service-insertion module, use the **debug service-insertion** EXEC command. To disable debugging, use the **undebug** form of this command.

```
debug service-insertion connection
undebug service-insertion connection
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).

If a **debug** command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the **logging disk priority critical** global configuration command.
- For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all service-insertion module debug monitoring:

```
WAE# debug service-insertion connection
```

**Related Commands**

`show debugging`
**debug service-policy**

To monitor and record service policy debugging, use the `debug service-policy` EXEC command. To disable debugging, use the `undebug` form of this command.

```
default service-policy type { appnav | waas }
undebug service-policy type { appnav | waas }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>appnav</th>
<th>Enables AppNav service policy debugging.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>waas</td>
<td>Enables WAAS service policy debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable WAAS service policy debug monitoring:

```
WAE# debug service-policy waas
```

**Related Commands**

`show debugging`
debug snmp

To monitor and record SNMP debugging, use the debug snmp EXEC command. To disable debugging, use the undebug form of this command.

```
debug snmp {all | cli | main | mib | traps}
undebug snmp {all | cli | main | mib | traps}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all SNMP debug commands.</td>
</tr>
<tr>
<td>cli</td>
<td>Enables SNMP CLI debugging.</td>
</tr>
<tr>
<td>main</td>
<td>Enables SNMP main debugging.</td>
</tr>
<tr>
<td>mib</td>
<td>Enables SNMP MIB debugging.</td>
</tr>
<tr>
<td>traps</td>
<td>Enables SNMP trap debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
• For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

• For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable all SNMP debug monitoring:

```
WAE# debug snmp all
```

**Related Commands**

`show debugging`
debug standby

To enable standby debugging, use the debug standby EXEC command. To disable debugging, use the undebug form of this command.

depend standby [all]

undebug standby [all]

Syntax Description

| Syntax Description | all | (Optional) Enables standby debugging using all debug features. |

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **und debug** commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all standby debug monitoring:

```
WAE# debug standby all
```

### Related Commands

**show debugging**
debug statistics

To monitor and record statistics debugging, use the **debug statistics** EXEC command. To disable debugging, use the **undebug** form of this command.

**debug statistics** {**all** | **ao** | **client** | **collector** | **ipc** | **messages** | **serializer** | **sqm**}

**undebug statistics** {**all** | **ao** | **client** | **collector** | **ipc** | **messages** | **serializer** | **sqm**}

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all statistics debug commands.</td>
</tr>
<tr>
<td>ao</td>
<td>Enables statistics acceleration debugging.</td>
</tr>
<tr>
<td>client</td>
<td>Enables statistics client debugging.</td>
</tr>
<tr>
<td>collector</td>
<td>Enables statistics collector debugging.</td>
</tr>
<tr>
<td>ipc</td>
<td>Enables statistics IPC debugging.</td>
</tr>
<tr>
<td>messages</td>
<td>Enables statistics messages/buffers debugging.</td>
</tr>
<tr>
<td>serializer</td>
<td>Enables statistics serializer debugging.</td>
</tr>
<tr>
<td>sqm</td>
<td>Enables statistics computation debugging.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager
services-controller

**Usage Guidelines**

Because the performance of the WAAS device degrades when you use the **debug** command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the **show debugging** command to display enabled **debug** options.

The output associated with the **debug** command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any **debug** command, system logging must be enabled. The command to enable logging is the **logging disk enable** global configuration command, which is enabled by default.

If a **debug** command module uses the syslog for debug output, then you must use the **logging disk priority debug** global configuration command (the default is **logging disk priority notice**).
If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.
- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all statistics debug monitoring:

```
WAE# debug statistics all
```

### Related Commands

- `show debugging`
debug synq

To trace synq connections setup, use the debug synq EXEC command. To disable debugging, use the undebug form of this command.

```
 debug synq connection
 undebug synq connection
```

| Syntax Description | connection | Enables synq module connection debugging. |

| Defaults           | No default behavior or values. |

| Command Modes      | EXEC |

| Device Modes       | application-accelerator |

Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current. The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

* For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
* For filtering on critical and error level debug messages, use the logging disk priority error global configuration command.
* For filtering on critical, error, and trace debug level debug messages, use the logging disk priority debug global configuration command.
For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable synq module connection debugging:

```
WAE# debug synq connection
```
debug tfo

To monitor and record TFO flow optimization debugging, use the debug tfo EXEC command. To disable debugging, use the undebug form of this command.

```
debug tfo {all | buffer-mgr | dre-flow | netio | scheduler}
undebug tfo {all | buffer-mgr | dre-flow | netio | scheduler}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables all TFO debugging.</td>
</tr>
<tr>
<td>buffer-mgr</td>
<td>Enables TFO data-buffer from buffer manager debugging.</td>
</tr>
<tr>
<td>dre-flow</td>
<td>Enables TFO DRE flow debugging for all connections.</td>
</tr>
<tr>
<td>netio</td>
<td>Enables TFO connection debugging for the network input/output module.</td>
</tr>
<tr>
<td>scheduler</td>
<td>Enables TFO scheduler debugging.</td>
</tr>
</tbody>
</table>

### Defaults
No default behavior or values.

### Command Modes
EXEC

### Device Modes
application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

- For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

- For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable all TFO flow optimization debug monitoring:

```
WAE# debug tfo all
```

### Related Commands

`show debugging`
debug translog

To monitor and record transaction logging debugging, use the `debug translog` EXEC command. To disable debugging, use the `undebug` form of this command.

```
d debug translog {detail | export | info}
undebug translog {detail | export | info}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Enables transaction log detailed debugging.</td>
</tr>
<tr>
<td><code>export</code></td>
<td>Enables transaction log FTP export debugging.</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Enables transaction log high level debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

- EXEC

### Device Modes

- application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.
- For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.
- For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.

- For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to enable transaction logging detail debug monitoring:

```
WAE# debug translog detail
```

**Related Commands**

**show debugging**
debug wafs

To set the log level of the WAFS Device Manager component, use the debug wafs EXEC command. To disable debugging, use the undebug form of this command.

```plaintext
debug wafs manager { debug | error | info | warn }
undebug wafs manager { debug | error | info | warn }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>manager</td>
<td>Sets the logging level for the Device Manager.</td>
</tr>
<tr>
<td>debug</td>
<td>Specifies debug.</td>
</tr>
<tr>
<td>error</td>
<td>Specifies error.</td>
</tr>
<tr>
<td>info</td>
<td>Specifies info.</td>
</tr>
<tr>
<td>warn</td>
<td>Specifies warn.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the debug command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the show debugging command to display enabled debug options.

The output associated with the debug command is written to either the syslog file in /local1/syslog.txt or the debug log associated with the module in the file /local1/errorlog/module_name-errorlog.current.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: module_name-errorlog.#, where # is the backup file number.

For any debug command, system logging must be enabled. The command to enable logging is the logging disk enable global configuration command, which is enabled by default.

If a debug command module uses the syslog for debug output, then you must use the logging disk priority debug global configuration command (the default is logging disk priority notice).

If a debug command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:

- For filtering on critical debug messages only, use the logging disk priority critical global configuration command.
• For filtering on critical and error level debug messages, use the **logging disk priority error** global configuration command.

• For filtering on critical, error, and trace debug level debug messages, use the **logging disk priority debug** global configuration command.

• For seeing all debug log messages, which include critical, error, trace and detail messages, use the **logging disk priority detail** global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the **debug** and **undebug** commands only at the direction of Cisco Systems technical support personnel.

**Examples**

The following example shows how to set the log level for all WAFS components to error level:

```
WAE# debug wafs manager error
```

**Related Commands**

*show debugging*
debug wccp

To monitor and record WCCP information debugging, use the `debug wccp` EXEC command. To disable debugging, use the `undebug` form of this command.

```
debug wccp {all | detail | error | events | keepalive | packets}
undebug wccp {all | detail | error | events | keepalive | packets}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables all WCCP debugging functions.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>Enables the WCCP detail debugging.</td>
</tr>
<tr>
<td><code>error</code></td>
<td>Enables the WCCP error debugging.</td>
</tr>
<tr>
<td><code>events</code></td>
<td>Enables the WCCP events debugging.</td>
</tr>
<tr>
<td><code>keepalive</code></td>
<td>Enables the debugging for WCCP keepalives that are sent to the applications.</td>
</tr>
<tr>
<td><code>packets</code></td>
<td>Enables the WCCP packet-related information debugging.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Usage Guidelines

Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page 24.

If the watchdog utility is not running, the message “WAAS is not running” appears.

If the watchlog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

The output associated with the `debug` command is written to either the syslog file in `/local1/syslog.txt` or the debug log associated with the module in the file `/local1/errorlog/module_name-errorlog.current`.

The debug log file associated with a module will be rotated to a backup file when the current file reaches its maximum size. The backup files are named as follows: `name-errorlog.#`, where `#` is the backup file number.

For any `debug` command, system logging must be enabled. The command to enable logging is the `logging disk enable` global configuration command, which is enabled by default.

If a `debug` command module uses the syslog for debug output, then you must use the `logging disk priority debug` global configuration command (the default is `logging disk priority notice`).

If a `debug` command module uses the debug log for output, then the output can be filtered based on the priority level configuration for the four different levels of debug log output, as follows:
For filtering on critical debug messages only, use the `logging disk priority critical` global configuration command.

For filtering on critical and error level debug messages, use the `logging disk priority error` global configuration command.

For filtering on critical, error, and trace debug level debug messages, use the `logging disk priority debug` global configuration command.

For seeing all debug log messages, which include critical, error, trace and detail messages, use the `logging disk priority detail` global configuration command.

Regardless of the priority level configuration, any syslog messages at the LOG_ERROR or higher priority will be automatically written to the debug log associated with a module.

We recommend that you use the `debug` and `undebug` commands only at the direction of Cisco Systems technical support personnel.

### Examples

The following example shows how to enable WCCP information debug monitoring:

```
WAE# debug wccp all
```

### Related Commands

`show debugging`
**delfile**

To delete a file from the current directory, use the `delfile` EXEC command.

```
delfile filename
```

**Syntax Description**

<table>
<thead>
<tr>
<th>filename</th>
<th>Name of the file to delete.</th>
</tr>
</thead>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator  
central-manager

**Usage Guidelines**

Use the `delfile` EXEC command to remove a file from a SYSFS partition on the disk drive of the WAAS device.

**Examples**

The following example shows how to delete a temporary file from the /local1 directory using an absolute path:

```
WAE# delfile /local1/tempfile
```

**Related Commands**

- cpfile
- dir
- lls
- ls
- mkdir
- pmdir
- pwd
- rename
deltree

To remove a directory with all of its subdirectories and files, use the **deltree** EXEC command.

```
deltree directory
```

**Syntax Description**
- `directory` Name of the directory tree to delete.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
- application-accelerator
- central-manager

**Usage Guidelines**
Use the **deltree** EXEC command to remove a directory and all files within the directory from the WAAS SYSFS file system. No warning is given that you are removing the subdirectories and files.

**Note**
Make sure that you do not remove files or directories required for the WAAS device to function properly.

**Examples**
The following example shows how to delete the `testdir` directory from the `/local1` directory:

```
WAE# deltree /local1/testdir
```

**Related Commands**
- cpfile
- dir
- lls
- ls
- mkdir
- pwd
- rename
dir

To view details of one file or all files in a directory, use the dir EXEC command.

```
dir [directory]
```

**Syntax Description**

| `directory` | (Optional) Name of the directory to list. |

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the dir EXEC command to view a detailed list of files contained within the working directory, including information about the file name, size, and time created. The lls EXEC command produces the same output.

**Examples**

The following example shows how to create a detailed list of all the files for the current directory:

```
WAE# dir

size time of last change name
------------- ------------------------- --------
 4096 Fri Feb 24 14:40:00 2006 <DIR> actona
 4096 Tue Mar 28 14:42:44 2006 <DIR> core_dir
 4096 Wed Apr 12 20:23:10 2006 <DIR> crash
 4506 Tue Apr 11 13:52:45 2006 <DIR> dbupgrade.log
 4096 Tue Apr 4 22:50:11 2006 <DIR> downgrade
 4096 Sun Apr 16 09:01:56 2006 <DIR> errorlog
 4096 Wed Apr 12 20:23:41 2006 <DIR> logs
16384 Thu Feb 16 12:25:29 2006 <DIR> lost+found
 4096 Wed Apr 12 03:26:02 2006 <DIR> sa
 24576 Sun Apr 16 23:38:21 2006 <DIR> service_logs
 4096 Thu Feb 16 12:26:09 2006 <DIR> spool
 9945390 Sun Apr 16 23:38:20 2006 <DIR> syslog.txt
10026298 Thu Apr 6 12:25:00 2006 <DIR> syslog.txt.1
10013564 Thu Apr 6 12:25:00 2006 <DIR> syslog.txt.2
10055850 Thu Apr 6 12:25:00 2006 <DIR> syslog.txt.3
10049181 Thu Apr 6 12:25:00 2006 <DIR> syslog.txt.4
 4096 Thu Feb 16 12:29:30 2006 <DIR> var
 508 Sat Feb 25 13:18:35 2006 <DIR> wdd.sh.signed
```

The following example shows how to display the detailed information for only the logs directory:

```
WAE# dir logs

size time of last change name
------------- ------------------------- --------
 4096 Fri Feb 24 14:40:00 2006 <DIR> actona
 4096 Tue Mar 28 14:42:44 2006 <DIR> core_dir
 4096 Wed Apr 12 20:23:10 2006 <DIR> crash
```
**dir**

4096 Thu Apr  6 12:13:50 2006 <DIR>   actona
4096 Mon Mar  6 14:14:41 2006 <DIR>   apache
4096 Sun Apr 16 23:36:40 2006 <DIR>   emdb
4096 Thu Feb 16 11:51:51 2006 <DIR>   export
4096 Wed Apr 12 20:23:43 2006 <DIR>   rpc_httpd
 0 Wed Apr 12 20:23:41 2006           snmpd.log
4096 Sun Mar 19 18:47:29 2006 <DIR>   tfo

**Related Commands**

`lls`

`ls`
disable

To turn off privileged EXEC commands, use the disable EXEC command.

    disable

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the WAAS software CLI EXEC mode for setting, viewing, and testing system operations. This command mode is divided into two access levels, user and privileged. To access privileged-level EXEC mode, enter the enable EXEC command at the user access level prompt and specify the admin password when prompted for a password.

    WAE> enable
    Password:

The disable command places you in the user-level EXEC shell (notice the prompt change).

Examples
The following example shows how to enter the user-level EXEC mode from the privileged EXEC mode:

    WAE# disable
    WAE>

Related Commands
enable
To configure disks on a WAAS device, use the **disk** EXEC command.

- **disk delete-partitions** *diskname*
- **disk delete-data-partitions**
- **disk disk-name** *diskxx* **enable** **force**
- **disk disk-name** *diskxx* **replace**
- **disk insert** *diskname*
- **disk recreate-raid**
- **disk scan-errors** *diskname*

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>delete-partitions</strong> <em>diskname</em></td>
<td>Deletes data on the specified logical disk drive. After using this command, the WAAS software treats the specified disk drive as blank. All previous data on the drive is inaccessible.</td>
<td>Specify the name of the disk from which to delete partitions (disk00, disk01). For RAID-5 systems, this option is not available because only one logical drive is available.</td>
</tr>
<tr>
<td><strong>delete-data-partitions</strong></td>
<td>Deletes all data partitions on all logical drives. Data partitions include the CONTENT, PRINTSPool, and GUEST partitions. These partitions include all DRE and CIFS cache files, print spool files, and any virtual blade images.</td>
<td></td>
</tr>
<tr>
<td><strong>disk-name</strong> <em>diskxx</em> <strong>enable</strong> <strong>force</strong></td>
<td>Reenables a defunct drive (with or without removing it) that has been previously shut down.</td>
<td><strong>Note</strong> This option is available only on RAID-5 systems.</td>
</tr>
<tr>
<td><strong>disk-name</strong> <em>diskxx</em> <strong>replace</strong></td>
<td>Shuts down the physical disk with the name diskxx (disk00, disk01, etc.) so that it can be replaced in the RAID-5 array.</td>
<td><strong>Note</strong> This option is available only on RAID-5 systems.</td>
</tr>
<tr>
<td><strong>insert</strong> <em>diskname</em></td>
<td>Instructs the SCSI host to rescan the bus to detect and mount the newly inserted disk. Specify the name of the disk to be inserted (disk00, disk01).</td>
<td><strong>Note</strong> This option is available only on WAE-612 models.</td>
</tr>
<tr>
<td><strong>recreate-raid</strong></td>
<td>Recreates the RAID-5 array.</td>
<td><strong>Note</strong> This option is available only on RAID-5 systems.</td>
</tr>
<tr>
<td><strong>scan-errors</strong> <em>diskname</em></td>
<td>Scans SCSI or IDE disks for errors and remaps the bad sectors if they are unused. Specify the name of the disk to be scanned (disk00, disk01). For RAID-5 systems, this command scans the logical RAID device for errors. On these systems, there is no <em>diskname</em> option.</td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.
### Command Modes
**EXEC**

### Device Modes
- application-accelerator
- central-manager

### Usage Guidelines
The WAAS software supports hot-swap functionality for both failed disk replacement and scheduled disk maintenance. On the WAE-612, use the `disk disk-name diskxx shutdown` global configuration command to shut down a disk for scheduled disk maintenance. On the WAE-674, WAE-7341, and WAE-7371, if a disk is shut down using the `disk disk-name diskxx replace` EXEC command and the same disk is removed and reinserted, it can be reenabled using the EXEC command `disk disk-name diskxx enable force`. This command is applicable even if the disk is not removed and needs to be reenabled. This command is not applicable if a new disk is inserted. On the WAE-7341 and WAE-7371, use the `disk disk-name diskxx replace EXEC` command to shut down a disk. (For the scheduled disk maintenance procedure, see the chapter “Maintaining Your WAAS System” in the *Cisco Wide Area Application Services Configuration Guide*.)

The disk hot-swap functionality automatically disables a failed disk if the system detects one critical disk alarm. The software removes the failed disk automatically regardless of the setting for `disk error-handling`.

For WAE-7341 and WAE-7371 models, when you replace a failed disk that was automatically disabled by the software, the disk automatically returns to service. For WAE-612 models, when you replace a failed disk that was automatically disabled by the software, use the `disk insert EXEC` command to bring the disk back into service. For all other models, see the `{config} disk disk-name command section.

To identify which disks have been identified as failed or bad, use the `show disks failed-disk-id EXEC` command. Do not reinsert any disk with a serial number shown in this list.

**Note**
The `show disks failed-disk-id` command is not available on WAE-7341 and WAE-7371 models.

Use the `disk delete-partitions` EXEC command to remove all disk partitions on a single disk drive on a WAAS device or to remove the disk partition on the logical drive for RAID-5 systems.

**Caution**
Be careful when using the `disk delete-partitions` EXEC command because the WAAS software treats the specified disk drive as blank. All previous data on the drive will become inaccessible.

**Note**
When you use the `disk delete-partitions EXEC` command on the WAE-7341 or WAE-7371 models, the command deletes the entire logical volume. The individual disk name option is not available on these platforms.

The `disk delete-data-partitions` command deletes the DRE and CIFS caches and all installed virtual blade images. If you want to keep virtual blade images, back them up before using this command by using the `copy virtual-blade EXEC` command.

After using the `disk delete-data-partitions` command, you must reload the device and the data partitions are automatically recreated and the caches are initialized, which can take several minutes. DRE optimization is not done until the DRE cache has finished initializing. The `show statistics dre EXEC` command reports “TFO: Initializing disk cache” until then. It is best not to interrupt DRE cache
initialization by reloading the device again until after cache initialization has finished. However, if DRE cache initialization is interrupted, on the next reboot the disk is checked, which takes extra time, and DRE initialization is completed again.

**Examples**

The following example shows how to recreate the RAID-5 array:

```
WAE# disk recreate-raid
```

**Related Commands**

- `(config) disk disk-name`
- `(config) disk error-handling`
- `(config) disk logical shutdown`
- `show disks`
To resolve a host or domain name to an IP address, use the **dnslookup** EXEC command.

```
dnslookup {hostname | domainname}
```

- **Syntax Description**
  - `hostname`: Name of DNS server on the network.
  - `domainname`: Name of domain.

- **Defaults**
  No default behavior or values.

- **Command Modes**
  EXEC

- **Device Modes**
  - application-accelerator
  - central-manager

- **Examples**
  The following example shows how the `dnslookup` command is used to resolve the hostname `myhost` to IP address 172.31.69.11:

    
    ```
 WAE# dnslookup myhost
 official hostname: myhost.abc.com
 address: 172.31.69.11
    ```

  The following example shows how the `dnslookup` command is used to resolve the hostname `abd.com` to IP address 192.168.219.25:

    ```
 WAE# dnslookup abc.com
 official hostname: abc.com
 address: 192.168.219.25
    ```

  The following example shows how the `dnslookup` command is used to resolve an IP address used as a hostname to 10.0.11.0:

    ```
 WAE# dnslookup 10.0.11.0
 official hostname: 10.0.11.0
 address: 10.0.11.0
    ```
enable

To access privileged EXEC commands, use the **enable** EXEC command.

```
enable
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

Use the WAAS software CLI EXEC mode for setting, viewing, and testing system operations. This command mode is divided into two access levels: user and privileged. To access privileged-level EXEC mode, enter the `enable` EXEC command at the user access level prompt and specify the admin password when prompted for a password.

If using TACACS+ authentication, there is an enable password feature in TACACS+ that allows an administrator to define a different enable password for each user. If a TACACS+ user enters the `enable` EXEC command to access privileged EXEC mode, that user must enter the admin password defined by the TACACS+ server.

The `disable` command takes you from privileged EXEC mode to user EXEC mode.

**Examples**

The following example shows how to access privileged EXEC mode:

```
WAE> enable
WAE#
```

**Related Commands**

`disable`

`exit`
exit

To terminate privileged-level EXEC mode and return to the user-level EXEC mode, use the exit command.

```
exit
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
All modes

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
The `exit` EXEC command is equivalent to pressing `Ctrl-Z` or entering the `end` command. Entering the `exit` command in the user level EXEC shell terminates the console or Telnet session.

**Examples**
The following example shows how to terminate privileged-level EXEC mode and return to the user-level EXEC mode:

```
WAE# exit
WAE>
```

**Related Commands**
`(config) exit`
find-pattern

To search for a particular pattern in a file, use the `find-pattern` command in EXEC mode.

```
find-pattern { binary reg-express filename | count reg-express filename | lineno reg-express filename | match reg-express filename | nomatch reg-express filename | recursive reg-express filename }
```

```
find-pattern case { binary reg-express filename | count reg-express filename | lineno reg-express filename | match reg-express filename | nomatch reg-express filename | recursive reg-express filename }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binary reg-express filename</code></td>
<td>Does not suppress the binary output. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>count reg-express filename</code></td>
<td>Prints the number of matching lines. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>lineno reg-express filename</code></td>
<td>Prints the line number with output. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>match reg-express filename</code></td>
<td>Prints the matching lines. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>nomatch reg-express filename</code></td>
<td>Prints the nonmatching lines. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>recursive reg-express filename</code></td>
<td>Searches a directory recursively. Specifies the regular expression to be matched and the filename.</td>
</tr>
<tr>
<td><code>case</code></td>
<td>Matches a case-sensitive pattern.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

The following example shows how to search a file recursively for a case-sensitive pattern:

```
WAE# find-pattern case recursive admin removed_core
-rw------- 1 admin root 95600640 Oct 12 10:27 /local/local1/core_dir/core.3.0.0.b5.eh.2796
-rw------- 1 admin root 97054720 Jan 11 11:31 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.14086
-rw------- 1 admin root 96845824 Jan 11 11:32 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.14823
-rw------- 1 admin root 101580800 Jan 11 12:01 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.15134
-rw------- 1 admin root 96759808 Jan 11 12:59 /local/local1/core_dir/
```
WAE# find-pattern match 10 removed_core
Tue Oct 12 10:30:03 UTC 2004
-rw------- 1 admin root 95600640 Oct 12 10:27 /local/local1/core_dir/
core.3.0.0.b5.eh.2796
-rw------- 1 admin root 101580800 Jan 11 12:01 /local/local1/core_dir/
core.cache.3.0.0.b131.cnbuild.15134

WAE# find-pattern count 10 removed_core
3

Related Commands
  cd
  dir
  lls
  ls
help

To obtain online help for the command-line interface, use the help EXEC command.

help

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC and global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
You can obtain help at any point in a command by entering a question mark (?). If nothing matches, the help list will be empty, and you must back up until entering a ? shows the available options.

Two styles of help are provided:

- Full help is available when you are ready to enter a command argument (for example, show ?) and describes each possible argument.
- Partial help is provided when you enter an abbreviated command and you want to know what arguments match the input (for example, show stat?).

Examples
The following example shows how to display the output of the help EXEC command:

WAE# help
Help may be requested at any point in a command by entering a question mark '?' . If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument.
2. Partial help is provided when an abbreviated argument is entered.

Related Commands
(config) help
install

To install a new software image (such as the WAAS software) on the WAAS device, use the `install` EXEC command.

```
install filename
```

**Syntax Description**

<table>
<thead>
<tr>
<th>filename</th>
<th>Specifies the name of the .bin file you want to install.</th>
</tr>
</thead>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- appnav-controller
- central-manager

**Usage Guidelines**

The `install` command loads the system image into flash memory and copies the disk-based software component to the software file system (swfs) partition. This command can also be used to install a BIOS or other firmware update by specifying the appropriate update file.

**Note**

If you are installing a system image that contains optional software, make sure that an SWFS partition is mounted.

To install a system image, copy the image file to the SYSFS directory `local1`. Before executing the `install` command, change the present working directory to the directory where the system image resides. When the `install` command is executed, the image file is expanded. The expanded files overwrite the existing files on the WAAS device. The newly installed version takes effect after the system image is reloaded.

**Note**

The `install` command does not accept .pax files. Files should be of the type .bin (for example, `cache-sw.bin`). Also, if the release being installed does not require a new system image, then it may not be necessary to write to flash memory. If the newer version has changes that require a new system image to be installed, then the `install` command may result in a write to flash memory.

Close your browser and restart the browser session to the WAAS Central Manager, if you installed a new software image to the primary WAAS Central Manager.

**Examples**

The following example shows how to load the system image contained in the `wae512-cache-300.bin` file:

```
WAE# install wae512-cache-300.bin
```
Related Commands

- copy disk
- reload
To display a file using the Less application, use the `less` EXEC command.

```
less file_name
```

**Syntax Description**

| `file_name` | Name of the file to be displayed. |

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

Less is a pager application that displays text files one page at a time. You can use Less to view the contents of a file, but not edit it. Less offers some additional features when compared to conventional text file viewer applications such as Type. These features include the following:

- **Backward movement**—Allows you to move backward in the displayed text. Use `k`, `Ctrl-k`, `y`, or `Ctrl-y` to move backward. See the summary of Less commands for more details; to view the summary, press `h` or `H` while displaying a file in Less.
- **Searching and highlighting**—Allows you to search for text in the file that you are viewing. You can search forward and backward. Less highlights the text that matches your search to make it easy to see where the match is.
- **Multiple file support**—Allows you to switch between different files, remembering your position in each file. You can also do a search that spans all the files you are working with.

**Examples**

The following example shows how to display the text of the `syslog.txt` file using the Less application:

```
WAE# less syslog.txt
```

**Related Commands**

- `type`
license add

To add a software license to a device, use the **license add** EXEC command.

```
license add license-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>license-name</td>
<td>Name of the software license to add. The following license names are supported:</td>
</tr>
<tr>
<td></td>
<td>• Transport—Enables basic DRE, TFO, and LZ optimization.</td>
</tr>
<tr>
<td></td>
<td>• Enterprise—Enables the EPM, HTTP, MAPI, NFS, SSL, CIFS, and Windows Print application accelerators, the WAAS Central Manager, and basic DRE, TFO, and LZ optimization.</td>
</tr>
<tr>
<td></td>
<td>• Video—Enables the video application accelerator. Requires the Enterprise license to be configured first.</td>
</tr>
<tr>
<td></td>
<td>• Virtual-Blade—Enables the virtualization feature. Requires the Enterprise license to be configured first.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

The following example shows how to install the enterprise license:

```
WAE# license add Enterprise
```

**Related Commands**

<table>
<thead>
<tr>
<th>name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear arp-cache license</td>
<td></td>
</tr>
<tr>
<td>show license</td>
<td></td>
</tr>
</tbody>
</table>
lls

To view a long list of directory names, use the llsls EXEC command.

```
lls directory
```

**Syntax Description**

- `directory` (Optional) Name of the directory for which you want a long list of files.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

The `lls` command provides detailed information about files and subdirectories stored in the present working directory (including the size, date, time of creation, SYSFS name, and long name of the file). This information can also be viewed with the `dir` command.

**Examples**

The following example shows how to display a detailed list of the files in the current directory:

```
WAE# llsls
size time of last change name
-------- ------------------------ ------------
 4096 Fri Feb 24 14:40:00 2006 <DIR> actona
 4096 Tue Mar 28 14:42:44 2006 <DIR> core_dir
 4096 Wed Apr 12 20:23:10 2006 <DIR> crash
 4506 Tue Apr 11 13:52:45 2006 dbupgrade.log
 4096 Tue Apr 4 22:50:11 2006 <DIR> downgrade
 4096 Sun Apr 16 09:01:56 2006 <DIR> errorlog
 4096 Wed Apr 12 20:23:41 2006 <DIR> logs
16384 Thu Feb 16 12:25:29 2006 <DIR> lost+found
 4096 Wed Apr 12 03:26:02 2006 <DIR> sa
 24576 Sun Apr 16 23:54:30 2006 <DIR> service_logs
 4096 Thu Feb 16 12:26:09 2006 <DIR> spool
 9951236 Sun Apr 16 23:54:20 2006 syslog.txt
 10026298 Thu Apr 6 12:25:00 2006 syslog.txt.1
 4096 Thu Feb 16 12:29:30 2006 <DIR> var
 508 Sat Feb 25 13:18:35 2006 wdd.sh.signed
```

**Related Commands**

- `dir`
- `lls`
- `ls`
To view a list of files or subdirectory names within a directory on the device hard disk, use the `ls` EXEC command.

```
ls [directory]
```

**Syntax Description**
- `directory` (Optional) Name of the directory for which you want a list of files.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
- application-accelerator
- central-manager

**Usage Guidelines**
Use the `ls directory` command to list the filenames and subdirectories within a particular directory.
Use the `ls` command to list the filenames and subdirectories of the current working directory.
Use the `pwd` command to view the present working directory.

**Examples**
The following example shows how to display the files and subdirectories that are listed within the root directory:

```
WAE# ls
actona
core_dir
crash
dbupgrade.log
downgrade
errorlog
logs
lost+found
sa
service_logs
spool
syslog.txt
syslog.txt.1
var
wdd.sh.signed
```

**Related Commands**
- `dir`
- `lls`
pwd
lsusb

To view a list of files or subdirectory names within a directory on a USB storage device, use the `lsusb` EXEC command.

```
lsusb [directory]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>directory</td>
<td>(Optional) Name of the directory for which you want a list of files.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

Use the `lsusb directory` command to list the filenames and subdirectories within a particular directory on the USB device.

Use the `lsusb` command to list the filenames and subdirectories of the current working directory on the USB device.

This command is available only on WAAS devices that support external USB storage devices.

**Examples**

The following example shows how to display the files and subdirectories that are listed within the root directory of a USB device:

```
WAE# lsusb
directory1
afile.txt
bfile.txt
```

**Related Commands**

<table>
<thead>
<tr>
<th>Related Commands</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dir</td>
<td></td>
</tr>
<tr>
<td>lls</td>
<td></td>
</tr>
<tr>
<td>ls</td>
<td></td>
</tr>
<tr>
<td>pwd</td>
<td></td>
</tr>
</tbody>
</table>
mkdir

To create a directory, use the `mkdir` EXEC command.

```
mkdir directory
```

**Syntax Description**

| `directory` | Name of the directory to create. |

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

The following example shows how to create a new directory, `oldpaxfiles`:

```
WAE# mkdir /oldpaxfiles
```

**Related Commands**

cpfile
dir
lls
ls
pwd
rename
rmdir
# mkfile

To create a new file, use the `mkfile` EXEC command.

```
mkfile filename
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>Name of the file that you want to create.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

Use the `mkfile` EXEC command to create a new file in any directory of the WAAS device.

**Examples**

The following example shows how to create a new file, `traceinfo`, in the root directory:

```
WAE# mkfile traceinfo
```

**Related Commands**

- `cpfile`
- `dir`
- `lls`
- `ls`
- `mkdir`
- `pwd`
- `rename`
monitor appnav-controller traffic

To enable traffic monitoring on an AppNav Controller Interface Module, use the monitor appnav-controller traffic EXEC command.

```
monitor appnav-controller traffic [access-list acl-name | disable]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list acl-name</td>
<td>Name of the access list that determines which flows are monitored.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables flow monitoring.</td>
</tr>
</tbody>
</table>

**Defaults**

Monitoring is disabled.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Usage Guidelines**

Use this command to enable the AppNav Controller Interface Module to supply monitoring statistics for traffic flows that match the specified ACL. The ACL must be defined by the `ip access-list` global configuration command.

The ACL specified in this command is shared by the `packet-capture` and `debug appnav-controller` commands.

Use the `show statistics monitor appnav-controller traffic` EXEC command to display the monitoring statistics.

Use the `show monitor` EXEC command to display the status of traffic monitoring.

**Examples**

The following example shows how to enable traffic monitoring with an ACL:

```
ANC# monitor appnav-controller traffic access-list myacl
```

**Related Commands**

- `clear statistics monitor appnav-controller traffic`
- `show monitor`
- `show statistics monitor appnav-controller traffic`
To set the software clock (time and date) on a WAAS device using an NTP server, use the `ntpdate` EXEC command.

```
ntpdate {hostname | ip-address} [key {authentication-key}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>NTP hostname.</td>
</tr>
<tr>
<td>ip-address</td>
<td>NTP server IP address.</td>
</tr>
<tr>
<td>key</td>
<td>(Optional) Specifies to use authentication with the NTP server.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>Authentication key string to use with the NTP server authentication. This value must be between 0 and 4294967295.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

Use the `ntpdate` command to find the current time of day and set the current time on the WAAS device to match. You must save the time to the hardware clock using the `clock save` command if you want to restore the time after a reload.

**Examples**

The following example shows how to set the software clock on the WAAS device using a NTP server:

```
WAE# ntpdate 10.11.23.40
```

**Related Commands**

- `clock`
- `(config) clock`
- `(config) ntp`
- `show clock`
- `show ntp`
### packet-capture

To capture packets on a device interface, use the `packet-capture` EXEC command.

```
packet-capture appnav-controller {access-list {acl-name | acl-num} | interface
 {GigabitEthernet slot/port | TenGigabitEthernet slot/port | PortChannel index |
 standby grpnumber} access-list {acl-name | acl-num} | [file-size size [number-of-files num |
 stop-after-num-files num] | [capture-filename]

packet-capture interface {GigabitEthernet slot/port | TenGigabitEthernet slot/port |
 PortChannel index | standby grpnumber} {access-list {acl-name | acl-num} | destination-ip
 {hostname | ip-address} | destination-port port | source-ip {hostname | ip-address} |
 source-port port} [file-size size [number-of-files num | stop-after-num-files num]] |
 [capture-filename]

packet-capture decode {destination-ip {hostname | ip-address} | destination-port port | source-ip
 {hostname | ip-address} | source-port port} [file-size size [number-of-files num |
 stop-after-num-files num] | capture-filename]
```

### Syntax Description

- **appnav-controller**: Capture packets on an AppNav Controller Interface Module interface.
- **access-list**: Specifies an access list for which to capture packets across all AppNav Controller Interface Module interfaces. Applicable only if the `appnav-controller` keyword is specified.
  - **acl-name**: (Optional) Access list name.
  - **acl-num**: (Optional) Access list numeric identifier (0–99 for standard access lists and 100–199 for extended access lists).
- **interface**: Specifies the source interface from which to capture packets.
  - **GigabitEthernet slot/port**: Specifies a Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).
  - **TenGigabitEthernet slot/port**: Specifies a 10-Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).
  - **PortChannel index**: Specifies a port channel interface (1-4).
  - **standby grpnumber**: Specifies a standby group (1-2).
- **access-list**: Specifies an access list for which to capture packets on the specified interface.
  - **file-size size**: (Optional) Specifies the maximum file size for captured output, from 1–100000 KB. After a file fills to capacity, another output file is created according to the following keywords.
  - **number-of-files num**: (Optional) Specifies the maximum number of output files to create (1–500), after which earlier files are overwritten as needed for more captured data.
  - **stop-after-num-files num**: (Optional) Specifies the maximum number of output files to create (1–500), after which packet capture is stopped.
- **capture-filename**: (Optional) Specifies the name of a file to which output is saved. If no file is specified, output is sent to the console.
- **destination-ip**: Captures packets matching the specified destination IP address.
  - **hostname**: Captures packets matching the specified destination or source hostname.
  - **ip-address**: Destination or source IP address.
**packet-capture**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>destination-port</strong> <code>port</code></td>
<td>Captures packets matching the specified destination port.</td>
</tr>
<tr>
<td><strong>source-ip</strong></td>
<td>Captures packets matching the specified source IP address.</td>
</tr>
<tr>
<td><strong>source-port</strong> <code>port</code></td>
<td>Captures packets matching the specified source port.</td>
</tr>
<tr>
<td><strong>decode</strong></td>
<td>Decodes captured packets.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator  
central-manager

**Usage Guidelines**

Either packet capture or debug capture can be active, but not both simultaneously.

The `packet-capture` command is preferred over the deprecated commands `tcpdump` and `tethereal`, and is required to capture data plane traffic on an AppNav Controller Interface Module interface.

**Examples**

The following example shows how to capture packets on a normal interface:

```
WAE(config)# ip access-list extended 100 permit tcp any any range 23 35
WAE(config)# exit
WAE# packet-capture interface gig 0/1 access-list 100 mycapture
```

The following example shows how to capture packets on all interfaces on an AppNav Controller Interface Module:

```
WAE# packet-capture appnav-controller access-list 100 mycapture
```

**Related Commands**

tcpdump  
tethereal
ping

To send echo packets for diagnosing basic network connectivity on networks, use the ping EXEC command.

    ping [management] {hostname | ip-address}

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>management</strong></td>
<td>Uses the designated management interface for the ping.</td>
</tr>
<tr>
<td><strong>hostname</strong></td>
<td>Hostname of system to ping.</td>
</tr>
<tr>
<td><strong>ip-address</strong></td>
<td>IP address of system to ping.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

To use the ping command with the hostname argument, make sure that DNS functionality is configured on the WAAS device. To force the timeout of a nonresponsive host, or to eliminate a loop cycle, press Ctrl-C.

Examples

The following example shows how to send echo packets to a machine with address 172.19.131.189 to verify its availability on the network:

```
WAE# ping 172.19.131.189
PING 172.19.131.189 (172.19.131.189) from 10.1.1.21 : 56(84) bytes of data.
64 bytes from 172.19.131.189: icmp_seq=0 ttl=249 time=613 usec
64 bytes from 172.19.131.189: icmp_seq=1 ttl=249 time=485 usec
64 bytes from 172.19.131.189: icmp_seq=2 ttl=249 time=494 usec
64 bytes from 172.19.131.189: icmp_seq=3 ttl=249 time=510 usec
64 bytes from 172.19.131.189: icmp_seq=4 ttl=249 time=493 usec

--- 172.19.131.189 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.485/0.519/0.613/0.047 ms
WAE#
```

Related Commands

traceroute
**pwd**

To view the present working directory on a WAAS device, use the `pwd` EXEC command.

```
pwd
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to display the current working directory:

```
WAE# pwd
/local1
```

**Related Commands**
`cd`
`dir`
`lls`
`ls`
reload

To halt the operation and perform a cold restart on a WAAS device, use the `reload` EXEC command.

`reload [force | in m | cancel]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>force</code></td>
<td>(Optional) Forces a reboot without further prompting.</td>
</tr>
<tr>
<td><code>in m</code></td>
<td>(Optional) Schedules a reboot after a specified interval (1-10080 minutes).</td>
</tr>
<tr>
<td><code>cancel</code></td>
<td>(Optional) Cancels a scheduled reboot.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

To reboot a WAAS device, use the `reload` command. If no configurations are saved to flash memory, you are prompted to enter configuration parameters upon a restart. Any open connections are dropped after you enter the `reload` command, and the file system is reformatted upon restart.

The `reload` command can include the option to schedule a reload of the software to take effect in a specified number of minutes. After entering this command, you are asked to confirm the reload by typing `y` and then confirm WCCP shutdown by typing `y` again (if WCCP is active).

You can use the `cancel` option to cancel a scheduled reload.

**Examples**

The following example shows how to halt the operation of the WAAS device and reboot with the configuration saved in flash memory. You are not prompted for confirmations during the process.

```
WAE# reload force
```

**Related Commands**

- `write`
rename

To rename a file on a WAAS device, use the `rename` EXEC command.

```
rename oldfilename newfilename
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oldfilename</code></td>
<td>Original filename.</td>
</tr>
<tr>
<td><code>newfilename</code></td>
<td>New filename.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the `rename` command to rename any SYSFS file without making a copy of the file.

**Examples**

The following example shows how to rename the `errlog.txt` file to `old_errlog.txt`:

```
WAE# rename errlog.txt old_errlog.txt
```

**Related Commands**

`cpfile`
### restore

To restore the device to its manufactured default status by removing the user data from the disk and flash memory, use the `restore` EXEC command.

```
restore {factory-default [preserve basic-config] | rollback}
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>factory-default</code></td>
<td>Resets the device configuration and data to their manufactured default status.</td>
</tr>
<tr>
<td><code>preserve</code></td>
<td>(Optional) Preserves certain configurations and data on the device.</td>
</tr>
<tr>
<td><code>basic-config</code></td>
<td>(Optional) Selects basic network configurations.</td>
</tr>
<tr>
<td><code>rollback</code></td>
<td>Rolls back the configuration to the last functional software and device configuration.</td>
</tr>
</tbody>
</table>

#### Defaults

No default behavior or values.

#### Command Modes

EXEC

#### Device Modes

application-accelerator
central-manager

#### Usage Guidelines

Use the `restore` EXEC command to restore data on a disk and in flash memory to the factory default, while preserving particular time-stamp evaluation data, or to roll back the configuration to the last functional data and device configuration.

This command erases all existing content on the device; however, your network settings are preserved and the device is accessible through a Telnet and Secure Shell (SSH) session after it reboots.

**Backing up the Central Manager Database**

Before you use the `restore factory-default` command on your primary WAAS Central Manager or change over from the primary to a standby WAAS Central Manager, make sure that you back up the WAAS Central Manager database and copy the backup file to a safe location that is separate from the WAAS Central Manager. You must halt the operation of the WAAS Central Manager before you enter the `backup` and `restore` commands.

**Caution**

The `restore` command erases user-specified configuration information stored in the flash image and removes data from a disk, user-defined disk partitions, and the entire Central Manager database. User-defined disk partitions that are removed include the SYSFS, WAAS, and PRINTSPOOLFS partitions. The configuration that is removed includes the starting configuration of the device.
By removing the WAAS Central Manager database, all configuration records for the entire WAAS network are deleted. If you do not have a valid backup file or a standby WAAS Central Manager, you must reregister every WAE with the WAAS Central Manager because all previously configured data is lost.

If you used your standby WAAS Central Manager to store the database while you reconfigured the primary, you can register the former primary as a new standby WAAS Central Manager.

If you created a backup file while you configured the primary WAAS Central Manager, you can copy the backup file to this newly reconfigured WAAS Central Manager.

**Rolling Back the Configuration**

You can roll back the software and configuration of a WAAS device to a previous version using the `restore rollback` command. You would roll back the software only in cases in which a newly installed version of the WAAS software is not functioning properly.

The `restore rollback` command installs the last saved WAAS.bin image on the system disk. A WAAS.bin image is created during software installation and stored on the system disk. If the WAAS device does not have a saved version, the software is not rolled back.

---

**Note**

WAFS to WAAS migration is supported. Rollback from WAAS to WAFS is not supported.

---

**Examples**

The following examples show how to use the `restore factory-default` and `restore factory-default preserve basic-config` commands. Because configuration parameters and data are lost, prompts are given before initiating the restore operation to ensure that you want to proceed.

**WAE# restore factory-default**

This command will wipe out all of data on the disks and wipe out WAAS CLI configurations you have ever made. If the box is in evaluation period of certain product, the evaluation process will not be affected though.

*It is highly recommended that you stop all active services before this command is run.*

Are you sure you want to go ahead?[yes/no]

---

**WAE# restore factory-default preserve basic-config**

This command will wipe out all of data on the disks and all of WAAS CLI configurations except basic network configurations for keeping the device online. The to-be-preserved configurations are network interfaces, default gateway, domain name, name server and hostname. If the box is in evaluation period of certain product, the evaluation process will not be affected.

*It is highly recommended that you stop all active services before this command is run.*

Are you sure you want to go ahead?[yes/no]

---

**Note**

You can enter basic configuration parameters (such as the IP address, hostname, and name server) at this point, or you can enter these parameters later through entries in the command-line interface.

The following example shows how to verify that the `restore` command has removed data from the SYSFS, WAAS, and PRINTSPoolFS partitioned file systems:
WAE# show disks details

Physical disk information:

- disk00: Normal (h00 c00 i00 l00 - DAS) 140011MB (136.7GB)
- disk01: Normal (h00 c00 i01 l00 - DAS) 140011MB (136.7GB)

Mounted filesystems:

<table>
<thead>
<tr>
<th>MOUNT POINT</th>
<th>TYPE</th>
<th>DEVICE</th>
<th>SIZE</th>
<th>INUSE</th>
<th>FREE</th>
<th>USE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>root</td>
<td>/dev/root</td>
<td>35MB</td>
<td>30MB</td>
<td>5MB</td>
<td>85%</td>
</tr>
<tr>
<td>/swstore</td>
<td>internal</td>
<td>/dev/md1</td>
<td>991MB</td>
<td>333MB</td>
<td>658MB</td>
<td>33%</td>
</tr>
<tr>
<td>/state</td>
<td>internal</td>
<td>/dev/md2</td>
<td>3967MB</td>
<td>81MB</td>
<td>3884MB</td>
<td>2%</td>
</tr>
<tr>
<td>/disk00-04</td>
<td>CONTENT</td>
<td>/dev/md4</td>
<td>122764MB</td>
<td>33MB</td>
<td>122731MB</td>
<td>0%</td>
</tr>
<tr>
<td>/local/local</td>
<td>SYSFS</td>
<td>/dev/md5</td>
<td>3967MB</td>
<td>271MB</td>
<td>3696MB</td>
<td>6%</td>
</tr>
<tr>
<td>.../local1</td>
<td>PRINTSPOOL</td>
<td>/dev/md6</td>
<td>991MB</td>
<td>16MB</td>
<td>975MB</td>
<td>1%</td>
</tr>
<tr>
<td>/sw</td>
<td>internal</td>
<td>/dev/md0</td>
<td>991MB</td>
<td>424MB</td>
<td>567MB</td>
<td>42%</td>
</tr>
</tbody>
</table>

Software RAID devices:

<table>
<thead>
<tr>
<th>DEVICE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
<th>PHYSICAL DEVICES AND STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/md0</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/00[GOOD] disk01/00[GOOD]</td>
</tr>
<tr>
<td>/dev/md1</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/01[GOOD] disk01/01[GOOD]</td>
</tr>
<tr>
<td>/dev/md2</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/02[GOOD] disk01/02[GOOD]</td>
</tr>
<tr>
<td>/dev/md3</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/03[GOOD] disk01/03[GOOD]</td>
</tr>
<tr>
<td>/dev/md4</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/04[GOOD] disk01/04[GOOD]</td>
</tr>
<tr>
<td>/dev/md5</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/05[GOOD] disk01/05[GOOD]</td>
</tr>
<tr>
<td>/dev/md6</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/06[GOOD] disk01/06[GOOD]</td>
</tr>
</tbody>
</table>

Currently content-filesystems RAID level is not configured to change.

The following example shows how to upgrade or restore an older version of the WAAS software. In the example, version Y of the software is installed (using the copy command), but the administrator has not switched over to it yet, so the current version is still version X. The system is then reloaded (using the reload command), and it verifies that version Y is the current version running.

The following example shows how to roll back the software to version X (using the restore rollback command), and reload the software:

WAE# copy ftp install server path waas.versionY.bin
WAE# show version
Cisco Wide Area Application Services Software (WAAS)
Copyright (c) 1999-2006 by Cisco Systems, Inc.
Cisco Wide Area Application Services Software Release 4.0.0 (build b340 Mar 25 2006)
Version: oe612-4.0.0.340
Compiled 17:26:17 Mar 25 2006 by cnbuild

System was restarted on Mon Mar 27 15:25:02 2006.
The system has been up for 3 days, 21 hours, 9 minutes, 17 seconds.

WAE# show version last
   Nothing is displayed.
WAE# show version pending
WAAS 4.0.1 Version Y
WAE# reload
   ...... reloading ......
WAE# show version
Cisco Wide Area Application Services Software (WAAS)
   ...
WAE# restore rollback
Because flash memory configurations were removed after the `restore` command was used, the `show startup-config` command does not return any flash memory data. The `show running-config` command returns the default running configurations.
rmdir

To delete a directory on a WAAS device, use the rmdir EXEC command.

\[ \text{rmdir directory} \]

Syntax Description

- **directory**: Name of the directory that you want to delete.

Defaults

No default behavior or values.

Command Modes

- EXEC

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Use the **rmdir** EXEC command to remove any directory from the WAAS file system. The **rmdir** command only removes empty directories.

Examples

The following example shows how to delete the *oldfiles* directory from the *local1* directory:

\[ \text{WAES} \# \text{rmdir /local1/oldfiles} \]

Related Commands

- cpfile
- dir
- lls
- ls
- mkdir
- pwd
- rename
**scp**

To copy files between network hosts, use the `scp` command.

```plaintext
scp [4][6][B][C][p][q][r][v] [c cipher] [F config-file] [i id-file] [o ssh_option] [P port] [S program] [[user @] host : file] [...] [[user-n @] host-n : file-n]
```

**Syntax Description**

- **[4]** (Optional) Forces this command to use only IPv4 addresses.
- **[6]** (Optional) Forces this command to use only IPv6 addresses.
- **B** (Optional) Specifies the batch mode. In this mode, the `scp` command does not ask for passwords or passphrases.
- **C** (Optional) Enables compression. The `scp` command passes this option to the `ssh` command to enable compression.
- **p** (Optional) Preserves the following information from the source file: modification times, access times, and modes.
- **q** (Optional) Disables the display of progress information.
- **r** (Optional) Recursively copies directories and their contents.
- **v** (Optional) Specifies the verbose mode. Causes the `scp` and `ssh` commands to print debugging messages about their progress. This option can be helpful when troubleshooting connection, authentication, and configuration problems.
- **c cipher** (Optional) Specifies the cipher to use for encrypting the data being copied. The `scp` command directly passes this option to the `ssh` command.
- **F config-file** (Optional) Specifies an alternative per-user configuration file for Secure Shell (SSH). The `scp` command directly passes this option to the `ssh` command.
- **i id-file** (Optional) Specifies the file containing the private key for RSA authentication. The `scp` command directly passes this information to the `ssh` command.
- **o ssh_option** (Optional) Specifies the program to use for the encrypted connection.
- **P port** (Optional) Specifies the port to connect to on the remote host.
- **S program** (Optional) Specifies the program to use for the encrypted connection.
- **user** (Optional) Username.
- **host** (Optional) Hostname.
- **file** (Optional) Name of the file to copy.

**Command Modes**

- EXEC

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

The `scp` command uses SSH for transferring data between hosts. This command prompts you for passwords or pass phrases when needed for authentication.

Related Commands

`ssh`
script

To execute a script provided by Cisco or check the script for errors, use the **script EXEC** command.

```plaintext
script {check | execute} file_name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>check</td>
<td>Checks the validity of the script.</td>
</tr>
<tr>
<td>execute</td>
<td>Executes the script. The script file must be a SYSFS file in the current directory.</td>
</tr>
<tr>
<td>file_name</td>
<td>Name of the script file.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

The **script** EXEC command opens the script utility, which allows you to execute Cisco-supplied scripts or check errors in those scripts. The script utility can read standard terminal input from the user if the script you run requires input from the user.

**Note**

The script utility is designed to run only Cisco-supplied scripts. You cannot execute script files that lack Cisco signatures or that have been corrupted or modified.

**Examples**

The following example shows how to check for errors in the script file `test_script.pl`:

```
WAE# script check test_script.pl
```
**setup**

To configure basic configuration settings (general settings, device network settings, interception type, disk configuration, and licenses) on the WAAS device or to complete basic configuration after upgrading to the WAAS software, use the `setup` EXEC command.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
For instructions on using the `setup` command, see the *Cisco Wide Area Application Services Quick Configuration Guide*.

For proper display of the `setup` command, leave the terminal length set to the default value of 24 lines.
show aaa accounting

To display the AAA accounting configuration information for a WAAS device, use the **show aaa accounting** EXEC command.

```
show aaa accounting
```

**Syntax Description**

This command has no arguments or keywords

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the **show aaa accounting** EXEC command to display configuration information for the following AAA accounting types:

- Exec shell
- Command (for normal users and superusers)
- System

**Examples**

Table 3-1 describes the fields shown in the **show aaa accounting** command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Type</td>
<td>AAA accounting configuration for the following types of user accounts:</td>
</tr>
<tr>
<td></td>
<td>• Exec</td>
</tr>
<tr>
<td></td>
<td>• Command level 0</td>
</tr>
<tr>
<td></td>
<td>• Command level 15</td>
</tr>
<tr>
<td></td>
<td>• System</td>
</tr>
<tr>
<td>Record Event(s)</td>
<td>Configuration of the AAA accounting notice that is sent to the accounting</td>
</tr>
<tr>
<td></td>
<td>server.</td>
</tr>
<tr>
<td>stop-only</td>
<td>WAAS device that sends a stop record accounting notice at the end of the</td>
</tr>
<tr>
<td></td>
<td>specified activity or event to the TACACS+ accounting server.</td>
</tr>
</tbody>
</table>
### Table 3-1  Field Descriptions for the show aaa accounting Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start-stop</td>
<td>WAAS device that sends a start record accounting notice at the beginning of an event and a stop record at the end of the event to the TACACS+ accounting server. The start accounting record is sent in the background. The requested user service begins regardless of whether the start accounting record was acknowledged by the TACACS+ accounting server.</td>
</tr>
<tr>
<td>wait-start</td>
<td>WAAS device that sends both a start and a stop accounting record to the TACACS+ accounting server. The requested user service does not begin until the start accounting record is acknowledged. A stop accounting record is also sent.</td>
</tr>
<tr>
<td>disabled</td>
<td>Accounting that is disabled for the specified event.</td>
</tr>
<tr>
<td>Protocol</td>
<td>Accounting protocol that is configured.</td>
</tr>
</tbody>
</table>

**Related Commands**  
(config) aaa accounting
show aaa authorization

To display the AAA authorization configuration information for a WAAS device, use the `show aaa authorization` EXEC command.

```
show aaa authorization
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the `show aaa authorization` EXEC command to display configuration and state information related to AAA authorization.

**Examples**

Table 3-2 describes the fields shown in the `show aaa authorization` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorization Type</td>
<td>AAA authorization configuration for the following types of user accounts:</td>
</tr>
<tr>
<td></td>
<td>• Command level 0</td>
</tr>
<tr>
<td></td>
<td>• Command level 15</td>
</tr>
<tr>
<td>Protocol</td>
<td>Authorization protocol that is configured.</td>
</tr>
</tbody>
</table>

**Related Commands**

`show aaa authorization` (config)
show accelerator

To display the status and configuration of the application accelerators, use the `show accelerator` EXEC command.

```
show accelerator [cifs | detail | epm | http | debug | ica | mapi | nfs | smb | ssl | video | wansecure]
```

**Syntax Description**

- **cifs** (Optional) Displays the status for the CIFS application accelerator.
- **detail** (Optional) Displays the license information, configuration state, and operational state for all accelerators, and additional accelerator and policy engine configuration.
- **epm** (Optional) Displays the status for the EPM application accelerator.
- **http** (Optional) Displays the status for the HTTP application accelerator.
- **debug** (Optional) Displays more detailed status for the HTTP application accelerator.
- **ica** (Optional) Displays the status for the ICA application accelerator.
- **mapi** (Optional) Displays the status for the MAPI application accelerator.
- **nfs** (Optional) Displays the status for the NFS application accelerator.
- **smb** (Optional) Displays the status for the SMB application accelerator.
- **ssl** (Optional) Displays the status for the SSL application accelerator.
- **video** (Optional) Displays the status for the video application accelerator.
- **wansecure** (Optional) Displays the status for the WAN secure application accelerator.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Examples**

The following example displays the output for the `show accelerator http` command:

```
waes# show accelerator http
Accelerator Licensed Config State Operational State
-------- -------- ------------ ------------
http Yes Enabled Running

HTTP:
 Accelerator Config Item Mode Value
 Supress Server Encoding Default Disabled
 DRE Hints Access-List Default All
 Metadatacache Access-List User Enabled
 HTTPS Metadatacache Access-List Default All
```
The following example displays the output for the `show accelerator smb` command:

```
wae# show accelerator smb

Accelerator Licensed Config State Operational State
----------- -------- -------------- ------------------
smb Yes Disabled Shutdown

SMB:
 Accelerator Config Item Mode Value
 ----------------------- ---- ----
 Digital signing alarm Default Enabled
 Change Notification size Default 10
 DRE hints Default Enabled
 Highest dialect Default smb2-1
 Exceed action Default handoff
 Named pipe optimization Default Enabled
 Resp. cache lifetime (s) Default 20
 Sess. cache lifetime (s) Default 30
 NamedPipe-cache size (KB) Default 160 (default: 160
 maximum: 480)
 NF metadata cache opt Default Enabled
 Max size (MB) Default 32
 Aging (s) Default 30
 Bypass patterns Default
 Microsoft Office optimization Default Enabled
 Optimization bypass pattern User
 Read-ahead opt Default Enabled
 Buffer size (MB) Default 50 (default: 50
 maximum: 100)
 Directory listing opt Default Enabled
 Async-write opt Default Enabled
 Quota threshold (MB) Default 20
 Quota aging time (s) Default 60
 Metadata-opt Default Enabled
 Metadata-cache size (MB) Default 50 (default: 50
 maximum: 50)
 Batch-close-opt Default Enabled
 Invalid-fid-opt Default Enabled
 Iobuf size (MB) Default 50 (default: 50
 maximum: 100)
 Max iobuf size for 1 pkt(KB) Default 65
 Directory aging time Default 30
 Dynamic share User //1.1.1.1/test

Policy Engine Config Item Value
 ------------------------- ----
 State Registered
```
Table 3-3 describes the fields shown in the `show accelerator` command display for all application accelerators. Specific application accelerators display additional configuration status information.

### Table 3-3  
**Field Description for the show accelerator Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator</td>
<td>Name of the accelerator.</td>
</tr>
<tr>
<td>Licensed</td>
<td>Yes or No.</td>
</tr>
<tr>
<td>Config State</td>
<td>Accelerator is Enabled or Disabled.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Shutdown, Initializing, Running, Cleaning Up, or Expired License.</td>
</tr>
<tr>
<td>Policy Engine Config Item: State</td>
<td>Registered (policy engine is communicating with the accelerator) or Not Registered (policy engine is not communicating with the accelerator; seen when the accelerator is disabled).</td>
</tr>
<tr>
<td>Policy Engine Config Item: Default Action</td>
<td>Drop or Use. Specifies the action to be taken if the accelerator refuses to handle the connection (because of overload or other reasons). Drop means the connection is dropped, and Use means the connection uses a reduced set of policy actions (such as TFO and DRE).</td>
</tr>
<tr>
<td>Policy Engine Config Item: Connection Limit</td>
<td>Connection limit. The limit configured by the accelerator which states how many connections may be handled before new connection requests are rejected.</td>
</tr>
<tr>
<td>Policy Engine Config Item: Effective Limit</td>
<td>Effective connection limit. The dynamic limit relating to how many connections may be handled before new connection requests are rejected. This limit is affected by resources that have been reserved, but not yet used.</td>
</tr>
<tr>
<td>Policy Engine Config Item: Keepalive timeout</td>
<td>Connection keepalive timeout in seconds. Keepalive messages are sent by each accelerator.</td>
</tr>
</tbody>
</table>

If you use the `show accelerator http` or the `show accelerator smb` command, the output contains an extra section called Accelerator Config Item, which appears before the Policy Engine Config Item section. In the Accelerator Config Item section, each item shows the status of an HTTP accelerator configuration item. The Mode column shows Default if the item is configured with the default setting or User if the item is configured with a different setting by the user. The Value column shows the current value of the item (Enabled, Disabled, or an alpha-numeric setting).

**Related Commands**

(config) accelerator cifs  
(config) accelerator epm  
(config) accelerator http  
(config) accelerator ica  
(config) accelerator mapi
show accelerator

(config) accelerator nfs
(config) accelerator smb
(config) accelerator ssl
(config) accelerator video
show statistics accelerator
show alarms

To display information about various types of alarms, their status, and history on a WAAS device, use the `show alarms` EXEC command.

```
show alarms critical [detail [support]]
show alarms detail [support]
show alarms history [start_num [end_num [detail [support]]]]
show alarms major [start_num [end_num [detail [support]]]]
show alarms minor [start_num [end_num [detail [support]]]]
show alarms status
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>critical</td>
<td>Displays critical alarm information.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information for each alarm.</td>
</tr>
<tr>
<td>support</td>
<td>(Optional) Displays additional information about each alarm.</td>
</tr>
<tr>
<td>history</td>
<td>Displays information about the history of various alarms.</td>
</tr>
<tr>
<td>start_num</td>
<td>(Optional) Alarm number that appears first in the alarm history.</td>
</tr>
<tr>
<td>end_num</td>
<td>(Optional) Alarm number that appears last in the alarm history.</td>
</tr>
<tr>
<td>major</td>
<td>Displays information about major alarms.</td>
</tr>
<tr>
<td>minor</td>
<td>Displays information about minor alarms.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the status of various alarms and alarm overload settings.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The Node Health Manager in the WAAS software enables WAAS applications to raise alarms to draw attention in error/significant conditions. The Node Health Manager, which is the data repository for such alarms, aggregates the health and alarm information for the applications, services, and resources (for example, disk drives) that are being monitored on the WAAS device. For example, this feature gives you a mechanism to determine if a WAE is receiving overwhelming number of alarms. These alarms are referred to as WAAS software alarms.

The WAAS software uses SNMP to report error conditions by generating SNMP traps. The following WAAS applications can generate a WAAS software alarm:
show alarms

- Node Health Manager (alarm overload condition)
- System Monitor (sysmon) for disk failures

The three levels of alarms in the WAAS software are as follows:

- Critical—Alarms that affect the existing traffic through the WAE and are considered fatal (the WAE cannot recover and continue to process traffic).
- Major—Alarms that indicate a major service (for example, the cache service) has been damaged or lost. Urgent action is necessary to restore this service. However, other node components are fully functional and the existing service should be minimally impacted.
- Minor—Alarms that indicate that a condition that will not affect a service has occurred, but that corrective action is required to prevent a serious fault from occurring.

You can configure alarms using the `snmp-server enable traps alarms` global configuration command.

Use the `show alarms critical` EXEC command to display the current critical alarms being generated by WAAS software applications. Use the `show alarms critical detail` EXEC command to display additional details for each of the critical alarms being generated. Use the `show alarms critical detail support` EXEC command to display an explanation about the condition that triggered the alarm and how you can find out the cause of the problem. Similarly, you can use the `show alarms major` and `show alarms minor` EXEC commands to display the details of major and minor alarms.

Use the `show alarms history` EXEC command to display a history of alarms that have been raised and cleared by the WAAS software on the WAAS device since the last software reload. The WAAS software retains the last 100 alarm raise and clear events only.

Use the `show alarms status` EXEC command to display the status of current alarms and the alarm overload status of the WAAS device and alarm overload configuration.

### Examples

Table 3-4 describes the fields shown in the `show alarms history` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op</td>
<td>Operation status of the alarm. Values are R–Raised or C–Cleared.</td>
</tr>
<tr>
<td>Sev</td>
<td>Severity of the alarm. Values are Cr–Critical, Ma–Major, or Mi–Minor.</td>
</tr>
<tr>
<td>Alarm ID</td>
<td>Type of event that caused the alarm.</td>
</tr>
<tr>
<td>Module/Submodule</td>
<td>Software module affected.</td>
</tr>
<tr>
<td>Instance</td>
<td>Object that this alarm event is associated with. For example, for an alarm event with the Alarm ID disk_failed, the instance would be the name of the disk that failed. The Instance field does not have predefined values and is application specific.</td>
</tr>
</tbody>
</table>

Table 3-5 describes the fields shown in the `show alarms status` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Alarms</td>
<td>Number of critical alarms.</td>
</tr>
<tr>
<td>Major Alarms</td>
<td>Number of major alarms.</td>
</tr>
</tbody>
</table>
Table 3-5  Field Descriptions for the show alarms status Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Alarms</td>
<td>Number of minor alarms.</td>
</tr>
<tr>
<td>Overall Alarm Status</td>
<td>Aggregate status of alarms.</td>
</tr>
<tr>
<td>Device is NOT in alarm overload state.</td>
<td>Status of the device alarm overload state.</td>
</tr>
<tr>
<td>Device enters alarm overload state @ 999 alarms/sec.</td>
<td>Threshold number of alarms per second at which the device enters the alarm overload state.</td>
</tr>
<tr>
<td>Device exits alarm overload state @ 99 alarms/sec.</td>
<td>Threshold number of alarms per second at which the device exits the alarm overload state.</td>
</tr>
<tr>
<td>Overload detection is ENABLED.</td>
<td>Status of whether overload detection is enabled on the device.</td>
</tr>
</tbody>
</table>

Related Commands

(config) alarm overload-detect
(config) snmp-server enable traps
show appnav-controller flow-distribution

To display ANC flow distribution information, use the `show appnav-controller flow-distribution` EXEC command.

```
show appnav-controller flow-distribution [client-ip ip_address | client-port port | peer-id peer_id | server-ip ip_address | server-port port]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-ip ip_address</td>
<td>(Optional) Displays the flow information for the client with the specified IP address.</td>
</tr>
<tr>
<td>client-port port</td>
<td>(Optional) Displays the flow information for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td>peer-id peer_id</td>
<td>(Optional) Displays the flow information for the peer with the specified identifier. The peer ID is from 0 to 4294967295 identifying a peer.</td>
</tr>
<tr>
<td>server-ip ip_address</td>
<td>(Optional) Displays the flow information for the server with the specified IP address.</td>
</tr>
<tr>
<td>server-port port</td>
<td>(Optional) Displays the flow information for the server with the specified port number (1–65535).</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

This command can be used to determine how a flow would be classified and redirected.

**Examples**

The following is sample output from the `show appnav-controller flow-distribution` command that shows how a flow would be redirected:

```
ANC# show appnav-controller flow-distribution peer-id 58:8d:01:02:04:3a client-ip 192.168.1.2 server-ip 192.168.5.2 server-port 443
WARNING: One or more inputs are wildcards. The flow distribution lookup may not be accurate
Did not find existing application, session or connection

Policy lookup results

Connection will be redirected
Matched class: class-default:HTTPS
Monitored Accl: SSL
Configured redirect SNG: WNG-Default
Selected SNG: WNG-Default
```
Bucket #: 4
Selected SN: 2.76.243.11

Related Commands  (config) service-insertion
show arp

To display the ARP table for a WAAS device, use the `show arp` EXEC command.

```
show arp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the `show arp` command to display the Internet-to-Ethernet address translation tables of the Address Resolution Protocol. Without flags, the current ARP entry for the host name is displayed.

On an ISR-WAAS device, no ARP entries are present for IP addresses on the same subnet as the ISR-WAAS device; there is an entry only for the defined gateway.

**Examples**

Table 3-6 describes the fields shown in the `show arp` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Type of protocol.</td>
</tr>
<tr>
<td>State</td>
<td>Cache entry state.</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the hostname.</td>
</tr>
<tr>
<td>Flags</td>
<td>Current ARP flag status.</td>
</tr>
<tr>
<td>Hardware Addr</td>
<td>Hardware IP address given as six hexadecimal bytes separated by colons.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of wide-area network.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name and slot/port information for the interface.</td>
</tr>
</tbody>
</table>
show authentication

To display the authentication configuration for a WAAS device, use the `show authentication` EXEC command.

```
show authentication {user | strict-password-policy}
```

**Syntax Descriptions**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>Displays authentication configuration for user login to the system.</td>
</tr>
<tr>
<td>strict-password-policy</td>
<td>Displays strict password policy configuration information.</td>
</tr>
</tbody>
</table>

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
When the WAAS device authenticates a user through an NTLM, LDAP, TACACS+, RADIUS, or Windows domain server, a record of the authentication is stored locally. As long as the entry is stored, subsequent attempts to access restricted Internet content by the same user do not require additional server lookups. To display the local and remote authentication configuration for user login, use the `show authentication user` EXEC command.

To display the strict password policy configuration information, use the `show authentication strict-password-policy` EXEC command.

**Examples**
Table 3-7 describes the fields shown in the `show authentication user` command display.

**Table 3-7** Field Descriptions for the show authentication user Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication:</td>
<td>Authentication service that is enabled for login authentication and the configured status of the service.</td>
</tr>
<tr>
<td>Console/Telnet/Ftp/SSH Session</td>
<td></td>
</tr>
<tr>
<td>Windows domain</td>
<td>Operation status of the authentication service. Values are enabled or disabled.</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Priority status of each authentication service. Values are primary, secondary, or tertiary.</td>
</tr>
<tr>
<td>TACACS+</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
<tr>
<td>Configuration Authentication:</td>
<td>Authentication service that is enabled for configuration authentication and the configured status of the service.</td>
</tr>
<tr>
<td>Console/Telnet/Ftp/SSH Session</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-7  Field Descriptions for the show authentication user Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows domain</td>
<td>Operation status of the authentication service. Values are enabled or disabled.</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Priority status of each authentication service. Values are primary, secondary, or tertiary.</td>
</tr>
<tr>
<td>TACACS+</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-8 describes the fields in the `show authentication strict-password-policy` command display. If the strict password policy is not enabled, the command displays, “Strict password policy is disabled.”

**Table 3-8  Field Description for the show authentication strict-password-policy Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password validity</td>
<td>Number of days for which strict passwords are valid.</td>
</tr>
<tr>
<td>Password expiry warning</td>
<td>Number of days in advance that users are warned before strict passwords expire.</td>
</tr>
<tr>
<td>Maximum login retry attempts</td>
<td>Number of login retry attempts allowed before the user is locked out.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `clear arp-cache`
- `show statistics authentication`
show auto-discovery

To display Traffic Flow Optimization (TFO) auto-discovery information for a WAE, use the show auto-discovery EXEC command.

```
show auto-discovery {blacklist [netmask netmask] | list [l | {begin regex [regex] | exclude regex [regex] | include regex [regex]}] | asymmetric-connections}
```

**Syntax Description**

- **blacklist**: Displays the entries in the blacklist server table.
- **netmask netmask**: (Optional) Displays the network mask to filter the table output (A.B.C.D/).
- **list**: Lists TCP flows that the WAE is currently optimizing or passing through. (Optional) Specifies the output modifier.
- **begin regex**: Begins with the line that matches the regular expression. You can enter multiple expressions.
- **exclude regex**: Excludes lines that match the regular expression. You can enter multiple expressions.
- **include regex**: Includes lines that match the regular expression. You can enter multiple expressions.
- **asymmetric-connections**: Displays asymmetric connections.

**Command Modes**

- EXEC

**Device Modes**

- application-accelerator
- appnav-controller

**Usage Guidelines**

The asymmetric-connections option displays the last 1000 asymmetric connections seen on the device.

**Examples**

The following is sample output from the show auto-discovery list command:

```
WAE# show auto-discovery list
E: Established, S: Syn, A: Ack, F: Fin, R: Reset
s: sent, r: received, O: Options, P: Passthrough
Src-IP:Port Dst-IP:Port Orig-St Term-St
```

**Related Commands**

- show statistics auto-discovery
- show statistics filtering
- show statistics tfo
- show statistics connection closed
**show auto-register**

To display the status of the automatic registration feature on a WAE, use the `show auto-register` EXEC command.

```
show auto-register
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Examples**
Table 3-9 describes the output in the `show auto-register` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto registration is enabled.</td>
<td>Configuration status of the autoregistration feature.</td>
</tr>
<tr>
<td>Auto registration is disabled.</td>
<td>Configuration status of the autoregistration feature.</td>
</tr>
</tbody>
</table>

**Related Commands**
*(config) auto-register*
show banner

To display the message of the day (MOTD), login, and EXEC banner settings, use the `show banner` EXEC command.

```
show banner
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-10 describes the fields shown in the `show banner` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner is enabled</td>
<td>Configuration status of the banner feature.</td>
</tr>
<tr>
<td>MOTD banner is: abc</td>
<td>Configured message of the day.</td>
</tr>
<tr>
<td>Login banner is: abc</td>
<td>Configured login banner.</td>
</tr>
<tr>
<td>Exec banner is: abc</td>
<td>Configured EXEC banner.</td>
</tr>
</tbody>
</table>

**Related Commands**

`(config) auto-register`
show bmc

To display the Baseboard Management Controller (BMC) system event log, use the `show bmc` EXEC command.

```
show bmc {info | fru | event-log [all | event | range |] | management | }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>info</th>
<th>Displays the BMC information.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fru</td>
<td>Displays the BMC Field Replaceable Unit.</td>
</tr>
<tr>
<td></td>
<td>event-log</td>
<td>Displays the BMC system event log (by default, the last 10 events).</td>
</tr>
<tr>
<td></td>
<td>all</td>
<td>Displays all events from the BMC system event log.</td>
</tr>
<tr>
<td></td>
<td>event</td>
<td>Displays a single event number from the BMC system event log.</td>
</tr>
<tr>
<td></td>
<td>range</td>
<td>Displays the range of events from the BMC system event log.</td>
</tr>
<tr>
<td></td>
<td>management</td>
<td>Displays the BMC management related information.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

The following is a sample output from the `show bmc` command:

```
WAE#show bmc ?
event-log Display BMC System Event Log (default is the last 10 events)
fru Display BMC Field Replaceable Unit
info Display BMC information
management Display BMC management information

WAVE-694-K9#sh bmc info
Device ID : 32
Device Revision : 1
Firmware Revision : 0.44
IPMI Version : 2.0
Manufacturer ID : 5971
Manufacturer Name : Unknown (0x168B)
Product ID : 161 (0x00a1)
Product Name : Unknown (0xA1)
Device Available: yes
Provides Device SDRs : no
Additional Device Support :
 Sensor Device
 SDR Repository Device
 SEL Device
 FRU Inventory Device
Aux Firmware Rev Info : 0x0b
```
show bmc

0x04
0x1b
0x01

SEL Information
Version : 1.5 (v1.5, v2 compliant)
Entries : 4
Free Space : 9136 bytes
Percent Used : 0%
Last Add Time : 05/20/2011 05:26:56
Last Del Time : 05/20/2011 05:26:55
Overflow : false
Supported Cmds : 'Delete' 'Reserve'
Self Test Results : passed
System Power : on
Power Overload : false
Power Interlock : inactive
Main Power Fault : false
Power Control Fault : false
Power Restore Policy : always-off
Last Power Event :
Chassis Intrusion : inactive
Front-Panel Lockout : inactive
Drive Fault : false
Cooling/Fan Fault : false
Current Time : 05/24/2011 06:45:29

WAVE-694-K9#sh bmc fru

FRU Device Description : Builtin FRU Device (ID 0)
Chassis Type : Rack Mount Chassis
Chassis Part Number : 800-34889-01
Chassis Serial : FCH1445V03Y
Board Mfg Date : Mon May  2 22:00:00 2011
Board Mfg : CISCO
Board Serial : FCH1448709T
Board Part Number : 74-7814-01
Product Manufacturer : CISCO
Product Name : WAVE-694-K9
Product Version : V01
Product Extra : Wide Area Virtualization Engine
Product Extra : Small fan: FAN-WAVE-40MM=
Product Extra : Big fan: FAN-WAVE-60MM=

WAVE-694-K9#show bmc event-log

all  Display all events from BMC System Event Log
event Display a single event number from BMC System Event Log
range Display the range of events from BMC System Event Log
    Output Modifiers

WAVE-694-K9#show bmc management

Watchdog Timer Use: SMS/OS (0x44)
Watchdog Timer Is: Started/Running
Watchdog Timer Actions: Power Cycle (0x03)
Pre-timeout interval: 0 seconds
Timer Expiration Flags: 0x00
Initial Countdown: 900 sec
Present Countdown: 740 sec

Related Commands

Related Commands

clear bmc
show bridge

To display bridge interface information for an AppNav Controller using inline interception, use the `show bridge` EXEC command.

```
show bridge index
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Bridge group index from 1–5.</th>
</tr>
</thead>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Examples**

Table 3-11 describes the fields shown in the `show bridge` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsp</td>
<td>Displayed only if interface is configured with link state propagation.</td>
</tr>
<tr>
<td>flow sync</td>
<td>Flow synchronization status.</td>
</tr>
<tr>
<td>Member Interfaces</td>
<td>Lists the member interfaces in the bridge group.</td>
</tr>
<tr>
<td>Link state propagation</td>
<td>Status of link state propagation setting (enabled or disabled).</td>
</tr>
<tr>
<td>VLAN interception</td>
<td>Lists the VLANs intercepted by this bridge group.</td>
</tr>
<tr>
<td>Operation State</td>
<td>Operational state of the interface.</td>
</tr>
<tr>
<td>Input Packets</td>
<td>Number of incoming packets bridged.</td>
</tr>
<tr>
<td>Forwarded/Bridged</td>
<td></td>
</tr>
<tr>
<td>Input Packets</td>
<td>Number of incoming packets redirected.</td>
</tr>
<tr>
<td>Redirected</td>
<td></td>
</tr>
<tr>
<td>Input Packets</td>
<td>Number of incoming packets punted.</td>
</tr>
<tr>
<td>Punted</td>
<td></td>
</tr>
<tr>
<td>Input Packets</td>
<td>Number of incoming packets dropped.</td>
</tr>
<tr>
<td>Dropped</td>
<td></td>
</tr>
<tr>
<td>Output Packets</td>
<td>Number of outgoing packets bridged.</td>
</tr>
<tr>
<td>Forwarded/Bridged</td>
<td></td>
</tr>
<tr>
<td>Output Packets</td>
<td>Number of outgoing packets injected.</td>
</tr>
<tr>
<td>Injected</td>
<td></td>
</tr>
<tr>
<td>Output Packets</td>
<td>Number of outgoing packets dropped.</td>
</tr>
<tr>
<td>Dropped</td>
<td></td>
</tr>
</tbody>
</table>
Related Commands

(config) bridge
show cache http-metadatacache

To display HTTP metadata cache information for a WAE, use the `show cache http-metadatacache` EXEC command.

```
show cache http-metadatacache https {conditional-response | redirect-response | sharepoint-prefetch | unauthorized-response}
```

```
show cache http-metadatacache {all | conditional-response | redirect-response | sharepoint-prefetch | unauthorized-response} [url]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>https</td>
<td>Displays cache entries for HTTPS metadata cache response types, which</td>
</tr>
<tr>
<td></td>
<td>includes the active entries only, not the URLs.</td>
</tr>
<tr>
<td>conditional-response</td>
<td>Displays cache entries for conditional responses (304).</td>
</tr>
<tr>
<td>redirect-response</td>
<td>Displays cache entries for redirect responses (301).</td>
</tr>
<tr>
<td>sharepoint-prefetch</td>
<td>Displays cache entries of the prefetched data.</td>
</tr>
<tr>
<td>unauthorized-response</td>
<td>Displays cache entries for authorization required responses (401).</td>
</tr>
<tr>
<td>all</td>
<td>Displays cache entries for all HTTP metadata cache response types.</td>
</tr>
<tr>
<td>url</td>
<td>(Optional) Displays cache entries that match only the specified URL. If the</td>
</tr>
<tr>
<td></td>
<td>URL string contains a question mark (?), it must be escaped with a</td>
</tr>
<tr>
<td></td>
<td>preceding backslash (for example, ?).</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Examples

Table 3-12 describes the fields shown in the `show cache http-metadatacache all` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redirect Cache</td>
<td></td>
</tr>
<tr>
<td>Active HTTP entries</td>
<td>Number of current HTTP redirect cache entries.</td>
</tr>
<tr>
<td>Active HTTPS entries</td>
<td>Number of current HTTPS redirect cache entries.</td>
</tr>
<tr>
<td>Max Entries</td>
<td>Maximum number of redirect cache entries allowed.</td>
</tr>
<tr>
<td>URL</td>
<td>URL and expiration time (in seconds) for each</td>
</tr>
<tr>
<td></td>
<td>redirect cache entry.</td>
</tr>
<tr>
<td>Conditional Cache</td>
<td></td>
</tr>
<tr>
<td>Active HTTP entries</td>
<td>Number of current HTTP conditional cache entries.</td>
</tr>
</tbody>
</table>

Table 3-12 Field Descriptions for the show cache http-metadatacache all Command
### Table 3-12  
Field Descriptions for the `show cache http-metadatacache all` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active HTTPS entries</td>
<td>Number of current HTTPS conditional cache entries.</td>
</tr>
<tr>
<td>Max Entries</td>
<td>Maximum number of conditional cache entries allowed.</td>
</tr>
<tr>
<td>URL</td>
<td>URL and expiration time (in seconds) for each conditional cache entry.</td>
</tr>
<tr>
<td>Unauthorized Cache</td>
<td></td>
</tr>
<tr>
<td>Active HTTP entries</td>
<td>Number of current HTTP unauthorized cache entries.</td>
</tr>
<tr>
<td>Active HTTPS entries</td>
<td>Number of current HTTPS unauthorized cache entries.</td>
</tr>
<tr>
<td>Max Entries</td>
<td>Maximum number of unauthorized cache entries allowed.</td>
</tr>
<tr>
<td>URL</td>
<td>URL and expiration time (in seconds) for each unauthorized cache entry.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `(config) accelerator http`
- `clear cache`
**show cdp**

To display CDP configuration information, use the `show cdp` EXEC command.

```
show cdp entry [* | neighbor] [protocol | version]
```

```
show cdp interface
 [GigabitEthernet slot/port | TenGigabitEthernet slot/port | InlinePort slot/port { lan | wan }]
```

```
show cdp neighbors
 [detail | GigabitEthernet slot/port [detail] | TenGigabitEthernet slot/port [detail] | InlinePort slot/port/{ lan|wan }{ detail }]
```

```
show cdp { holdtime | run | timer | traffic }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entry</code></td>
<td>(Optional) Displays information for a specific CDP neighbor entry.</td>
</tr>
<tr>
<td><code>*</code></td>
<td>Specifies all neighbors.</td>
</tr>
<tr>
<td><code>neighbor</code></td>
<td>CDP neighbor entry to display.</td>
</tr>
<tr>
<td><code>protocol</code></td>
<td>(Optional) Displays the CDP protocol information.</td>
</tr>
<tr>
<td><code>version</code></td>
<td>(Optional) Displays the CDP version.</td>
</tr>
<tr>
<td><code>interface</code></td>
<td>Displays the interface status and configuration.</td>
</tr>
<tr>
<td><code>GigabitEthernet slot/port</code></td>
<td>(Optional) Displays the Gigabit Ethernet configuration for the designated interface.</td>
</tr>
<tr>
<td><code>TenGigabitEthernet slot/port</code></td>
<td>(Optional) Displays the 10-Gigabit Ethernet configuration for the designated interface.</td>
</tr>
<tr>
<td>`InlinePort slot/port { lan</td>
<td>wan }`</td>
</tr>
<tr>
<td><code>neighbors</code></td>
<td>Displays CDP neighbor entries.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays detailed information.</td>
</tr>
<tr>
<td><code>holdtime</code></td>
<td>Displays the length of time that CDP information is held by neighbors.</td>
</tr>
<tr>
<td><code>run</code></td>
<td>Displays the CDP process status.</td>
</tr>
<tr>
<td><code>timer</code></td>
<td>Displays the time when CDP information is resent to neighbors.</td>
</tr>
<tr>
<td><code>traffic</code></td>
<td>Displays CDP statistical information.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

- application-accelerator
- central-manager
Usage Guidelines

The `show cdp` command displays information about how frequently CDP packets are resent to neighbors, the length of time that CDP packets are held by neighbors, the disabled status of CDP Version 2 multicast advertisements, CDP Ethernet interface ports, and general CDP traffic information. This command supports VLAN (802.1Q) tagged packets.

Examples

Table 3-13 describes the fields shown in the `show cdp` command display.

Table 3-13  Field Descriptions for the show cdp Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending CDP packets every XX seconds</td>
<td>Interval (in seconds) between transmissions of CDP advertisements. This field is controlled by the <code>cdp timer</code> command.</td>
</tr>
<tr>
<td>Sending a holdtime value of XX seconds</td>
<td>Time (in seconds) that the device directs the neighbor to hold a CDP advertisement before discarding it. This field is controlled by the <code>cdp holdtime</code> command.</td>
</tr>
<tr>
<td>Sending CDPv2 advertisements is XX</td>
<td>Transmission status for sending CDP Version-2 type advertisements. Possible values are enabled or not enabled.</td>
</tr>
</tbody>
</table>

Table 3-14 describes the fields shown in the `show cdp entry neighbor` command display.

Table 3-14  Field Descriptions for the show cdp entry Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Name of the neighbor device and either the MAC address or the serial number of this device.</td>
</tr>
<tr>
<td>Entry address(es)</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the neighbor device.</td>
</tr>
<tr>
<td>CLNS address</td>
<td>Non-IP network address. The field depends on the type of neighbor.</td>
</tr>
<tr>
<td>DECnet address</td>
<td>Non-IP network address. The field depends on the type of neighbor.</td>
</tr>
<tr>
<td>Platform</td>
<td>Product name and number of the neighbor device.</td>
</tr>
<tr>
<td>Interface</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the port on the neighbor device.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Capability code discovered on the neighbor device. This is the type of the device listed in the CDP Neighbors table. Possible values are as follows:</td>
</tr>
<tr>
<td></td>
<td>R—Router</td>
</tr>
<tr>
<td></td>
<td>T—Transparent bridge</td>
</tr>
<tr>
<td></td>
<td>B—Source-routing bridge</td>
</tr>
<tr>
<td></td>
<td>S—Switch</td>
</tr>
<tr>
<td></td>
<td>H—Host</td>
</tr>
<tr>
<td></td>
<td>I—IGMP device</td>
</tr>
<tr>
<td></td>
<td>r—Repeater</td>
</tr>
</tbody>
</table>
### Table 3-14: Field Descriptions for the `show cdp entry` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdtime</td>
<td>Time (in seconds) that the current device will hold the CDP advertisement from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Version</td>
<td>Software version running on the neighbor device.</td>
</tr>
</tbody>
</table>

Table 3-15 describes the fields shown in the `show cdp entry neighbor protocol` command display.

### Table 3-15: Field Descriptions for the `show cdp entry protocol` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol information for XX</td>
<td>Name or identifier of the neighbor device.</td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the neighbor device.</td>
</tr>
<tr>
<td>CLNS address</td>
<td>Non-IP network address. The field depends on the type of neighbor.</td>
</tr>
<tr>
<td>DECnet address</td>
<td>Non-IP network address. The field depends on the type of neighbor.</td>
</tr>
</tbody>
</table>

Table 3-16 describes the fields shown in the `show cdp entry neighbor version` command display.

### Table 3-16: Field Descriptions for the `show cdp entry version` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version information for XX</td>
<td>Name or identifier of the neighbor device.</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright information for the neighbor device.</td>
</tr>
</tbody>
</table>

Table 3-17 describes the field in the `show cdp holdtime` command display.

### Table 3-17: Field Descriptions for the `show cdp holdtime` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX seconds</td>
<td>Time, in seconds, that the current device will hold the CDP advertisement from a transmitting router before discarding it.</td>
</tr>
</tbody>
</table>

Table 3-18 describes the fields shown in the `show cdp interface` command display.

### Table 3-18: Field Descriptions for the `show cdp interface` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface_slot/port is XX</td>
<td>Operation status of the CDP interface. Values are up or down.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Encapsulation.</td>
</tr>
<tr>
<td>Sending CDP packets every XX seconds</td>
<td>Time interval at which CDP packets are sent.</td>
</tr>
</tbody>
</table>
### Table 3-18  Field Descriptions for the show cdp interface Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdtime</td>
<td>Time, in seconds, that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>CDP protocol</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
</tbody>
</table>

Table 3-19 describes the fields shown in the **show cdp neighbors** command display.

### Table 3-19  Field Descriptions for the show cdp neighbors Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Configured ID (name), MAC address, or serial number of the neighbor device.</td>
</tr>
<tr>
<td>Local Intf</td>
<td>Local interface where the device is connected. Gig refers to a Gigabit Ethernet</td>
</tr>
<tr>
<td></td>
<td>interface, Ten refers to a 10 Gigabit Ethernet interface, and Inline refers</td>
</tr>
<tr>
<td></td>
<td>to an inline interface.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Time, in seconds, that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Capability</td>
<td>Capability code discovered on the device. This is the type of the device</td>
</tr>
<tr>
<td></td>
<td>listed in the CDP Neighbors table. Possible values are as follows:</td>
</tr>
<tr>
<td></td>
<td>R—Router</td>
</tr>
<tr>
<td></td>
<td>T—Transparent bridge</td>
</tr>
<tr>
<td></td>
<td>B—Source-routing bridge</td>
</tr>
<tr>
<td></td>
<td>S—Switch</td>
</tr>
<tr>
<td></td>
<td>H—Host</td>
</tr>
<tr>
<td></td>
<td>I—IGMP device</td>
</tr>
<tr>
<td></td>
<td>r—Repeater</td>
</tr>
<tr>
<td>Platform</td>
<td>Product number of the device.</td>
</tr>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the device.</td>
</tr>
</tbody>
</table>

Table 3-20 describes the fields shown in the **show cdp neighbors detail** command display.

### Table 3-20  Field Descriptions for the show cdp neighbors detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Configured ID (name), MAC address, or serial number of the neighbor device.</td>
</tr>
<tr>
<td>Entry address</td>
<td>List of network addresses of neighbor devices.</td>
</tr>
<tr>
<td>Platform</td>
<td>Product name and number of the neighbor device.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Device type of the neighbor. This device can be a router, a bridge, a</td>
</tr>
<tr>
<td></td>
<td>transparent bridge, a source-routing bridge, a switch, a host, an IGMP</td>
</tr>
<tr>
<td></td>
<td>device, or a repeater.</td>
</tr>
<tr>
<td>Interface</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
</tbody>
</table>
### Table 3-20  Field Descriptions for the show cdp neighbors detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the port on the neighbor device.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Time, in seconds, that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Version</td>
<td>Software version running on the neighbor device.</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright information for the neighbor device.</td>
</tr>
<tr>
<td>advertisement version</td>
<td>Version of CDP being used for CDP advertisements.</td>
</tr>
<tr>
<td>VTP Management Domain</td>
<td>VLAN trunk protocol management domain. The VLAN information is distributed</td>
</tr>
<tr>
<td></td>
<td>to all switches that are part of the same domain.</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>VLAN to which the neighbor interface belongs.</td>
</tr>
</tbody>
</table>

Table 3-21 describes the field in the `show cdp run` command display.

### Table 3-21  Field Description for the show cdp run Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP is XX.</td>
<td>Whether CDP is enabled or disabled.</td>
</tr>
</tbody>
</table>

Table 3-22 describes the field in the `show cdp timer` command display.

### Table 3-22  Field Description for the show cdp timer Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdp timer XX</td>
<td>Time when CDP information is resent to neighbors.</td>
</tr>
</tbody>
</table>

Table 3-23 describes the fields shown in the `show cdp traffic` command display.

### Table 3-23  Field Descriptions for the show cdp traffic Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total packets Output</td>
<td>(Total number of packets sent) Number of CDP advertisements sent by the local device. This value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.</td>
</tr>
<tr>
<td>Input</td>
<td>(Total number of packets received) Number of CDP advertisements received by the local device. This value is the sum of the CDP Version-1 advertisements input and CDP Version 2 advertisements input fields.</td>
</tr>
<tr>
<td>Hdr syntax</td>
<td>(Header Syntax) Number of CDP advertisements with bad headers received by the local device.</td>
</tr>
<tr>
<td>Chksum error</td>
<td>(CheckSum Error) Number of times that the checksum (verifying) operation failed on incoming CDP advertisements.</td>
</tr>
<tr>
<td>Encaps failed</td>
<td>(Encapsulations Failed) Number of times that CDP failed to transmit advertisements on an interface because of a failure caused by the bridge port of the local device.</td>
</tr>
</tbody>
</table>
Table 3-23  Field Descriptions for the show cdp traffic Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No memory</td>
<td>Number of times that the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.</td>
</tr>
<tr>
<td>Invalid packet</td>
<td>Number of invalid CDP advertisements received and sent by the local device.</td>
</tr>
<tr>
<td>Fragmented</td>
<td>Number of times fragments or portions of a single CDP advertisement were received by the local device instead of the complete advertisement.</td>
</tr>
<tr>
<td>CDP version 1 advertisements</td>
<td>Number of CDP Version 1 advertisements sent by the local device.</td>
</tr>
<tr>
<td>Output</td>
<td>Number of CDP Version 1 advertisements received by the local device.</td>
</tr>
<tr>
<td>CDP version 2 advertisements</td>
<td>Number of CDP Version 2 advertisements sent by the local device.</td>
</tr>
<tr>
<td>Output</td>
<td>Number of CDP Version 2 advertisements received by the local device.</td>
</tr>
</tbody>
</table>

Related Commands

(config) cdp
(config-if) cdp
clear arp-cache
debug cdp
show cifs

To display CIFS application accelerator information, use the show cifs EXEC command.

  show cifs cache {disk-use | entry-count}
  show cifs msg-signing-servers
  show cifs open-files {count | max-count}
  show cifs requests {count | waiting}
  show cifs sessions {count | list}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache</td>
<td>Displays CIFS cache information.</td>
</tr>
<tr>
<td>disk-use</td>
<td>Displays the total disk usage for CIFS cache.</td>
</tr>
<tr>
<td>entry-count</td>
<td>Displays the count of internal cache resources used for cached files.</td>
</tr>
<tr>
<td>msg-signing-servers</td>
<td>Displays a list of the IP addresses of servers requiring message signing.</td>
</tr>
<tr>
<td>open-files</td>
<td>Displays CIFS open files information.</td>
</tr>
<tr>
<td>count</td>
<td>Displays the current number of open files on a WAE.</td>
</tr>
<tr>
<td>max-count</td>
<td>Displays the maximum number of CIFS files that can be opened on a WAE.</td>
</tr>
<tr>
<td>requests</td>
<td>Displays run-time information on active CIFS requests.</td>
</tr>
<tr>
<td>count</td>
<td>Displays the number of pending CIFS requests.</td>
</tr>
<tr>
<td>waiting</td>
<td>Displays the number of waiting CIFS requests.</td>
</tr>
<tr>
<td>sessions</td>
<td>Displays run-time information on active CIFS sessions.</td>
</tr>
<tr>
<td>count</td>
<td>Displays the connected session count.</td>
</tr>
<tr>
<td>list</td>
<td>Displays the list of connected CIFS sessions.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller

Usage Guidelines

This command displays information about the CIFS application accelerator and operates only when it is enabled. For additional information on the CIFS application accelerator, use the show accelerator or show statistics accelerator commands.

Use the show cifs cache command to view information about caching efficiency. You might use this command to determine if the cache contains sufficient space or if more space is needed. If you have a performance issue, you might use this command to see whether or not the cache is full.
Use the `show cifs msg-signing-servers` command to view a list of servers that require message signing.

Use the `show cifs open-files` command to view the maximum value that can be configured on the WAE for the open file count and what is being currently used. The maximum value of the open-files count is platform dependent. For WAE 294, the maximum number of open files can be preconfigured to 500, for WAE 574, the maximum number is 1500, for WAE 674, the maximum number is 12000, and for WAE 7571, the maximum number of open files is 64000.

Use the `show cifs requests count` or `show cifs requests waiting` command to monitor the load for CIFS traffic. You might also use this command for debugging purposes to isolate requests that are not processing.

Use the `show cifs sessions count` or `show cifs sessions list` command to view session information. You might use this command to monitor connected users during peak and off-peak hours.

### Related Commands
- `clear cifs msg-signing-servers`
- `show accelerator`
- `show statistics accelerator`
show class-map

To display the matching criteria configured for an AppNav or optimization class map, use the `show class-map` EXEC command.

```
show class-map type {appnav | waas} [classmap-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>appnav</td>
<td>Displays the specified AppNav class map, or all class maps if no class map is specified.</td>
</tr>
<tr>
<td>waas</td>
<td>Displays the specified WAAS optimization class map, or all class maps if no class map is specified.</td>
</tr>
<tr>
<td>classmap-name</td>
<td>Class map name.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

This command displays the matching criteria for all class maps or a specified class map in the active policy. It also displays the number of flows that have matched each condition, in all uses of the class map, including in nested policy maps.

**Examples**

The following is sample output from the `show class-map type appnav` command.

```
WAE# show policy-map type appnav
Class-map type appnav match-any epmap
 Match tcp destination port 135 (56 flow-matches)
Class-map type appnav match-any NFS
 Match tcp destination port 2049 (0 flow-matches)
Class-map type appnav match-any Citrix-ICA
 Match tcp destination port 1494 (0 flow-matches)
Class-map type appnav match-any Citrix-CGP
 Match tcp destination port 2598 (0 flow-matches)
Class-map type appnav match-any HTTP
 Match tcp destination port 80 (1234 flow-matches)
 Match tcp destination port 3128 (0 flow-matches)
 Match tcp destination port 8000 (0 flow-matches)
 Match tcp destination port 8080 (246 flow-matches)
 Match tcp destination port 8088 (0 flow-matches)
Class-map type appnav match-any CIFS
 Match tcp destination port 139 (0 flow-matches)
 Match tcp destination port 445 (0 flow-matches)
Class-map type appnav match-any MAPI
 Match tcp destination epm mapi (0 flow-matches)
```
Class-map type appnav match-any HTTPS
  Match tcp destination port 443 (0 flow-matches)
Class-map type appnav match-any RTSP
  Match tcp destination port 554 (0 flow-matches)
  Match tcp destination port 8554 (0 flow-matches)
Class-map type appnav match-any class-default
  Match tcp (2468 flow-matches)

Related Commands

  (config) class-map
  show policy-map
  show policy-sub-class
  show statistics class-default
  show statistics class-map
show clock

To display information about the system clock on a WAAS device, use the `show clock` EXEC command.

`show clock [detail | standard-timezones { all | details timezone | regions | zones region-name }]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays detailed information; indicates the clock source (NTP)</td>
</tr>
<tr>
<td></td>
<td>and the current summer time setting (if any).</td>
</tr>
<tr>
<td><code>standard-timezones</code></td>
<td>(Optional) Displays information about the standard time zones.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Displays all of the standard time zones (approximately 1500 time zones).</td>
</tr>
<tr>
<td></td>
<td>Each time zone is listed on a separate line.</td>
</tr>
<tr>
<td><code>details timezone</code></td>
<td>Displays detailed information for the specified time zone.</td>
</tr>
<tr>
<td><code>regions</code></td>
<td>Displays the region name of all the standard time zones. All 1500 time</td>
</tr>
<tr>
<td></td>
<td>zones are organized into directories by region.</td>
</tr>
<tr>
<td><code>zones region-name</code></td>
<td>Displays the name of every time zone that is within the specified region.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The WAAS device has several predefined standard time zones. Some of these time zones have built-in summer time information while others do not. For example, if you are in an eastern region of the United States (US), you must use the US/Eastern time zone that includes summer time information for the system clock to adjust automatically every April and October. There are about 1500 standard time zone names.

Strict checking disables the `clock summertime` command when you configure a standard time zone is configured. You can configure summer time only if the time zone is not a standard time zone (that is, if the time zone is a customized zone).

The `show clock standard-timezones all` EXEC command enables you to browse through all standard time zones and choose from these predefined time zones so that you can choose a customized name that does not conflict with the predefined names of the standard time zones. Most predefined names of the standard time zones have two components, a region name and a zone name. You can list time zones by several criteria, such as regions and zones. To display all first level time zone names organized into directories by region, use the `show clock standard-timezones region` EXEC command.

The `show clock` command displays the local date and time information and the `show clock detail` command shows optional detailed date and time information.
Table 3-24 describes the field in the `show clock` command display.

### Table 3-24 Field Description for the `show clock` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local time</td>
<td>Day of the week, month, date, time (hh:mm:ss), and year in local time relative to the UTC offset.</td>
</tr>
</tbody>
</table>

Table 3-25 describes the fields shown in the `show clock detail` command display.

### Table 3-25 Field Descriptions for the `show clock detail` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local time</td>
<td>Local time relative to UTC.</td>
</tr>
<tr>
<td>UTC time</td>
<td>Universal time clock date and time.</td>
</tr>
<tr>
<td>Epoch</td>
<td>Number of seconds since Jan. 1, 1970.</td>
</tr>
<tr>
<td>UTC offset</td>
<td>UTC offset in seconds, hours, and minutes.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `clock`
- `(config) clock`
show cms

To display Centralized Management System (CMS) embedded database content and maintenance status and other information for a WAAS device, use the `show cms` EXEC command.

```
show cms {database content {dump filename | text | xml} | info | secure-store | device status name}
```

### Syntax Description

- **database**: Displays embedded database maintenance information.
- **content**: Writes the database content to a file.
- **dump filename**: Dumps all database content to a text file. Specifies the name of the file to be saved under `local1` directory.
- **text**: Writes the database content to a file in text format.
- **xml**: Writes the database content to a file in XML format.
- **info**: Displays CMS application information.
- **secure-store**: Displays the status of the CMS secure store.
- **device status name**: Displays status for the device or device group indicated by `name`, the name of the device or device group.

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

The `show cms device status` command is not available on a standby Central Manager.

### Examples

Table 3-26 describes the fields shown in the `show cms info` command display for WAAS application engines.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device registration information</td>
<td></td>
</tr>
<tr>
<td>Device Id</td>
<td>Unique identifier given to the device by the Central Manager at registration, which is used to manage the device.</td>
</tr>
<tr>
<td>Device registered as</td>
<td>Type of device used during registration: WAAS Application Engine or WAAS Central Manager.</td>
</tr>
</tbody>
</table>
Table 3-26  Field Descriptions for the show cms info Command for WAAS Application Engines

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current WAAS Central Manager</td>
<td>Address of the Central Manager as currently configured in the central-manager address global configuration command. This address may differ from the registered address if a standby Central Manager is managing the device instead of the primary Central Manager with which the device is registered.</td>
</tr>
<tr>
<td>Registered with WAAS Central Manager</td>
<td>Address of the Central Manager with which the device is registered.</td>
</tr>
<tr>
<td>Status</td>
<td>Connection status of the device to the Central Manager. This field may contain one of three values: online, offline, or pending.</td>
</tr>
<tr>
<td>Time of last config-sync</td>
<td>Time when the device management service last contacted the Central Manager for updates.</td>
</tr>
<tr>
<td>CMS services information</td>
<td></td>
</tr>
<tr>
<td>Service cms_ce is running</td>
<td>Status of the WAE device management service (running or not running). This field is specific to the WAE only.</td>
</tr>
</tbody>
</table>

Table 3-27 describes the fields shown in the show cms info command display for WAAS Central Managers.

Table 3-27  Field Descriptions for the show cms info Command for WAAS Central Managers

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device registration information</td>
<td></td>
</tr>
<tr>
<td>Device Id</td>
<td>Unique identifier given to the device by the Central Manager at registration, which is used to manage the device.</td>
</tr>
<tr>
<td>Device registered as</td>
<td>Type of device used during registration: WAAS Application Engine or WAAS Central Manager.</td>
</tr>
<tr>
<td>Current WAAS Central Manager role</td>
<td>Role of the current Central Manager: Primary or Standby.</td>
</tr>
<tr>
<td>Note</td>
<td>The output for primary and standby Central Manager devices is different. On a standby, the output includes the following additional information: Current WAAS Central Manager and Registered with WAAS Central Manager.</td>
</tr>
<tr>
<td>Current WAAS Central Manager Address of the standby Central Manager as currently configured in the central-manager address global configuration command.</td>
<td></td>
</tr>
<tr>
<td>Registered with WAAS Central Manager</td>
<td>Address of the standby Central Manager with which the device is registered.</td>
</tr>
<tr>
<td>CMS services information</td>
<td></td>
</tr>
<tr>
<td>Service cms_httpd is running</td>
<td>Status of the management service (running or not running). This field is specific to the Central Manager only.</td>
</tr>
<tr>
<td>Service cms_cdm is running</td>
<td>Status of the management service (running or not running). This field is specific to the Central Manager only.</td>
</tr>
</tbody>
</table>
Table 3-28 describes the field in the show cms database content text command display.

**Table 3-28  Field Description for the show cms database content text Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database content can be found in /local1/cms-db-12-12-2002-17:06:08:070.txt.</td>
<td>Name and location of the database content text file. The show cms database content text command requests the management service to write its current configuration to an automatically generated file in text format.</td>
</tr>
</tbody>
</table>

Table 3-29 describes the field in the show cms database content xml command display.

**Table 3-29  Field Description for the show cms database content xml Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database content can be found in /local1/cms-db-12-12-2002-17:07:11:629.xml.</td>
<td>Name and location of the database content XML file. The show cms database content xml command requests the management service to write its current configuration to an automatically generated file in XML format.</td>
</tr>
</tbody>
</table>

**Related Commands**

cams
(config) cms
show cms secure-store

To display secure store status, use the `show cms secure-store` EXEC command.

```bash
show cms secure-store
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
The `show cms secure-store` command will display one of the following status messages (Table 3-30):

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WAE Messages</strong></td>
<td></td>
</tr>
<tr>
<td>secure-store not initialized</td>
<td>Secure store is not initialized.</td>
</tr>
<tr>
<td>secure-store is initialized, enter pass-phrase to open store</td>
<td>Secure store is initialized and not open.</td>
</tr>
<tr>
<td>secure-store initialized and open</td>
<td>Secure store is initialized and open.</td>
</tr>
<tr>
<td><strong>Central Manager Messages</strong></td>
<td></td>
</tr>
<tr>
<td>Secure store is in CM 'auto-generated passphrase' mode in 'Open' state.</td>
<td>Secure store is initialized and open and in the auto-passphrase mode.</td>
</tr>
<tr>
<td>Secure store is in 'User-provided passphrase' mode in 'Not Open' state. Use the command 'cms secure-store open' to open the secure store.</td>
<td>Secure store is initialized but not open because it is in the user-passphrase mode and the passphrase has not been entered.</td>
</tr>
<tr>
<td>Secure store is in 'User-provided passphrase' mode in 'Open' state.</td>
<td>Secure store is initialized and open and the user-passphrase has been entered.</td>
</tr>
</tbody>
</table>

**Examples**
The following is sample output from the `show cms secure-store` command:

```bash
WAE# show cms secure-store
Secure store is in 'User-provided passphrase' mode in 'Open' state.

***** WARNING : If Central Manager device is reloaded, you must reopen Secure Store with the correct passphrase. Otherwise disk encryption and the CIFS preposition.
```
show cms secure-store

ion features will not operate on WAE (s).*****

Related Commands  cms secure-store
show crypto

To display crypto layer information, use the **show crypto** EXEC command.

```
show crypto [certificate-detail {factory-self-signed | management | admin | filename} | certificates | ssl services {accelerated-service service | host-service peering}]
```

**Syntax Description**

- `certificate-detail` Displays a certificate in detail.
- `factory-self-signed` Displays WAAS self-signed certificates in detail.
- `management` Displays WAAS management certificates in detail.
- `admin` Displays the certificate details for the Central Manager admin service certificate. This option can be used only on the Central Manager.
- `filename` Filename of the certificate to display.
- `certificates` Displays a summary of all PKI certificates. This option can be used only on the WAE.
- `ssl services` Displays status of SSL services. This option can be used only on the WAE.
- `accelerated-service service` Displays status of SSL accelerated service with the specified service name.
- `host-service peering` Displays status of the SSL host peering service.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-31 describes the fields in the **show crypto certificate-detail** command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Certificate version.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Certificate serial number.</td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td>Certificate signature algorithm.</td>
</tr>
<tr>
<td>Issuer</td>
<td>Information on the sign of the certificate.</td>
</tr>
<tr>
<td>Validity</td>
<td></td>
</tr>
<tr>
<td>Not Before</td>
<td>The date and time before which the certificate is not valid.</td>
</tr>
<tr>
<td>Not After</td>
<td>The date and time after which the certificate is not valid.</td>
</tr>
</tbody>
</table>
Table 3-31  Field Descriptions for the show crypto certificate-detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject Public Key Info</td>
<td></td>
</tr>
<tr>
<td>Public Key Algorithm</td>
<td>Fields display X.509 certificate information as defined in RFC 5280.</td>
</tr>
<tr>
<td>RSA Public Key</td>
<td></td>
</tr>
<tr>
<td>Modulus</td>
<td></td>
</tr>
<tr>
<td>Exponent</td>
<td></td>
</tr>
<tr>
<td>X509v3 extensions</td>
<td></td>
</tr>
<tr>
<td>X509v3 Subject Key Identifier</td>
<td>Fields display X.509 certificate information as defined in RFC 5280.</td>
</tr>
<tr>
<td>X509v3 Authority Key Identifier</td>
<td></td>
</tr>
<tr>
<td>X509v3 Basic Constraints</td>
<td></td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td></td>
</tr>
<tr>
<td>BEGIN CERTIFICATE</td>
<td>Actual certificate follows until the End Certificate line.</td>
</tr>
<tr>
<td>END CERTIFICATE</td>
<td>Line that signifies the end of the certificate.</td>
</tr>
</tbody>
</table>

Table 3-32 describes the fields in the `show crypto certificates` command display.

Table 3-32  Field Descriptions for the show crypto certificates Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate Only Store</td>
<td>Certificate Authority (CA) certificates.</td>
</tr>
<tr>
<td>Managed Store</td>
<td>User-defined certificates. Used under the server-cert-key section of SSL accelerated services. This certificate is used as a server certificate for client-to-WAE connections.</td>
</tr>
<tr>
<td>Local Store</td>
<td>Certificates that are configured on the WAE by default.</td>
</tr>
<tr>
<td>Machine Self signed Certificate</td>
<td>Certificate from the WAE to the server when client authentication is requested by the server.</td>
</tr>
<tr>
<td>Format</td>
<td>Format of the certificate (PEM or PKCS12).</td>
</tr>
<tr>
<td>Subject</td>
<td>The name of the holder of the certificate.</td>
</tr>
<tr>
<td>Issuer</td>
<td>Who signed the certificate.</td>
</tr>
<tr>
<td>Management Service Certificate</td>
<td>Certificate used to identify the WAE with the Central Manager.</td>
</tr>
<tr>
<td>Format</td>
<td>Format of the certificate (PEM or PKCS12).</td>
</tr>
<tr>
<td>EEC: Subject</td>
<td>Name of the holder of the certificate.</td>
</tr>
<tr>
<td>Issuer</td>
<td>Who signed the certificate.</td>
</tr>
</tbody>
</table>

Related Commands  `show statistics crypto ssl ciphers`
show debugging

To display the state of each debugging option that was previously enabled on a WAAS device, use the show debugging EXEC command.

```
show debugging
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

The show debugging command shows which debug options have been enabled or disabled. If there are no debug options configured, the show debugging command shows no output.

The dre, epm, flow, print-spooler, rbcp, tfo, translog, and wccp command options are supported in the application-accelerator device mode only. The emdb and rpc command options are supported in the central manager device mode only.

The show debugging command displays only the type of debugging enabled, not the specific subset of the command.

**Examples**

The following is sample output from the show debugging command:

```
WAE# debug tfo buffer-mgr
WAE# debug tfo connection
WAE# show debugging
 tfo bufmgr debugging is on
 tfo connmgr debugging is on
 tfo connmgr debugging is on
 tfo netio debugging is on
 tfo statmgr debugging is on
 tfo translog debugging is on
```

In this example, the debug tfo buffer-mgr and the debug tfo connection commands coupled with the show debugging command display the states of tfo buffer-mgr and tfo connection debugging options.

**Related Commands**

d debug all
show device-id

To display the device ID of a WAAS device, use the `show device-id` EXEC command.

```
show device-id
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Examples**
This command displays the device ID, as follows:

```
WAE# show device-id
System Device ID is: 00:1a:64:f2:22:37
```

**Related Commands**
(config) peer
show device-mode

To display the configured or current device mode of a WAAS device, use the `show device-mode` EXEC command.

```
show device-mode [configured | current]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configured</code></td>
<td>Displays the configured device mode, which has not taken effect yet.</td>
</tr>
<tr>
<td><code>current</code></td>
<td>Displays the current device mode.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

To display the configured device mode that has not yet taken effect, enter the `show device-mode configured` EXEC command. For example, if you had entered the `device mode central-manager` global configuration command on a WAAS device to change its device mode to central manager but have not yet entered the `copy run start EXEC` command to save the running configuration on the device, then if you were to enter the `show device-mode configured` command on the WAAS device, the command output would indicate that the configured device mode is central-manager.

**Examples**

The following is sample output from the `show device mode` command. It displays the current mode in which the WAAS device is operating.

```
WAE# show device-mode current

Current device mode: application-accelerator
```

Table 3-33 describes the field in the `show device-mode current` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current device mode</td>
<td>Current mode in which the WAAS device is operating.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show device configured` command. It displays the configured device mode that has not yet taken effect.

```
WAE# show device-mode configured

Configured device mode: central-manager
```
Table 3-34 describes the field in the `show device-mode configured` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured device mode</td>
<td>Device mode that has been configured, but has not yet taken effect.</td>
</tr>
</tbody>
</table>

Related Commands

```
(config) device mode
```
**show directed-mode**

To view the status and port assigned to directed mode on a device, use the `show directed-mode` EXEC command.

```
show directed-mode
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

The following is sample output from the `show directed-mode` EXEC command:

```
WAE# show directed-mode

Configuration Status: Disabled

<table>
<thead>
<tr>
<th>Config Item</th>
<th>Status</th>
<th>Mode</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP port</td>
<td>Default</td>
<td>4050</td>
<td></td>
</tr>
</tbody>
</table>
```

This example shows that directed mode is enabled and it is using UDP port 4050.

**Related Commands**

- `show statistics directed-mode`
- `show statistics connection closed`
- `(config) directed-mode`
show disks

To view information about the WAAS device disks, use the show disks EXEC command.

```
show disks {details | failed-disk-id | failed-sectors [disk_name] | tech-support [details | fwlogs]}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>details</td>
<td>Displays currently effective configurations with more details.</td>
</tr>
<tr>
<td>failed-disk-id</td>
<td>Displays a list of disk serial numbers that have been identified as failed.</td>
</tr>
<tr>
<td>Note</td>
<td>This option is not available on WAE-7341 and WAE-7371 models.</td>
</tr>
<tr>
<td>failed-sectors</td>
<td>Displays a list of failed sectors on all the disks.</td>
</tr>
<tr>
<td>disk_name</td>
<td>(Optional) Name of the disk for which failed sectors are displayed (disk00 or disk01).</td>
</tr>
<tr>
<td>tech-support</td>
<td>Displays SSD/HDD attributes for SSD/HDD devices.</td>
</tr>
<tr>
<td>Displays hard drive diagnostic information and information about impending disk failures.</td>
<td></td>
</tr>
<tr>
<td>Displays all available information from the RAID controller, including disk status (logical and physical), disk vendor ID, and serial numbers.</td>
<td></td>
</tr>
<tr>
<td>This command replaces the show disk smart-info EXEC command.</td>
<td></td>
</tr>
<tr>
<td>details</td>
<td>(Optional) Displays more detailed SMART disk monitoring information.</td>
</tr>
<tr>
<td>fwlogs</td>
<td>(Optional) Displays disk controller firmware logs (available only on WAVE-75xx/85xx devices).</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

central-manager

### Usage Guidelines

The show disks details EXEC command displays the percentage or amount of disk space allocated to each file system, and the operational status of the disk drives, after reboot.

The WAAS software supports filtering of multiple syslog messages for a single, failed section on IDE, SCSI, and SATA disks.

**Note**

When the system software recovery procedure is used and the system reboots and begins optimizing traffic, the show disks details command may show that the /dre1 partition is 98% or more used, due to the preallocation of DRE cache space. Use the show statistics dre command to display the actual DRE cache usage.
Proactively Monitoring Disk Health with SMART

The ability to proactively monitor the health of disks is available using SMART. SMART provides you with hard drive diagnostic information and information about impending disk failures.

SMART is supported by most disk vendors and is a standard method used to determine how healthy a disk is. SMART attributes include several read-only attributes (for example, the power on hours attribute, the load and unload count attribute) that provide the WAAS software with information regarding the operating and environmental conditions that may indicate an impending disk failure.

SMART support is vendor and drive technology (IDE, SCSI, and Serial Advanced Technology Attachment [SATA] disk drive) dependent. Each disk vendor has a different set of supported SMART attributes.

Even though SMART attributes are vendor dependent there is a common way of interpreting most SMART attributes. Each SMART attribute has a normalized current value and a threshold value. When the current value exceeds the threshold value, the disk is considered to have “failed.” The WAAS software monitors the SMART attributes and reports any impending failure through syslog messages, SNMP traps, and alarms.

To display SMART information, use the `show disks tech-support` EXEC command. To display more detailed SMART information, enter the `show disks tech-support details` EXEC command. The output from the `show tech-support` EXEC command also includes SMART information.

Examples

The following is sample output from the `show disks failed-sectors` command. It displays a list of failed sectors on all disk drives.

```
WAE# show disks failed-sectors
 disk00
 ========
 89923
 9232112

disk01
 ========
 (None)
```

The following is sample output from the `show disks failed-sectors` command when you specify a disk drive. It displays a list of failed sectors for disk01.

```
WAE# show disks failed-sectors disk01
 disk01
 ========
 (None)
```

If there are disk failures, a message is displayed, notifying you about this situation when you log in.

Table 3-35 describes the fields shown in the `show disks failed-disk-id` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskxx</td>
<td>Number and location of the physical disk.</td>
</tr>
<tr>
<td>Alpha-numeric string</td>
<td>Serial number of the disk.</td>
</tr>
</tbody>
</table>

Table 3-36 describes the fields shown in the `show disks details` command display.
### Table 3-36 Field Descriptions for the show disks details Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical disk information or RAID Physical disk information</td>
<td>Lists the disks by number. On RAID-5 systems, this field is called RAID Physical disk information.</td>
</tr>
<tr>
<td>disk00</td>
<td>Availability of the disk: Present, Not present or Not responding, Not used (*), or Online (for RAID-5 disks). Disk identification number and type, for example: (h00 c00i00 100 - DAS). Disk size in megabytes and gigabytes, for example: 140011MB (136.7GB). Lists attributes such as serial number, the technology family(SATA/SAS) and the capacity of the SSD or HDD.</td>
</tr>
<tr>
<td>disk01</td>
<td>Same type of information is shown for each disk.</td>
</tr>
<tr>
<td>RAID Logical drive information</td>
<td>RAID-5 logical drive status and error conditions and total size. (Only shown for RAID-5 systems.)</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example, the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPOOL.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
<tr>
<td>Inuse</td>
<td>Amount of disk space being used by the file system.</td>
</tr>
<tr>
<td>Free</td>
<td>Amount of unused disk space for the file system.</td>
</tr>
<tr>
<td>Use%</td>
<td>Percentage of the total available disk space being used by the file system.</td>
</tr>
<tr>
<td>Software RAID devices</td>
<td>If present, lists the software RAID devices and provides the following information for each:</td>
</tr>
<tr>
<td>Device name</td>
<td>Path to the partition on the disk. The partition name “md1” indicates that the partition is a raided partition and that the RAID type is RAID-1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of RAID, for example RAID-1.</td>
</tr>
<tr>
<td>Status</td>
<td>Operational status of the RAID device. Status may contain NORMAL OPERATION or REBUILDING.</td>
</tr>
<tr>
<td>Physical devices and status</td>
<td>Disk number and operational status of the disk, such as [GOOD] or [BAD].</td>
</tr>
<tr>
<td>Disk encryption feature</td>
<td>Indicates whether the disk encryption feature is enabled or disabled.</td>
</tr>
<tr>
<td>Disk object cache extend status</td>
<td>Indicates whether the extended object cache feature is enabled or disabled.</td>
</tr>
</tbody>
</table>
The following is sample output from the `show disks tech-support` command. The output shows that partition 04 and partition 05 on disks disk00 and disk01 are GOOD, and the RAIDed partitions /dev/md4 & /dev/md5 are in NORMAL OPERATION. However, the RAIDed partition /dev/md8 has an issue with one of the drives. Disk04 with partition 00 is GOOD, but the status shows ONE OR MORE DRIVES ABNORMAL because there is no pair on this partition.

```
WAE# show disks tech-support
/dev/md4 RAID-1 NORMAL OPERATION disk00/04[GOOD]
disk01/04[GOOD]
/dev/md5 RAID-1 NORMAL OPERATION disk00/05[GOOD]
disk01/05[GOOD]
...
/dev/md8 RAID-1 ONE OR MORE DRIVES ABNORMAL disk04/00[GOOD]
```

Table 3-37 describes some typical fields in the `show disks tech-support` command display for a RAID-1 appliance that supports SMART. SMART attributes are vendor dependent; each disk vendor has a different set of supported SMART attributes.

**Table 3-37  Field Descriptions for the show disks tech-support Command (RAID-1)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk00—disk05</td>
<td>Number of drives shown depends on the hardware platform.</td>
</tr>
<tr>
<td>SSD Statistics</td>
<td></td>
</tr>
<tr>
<td>Lifetime remaining</td>
<td>Displays the percentage remaining lifetime of the SSD disk.</td>
</tr>
<tr>
<td>Total bytes written</td>
<td>Displays total bytes written to the SSD disk.</td>
</tr>
<tr>
<td>Write Amplification Factor</td>
<td>Displays the quotient of data written to physical NAND internally by the SSD itself divided by data transferred to the SSD from the host.</td>
</tr>
<tr>
<td>Device type</td>
<td>Type of device is disk.</td>
</tr>
<tr>
<td>Device supports SMART and is Enabled</td>
<td>Status of SMART support: Enabled or Disabled.</td>
</tr>
<tr>
<td>Temperature Warning Enabled</td>
<td>Temperature warning status: Enabled or Disabled.</td>
</tr>
<tr>
<td>SMART Health Status:</td>
<td>Health status of the disk: OK or Failed.</td>
</tr>
</tbody>
</table>

Table 3-38 describes the fields shown in the `show disks tech-support` command display for a RAID-5 appliance.

**Table 3-38  Field Descriptions for the show disks tech-support Command (RAID-5)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllers found</td>
<td>Number of RAID controllers found.</td>
</tr>
<tr>
<td>Controller information</td>
<td></td>
</tr>
</tbody>
</table>
### Table 3-38  Field Descriptions for the `show disks` tech-support Command (RAID-5) (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller Status</td>
<td>Functional status of the controller.</td>
</tr>
<tr>
<td>Channel description</td>
<td>Description of the channel transport protocols.</td>
</tr>
<tr>
<td>Controller Model</td>
<td>Make and model of the controller.</td>
</tr>
<tr>
<td>Controller Serial Number</td>
<td>Serial number of the ServeRAID controller.</td>
</tr>
<tr>
<td>Physical Slot</td>
<td>Slot number.</td>
</tr>
<tr>
<td>Installed memory</td>
<td>Amount of memory for the disk.</td>
</tr>
<tr>
<td>Copyback</td>
<td>Status of whether copyback is enabled or disabled.</td>
</tr>
<tr>
<td>Data scrubbing</td>
<td>Status of whether data scrubbing is enabled or disabled.</td>
</tr>
<tr>
<td>Defunct disk drive count</td>
<td>Number of defunct disk drives.</td>
</tr>
<tr>
<td>Logical drives/Offline/Critical</td>
<td>Number of logical drives, number of drives that are offline, and number of critical alarms.</td>
</tr>
</tbody>
</table>

#### Controller Version Information

<table>
<thead>
<tr>
<th>BIOS</th>
<th>Version number of the BIOS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware</td>
<td>Version number of the Firmware.</td>
</tr>
<tr>
<td>Driver</td>
<td>Version number of the Driver.</td>
</tr>
<tr>
<td>Boot Flash</td>
<td>Version number of the Boot Flash.</td>
</tr>
</tbody>
</table>

#### Controller Battery Information

<table>
<thead>
<tr>
<th>Status</th>
<th>Functional status of the controller battery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over temperature</td>
<td>Over temperature condition of the battery.</td>
</tr>
<tr>
<td>Capacity remaining</td>
<td>Percent of remaining battery capacity.</td>
</tr>
<tr>
<td>Time remaining (at current draw)</td>
<td>Number of days, hours, and minutes of battery life remaining based on the current draw.</td>
</tr>
</tbody>
</table>

#### Controller Vital Product Data

<table>
<thead>
<tr>
<th>VPD Assigned#</th>
<th>Number assigned to the controller vital product data (VPD).</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC Version#</td>
<td>Version number.</td>
</tr>
<tr>
<td>Controller FRU#</td>
<td>Number assigned to the controller field-replaceable part.</td>
</tr>
<tr>
<td>Battery FRU#</td>
<td>Number assigned to the battery field-replaceable part.</td>
</tr>
</tbody>
</table>

#### Logical drive information

<table>
<thead>
<tr>
<th>Logical drive number</th>
<th>Number identifying the logical drive to which the information applies.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logical drive name</td>
<td>Name of the logical drive.</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID level of the logical drive.</td>
</tr>
<tr>
<td>Status of logical drive</td>
<td>Functional status of the logical drive.</td>
</tr>
<tr>
<td>Size</td>
<td>Size (in megabytes) of the logical drive.</td>
</tr>
<tr>
<td>Read-cache mode</td>
<td>Configuration status of read-cache mode: Enabled or Disabled.</td>
</tr>
<tr>
<td>Write-cache mode</td>
<td>Configuration status of write-cache mode for write-back: Enabled or Disabled.</td>
</tr>
</tbody>
</table>
Table 3-38  Field Descriptions for the show disks tech-support Command (RAID-5) (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write-cache setting</td>
<td>Configuration status of the write-cache setting for write-back: Enabled or Disabled.</td>
</tr>
<tr>
<td>Partitioned</td>
<td>Partition state. Values are Yes or No.</td>
</tr>
<tr>
<td>Number of chunks</td>
<td>Number of disks participating in the RAID-5 array.</td>
</tr>
<tr>
<td>Stripe-unit size</td>
<td>Amount of data storage per stripe unit. The default is 256 KB per disk in the logical array. This parameter is not configurable.</td>
</tr>
<tr>
<td>Stripe order (Channel,Device)</td>
<td>Order in which data is striped across a group of physical drives that are grouped in a RAID array.</td>
</tr>
<tr>
<td>Bad stripes</td>
<td>Flag for bad stripes. Flag values are Yes or No.</td>
</tr>
</tbody>
</table>

Physical drive information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device #</td>
<td>Device number for which the information applies.</td>
</tr>
<tr>
<td>Device is a xxxx</td>
<td>Type of device.</td>
</tr>
<tr>
<td>State</td>
<td>State of the device: Online or Offline.</td>
</tr>
<tr>
<td>Supported</td>
<td>Status showing if the device is supported.</td>
</tr>
<tr>
<td>Transfer Speed</td>
<td>Device transfer speed.</td>
</tr>
<tr>
<td>Reported Channel,Device</td>
<td>Provides channel information for all the disks participating in the RAID-5 array.</td>
</tr>
<tr>
<td>Reported Enclosure,Slot</td>
<td>Device number and slot number.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Vendor identification number.</td>
</tr>
<tr>
<td>Model</td>
<td>Model number.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Firmware number.</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number.</td>
</tr>
<tr>
<td>Size</td>
<td>Size (in megabytes) of the physical drive.</td>
</tr>
<tr>
<td>Write Cache</td>
<td>Status of whether the write cache is enabled.</td>
</tr>
<tr>
<td>FRU</td>
<td>Field Replaceable Unit number. A RAID defunct drive FRU event occurs when a specified hard disk drive with the provided FRU number fails in a RAID configuration. The default value for this field is NONE.</td>
</tr>
<tr>
<td>PFA</td>
<td>Predictive Failure Analysis flag. The flag default value is No. If the RAID predicts a drive failure, this field is set to Yes and a critical alarm is raised on the WAE.</td>
</tr>
</tbody>
</table>

Table 3-39 describes the fields in the show disks tech-support details command display for a RAID-1 appliance that supports SMART. Details in this display depend on the drive manufacturer and vary between drives.
### Table 3-39  Field Descriptions for the show disks tech-support details Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk00—disk05</td>
<td>Number of drives shown depends on the hardware platform.</td>
</tr>
<tr>
<td>Device</td>
<td>Vendor number and version number of the disk.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number for the disk.</td>
</tr>
<tr>
<td>Device type</td>
<td>Type of device is disk.</td>
</tr>
<tr>
<td>Transport protocol</td>
<td>Physical layer connector information, for example: Parallel SCSI (SPI-4).</td>
</tr>
<tr>
<td>Local time is</td>
<td>Day of the week, month, date, time hh:mm:ss, year, clock standard. For example, Mon Mar 19 23:33:12 2007 UTC.</td>
</tr>
<tr>
<td>Device supports SMART and is Enabled</td>
<td>Status of SMART support: Enabled or Disabled.</td>
</tr>
<tr>
<td>Temperature Warning Enabled</td>
<td>Temperature warning status: Enabled or Disabled.</td>
</tr>
<tr>
<td>SMART Health Status:</td>
<td>Health status of the disk: OK or Failed.</td>
</tr>
<tr>
<td>Current Drive Temperature</td>
<td>Temperature of the drive in degrees Celsius.</td>
</tr>
<tr>
<td>Manufactured in week XX of year</td>
<td>Manufacturing details.</td>
</tr>
<tr>
<td>Current start stop count</td>
<td>Number of times the device has stopped or started.</td>
</tr>
<tr>
<td>Recommended maximum start stop count</td>
<td>Maximum recommended count used to gauge the life expectancy of the disk.</td>
</tr>
<tr>
<td>Error counter log</td>
<td>Table displaying the error counter log. Counters for various types of disk errors.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `disk`
- `(config) disk error-handling`
- `show tech-support`
show dre

To view DRE configuration information, use the `show dre` EXEC command.

```
show dre [auto-bypass]
```

Syntax Description

| auto-bypass | Displays the auto bypass table entries. |

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

appnav-controller

Examples

The following is sample output from the `show dre` EXEC command:

```
WAE# show dre

DRE configuration:
 Mac-id: 50:3d:e5:9c:8f:a5
 DRE-peer-id: 50:3d:e5:9c:8f:a5-01319249ed67-92f8dea8
 Max concurrent connections: 200, max fan-out: 700
 DRE auto bypass threshold 7074 MB
```

Related Commands

- `clear dre`
- `(config) dre`
show filtering list

To display information about the incoming and outgoing TFO flows that the WAE currently has, use the show filtering list EXEC command.

```
show filtering list \[l \{ begin regex \regex \} \exclude regex \regex \} \include regex \regex \}\[l \{ begin
regex \regex \} \exclude regex \regex \} \include regex \regex \}\]\]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>l</code></td>
<td>(Optional) Output modifier.</td>
</tr>
<tr>
<td><code>begin regex</code></td>
<td>Begins with the line that matches the regular expression. You can enter multiple expressions.</td>
</tr>
<tr>
<td><code>exclude regex</code></td>
<td>Excludes lines that match the regular expression. You can enter multiple expressions.</td>
</tr>
<tr>
<td><code>include regex</code></td>
<td>Includes lines that match the regular expression. You can enter multiple expressions.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

### Usage Guidelines

The show filtering list command lists TCP flows that the WAE is currently optimizing. It also includes TCP flows that are not being optimized but that are being passed through by the WAE. A “P” in the State column indicates a passed through flow.

### Examples

The following is sample output from the show filtering list command. It displays TFO connection information for the WAE.

```
WAE# show filtering list
E: Established, S: Syn, A: Ack, F: Fin, R: Reset
s: sent, r: received, O: Options, P: Passthrough
B: Bypass, L: Last Ack, W: Time Wait, D: Done
T: Timedout, C: Closed

<table>
<thead>
<tr>
<th>Local-IP:Port</th>
<th>Remote-IP:Port</th>
<th>Tuple(Mate)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.99.11.200:1398</td>
<td>10.99.22.200:80</td>
<td>0xcba709c0(0xcba70a00)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1425</td>
<td>10.99.22.200:80</td>
<td>0xcba70780(0xcba707c0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1439</td>
<td>10.99.22.200:5222</td>
<td>0xcba703c0(0xcba70b40)</td>
<td>Sr</td>
</tr>
<tr>
<td>10.99.11.200:1440</td>
<td>10.99.22.200:5222</td>
<td>0xcba70400(0xcba70440)</td>
<td>Sr</td>
</tr>
<tr>
<td>10.99.22.200:1800</td>
<td>10.99.11.200:23</td>
<td>0xcba70480(0x0)</td>
<td>PE</td>
</tr>
<tr>
<td>10.99.22.200:1392</td>
<td>10.99.22.200:80</td>
<td>0xcba70f80(0x0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:20</td>
<td>10.99.11.200:1417</td>
<td>0xcba701c0(0xcba70180)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1417</td>
<td>10.99.22.200:20</td>
<td>0xcba70180(0x0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:1987</td>
<td>10.99.11.200:80</td>
<td>0xcba70240(0xcba70200)</td>
<td>E</td>
</tr>
</tbody>
</table>
```
**show filtering list**

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Destination Address</th>
<th>State</th>
<th>Hash</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.99.11.200:1438</td>
<td>10.99.22.200:5222</td>
<td>Sr</td>
<td>0xcba70900 (0xcba70580)</td>
</tr>
<tr>
<td>10.99.22.200:1990</td>
<td>10.99.11.200:80</td>
<td>E</td>
<td>0xcba70100 (0xcba70140)</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1426</td>
<td>E</td>
<td>0xcba70740 (0xcba70700)</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1425</td>
<td>E</td>
<td>0xcba707c0 (0xcba70780)</td>
</tr>
<tr>
<td>10.99.22.200:1985</td>
<td>10.99.11.200:80</td>
<td>E</td>
<td>0xcba70a40 (0xcba70a80)</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1410</td>
<td>E</td>
<td>0xcba70500 (0xcba70540)</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1398</td>
<td>E</td>
<td>0xcba70a00 (0xcba709c0)</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1392</td>
<td>E</td>
<td>0xcba70f40 (0xcba70f80)</td>
</tr>
<tr>
<td>10.0.19.5:54247</td>
<td>10.1.242.5:80</td>
<td>ED</td>
<td>0xc9e5b400 (0xc9e5b100)</td>
</tr>
</tbody>
</table>

**Note**

The “ED” state occurs when one socket in the pair is closed (D), but the mate is still established (E).

**Related Commands**
- show accelerator
- show statistics filtering
- show statistics auto-discovery
- show statistics connection closed
show flash

To display the flash memory version and usage information for a WAAS device, use the `show flash` EXEC command.

```
show flash
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-40 describes the fields shown in the `show flash` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAAS software version (disk-based code)</td>
<td>WAAS software version and build number that is running on the device.</td>
</tr>
<tr>
<td>System image on flash:</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Version and build number of the software that is stored in flash memory.</td>
</tr>
<tr>
<td>System flash directory:</td>
<td></td>
</tr>
<tr>
<td>System image</td>
<td>Number of sectors or bytes used by the system image.</td>
</tr>
<tr>
<td>Bootloader, rescue image, and other reserved areas, or Rescue image Bootloader &amp; others</td>
<td>Number of sectors used by the bootloader, rescue image, and other reserved areas. On some devices, the number of bytes used by the rescue image is shown separately from the number of bytes used by the bootloader and other areas.</td>
</tr>
<tr>
<td>Total Used</td>
<td>Total number of sectors in the flash memory and the number of free sectors available. Some devices show the total number of bytes used and the total free bytes available.</td>
</tr>
</tbody>
</table>
show flow record

To display collection information for a WAAS device, use the `show flow record` EXEC command. Collection information includes source and destination address, source and destination port, class name, number of optimized and unoptimized packets, input/output information for DRE and LZ compression, and average latency encode/decode information for DRE and LZ compression.

```
show flow record {RecordName [template] | waas-all }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RecordName</code></td>
<td>The name of the flow record</td>
</tr>
<tr>
<td><code>template</code></td>
<td>The identity of the template associated with this flow record.</td>
</tr>
<tr>
<td><code>waas-all</code></td>
<td>Collects all WAAS statistics.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Device Modes

- application-accelerator
- central-manager

### Command Modes

- EXEC
- Device Modes
  - application-accelerator
  - central-manager

### Usage Guidelines
show hardware

To display system hardware status for a WAAS device, use the show hardware EXEC command.

```
show hardware
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The show hardware command lists the system hardware status, including the version number, the startup date and time, the run time since startup, the microprocessor type and speed, the amount of physical memory available, and a list of disk drives.

**Examples**

Table 3-41 describes the fields shown in the show hardware command display. The display may vary depending on the hardware platform.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Wide Area Application Services Software (WAAS)</td>
<td>Software application, copyright, release, and build information. Displays universal-k9 for the full software image, accelerator-k9 for the accelerator only software image, and universal-npe-k9 or accelerator-npe-k9 for the NPE versions of those images. The NPE image versions have the disk encryption feature disabled for use in countries where disk encryption is not permitted.</td>
</tr>
<tr>
<td>Copyright (c) year by Cisco Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Cisco Wide Area Application Services (universal-k9) Software Release X.X.X (build bnnn month day year)</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Device model identifier and version number of the software that is running on the device.</td>
</tr>
<tr>
<td>Compiled hour:minute:second month day year by cnbuild</td>
<td>Compile information for the software build.</td>
</tr>
<tr>
<td>Device Id</td>
<td>The device ID.</td>
</tr>
<tr>
<td>System was restarted on day of week month day hour:minute:second year</td>
<td>Date and time that the system was last restarted.</td>
</tr>
</tbody>
</table>
### Table 3-41: Field Descriptions for the `show hardware` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system has been up for X hours, X minutes, X seconds</td>
<td>Length of time the system has been running since the last reboot.</td>
</tr>
<tr>
<td>CPU 0 is</td>
<td>CPU manufacturer information (appears once for each CPU core).</td>
</tr>
<tr>
<td>Total X CPU</td>
<td>Number of CPUs on the device. Also reports number of cores and threads available on multi-core devices.</td>
</tr>
<tr>
<td>XXXX Mbytes of Physical memory</td>
<td>Number of megabytes of physical memory on the device.</td>
</tr>
<tr>
<td>XXXX Mbytes of flash memory</td>
<td>Number of megabytes of flash memory on the device.</td>
</tr>
<tr>
<td>X CD ROM drive</td>
<td>Number of CD-ROM drives on the device (if applicable).</td>
</tr>
<tr>
<td>X GigabitEthernet interfaces</td>
<td>Number of Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the device.</td>
</tr>
<tr>
<td>X TenGigabitEthernet interfaces</td>
<td></td>
</tr>
<tr>
<td>X InlineGroup interfaces</td>
<td>Number of InlineGroup interfaces on the device (if applicable).</td>
</tr>
<tr>
<td>X Console interface</td>
<td>Number of console interfaces on the device.</td>
</tr>
<tr>
<td>X external USB interface</td>
<td>Number of USB interfaces on the device.</td>
</tr>
<tr>
<td>Device Model Number</td>
<td>Product model identification information.</td>
</tr>
<tr>
<td>BIOS Information</td>
<td>Information about the BIOS.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Name of the BIOS vendor.</td>
</tr>
<tr>
<td>Version</td>
<td>BIOS version number.</td>
</tr>
<tr>
<td>Rel. Date (Release date)</td>
<td>Date that the BIOS was released.</td>
</tr>
<tr>
<td>Mainboard info</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Hardware model identifier of the device.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the WAE.</td>
</tr>
<tr>
<td>Detailed Memory Device (DIMM) configuration</td>
<td>Size and location of the installed memory.</td>
</tr>
<tr>
<td>List of all disk drives</td>
<td></td>
</tr>
<tr>
<td>Physical disk information or RAID Physical disk information</td>
<td>Disks listed by number.</td>
</tr>
<tr>
<td>disk00, and so on</td>
<td>Availability of the disk: Present, Not present or not responding, or Not used (*). For RAID disks: ONLINE or OFFLINE. For each disk, shows the size and disk identification number.</td>
</tr>
<tr>
<td>RAID Logical drive information</td>
<td>Size and other information about the RAID logical drive (appears only if the device contains a logical RAID drive).</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPPOOL.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
</tbody>
</table>
Table 3-41  Field Descriptions for the show hardware Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system has been up for X hours, X minutes, X seconds</td>
<td>Length of time the system has been running since the last reboot.</td>
</tr>
<tr>
<td>CPU 0 is</td>
<td>CPU manufacturer information (appears once for each CPU core).</td>
</tr>
<tr>
<td>Total X CPU</td>
<td>Number of CPUs on the device. Also reports number of cores and threads available on multi-core devices.</td>
</tr>
<tr>
<td>XXXXX Mbytes of Physical memory</td>
<td>Number of megabytes of physical memory on the device.</td>
</tr>
<tr>
<td>XXXXX Mbytes of flash memory</td>
<td>Number of megabytes of flash memory on the device.</td>
</tr>
<tr>
<td>X CD ROM drive</td>
<td>Number of CD-ROM drives on the device (if applicable).</td>
</tr>
<tr>
<td>X GigabitEthernet interfaces X TenGigabitEthernet interfaces</td>
<td>Number of Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the device.</td>
</tr>
<tr>
<td>X InlineGroup interfaces</td>
<td>Number of InlineGroup interfaces on the device (if applicable).</td>
</tr>
<tr>
<td>X Console interface</td>
<td>Number of console interfaces on the device.</td>
</tr>
<tr>
<td>X external USB interface</td>
<td>Number of USB interfaces on the device.</td>
</tr>
<tr>
<td>Device Model Number</td>
<td>Product model identification information.</td>
</tr>
<tr>
<td>BIOS Information</td>
<td>Information about the BIOS.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Name of the BIOS vendor.</td>
</tr>
<tr>
<td>Version</td>
<td>BIOS version number.</td>
</tr>
<tr>
<td>Rel. Date</td>
<td>(Release date) Date that the BIOS was released.</td>
</tr>
<tr>
<td>Mainboard info</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Hardware model identifier of the device.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the WAE.</td>
</tr>
<tr>
<td>Detailed Memory Device (DIMM) configuration</td>
<td>Size and location of the installed memory.</td>
</tr>
<tr>
<td>List of all disk drives</td>
<td></td>
</tr>
<tr>
<td>RAID Logical drive information</td>
<td>Size and other information about the RAID logical drive (appears only if the device contains a logical RAID drive).</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPOOL.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
</tbody>
</table>
Table 3-41  Field Descriptions for the show hardware Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system has been up for X hours, X minutes, X seconds</td>
<td>Length of time the system has been running since the last reboot.</td>
</tr>
<tr>
<td>CPU 0 is</td>
<td>CPU manufacturer information (appears once for each CPU core).</td>
</tr>
<tr>
<td>Total X CPU</td>
<td>Number of CPUs on the device. Also reports number of cores and threads available on multi-core devices.</td>
</tr>
<tr>
<td>XXXX Mbytes of Physical memory</td>
<td>Number of megabytes of physical memory on the device.</td>
</tr>
<tr>
<td>XXXX Mbytes of flash memory</td>
<td>Number of megabytes of flash memory on the device.</td>
</tr>
<tr>
<td>X CD ROM drive</td>
<td>Number of CD-ROM drives on the device (if applicable).</td>
</tr>
<tr>
<td>X GigabitEthernet interfaces</td>
<td>Number of Gigabit Ethernet and 10-Gigabit Ethernet interfaces on the device.</td>
</tr>
<tr>
<td>X TenGigabitEthernet interfaces</td>
<td>Number of InlineGroup interfaces on the device (if applicable).</td>
</tr>
<tr>
<td>X InlineGroup interfaces</td>
<td>Number of console interfaces on the device.</td>
</tr>
<tr>
<td>X Console interface</td>
<td>Number of USB interfaces on the device.</td>
</tr>
<tr>
<td>X external USB interface</td>
<td>Product model identification information.</td>
</tr>
<tr>
<td>BIOS Information</td>
<td>Information about the BIOS.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Name of the BIOS vendor.</td>
</tr>
<tr>
<td>Version</td>
<td>BIOS version number.</td>
</tr>
<tr>
<td>Rel. Date (Release date)</td>
<td>Date that the BIOS was released.</td>
</tr>
<tr>
<td>Mainboard info</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>Hardware model identifier of the device.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number of the WAE.</td>
</tr>
<tr>
<td>Detailed Memory Device (DIMM) configuration</td>
<td>Size and location of the installed memory.</td>
</tr>
<tr>
<td>List of all disk drives</td>
<td></td>
</tr>
<tr>
<td>Physical disk information</td>
<td>Disks listed by number.</td>
</tr>
<tr>
<td>RAID Physical disk information</td>
<td></td>
</tr>
<tr>
<td>disk00, and so on</td>
<td>Availability of the disk: Present, Not present or not responding, or Not used (*). For RAID disks: ONLINE or OFFLINE. For each disk, shows the size and disk identification number.</td>
</tr>
<tr>
<td>RAID Logical drive information</td>
<td>Size and other information about the RAID logical drive (appears only if the device contains a logical RAID drive).</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPOOL.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
</tbody>
</table>
### Table 3-41 Field Descriptions for the show hardware Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inuse</td>
<td>Amount of disk space being used by the file system.</td>
</tr>
<tr>
<td>Free</td>
<td>Amount of unused disk space for the file system.</td>
</tr>
<tr>
<td>Use%</td>
<td>Percentage of the total available disk space being used by the file system.</td>
</tr>
<tr>
<td>Software RAID devices</td>
<td>If present, lists the software RAID devices and provides the following information for each:</td>
</tr>
<tr>
<td>Device name</td>
<td>Path to the partition on the disk. The partition name “md1” indicates that the partition is a raided partition and that the RAID type is RAID-1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of RAID, for example RAID-1.</td>
</tr>
<tr>
<td>Status</td>
<td>Operational status of the RAID device. Status may contain NORMAL OPERATION or REBUILDING.</td>
</tr>
<tr>
<td>Physical devices and status</td>
<td>Disk number and operational status of the disk, such as [GOOD] or [BAD].</td>
</tr>
<tr>
<td>Disk encryption feature</td>
<td>Whether the disk encryption feature is enabled or disabled.</td>
</tr>
<tr>
<td>Primary Power Supply Unit</td>
<td>Whether the primary power supply is installed and powered. (Shown for devices that support reporting power supply information.)</td>
</tr>
<tr>
<td>Redundant Power Supply Unit</td>
<td>Whether the redundant power supply is installed and powered. (Shown for devices that support reporting redundant power supply information.)</td>
</tr>
<tr>
<td>Total number of system fans is</td>
<td>Number of fans installed in the device. (Shown for devices that support reporting fan information.)</td>
</tr>
<tr>
<td>Disk object cache extend</td>
<td>Whether the extended disk object cache is enabled or disabled. (Shown for devices that support the extended disk object cache.)</td>
</tr>
</tbody>
</table>

**Related Commands**

- `show disks`
- `show version`
show hosts

To view the hosts on a WAAS device, use the `show hosts` EXEC command.

```
show hosts
```

### Syntax Description

This command has no arguments or keywords.

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Usage Guidelines

The `show hosts` command lists the name servers and their corresponding IP addresses. It also lists the hostnames, their corresponding IP addresses, and their corresponding aliases (if applicable) in a host table summary.

### Examples

Table 3-42 describes the fields shown in the `show hosts` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain names</td>
<td>Domain names used by the WAE to resolve the IP address.</td>
</tr>
<tr>
<td>Name Server(s)</td>
<td>IP address of the DNS name server or servers.</td>
</tr>
<tr>
<td>Host Table</td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td>FQDN (hostname and domain) of the current device.</td>
</tr>
<tr>
<td>inet address</td>
<td>IP address of the current host device.</td>
</tr>
<tr>
<td>aliases</td>
<td>Name configured for the current device based on the <code>host</code> global configuration command.</td>
</tr>
</tbody>
</table>

### Related Commands

`(config) ip hosts`
show inetd

To display the status of TCP/IP services on a WAAS device, use the show inetd EXEC command.

```
show inetd
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
The `show inetd` EXEC command displays the enabled or disabled status of TCP/IP services on the WAAS device. You can ignore the TFTP service status because TFTP is not supported on WAAS.

**Examples**
Table 3-43 describes the fields shown in the `show inetd` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>Status of whether the FTP service is enabled or disabled.</td>
</tr>
<tr>
<td>rcp</td>
<td>Status of whether the RCP service is enabled or disabled.</td>
</tr>
</tbody>
</table>

**Related Commands**
(config) inetd
show interception-method

To display the configured interception method, use the show interception-method EXEC command.

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
appnav-controller

**Examples**
The following is sample output from the show interception-method command:

```
WAE# show interception-method
Interception-method: wccp
WCCP Interception :
Configured State : Enabled
Operational State : Enabled

Services Enabled on this WAE:
 TCP Promiscuous 61
```

**Related Commands**
(config) interception-method
show interface

To display the hardware interface information for a WAAS device, use the show interface EXEC command.

```
show interface {GigabitEthernet slot/port | InlineGroup slot/grpnumber | InlinePort slot/grpnumber {lan | wan} | PortChannel index | standby grpnumber | virtual slot/port | TenGigabitEthernet slot/port | bvi bridge-id} [detail]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>Displays Gigabit Ethernet interface device information. Slot and port number for the Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td>slot/port</td>
<td>Slot and port number for the Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td>InlineGroup</td>
<td>Displays the inline group information and the slot and inline group number for the selected interface.</td>
</tr>
<tr>
<td>slot/grpnumber</td>
<td>Displays the inline group information and the slot and inline group number for the selected interface.</td>
</tr>
<tr>
<td>InlinePort</td>
<td>Displays the inline port information and the slot and inline group number for the selected interface.</td>
</tr>
<tr>
<td>lan</td>
<td>Displays the inline port information for the LAN port.</td>
</tr>
<tr>
<td>wan</td>
<td>Displays the inline port information for the WAN port.</td>
</tr>
<tr>
<td>PortChannel index</td>
<td>Displays the port channel interface (1-4) device information.</td>
</tr>
<tr>
<td>standby grpnumber</td>
<td>Displays the standby group (1-2) information.</td>
</tr>
<tr>
<td>virtual slot/port</td>
<td>Displays the virtual interface device information. Slot and port number for the virtual interface. The slot range is 1–2; the port range is 0.</td>
</tr>
<tr>
<td>TenGigabitEthernet</td>
<td>Displays 10-Gigabit Ethernet interface device information. Slot and port number for the Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td>slot/port</td>
<td>Displays 10-Gigabit Ethernet interface device information. Slot and port number for the Gigabit Ethernet interface. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td>bvi bridge-id</td>
<td>Displays the bridge virtual interface (1-4) information.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

- EXEC

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

On an AppNav Controller device with a port-channel interface configured, interception statistics are collected only for the port-channel interface, not for the individual member interfaces.

### Examples

The following is sample output from the show interface command. It displays information for GigabitEthernet interface 0 in slot 0:

```
WAE-231-03# show interface gigabitethernet 0/0
```
Table 3-44 describes the fields shown in the `show interface GigabitEthernet` command. Most of the other `show interface` command options display similar output.

**Table 3-44  Field Descriptions for the show interface GigabitEthernet command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Description of the interface, including member interfaces. Displayed only for logical interfaces.</td>
</tr>
<tr>
<td>lsp</td>
<td>Displayed only if interface is configured with link state propagation.</td>
</tr>
<tr>
<td>flow sync</td>
<td>Flow synchronization status. Displayed only if interface is on an AppNav Controller Interface Module.</td>
</tr>
<tr>
<td>Ethernet address</td>
<td>Layer-2 MAC address.</td>
</tr>
<tr>
<td>Internet address</td>
<td>Internet IP address configured for this interface.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Netmask configured for this interface.</td>
</tr>
<tr>
<td>Admin State</td>
<td>Administrative state.</td>
</tr>
<tr>
<td>Operational State</td>
<td>Administrative state.</td>
</tr>
<tr>
<td>Maximum Transfer Unit Size</td>
<td>Current configured MTU value.</td>
</tr>
<tr>
<td>Input Errors</td>
<td>Number of incoming errors on this interface.</td>
</tr>
<tr>
<td>Input Packets Dropped</td>
<td>Number of incoming packets that were dropped on this interface.</td>
</tr>
<tr>
<td>Packets Received</td>
<td>Total number of packets received by this interface.</td>
</tr>
<tr>
<td>Output Errors</td>
<td>Number of outgoing packet errors.</td>
</tr>
<tr>
<td>Output Packets Dropped</td>
<td>Number of outgoing packets that were dropped by this interface.</td>
</tr>
<tr>
<td>Load Interval</td>
<td>Interval at which the interface is polled for statistics and to calculate throughput.</td>
</tr>
<tr>
<td>Input Throughput</td>
<td>Input throughput in bits per second and packets per second.</td>
</tr>
<tr>
<td>Output Throughput</td>
<td>Output throughput in bits per second and packets per second.</td>
</tr>
<tr>
<td>Packets Sent</td>
<td>Total number of packets sent from this interface.</td>
</tr>
</tbody>
</table>
Table 3-44  Field Descriptions for the show interface GigabitEthernet command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-negotiation</td>
<td>State of auto-negotiation for transmission speed and mode. Shown only for physical interfaces.</td>
</tr>
<tr>
<td>Full Duplex</td>
<td>State of full duplex transmission mode. Shown only for physical interfaces.</td>
</tr>
<tr>
<td>Speed</td>
<td>Configured speed. Shown only for physical interfaces.</td>
</tr>
<tr>
<td>Interception Statistics (appears only for AppNav Controller Interface Module interfaces)</td>
<td></td>
</tr>
<tr>
<td>Input Packets Forwarded/Bridged</td>
<td>Number of input packets forwarded or bridged.</td>
</tr>
<tr>
<td>Input Packets Redirected</td>
<td>Number of input packets redirected.</td>
</tr>
<tr>
<td>Input Packets Punted</td>
<td>Number of input packets punted.</td>
</tr>
<tr>
<td>Input Packets Dropped</td>
<td>Number of input packets dropped.</td>
</tr>
<tr>
<td>Output Packets Forwarded/Bridged</td>
<td>Number of output packets forwarded or bridged.</td>
</tr>
<tr>
<td>Output Packets Injected</td>
<td>Number of output packets injected.</td>
</tr>
<tr>
<td>Output Packets Dropped</td>
<td>Number of output packets dropped.</td>
</tr>
</tbody>
</table>

Table 3-44 describes the fields shown in the `show interface InlineGroup` command.

Table 3-45  Field Descriptions for the show interface InlineGroup command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Statistics Of The Group</td>
<td></td>
</tr>
<tr>
<td>Internet address</td>
<td>Internet IP address configured for this interface.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Netmask configured for this interface.</td>
</tr>
<tr>
<td>Interface Operating Mode</td>
<td>Operating mode of interface:</td>
</tr>
<tr>
<td></td>
<td>• Intercept—Intercepting traffic</td>
</tr>
<tr>
<td></td>
<td>• Bypass—Bypassing traffic.</td>
</tr>
<tr>
<td>Standard NIC Mode</td>
<td>Standard NIC mode. Off when in inline mode.</td>
</tr>
<tr>
<td>Disable Bypass Mode</td>
<td>Unused.</td>
</tr>
<tr>
<td>Watchdog Timer</td>
<td>Watchdog timer status.</td>
</tr>
<tr>
<td>Timer frequency(in ms)</td>
<td>Timer frequency in ms. If the timer is not reset before this interval, the interface switches into bypass mode.</td>
</tr>
<tr>
<td>Autoreset Frequency(in ms)</td>
<td>WAAS resets the watchdog timer at this interval.</td>
</tr>
<tr>
<td>The watchdog timer expiry(in ms)</td>
<td>Watchdog expiration in ms.</td>
</tr>
<tr>
<td>VLAN IDs configured for</td>
<td>List of VLAN IDs configured for interception. All means all VLANS are configured for interception.</td>
</tr>
<tr>
<td>interception</td>
<td></td>
</tr>
<tr>
<td>Inline Port Statistics Of The Group (WAN port and LAN port shown in separate columns)</td>
<td></td>
</tr>
<tr>
<td>Packets Received Inline</td>
<td>Number of packets received by this interface.</td>
</tr>
<tr>
<td>Packets Bridged</td>
<td>Number of non-TCP packets or other packets that the device does not want to intercept.</td>
</tr>
</tbody>
</table>
### Field Descriptions for the show interface InlineGroup command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets Forwarded</td>
<td>Number of packets considered for optimization or pass-through, including host-generated packets.</td>
</tr>
<tr>
<td>Packets Received on native</td>
<td>Number of packets received on a built-in interface (not on the interface module) that were previously seen on the bridge interface. This implies a routing loop in the network.</td>
</tr>
<tr>
<td>Active flows on the interface</td>
<td>Number of active flows on the interface.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `(config) interface GigabitEthernet
- `(config) interface InlineGroup
- `show running-config
- `show startup-config
show inventory

To display the system inventory information for a WAAS device, use the `show inventory` EXEC command.

```
show inventory
```

### Syntax Description

This command has no arguments or keywords.

### Defaults

No default behavior or values.

### Command Modes

**EXEC**

### Device Modes

**application-accelerator**

**central-manager**

### Usage Guidelines

The `show inventory` EXEC command allows you to view the UDI for a WAAS device. This identity information is stored in the nonvolatile memory of the WAAS device.

The UDI is electronically accessed by the product operating system or network management application to enable identification of unique hardware devices. The data integrity of the UDI is vital to customers. The UDI that is programmed into the nonvolatile memory of the WAAS device is equivalent to the UDI that is printed on the product label and on the carton label. This UDI is also equivalent to the UDI that can be viewed through any electronic means and in all customer-facing systems and tools. Currently, there is only CLI access to the UDI; there is no SNMP access to the UDI information.

You can also use the `show tech-support` EXEC command to display the WAAS device UDI.

### Examples

Table 3-46 describes the fields shown in the `show inventory` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Chassis for an appliance or slot number for an installed interface card.</td>
</tr>
<tr>
<td>DESCR</td>
<td>Description of the device.</td>
</tr>
<tr>
<td>PID</td>
<td>Product identification (ID) number of the device.</td>
</tr>
<tr>
<td>VID</td>
<td>Version ID number of the device. Displays as 0 if the version number is not available.</td>
</tr>
<tr>
<td>SN</td>
<td>Serial number of the device.</td>
</tr>
</tbody>
</table>

### Related Commands

`show tech-support`
show ip access-list

To display the access lists that are defined and applied to specific interfaces or applications on a WAAS device, use the show ip access-list EXEC command.

show ip access-list [acl-name | acl-num]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-name</td>
<td>(Optional) Information for a specific access list, using an alphanumeric</td>
</tr>
<tr>
<td></td>
<td>identifier up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td>acl-num</td>
<td>(Optional) Information for a specific access list, using a numeric identifier</td>
</tr>
<tr>
<td></td>
<td>(0–99 for standard access lists and 100–199 for extended access lists).</td>
</tr>
</tbody>
</table>

Defaults

Displays information about all defined access lists.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the show ip access-list EXEC command to display the access lists that have been defined on the WAAS device and what rules are being hit. Unless you identify a specific access list by name or number, the system displays information about all the defined access lists, including the following sections:

- Available space for new lists and conditions
- Defined access lists
- References by interface and application

Interception access lists are shown under the Application access list references section.

Examples

Table 3-47 describes the fields shown in the show ip access-list command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space available:</td>
<td></td>
</tr>
<tr>
<td>XX access lists</td>
<td>Number of access lists remaining out of 50 maximum lists allowed.</td>
</tr>
<tr>
<td>XXX access list conditions</td>
<td>Number of access list conditions remaining out of 500 maximum conditions allowed.</td>
</tr>
<tr>
<td>XXX TCAM Entries</td>
<td>Number of remaining TCAM entries on an ANC.</td>
</tr>
</tbody>
</table>
show ip access-list

**Related Commands**
- clear arp-cache
- (config) interception
- (config) ip access-list

**Table 3-47  Field Descriptions for the show ip access-list Command (continued)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard IP access list</td>
<td>Name of a configured standard IP access list. Displays a list of the conditions configured for this list.</td>
</tr>
<tr>
<td>Extended IP access list</td>
<td>Name of a configured extended IP access list. Displays a list of the conditions configured for this list.</td>
</tr>
<tr>
<td>Interface access list references</td>
<td>List of interfaces and the access lists with which they are associated, displayed in the following format:</td>
</tr>
<tr>
<td></td>
<td>interface slot/port</td>
</tr>
<tr>
<td></td>
<td>interface direction</td>
</tr>
<tr>
<td></td>
<td>access list number</td>
</tr>
<tr>
<td>Application access list references</td>
<td>List of applications and the access lists with which they are associated, displayed in the following format:</td>
</tr>
<tr>
<td></td>
<td>application type</td>
</tr>
<tr>
<td></td>
<td>access list type and number</td>
</tr>
<tr>
<td></td>
<td>associated port</td>
</tr>
</tbody>
</table>
show ip routes

To display the IP routing table for a WAAS device, use the **show ip routes** EXEC command.

```
show ip routes [data | management]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>data</td>
<td>Displays the routing table for data traffic.</td>
</tr>
<tr>
<td>management</td>
<td>Displays the routing table for management traffic.</td>
</tr>
</tbody>
</table>

**Defaults**

Displays the routing table for both data and management traffic.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- appnav-controller
- central-manager

**Usage Guidelines**

The **show ip routes** command displays the IP route table, which lists all of the different routes that are configured on the WAE. The WAE uses this table to determine the next hop. This table includes routes from three sources: the WAE interfaces, any user-configured static routes, and the default gateway. The last line in the Data Routes table shows the default route.

**Examples**

Table 3-48 describes the fields shown in the **show ip routes** command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Destination IP addresses for each route.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Netmask for each route.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Gateway address for each route.</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface on which each route is configured.</td>
</tr>
</tbody>
</table>

**Related Commands**

- (config) ip
- (config-if) ip
show kdump

To display the kernel crash dump information for a WAAS device, use the show kdump EXEC command.

    show kdump

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Examples

Table 3-49 describes the fields shown in the show kdump command display.

Table 3-49  Field Descriptions for the show kdump Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kdump state</td>
<td>Enabled or not enabled.</td>
</tr>
<tr>
<td>Kdump operation</td>
<td>Operational or not operational.</td>
</tr>
<tr>
<td>Kdump installed</td>
<td>If the kdump package is not installed, this line alerts you.</td>
</tr>
<tr>
<td>Kdump crashkernel</td>
<td>Crash kernel information (Memory @ Base Address).</td>
</tr>
</tbody>
</table>

Related Commands

(config) kernel kdump enable
(config) logging console
show kerberos

To display the Kerberos authentication configuration for a WAAS device, use the show kerberos EXEC command.

```
show kerberos
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-50 describes the fields shown in the show kerberos command display.

**Table 3-50 Field Descriptions for the show kerberos Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos Configuration</td>
<td></td>
</tr>
<tr>
<td>Local Realm</td>
<td>Local realm name.</td>
</tr>
<tr>
<td>DNS suffix</td>
<td>DNS suffix for the realm.</td>
</tr>
<tr>
<td>Realm for DNS suffix</td>
<td>DNS addresses of the computers that are part of this realm.</td>
</tr>
<tr>
<td>Name of host running KDC for realm</td>
<td>Name of the host running the Key Distribution Center for the realm.</td>
</tr>
<tr>
<td>Master KDC</td>
<td>Primary or main Key Distribution Center.</td>
</tr>
<tr>
<td>Port</td>
<td>Port that the Kerberos server is using for incoming requests from clients. The default is port 88.</td>
</tr>
</tbody>
</table>

**Related Commands**

- clear arp-cache
- (config) logging console
show key-manager

To display the key manager information for a WAAS Central Manager, use the show key-manager EXEC command.

    show key-manager {key-token | status}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key-token</td>
<td>Displays the encryption key token for each registered WAE device.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the encryption status for each registered WAE device.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

central-manager

**Usage Guidelines**

This command is not available on a standby Central Manager.

**Examples**

Table 3-51 describes the fields shown in the show key-manager key-token command display. The set of fields is displayed for each key used on each WAE registered to the Central Manager.

**Table 3-51 Field Descriptions for the show key-manager key-token Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAE Device</td>
<td>WAE device name.</td>
</tr>
<tr>
<td>Key Token</td>
<td>The encryption token.</td>
</tr>
<tr>
<td>Creation Time</td>
<td>Time the encryption key was created.</td>
</tr>
<tr>
<td>Encryption Algorithm</td>
<td>Type of encryption algorithm used.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of key.</td>
</tr>
</tbody>
</table>

**Related Commands**

(config) disk encrypt
cms secure-store
show license

To display license information for a WAAS device, use the show license EXEC command.

`show license`

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

The following is sample output from the show license command. It lists the WAAS licenses, giving the name, status, date applied, and the name of the user that applied the license for each active license.

```
WAE# show license
License Name Status Activation Date Activated by
--
Transport not active
Enterprise active 11/12/2008 admin
Video not active
Virtual-Blade not active
```

**Related Commands**

`clear arp-cache`
`license add`
show logging

To display the system message log configuration for a WAAS device, use the `show logging` EXEC command.

```
show logging
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Use the system message log to view information about events that have occurred on a WAAS device. The `syslog.txt` file is contained in the `/local1` directory.

**Examples**
The following is sample output from the `show logging` command. It displays the syslog host configuration on a WAAS device.

```
WAE# show logging
Syslog to host is disabled
Priority for host logging is set to: warning

Syslog to console is disabled
Priority for console logging is set to: warning

Syslog to disk is enabled
Priority for disk logging is set to: notice
Filename for disk logging is set to: /local1/syslog.txt

Syslog facility is set to *

Syslog disk file recycle size is set to 1000000
```

**Related Commands**
clear arp-cache
(config) logging console
show sysfs volumes
show memory

To display memory blocks and statistics for a WAAS device, use the `show memory` EXEC command.

```
show memory
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-52 describes the fields shown in the `show memory` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total memory</td>
<td>Total amount of system memory in kilobytes (KB), not including the amount reserved for the rescue kernel.</td>
</tr>
<tr>
<td>Total free memory</td>
<td>Total available memory (in kilobytes).</td>
</tr>
<tr>
<td>Total buffer memory</td>
<td>Total amount of memory (in kilobytes) in the memory buffer.</td>
</tr>
<tr>
<td>Total cached memory</td>
<td>Total amount of memory (in kilobytes) in the memory cache.</td>
</tr>
<tr>
<td>Total swap</td>
<td>Total amount of memory (in kilobytes) for swap purposes.</td>
</tr>
<tr>
<td>Total free swap</td>
<td>Total available memory (in kilobytes) for swap purposes.</td>
</tr>
</tbody>
</table>
show monitor

To show the status of traffic monitoring on an AppNav Controller Interface Module, use the show monitor EXEC command.

```
show monitor
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Examples**

The following example shows how to display traffic monitoring status:

```
ANC# show monitor
AppNav Controller connection monitoring enabled for specified ACL: myacl.
```

**Related Commands**

- clear statistics monitor appnav-controller traffic
- monitor appnav-controller traffic
- show statistics monitor appnav-controller traffic
show ntp

To display the NTP parameters for a WAAS device, use the `show ntp` EXEC command.

```bash
show ntp status
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Displays the NTP status.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-53 describes the fields shown in the `show ntp status` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>Indicates whether NTP is enabled or disabled.</td>
</tr>
<tr>
<td>server list</td>
<td>NTP server IP and subnet addresses.</td>
</tr>
<tr>
<td>remote</td>
<td>Name (first 15 characters) of remote NTP server.</td>
</tr>
<tr>
<td>*</td>
<td>In the remote column, identifies the system peer to which the clock is synchronized.</td>
</tr>
<tr>
<td>+</td>
<td>In the remote column, identifies a valid or eligible peer for NTP synchronization.</td>
</tr>
<tr>
<td>space</td>
<td>In the remote column, indicates that the peer was rejected. (The peer could not be reached or excessive delay occurred in reaching the NTP server.)</td>
</tr>
<tr>
<td>x</td>
<td>In the remote column, indicates a false tick and is ignored by the NTP server.</td>
</tr>
<tr>
<td>-</td>
<td>In the remote column, indicates a reading outside the clock tolerance limits and is ignored by the NTP server.</td>
</tr>
<tr>
<td>refid</td>
<td>Clock reference ID to which the remote NTP server is synchronized.</td>
</tr>
<tr>
<td>st</td>
<td>Clock server stratum or layer. In this example, stratum 1 is the top layer.</td>
</tr>
<tr>
<td>t</td>
<td>Type of peer (local, unicast, multicast, or broadcast).</td>
</tr>
<tr>
<td>when</td>
<td>Indicates when the last packet was received from the server in seconds.</td>
</tr>
<tr>
<td>poll</td>
<td>Time check or correlation polling interval in seconds.</td>
</tr>
<tr>
<td>reach</td>
<td>8-bit reachability register. If the server was reachable during the last polling interval, a 1 is recorded; otherwise, a 0 is recorded. Octal values 377 and above indicate that every polling attempt reached the server.</td>
</tr>
<tr>
<td>delay</td>
<td>Estimated delay (in milliseconds) between the requester and the server.</td>
</tr>
</tbody>
</table>
Table 3-53  Field Descriptions for the show ntp status Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>offset</td>
<td>Clock offset relative to the server.</td>
</tr>
<tr>
<td>jitter</td>
<td>Clock jitter.</td>
</tr>
</tbody>
</table>

Related Commands

- clock
- (config) clock
- (config) ntp
show peer optimization

To display the configured serial peers for a WAAS device, use the show peer optimization EXEC command.

```
show peer optimization
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example shows how to display the device IDs of the configured nonoptimizing peer devices:

```
WAE# show peer optimization
Configured Non-optimizing Peers:
 Peer Device Id: 00:21:5e:28:87:54
```

Related Commands

- show device-id
- (config) peer
show policy-map

To display the policy map rules configured for an AppNav or optimization class map, use the `show policy-map` EXEC command.

```
show policy-map type {appnav | waas} [policymap-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>appnav</td>
<td>Displays the specified AppNav policy map, or all policy maps if no policy map is specified.</td>
</tr>
<tr>
<td>waas</td>
<td>Displays the specified WAAS optimization policy map, or all policy maps if no policy map is specified.</td>
</tr>
<tr>
<td>classmap-name</td>
<td>Policy map name.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

This command displays the policy rules for all policy maps or a specified policy map. It also displays the number of flows that have matched each class map and the total number of flows that have matched the policy. For nested policy maps, a match is counted for each policy map involved in the classification of a connection.

**Examples**

The following is sample output from the `show policy-map type appnav` command.

```
WAE# show policy-map type appnav
Policy-map type appnav appnav_default (245 total)
Class MAPI (25 flow-matches)
 distribute service-node-group mapi-group
Class HTTP (100 flow-matches)
 distribute service-node-group http-group
Class class-default (120 flow-matches)
 distribute service-node-group WNG-Default
 service-policy waas_app_default
```

**Related Commands**

* (config) `policy-map`
  * `show class-map`
  * `show policy-sub-class`
show policy-sub-class

To display the matching criteria and flows for an AppNav class map, use the `show policy-sub-class` EXEC command.

```
show policy-sub-class type appnav [all | level1-class classmap-name [level2-class classmap-name]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>appnav</td>
<td>Displays a summary of the class maps in the active AppNav policy map and any nested policy maps.</td>
</tr>
<tr>
<td>all</td>
<td>Displays detailed information for the class maps in the active AppNav policy map and any nested policy maps.</td>
</tr>
<tr>
<td>level1-class classmap-name</td>
<td>Displays detailed information for the specified class map in the top-level policy map.</td>
</tr>
<tr>
<td>level2-class classmap-name</td>
<td>Displays detailed information for the specified class map in a nested policy map.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Usage Guidelines**

The `show policy-sub-class type appnav` command displays a list of all the class maps in the active AppNav policy map and any nested policy maps. It also displays the number of flows that have matched each class map, in all uses of the class map, including in all nested policy maps.

The `show policy-sub-class type appnav all` command displays a list of class maps and their matching criteria for all class maps in the active AppNav policy map and any nested policy maps. It also displays the number of flows that have matched each class map and condition, in all uses of the class map, including in all nested policy maps.

The `show policy-sub-class type appnav level1-class classmap-name` command displays the matching criteria for the specified class map in the top-level AppNav policy map, including matching criteria for all class maps in any nested policies. It also displays the number of flows that have matched each class map and condition, in all uses of the class map within the specified top-level class map.

The `show policy-sub-class type appnav level1-class classmap-name level2-class classmap-name` command displays the matching criteria for the specified class map in a nested AppNav policy map. It also displays the number of flows that have matched the class map and each condition, only within the nested policy map level for the specified top-level class map.

**Examples**

The following is sample output from the `show policy-sub-class type appnav all` command.

```
ANC# show policy-sub-class type appnav all
```
show policy-sub-class

Service-insertion service-policy: appnav_default
Class-map type appnav match-any class-default (8428593 flow-matches)
  Match tcp any (8428593 flow-matches)
Service-policy: waas_app_default
Class-map type appnav match-any MAPI (0 flow-matches)
  Match tcp destination epm mapi (0 flow-matches)
Class-map type appnav match-any HTTPS (11898 flow-matches)
  Match tcp destination port 443 (11898 flow-matches)
Class-map type appnav match-any HTTP (344769 flow-matches)
  Match tcp destination port 80 (344520 flow-matches)
  Match tcp destination port 3128 (58 flow-matches)
  Match tcp destination port 8080 (68 flow-matches)
  Match tcp destination port 8000 (58 flow-matches)
  Match tcp destination port 8088 (55 flow-matches)
Class-map type appnav match-any CIFS (0 flow-matches)
  Match tcp destination port 139 (0 flow-matches)
  Match tcp destination port 445 (0 flow-matches)
Class-map type appnav match-any Citrix-ICA (53 flow-matches)
  Match tcp destination port 1494 (53 flow-matches)
Class-map type appnav match-any Citrix-CGP (57 flow-matches)
  Match tcp destination port 2598 (57 flow-matches)
Class-map type appnav match-any epmap (0 flow-matches)
  Match tcp destination port 135 (0 flow-matches)
Class-map type appnav match-any NFS (59 flow-matches)
  Match tcp destination port 2049 (59 flow-matches)
Class-map type appnav match-any class-default (8071757 flow-matches)
  Match tcp (8071757 flow-matches)

The following sample output show statistics from a nested class map.

ANC# show policy-sub-class type appnav level1-class class-default level2-class NFS
Service-insertion service-policy: appnav_default
Class-map type appnav match-any class-default
Service-policy: waas_app_default
Class-map type appnav match-any NFS (59 flow-matches)
  Match tcp destination port 2049 (59 flow-matches)

Related Commands

(config) policy-map
show class-map
show policy-map
show statistics policy-sub-class
show processes

To display CPU or memory processes for a WAAS device, use the show processes EXEC command.

```
show processes [cpu | debug pid | memory | system [delay secs | count num]]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>(Optional) Displays CPU utilization.</td>
</tr>
<tr>
<td>debug pid</td>
<td>(Optional) Prints the system call and signal traces for a specified process</td>
</tr>
<tr>
<td></td>
<td>identifier to display system progress.</td>
</tr>
<tr>
<td>memory</td>
<td>(Optional) Displays memory allocation processes.</td>
</tr>
<tr>
<td>system</td>
<td>(Optional) Displays system load information in terms of updates.</td>
</tr>
<tr>
<td>delay secs</td>
<td>(Optional) Specifies the delay between updates, in seconds (1–60).</td>
</tr>
<tr>
<td>count num</td>
<td>(Optional) Specifies the number of updates that are displayed (1–100).</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator

central-manager

### Usage Guidelines

Use the EXEC commands shown in this section to track and analyze system CPU utilization. For real time CPU utilization information, use the top EXEC command.

The show processes debug command displays extensive internal system call information and a detailed account of each system call (along with arguments) made by each process and the signals it has received.

Use the show processes system command to display system load information in terms of updates. The delay option specifies the delay between updates, in seconds. The count option specifies the number of updates that are displayed. The show processes debug command displays these items:

- A list of all processes in wide format.
- Two tables listing the processes that utilize CPU resources. The first table displays the list of processes in descending order of utilization of CPU resources based on a snapshot taken after the processes system (ps) output is displayed. The second table displays the same processes based on a snapshot taken 5 seconds after the first snapshot.
- Virtual memory used by the corresponding processes in a series of five snapshots, each separated by 1 second.

### Note

CPU utilization and system performance are severely affected when you use these commands. We therefore recommend that you avoid using these commands, especially the show processes debug command, unless it is absolutely necessary.
Table 3-54 describes the fields shown in the show processes command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU utilization</td>
<td>CPU utilization since the last reload as a percentage for user, system overhead, and idle. Includes average usage (calculated every 10 minutes).</td>
</tr>
<tr>
<td>Overall current CPU utilization</td>
<td>Current CPU utilization over all CPUs in the system.</td>
</tr>
<tr>
<td>PID</td>
<td>Process identifier.</td>
</tr>
<tr>
<td>STATE</td>
<td>Current state of corresponding processes.</td>
</tr>
<tr>
<td>PRI</td>
<td>Priority of processes.</td>
</tr>
<tr>
<td>User T</td>
<td>User time utilization in seconds.</td>
</tr>
<tr>
<td>Sys T</td>
<td>System time utilization in seconds.</td>
</tr>
<tr>
<td>COMMAND</td>
<td>Process command.</td>
</tr>
<tr>
<td>Total</td>
<td>Total available memory in bytes.</td>
</tr>
<tr>
<td>Used</td>
<td>Memory currently used in bytes.</td>
</tr>
<tr>
<td>Free</td>
<td>Free memory available in bytes.</td>
</tr>
<tr>
<td>Shared</td>
<td>Shared memory currently used in bytes.</td>
</tr>
<tr>
<td>Buffers</td>
<td>Buffer memory currently used in bytes.</td>
</tr>
<tr>
<td>Cached</td>
<td>Cache memory currently used in bytes.</td>
</tr>
<tr>
<td>SwapTotal</td>
<td>Total available memory in bytes for swap purposes.</td>
</tr>
</tbody>
</table>

Related Commands: top
show radius-server

To display RADIUS configuration information for a WAAS device, use the `show radius-server` EXEC command.

```
show radius-server
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-55 describes the fields shown in the `show radius-server` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication for Console/Telnet Session</td>
<td>Indicates whether a RADIUS server is enabled for login authentication.</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session</td>
<td>Indicates whether a RADIUS server is enabled for authorization or configuration authentication.</td>
</tr>
<tr>
<td>Authentication scheme fail-over reason</td>
<td>Indicates whether the WAAS devices fail over to the secondary method of administrative login authentication whenever the primary administrative login authentication method.</td>
</tr>
<tr>
<td>RADIUS Configuration</td>
<td>RADIUS authentication settings.</td>
</tr>
<tr>
<td>Key</td>
<td>Key used to encrypt and authenticate all communication between the RADIUS client (the WAAS device) and the RADIUS server.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Number of seconds that the WAAS device waits for a response from the specified RADIUS authentication server before declaring a timeout.</td>
</tr>
<tr>
<td>Servers</td>
<td>RADIUS servers that the WAAS device is to use for RADIUS authentication.</td>
</tr>
<tr>
<td>IP</td>
<td>Hostname or IP address of the RADIUS server.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number on which the RADIUS server is listening.</td>
</tr>
</tbody>
</table>
show radius-server

Related Commands  (config) radius-server
show reload

To display scheduled reload information, use the `show reload` EXEC command.

```
show reload
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
appnav-controller
central-manager

**Related Commands**
reload
show running-config

To display a WAAS device current running configuration on the terminal, use the `show running-config` EXEC command. The `show running-config` command replaces the `write terminal` command.

```
show running-config [interface | no-policy | policy | snmp | virtual-blade | wccp]
```

**Syntax Description**

- `no-policy` (Optional) Does not display the policy engine configuration.
- `interface` (Optional) Displays interface configuration.
- `policy` (Optional) Displays policy engine configuration.
- `snmp` (Optional) Displays SNMP configuration.
- `virtual-blade` (Optional) Displays virtual-blade configuration on a WAAS device supporting a virtual-blade.
- `wccp` (Optional) Displays WCCP configuration.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Use this EXEC command in conjunction with the `show startup-config` command to compare the information in running memory to the startup configuration used during bootup.

**Examples**

The following is sample output from the `show running-config` command. It displays the currently running configuration of a WAAS device.

```
WAE# show running-config
! WAAS version 4.0.0
! device mode central-manager
!
! hostname waas-cm
!
!
! exec-timeout 60
!
```
primary-interface GigabitEthernet 1/0
!
!
...

Related Commands

- configure
- copy running-config
- copy startup-config
To display information about the entities (WNs, WNGs, ANCs, ANCG, and a service context) defined in an AppNav Cluster configuration and the cluster status, use the `show service-insertion` EXEC command.

```
show service-insertion [data-path mtu | pass-through offload | service-context [detail] | appnav-controller ip-address | appnav-controller-group | service-node [ip-address] | service-node-group [sngroupname]]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data-path mtu</code></td>
<td>Displays the MTU of the data path from this device to each of the other ANCs in the cluster.</td>
</tr>
<tr>
<td><code>pass-through offload</code></td>
<td>Displays the pass-through offload configuration.</td>
</tr>
<tr>
<td><code>service-context</code></td>
<td>Displays service context information. Available only on ANCs.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>Displays service context information and includes details about the ANCG, ANCs, and WNGs that are part of the service context.</td>
</tr>
<tr>
<td><code>appnav-controller ip-address</code></td>
<td>Displays information about the specified ANC. Available only on ANCs.</td>
</tr>
<tr>
<td><code>appnav-controller-group</code></td>
<td>Displays information about the ANCG. Available only on ANCs.</td>
</tr>
<tr>
<td><code>service-node [ip-address]</code></td>
<td>Displays information about the WN on this device or the specified device.</td>
</tr>
<tr>
<td></td>
<td>If an IP address is specified, the information is the local device’s view of the specified device.</td>
</tr>
<tr>
<td><code>service-node-group sngroupname</code></td>
<td>Displays information about the specified WNG. If the group name is not specified, it shows information about all WNGs. Available only on ANCs.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

- application-accelerator
- appnav-controller

### Usage Guidelines

This command returns minimal information if the entity or service context is disabled, or if the entity is not attached to the service context.

### Examples

Table 3-56 describes the fields shown in the `show service-insertion service-context` command display.
## Table 3-56  Field Descriptions for the show service-insertion service-context Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Context</td>
<td>Service context name.</td>
</tr>
<tr>
<td>Service Policy</td>
<td>Name of the AppNav policy map that is attached to the service context.</td>
</tr>
<tr>
<td>Cluster protocol ICIMP version</td>
<td>Cluster ICIMP protocol version.</td>
</tr>
<tr>
<td>Cluster protocol DMP version</td>
<td>Cluster DMP protocol version.</td>
</tr>
<tr>
<td>Time service context was enabled</td>
<td>Time the service context was enabled.</td>
</tr>
<tr>
<td>Current FSM state</td>
<td>Current cluster finite state machine state:</td>
</tr>
<tr>
<td></td>
<td>• Operational—Stable and operational. All ANCs in the cluster have converged on a stable view of the devices in the cluster.</td>
</tr>
<tr>
<td></td>
<td>• Degraded—Partially stable state and operational. All ANCs cannot converge on a stable view of devices in the cluster but cluster can operate in pass-through mode.</td>
</tr>
<tr>
<td></td>
<td>• Converging—Performing the convergence process due to a device change. Devices are exchanging information about each device’s view of the cluster.</td>
</tr>
<tr>
<td></td>
<td>• Admin Disabled—Configured but not enabled.</td>
</tr>
<tr>
<td></td>
<td>• Initializing—Cluster is initializing.</td>
</tr>
<tr>
<td></td>
<td>• Internal Error—Internal error condition due to convergence failing after 5 minutes.</td>
</tr>
<tr>
<td>Time FSM entered current state</td>
<td>Time the cluster finite state machine entered the current state.</td>
</tr>
<tr>
<td>Last FSM state</td>
<td>Last cluster finite state machine state. See the Current FSM State field for details.</td>
</tr>
<tr>
<td>Time FSM entered last state</td>
<td>Time the cluster finite state machine entered the last state.</td>
</tr>
<tr>
<td>Joining state</td>
<td>Current joining state:</td>
</tr>
<tr>
<td></td>
<td>• Started—Device has started to join the cluster gracefully.</td>
</tr>
<tr>
<td></td>
<td>• Completed—The graceful join operation completed successfully.</td>
</tr>
<tr>
<td></td>
<td>• Aborted—Graceful join was started and then disabled before completing.</td>
</tr>
<tr>
<td></td>
<td>• Not Configured—Device did not join the cluster gracefully.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—State is unknown (default).</td>
</tr>
<tr>
<td>Time joining state entered</td>
<td>Time the device entered the joining state.</td>
</tr>
</tbody>
</table>
Table 3-56  
**Field Descriptions for the show service-insertion service-context Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster operational state</td>
<td>Cluster operational state:</td>
</tr>
<tr>
<td></td>
<td>• Operational—All ANCs are redirecting new flows to WNs. This is the</td>
</tr>
<tr>
<td></td>
<td>overall cluster state if all ANCs have a FSM state of Operational or a</td>
</tr>
<tr>
<td></td>
<td>cluster was Operational and a device is added. (This makes the FSM state</td>
</tr>
<tr>
<td></td>
<td>go to Converging, but the operational state stays as Operational because</td>
</tr>
<tr>
<td></td>
<td>the existing devices are handling new flows.)</td>
</tr>
<tr>
<td></td>
<td>• Degraded—ANCs are not redirecting new flows to WNs but existing flows</td>
</tr>
<tr>
<td></td>
<td>may be redirected to WNs. New flows are passed through. This is the overall</td>
</tr>
<tr>
<td></td>
<td>cluster state if any ANCs have a FSM state other than Operational.</td>
</tr>
<tr>
<td>Interception Readiness</td>
<td>Interception readiness state of this device:</td>
</tr>
<tr>
<td>State</td>
<td>• Ready—Ready to intercept traffic. This state occurs two minutes after</td>
</tr>
<tr>
<td></td>
<td>the cluster has reached stable convergence. (This state can exist even</td>
</tr>
<tr>
<td></td>
<td>with a degraded cluster operational state because traffic is passed</td>
</tr>
<tr>
<td></td>
<td>through in these cases.)</td>
</tr>
<tr>
<td></td>
<td>• Not Ready—Not ready to intercept traffic (could be due to cluster</td>
</tr>
<tr>
<td></td>
<td>convergence)</td>
</tr>
<tr>
<td>Device Interception State</td>
<td>Interception state of this device:</td>
</tr>
<tr>
<td></td>
<td>• Shutdown—Device is not intercepting traffic.</td>
</tr>
<tr>
<td></td>
<td>• Not Shutdown—Device is intercepting traffic.</td>
</tr>
<tr>
<td></td>
<td>• Unknown—State is unknown (default).</td>
</tr>
<tr>
<td>Stable AC View</td>
<td>IP addresses of the ANCs in the stable view of this device. The stable</td>
</tr>
<tr>
<td></td>
<td>view is the view of the devices after the convergence period in which all</td>
</tr>
<tr>
<td></td>
<td>ANCs in the cluster have implicitly agreed on the view of all devices in the</td>
</tr>
<tr>
<td></td>
<td>cluster.</td>
</tr>
<tr>
<td>Stable SN View</td>
<td>IP addresses of the WNs in the stable view of this device.</td>
</tr>
<tr>
<td>Current AC View</td>
<td>IP addresses of the ANCs in the current view of this device. The current</td>
</tr>
<tr>
<td></td>
<td>view is the immediate view of the devices in the cluster. This could differ</td>
</tr>
<tr>
<td></td>
<td>from the stable view if a device was newly added.</td>
</tr>
<tr>
<td>Current SN View</td>
<td>IP addresses of the WNs in the current view of this device.</td>
</tr>
</tbody>
</table>

Table 3-57 describes the additional fields shown in the `show service-insertion service-context detail` command display. The AppNav Controller Group and AppNav Controller sections of this table also describe the fields shown in the `show service-insertion appnav-controller-group` command display. The AppNav Controller section of this table also describes the fields shown in the `show service-insertion appnav-controller` command display.

The Service Node Group and Service Node sections of this table also describe the fields shown in the `show service-insertion service-node-group` command display. The Service Node section of this table also describes the fields shown in the `show service-insertion service-node` command display.
### Table 3-57  Field Descriptions for the show service-insertion service-context detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Context</td>
<td>Service context name.</td>
</tr>
<tr>
<td>Service Context configured state</td>
<td>State of service context (enabled or disabled). If disabled, some output fields are not shown.</td>
</tr>
<tr>
<td>AppNav Controller Group</td>
<td>ANCG name.</td>
</tr>
<tr>
<td>Member AppNav Controller count</td>
<td>Number of ANCs in the ANCG.</td>
</tr>
<tr>
<td>Members</td>
<td>IP addresses of the member ANCs in the ANCG.</td>
</tr>
<tr>
<td>Member (removed from config) AppNav Controller count</td>
<td>Number of ANCs that have been recently removed from the ANCG. These appear until the cluster converges on agreement that these are removed.</td>
</tr>
<tr>
<td>Members (removed from config)</td>
<td>IP addresses of the member ANCs recently removed from the ANCG.</td>
</tr>
</tbody>
</table>

An AppNav Controller section appears for each ANC in the cluster.

<table>
<thead>
<tr>
<th>AppNav Controller ID</th>
<th>Identifier for the ANC.</th>
</tr>
</thead>
</table>
| Current status of AppNav Controller | Current status of communication to this ANC:  
  - Alive—This device can communicate with the ANC.  
  - Alive (Removed from config)—This device was recently removed from the configuration but can still communicate with the ANC.  
  - Dead—This device cannot communicate with the ANC.  
  - Inactive—This device was added to a full cluster that had recently removed an ANC. Until the removal process completes or the removed ANC stops responding, this device cannot join the cluster and remains in Inactive state. |
| Time current status was reached | Time current status was reached.                                           |
| Joining status of AppNav Controller | Current joining status of the ANC:  
  - Joining—The ANC is in the process of joining the cluster defined on the local ANC.  
  - Joined—The ANC has successfully joined the cluster defined on the local ANC. |
| Secondary IP address | IP address that the ANC is using as its source address when communicating with this ANC. |
| Cluster protocol ICIMP version | Cluster ICIMP protocol version running on this ANC.                      |
| Cluster protocol incarnation number | Internal information.                                                      |
### Table 3-57  Field Descriptions for the `show service-insertion service-context detail` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster protocol last sent sequence number</td>
<td>Internal information.</td>
</tr>
<tr>
<td>Cluster protocol last received sequence number</td>
<td>Internal information.</td>
</tr>
<tr>
<td>Current AC View of AppNav Controller</td>
<td>IP addresses of the member ANCs in the ANCG, as viewed by this ANC.</td>
</tr>
<tr>
<td>Current SN View of AppNav Controller</td>
<td>IP addresses of the member WNs in the ANCG, as viewed by this ANC.</td>
</tr>
<tr>
<td>Service Context</td>
<td>Service context name.</td>
</tr>
<tr>
<td>Service Context configured state</td>
<td>State of service context (enabled or disabled). If disabled, some output fields are not shown.</td>
</tr>
<tr>
<td>Service Node Group name</td>
<td>WNG name.</td>
</tr>
<tr>
<td>Service Node Group ID</td>
<td>Identifier for the WNG.</td>
</tr>
<tr>
<td>Member Service Node count</td>
<td>Number of WNs in the WNG.</td>
</tr>
<tr>
<td>Members</td>
<td>IP addresses of the member WNs in the WNG.</td>
</tr>
<tr>
<td>Service Node</td>
<td>IP address of the WN.</td>
</tr>
<tr>
<td>Service Node ID</td>
<td>Identifier for the WN.</td>
</tr>
<tr>
<td>Current status of Service Node</td>
<td>Current status of communication to this WN:</td>
</tr>
<tr>
<td></td>
<td>• Alive—This device can communicate with the WN.</td>
</tr>
<tr>
<td></td>
<td>• Dead—This device cannot communicate with the WN due to connectivity or not configured.</td>
</tr>
<tr>
<td></td>
<td>• Excluded—This device can communicate with the WN, but another ANC cannot communicate with the WN. New flows are not redirected to this WN by any ANC, but existing flows could still be redirected if the device had previously been Alive and receiving flows.</td>
</tr>
<tr>
<td>Time current status was reached</td>
<td>Time current status was reached.</td>
</tr>
<tr>
<td>Secondary IP address</td>
<td>IP address that the WN is using as its source address when communicating with this ANC.</td>
</tr>
<tr>
<td>Cluster protocol DMP version</td>
<td>Cluster ICIMP protocol version running on this WN.</td>
</tr>
<tr>
<td>Cluster protocol incarnation number</td>
<td>Internal information.</td>
</tr>
<tr>
<td>Cluster protocol last sent sequence number</td>
<td>Internal information.</td>
</tr>
</tbody>
</table>
Table 3-57  Field Descriptions for the show service-insertion service-context detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster protocol last received sequence number</td>
<td>Internal information.</td>
</tr>
<tr>
<td>Accelerator State (appears for each WN in the WNG)</td>
<td>Accl Application accelerator name.</td>
</tr>
<tr>
<td>State</td>
<td>Application accelerator state:</td>
</tr>
<tr>
<td></td>
<td>•  GREEN—Operating normally and accepting new flows.</td>
</tr>
<tr>
<td></td>
<td>•  YELLOW—Servicing existing flows but not accepting new flows due to overload, license removed, or policy engine timeout.</td>
</tr>
<tr>
<td></td>
<td>•  RED—Not running due to not configured, not licensed, or unresponsive.</td>
</tr>
<tr>
<td>For</td>
<td>Amount of time the application accelerator has been in this state.</td>
</tr>
<tr>
<td>SNG Availability per Accelerator (for the whole WNG)</td>
<td>Accl Application accelerator name.</td>
</tr>
<tr>
<td>Available</td>
<td>Availability status:</td>
</tr>
<tr>
<td></td>
<td>•  Yes—In GREEN state on at least one WN in the WNG.</td>
</tr>
<tr>
<td></td>
<td>•  No—In YELLOW or RED state on all WNs in the WNG.</td>
</tr>
<tr>
<td>Since</td>
<td>Amount of time the application accelerator has been available.</td>
</tr>
</tbody>
</table>

Related Commands

(config) service-insertion

show statistics service-insertion
show service-policy

To display information about the optimization or AppNav policies, use the `show service-policy` EXEC command.

```plaintext
show service-policy type { appnav [dynamic [detail | server-ip ip_address | server-port port]]
 epm | status } |
waas { application-name | dynamic [app-id { app-id | mapi | ms-ad-rep | ms-exch-nspi |
ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon] | detail | dm-index index | server-ip ip_address | server-port port] | epm | status }}
```

### Syntax Description

- **appnav**: Displays AppNav policy information.
- **dynamic**: Displays policy information for dynamic matched flows.
- **detail**: (Optional) Displays detailed policy information for dynamic matched flows.
- **server-ip ip_address**: (Optional) Displays the policy information for dynamic matched flows for the server with the specified IP address.
- **server-port port**: (Optional) Displays the policy information for dynamic matched flows for the server with the specified port number (1–65535).
- **epm**: Displays policy information for EPM flows.
- **status**: Displays how many policy resources are in use and available.
- **waas**: Displays WAAS optimization policy information.
- **application-name**: Displays the configured application names on the device.
- **app-id app-id**: Displays the policy information for dynamic matched flows for the application with the specified application number (0-1023) or the specified traffic type.
- **mapi**: Microsoft Exchange MAPI aka Exchange Server Store EMSMDB.
- **ms-ad-rep**: Microsoft Active Directory Replication (drsuapi).
- **ms-exch-nspi**: Microsoft Active Directory Name Service Provider (NSP).
- **ms-frs**: Microsoft File Replication Services (FRS).
- **ms-frs-api**: Microsoft File Replication API.
- **ms-rfr**: Microsoft Exchange Directory RFR Interface.
- **ms-sql**: Microsoft SQL.
- **msn-messenger**: Microsoft Messenger Service.
- **netlogon**: Netlogon RPC.
- **dm-index index**: Displays the policy information for dynamic matched flows for the application with the specified DM index.

### Defaults
No default behavior or values.

### Command Modes
EXEC
**Device Modes**

application-accelerator
apnav-controller

**Examples**

Table 3-58 describes the fields shown in the `show service-policy type appnav status` command display.

### Table 3-58 Field Descriptions for the show service-policy type appnav status Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy Maps</td>
<td>Number of total allowed, used, and available AppNav policy maps.</td>
</tr>
<tr>
<td>Class Maps</td>
<td>Number of total allowed, used, and available AppNav class maps.</td>
</tr>
<tr>
<td>Matches</td>
<td>Number of total allowed, used, and available AppNav match conditions.</td>
</tr>
<tr>
<td>TCAM Entries in use</td>
<td>Number of TCAM entries in use.</td>
</tr>
<tr>
<td>TCAM Entries available</td>
<td>Number of TCAM entries available.</td>
</tr>
</tbody>
</table>

Table 3-59 describes the fields shown in the `show service-policy type waas status` command display.

### Table 3-59 Field Descriptions for the show service-policy type waas status Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application names</td>
<td>Number of total allowed, used, and available WAAS application names.</td>
</tr>
<tr>
<td>Class Maps</td>
<td>Number of total allowed, used, and available WAAS class maps.</td>
</tr>
<tr>
<td>Matches</td>
<td>Number of total allowed, used, and available WAAS match conditions.</td>
</tr>
<tr>
<td>Optimization policy map</td>
<td>Name of optimization policy map in use.</td>
</tr>
</tbody>
</table>

Table 3-60 describes the fields shown in the `show service-policy type appnav epm` command display.

### Table 3-60 Field Descriptions for the show service-policy type appnav epm Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>An EPM-related application name.</td>
</tr>
<tr>
<td>App-Id</td>
<td>Application ID.</td>
</tr>
<tr>
<td>Ref Count</td>
<td>Number of times this application is referenced in the policy map.</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of hits on this application since the device started up.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show service-policy type appnav epm` command:

```
ANC# show service-policy type appnav epm
Keyword App-Id Ref Count Hits
mapi 78 1 0
```

Table 3-61 describes the fields shown in the `show service-policy type waas application-name` command display.
Chapter 3      CLI Commands

Table 3-61  

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of application names</td>
<td>Number of defined WAAS application names.</td>
</tr>
<tr>
<td>#</td>
<td>Number of a defined application.</td>
</tr>
<tr>
<td>Application Name</td>
<td>Name of a defined application.</td>
</tr>
<tr>
<td>Occurrences</td>
<td>Number of occurrences of the application in the policy map.</td>
</tr>
</tbody>
</table>

Table 3-62 describes the fields shown in the `show service-policy type waas epm` command display.

Table 3-62  

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyword</td>
<td>An EPM-related application name.</td>
</tr>
<tr>
<td>App-Id</td>
<td>Application ID.</td>
</tr>
<tr>
<td>UUID</td>
<td>UUID associated with this traffic type.</td>
</tr>
<tr>
<td>Ref Count</td>
<td>Number of times this application is referenced in the policy map.</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of hits on this application since the device started up.</td>
</tr>
<tr>
<td>SC Add Count</td>
<td>Number of ???.</td>
</tr>
</tbody>
</table>

The following is sample output from the `show service-policy type waas epm` command:

ANC# `show service-policy type waas epm`

<table>
<thead>
<tr>
<th>Keyword</th>
<th>App-Id</th>
<th>UUID</th>
</tr>
</thead>
<tbody>
<tr>
<td>mapi</td>
<td>78</td>
<td>a4f1db00ca471067b31f00dd010662da</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ms-ad-rep</td>
<td>1252</td>
<td>e35142354b0611d1ab0400c04fc2dcd2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ms-exch-nspi</td>
<td>1249</td>
<td>f5cc5a184264101a8c5908002b2f8426</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ms-rfr</td>
<td>1253</td>
<td>1544f5e0613c11d193df00c04fd7bd09</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ms-frs</td>
<td>1250</td>
<td>f5cc59b44264101a8c5908002b2f8426</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ms-sql</td>
<td>4098</td>
<td>3f99b9004d87101b99b7aa0004007f07</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Related Commands  

(config) service-insertion

3-314  
Cisco Wide Area Application Services Command Reference

OL-30046-01
show services

To display services-related information for a WAAS device, use the show services EXEC command.

    show services {ports [port-num] | summary}

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ports</td>
<td>Displays services by port number.</td>
</tr>
<tr>
<td>port-num</td>
<td>(Optional) Up to 8 port numbers (1–65535).</td>
</tr>
<tr>
<td>summary</td>
<td>Displays the services summary.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Examples

The following is sample output from the show services command. It displays a summary of the services.

    WAE# show services summary
    Service          Ports
    ------------------------------
    CMS              1100  5256
    NLM              4045
    WAFO             1099
    emdb             5432
    MOUNT            3058
    MgmtAgent        5252
    WAFO_tunnel      4050
    CMS_db_vacuum    5257
show smb-conf

To view the current values of the Samba configuration file, `smb.conf`, on a WAAS device, use the `show smb-conf` EXEC command.

```
show smb-conf
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The `show smb-conf` command displays the global, print$, and printers parameters values of the `smb.conf` file for troubleshooting purposes. For a description of these parameters and their values, see the `(config)` `smb-conf` command.

**Examples**

The following is sample output from the `show smb-conf` command. It displays all of the parameter values for the current configuration.

```
WAE# show smb-conf

Current smb-conf configurations -->

smb-conf section "global" name "ldap ssl" value "start_tls"
smb-conf section "printers" name "printer admin" value "root"

Output of current smb.conf file on disk -->

==
File automatically generated

[global]
idmap uid = 70000-200000
idmap gid = 70000-200000
winbind enum users = no
winbind enum groups = no
winbind cache time = 10
winbind use default domain = yes
printcap name = cups
load printers = yes
printing = cups
```
cups options = "raw"
force printername = yes
lpq cache time = 0
log file = /local/local1/errorlog/samba.log
max log size = 50
socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
smb ports = 50139
local master = no
domain master = no
preferred master = no
dns proxy = no
template homedir = /local/local1/
template shell = /admin-shell
ldap ssl = start_tls
comment = Comment:
netbios name = FILEENGINE
realm = ABC
wins server = 10.10.10.1
password server = 10.10.10.10
security = domain

[print$
path = /state/samba/printers
guest ok = yes
browseable = yes
read only = yes
write list = root

[printers]
path = /local/local1/spool/samba
browseable = no
guest ok = yes
writable = no
printable = yes
printer admin = root

==============================================

Related Commands

(config) smb-conf
windows-domain
(config) windows-domain
show snmp

To check the status of SNMP communications for a WAAS device, use the **show snmp** EXEC command.

```
show snmp {alarm-history | engineID | event | group | stats | user}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm-history</td>
<td>Displays SNMP alarm history information.</td>
</tr>
<tr>
<td>engineID</td>
<td>Displays local SNMP engine identifier.</td>
</tr>
<tr>
<td>event</td>
<td>Displays events configured through the Event MIB. This keyword applies only to application-accelerator device mode.</td>
</tr>
<tr>
<td>group</td>
<td>Displays SNMP groups.</td>
</tr>
<tr>
<td>stats</td>
<td>Displays SNMP statistics.</td>
</tr>
<tr>
<td>user</td>
<td>Displays SNMP users.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The **show snmp alarm-history** command provides information on various SNMP variables and statistics on SNMP operations.

**Examples**

Table 3-63 describes the fields shown in the **show snmp alarm-history** command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Displays serial number of the listed alarms.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the alarm has been Raised (R) or Cleared (C).</td>
</tr>
<tr>
<td>Sev</td>
<td>Levels of alarm severity: Critical (Cr), Major (Ma), or Minor (Mi).</td>
</tr>
<tr>
<td>Alarm ID</td>
<td>Traps sent by a WAE contain numeric alarm IDs.</td>
</tr>
<tr>
<td>ModuleID</td>
<td>Traps sent by a WAE contain numeric module IDs. (See the table below to map module names to module IDs.)</td>
</tr>
<tr>
<td>Category</td>
<td>Traps sent by a WAE contain numeric category IDs. (See the table below to map category names to category IDs.)</td>
</tr>
<tr>
<td>Descr</td>
<td>Provides description of the WAAS software alarm and the application that generated the alarm.</td>
</tr>
</tbody>
</table>
Table 3-64 summarizes the mapping of module names to module IDs.

**Table 3-64  Summary of Module Names to ID Numbers**

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Module ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD_DATABASE</td>
<td>8000</td>
</tr>
<tr>
<td>NHM</td>
<td>1</td>
</tr>
<tr>
<td>NHM/NHM</td>
<td>2500</td>
</tr>
<tr>
<td>nodemgr</td>
<td>2000</td>
</tr>
<tr>
<td>standby</td>
<td>4000</td>
</tr>
<tr>
<td>sysmon</td>
<td>1000</td>
</tr>
<tr>
<td>UNICAST_DATA_RECEIVER</td>
<td>5000</td>
</tr>
<tr>
<td>UNICAST_DATA_SENDER</td>
<td>6000</td>
</tr>
</tbody>
</table>

Table 3-65 summarizes the mapping of category names to category IDs.

**Table 3-65  Summary of Category Names to ID Numbers**

<table>
<thead>
<tr>
<th>Category Name</th>
<th>Category ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>1</td>
</tr>
<tr>
<td>Service Quality</td>
<td>2</td>
</tr>
<tr>
<td>Processing Error</td>
<td>3</td>
</tr>
<tr>
<td>Equipment</td>
<td>4</td>
</tr>
<tr>
<td>Environment</td>
<td>5</td>
</tr>
<tr>
<td>Content</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3-66 describes the fields shown in the `show snmp engineID` command display.

**Table 3-66  Field Descriptions for the show snmp engineID Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local SNMP Engine ID</td>
<td>String that identifies the copy of SNMP on the local device.</td>
</tr>
</tbody>
</table>

Table 3-67 describes the fields shown in the `show snmp event` command display. The `show snmp event` command displays information about the SNMP events that were set using the `snmp trigger` command:

**Table 3-67  Field Descriptions for the show snmp event Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt Triggers</td>
<td>Output for management triggers, which are numbered 1, 2, 3, and so on in the output.</td>
</tr>
<tr>
<td>(1): Owner:</td>
<td>Name of the person who configured the trigger. “CLI” is the default owner; the system has a default trigger configured.</td>
</tr>
</tbody>
</table>
Table 3-67  Field Descriptions for the show snmp event Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1):</td>
<td>Name for the trigger. This name is locally-unique and administratively assigned. For example, this field might contain the “isValid” trigger name. Numbering indicates that this is the first management trigger listed in the show output.</td>
</tr>
<tr>
<td>Comment:</td>
<td>Description of the trigger function and use. For example: License is not valid.</td>
</tr>
<tr>
<td>Sample:</td>
<td>Basis on which the test sample is being evaluated. For example: Abs (Absolute) or Delta.</td>
</tr>
<tr>
<td>Freq:</td>
<td>Frequency. Number of seconds to wait between trigger samplings. To encourage consistency in sampling, the interval is measured from the beginning of one check to the beginning of the next and the timer is restarted immediately when it expires, not when the check completes.</td>
</tr>
</tbody>
</table>
| Test:          | Type of trigger test to perform based on the SNMP trigger configured. The Test field may contain the following types of tests:  
                      |  Absent—Absent existence of a test  
                      |  Boolean—Boolean value test  
                      |  Equal—Equality threshold test  
                      |  Falling—Falling threshold test  
                      |  Greater-than—Greater-than threshold test  
                      |  Less-than—Less-than threshold test  
                      |  On-change—Changed existence test  
                      |  Present—Present present test  
                      |  Rising—Rising threshold test  
| Wildcard       | True or False.                                                              |
| ObjectOwner:   | Name of the object owner who created the trigger using the snmp trigger create global configuration command or by using an SNMP interface. “CLI” is the default owner. |
| Object:        | String identifying the object.                                             |
| Boolean Entry: |                                                                               |
| Value:         | Object identifier of the MIB object to sample to see whether the trigger should fire. |
Table 3-67  Field Descriptions for the show snmp event Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Cmp:  | Comparison. Type of boolean comparison to perform. The numbers 1–6 correspond to these Boolean comparisons:
|       | unequal (1)  |
|       | equal (2)    |
|       | less (3)     |
|       | lessOrEqual (4) |
|       | greater (5)  |
|       | greaterOrEqual (6) |
| Start: | Starting value for which this instance will be triggered. |
| ObjOwn: | Object owner. |
| Obj: | Object. |
| EveOwn: | Event owner. |
| Eve: | Event. Type of SNMP event. For example: CLI_EVENT. |
| Delta Value Table: | Table containing trigger information for delta sampling. |
| (0): | |
| Thresh: | Threshold value to check against if the trigger type is threshold. |
| Exis: | Type of existence test to perform. Values are 1 or 0. |
| Read: | Indicates whether the MIB instance has been queried or not. |
| OID: | Object ID (Same as MIB instance). |
| val: | Value ID. |
| (2): | MIB instance on which the trigger is configured. This is the second management trigger listed in the show output. The fields are repeated for each instance listed in this show command. |

Table 3-68 describes the fields shown in the show snmp group command display.

Table 3-68  Field Descriptions for the show snmp group Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupname</td>
<td>Name of the SNMP group, or collection of users who have a common access policy.</td>
</tr>
<tr>
<td>security_model</td>
<td>Security model used by the group (either v1, v2c, or v3).</td>
</tr>
<tr>
<td>readview</td>
<td>String identifying the read view of the group.</td>
</tr>
<tr>
<td>writeview</td>
<td>String identifying the write view of the group.</td>
</tr>
<tr>
<td>notifyview</td>
<td>string identifying the notify view of the group.</td>
</tr>
</tbody>
</table>

Table 3-69 describes the fields shown in the show snmp stats command display.
Table 3-69  **Field Descriptions for the show snmp stats Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP packets input</td>
<td>Total number of SNMP packets input.</td>
</tr>
<tr>
<td>Bad SNMP version errors</td>
<td>Number of packets with an invalid SNMP version.</td>
</tr>
<tr>
<td>Unknown community name</td>
<td>Number of SNMP packets with an unknown community name.</td>
</tr>
<tr>
<td>Illegal operation for</td>
<td>Number of packets requesting an operation not allowed for that</td>
</tr>
<tr>
<td>community name supplied</td>
<td>community.</td>
</tr>
<tr>
<td>Encoding errors</td>
<td>Number of SNMP packets that were improperly encoded.</td>
</tr>
<tr>
<td>Number of requested variables</td>
<td>Number of variables requested by SNMP managers.</td>
</tr>
<tr>
<td>Number of altered variables</td>
<td>Number of variables altered by SNMP managers.</td>
</tr>
<tr>
<td>Get-request PDUs</td>
<td>Number of GET requests received.</td>
</tr>
<tr>
<td>Get-next PDUs</td>
<td>Number of GET-NEXT requests received.</td>
</tr>
<tr>
<td>Set-request PDUs</td>
<td>Number of SET requests received.</td>
</tr>
<tr>
<td>SNMP packets output</td>
<td>Total number of SNMP packets sent by the router.</td>
</tr>
<tr>
<td>Too big errors</td>
<td>Number of SNMP packets that were larger than the maximum packet size.</td>
</tr>
<tr>
<td>Maximum packet size</td>
<td>Maximum size of SNMP packets.</td>
</tr>
<tr>
<td>No such name errors</td>
<td>Number of SNMP requests that specified a MIB object that does not exist.</td>
</tr>
<tr>
<td>Bad values errors</td>
<td>Number of SNMP SET requests that specified an invalid value for a MIB object.</td>
</tr>
<tr>
<td>General errors</td>
<td>Number of SNMP SET requests that failed because of some other error. (It was not a No such name error, Bad values error, or any of the other specific errors.)</td>
</tr>
<tr>
<td>Response PDUs</td>
<td>Number of responses sent in reply to requests.</td>
</tr>
<tr>
<td>Trap PDUs</td>
<td>Number of SNMP traps sent.</td>
</tr>
</tbody>
</table>

Table 3-70 describes the fields shown in the **show snmp user** command display.

**Table 3-70  Field Descriptions for the show snmp user Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>String identifying the name of the SNMP user.</td>
</tr>
<tr>
<td>Engine ID</td>
<td>String identifying the name of the copy of SNMP on the device.</td>
</tr>
<tr>
<td>Group Name</td>
<td>Name of the SNMP group, or collection of users who have a common access policy.</td>
</tr>
</tbody>
</table>

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
snmp trigger
show ssh

To display the status and configuration information of the Secure Shell (SSH) service for a WAAS device, use the `show ssh` EXEC command.

```plaintext
show ssh
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-71 describes the fields shown in the `show ssh` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH server supports the SSH version 2 protocol only.</td>
<td>Protocol support statement.</td>
</tr>
<tr>
<td>SSH service is not enabled.</td>
<td>Status of whether the SSH service is enabled or not enabled.</td>
</tr>
<tr>
<td>Currently there are no active SSH sessions.</td>
<td>Number of active SSH sessions.</td>
</tr>
<tr>
<td>Number of successful SSH sessions since last reboot:</td>
<td>Number of successful SSH sessions since last reboot.</td>
</tr>
<tr>
<td>Number of failed SSH sessions since last reboot:</td>
<td>Number of failed SSH sessions since last reboot.</td>
</tr>
<tr>
<td>SSH key has not been generated or previous key has been removed.</td>
<td>Status of the SSH key.</td>
</tr>
<tr>
<td>SSH login grace time value is 300 seconds.</td>
<td>Time allowed for login.</td>
</tr>
<tr>
<td>Allow 3 password guess(es).</td>
<td>Number of password guesses allowed.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `(config) ssh-key-generate`
- `(config) sshd`
show startup-config

To display the startup configuration for a WAAS device, use the `show startup-config` EXEC command.

```
show startup-config
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use this EXEC command to display the configuration used during an initial bootup, stored in NVRAM. Note the difference between the output of this command versus the `show running-config` command.

**Examples**

The following is sample output from the `show startup-config` command. It displays the configuration saved for use on startup of the WAAS device.

```
WAE# show startup-config
! WAAS version 4.0.0
! device mode central-manager
!
! hostname Edge-WAE1
!
! exec-timeout 60
!
! primary-interface GigabitEthernet 1/0
!
! interface GigabitEthernet 1/0
 ip address 10.10.10.33 255.255.255.0
 exit
interface GigabitEthernet 2/0
 shutdown
...
```
show startup-config

Related Commands:
- configure
- copy running-config
- show running-config
# show statistics accelerator

To display application accelerator general statistics for a WAAS device, use the `show statistics accelerator` EXEC command.

```
show statistics accelerator cifs [detail | expert mbean attrib]
show statistics accelerator detail
show statistics accelerator epm [detail]
show statistics accelerator generic [connections {cifs | epm | http | ica | mapi | nfs | smb | ssl | video}| detail]
show statistics accelerator http [debug | detail | https]
show statistics accelerator ica [detail]
show statistics accelerator mapi [detail]
show statistics accelerator nfs [detail]
show statistics accelerator smb [debug | detail | inc Print | request]
show statistics accelerator ssl [detail | payload {http | other}]
show statistics accelerator video [detail]
show statistics accelerator wansecure [detail]
```

## Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cifs</td>
<td>Displays statistics for the CIFS application accelerator.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed statistics.</td>
</tr>
<tr>
<td>expert mbean</td>
<td>(Optional) Displays CIFS accelerator expert mode attributes. Mbean name and Mbean attribute name.</td>
</tr>
<tr>
<td>epm</td>
<td>Displays statistics for the EPM application accelerator.</td>
</tr>
<tr>
<td>generic</td>
<td>Displays statistics for the generic application accelerator.</td>
</tr>
<tr>
<td>connections</td>
<td>Displays generic connection statistics.</td>
</tr>
<tr>
<td>http</td>
<td>Displays statistics for the HTTP application accelerator.</td>
</tr>
<tr>
<td>ica</td>
<td>Displays statistics for the ICA application accelerator.</td>
</tr>
<tr>
<td>mapi</td>
<td>Displays statistics for the MAPI application accelerator.</td>
</tr>
<tr>
<td>nfs</td>
<td>Displays statistics for the NFS application accelerator.</td>
</tr>
<tr>
<td>smb</td>
<td>Displays statistics for the SMB application accelerator.</td>
</tr>
<tr>
<td>request</td>
<td>Displays SMB application accelerator statistics on requests.</td>
</tr>
<tr>
<td>ssl</td>
<td>Displays statistics for the SSL application accelerator.</td>
</tr>
<tr>
<td>video</td>
<td>Displays statistics for the video application accelerator.</td>
</tr>
<tr>
<td>wansecure</td>
<td>Displays statistics for the WAN secure application accelerator.</td>
</tr>
<tr>
<td>debug</td>
<td>(Optional) Displays debug statistics.</td>
</tr>
<tr>
<td>https</td>
<td>Displays statistics for the HTTPS application accelerator.</td>
</tr>
</tbody>
</table>
show statistics accelerator

**payload** (Optional) Displays the SSL payload type.

**other** Displays the unidentified protocol flows within SSL.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
appnav-controller

**Usage Guidelines**
Using the `show statistics accelerator` command with no options displays a summary of the statistical information for all application accelerators. To obtain detailed statistics for an application accelerator, use the command options to filter the results.

**Examples**
Table 3-72 describes the fields shown in the `show statistics accelerator cifs` command display.

**Table 3-72 Field Descriptions for the show statistics accelerator cifs detail Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Accelerator was started</td>
<td>Time that the accelerator was started.</td>
</tr>
<tr>
<td>Time Statistics were Last</td>
<td>Time that the statistics were last reset or cleared.</td>
</tr>
<tr>
<td>Reset/Cleared</td>
<td></td>
</tr>
<tr>
<td>Total Handled Connections</td>
<td>Connections handled since the accelerator was started or its statistics last reset.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Connections previously and currently optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Pushed Down Connections</td>
<td>Connections initially accepted by accelerator, but later handed off to generic optimization with no acceleration. Occurs if the CIFS server requires a digital signature.</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Connections dropped for reasons other than client/server socket errors or close.</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Current active connections.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Current connections pending to be accepted.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum active connections handled simultaneously.</td>
</tr>
<tr>
<td>Local response number</td>
<td>Number of local CIFS command responses sent to the client without waiting for a response from the peer WAE.</td>
</tr>
<tr>
<td>Average local response time</td>
<td>Average time used for local responses, in microseconds.</td>
</tr>
<tr>
<td>Remote response number</td>
<td>Number of CIFS commands forwarded to the CIFS server for a response.</td>
</tr>
</tbody>
</table>
Table 3-72  Field Descriptions for the show statistics accelerator cifs detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average remote response time</td>
<td>Average time used for remote responses, in microseconds.</td>
</tr>
<tr>
<td>Policy Engine Statistics</td>
<td></td>
</tr>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are:</td>
</tr>
<tr>
<td></td>
<td>• WAE was rebooted</td>
</tr>
<tr>
<td></td>
<td>• Configuration change with the accelerator application enabled</td>
</tr>
<tr>
<td></td>
<td>• Restart of the accelerator application by the Node Manager</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that had a configured policy that specified the use of the accelerator application.</td>
</tr>
<tr>
<td>Updated Released</td>
<td>Number of hits that were released during auto-discovery and did not make use of the accelerator application.</td>
</tr>
<tr>
<td>Active Connections</td>
<td>Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing auto-discovery.</td>
</tr>
<tr>
<td>Completed Connections</td>
<td>Number of hits that have made use of the accelerator application and have completed.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>
Table 3-72  Field Descriptions for the show statistics accelerator cifs detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected Connection Counts Due To: (Total:)</td>
<td>- Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:</td>
</tr>
<tr>
<td></td>
<td>- Not registered</td>
</tr>
<tr>
<td></td>
<td>- Keepalive timeout</td>
</tr>
<tr>
<td></td>
<td>- No license</td>
</tr>
<tr>
<td></td>
<td>- Load level not within range</td>
</tr>
<tr>
<td></td>
<td>- Connection limit exceeded</td>
</tr>
<tr>
<td></td>
<td>- Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)</td>
</tr>
<tr>
<td></td>
<td>- Minimum TFO not available</td>
</tr>
<tr>
<td></td>
<td>- Resource manager (minimum resources not available)</td>
</tr>
<tr>
<td></td>
<td>- Global config optimization disabled</td>
</tr>
<tr>
<td></td>
<td>- TFO limit exceeded (systemwide connection limit reached)</td>
</tr>
<tr>
<td></td>
<td>- Server-side invoked</td>
</tr>
<tr>
<td></td>
<td>- DM deny (Policy Engine dynamic match deny rule matched)</td>
</tr>
<tr>
<td></td>
<td>- No DM accept was matched</td>
</tr>
</tbody>
</table>

Auto-Discovery Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections queued for accept</td>
<td>Number of connections added to the accelerator connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to the accelerator not being present, or a queue overflow.</td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include the accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>

Table 3-73 describes the fields shown in the show statistics accelerator epm detail command display.

Table 3-73  Field Descriptions for the show statistics accelerator epm Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global TCP AO connection statistics</td>
<td>Time that the accelerator was started.</td>
</tr>
</tbody>
</table>
Table 3-73  Field Descriptions for the show statistics accelerator epm Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Statistics were Last Reset/Cleared</td>
<td>Time that the statistics were last reset or cleared.</td>
</tr>
<tr>
<td>Total Handled Connections</td>
<td>Total connections handled.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Total optimized connections.</td>
</tr>
<tr>
<td>Total Pushed Down Connections</td>
<td>Total pushed down connections.</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Total dropped connections.</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Current active connections.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Current pending connections.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum active connections.</td>
</tr>
<tr>
<td>Total Requests</td>
<td>Total requests.</td>
</tr>
<tr>
<td>Total Requests Successfully Parsed</td>
<td>Total requests successfully parsed.</td>
</tr>
<tr>
<td>Total Request Errors</td>
<td>Total request errors.</td>
</tr>
<tr>
<td>Total Responses</td>
<td>Total responses.</td>
</tr>
<tr>
<td>Total Responses Successfully Parsed</td>
<td>Total responses successfully parsed.</td>
</tr>
<tr>
<td>Total Service-unavailable Responses</td>
<td>Total service-unavailable responses.</td>
</tr>
<tr>
<td>Total Requests for UUID not in Policy Engine Map</td>
<td>Total requests for UUID not in policy engine map.</td>
</tr>
<tr>
<td>Total Response Errors</td>
<td>Total response errors.</td>
</tr>
</tbody>
</table>

Table 3-73 describes the fields shown in the show statistics accelerator generic connections detail command display. This command shows the aggregated statistics for all connections.

Table 3-74  Field Descriptions for the show statistics accelerator generic Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time elapsed since &quot;clear statistics&quot;</td>
<td>Time that has elapsed since the statistics were last reset.</td>
</tr>
<tr>
<td>Time Accelerator was started</td>
<td>Local time accelerator was started or restarted.</td>
</tr>
<tr>
<td>Time Statistics were Last Reset/Cleared</td>
<td>Connections handled since the accelerator was started or its statistics last reset. Incremented when a connection is accepted or reused. Never decremented. This value will always be greater than or equal to the Current Active Connections statistic. Includes all connections accepted by the accelerator even if later pushed down to generic optimization, dropped, or handed-off to another accelerator. Total Handled Connections = Total Optimized Connections + Total Pushed Down Connections + Total Dropped Connections.</td>
</tr>
</tbody>
</table>
### Table 3-74 Field Descriptions for the `show statistics accelerator generic` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Optimized Connections</td>
<td>Connections previously and currently optimized by the accelerator. This includes: Current Active Connections + Total Fast Connections + Fast connections initiated by peer.</td>
</tr>
<tr>
<td>Total Connections Handed-off withCompression Policies Unchanged</td>
<td>Connections initially accepted by accelerator, but later handed off to generic optimization without policy changes so the current negotiated policies for compression (DRE/LZ) will be used.</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Connections dropped for any reason other than client/server socket errors or close (for instance, out of resources).</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Number of WAN side connections currently established and either in use or free for fast connection use. WAN side connections currently established and in use can be calculated as follows: Current Active Connections - Total Active Connections Free For Fast Connection Use Not cleared using <code>clear statistics accelerator</code> command.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of SYN requests queued waiting for the accelerator to accept.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Highest number of active connections since accelerator was last started/restarted. Not cleared using the <code>clear statistics accelerator</code> command.</td>
</tr>
</tbody>
</table>

**Global Generic AO Connection Statistics**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of connections handled</td>
<td>Connections handled since the accelerator was started or its statistics last reset. Incremented when a connection is accepted or reused. Never decremented. This value will always be greater than or equal to the Current Active Connections statistic. Includes all connections accepted by the accelerator even if later pushed down to generic optimization, dropped, or handed-off to another accelerator. Total Handled Connections = Total Optimized Connections + Total Pushed Down Connections + Total Dropped Connections.</td>
</tr>
<tr>
<td>Total number of active connections</td>
<td>Total number of hits that represent either active connections using the accelerator application.</td>
</tr>
<tr>
<td>Total number of bytes transferred from client</td>
<td>Total number of bytes transferred from the client side.</td>
</tr>
<tr>
<td>Total number of bytes transferred from server</td>
<td>Total number of bytes transferred from the server side.</td>
</tr>
</tbody>
</table>

**Policy Engine Statistics**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
</tbody>
</table>
### Table 3-74  Field Descriptions for the show statistics accelerator generic Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
</tbody>
</table>
| Last registration occurred | Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are as follows:  
  - WAE was rebooted  
  - Configuration change with the accelerator application enabled  
  - Restart of the accelerator application by the Node Manager |
| Hits                       | Number of connections that had a configured policy that specified the use of the accelerator application. |
| Updated Released           | Number of hits that were released during Auto-Discovery and did not make use of the accelerator application. |
| Active Connections         | Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery. |
| Completed Connections      | Number of hits that have made use of the accelerator application and have completed. |
Table 3-74  Field Descriptions for the show statistics accelerator generic Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>

Rejected Connection Counts Due To: (Total:)

- Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:
  - Not registered
  - Keepalive timeout
  - No license
  - Load level not within range
  - Connection limit exceeded
  - Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)
  - Minimum TFO not available
  - Resource manager (minimum resources not available)
  - Global config optimization disabled
  - TFO limit exceeded (systemwide connection limit reached)
  - Server-side invoked
  - DM deny (Policy Engine dynamic match deny rule matched)
  - No DM accept was matched

Table 3-75 describes the fields shown in the `show statistics accelerator http detail` command display.

Table 3-75  Field Descriptions—show statistics accelerator http detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Accelerator was started</td>
<td>Local time accelerator was started or restarted.</td>
</tr>
<tr>
<td>Time Statistics were Last Reset/Cleared</td>
<td>Local time accelerator was last started or restarted, or the `clear statistics accelerator [http</td>
</tr>
</tbody>
</table>
**Table 3-75**  Field Descriptions—show statistics accelerator http detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Handled Connections</td>
<td>Connections handled since the accelerator was started or its statistics last reset. Incremented when a connection is accepted or reused. Never decremented.</td>
</tr>
<tr>
<td></td>
<td>This value will always be greater than or equal to the Current Active Connections statistic. Includes all connections accepted by the accelerator even if later pushed down to generic optimization, dropped, or handed-off to another accelerator.</td>
</tr>
<tr>
<td></td>
<td>Total Handled Connections = Total Optimized Connections + Total Pushed Down Connections + Total Dropped Connections.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Connections previously and currently optimized by the HTTP Accelerator. This includes: Current Active Connections + Total Fast Connections + Fast connections initiated by peer.</td>
</tr>
<tr>
<td>Total Connections Handed-off with</td>
<td>Connections initially accepted by accelerator, but later handed off to generic optimization without policy changes so the current negotiated policies for compression (DRE/LZ) will be used.</td>
</tr>
<tr>
<td>Compression Policies Unchanged</td>
<td></td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Connections dropped for any reason other than client/server socket errors or close (for instance, out of resources).</td>
</tr>
<tr>
<td>Current Active Connections.</td>
<td>Number of WAN side connections currently established and either in use or free for fast connection use.</td>
</tr>
<tr>
<td></td>
<td>WAN side connections currently established and in use can be calculated as follows: Current Active Connections - Total Active Connections Free For Fast Connection Use Not cleared using clear statistics accelerator [http</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of SYN requests queued waiting for for accelerator to accept.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Highest number of active connections since accelerator was last started/restarted. Not cleared using the clear statistics accelerator [http</td>
</tr>
<tr>
<td>Total Time Saved (ms)</td>
<td>Total time saved in milliseconds. Incremented on client side WAE by 1 RTT whenever an idle fast connection is reused instead of establishing a new WAN connection.</td>
</tr>
<tr>
<td>Current Active Connections Free for Fast</td>
<td>Number of Current Active Connections that are idle and available for reuse as a fast connection. Incremented when an in-use active connection becomes idle and is available for reuse as a fast connection.</td>
</tr>
<tr>
<td>Connection Use</td>
<td>Decremented when an available idle active connection is reused or its idle timeout (5 secs) is reached. Not cleared using the clear statistics accelerator [http</td>
</tr>
</tbody>
</table>
### Table 3-75  Field Descriptions—show statistics accelerator http detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Connections Handed-off</td>
<td>Total Pushed Down Connections + Total Connections Handed-off with Compression Policies Disabled.</td>
</tr>
<tr>
<td>Total Connections Handed-off with Compression Policies Disabled</td>
<td>Total number of connections handed off to generic optimization with compression policies disabled. This statistic includes handoffs for SSL CONNECT requests received by the HTTP Accelerator.</td>
</tr>
<tr>
<td>Total Connections Handed-off to SSL</td>
<td>Total number of connections handed off to the SSL accelerator as a result of SSL CONNECT requests received by the HTTP Accelerator.</td>
</tr>
<tr>
<td>Total Connection Hand-off Failures</td>
<td>Total number of connections that were attempted to be handed off but the hand off failed.</td>
</tr>
<tr>
<td>Total Fast Connection Successes</td>
<td>Total number of times a client side idle active WAN connection was able to be reused instead of establishing a new WAN connection.</td>
</tr>
<tr>
<td>Total Fast Connection Failures</td>
<td>Total number of times a client side idle active WAN connection was attempted to be reused, but the reuse failed.</td>
</tr>
<tr>
<td>Maximum Fast Connections on a Single Connection</td>
<td>Maximum number of times a single connection was reused. This is the “best case” of number of reuses on a single connection. Limited to be less than maximum session reuse count (currently defined as 100 - an arbitrary max).</td>
</tr>
<tr>
<td>Total CONNECT Requests with Incomplete Message</td>
<td>Total number of SSL CONNECT requests with an incomplete message.</td>
</tr>
<tr>
<td>Percentage of connection time saved</td>
<td>((\text{Total Time Saved} / (\text{Total Time Saved} + \text{Total Round Trip Time For All Connections})) \times 100)</td>
</tr>
<tr>
<td>Total Round Trip Time for All Connections (ms)</td>
<td>Total RTT for all WAN connections that have been established.</td>
</tr>
<tr>
<td>Total Fast Connections Initiated by Peer</td>
<td>Total number of times the server side WAN connection was a fast connection initiated by the client side peer. This statistic should match the Total Fast Connections on the peer WAE.</td>
</tr>
<tr>
<td>Total SYN Timeouts</td>
<td>Total number of SYN timeouts because the HTTP accelerator was temporarily busy.</td>
</tr>
<tr>
<td>Total Time for Metadata Cache Miss (ms)</td>
<td>Total time for metadata cache misses, in milliseonds.</td>
</tr>
<tr>
<td>RTT saved by Redirect Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving redirect (301) responses, in milliseconds.</td>
</tr>
<tr>
<td>RTT saved by Authorization Redirect Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving authentication required (401) responses, in milliseconds.</td>
</tr>
<tr>
<td>RTT saved by Content Refresh Check Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving conditional (304) responses, in milliseconds.</td>
</tr>
<tr>
<td>Total Time Saved by Fast Connection Use (ms)</td>
<td>Total time saved by fast connection reuse, in milliseconds.</td>
</tr>
</tbody>
</table>
### Table 3-75  Field Descriptions—show statistics accelerator http detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Locally Served Redirect Responses</td>
<td>Number of locally served redirect (301) responses.</td>
</tr>
<tr>
<td>Total Locally Served Unauthorized Responses</td>
<td>Number of locally served authentication required (401) responses.</td>
</tr>
<tr>
<td>Total Locally Served Conditional Responses</td>
<td>Number of locally served conditional (304) responses.</td>
</tr>
<tr>
<td>Total Remotely Served Redirect Responses</td>
<td>Number of remotely served redirect (301) responses (cache misses).</td>
</tr>
<tr>
<td>Total Remotely Served Unauthorized Responses</td>
<td>Number of remotely served authentication required (401) responses (cache misses).</td>
</tr>
<tr>
<td>Total Remotely Served Conditional Responses</td>
<td>Number of remotely served conditional (304) responses (cache misses).</td>
</tr>
<tr>
<td>Total Requests with URL Longer than 255 Characters</td>
<td>Number of requests not cached because the URL is longer than 255 characters.</td>
</tr>
<tr>
<td>Total Requests with HTTP Pipelining</td>
<td>Number of requests not cached due to HTTP pipelining.</td>
</tr>
<tr>
<td>Total Transactions Handled</td>
<td>Number of HTTP transactions handled.</td>
</tr>
<tr>
<td>Total Server Compression Suppression</td>
<td>Number of times server compression was suppressed.</td>
</tr>
<tr>
<td>Total Requests Requiring Server Content-Revalidation</td>
<td>Number of requests that required content to be revalidated with the origin server, as specified by a Cache-Control header.</td>
</tr>
<tr>
<td>Total Responses not to be Cached</td>
<td>Number of 200, 301, 304, and 401 responses not to be cached, as specified by a Cache-Control header.</td>
</tr>
<tr>
<td>Total Connections Expecting Authentication</td>
<td>Number of connections expecting authentication.</td>
</tr>
<tr>
<td>Total Connections with Unsupported HTTP Requests</td>
<td>Number of connections with unsupported HTTP requests.</td>
</tr>
<tr>
<td>Total Connections with Unsupported HTTP Responses</td>
<td>Number of connections with unsupported HTTP responses.</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Flush Data</td>
<td>Number of DRE hints to flush data.</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Skip LZ</td>
<td>Number of DRE hints to skip LZ compression.</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Skip Header Information</td>
<td>Number of DRE hints to skip header information.</td>
</tr>
<tr>
<td>Total ACL Lookups for Subnet feature</td>
<td>Total number of system calls made for ACL lookup.</td>
</tr>
<tr>
<td>Total Sessions using Global enable/disable settings</td>
<td>Total number of sessions using global configuration for all four HTTP AO optimization features.</td>
</tr>
<tr>
<td>Total Sessions using ACL-selected settings</td>
<td>Total number of sessions using subnet configuration for at least one HTTP AO optimization feature.</td>
</tr>
<tr>
<td>Total sessions using SharePoint optimization</td>
<td>Number of sessions using SharePoint optimization feature to access objects from SharePoint server.</td>
</tr>
<tr>
<td>Total sessions using SharePoint pre-fetch optimization</td>
<td>Number of sessions where pre-fetch optimization for SharePoint objects ((MS Office applications) is enabled.</td>
</tr>
</tbody>
</table>
### Table 3-75  Field Descriptions—show statistics accelerator http detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SharePoint objects prefetched</td>
<td>Number of SharePoint objects that have been prefetched due to client requests.</td>
</tr>
<tr>
<td>Total locally served SharePoint prefetch objects</td>
<td>Number of SharePoint objects that have been prefetched and have been displayed on the client.</td>
</tr>
<tr>
<td>Total RTT saved by SharePoint optimization (ms)</td>
<td>Total response time (in milliseconds) saved in accessing SharePoint objects by enabling SharePoint optimization.</td>
</tr>
<tr>
<td>Total RTT saved by SharePoint prefetch cache hit (ms)</td>
<td>Total response time (in milliseconds) saved in accessing SharePoint data that has already been prefetched and stored in the cache.</td>
</tr>
<tr>
<td>Total remotely served SharePoint prefetch objects</td>
<td>Number of SharePoint objects that have been prefetched and displayed remotely.</td>
</tr>
<tr>
<td>Total time for SharePoint cache miss (ms)</td>
<td>Total time (in milliseconds) lost in accessing SharePoint data that is not already stored in the cache.</td>
</tr>
<tr>
<td>Total time for SharePoint prefetch cache miss (ms)</td>
<td>Total time (in milliseconds) lost in finding prefetched data that was not stored in cache.</td>
</tr>
</tbody>
</table>

#### Policy Engine Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
</tbody>
</table>
| Last registration occurred | Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are as follows:  
  - WAE was rebooted  
  - Configuration change with the accelerator application enabled  
  - Restart of the accelerator application by the Node Manager |
| Hits | Number of connections that had a configured policy that specified the use of the accelerator application. |
| Updated Released | Number of hits that were released during Auto-Discovery and did not make use of the accelerator application. |
| Active Connections | Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery. |
| Completed Connections | Number of hits that have made use of the accelerator application and have completed. |
Table 3-75  Field Descriptions—show statistics accelerator http detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>
| Rejected Connection Counts Due To: (Total:) | - Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:  
  - Not registered  
  - Keepalive timeout  
  - No license  
  - Load level not within range  
  - Connection limit exceeded  
  - Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)  
  - Minimum TFO not available  
  - Resource manager (minimum resources not available)  
  - Global config optimization disabled  
  - TFO limit exceeded (systemwide connection limit reached)  
  - Server-side invoked  
  - DM deny (Policy Engine dynamic match deny rule matched)  
  - No DM accept was matched |

Auto-Discovery Statistics

<table>
<thead>
<tr>
<th>Connections queued for accept</th>
<th>Number of connections added to the accelerator connection accept queue by auto discovery.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to accelerator not being present, or a queue overflow.</td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>
Table 3-76 describes the fields shown in the `show statistics accelerator http debug` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HTTP Parser Errors</td>
<td>Number of times that various HTTP parser errors occurred.</td>
</tr>
<tr>
<td>Total HTTP Transactions</td>
<td>HTTP transaction statistics.</td>
</tr>
<tr>
<td>Total Memory Allocation Errors</td>
<td>Number of times that various memory allocation errors occurred.</td>
</tr>
<tr>
<td>Total HTTP Requests</td>
<td>Number of various HTTP requests received.</td>
</tr>
<tr>
<td>Total HTTP Responses</td>
<td>Number of various HTTP responses.</td>
</tr>
<tr>
<td>Total HTTP Requests Processing Errors</td>
<td>Number of various HTTP request processing errors.</td>
</tr>
<tr>
<td>Total HTTP Responses Processing Errors</td>
<td>Number of various HTTP response processing errors.</td>
</tr>
<tr>
<td>Total HTTP 1-0 Requests</td>
<td>Total HTTP 1.0 requests.</td>
</tr>
<tr>
<td>Total HTTP 1-1 Requests</td>
<td>Total HTTP 1.1 requests.</td>
</tr>
<tr>
<td>Total HTTP 1-0 Responses</td>
<td>Total HTTP 1.0 responses.</td>
</tr>
<tr>
<td>Total HTTP 1-1 Responses</td>
<td>Total HTTP 1.1 responses.</td>
</tr>
<tr>
<td>Total 301 Cached Responses</td>
<td>Total 301 cached responses.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to Long HTTP Header</td>
<td>Number of 301 responses not cached due to a long HTTP header.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to Unsupported HTTP Header</td>
<td>Number of 301 responses not cached due to an unsupported HTTP header.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to Cache Control Directives</td>
<td>Number of 301 responses not cached due to cache control directives.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to Authentication Flag Being Set</td>
<td>Number of 301 responses not cached due to the authentication flag being set.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to Metadata Cache Thrashing Limit</td>
<td>Number of 301 responses not cached due to metadata cache thrashing limit.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to a long URL</td>
<td>Number of 301 responses not cached due to a long URL. The URL length includes the length of the destination IP address.</td>
</tr>
<tr>
<td>Total 301 Non-Cached due to a Webdav Method</td>
<td>Number of 301 responses not cached due to a webdav method.</td>
</tr>
<tr>
<td>Total 401 Cached Responses</td>
<td>Total 401 cached responses.</td>
</tr>
<tr>
<td>Total 401 Non-Cached due to Long HTTP Header</td>
<td>Number of 401 responses not cached due to a long HTTP header.</td>
</tr>
<tr>
<td>Total 401 Non-Cached due to Unsupported HTTP Header</td>
<td>Number of 401 responses not cached due to an unsupported HTTP header.</td>
</tr>
<tr>
<td>Total 401 Non-Cached due to Cache Control Directives</td>
<td>Number of 401 responses not cached due to cache control directives.</td>
</tr>
<tr>
<td>Total 401 with Unsupported Authentication Mechanism</td>
<td>Number of 401 responses with unsupported authentication mechanisms.</td>
</tr>
</tbody>
</table>
### Table 3-76  Field Descriptions—show statistics accelerator http debug Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 401 Non-Cached due to Metadata Cache Thrashing Limit</td>
<td>Number of 401 responses not cached due to metadata cache thrashing limit.</td>
</tr>
<tr>
<td>Total Type-2 401 responses</td>
<td>Number of 401 responses that use type 2 NTLM authentication.</td>
</tr>
<tr>
<td>Total 401 Non-Cached due to a long URL</td>
<td>Number of 401 responses not cached due to a long URL.</td>
</tr>
<tr>
<td>Total 401 Non-Cached due to a Webdav Method</td>
<td>Number of 401 responses not cached due to a webdav method.</td>
</tr>
<tr>
<td>Total HTTP Requests With Cache Control Checks</td>
<td>Total HTTP requests with cache control checks.</td>
</tr>
<tr>
<td>Total HTTP Responses With Cache Control Checks</td>
<td>Total HTTP responses with cache control checks.</td>
</tr>
<tr>
<td>Total Conditional Requests with max-age header</td>
<td>Total conditional requests with max-age header.</td>
</tr>
<tr>
<td>Total Conditional Requests with 'If-Range' Header</td>
<td>Total conditional requests with If-Range header.</td>
</tr>
<tr>
<td>Total Conditional Requests with If-None-Match header</td>
<td>Total conditional requests with If-None-Match header.</td>
</tr>
<tr>
<td>Total Conditional Requests With If-None-Match value &gt;63 chars</td>
<td>Total conditional requests with If-None-Match value longer than 63 characters.</td>
</tr>
<tr>
<td>Total Conditional Requests with If-Modified-Since header</td>
<td>Total conditional requests with If-Modified-Since header.</td>
</tr>
<tr>
<td>Total Conditional Requests with invalid If-Modified-Since header</td>
<td>Total conditional requests with invalid If-Modified-Since header.</td>
</tr>
<tr>
<td>Total Conditional Requests with Connection: Keep-alive header</td>
<td>Total conditional requests with Connection: Keep-alive header.</td>
</tr>
<tr>
<td>Total Conditional Requests with Connection: Close header</td>
<td>Total conditional requests with Connection: Close header.</td>
</tr>
<tr>
<td>Total Conditional Requests with an HTTP Parser Error</td>
<td>Total conditional requests with an HTTP parser error.</td>
</tr>
<tr>
<td>Total Conditional Requests Cache Lookup Failure</td>
<td>Total conditional requests with a cache lookup failure.</td>
</tr>
<tr>
<td>Total Conditional Requests not Matching Etag/LM values in cache</td>
<td>Total conditional requests with nonmatching Etag or Last Modified values in the cache (such requests are not served from the cache).</td>
</tr>
<tr>
<td>Total Memory Allocation Errors in Conditional Request Process</td>
<td>Total memory allocation errors in conditional request processing.</td>
</tr>
<tr>
<td>Total Cache Pointer Errors in Conditional Request Process</td>
<td>Total cache pointer errors in conditional request processing.</td>
</tr>
<tr>
<td>Total 200/304 Cached Responses</td>
<td>Total 200/304 cached responses.</td>
</tr>
<tr>
<td>Total 200/304 Non-Cached due to Metadata Cache Thrashing Limit</td>
<td>Total 200/304 noncached responses due to metadata cache thrashing limit.</td>
</tr>
</tbody>
</table>
### Table 3-76  Field Descriptions—show statistics accelerator http debug Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 200/304 Non-Cached due to Vary Header</td>
<td>Total 200/304 noncached responses due to having a Vary header.</td>
</tr>
<tr>
<td>Total 200 Responses with no Etag/LM</td>
<td>Total 200 responses with no Etag or Last Modified header (such responses are not cached).</td>
</tr>
<tr>
<td>Total 200/304 Responses with max-age header</td>
<td>Total 200/304 responses with max-age header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with s-maxage header</td>
<td>Total 200/304 responses with s-maxage header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Expires header</td>
<td>Total 200/304 responses with Expires header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Invalid Expires header</td>
<td>Total 200/304 responses with invalid Expires header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Etag header</td>
<td>Total 200/304 responses with Etag header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Too Long Etag value (&gt; 64 chars)</td>
<td>Total 200/304 responses with Etag value that is longer than 64 characters.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Last-Modified header</td>
<td>Total 200/304 responses with Last-Modified header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with invalid Last-Modified header</td>
<td>Total 200/304 responses with invalid Last-Modified header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Content-Type header</td>
<td>Total 200/304 responses with Content-Type header.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Server Header</td>
<td>Total 200/304 responses with Server header.</td>
</tr>
<tr>
<td>Total 200/304 Responses too long Server Header (&gt;99 chars)</td>
<td>Total 200/304 responses with Server header that is longer than 99 characters.</td>
</tr>
<tr>
<td>Total 200/304 Responses with Content-Location Header</td>
<td>Total 200/304 responses with Content-Location header.</td>
</tr>
<tr>
<td>Total 200/304 Responses too long Content-Location (&gt;99 chars)</td>
<td>Total 200/304 responses with Content-Location header that is longer than 99 characters.</td>
</tr>
<tr>
<td>Total 304 Response Not Cached Because of Filter-Extension</td>
<td>Total 304 responses not cached because of Filter-Extension.</td>
</tr>
<tr>
<td>Total 304 Responses with an HTTP Parser Error</td>
<td>Total 304 responses with an HTTP parser error.</td>
</tr>
<tr>
<td>Total 304 Memory Allocation Errors in 304 Response Process</td>
<td>Total 304 memory allocation errors in 304 response processing.</td>
</tr>
<tr>
<td>Total 304 Cache Pointer Errors in 304 Response Process</td>
<td>Total 304 cache pointer errors in 304 response processing.</td>
</tr>
<tr>
<td>Total 200 OK with object size less than 1 KB</td>
<td>Total 200 OK responses with object size less than 1 KB.</td>
</tr>
<tr>
<td>Total 200 OK with object size less than 5 KB</td>
<td>Total 200 OK responses with object size less than 5 KB.</td>
</tr>
</tbody>
</table>
Table 3-76  Field Descriptions—show statistics accelerator http debug Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total 200 OK with object size less than 8 KB</td>
<td>Total 200 OK responses with object size less than 8 KB.</td>
</tr>
<tr>
<td>Total 200 OK with object size more than 8 KB</td>
<td>Total 200 OK responses with object size more than 8 KB.</td>
</tr>
<tr>
<td>Total Connections Bypassed due to URL Based Bypass List</td>
<td>Total connections bypassed due to URL-based bypass list.</td>
</tr>
<tr>
<td>Total Connections Bypassed due to IP Based Bypass List</td>
<td>Total connections bypassed due to IP-based bypass list.</td>
</tr>
<tr>
<td>Total Connections Not Been Reused due to Unread WAN Data</td>
<td>Total connections not reused due to unread WAN data.</td>
</tr>
<tr>
<td>Total Connections with first message initiated from server</td>
<td>Total connections with first message initiated from server.</td>
</tr>
</tbody>
</table>

Table 3-77 describes the fields in the show statistics accelerator http https command display.

Table 3-77  Field Descriptions—show statistics accelerator http https Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Optimized HTTPS Connections</td>
<td>HTTPS connections previously and currently optimized by the HTTP Accelerator.</td>
</tr>
<tr>
<td>Total Handled HTTPS Connections</td>
<td>HTTPS connections handled since the accelerator was started or its statistics last reset. Incremented when a connection is accepted. Never decremented. This value will always be greater than or equal to the Current Active Connections statistic. Includes all connections accepted by the accelerator even if later pushed down to generic optimization, dropped, or handed-off to another accelerator. Total Handled Connections = Total Optimized Connections + Total Pushed Down Connections + Total Dropped Connections.</td>
</tr>
<tr>
<td>Total Active HTTPS Connections</td>
<td>Number of HTTPS connections currently being handled and optimized by both SSL and HTTP optimization.</td>
</tr>
<tr>
<td>Total Proxy-Connect HTTPS Connections</td>
<td>Total number of HTTPS connection started as HTTP and upgraded to HTTPS. For such connections both SSL and HTTP optimizations are applied.</td>
</tr>
<tr>
<td>Total Proxy-Connect HTTPS Insert Failures</td>
<td>Number of HTTPS connections started as HTTP for which the SSL optimization upgrade failed.</td>
</tr>
<tr>
<td>RTT saved by HTTPS Content Refresh Check Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving conditional (304) responses, in milliseconds.</td>
</tr>
<tr>
<td>RTT saved by HTTPS Redirect Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving redirect (301) responses, in milliseconds.</td>
</tr>
</tbody>
</table>
### Table 3-77 Field Descriptions—show statistics accelerator http https Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTT saved by HTTPS Authorization Redirect Metadata Cache (ms)</td>
<td>Round trip time saved by caching and locally serving authentication required (401) responses, in milliseconds.</td>
</tr>
<tr>
<td>Total Locally Served HTTPS Conditional Responses</td>
<td>Number of locally served conditional (304) responses.</td>
</tr>
<tr>
<td>Total Locally Served HTTPS Redirect Responses</td>
<td>Number of locally served redirect (301) responses.</td>
</tr>
<tr>
<td>Total Locally Served HTTPS Unauthorized Responses</td>
<td>Number of locally served authentication required (401) responses.</td>
</tr>
<tr>
<td>Total Remotely Served HTTPS Conditional Responses</td>
<td>Number of remotely served conditional (304) responses (cache misses).</td>
</tr>
<tr>
<td>Total Remotely Served HTTPS Redirect Responses</td>
<td>Number of remotely served redirect (301) responses (cache misses).</td>
</tr>
<tr>
<td>Total Remotely Served HTTPS Unauthorized Responses</td>
<td>Number of remotely served authentication required (401) responses (cache misses).</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Skip Header Information - HTTPS</td>
<td>Number of DRE hints to skip header information.</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Flush Data - HTTPS</td>
<td>Number of DRE hints to flush data.</td>
</tr>
<tr>
<td>Total Hints Sent to DRE Layer to Skip LZ - HTTPS</td>
<td>Number of DRE hints to skip LZ compression.</td>
</tr>
<tr>
<td>Total Server Compression Suppression - HTTPS</td>
<td>Number of times server compression was suppressed.</td>
</tr>
<tr>
<td>Total Time Saved from all HTTPS metadata cache hits</td>
<td>Total round-trip time saved by the three metadata caches (conditional response, redirect response, and unauthorized response) in milliseconds.</td>
</tr>
<tr>
<td>Total Time HTTPS Cache Miss (ms)</td>
<td>Total time for HTTPS metadata cache misses, in milliseconds.</td>
</tr>
<tr>
<td>Total HTTPS Requests Requiring Server Content-Revalidation</td>
<td>Number of requests that required content to be revalidated with the origin server, as specified by a Cache-Control header.</td>
</tr>
<tr>
<td>Total HTTPS Responses not to be Cached</td>
<td>Number of 200, 301, 304, and 401 responses not to be cached, as specified by a Cache-Control header.</td>
</tr>
<tr>
<td>Total HTTPS Connections Bypassed due to URL Based Bypass List</td>
<td>Number of connection flows that are bypassed due to a URL based bypass list.</td>
</tr>
<tr>
<td>Total HTTPS Connections Bypassed due to IP Based Bypass List</td>
<td>Number of connection flows that are bypassed due to a bypass list entry.</td>
</tr>
<tr>
<td>Total HTTPS sessions using SharePoint optimization</td>
<td>Number of HTTPS sessions using the SharePoint optimization feature to access objects from the SharePoint server.</td>
</tr>
<tr>
<td>Total HTTPS sessions using SharePoint prefetch optimization</td>
<td>Number of HTTPS sessions where the prefetch optimization for SharePoint objects (MS Office applications) is enabled.</td>
</tr>
</tbody>
</table>
Table 3-77  Field Descriptions—show statistics accelerator http https Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total HTTPS SharePoint objects prefetched</td>
<td>Number of SharePoint objects that have been prefetched due to client requests using HTTPS sessions.</td>
</tr>
<tr>
<td>Total HTTPS locally served SharePoint objects</td>
<td>Number of SharePoint objects that have been prefetched and have been displayed on the client using HTTPS sessions.</td>
</tr>
<tr>
<td>Total HTTPS RTT saved by SharePoint optimization (ms)</td>
<td>For HTTPS sessions, the total response time (in milliseconds) saved in accessing SharePoint objects by enabling the SharePoint optimization.</td>
</tr>
<tr>
<td>Total HTTPS RTT saved by SharePoint prefetch cache hit (ms)</td>
<td>For HTTPS sessions, the total response time (in milliseconds) saved in accessing SharePoint data that has already been prefetched and stored in the cache.</td>
</tr>
<tr>
<td>Total HTTPS remotely served SharePoint objects</td>
<td>For HTTPS sessions, the number of SharePoint objects that have been prefetched and displayed remotely.</td>
</tr>
<tr>
<td>Total HTTPS time for SharePoint cache miss (ms)</td>
<td>For HTTPS sessions, the total time (in milliseconds) lost in accessing SharePoint data that is not already stored in the cache.</td>
</tr>
<tr>
<td>Total HTTPS time for SharePoint prefetch cache miss (ms)</td>
<td>For HTTPS sessions, the total time (in milliseconds) lost in finding prefetched data that was not stored in the cache.</td>
</tr>
</tbody>
</table>

Table 3-78 describes the fields shown in the show statistics accelerator mapi detail command display.

Table 3-78  Field Descriptions—show statistics accelerator mapi detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Statistics</td>
<td></td>
</tr>
<tr>
<td>Time Accelerator was started</td>
<td>Time that the accelerator was started.</td>
</tr>
<tr>
<td>Time statistics were Last Reset/Cleared</td>
<td>Time that the statistics were last reset.</td>
</tr>
<tr>
<td>Total Handled Connections</td>
<td>Number of connections handled since the accelerator was started.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections handled since the accelerator was started, from start to finish.</td>
</tr>
<tr>
<td>Total Connections Handed-off with Compression Policies Unchanged</td>
<td>Number of connections received by the accelerator but to which only generic optimizations were done (no acceleration).</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Number of connections dropped for reasons other than client/server socket errors or close.</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Number of connections currently being handled by the accelerator.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of connections pending to be accepted.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum number of simultaneous connections handled by the accelerator.</td>
</tr>
</tbody>
</table>
### Table 3-78  Field Descriptions—show statistics accelerator mapi detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Secured Connections</td>
<td>Number of connections to Outlook clients that use encryption. Such connections are not accelerated by the MAPI accelerator but are passed through.</td>
</tr>
<tr>
<td>Number of Synch Get Buffer Requests</td>
<td>Number of MAPI SyncGetBuffer calls made. Each call downloads a chunk of data from a cached folder.</td>
</tr>
<tr>
<td>Minimum Synch Get Buffer Size (bytes)</td>
<td>Minimum chunk size downloaded by the MAPI SyncGetBuffer call.</td>
</tr>
<tr>
<td>Maximum Synch Get Buffer Size (bytes)</td>
<td>Maximum chunk size downloaded by the MAPI SyncGetBuffer call.</td>
</tr>
<tr>
<td>Average Synch Get Buffer Size (bytes)</td>
<td>Average chunk size downloaded by the MAPI SyncGetBuffer call.</td>
</tr>
<tr>
<td>Number of Read Stream Requests</td>
<td>Number of MAPI ReadStream calls made. Each call downloads a chunk of data from a noncached folder.</td>
</tr>
<tr>
<td>Minimum Read Stream Buffer Size (bytes)</td>
<td>Minimum chunk size downloaded by the MAPI ReadStream call.</td>
</tr>
<tr>
<td>Maximum Read Stream Buffer Size (bytes)</td>
<td>Maximum chunk size downloaded by the MAPI ReadStream call.</td>
</tr>
<tr>
<td>Average Read Stream Buffer Size (bytes)</td>
<td>Average chunk size downloaded by the MAPI ReadStream call.</td>
</tr>
<tr>
<td>Minimum Accumulated Read Ahead Data Size (bytes)</td>
<td>Minimum data size for MAPI read ahead.</td>
</tr>
<tr>
<td>Maximum Accumulated Read Ahead Data Size (bytes)</td>
<td>Maximum data size for MAPI read ahead.</td>
</tr>
<tr>
<td>Average Accumulated Read Ahead Data Size (bytes)</td>
<td>Average data size for MAPI read ahead.</td>
</tr>
<tr>
<td>Local Response Count</td>
<td>Number of local MAPI command responses sent to the client without waiting for a response from the peer WAE.</td>
</tr>
<tr>
<td>Average Local Response Time (usec)</td>
<td>Average time used for local responses, in microseconds.</td>
</tr>
<tr>
<td>Remote Response Count</td>
<td>Number of MAPI commands forwarded to the Exchange server for a response.</td>
</tr>
<tr>
<td>Average Remote Response Time (usec)</td>
<td>Average time used for remote responses, in microseconds.</td>
</tr>
<tr>
<td>Number of Write Stream Requests</td>
<td>Number of write stream requests.</td>
</tr>
<tr>
<td>Minimum Async Write Stream Buffer Size (bytes)</td>
<td>Minimum size of the asynchronous request stub sent on the WAN, calculated from the minimum stub size across all sessions.</td>
</tr>
<tr>
<td>Maximum Async Write Stream Buffer Size (bytes)</td>
<td>Maximum size of the asynchronous request stub sent on the WAN, calculated from the maximum stub size across all sessions.</td>
</tr>
<tr>
<td>Average Async Write Stream Buffer Size (bytes)</td>
<td>Average size of the asynchronous request stub sent on the WAN, calculated by taking the average of the stub size across all sessions.</td>
</tr>
</tbody>
</table>
### Table 3-78  Field Descriptions—show statistics accelerator mapi detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current 2000 Accelerated Sessions</td>
<td>Number of accelerated sessions to Outlook 2000 clients. Sessions (users), not TCP connections.</td>
</tr>
<tr>
<td>Current 2003 Accelerated Sessions</td>
<td>Number of accelerated sessions to Outlook 2003 clients. Sessions (users), not TCP connections.</td>
</tr>
<tr>
<td>Current 2007 Accelerated Sessions</td>
<td>Number of accelerated sessions to Outlook 2007 clients. Sessions (users), not TCP connections.</td>
</tr>
<tr>
<td>Current 2010 Accelerated Sessions</td>
<td>Number of accelerated sessions to Outlook 2010 clients. Sessions (users), not TCP connections.</td>
</tr>
<tr>
<td>Lower than 2000 Sessions</td>
<td>Number of sessions to clients using a version of Outlook lower than Outlook 2000. Such connections are not accelerated by the MAPI accelerator but are passed through.</td>
</tr>
<tr>
<td>Unsupported Higher Client Version Sessions</td>
<td>Number of sessions to clients using a version of Outlook higher than that supported. Such connections are not accelerated by the MAPI accelerator but are passed through.</td>
</tr>
</tbody>
</table>

**Async Write Optimization Statistics**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Number Of Async Write Stubs On WAN</td>
<td>Current number of asynchronous requests on the WAN.</td>
</tr>
<tr>
<td>Current Number Of Requests Queued Due To Flow Control</td>
<td>Current number of client session flows that were blocked due to threshold limit.</td>
</tr>
<tr>
<td>Current Number Of Requests Queued Due To RopBackOff</td>
<td>Current number of client session flows that were blocked due to ropbackoff response.</td>
</tr>
<tr>
<td>Total Number Of RopBackOff Response Received</td>
<td>Total number of ropbackoff responses received across all connections.</td>
</tr>
<tr>
<td>Total RopBackOff Duration (msec)</td>
<td>Cumulative time of ropbackoff durations across all connections, in milliseconds.</td>
</tr>
<tr>
<td>Total Wait Time Of Requests Queued Due To FlowControl (msec)</td>
<td>Cumulative wait time of requests queued due to flow control across all connections, in milliseconds.</td>
</tr>
<tr>
<td>Total Wait Time Of Requests Queued Due To RopBackOff (msec)</td>
<td>Cumulative wait time of requests queued due to ropbackoff across all connections, in milliseconds.</td>
</tr>
</tbody>
</table>

**Association Group (AG) Statistics**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Active AGs In The Last Hour</td>
<td>Average number of active AGs in the last hour. This number is zero if statistics were reset/cleared within one hour.</td>
</tr>
<tr>
<td>Average Active Connections Used By AGs In The Last Hour</td>
<td>Average number of active connections used by AGs in the last hour. This number is zero if statistics were reset/cleared within one hour.</td>
</tr>
<tr>
<td>Average Active AGs In The Last 5min</td>
<td>Average number of active AGs in the last five minutes. This number is zero if statistics were reset/cleared within five minutes.</td>
</tr>
</tbody>
</table>
### Table 3-78  Field Descriptions—`show statistics accelerator mapi detail` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Active Connections Used By AGs In The Last 5min</td>
<td>Average number of active connections used by AGs in the last five minutes. This number is zero if statistics were reset/cleared within five minutes.</td>
</tr>
<tr>
<td>Current Active AGs</td>
<td>Number of current active AGs.</td>
</tr>
<tr>
<td>Current Active Connections Used By AGs</td>
<td>Number of current active connections used by AGs.</td>
</tr>
<tr>
<td>Max Active AGs Since Last Reset/Cleared</td>
<td>Number of max active AGs since last reset/cleared.</td>
</tr>
<tr>
<td>Active Connections When Max Active AGs Since Last Reset/Cleared</td>
<td>Number of active connections when max active AGs since last reset/cleared.</td>
</tr>
<tr>
<td>Max Active Connections Within an AG Since Last Reset/Cleared</td>
<td>Number of max active connections within an AG since last reset/cleared.</td>
</tr>
<tr>
<td>Max Total Active Connections Since Last Reset/Cleared</td>
<td>Number of max total active connections since last reset/cleared.</td>
</tr>
<tr>
<td>AGs When Max Total Active Connections Since Last Reset/Cleared</td>
<td>Number of AGs when max total active connections since last reset/cleared.</td>
</tr>
<tr>
<td>Total AGs</td>
<td>Number of total AGs.</td>
</tr>
<tr>
<td>Total Handed Off AGs due to Reservation Failure</td>
<td>Number of total handed off AGs due to reservation failure.</td>
</tr>
<tr>
<td>Total Handed Off AGs Tracked by MAPI AO</td>
<td>Number of total handed off AGs tracked by MAPI AO.</td>
</tr>
<tr>
<td>Current Handed Off AGs Tracked by MAPI AO</td>
<td>Number of current handed off AGs tracked by MAPI AO.</td>
</tr>
<tr>
<td>Reserved Connections Pool Statistics</td>
<td></td>
</tr>
<tr>
<td>Current In-Use Connections</td>
<td>Number of current in-use connections.</td>
</tr>
<tr>
<td>Current Reserved (Unused) Connections</td>
<td>Number of current reserved but still not used connections.</td>
</tr>
<tr>
<td>Average In-Use Connections in Last One Hour</td>
<td>Average number of average in-use connections in the last hour. This number is zero if statistics were reset/cleared within one hour.</td>
</tr>
<tr>
<td>Average Reserved (Unused) Connections in Last One Hour</td>
<td>Average number of average reserved but unused connections in the last hour. This number is zero if statistics were reset/cleared within one hour.</td>
</tr>
<tr>
<td>Average In-Use Connections in Last 5min</td>
<td>Average number of average in-use connections in the last five minutes. This number is zero if statistics were reset/cleared within five minutes.</td>
</tr>
<tr>
<td>Average Reserved (Unused) Connections in Last 5min</td>
<td>Average number of reserved (unused) connections in the last five minutes. This number is zero if statistics were reset/cleared within five minutes.</td>
</tr>
<tr>
<td>Configured Maximum Reserved (Unused) Connections</td>
<td>Maximum reserved connections configured but not used.</td>
</tr>
<tr>
<td>ReadAhead (RAH) Optimization Statistics</td>
<td>Several statistics for read ahead optimization, including the number of active read aheads and bytes read by the read ahead optimizer.</td>
</tr>
</tbody>
</table>
### Table 3-78  Field Descriptions—`show statistics accelerator mapi detail` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange Server Error Statistics</td>
<td>Number of errors of various types that were returned by the Exchange server.</td>
</tr>
<tr>
<td>Policy Engine Statistics</td>
<td></td>
</tr>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• WAE was rebooted</td>
</tr>
<tr>
<td></td>
<td>• Configuration change with the accelerator application enabled</td>
</tr>
<tr>
<td></td>
<td>• Restart of the accelerator application by the Node Manager</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that had a configured policy that specified the use of the accelerator application.</td>
</tr>
<tr>
<td>Updated Released</td>
<td>Number of hits that were released during Auto-Discovery and did not make use of the accelerator application.</td>
</tr>
<tr>
<td>Active Connections</td>
<td>Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery.</td>
</tr>
<tr>
<td>Completed Connections</td>
<td>Number of hits that have made use of the accelerator application and have completed.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>
### Table 3-78  Field Descriptions—`show statistics accelerator mapi detail` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected Connection Counts Due To:</td>
<td>Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:</td>
</tr>
<tr>
<td>(Total:)</td>
<td>- Not registered</td>
</tr>
<tr>
<td></td>
<td>- Keepalive timeout</td>
</tr>
<tr>
<td></td>
<td>- No license</td>
</tr>
<tr>
<td></td>
<td>- Load level not within range</td>
</tr>
<tr>
<td></td>
<td>- Connection limit exceeded</td>
</tr>
<tr>
<td></td>
<td>- Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)</td>
</tr>
<tr>
<td></td>
<td>- Minimum TFO not available</td>
</tr>
<tr>
<td></td>
<td>- Resource manager (minimum resources not available)</td>
</tr>
<tr>
<td></td>
<td>- Global config optimization disabled</td>
</tr>
<tr>
<td></td>
<td>- TFO limit exceeded (systemwide connection limit reached)</td>
</tr>
<tr>
<td></td>
<td>- Server-side invoked</td>
</tr>
<tr>
<td></td>
<td>- DM deny (Policy Engine dynamic match deny rule matched)</td>
</tr>
<tr>
<td></td>
<td>- No DM accept was matched</td>
</tr>
<tr>
<td>Rejected Connections Of Interest Due To</td>
<td>Number of connections rejected due to unavailable resources. Incremented when a new MAPI connection arrives that matches an existing MAPI specific dynamic policy but there are no resources available in the reserved pool to accept it; the connection is passed through.</td>
</tr>
<tr>
<td>Unavailable Resources</td>
<td></td>
</tr>
<tr>
<td>Rejected Connections Of Interest Due To</td>
<td>Number of connections rejected due to unavailable peer. Incremented when a new MAPI connection arrives that matches an existing MAPI specific dynamic policy but there is no remote MAPI peer or the remote peer is unable to accept it; the connection is passed through.</td>
</tr>
<tr>
<td>Unavailable Peer</td>
<td></td>
</tr>
<tr>
<td>Auto-Discovery Statistics</td>
<td></td>
</tr>
<tr>
<td>Connections queued for accept</td>
<td>Number of connections added to the accelerator connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to accelerator not being present, or a queue overflow.</td>
</tr>
</tbody>
</table>
Table 3-78  Field Descriptions—show statistics accelerator mapi detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>

Table 3-79 describes the fields shown in the show statistics accelerator nfs detail command display.

Table 3-79  Field Descriptions for the show statistics accelerator nfs detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Accelerator was started</td>
<td>Time that the accelerator was started.</td>
</tr>
<tr>
<td>Time Statistics were Last Reset/Cleared</td>
<td>Time that the statistics were last reset.</td>
</tr>
<tr>
<td>Total Handled Connections</td>
<td>Number of connections handled since the accelerator was started.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Connections Handed-off with Compression Policies Unchanged</td>
<td>Number of connections received by the accelerator but to which only generic optimizations were done (no acceleration).</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Number of connections dropped for reasons other than client/server socket errors or close.</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Number of connections currently being handled by the accelerator.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of connections currently pending for the accelerator.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum number of simultaneous connections handled by the accelerator.</td>
</tr>
<tr>
<td>Total RPC Calls per Authentication Flavor</td>
<td>Array of the number of RPC calls for each NFS authentication type.</td>
</tr>
<tr>
<td>Total RPC Calls with Unknown Authentication Flavor</td>
<td>Number of RPC calls with an unknown authentication type.</td>
</tr>
<tr>
<td>Total RPC Calls per NFS version</td>
<td>Array of the number of RPC calls for each NFS version.</td>
</tr>
<tr>
<td>Total RPC Calls with Unknown NFS Version</td>
<td>Number of RPC calls with an unknown NFS version.</td>
</tr>
<tr>
<td>Total Requests</td>
<td>Total number of NFS requests received.</td>
</tr>
<tr>
<td>Total Local Replies</td>
<td>Number of requests that resulted in WAAS generating a local reply.</td>
</tr>
<tr>
<td>Percentage of Requests Served Locally</td>
<td>Percentage of requests served locally by the WAAS device.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>-----------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Percentage of Requests Served Remotely</td>
<td>Percentage of requests served remotely by the NFS server.</td>
</tr>
<tr>
<td>Average Time to Generate Local READ Reply (ms)</td>
<td>Average time to generate a local read reply, in milliseconds.</td>
</tr>
<tr>
<td>Average Time to Generate Local WRITE Reply (ms)</td>
<td>Average time to generate a local write reply, in milliseconds.</td>
</tr>
<tr>
<td>Average Time to Generate Local GETATTR Reply (ms)</td>
<td>Average time to generate a local GETATTR reply, in milliseconds.</td>
</tr>
<tr>
<td>Average Time to Generate Local Reply (ms)</td>
<td>Average time to generate a local reply, in milliseconds.</td>
</tr>
<tr>
<td>Average Time to Receive Remote Reply (ms)</td>
<td>Average time to receive a remote reply from the NFS server, in milliseconds.</td>
</tr>
<tr>
<td>Meta-Data Cache Access Count</td>
<td>Number of times the meta data cache as accessed.</td>
</tr>
<tr>
<td>Meta-Data Cache Hit Count</td>
<td>Number of meta data cache hits.</td>
</tr>
<tr>
<td>Remaining number Of Entries in Meta-Data Cache</td>
<td>Number of available entries in the meta data cache.</td>
</tr>
<tr>
<td>Meta-Data Cache Hit Ratio</td>
<td>Percentage of meta data accesses served from the meta data cache.</td>
</tr>
<tr>
<td>Policy Engine Statistics</td>
<td></td>
</tr>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are as follows:</td>
</tr>
<tr>
<td></td>
<td>• WAE was rebooted</td>
</tr>
<tr>
<td></td>
<td>• Configuration change with the accelerator application enabled</td>
</tr>
<tr>
<td></td>
<td>• Restart of the accelerator application by the Node Manager</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that had a configured policy that specified the use of the accelerator application.</td>
</tr>
<tr>
<td>Updated Released</td>
<td>Number of hits that were released during Auto-Discovery and did not make use of the accelerator application.</td>
</tr>
<tr>
<td>Active Connections</td>
<td>Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery.</td>
</tr>
</tbody>
</table>
### Table 3-79  Field Descriptions for the show statistics accelerator nfs detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed Connections</td>
<td>Number of hits that have made use of the accelerator application and have completed.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
<tr>
<td>Rejected Connection Counts Due To: (Total:)</td>
<td>• Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:</td>
</tr>
<tr>
<td></td>
<td>• Not registered</td>
</tr>
<tr>
<td></td>
<td>• Keepalive timeout</td>
</tr>
<tr>
<td></td>
<td>• No license</td>
</tr>
<tr>
<td></td>
<td>• Load level not within range</td>
</tr>
<tr>
<td></td>
<td>• Connection limit exceeded</td>
</tr>
<tr>
<td></td>
<td>• Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)</td>
</tr>
<tr>
<td></td>
<td>• Minimum TFO not available</td>
</tr>
<tr>
<td></td>
<td>• Resource manager (minimum resources not available)</td>
</tr>
<tr>
<td></td>
<td>• Global config optimization disabled</td>
</tr>
<tr>
<td></td>
<td>• TFO limit exceeded (systemwide connection limit reached)</td>
</tr>
<tr>
<td></td>
<td>• Server-side invoked</td>
</tr>
<tr>
<td></td>
<td>• DM deny (Policy Engine dynamic match deny rule matched)</td>
</tr>
<tr>
<td></td>
<td>• No DM accept was matched</td>
</tr>
<tr>
<td>Auto-Discovery Statistics</td>
<td></td>
</tr>
<tr>
<td>Connections queued for accept</td>
<td>Number of connections added to the accelerator connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to accelerator not being present, or a queue overflow.</td>
</tr>
</tbody>
</table>
Table 3-79  Field Descriptions for the show statistics accelerator nfs detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>

Table 3-80 describes the fields shown in the show statistics accelerator smb detail command display.

Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Handled Connections</td>
<td>Number of connections handled since the accelerator was started or its statistics last reset.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections previously and currently optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Connections Handed-off with Compression Policies Unchanged</td>
<td>Number of connections initially accepted by the SMB accelerator, but later handed off to generic optimization without policy changes so the current negotiated policies for compression (DRE/LZ) will be used.</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Number of connections dropped.</td>
</tr>
<tr>
<td>Total Active Connections</td>
<td>Number of connections currently being optimized by the SMB accelerator.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of connections that have been determined to be accelerated by the SMB accelerator, and have been queued to be picked up by the accelerator.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum value reached by the Current Active Connections counter. This counter will be reset if the accelerator is restarted or statistics are cleared.</td>
</tr>
<tr>
<td>Total Number of SMB1 Sessions Optimized</td>
<td>Total number of SMB1 sessions optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Number of SMB1 Signed Sessions (L4 Opt)</td>
<td>Total number of SMB1 signed sessions (Layer 4 optimization).</td>
</tr>
<tr>
<td>Total Number of SMB1 Sessions Not Optimized</td>
<td>Total number of SMB1 sessions not optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Number of SMB2 Sessions Not Optimized (handoff on request)</td>
<td>Total number of SMB2 sessions not optimized by the accelerator.</td>
</tr>
<tr>
<td>Total Number of SMB2 Sessions (L4 optimization, handoff on request)</td>
<td>Total number of SMB2 sessions optimized (Layer 4 optimization)</td>
</tr>
</tbody>
</table>
### Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of SMB2_0 Sessions Optimized</td>
<td>Total number of SMB2 sessions optimized.</td>
</tr>
<tr>
<td>Total Number of SMB2_0 Signed Sessions</td>
<td>Number of SMB2_0 signed sessions (Layer 4 optimization).</td>
</tr>
<tr>
<td>Total Number of SMB2_0 Sessions Not</td>
<td>Number of SMB2_1 session optimized.</td>
</tr>
<tr>
<td>Optimized</td>
<td></td>
</tr>
<tr>
<td>Total Number of SMB2_1 Sessions Optimized</td>
<td>Number of SMB2_1 sessions optimized.</td>
</tr>
<tr>
<td>Total Number of SMB2_1 Signed Sessions</td>
<td>Number of SMB2_1 signed sessions (Layer 4 optimization).</td>
</tr>
<tr>
<td>Total Number of SMB2_1 Sessions Not</td>
<td>Number of SMB2_1 sessions not optimized.</td>
</tr>
<tr>
<td>Optimized</td>
<td></td>
</tr>
<tr>
<td>Total Number of SMB3_0 Sessions Optimized</td>
<td>Number of SMB3_0 sessions (Layer 4 optimization).</td>
</tr>
<tr>
<td>Total Number of Requests Processed</td>
<td>Number of requests processed (including successful and unsuccessful responses).</td>
</tr>
<tr>
<td>Total Number of Requests Served Locally</td>
<td>Number of requests served locally by the WAAS device.</td>
</tr>
<tr>
<td>Total Number of Requests Sent to File</td>
<td>Number of requests sent to file servers.</td>
</tr>
<tr>
<td>Servers</td>
<td></td>
</tr>
<tr>
<td>Total Number of SMB1 Requests Processed</td>
<td>Number of SMB1 requests processed (including successful and unsuccessful responses).</td>
</tr>
<tr>
<td>Total Number of SMB2 Requests Processed</td>
<td>Number of SMB2 requests processed (including successful and unsuccessful responses).</td>
</tr>
<tr>
<td>Total Number of VFN Requests Processed</td>
<td>Number of VFN requests processed (including successful and unsuccessful responses).</td>
</tr>
<tr>
<td>Total Number of Active Requests</td>
<td>Number of active SMB requests.</td>
</tr>
<tr>
<td>Total Number of Open Files</td>
<td>Number of open files on the WAE. The SMB accelerator performs below the optimum level if there are too many open files. The maximum value of the open-file count is platform-dependent. Use \texttt{(config) threshold-monitor} to configure monitoring thresholds.</td>
</tr>
<tr>
<td>Total Number of Bytes Read from Cache</td>
<td>Number of bytes read from cache.</td>
</tr>
<tr>
<td>Total Number of Bytes Written to Cache</td>
<td>Number of bytes written to the cache.</td>
</tr>
<tr>
<td>Total Number of Bytes Written to LAN (Original)</td>
<td>Number of unoptimized bytes written to the LAN.</td>
</tr>
<tr>
<td>Total Number of Bytes Read from LAN (Original)</td>
<td>Number of unoptimized bytes read from the LAN.</td>
</tr>
<tr>
<td>Total Number of Bytes Read from WAN (Optimized)</td>
<td>Number of optimized bytes read from the WAN.</td>
</tr>
<tr>
<td>Total Number of Bytes Written to WAN (Optimized)</td>
<td>Number of optimized bytes written to the WAN.</td>
</tr>
</tbody>
</table>
Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Signed SMB Bytes Read from LAN (Original)</td>
<td>Number of unoptimized signed SMB bytes read from the LAN.</td>
</tr>
<tr>
<td>Total Number of Signed SMB Bytes Written to LAN (Original)</td>
<td>Number of unoptimized signed SMB bytes written to the LAN.</td>
</tr>
<tr>
<td>Total Number of Signed SMB Bytes Read from WAN (L4 Optimized)</td>
<td>Number of Layer 4 optimized signed SMB bytes read from the WAN.</td>
</tr>
<tr>
<td>Total Number of Signed SMB Bytes Written to WAN (L4 Optimized)</td>
<td>Number of Layer 4 optimized signed SMB bytes written to the WAN.</td>
</tr>
<tr>
<td>Average Response Time (ms) for Requests Served Locally</td>
<td>Average response time for requests served locally, in milliseconds.</td>
</tr>
<tr>
<td>Average Response Time (ms) for Requests Sent to File Servers</td>
<td>Average response time for requests sent to file servers, in milliseconds.</td>
</tr>
<tr>
<td>Total Round Trip Time (ms) for All Requests</td>
<td>Total round trip time for all requests, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Optimization</td>
<td>Total time saved due to optimization, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Read-ahead</td>
<td>Total time saved due to read-ahead, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Metadata Optimization</td>
<td>Total time saved due to metadata optimization, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Microsoft Optimization</td>
<td>Total time saved due to Microsoft optimization, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Not-found-metadata Cache</td>
<td>Total time saved due to not-found metadata cache, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Async Request Handling</td>
<td>Total time saved due to asynchronous request handling, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to DCE-RPC Optimization</td>
<td>Total time saved due to DCE-RPC optimization, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Print Optimization</td>
<td>Total time saved due to print optimization, in milliseconds.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Other Optimization</td>
<td>Total time saved due to other, non-print optimization, in milliseconds.</td>
</tr>
<tr>
<td>Current Allocated Memory Usage of Not-found Metadata Cache</td>
<td>Current allocated memory usage of not-found metadata cache.</td>
</tr>
<tr>
<td>Number of Entries in Not-found Metadata Cache</td>
<td>Number of entries in not-found metadata cache.</td>
</tr>
<tr>
<td>Not-found Metadata Cache Hit Count</td>
<td>Number of not-found metadata cache hits.</td>
</tr>
<tr>
<td>Not-found Metadata Cache Access Attempts Count</td>
<td>Number of not-found metadata cache access attempts.</td>
</tr>
<tr>
<td>Not-found Metadata Cache Allowed Access Count</td>
<td>Number of not-found metadata cache allowed accesses.</td>
</tr>
</tbody>
</table>
### Table 3-80 Field Descriptions for the `show statistics accelerator smb detail` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not-found Metadata Cache Update Attempts Count</td>
<td>Number of not-found metadata cache update attempts.</td>
</tr>
<tr>
<td>Not-found Metadata Cache Allowed Updates Count</td>
<td>Number of not-found metadata cache allowed updates.</td>
</tr>
<tr>
<td>Not-found Metadata Cache Hash Bucket Count</td>
<td>Number of not-found metadata cache hash buckets.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>A bucket is defined as a certain subsection of the allotted hash assigned to each WAE in a WAE cluster.</td>
</tr>
<tr>
<td>Read-ahead Buffer Hit Rate (%)</td>
<td>The hit rate of the read-buffer, as a percent.</td>
</tr>
<tr>
<td>Read-ahead Buffer Hit Count</td>
<td>Number of read-ahead buffer hits.</td>
</tr>
<tr>
<td>Read-ahead Buffer Hit Bytes</td>
<td>Number of read-ahead buffer hits, in bytes.</td>
</tr>
<tr>
<td>Read-ahead Buffer Miss Bytes</td>
<td>Number of read-ahead buffer misses, in bytes.</td>
</tr>
<tr>
<td>Read-ahead Buffer Total Bytes Read from Files Servers</td>
<td>Number of read-ahead buffer bytes read from file servers.</td>
</tr>
<tr>
<td>Read-ahead Buffer Pass-through Bytes</td>
<td>Number of read-ahead buffer pass-through bytes.</td>
</tr>
<tr>
<td>Read-ahead Buffer Wait Blocks</td>
<td>Number of read-ahead buffer wait blocks.</td>
</tr>
<tr>
<td>Read-ahead Buffer Active IO Blocks</td>
<td>Number of read-ahead buffer active IO blocks.</td>
</tr>
<tr>
<td>Read-ahead Buffer Block Size in Bytes</td>
<td>The read-ahead buffer block size, in bytes.</td>
</tr>
<tr>
<td>Read-ahead Buffer Usage (in Blocks)</td>
<td>The read-ahead buffer usage, in blocks.</td>
</tr>
<tr>
<td>Read-ahead Buffer Total Size (in Blocks)</td>
<td>Total size of the read-ahead buffer, in blocks.</td>
</tr>
<tr>
<td>Read-ahead Buffer Blocks Evicted</td>
<td>Number of read-ahead buffer blocks evicted.</td>
</tr>
<tr>
<td>Read-ahead Buffer Blocks Evicted Before Use</td>
<td>Number of read-ahead buffer blocks evicted before use.</td>
</tr>
<tr>
<td>Read-ahead Buffer Blocks Invalidated</td>
<td>Number of read-ahead buffer blocks invalidated.</td>
</tr>
<tr>
<td>Total Number of Files in Read-ahead Buffer</td>
<td>Number of files in the read-ahead buffer.</td>
</tr>
<tr>
<td>Read-ahead Buffer Last Evicted Item Age (Seconds)</td>
<td>The age of the last evicted item in the read-ahead buffer, in seconds.</td>
</tr>
<tr>
<td>Read-ahead Buffer Min Eviction Age (Seconds)</td>
<td>The minimum amount of time, in seconds, before an item is evicted from the read-ahead buffer.</td>
</tr>
<tr>
<td>Metadata Cache Total Size (Bytes)</td>
<td>The size of the metadata cache, in bytes.</td>
</tr>
<tr>
<td>Metadata Cache Hit Rate (%</td>
<td>The hit rate of the metadata cache, as a percent.</td>
</tr>
<tr>
<td>Metadata Cache Hit Count</td>
<td>Number of metadata cache hits.</td>
</tr>
<tr>
<td>Total Number of File Oplocks Acquired on Behalf of the Client</td>
<td>Number of opportunistic locks acquired on behalf of the client.</td>
</tr>
<tr>
<td>Total Number of Write-opt Requests Served Locally</td>
<td>Number of write-optimization requests served locally.</td>
</tr>
<tr>
<td>Total Number of Other Requests Served Locally</td>
<td>Number of other requests served locally.</td>
</tr>
</tbody>
</table>
### Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Metadata Cached Resources</td>
<td>Number of metadata cached references.</td>
</tr>
<tr>
<td>Total SMB1 Named Pipe Open Requests</td>
<td>Number of SMB1 NT_Create_AndX requests for non \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Processed</td>
<td>Number of SMB1 NT_Create_AndX requests for non \spoolss pipe served locally by the edge WAE, due to cached-open and delayed-close optimization.</td>
</tr>
<tr>
<td>Total SMB1 Named Pipe Open Requests</td>
<td>Number of SMB1 NT_Create_AndX requests for non \spoolss pipe served locally by the edge WAE, due to cached-open and delayed-close optimization.</td>
</tr>
<tr>
<td>Served Locally</td>
<td>Number of SMB1NT_Create_AndX requests for non \spoolss pipe that were forwarded to the server by the edge WAE (requests that could not be served locally).</td>
</tr>
<tr>
<td>Total SMB1 Named Pipe Open Requests</td>
<td>Number of SMB1 Close requests for non \spoolss pipe see by the edge WAE.</td>
</tr>
<tr>
<td>Forward to Server</td>
<td>Number of SMB1 Close requests for non \spoolss pipe served locally by the edge WAE as part of delayed-close optimization.</td>
</tr>
<tr>
<td>processed</td>
<td>Number of SMB1 Close requests for non \spoolss pipe that were forwarded to the server by the edge WAE (requests that could not be served locally).</td>
</tr>
<tr>
<td>Total SMB1 Named Pipe Close requests</td>
<td>Number of SMB1 Close requests for non \spoolss pipe see by the edge WAE.</td>
</tr>
<tr>
<td>served locally</td>
<td>Number of SMB1 Close requests for non \spoolss pipe served locally by the edge WAE as part of delayed-close optimization.</td>
</tr>
<tr>
<td>forwarded to server</td>
<td>Total time saved (since the last counters were cleared) due to all print optimizations being performed, in milliseconds.</td>
</tr>
<tr>
<td>Named Pipe Cache Access Attempts Count</td>
<td>Number of named pipe cache access attempts.</td>
</tr>
<tr>
<td>Named Pipe Cache Hit Count</td>
<td>Number of named pipe cache hits.</td>
</tr>
<tr>
<td>Named Pipe Entry Count</td>
<td>Number of named pipe entries.</td>
</tr>
<tr>
<td>Named Pipe Cache Size</td>
<td>The size of the named pipe cache.</td>
</tr>
<tr>
<td>Total Amount of Time Saved (ms) Due to Print Optimization</td>
<td>Total time saved (since the last counters were cleared) due to all print optimizations being performed, in milliseconds.</td>
</tr>
<tr>
<td>Total SMB1 Print Open requests</td>
<td>Number of SMB1 NT_Create_AndX requests for \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Total SMB1 Print Open requests served locally</td>
<td>Number of SMB1 NT_Create_AndX requests for \spoolss pipe served locally by the edge WAE due to cached open and delayed close optimization.</td>
</tr>
<tr>
<td>Total SMB1 Print Open requests forwarded to server</td>
<td>Number of SMB1 NT_Create_AndX requests for \spoolss pipe forwarded to the server by the edge WAE (could not be served locally).</td>
</tr>
<tr>
<td>Total SMB1 Print Close requests processed</td>
<td>Number of SMB1 Close requests for \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Total SMB1 Print Close requests served locally</td>
<td>Number of SMB1 Close requests served locally by the edge WAE as part of delayed close optimization.</td>
</tr>
</tbody>
</table>
### Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMB1 Print Close requests forwarded to</td>
<td>Number of SMB1 Close requests forwarded to the server by the edge WAE (could not be served locally). This total includes only the Close requests that are sent synchronously to the server (the client is waiting for a response from the server). It does not include the Close requests that are sent asynchronously (the Close requests first served locally and then sent to the server at a later point in time).</td>
</tr>
<tr>
<td>the server</td>
<td></td>
</tr>
<tr>
<td>Print SMB1 Documents Spooled count</td>
<td>Number of SMB1 Transact EndDocPrinter messages (DCE-RPC opnum 23) for the \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Print SMB1 Pages Spooled count</td>
<td>Number of SMB1 Transact EndDocPrinter messages (DCE-RPC opnum 20) for the \spoolss pipe seen by the edge WAE. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Async Write count</td>
<td>Number of SMB1 Write_AndX messages for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization.</td>
</tr>
<tr>
<td>Print SMB1 Async StartPagePrinter count</td>
<td>Number of SMB1 Transact StartPagePrinter messages (DCE-RPC opnum 18) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Async EndPagePrinter count</td>
<td>Number of SMB1 Transact EndPagePrinter messages (DCE-RPC opnum 20) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Async WritePrinter count</td>
<td>Number of SMB1 Transact WritePagePrinter messages (DCE-RPC opnum 19) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Remote Command Count</td>
<td>The number of SMB1 Transact commands for the \spoolss pipe seen by the edge WAE that are not parsed and are sent to the core.</td>
</tr>
</tbody>
</table>


### Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Read Requests with Office Optimization</td>
<td>Number of read requests with Microsoft Office optimization.</td>
</tr>
<tr>
<td>Total Number of Write Requests with Office Optimization</td>
<td>Number of write requests with Microsoft Office Optimization.</td>
</tr>
<tr>
<td>Total SMB1_Create_AndX requests processed</td>
<td>Number of SMB1 Create_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Write_AndX requests processed</td>
<td>Number of SMB1 Write_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Write_AndX requests served locally</td>
<td>Number of SMB1 Write_AndX requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Write_AndX requests forwarded to file server</td>
<td>Number of SMB1 Write_AndX requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Read_AndX requests processed</td>
<td>Number of SMB1 Read_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Read_AndX requests served locally</td>
<td>Number of SMB1 Read_AndX requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Read_AndX requests forwarded to file server</td>
<td>Number of SMB1 Read_AndX requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Cancel requests processed</td>
<td>Number of SMB1 cancel requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Delete Requests Processed</td>
<td>Number of SMB1 delete requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Delete Requests Served Locally</td>
<td>Number of SMB1 delete requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Delete Requests Forwarded to File Server</td>
<td>Number of SMB1 delete requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Delete_Dir Requests Processed</td>
<td>Number of SMB1 delete directory requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Delete_Dir Requests Served Locally</td>
<td>Number of SMB1 delete directory requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Delete_Dir Requests Forwarded to File Server</td>
<td>Number of SMB1 delete directory requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Create_Temp Requests Processed</td>
<td>Number of SMB1 create temporary directory requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Check_Dir Requests Processed</td>
<td>Number of SMB1 check directory requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Check_Dir Requests Served Locally</td>
<td>Number of SMB1 check directory requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Check_Dir Requests Forwarded to File Server</td>
<td>Number of SMB1 check directory requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Close Requests Processed</td>
<td>Number of SMB1 close requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Close Requests Served Locally</td>
<td>Number of SMB1 close requests served locally.</td>
</tr>
</tbody>
</table>
### Table 3-80 Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMB1_Close Requests Forwarded to File Server</td>
<td>Number of SMB1 close requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Rename Requests Processed</td>
<td>Number of SMB1 rename requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Rename Requests Served Locally</td>
<td>Number of SMB1 rename requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Rename Requests Forwarded to Server</td>
<td>Number of SMB1 rename requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Session_Setup Requests Processed</td>
<td>Number of SMB1 session setup requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Tree_Connect_AndX Requests Processed</td>
<td>Number of SMB1 Tree_Connect_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Tree_Disconnect Requests Processed</td>
<td>Number of SMB1 Tree_Disconnect requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Logoff Requests Processed</td>
<td>Number of SMB1 logoff requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Negotiate Requests Processed</td>
<td>Number of SMB1 negotiate requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_Path_Info Requests Processed</td>
<td>Number of SMB1 query path information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_Path_Info Requests Served Locally</td>
<td>Number of SMB1 query path information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Query_Path_Info Requests Forwarded to File Server</td>
<td>Number of SMB1 query path information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Query_File_Info Requests Processed</td>
<td>Number of SMB1 query file information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_File_Info Requests Served Locally</td>
<td>Number of SMB1 query file information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Query_File_Info Requests Forwarded to File Server</td>
<td>Number of SMB1 query file information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Set_Path_Info Requests Processed</td>
<td>Number of SMB1 set path information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Set_Path_Info Requests Served Locally</td>
<td>Number of SMB1 set path information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Set_Path_Info Requests Forwarded to File Server</td>
<td>Number of SMB1 set path information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Set_File_Info Requests Processed</td>
<td>Number of SMB1 set file information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Set_File_Info Requests Served Locally</td>
<td>Number of SMB1 set file information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Set_File_Info Requests Forwarded to File Server</td>
<td>Number of SMB1 set file information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Find_First Requests Processed</td>
<td>Number of SMB1 find first requests processed.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Total SMB1_Find_First Requests Served Locally</td>
<td>Number of SMB1 find first requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Find_First Requests Forwarded to File Server</td>
<td>Number of SMB1 find first requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Find_Next Requests Processed</td>
<td>Number of SMB1 find next requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Find_Next Requests Served Locally</td>
<td>Number of SMB1 find next requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Find_Next Requests Forwarded to File Server</td>
<td>Number of SMB1 find next requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Create.Dir Requests Processed</td>
<td>Number of SMB1 create directory requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Trans2_Create.Dir Requests Processed</td>
<td>Number of SMB1 Transaction2 create directory requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_FS_Info Requests Processed</td>
<td>Number of SMB1 query file share information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_FS_Info Requests Served Locally</td>
<td>Number of SMB1 query file share information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Query_FS_Info Requests Forward to File Server</td>
<td>Number of SMB1 query file share information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Set_Security_Desc Requests Processed</td>
<td>Number of SMB1 set security descriptor requests processed.</td>
</tr>
<tr>
<td>Total SMB1_IOCTL Requests Processed</td>
<td>Number of SMB1 input/output control requests processed.</td>
</tr>
<tr>
<td>Total SMB1_OPEN_ANDX Requests Processed</td>
<td>Number of SMB1 Open_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_OPEN_ANDX Requests Served Locally</td>
<td>Number of SMB1 Open_AndX requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_OPEN_ANDX Requests Forwarded to File Server</td>
<td>Number of SMB1 Open_AndX requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Transact Notify Requests Processed</td>
<td>Number of SMB1 transact notify requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Transact Notify Requests Served Locally</td>
<td>Number of SMB1 transact notify requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Transact Notify Requests Forwarded to File Server</td>
<td>Number of SMB1 transact notify requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Transact Create Requests Processed</td>
<td>Number of SMB1 transact create requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Transact Create Requests Served Locally</td>
<td>Number of SMB1 transact create requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Transact Create Requests Forwarded to File Server</td>
<td>Number of SMB1 transact create requests forwarded to the file server.</td>
</tr>
</tbody>
</table>
Table 3-80  Field Descriptions for the show statistics accelerator smb detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMB1_Locking_AndX Requests Processed</td>
<td>Number of SMB1 Locking_AndX requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Locking_AndX Requests Served Locally</td>
<td>Number of SMB1 Locking_AndX requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Locking_AndX Requests Forwarded to File Server</td>
<td>Number of SMB1 Locking_AndX requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Transaction Requests Processed</td>
<td>Number of SMB1 transaction requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Transaction Requests Served Locally</td>
<td>Number of SMB1 transacation requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Transaction Requests Forwarded to File Server</td>
<td>Number of SMB1 transaction requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information Requests Processed</td>
<td>Number of SMB1 set information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information Requests Served Locally</td>
<td>Number of SMB1 set information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information Requests Forwarded to File Server</td>
<td>Number of SMB1 set information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information2 Requests Processed</td>
<td>Number of SMB1 set information2 requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information2 Requests Served Locally</td>
<td>Number of SMB1 set information2 requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Set_Information2 Requests Forwarded to File Server</td>
<td>Number of SMB1 set information2 requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information Requests Processed</td>
<td>Number of SMB1 query information requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information Requests Served Locally</td>
<td>Number of SMB1 query information requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information Requests Forwarded to File Server</td>
<td>Number of SMB1 query information requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information2 Requests Processed</td>
<td>Number of SMB1 query information2 requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information2 Requests Served Locally</td>
<td>Number of SMB1 query information2 requests served locally.</td>
</tr>
<tr>
<td>Total SMB1_Query_Information2 Requests Forwarded to File Server</td>
<td>Number of SMB1 query information2 requests forwarded to the file server.</td>
</tr>
<tr>
<td>Total SMB1_NTRename Requests Processed</td>
<td>Number of SMB1 NT rename requests processed.</td>
</tr>
</tbody>
</table>
Table 3-80  **Field Descriptions for the show statistics accelerator smb detail Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SMB1_FindClose2 Requests Processed</td>
<td>Number of SMB1 find close2 requests processed.</td>
</tr>
<tr>
<td>Total SMB1_Write Requests Processed</td>
<td>Number of SMB1 write requests processed.</td>
</tr>
</tbody>
</table>

Table 3-81 describes the fields shown in the `show statistics accelerator smb | inc Print` command display.

Table 3-81  **Field Descriptions for the show statistics accelerator smb | inc Print Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Amount of Time Saved (ms) Due to Print Optimization</td>
<td>Total time saved due to all the optimizations being performed on all the \spoolss pipes (one print job can open multiple \spoolss pipes) and for all the print jobs since the last time the counters were cleared.</td>
</tr>
<tr>
<td>Total SMB1 Print Open Requests Processed</td>
<td>The total number of calls to open (NTCreate_AndX).</td>
</tr>
<tr>
<td>Total SMB1 Print Open requests served locally</td>
<td>Number of SMB1 NT_Create_AndX requests for \spoolss pipe served locally by the edge WAE due to cached open and delayed close optimization.</td>
</tr>
<tr>
<td>Total SMB1 Print Open requests forwarded to server</td>
<td>Number of SMB1 NT_Create_AndX requests for \spoolss pipe which were forwarded to the file server by the edge WAE (requests that could not be served locally).</td>
</tr>
<tr>
<td>Total SMB1 Print Close requests processed</td>
<td>Number of SMB1 Close requests for the \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Total SMB1 Print Close requests served locally</td>
<td>Number of SMB1 Close requests for the \spoolss pipe served locally by the edge WAE as part of delayed close optimization.</td>
</tr>
<tr>
<td>Total SMB1 Print Close requests forwarded to the server</td>
<td>Number of SMB1 Close requests for the \spoolss pipe that were forwarded to the file server by the edge WAE (requests that could not be served locally). This total includes only the Close requests that are sent synchronously to the server (the client is waiting for a response from the server). It does not include the Close requests that are sent asynchronously (the Close requests first served locally and then sent to the server at a later point in time).</td>
</tr>
</tbody>
</table>
Chapter 3  CLI Commands

show statistics accelerator

Table 3-82 describes the fields shown in the show statistics accelerator ssl detail command display.

Table 3-81  Field Descriptions for the show statistics accelerator smb | inc Print Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print SMB1 Documents Spooled count</td>
<td>Number of SMB1 Transact EndDocPrinter messages for the spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Print SMB1 Pages Spooled count</td>
<td>Number of SMB1 Transact EndParePrinter messages for the \spoolss pipe seen by the edge WAE.</td>
</tr>
<tr>
<td>Print SMB1 Async Write count</td>
<td>Number of SMB1 Write_AndXmessages for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization.</td>
</tr>
<tr>
<td>Print SMB1 Async StartPagePrinter count</td>
<td>Number of SMB1 Transact StartPagePrinter messages (DCE-RPC opnum 18) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Async EndPagePrinter count</td>
<td>Number of SMB1 Transact EndPagePrinter messages (DCE-RPC opnum 20) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Async WritePrinter count</td>
<td>Number of SMB1 Transact WritePagePrinter messages (DCE-RPC opnum 19) for the \spoolss pipe, for which the edge WAE does an asynchronous reply optimization. Note that when used with Windows 7 clients, depending on the printer driver installed, this counter may not increment because this function may be encapsulated in a different SMB command.</td>
</tr>
<tr>
<td>Print SMB1 Remote Command Count</td>
<td>The number of SMB1 Transact commands for the \spoolss pipe seen by the edge WAE that are not parsed and are sent to the core.</td>
</tr>
</tbody>
</table>
### Table 3-82  Field Descriptions for the show statistics accelerator ssl detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Accelerator was started</td>
<td>Time stamp of when the accelerator was started. Will change if the accelerator is restarted for any reason.</td>
</tr>
<tr>
<td>Time Statistics were Last Reset/Cleared</td>
<td>Time stamp of when the accelerator statistics were last set to zero. This value should be the same as the Time Accelerator was started field if the <code>clear stat accelerator all</code> or <code>clear stat accelerator ssl</code> commands were never issued. Otherwise it will show the time at which the <code>clear stat accelerator all</code> or <code>clear stat accelerator ssl</code> commands were last issued.</td>
</tr>
<tr>
<td>Total Handled Connections</td>
<td>Number of connections that the SSL accelerator received to provide acceleration services. This includes connections that may have been accelerated successfully, as well as connections which may have experienced errors after arriving at the SSL accelerator.</td>
</tr>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections in which a successful SSL handshake was completed and the connection entered the data transfer phase. Connections that experienced errors during SSL handshake are not counted here. Connections that experienced errors after handshake are counted here. Connections that experienced errors during SSL re-handshake (renegotiation) are also counted here.</td>
</tr>
<tr>
<td>Total Connections Handed-off with Compression Policies Unchanged</td>
<td>Number of connections that the SSL accelerator bypassed. No acceleration of these connections was done. This could be because SSL version 2 was negotiated, non-SSL traffic was detected, or SSL accelerator version and/or cipher configuration dictated that the connection should be bypassed.</td>
</tr>
<tr>
<td>Total Dropped Connections</td>
<td>Number of connections that the SSL accelerator ended prematurely. This could be due to verification failures, revocation check failures, errors detected during the handshake or data transfer phase of the connection, or due to internal errors. Other counters below may shed more light as to why connections were dropped.</td>
</tr>
<tr>
<td>Current Active Connections</td>
<td>Number of connections currently being optimized by the SSL accelerator.</td>
</tr>
<tr>
<td>Current Pending Connections</td>
<td>Number of connections that have been determined to be accelerated by the SSL accelerator, and have been queued to be picked up by the accelerator.</td>
</tr>
<tr>
<td>Maximum Active Connections</td>
<td>Maximum value ever reached by the Current Active Connections counter. This counter will be reset if the accelerator is restarted or statistics are cleared.</td>
</tr>
<tr>
<td>Total LAN Bytes Read</td>
<td>Number of bytes read by the SSL accelerator from the original side of the flow.</td>
</tr>
<tr>
<td>Total Reads on LAN</td>
<td>Number of read operations performed by the SSL accelerator on the original side of the flow.</td>
</tr>
</tbody>
</table>
### Table 3-82  Field Descriptions for the show statistics accelerator ssl detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total LAN Bytes Written</td>
<td>Number of bytes written by the SSL accelerator on the original side of the flow.</td>
</tr>
<tr>
<td>Total Writes on LAN</td>
<td>Number of write operations performed by the SSL accelerator on the original side of the flow.</td>
</tr>
<tr>
<td>Total WAN Bytes Read</td>
<td>Number of bytes read by the SSL accelerator from the optimized side of the flow.</td>
</tr>
<tr>
<td>Total Reads on WAN</td>
<td>Number of read operations performed by the SSL accelerator on the optimized side of the flow.</td>
</tr>
<tr>
<td>Total WAN Bytes Written</td>
<td>Number of bytes written by the SSL accelerator on the optimized side of the flow.</td>
</tr>
<tr>
<td>Total Writes on WAN</td>
<td>Number of write operations performed by the SSL accelerator on the optimized side of the flow.</td>
</tr>
<tr>
<td>Total LAN Handshake Bytes Read</td>
<td>Number of bytes read from the original side of flows during the handshake phase of flows.</td>
</tr>
<tr>
<td>Total LAN Handshake Bytes Written</td>
<td>Number of bytes written to the original side of flows during the handshake phase of flows.</td>
</tr>
<tr>
<td>Total WAN Handshake Bytes Read</td>
<td>Number of bytes read to the optimized side of flows during the handshake phase of flows.</td>
</tr>
<tr>
<td>Total WAN Handshake Bytes Written</td>
<td>Number of bytes written to the optimized side of flows during the handshake phase of flows.</td>
</tr>
<tr>
<td>Total Accelerator Bytes Read</td>
<td>SSL accelerator internal counter. (Bytes read from original side of DRE).</td>
</tr>
<tr>
<td>Total Accelerator reads</td>
<td>SSL accelerator internal counter. (Read operations performed on original side of DRE).</td>
</tr>
<tr>
<td>Total Accelerator Bytes Written</td>
<td>SSL accelerator internal counter. (Bytes written to original side of DRE).</td>
</tr>
<tr>
<td>Total Accelerator Writes</td>
<td>SSL accelerator internal counter. (Write operations performed on original side of DRE).</td>
</tr>
<tr>
<td>Total DRE Bytes Read</td>
<td>SSL accelerator internal counter. (Bytes read from optimized side of DRE).</td>
</tr>
<tr>
<td>Total DRE Reads</td>
<td>SSL accelerator internal counter. (Read operations performed on the optimized side of DRE).</td>
</tr>
<tr>
<td>Total DRE Bytes Written</td>
<td>SSL accelerator internal counter. (Bytes read from optimized side of DRE).</td>
</tr>
<tr>
<td>Total DRE Writes</td>
<td>SSL accelerator internal counter. (Write operations performed on the optimized side of DRE).</td>
</tr>
<tr>
<td>Number of forward DNS lookups issued</td>
<td>Number of forward DNS lookups that were issued.</td>
</tr>
<tr>
<td>Number of forward DNS lookups failed</td>
<td>Number of forward DNS lookup failures.</td>
</tr>
<tr>
<td>Number of flows with matching host names</td>
<td>Number of flows where server host name matched accelerated service configuration.</td>
</tr>
<tr>
<td>Number of reverse DNS lookups issued</td>
<td>Number of reverse DNS lookups that were issued.</td>
</tr>
</tbody>
</table>
### Table 3-82  Field Descriptions for the show statistics accelerator ssl detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of reverse DNS lookups failed</td>
<td>Number of reverse DNS lookup failures.</td>
</tr>
<tr>
<td>Number of reverse DNS lookups cancelled</td>
<td>Number of reverse DNS lookups that were cancelled.</td>
</tr>
<tr>
<td>Number of flows with matching domain names</td>
<td>Number of flows where server domain name matched accelerated service configuration.</td>
</tr>
<tr>
<td>Number of flows with matching any IP rule</td>
<td>Number of flows where the server IP address matched 'IP any' rule.</td>
</tr>
<tr>
<td>Total Failed Handshakes</td>
<td>Number of connections that ended during the handshake phase.</td>
</tr>
<tr>
<td>Pipe-through due to cipher mismatch</td>
<td>Number of connections bypassed by SSL accelerator because the SSL cipher negotiated on the flow is configured to be not optimized, or not supported by the WAAS device.</td>
</tr>
<tr>
<td>Pipe-through due to version mismatch</td>
<td>Number of connections bypassed by SSL accelerator because the SSL version negotiated on the flow is configured to be not optimized, or not supported by the WAAS device.</td>
</tr>
<tr>
<td>Pipe-through due to non-matching domain name</td>
<td>Number of connections bypassed by SSL accelerator because the destination domain did not match the domains specified to be accelerated.</td>
</tr>
<tr>
<td>Pipe-through due to unknown reason</td>
<td>Number of connections bypassed by SSL accelerator because of unknown reasons.</td>
</tr>
<tr>
<td>Pipe-through due to detection of non-SSL traffic</td>
<td>Number of connections bypassed by SSL accelerator because the content of the flow did not appear to contain SSL messages.</td>
</tr>
<tr>
<td>Total SSLv3 Negotiated on LAN</td>
<td>Number of connections that used SSL version 3 on the original side of the flow.</td>
</tr>
<tr>
<td>Total TLSv1 Negotiated on LAN</td>
<td>Number of connections that used TLS version 1 on the original side of the flow.</td>
</tr>
<tr>
<td>Total SSLv3 Negotiated on WAN</td>
<td>Number of connections that used SSL version 3 on the optimized side of the flow.</td>
</tr>
<tr>
<td>Total TLSv1 Negotiated on WAN</td>
<td>Number of connections that used TLS version 1 on the optimized side of the flow.</td>
</tr>
<tr>
<td>Total SSLv3 Negotiated on Peer</td>
<td>Number of connections that used SSL version 3 on the control connection between WAAS devices.</td>
</tr>
<tr>
<td>Total TLSv1 Negotiated on Peer</td>
<td>Number of connections that used TLS version 1 on the control connection between WAAS devices.</td>
</tr>
<tr>
<td>Total renegotiations requested by server</td>
<td>Number of SSL “Hello Request” messages detected by the SSL accelerator.</td>
</tr>
<tr>
<td>Total SSL renegotiations performed</td>
<td>Number of SSL renegotiation attempts (successful and unsuccessful) detected by the SSL accelerator.</td>
</tr>
<tr>
<td>Total number of failed renegotiations</td>
<td>Number of unsuccessful SSL renegotiations detected by the SSL accelerator.</td>
</tr>
</tbody>
</table>
Table 3-82  Field Descriptions for the show statistics accelerator ssl detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows dropped due to renegotiation timeout</td>
<td>Number of flows dropped due to renegotiation timeout.</td>
</tr>
<tr>
<td>[W2W-Srvr] Number of session hits</td>
<td>Number of times inter-WAAS SSL session resumption was successful on flows where this WAE was the Core WAE.</td>
</tr>
<tr>
<td>[W2W-Srvr] Number of session misses</td>
<td>Number of times inter-WAAS SSL full handshake was carried out, on flows where this WAE was the Core WAE.</td>
</tr>
<tr>
<td>[W2W-Srvr] Number of sessions timedout</td>
<td>Number of SSL sessions that were not reused because they were timed out.</td>
</tr>
<tr>
<td>[W2W-Srvr] Number of sessions deleted because of cache full</td>
<td>Number of sessions evicted from inter-WAAS session cache to make room for new sessions.</td>
</tr>
<tr>
<td>[W2W-Srvr] Number of bad sessions deleted</td>
<td>Number of sessions evicted from inter-WAAS session cache as they were rendered unsuitable for reuse, likely due to connection errors.</td>
</tr>
<tr>
<td>[W2W-Comm] Number of sessions inserted into cache</td>
<td>Number of sessions inserted into the inter-WAAS session cache.</td>
</tr>
<tr>
<td>[W2W-Comm] Number of sessions evicted from cache</td>
<td>Number of sessions evicted from the inter-WAAS session cache.</td>
</tr>
<tr>
<td>[W2W-Comm] Number of sessions in cache</td>
<td>Number of session currently cached in the inter-WAAS session cache.</td>
</tr>
<tr>
<td>[W2W-Clnt] Number of session hits</td>
<td>Number of times an inter-WAAS session resumption was successful on flows where this WAE was the Edge WAE.</td>
</tr>
<tr>
<td>[W2W-Clnt] Number of session misses</td>
<td>Number of times an inter-WAAS full SSL handshake was carried out, on flows where this WAE was the Edge WAE.</td>
</tr>
<tr>
<td>[W2W-Clnt] Number of sessions timedout</td>
<td>Number of SSL sessions that were not reused because they were timed out.</td>
</tr>
<tr>
<td>[W2W-Clnt] Number of sessions deleted because of cache full</td>
<td>Number of sessions evicted from inter-WAAS session cache to make room for new sessions.</td>
</tr>
<tr>
<td>[W2W-Clnt] Number of bad sessions deleted</td>
<td>Number of sessions evicted from inter-WAAS session cache as they were rendered unsuitable for reuse, likely due to connection errors.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of session hits</td>
<td>Number of times a client-requested session was found in the client-facing session cache (even if eventually a full handshake had to be carried out due to session miss between Core WAE and server).</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of session misses</td>
<td>Number of times a client-requested session was not found in the client-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of sessions timedout</td>
<td>Number of sessions in the client-facing session cache that were not reused because they were timed out.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of sessions deleted because of cache full</td>
<td>Number of sessions evicted from the client-facing session cache to make room for new sessions.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of bad sessions deleted</td>
<td>Number of sessions evicted from the client-facing session cache as they were rendered unsuitable for reuse, likely due to connection errors.</td>
</tr>
</tbody>
</table>
Table 3-82  Field Descriptions for the `show statistics accelerator ssl detail` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[C2S-Srvr] Number of sessions inserted into cache</td>
<td>Number of sessions inserted into the client-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of sessions evicted from cache</td>
<td>Number of sessions evicted from the client-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Srvr] Number of sessions in cache</td>
<td>Number of sessions currently cached in the client-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of session hits</td>
<td>Number of times a Core-WAE requested session was successfully reused between the Core WAE and server.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of session misses</td>
<td>Number of times a full SSL handshake had to be carried out between the Core WAE and server.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of sessions timedout</td>
<td>Number of times a session in the server-facing session cache could not be reused because it was timed out.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of sessions deleted because of cache full</td>
<td>Number of sessions evicted from the server-facing session cache to make room for new sessions.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of bad sessions deleted</td>
<td>Number of sessions evicted from the server-facing session cache as they were rendered unsuitable for reuse, likely due to connection errors.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of sessions inserted into cache</td>
<td>Number of sessions inserted into the server-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of sessions evicted from cache</td>
<td>Number of sessions evicted from the server-facing session cache.</td>
</tr>
<tr>
<td>[C2S-Clnt] Number of sessions in cache</td>
<td>Number of sessions currently cached in the server-facing session cache.</td>
</tr>
<tr>
<td>Total Successful Certificate Verifications</td>
<td>Number of times a certificate was successfully verified (could be client or server).</td>
</tr>
<tr>
<td>Total Failed Certificate Verifications</td>
<td>Number of times a certificate verification failed (could be for various reasons, other counters may indicate why).</td>
</tr>
<tr>
<td>Failed certificate verifications due to invalid certificates</td>
<td>Number of certificate verification attempts failed because the certificate was invalid. An inspection of the SSL accelerator errorlog may indicate the reasons.</td>
</tr>
<tr>
<td>Failed Certificate Verifications based on OCSP Check</td>
<td>Number of certificate verification attempts deemed unsuccessful based on results of OCSP revocation check.</td>
</tr>
<tr>
<td>Failed Certificate Verifications (non OCSP)</td>
<td>Number of certificate verification attempts deemed unsuccessful based on results of the certificate verification operation.</td>
</tr>
<tr>
<td>Total Failed Certificate Verifications due to Other Errors</td>
<td>Number of certificate verification failures due to other problems (including internal errors). An inspection of the SSL accelerator errorlog may indicate the reasons.</td>
</tr>
<tr>
<td>Total OCSP Connections Outstanding</td>
<td>Number of OCSP requests currently in progress.</td>
</tr>
<tr>
<td>Total OCSP Requests Processed</td>
<td>Number of OCSP requests completed (including successful and unsuccessful responses).</td>
</tr>
</tbody>
</table>
### Table 3-82 Field Descriptions for the show statistics accelerator ssl detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Concurrent OCSP Requests</td>
<td>Maximum value ever reached by Total OCSP Connections Outstanding counter. This will be reset if the accelerator is restarted or statistics are cleared.</td>
</tr>
<tr>
<td>Total Successful OCSP Requests</td>
<td>Number of OCSP requests that were completed with a valid response from the OCSP responder.</td>
</tr>
<tr>
<td>Total Successful OCSP Requests Returning OK Status</td>
<td>Number of OCSP request where the certificate status was OK.</td>
</tr>
<tr>
<td>Total Successful OCSP Requests with 'NONE' Revocation</td>
<td>Number of OCSP requests where the OCSP status was deemed OK because of fallback to method configuration: none.</td>
</tr>
<tr>
<td>Total Successful OCSP Requests Returning REVOKED Status</td>
<td>Number of OCSP requests where the certificate status was REVOKED.</td>
</tr>
<tr>
<td>Total Successful OCSP Requests Returning UNKNOWN Status</td>
<td>Number of OCSP requests where the responder did not know the status of the certificate.</td>
</tr>
<tr>
<td>Total Failed OCSP Requests</td>
<td>Number of OCSP requests which could not be completed successfully.</td>
</tr>
<tr>
<td>Total Failed OCSP Requests due to Other Errors</td>
<td>Number of OCSP requests deemed failed due to internal errors.</td>
</tr>
<tr>
<td>Total Failed OCSP Requests due to Connection Errors</td>
<td>Number of OCSP requests deemed failed because a connection to the OCSP responder could not be set up.</td>
</tr>
<tr>
<td>Total Failed OCSP Requests due to Connection Timeouts</td>
<td>Number of OCSP requests deemed failed because no response was received from the OCSP responder.</td>
</tr>
<tr>
<td>Total Failed OCSP Requests due to Insufficient Resources</td>
<td>Number of OCSP requests deemed failed because there was insufficient memory to carry out the revocation check.</td>
</tr>
<tr>
<td>Total OCSP Bytes Read</td>
<td>Number of bytes read from connections to OCSP responders.</td>
</tr>
<tr>
<td>Total OCSP Write Bytes</td>
<td>Number of bytes written to connections to OCSP responders.</td>
</tr>
<tr>
<td>Flows dropped due to verification check</td>
<td>Number of connections dropped by this WAE because verification of the client or server certificate failed.</td>
</tr>
<tr>
<td>Flows dropped due to revocation check</td>
<td>Number of connections dropped by this WAE because revocation check of the client or server certificate failed.</td>
</tr>
<tr>
<td>Flows dropped due to other reasons</td>
<td>Number of connections dropped by this WAE because of errors which may have prevented the verification check or revocation check from returning a valid result. An inspection of the SSL accelerator errorlog may indicate the reasons.</td>
</tr>
</tbody>
</table>

Table 3-83 describes the fields shown in the `show statistics accelerator ssl payload http` command display.
Table 3-83 Field Descriptions—show statistics accelerator ssl payload http Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections in which a successful SSL handshake was completed and the connection entered the data transfer phase. Connections that experienced errors during SSL handshake are not counted here. Connections that experienced errors after handshake are counted here. Connections that experienced errors during SSL re-handshake (renegotiation) are also counted here.</td>
</tr>
<tr>
<td>Successful HTTP accelerator insertions</td>
<td>Number of connections where the SSL accelerator successfully inserted the HTTP accelerator.</td>
</tr>
<tr>
<td>Unsuccessful HTTP accelerator insertions</td>
<td>Number of connections where the SSL accelerator was unsuccessfully in inserting the HTTP accelerator.</td>
</tr>
</tbody>
</table>

Table 3-84 describes the fields shown in the show statistics accelerator ssl payload other command display.

Table 3-84 Field Descriptions—show statistics accelerator ssl payload other Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Optimized Connections</td>
<td>Number of connections in which a successful SSL handshake was completed and the connection entered the data transfer phase. Connections that experienced errors during SSL handshake are not counted here. Connections that experienced errors after handshake are counted here. Connections that experienced errors during SSL re-handshake (renegotiation) are also counted here.</td>
</tr>
</tbody>
</table>

Table 3-85 describes the fields shown in the show statistics accelerator video detail command display.

Table 3-85 Field Descriptions—show statistics accelerator video detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time elapsed since “clear statistics”</td>
<td>Time elapsed since the statistics were last reset.</td>
</tr>
<tr>
<td>Connections handled</td>
<td></td>
</tr>
<tr>
<td>Total handled</td>
<td>Number and percentage of connections handled.</td>
</tr>
<tr>
<td>Windows-media live accelerated</td>
<td>Number and percentage of accelerated connections.</td>
</tr>
<tr>
<td>Un-accelerated pipethrough</td>
<td>Number and percentage of connections passed through the video accelerator but not accelerated.</td>
</tr>
<tr>
<td>Un-accelerated dropped due to config</td>
<td>Number and percentage of connections dropped because the video accelerator detected that the connection could not be accelerated and was configured to drop unaccelerated video traffic. See the fields in the Unaccelerated Connections section for the reasons that the video accelerator cannot accelerate a connection.</td>
</tr>
</tbody>
</table>
### Table 3-85: Field Descriptions—show statistics accelerator video detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error dropped connections</td>
<td>Number and percentage of dropped connections due to errors.</td>
</tr>
<tr>
<td>Windows-media active sessions</td>
<td></td>
</tr>
<tr>
<td>Outgoing (client) sessions</td>
<td>Current and maximum number of active Windows Media sessions with clients.</td>
</tr>
<tr>
<td>Incoming (server) sessions</td>
<td>Current and maximum number of active Windows Media sessions with servers.</td>
</tr>
<tr>
<td>Unaccelerated Connections</td>
<td></td>
</tr>
<tr>
<td>Total Unaccelerated</td>
<td>Number of unaccelerated connections.</td>
</tr>
<tr>
<td>Unsupported player</td>
<td>Number of unaccelerated connections due to an unsupported player.</td>
</tr>
<tr>
<td>Unsupported transport</td>
<td>Number of unaccelerated connections due to an unsupported transport.</td>
</tr>
<tr>
<td>Unsupported protocol</td>
<td>Number of unaccelerated connections due to an unsupported protocol.</td>
</tr>
<tr>
<td>Windows-media VoD</td>
<td>Number of unaccelerated connections due to client requesting a video on demand stream.</td>
</tr>
<tr>
<td>Max stream bitrate overload</td>
<td>Number of unaccelerated connections due to stream bit-rate overload.</td>
</tr>
<tr>
<td>Max aggregate bitrate overload</td>
<td>Number of unaccelerated connections due to aggregate bit-rate overload.</td>
</tr>
<tr>
<td>Max concurrent sessions overload</td>
<td>Number of unaccelerated connections due to client session overload.</td>
</tr>
<tr>
<td>Other</td>
<td>Number of unaccelerated connections due to other causes.</td>
</tr>
<tr>
<td>Error dropped connections</td>
<td></td>
</tr>
<tr>
<td>Total errors</td>
<td>Total number of dropped connections due to errors.</td>
</tr>
<tr>
<td>Client timeouts</td>
<td>Number of client timeouts.</td>
</tr>
<tr>
<td>Server timeouts</td>
<td>Number of server timeouts.</td>
</tr>
<tr>
<td>Client stream errors</td>
<td>Number of client stream errors.</td>
</tr>
<tr>
<td>Server stream errors</td>
<td>Number of server stream errors.</td>
</tr>
<tr>
<td>Other errors</td>
<td>Number of other errors.</td>
</tr>
<tr>
<td>Windows-media byte savings</td>
<td></td>
</tr>
<tr>
<td>% Bytes saved</td>
<td>Percentage of bytes saved by the video accelerator.</td>
</tr>
<tr>
<td>Incoming (server) bytes</td>
<td>Number of incoming bytes.</td>
</tr>
<tr>
<td>Outgoing (client) bytes</td>
<td>Number of outgoing bytes.</td>
</tr>
<tr>
<td>Windows-media aggregate bitrate</td>
<td></td>
</tr>
<tr>
<td>Total bitrate</td>
<td>Total current and maximum bit rate, including both incoming and outgoing traffic.</td>
</tr>
</tbody>
</table>
### Table 3-85  Field Descriptions—show statistics accelerator video detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing (client) bitrate</td>
<td>Current and maximum bit rate to clients.</td>
</tr>
<tr>
<td>Incoming (server) bitrate</td>
<td>Current and maximum bit rate from servers.</td>
</tr>
<tr>
<td>Policy Engine Statistics</td>
<td></td>
</tr>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are:</td>
</tr>
<tr>
<td></td>
<td>- WAE was rebooted</td>
</tr>
<tr>
<td></td>
<td>- Configuration change with the accelerator application enabled</td>
</tr>
<tr>
<td></td>
<td>- Restart of the accelerator application by the Node Manager</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that had a configured policy that specified the use of the accelerator application.</td>
</tr>
<tr>
<td>Updated Released</td>
<td>Number of hits that were released during Auto-Discovery and did not make use of the accelerator application.</td>
</tr>
<tr>
<td>Active Connections</td>
<td>Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery.</td>
</tr>
<tr>
<td>Completed Connections</td>
<td>Number of hits that have made use of the accelerator application and have completed.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the video accelerator application but were dropped by the Policy Engine because it detected an overload condition and the video accelerator was configured to drop unaccelerated video traffic due to overload conditions. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>
Table 3-85  Field Descriptions—show statistics accelerator video detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:</td>
</tr>
<tr>
<td></td>
<td>• Not registered</td>
</tr>
<tr>
<td></td>
<td>• Keepalive timeout</td>
</tr>
<tr>
<td></td>
<td>• No license</td>
</tr>
<tr>
<td></td>
<td>• Load level not within range</td>
</tr>
<tr>
<td></td>
<td>• Connection limit exceeded</td>
</tr>
<tr>
<td></td>
<td>• Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)</td>
</tr>
<tr>
<td></td>
<td>• Minimum TFO not available</td>
</tr>
<tr>
<td></td>
<td>• Resource manager (minimum resources not available)</td>
</tr>
<tr>
<td></td>
<td>• Global config optimization disabled</td>
</tr>
<tr>
<td></td>
<td>• TFO limit exceeded (systemwide connection limit reached)</td>
</tr>
<tr>
<td></td>
<td>• Server-side invoked</td>
</tr>
<tr>
<td></td>
<td>• DM deny (Policy Engine dynamic match deny rule matched)</td>
</tr>
<tr>
<td></td>
<td>• No DM accept was matched</td>
</tr>
</tbody>
</table>

Auto-Discovery Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections queued for accept</td>
<td>Number of connections added to the accelerator connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to accelerator not being present, or a queue overflow.</td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>

Related Commands

- `show accelerator`
- `show statistics connection closed`
show statistics aoim

To display AO (accelerator) Information Manager statistics for a WAAS device, use the **show statistics aoim** EXEC command.

```
show statistics aoim [local | peer | detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>(Optional) Displays statistics only for all locally registered application accelerators.</td>
</tr>
<tr>
<td>peer</td>
<td>Displays statistics only for all peer WAAS devices encountered.</td>
</tr>
<tr>
<td>detail</td>
<td>Displays detailed statistics that include policy engine and auto-discovery statistics.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

| Command Modes | application-accelerator |

**Usage Guidelines**

Use the **show statistics aoim** command with no options to display statistical information for locally registered application accelerators and all peer WAAS devices that the local WAAS device has encountered.

**Examples**

Table 3-86 describes the statistics that are displayed by the **show statistics aoim** EXEC command. Only the Local AOIM Statistics section is displayed when you use the **local** option. Only the Peer AOIM Statistics section is displayed when you use the **peer** option. The Detailed AOIM Statistics section is displayed only when you use the **detail** option.

**Table 3-86 Field Descriptions for the show statistics aoim Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local AOIM Statistics</td>
<td>Number of times that the AO Information Manager has synchronized with a peer WAAS device.</td>
</tr>
<tr>
<td>Total # Peer Syncs</td>
<td>Number of currently active peer synchronizations in progress.</td>
</tr>
<tr>
<td>Current # Peer Syncs in Progress</td>
<td>Historical maximum number of concurrently active peer synchronizations in progress.</td>
</tr>
<tr>
<td>AOIM DB Size</td>
<td>Memory size of the AO Information Management database.</td>
</tr>
<tr>
<td>Number of Peers</td>
<td>Number of known or encountered peer WAAS devices.</td>
</tr>
</tbody>
</table>
### Field Descriptions for the `show statistics aoim` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Local AOs</td>
<td>Number of application accelerators registered on this WAAS device.</td>
</tr>
<tr>
<td>Total # of AO Handoffs &amp; Inserts</td>
<td>Number of application accelerators invoked to handle a connection once a peer synchronization has completed.</td>
</tr>
<tr>
<td>AO</td>
<td>Name of the locally registered application accelerator.</td>
</tr>
<tr>
<td>Version</td>
<td>Software version of the locally registered application accelerator.</td>
</tr>
<tr>
<td>Registered</td>
<td>Registration status of the local application accelerator. An application accelerator may be deregistered but the AO Information Manager will still retain knowledge about it, marking it as unregistered.</td>
</tr>
<tr>
<td># Handoffs</td>
<td>Number of times a connection was passed directly to the application accelerator after a peer synchronization has completed.</td>
</tr>
<tr>
<td># Inserts</td>
<td>Number of times a connection was passed indirectly to the application accelerator after a peer synchronization has completed.</td>
</tr>
<tr>
<td># Incompatible</td>
<td>Number of times a connection was not passed to the application accelerator due to software incompatibility with the peer application accelerator on the peer WAAS device after synchronization has completed.</td>
</tr>
<tr>
<td>Peer AOIM Statistics</td>
<td></td>
</tr>
<tr>
<td>Number of Peers</td>
<td>Number of peer WAAS devices encountered.</td>
</tr>
<tr>
<td>PEER</td>
<td>MAC address of the peer WAAS device, and whether it has been formally registered with the AO Information database.</td>
</tr>
<tr>
<td>Peer Software Version</td>
<td>WAAS software version and build number running on the peer WAAS device. WAAS software versions prior to 4.1 do not have the AO Information Management mechanism, so they are reported as having a software version of 4.0.x.</td>
</tr>
<tr>
<td>Peer IP Address</td>
<td>IP address of the primary network interface of the peer WAAS device.</td>
</tr>
<tr>
<td>AO</td>
<td>Name of the registered application accelerator on the peer WAAS device.</td>
</tr>
<tr>
<td>VERSION</td>
<td>Software version of the registered application accelerator on the peer WAAS device.</td>
</tr>
<tr>
<td>COMPATIBLE</td>
<td>Compatibility status of the application accelerator on the peer WAAS device with a matching locally-registered application accelerator on this device. Possible values are Y (yes/compatible), N (no/incompatible), and U (unknown). The unknown state may occur if no matching local application accelerator is registered on the local WAAS device.</td>
</tr>
<tr>
<td>#CONNS</td>
<td>Number of incoming connections found to have a compatible application accelerator on both the local and peer WAAS devices and scheduled to be processed by the locally compatible application accelerator. Certain conditions may result in a discrepancy between a connection being scheduled to be processed by an application accelerator and being successfully processed, so this value may diverge somewhat from the number of connections that a specific local application accelerator reports.</td>
</tr>
</tbody>
</table>

Detailed AOIM Statistics

Policy Engine Statistics
Table 3-86  **Field Descriptions for the show statistics aoim Command (continued)**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session timeouts</td>
<td>Number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the accelerator application within the Policy Engine.</td>
</tr>
<tr>
<td>Total timeouts</td>
<td>Total number of times the accelerator application did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.</td>
</tr>
<tr>
<td>Last keepalive received</td>
<td>Amount of time since the last keepalive (seconds).</td>
</tr>
<tr>
<td>Last registration</td>
<td>Amount of time since the accelerator application registered with the Policy Engine (seconds). Most likely causes are:</td>
</tr>
<tr>
<td>occurred</td>
<td>• WAE was rebooted</td>
</tr>
<tr>
<td></td>
<td>• Configuration change with the accelerator application enabled</td>
</tr>
<tr>
<td></td>
<td>• Restart of the accelerator application by the Node Manager</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that had a configured policy that specified the use of the accelerator application.</td>
</tr>
<tr>
<td>Updated Released</td>
<td>Number of hits that were released during Auto-Discovery and did not make use of the accelerator application.</td>
</tr>
<tr>
<td>Active Connections</td>
<td>Number of hits that represent either active connections using the accelerator application or connections that are still in the process of performing Auto-Discovery.</td>
</tr>
<tr>
<td>Completed Connections</td>
<td>Number of hits that have made use of the accelerator application and have completed.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of hits that attempted use of the accelerator application but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.</td>
</tr>
</tbody>
</table>
### Field Descriptions for the `show statistics aoim` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rejected Connection Counts Due To: (Total:)</td>
<td>Number of all of the reject reasons that represent hits that were not able to use the accelerator applications. Reject reasons include the following:</td>
</tr>
<tr>
<td></td>
<td>- Not registered</td>
</tr>
<tr>
<td></td>
<td>- Keepalive timeout</td>
</tr>
<tr>
<td></td>
<td>- No license</td>
</tr>
<tr>
<td></td>
<td>- Load level not within range</td>
</tr>
<tr>
<td></td>
<td>- Connection limit exceeded</td>
</tr>
<tr>
<td></td>
<td>- Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)</td>
</tr>
<tr>
<td></td>
<td>- Minimum TFO not available</td>
</tr>
<tr>
<td></td>
<td>- Resource manager (minimum resources not available)</td>
</tr>
<tr>
<td></td>
<td>- Global config optimization disabled</td>
</tr>
<tr>
<td></td>
<td>- TFO limit exceeded (systemwide connection limit reached)</td>
</tr>
<tr>
<td></td>
<td>- Server-side invoked</td>
</tr>
<tr>
<td></td>
<td>- DM deny (Policy Engine dynamic match deny rule matched)</td>
</tr>
<tr>
<td></td>
<td>- No DM accept was matched</td>
</tr>
</tbody>
</table>

### Auto-Discovery Statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections queued for accept</td>
<td>Number of connections added to the accelerator connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the accelerator connection accept queue due to a failure. The failure could possibly be due to accelerator not being present, or a queue overflow.</td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>For the accelerators that work in dual-ended mode, accelerator discovery (as part of auto discovery) is performed. This counter indicates the number of times accelerator discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times accelerator discovery failed. Possible reasons include accelerator not being enabled or running on the peer WAE, or the license not configured for the accelerator.</td>
</tr>
</tbody>
</table>

### Related Commands

`show statistics accelerator`
show statistics application

To view the performance statistics for applications running on your WAAS device, use the `show statistics application` EXEC command.

```
show statistics application [name app_name | savings [appname app_name]]
```

**Syntax Description**

- `name app_name` (Optional) Statistics for the specified application.
- `savings` (Optional) Savings statistics applications.
- `appname app_name` (Optional) Savings statistics for the specified application.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

The `show statistics application` command displays statistics for all of the application traffic running on your network. To view the statistics for one specific class of applications only, use the `name` keyword.

Table 3-87 lists the valid `app_name` values you can use with the `show statistics application` EXEC command. For a description of the applications supported by WAAS, see Appendix A, “Predefined Application Policies” in the Cisco Wide Area Application Services Configuration Guide.

**Table 3-87  app_name Variable Values for the show statistics application Command**

<table>
<thead>
<tr>
<th>app_name Values</th>
<th>Authentication</th>
<th>Backup</th>
<th>CAD</th>
<th>Call-Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CIFS</td>
<td>Citrix</td>
<td>Conferencing</td>
<td>Console</td>
</tr>
<tr>
<td>Content-Management</td>
<td>Directory-Services</td>
<td>Email-and-Messaging</td>
<td>Enterprise-Applications</td>
<td></td>
</tr>
<tr>
<td>File-System</td>
<td>File-Transfer</td>
<td>Instant-Messaging</td>
<td>Name-Services</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>P2P</td>
<td>Printing</td>
<td>Remote-Desktop</td>
<td></td>
</tr>
<tr>
<td>Replication</td>
<td>SQL</td>
<td>SSH</td>
<td>SSL</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>Streaming</td>
<td>Systems-Management</td>
<td>Version-Management</td>
<td></td>
</tr>
<tr>
<td>VPN</td>
<td>Web</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 3-88  Statistic Descriptions for the `show statistics application` Command

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt TCP Plus</td>
<td>Optimized traffic on the WAN side, optimized at the TFO and DRE/LZ/accelerator levels.</td>
</tr>
<tr>
<td>Orig TCP Plus</td>
<td>Original traffic on the LAN side, optimized at the TFO and DRE/LZ/accelerator levels.</td>
</tr>
<tr>
<td>Opt Preposition</td>
<td>Optimized traffic on the WAN side, initiated by the WAE device for preposition purposes.</td>
</tr>
<tr>
<td>Orig Preposition</td>
<td>Original traffic (unoptimized) on the LAN side, initiated by the WAE device for preposition purposes.</td>
</tr>
<tr>
<td>Opt TCP Only</td>
<td>Optimized traffic on the WAN side, optimized at the TFO level only.</td>
</tr>
<tr>
<td>Orig TCP Only</td>
<td>Original traffic on the LAN side, optimized at the TFO level only.</td>
</tr>
<tr>
<td>Internal Client</td>
<td>Traffic initiated by the WAE device.</td>
</tr>
<tr>
<td>Internal Server</td>
<td>Traffic terminated by the WAE device.</td>
</tr>
<tr>
<td>PT Client</td>
<td>Pass-through traffic going from the client to the server.</td>
</tr>
<tr>
<td>PT Server</td>
<td>Pass-through traffic going from the server to the client.</td>
</tr>
<tr>
<td>Opt TCP Plus</td>
<td>Optimized traffic on the WAN side, optimized at the TFO and DRE/LZ/accelerator levels.</td>
</tr>
<tr>
<td>Preposition</td>
<td>Traffic initiated by the WAE device for preposition purposes.</td>
</tr>
<tr>
<td>Opt TCP Only</td>
<td>Optimized traffic on the WAN side, optimized at the TFO level only.</td>
</tr>
<tr>
<td>Internal Client</td>
<td>Traffic initiated by the WAE device.</td>
</tr>
<tr>
<td>Internal Server</td>
<td>Traffic terminated by the WAE device.</td>
</tr>
<tr>
<td>Auto-Discovery</td>
<td>Connections in auto-discovery.</td>
</tr>
<tr>
<td>PT No Peer</td>
<td>Pass-through reasons.</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>PT Overall</td>
<td>Total passed-through traffic for all reasons.</td>
</tr>
</tbody>
</table>

Table 3-89 describes the result values shown for the statistics in the `show statistics application` command display.

### Table 3-89  Result Value Descriptions for the `show statistics application` Command

<table>
<thead>
<tr>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bytes</td>
<td>Amount of traffic shown as a count of the number of bytes.</td>
</tr>
<tr>
<td>Packets</td>
<td>Amount of traffic shown as a count of the number of packets.</td>
</tr>
<tr>
<td>Inbound</td>
<td>Traffic received by the WAE device.</td>
</tr>
<tr>
<td>Outbound</td>
<td>Traffic sent by the WAE device.</td>
</tr>
<tr>
<td>Active</td>
<td>The number of connections that are active.</td>
</tr>
<tr>
<td>Completed</td>
<td>The number of connections that have been completed.</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>The amount of compressed traffic compared to the amount of original, uncompressed traffic.</td>
</tr>
</tbody>
</table>
show statistics application

Related Commands  show statistics
show statistics appnav-controller

To display statistics for an AppNav Controller, use the `show statistics appnav-controller` EXEC command.

```
show statistics appnav-controller connection [client-ip ip_address | client-port port | server-ip
 ip_address | server-port port | detail [client-ip ip_address | client-port port | server-ip
 ip_address | server-port port] | summary]
```

show statistics appnav-controller drop

show statistics appnav-controller flow-asymmetry

show statistics appnav-controller flow-management [app-sess | appnav-controller-ip ip_address | detail | flow-table | syn]

show statistics appnav-controller ip

```
show statistics appnav-controller sessions [client-ip ip_address | server-ip ip_address | server-port port | detail [client-ip ip_address | server-ip ip_address | server-port port]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>connection</strong></td>
<td>(Optional) Displays AppNav Controller connection statistics.</td>
</tr>
<tr>
<td><strong>client-ip</strong></td>
<td>(Optional) Displays the statistics for the client with the specified IP address.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td><strong>client-port port</strong></td>
<td>(Optional) Displays the connection statistics for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td><strong>server-ip</strong></td>
<td>(Optional) Displays the statistics for the server with the specified IP address.</td>
</tr>
<tr>
<td><strong>server-port port</strong></td>
<td>(Optional) Displays the statistics for the server with the specified port number (1–65535).</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>(Optional) Displays detailed statistics.</td>
</tr>
<tr>
<td><strong>summary</strong></td>
<td>(Optional) Displays summary statistics.</td>
</tr>
<tr>
<td><strong>drop</strong></td>
<td>(Optional) Displays statistics about dropped packets.</td>
</tr>
<tr>
<td><strong>flow-asymmetry</strong></td>
<td>(Optional) Displays statistics about asymmetric flows.</td>
</tr>
<tr>
<td><strong>flow-management</strong></td>
<td>(Optional) Displays flow learning statistics.</td>
</tr>
<tr>
<td><strong>app-sess</strong></td>
<td>(Optional) Displays application and session statistics.</td>
</tr>
<tr>
<td><strong>appnav-controller-ip</strong></td>
<td>(Optional) Displays flow-management statistics of the specified AppNav Controller.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td></td>
</tr>
<tr>
<td><strong>flow-table</strong></td>
<td>(Optional) Displays flow-table statistics.</td>
</tr>
<tr>
<td><strong>syn</strong></td>
<td>(Optional) Displays SYN statistics.</td>
</tr>
<tr>
<td><strong>ip</strong></td>
<td>(Optional) Displays IP-related statistics.</td>
</tr>
<tr>
<td><strong>sessions</strong></td>
<td>(Optional) Displays session statistics.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.
show statistics appnav-controller

**Command Modes**
- EXEC

**Device Modes**
- appnav-controller

**Related Commands**
- show appnav-controller flow-distribution
- show service-insertion
- show statistics service-insertion
show statistics authentication

To display authentication statistics for a WAAS device, use the `show statistics authentication` EXEC command.

```
show statistics authentication
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

Use the `show statistics authentication` command to display the number of authentication access requests, denials, and allowances recorded.

**Examples**

The following is sample output from the `show statistics authentication` command. It displays the statistics related to authentication on the WAAS device.

```
WAE# show statistics authentication
Authentication Statistics

Number of access requests: 115
Number of access deny responses: 12
Number of access allow responses: 103
```

**Related Commands**

- `clear arp-cache`
- `show authentication`
show statistics auto-discovery

To display Traffic Flow Optimization (TFO) auto-discovery statistics for a WAE, use the `show statistics auto-discovery` EXEC command.

```
show statistics auto-discovery [blacklist]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blacklist</td>
<td>(Optional) Displays the blacklist server statistics.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

Table 3-90 describes the result values shown for the statistics in the `show statistics application` command display.

<table>
<thead>
<tr>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto discovery structure</td>
<td></td>
</tr>
<tr>
<td>Allocation Failure</td>
<td>Number of auto-discovery allocation failures.</td>
</tr>
<tr>
<td>Allocation Success</td>
<td>Number of auto-discovery allocation successes.</td>
</tr>
<tr>
<td>Deallocations</td>
<td>Number of auto-discovery connections that were deallocated.</td>
</tr>
<tr>
<td>Timed Out</td>
<td>Number of autodiscovery allocations that timed out.</td>
</tr>
<tr>
<td>Auto discovery table</td>
<td></td>
</tr>
<tr>
<td>Bucket Overflows</td>
<td>Number of auto-discovery table buffer overflows.</td>
</tr>
<tr>
<td>Table Overflows</td>
<td>Number of auto-discovery table overflows.</td>
</tr>
<tr>
<td>Entry Adds</td>
<td>Number of auto-discovery table option additions.</td>
</tr>
<tr>
<td>Entry Drops</td>
<td>Number of auto-discovery table option deletions.</td>
</tr>
<tr>
<td>Entry Count</td>
<td>Total number of auto-discovery table option entries.</td>
</tr>
<tr>
<td>Lookups</td>
<td>Number of auto-discovery table lookups performed.</td>
</tr>
<tr>
<td>Bind hash add failures</td>
<td>Number of hash table binds that failed.</td>
</tr>
<tr>
<td>Flow creation failures</td>
<td>Number of flow creation attempts that failed.</td>
</tr>
<tr>
<td>Route Lookup</td>
<td></td>
</tr>
<tr>
<td>Failures</td>
<td>Number of route table lookups that failed.</td>
</tr>
<tr>
<td>Success</td>
<td>Number of route table lookups that succeeded.</td>
</tr>
</tbody>
</table>
### Table 3-90 Result Value Descriptions for the show statistics auto-discovery Command

<table>
<thead>
<tr>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socket</td>
<td></td>
</tr>
<tr>
<td>Allocation failures</td>
<td>Number of socket allocations that failed.</td>
</tr>
<tr>
<td>Accept pair allocation failures</td>
<td>Number of socket pair allocations that failed.</td>
</tr>
<tr>
<td>Unix allocation failures</td>
<td>Number of Unix socket allocations that failed.</td>
</tr>
<tr>
<td>Connect lookup failures</td>
<td>Number of socket connection lookups that failed.</td>
</tr>
<tr>
<td>Packets</td>
<td></td>
</tr>
<tr>
<td>Memory allocation failures</td>
<td>Number of packet memory allocations that failed.</td>
</tr>
<tr>
<td>Total Sent</td>
<td>Total number of auto-discovery packets sent.</td>
</tr>
<tr>
<td>Total Received</td>
<td>Total number of auto-discovery packets received.</td>
</tr>
<tr>
<td>Incorrect length or checksum received</td>
<td>Number of packets received with an incorrect length or checksum.</td>
</tr>
<tr>
<td>Invalid filtering tuple received</td>
<td>Number of packets received with an incorrect filtering tuple.</td>
</tr>
<tr>
<td>Received for dead connection</td>
<td>Number of packets received for invalid connections.</td>
</tr>
<tr>
<td>Ack dropped in synack received state</td>
<td>Number of acknowledgement packets dropped that were in the synchronize acknowledgement state.</td>
</tr>
<tr>
<td>Non Syn dropped in nostate state</td>
<td>Number of non-SYN packets dropped that were in the nostate state.</td>
</tr>
<tr>
<td>Syn-ack packets to int. client dropped</td>
<td>Number of synack packets dropped when being sent to internal client.</td>
</tr>
<tr>
<td>Packets dropped state already exists</td>
<td>Number of packets for which the dropped state already exists.</td>
</tr>
<tr>
<td>Auto discovery failure</td>
<td></td>
</tr>
<tr>
<td>No peer or asymmetric route</td>
<td>Auto-discovery failed because no peers was found, or asymmetric routing configuration was indicated.</td>
</tr>
<tr>
<td>Insufficient option space</td>
<td>Auto-discovery failed because there was not enough space to add options.</td>
</tr>
<tr>
<td>Invalid option content</td>
<td>Auto-discovery failed because the content of an option was invalid.</td>
</tr>
<tr>
<td>Invalid connection state</td>
<td>Auto-discovery failed because the connection state was invalid.</td>
</tr>
<tr>
<td>Missing Ack conf</td>
<td>Auto-discovery failed because of missing auto discovery options that were sent from the edge WAE sends to the core WAE on the ack packet.</td>
</tr>
<tr>
<td>Intermediate device</td>
<td>Auto-discovery failed because a device was discovered between the WAES.</td>
</tr>
<tr>
<td>Version mismatch</td>
<td>Auto-discovery failed because the WAAS software versions did not match.</td>
</tr>
<tr>
<td>Incompatible Peer AO</td>
<td>Auto-discovery failed because the peer accelerator is not compatible with the accelerator on this WAE.</td>
</tr>
</tbody>
</table>
Table 3-90 Result Value Descriptions for the show statistics auto-discovery Command

<table>
<thead>
<tr>
<th>Result</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOIM Sync with Peer still in progress</td>
<td>Auto-discovery failed because AOIM synchronization is still in progress between the peers.</td>
</tr>
<tr>
<td>Auto discovery success TO</td>
<td></td>
</tr>
<tr>
<td>Internal server</td>
<td>Address of the internal server.</td>
</tr>
<tr>
<td>External server</td>
<td>Address of the external server.</td>
</tr>
<tr>
<td>Auto discovery success FOR</td>
<td></td>
</tr>
<tr>
<td>Internal client</td>
<td>Address of the internal client.</td>
</tr>
<tr>
<td>External client</td>
<td>Address of the external client.</td>
</tr>
<tr>
<td>Auto discovery success SYN retransmission</td>
<td></td>
</tr>
<tr>
<td>Zero retransmit</td>
<td>No retransmissions were required for auto-discovery SYN success.</td>
</tr>
<tr>
<td>One retransmit</td>
<td>One retransmission were required for auto-discovery SYN success.</td>
</tr>
<tr>
<td>Two+ retransmit</td>
<td>Two or more retransmissions were required for auto-discovery SYN success.</td>
</tr>
<tr>
<td>AO discovery</td>
<td></td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>Auto-discovery of an application optimizer was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Auto-discovery of an application optimizer was not successful.</td>
</tr>
<tr>
<td>Auto discovery Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>RST received</td>
<td>Number of resets received.</td>
</tr>
<tr>
<td>SYNs found with our device id</td>
<td>Number of SYN packets received indicating WAE’s device ID.</td>
</tr>
<tr>
<td>SYN retransmit count resets</td>
<td>Number of resets to the SYN retransmission count.</td>
</tr>
<tr>
<td>SYN-ACK sequence number resets (syncookies)</td>
<td>Number of SYN-ACK packets received with a sequence number reset.</td>
</tr>
<tr>
<td>SYNs found with our device id</td>
<td>Number of SYN-ACK packets received indicating WAE’s device ID.</td>
</tr>
<tr>
<td>SYNs found with mirrored options</td>
<td>Number of SYN-ACK packets received with mirrored options.</td>
</tr>
<tr>
<td>Connections taken over for MAPI optimization</td>
<td>Number of connections taken over for MAPI acceleration from an overloaded serial cluster peer.</td>
</tr>
</tbody>
</table>

Related Commands

- show auto-discovery
- show statistics filtering
- show statistics tfo
- show statistics connection closed
show statistics cifs

To display the CIFS statistics information, use the show statistics cifs EXEC command.

show statistics cifs {cache details | requests}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache details</td>
<td>Specifies the statistics for the CIFS cache.</td>
</tr>
<tr>
<td>requests</td>
<td>Specifies the statistics for CIFS requests.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Use the show statistics cifs EXEC command to view the CIFS traffic details itemized by request type. The show statistics cifs command is useful when you want to understand how the system is being used. For example, are requests mostly for data transfer, browsing, database activity, or for some other purpose? You might correlate these statistics with performance issues for troubleshooting purposes, or you may use them to determine what specific performance optimizations to configure.

Examples

Table 3-91 describes the fields in the show statistics cifs requests command display.

### Table 3-91 Field Descriptions for the show statistics cifs requests Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics gathering period</td>
<td>Number of hours, minutes, seconds, and milliseconds of the statistics gathering period.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of CIFS requests.</td>
</tr>
<tr>
<td>Remote</td>
<td>Number of CIFS requests that were not handled from the local cache.</td>
</tr>
<tr>
<td>ALL_COMMANDS</td>
<td>Alias for all of the CIFS commands shown.</td>
</tr>
<tr>
<td>total</td>
<td>Total number of requests for all commands.</td>
</tr>
<tr>
<td>remote</td>
<td>Number of remote requests for all commands.</td>
</tr>
<tr>
<td>async</td>
<td>Number of async requests for all commands.</td>
</tr>
<tr>
<td>avg local</td>
<td>Average local request time in milliseconds for all commands.</td>
</tr>
<tr>
<td>avg remote</td>
<td>Average remote request time in milliseconds for all commands.</td>
</tr>
<tr>
<td>CONNECT</td>
<td>Connection check command.</td>
</tr>
<tr>
<td>total</td>
<td>Total number of requests for this command.</td>
</tr>
</tbody>
</table>
### Table 3-91  Field Descriptions for the show statistics cifs requests Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote</td>
<td>Number of remote requests for this command.</td>
</tr>
<tr>
<td>async</td>
<td>Number of async requests for this command.</td>
</tr>
<tr>
<td>avg local</td>
<td>Average local request time in milliseconds for this command.</td>
</tr>
<tr>
<td>avg remote</td>
<td>Average remote request time in milliseconds for this command.</td>
</tr>
<tr>
<td>NB_SESSION_REQ</td>
<td>NetBIOS session request command.</td>
</tr>
<tr>
<td>VFN_LIVELINESS</td>
<td>Liveliness check command.</td>
</tr>
</tbody>
</table>

**Related Commands**  
*show cifs*
show statistics class-default

To display statistics information about the class-default class map, use the `show statistics class-default` EXEC command.

```
show statistics class-default top-talkers
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>top-talkers</code></td>
<td>Displays the statistics for the top 10 ports with the most traffic.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

`EXEC`

### Device Modes

`application-accelerator`

`appnav-controller`

### Usage Guidelines

Use the `show statistics class-default top-talkers` EXEC command to view statistics for traffic matched by the class-default class map. Statistics are displayed for the top 10 ports by traffic volume.

### Examples

The following shows an example of output from the `show statistics class-default top-talkers` command.

```
WAE# show statistics class-default top-talkers

<table>
<thead>
<tr>
<th>Rank</th>
<th>Port</th>
<th>Vol %</th>
<th>Bytes</th>
<th>Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>----</td>
<td>-----</td>
<td>-----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>All</td>
<td>100.00</td>
<td>45759836065</td>
<td>63801873</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>80</td>
<td>94.44</td>
<td>43216161904</td>
<td>52890647</td>
</tr>
<tr>
<td>2</td>
<td>443</td>
<td>1.92</td>
<td>877275192</td>
<td>4744341</td>
</tr>
<tr>
<td>3</td>
<td>9182</td>
<td>0.00</td>
<td>88010</td>
<td>330</td>
</tr>
<tr>
<td>4</td>
<td>34182</td>
<td>0.00</td>
<td>87985</td>
<td>324</td>
</tr>
<tr>
<td>5</td>
<td>14660</td>
<td>0.00</td>
<td>87894</td>
<td>326</td>
</tr>
<tr>
<td>6</td>
<td>49468</td>
<td>0.00</td>
<td>82857</td>
<td>299</td>
</tr>
<tr>
<td>7</td>
<td>44180</td>
<td>0.00</td>
<td>82746</td>
<td>304</td>
</tr>
<tr>
<td>8</td>
<td>29641</td>
<td>0.00</td>
<td>82104</td>
<td>292</td>
</tr>
<tr>
<td>9</td>
<td>47835</td>
<td>0.00</td>
<td>81966</td>
<td>304</td>
</tr>
<tr>
<td>10</td>
<td>20362</td>
<td>0.00</td>
<td>81957</td>
<td>314</td>
</tr>
</tbody>
</table>
```

### Related Commands

- `clear statistics`
- `show class-map`
- `show statistics class-map`
show statistics class-map

To display statistics information about class maps, use the `show statistics class-map` EXEC command.

```
show statistics class-map type {appnav classmap-name | waas
[| name classmap-name | summary [active | all]]}
```

**Syntax Description**
- **appnav classmap-name**  Displays statistics for the specified AppNav class map.
- **waas**  Displays statistics for the specified WAAS optimization class map, or all class maps if no class map is specified.
- **name classmap-name**  Displays statistics for the specified WAAS optimization class map.
- **summary**  Displays summary statistics for all WAAS optimization class maps that have active and completed connections.
- **active**  Displays summary statistics for all WAAS optimization class maps that have currently active connections.
- **all**  Displays summary statistics for all WAAS optimization class maps.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
appnav-controller

**Usage Guidelines**
Use the `show statistics class-map` EXEC command to view statistics for class maps.

**Examples**
The following is sample output from the `show statistics class-map type appnav` command.

```
WAE# show statistics class-map type appnav class-default
Class Map From Network to SN From SN to Network
--
class-default ------------------------
 Redirected Client->Server: 5584092901 3184595397
 Bytes 12921688
 Packets 17283696
 Redirected Server->Client: 929015717 925076898
 Bytes 925076898
 Packets 9029525
Connections
 Intercepted by ANC 8071757
 Passed through by ANC 589152
 Redirected by ANC 7482605
 Accepted by SN 4351361
```

Cisco Wide Area Application Services Command Reference
### Passed through by SN (on-Syn)
3131231

### Passed through by SN (post-Syn)
3191816

<table>
<thead>
<tr>
<th>Passthrough Reasons</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Collected by ANC:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT Flow Learn Failure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Cluster Degraded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT SNG Overload</td>
<td>12049460</td>
<td>2041789082</td>
</tr>
<tr>
<td>PT AppNav Policy</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Indicated by SN:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT No Peer</td>
<td>49500012</td>
<td>13070018416</td>
</tr>
<tr>
<td>PT Rjct Capabilities</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Rjct Resources</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Rjct No License</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT App Config</td>
<td>90563537</td>
<td>6966594435</td>
</tr>
<tr>
<td>PT Global Config</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Asymmetric</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT In Progress</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Intermediate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Overload</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Internal Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT App Override</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Server Black List</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD Version Mismatch</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD AO Incompatible</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD AOIM Progress</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT DM Version Mismatch</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Peer Override</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Bad AD Options</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Non-optimizing Peer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT SN Interception ACL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT IP Fragment Unsupported</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Flow Query Failure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Flow Intercept ACL deny</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Overall</strong></td>
<td>152113009</td>
<td>22078401933</td>
</tr>
</tbody>
</table>

**Related Commands**
- `show class-map`
- `show statistics class-default`
show statistics connection

To display all connection statistics for a WAAS device, use the `show statistics connection` EXEC command.

```
show statistics connection
 client-ip {ip_address | hostname} | client-port port |
 detail [client-ip {ip_address | hostname} | client-port port | peer-id peer_id | server-ip {ip_address | hostname} | server-port port] |
 peer-id peer_id | server-ip {ip_address | hostname} | server-port port] | conn-id connection_id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-ip</td>
<td>(Optional) Displays the connection statistics for the client with the specified IP address or hostname.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td>client-port port</td>
<td>(Optional) Displays the connection statistics for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed connection statistics.</td>
</tr>
<tr>
<td>peer-id peer_id</td>
<td>(Optional) Displays the connection statistics for the peer with the specified identifier. The peer ID is from 0 to 4294967295 identifying a peer.</td>
</tr>
<tr>
<td>server-ip  </td>
<td>(Optional) Displays the connection statistics for the server with the specified IP address or hostname.</td>
</tr>
<tr>
<td>server-port port</td>
<td>(Optional) Displays the connection statistics for the server with the specified port number (1–65535).</td>
</tr>
<tr>
<td>conn-id connection_id</td>
<td>(Optional) Displays the connection statistics for the connection with the specified identifier.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- appnav-controller

**Usage Guidelines**

The `show statistics connection` command displays the statistics for all TCP connections. This information is updated in real time.

Using the `show statistics connection` command with no options displays a summary of all the TCP connections on the WAE. To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as peer-id) show summary information and not details.
Table 3-92 describes the fields shown in the **show statistics connection** command display.

**Table 3-92  Field Descriptions for the show statistics connection Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Optimized Flows</td>
<td>Number of current active optimized TCP connections of all types.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Plus Flows</td>
<td>Number of current active connections using DRE/LZ optimization or handled by an accelerator.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Only Flows</td>
<td>Number of current active connections using TFO optimization only.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Preposition Flows</td>
<td>Number of current active connections that were originated by an accelerator to acquire data in anticipation of its future use.</td>
</tr>
<tr>
<td>Current Active Auto-Discovery Flows</td>
<td>Number of current active connections in the auto-discovery state.</td>
</tr>
<tr>
<td>Current Reserved Flows</td>
<td>Number of connections reserved for the MAPI accelerator. It appears for all accelerators.</td>
</tr>
<tr>
<td>Current Active Pass-Through Flows</td>
<td>Number of current active pass-through connections.</td>
</tr>
<tr>
<td>Historical Flows</td>
<td>Number of closed TCP connections for which statistical data exists.</td>
</tr>
<tr>
<td>ConnID</td>
<td>Identification number assigned to the connection.</td>
</tr>
<tr>
<td>Source IP:Port</td>
<td>IP address and port of the incoming source connection.</td>
</tr>
<tr>
<td>Dest IP:Port</td>
<td>IP address and port of the outgoing destination connection.</td>
</tr>
<tr>
<td>PeerID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Accel</td>
<td>Types of acceleration in use on the connection.</td>
</tr>
<tr>
<td>Reduction Ratio (RR)</td>
<td>Relative reduction ratio (in bytes) for a particular connection.</td>
</tr>
<tr>
<td>Local IP:Port</td>
<td>IP address and port of the incoming local connection.</td>
</tr>
<tr>
<td>Remote IP:Port</td>
<td>IP address and port of the outgoing remote connection.</td>
</tr>
<tr>
<td>ConnType</td>
<td>Connection type (see Table 3-93).</td>
</tr>
</tbody>
</table>

Table 3-93 describes the possible values found in the ConnType field.

**Table 3-93  Connection Types**

<table>
<thead>
<tr>
<th>ConnType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accelerator Non-Optimized</td>
<td>Connection has been initiated from an external client to an external server and is not optimized.</td>
</tr>
<tr>
<td>Accelerator Optimized</td>
<td>Connection has been initiated from an internal client to an external server and is optimized.</td>
</tr>
</tbody>
</table>
### Table 3-93 Connection Types

<table>
<thead>
<tr>
<th>ConnType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>App Dyn Mtch Non-Optimized</td>
<td>Connection has been forced through an application dynamic match and is non-optimized by an application accelerator, even though the connection may be optimized by TFO+DRE+LZ.</td>
</tr>
<tr>
<td>App Dyn Mtch Optimized</td>
<td>Connection has been forced through an application dynamic match to be optimized, even though the connection may be handled as pass-through.</td>
</tr>
<tr>
<td>PT AD Int Error</td>
<td>Connection encountered an internal error during processing by the TFO auto discovery SYN cache.</td>
</tr>
<tr>
<td>PT App Cfg</td>
<td>Policy action for this application is configured as pass-through.</td>
</tr>
<tr>
<td>PT App Override</td>
<td>Connection is pass-through because the internal application has explicitly requested that the connection not be optimized. This state would only occur if the connection would have otherwise been optimized.</td>
</tr>
<tr>
<td>PT Asym Client</td>
<td>Connection is pass-through due to the WAE only seeing one side of the TCP connection (where the src is the client and the dst is the server).</td>
</tr>
<tr>
<td>PT Asym Server</td>
<td>Connection is pass-through due to the WAE only seeing one side of the TCP connection (where the dst is the client and the src is the server).</td>
</tr>
<tr>
<td>PT Dst Cfg</td>
<td>Policy action for this application is configured as pass-through in the peer WAE.</td>
</tr>
<tr>
<td>PT FB Int Error</td>
<td>Connection encountered an internal error during processing by the filter bypass module.</td>
</tr>
<tr>
<td>PT_Glb Cfg</td>
<td>Global action is configured as pass-through; that is, TFO, DRE, or LZ are disabled globally on the WAE.</td>
</tr>
<tr>
<td>PT In Progress</td>
<td>Connection was already established when the first packet was seen by the WAE.</td>
</tr>
<tr>
<td>PT Interception ACL</td>
<td>Connection is pass-through due to an interception ACL denying optimization.</td>
</tr>
<tr>
<td>PT Intermediate</td>
<td>Connection is pass-through due to the WAE being in the middle of the best local and remote WAE’s (relative to the client and server).</td>
</tr>
<tr>
<td>PT No Peer</td>
<td>Connection is pass-through due to no peer WAE being found during TFO auto-discovery.</td>
</tr>
<tr>
<td>PT Non-Optimizing Peer</td>
<td>Connection is pass-through because the only peer found is a serially clustered peer and optimization is disabled to the peer.</td>
</tr>
<tr>
<td>PT Overload</td>
<td>TFO application has indicated it is overloaded (that is, the maximum number of optimized connections has been exceeded). New connections not handled by an application accelerator are configured as pass-through.</td>
</tr>
<tr>
<td>PT PE Int Error</td>
<td>Connection encountered an internal error during processing by the policy engine.</td>
</tr>
<tr>
<td>PT Rjct Capabilities</td>
<td>Connection is pass-through due to auto discovery finding that the peer WAE does not have the required capabilities.</td>
</tr>
</tbody>
</table>
show statistics connection

Related Commands
- clear arp-cache
- show statistics accelerator
- show statistics connection egress-methods

Table 3-93  Connection Types

<table>
<thead>
<tr>
<th>ConnType</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Rjct Resources</td>
<td>Connection is pass-through due to auto discovery finding that the peer WAE does not have the required resources.</td>
</tr>
<tr>
<td>PT Server Blacklist</td>
<td>Connection is pass-through because the server is on the TFO blacklist as not supporting TCP Option (0x21) being present in the SYN packet.</td>
</tr>
</tbody>
</table>
show statistics connection auto-discovery

To display auto-discovery connection statistics for a WAAS device, use the `show statistics connection auto-discovery` EXEC command.

```
show statistics connection auto-discovery
 client-ip {ip_address | hostname} | client-port port | peer-id peer_id |
 server-ip {ip_address | hostname} | server-port port
```

**Syntax Description**

- **auto-discovery**  
  (Optional) Displays active connection statistics for auto-discovery connections.

- **client-ip**  
  (Optional) Displays the connection statistics for the client with the specified IP address or hostname.

  - **ip_address**  
    IP address of a client or server.

  - **hostname**  
    Hostname of a client or server.

- **client-port**  
  (Optional) Displays the connection statistics for the client with the specified port number (1–65535).

- **peer-id**  
  (Optional) Displays the connection statistics for the peer with the specified identifier. The peer ID is from 0 to 4294967295 identifying a peer.

- **server-ip**  
  (Optional) Displays the connection statistics for the server with the specified IP address or hostname.

- **server-port**  
  (Optional) Displays the connection statistics for the server with the specified port number (1–65535).

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- appnav-controller

**Usage Guidelines**

This command displays the statistics for auto-discovery TCP connections. This information is updated in real time.

To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as peer-id) show summary information and not details.

**Examples**

Table 3-94 describes the fields shown in the `show statistics connection auto-discovery` display.
### Table 3-94  
**Field Descriptions for the show statistics connection auto-discovery Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Optimized Flows</td>
<td>Number of current active optimized TCP connections of all types.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Plus Flows</td>
<td>Number of current active connections using DRE/LZ optimization or handled by an accelerator.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Only Flows</td>
<td>Number of current active connections using TFO optimization only.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Preposition Flows</td>
<td>Number of current active connections that were originated by an accelerator to acquire data in anticipation of its future use.</td>
</tr>
<tr>
<td>Current Active Auto-Discovery Flows</td>
<td>Number of current active connections in the auto-discovery state.</td>
</tr>
<tr>
<td>Current Active Pass-Through Flows</td>
<td>Number of current active pass-through connections.</td>
</tr>
<tr>
<td>Historical Flows</td>
<td>Number of closed TCP connections for which statistical data exists.</td>
</tr>
<tr>
<td>Local IP:Port</td>
<td>IP address and port of the incoming local connection.</td>
</tr>
<tr>
<td>Remote IP:Port</td>
<td>IP address and port of the outgoing remote connection.</td>
</tr>
<tr>
<td>PeerID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>O-ST</td>
<td>Origin state of the connection. E = Established, S = Syn, A = Ack, F = Fin, R = Reset, s = sent, r = received, O = Options, P = Passthrough</td>
</tr>
<tr>
<td>T-ST</td>
<td>Terminal state of the connection. E = Established, S = Syn, A = Ack, F = Fin, R = Reset, s = sent, r = received, O = Options, P = Passthrough</td>
</tr>
<tr>
<td>ConnType</td>
<td>Type of the connection (see Table 3-93).</td>
</tr>
</tbody>
</table>

**Related Commands**

- `show statistics accelerator`
- `show statistics connection egress-methods`
show statistics connection closed

To display closed connection statistics for a WAAS device, use the `show statistics connection closed` EXEC command.

```
show statistics connection closed
[cifs | detail | dre | epm | http | mapi | nfs | ssl | tfo | [video [windows-media]]]
[client-ip {ip_address | hostname} | client-port port | conn-id connection_id | peer-id peer_id | server-ip {ip_address | hostname} | server-port port]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>cifs</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the CIFS application accelerator.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>(Optional) Displays detailed closed connection statistics.</td>
</tr>
<tr>
<td><strong>dre</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the DRE feature.</td>
</tr>
<tr>
<td><strong>epm</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the EPM application accelerator.</td>
</tr>
<tr>
<td><strong>http</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the HTTP application accelerator.</td>
</tr>
<tr>
<td><strong>mapi</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the MAPI application accelerator.</td>
</tr>
<tr>
<td><strong>nfs</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the NFS application accelerator.</td>
</tr>
<tr>
<td><strong>ssl</strong></td>
<td>(Optional) Displays active connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the SSL application accelerator.</td>
</tr>
<tr>
<td><strong>tfo</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the TFO application accelerator.</td>
</tr>
<tr>
<td><strong>video</strong></td>
<td>(Optional) Displays closed connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the video application accelerator.</td>
</tr>
<tr>
<td><strong>windows-media</strong></td>
<td>(Optional) Displays active connection statistics for connections optimized</td>
</tr>
<tr>
<td></td>
<td>by the video application accelerator for Windows Media streams.</td>
</tr>
<tr>
<td><strong>client-ip</strong></td>
<td>(Optional) Displays the closed connection statistics for the client with</td>
</tr>
<tr>
<td></td>
<td>the specified IP address or hostname.</td>
</tr>
<tr>
<td><strong>ip_address</strong></td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td><strong>hostname</strong></td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td><strong>client-port port</strong></td>
<td>(Optional) Displays the closed connection statistics for the client with</td>
</tr>
<tr>
<td></td>
<td>the specified port number (1–65535).</td>
</tr>
<tr>
<td><strong>conn-id connection_id</strong></td>
<td>(Optional) Displays closed connection statistics for the connection with</td>
</tr>
<tr>
<td></td>
<td>the specified identifier.</td>
</tr>
<tr>
<td><strong>peer-id peer_id</strong></td>
<td>(Optional) Displays the closed connection statistics for the peer with</td>
</tr>
<tr>
<td></td>
<td>the specified identifier. The peer ID is from 0 to 4294967295 identifying a</td>
</tr>
<tr>
<td></td>
<td>peer.</td>
</tr>
<tr>
<td><strong>server-ip</strong></td>
<td>(Optional) Displays the connection statistics for the server with the</td>
</tr>
<tr>
<td></td>
<td>specified IP address or hostname.</td>
</tr>
<tr>
<td><strong>server-port port</strong></td>
<td>(Optional) Displays the connection statistics for the server with the</td>
</tr>
<tr>
<td></td>
<td>specified port number (1–65535).</td>
</tr>
</tbody>
</table>
show statistics connection closed

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
appnav-controller

Usage Guidelines
Using the `show statistics connection closed` command with no options displays a summary of the closed TCP connections on the WAE. To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as peer-id) show summary information and not details.

Examples
Table 3-95 describes the fields shown in the `show statistics connection closed` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Optimized Flows</td>
<td>Number of current active optimized TCP connections of all types.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Plus Flows</td>
<td>Number of current active connections using DRE/LZ optimization or handled by an accelerator.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Only Flows</td>
<td>Number of current active connections using TFO optimization only.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Preposition Flows</td>
<td>Number of current active connections that were originated by an accelerator to acquire data in anticipation of its future use.</td>
</tr>
<tr>
<td>Current Active Auto-Discovery Flows</td>
<td>Number of current active connections in the auto-discovery state.</td>
</tr>
<tr>
<td>Current Active Pass-Through Flows</td>
<td>Number of current active pass-through connections.</td>
</tr>
<tr>
<td>Historical Flows</td>
<td>Number of closed TCP connections for which statistical data exists.</td>
</tr>
<tr>
<td>ConnID</td>
<td>Identification number assigned to the connection.</td>
</tr>
<tr>
<td>Source IP:Port</td>
<td>IP address and port of the incoming source connection.</td>
</tr>
<tr>
<td>Dest IP:Port</td>
<td>IP address and port of the outgoing destination connection.</td>
</tr>
<tr>
<td>PeerID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Accel</td>
<td>Types of acceleration in use on the connection.</td>
</tr>
<tr>
<td>D = DRE, L = LZ, T = TCP optimization, A = AOIM, C = CIFS, E = EPM, G = generic, H = HTTP, I = ICA, M = MAPI, N = NFS, S = SSL, W = WAN secure, V = video, X = signed SMB</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands
`clear arp-cache`
show statistics connection conn-id

To display connection ID statistics for a WAAS device, use the show statistics connection conn-id EXEC command.

```
show statistics connection conn-id connection_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>connection_id</th>
<th>(Optional) Connection statistics for the connection with the specified identifier number.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>EXEC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator appnav-controller</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>The show statistics connection conn-id command displays the statistics for individual TCP connections. This information is updated in real time.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>Table 3-91 describes the fields shown in the show statistics connection conn-id command display.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Connection Information</strong></td>
<td></td>
</tr>
<tr>
<td>Peer ID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Connection Type</td>
<td>Type of connection established with the peer.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Date and time connection started.</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>IP address of the connection source.</td>
</tr>
<tr>
<td>Source Port Number</td>
<td>Port number of the connection source.</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>IP address of the connection destination.</td>
</tr>
<tr>
<td>Destination Port Number</td>
<td>Port number of the connection destination.</td>
</tr>
<tr>
<td>Application Name</td>
<td>Name of the application traffic on the connection.</td>
</tr>
<tr>
<td>Classifier Name</td>
<td>Name of the application classifier on the connection.</td>
</tr>
<tr>
<td>Map Name</td>
<td>Name of the policy engine application map.</td>
</tr>
<tr>
<td>Directed Mode</td>
<td>State of directed mode: true (on) or false (off).</td>
</tr>
</tbody>
</table>

Cisco Wide Area Application Services Command Reference
Preposition Flow: Flow was originated by an accelerator to acquire data in anticipation of its future use: true or false.

Policy Details: Configured: Name of the configured application policy.

Policy Details: Derived: Name of the derived application policy.

Policy Details: Peer: Name of the application policy on the peer side.

Policy Details: Negotiated: Name of the negotiated application acceleration policy.

Policy Details: Applied: Name of the applied application acceleration policy.

Accelerator Details: Configured: Accelerators configured.

Accelerator Details: Derived: Accelerators derived.

Accelerator Details: Applied: Accelerators applied.

Accelerator Details: Hist: Accelerators historically used.

Original and Optimized Bytes Read/Written: Number of bytes that have been read and written on the original (incoming) side and the optimized (outgoing) side.

DRE Stats:

Encode: Statistics for compressed messages.

- Overall: [msg | in | out | ratio] Aggregated statistics for compressed messages.
  - msg = Total number of messages.
  - in = Number of bytes before decompression.
  - out = Number of bytes after decompression.
  - ratio = Percentage of the total number of bytes that were compressed.

- DRE: [msg | in | out | ratio] Number of DRE messages.

- DRE Bypass: [msg | in] Number of DRE messages that were bypassed for compression.

- LZ: [msg | in | out | ratio] Number of LZ messages.

Avg Latency: Average latency (transmission delay) of the DRE traffic.

Encode Throughput: Speed of DRE traffic throughput, in kilobytes per second.

Message Size Distribution: Percentage of total messages that fall within indicated size ranges.

Connection Details:

- Chunks: Number of chunks encoded, decode, and anchored (forced).

- Total Messages: Total number of messages processed and the number of blocks used per message.

- Ack [msg | size]: Number and size of acknowledgement messages.

- Encode Bypass Due To: Reason for previous traffic encoding bypass.

- Nack: Number and size of negative acknowledgement messages.

- R-tx: Number of ready-to-transmit messages.

- Aggregation Encode/Decode: Aggregated statistics for compressed messages.
### Field Descriptions for the `show statistics connection conn-id` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>TFO Stats</strong></td>
<td></td>
</tr>
<tr>
<td>Conn-Type</td>
<td>Type of connection (see Table 3-93).</td>
</tr>
<tr>
<td>Policy</td>
<td>Policy in use on connection.</td>
</tr>
<tr>
<td>EOT State [write</td>
<td>req</td>
</tr>
<tr>
<td>Socket States</td>
<td>Socket states, including <code>read-shut</code>, <code>write-shut</code>, <code>close</code>, <code>choke</code>, and <code>envoy</code>.</td>
</tr>
<tr>
<td>DRE Hints [local</td>
<td>remote</td>
</tr>
<tr>
<td>Read Encode/Decode Flows</td>
<td>Number of encode and decode messages, and total bytes used.</td>
</tr>
<tr>
<td>Decoder Pending Queue</td>
<td>Size of the messages waiting in the decode queue, including maximum size, current size, average size, and the number of flow-control stop messages.</td>
</tr>
<tr>
<td>Encode/Decode</td>
<td>Number of calls encoded and decoded, the message latency (in ms), and the number of transmitted data/acknowledgment frames.</td>
</tr>
<tr>
<td>Writer Pending Queue</td>
<td>Size of the messages waiting in the write queue, including maximum size, current size, average size, and the number of flow-control stop messages.</td>
</tr>
<tr>
<td>Write</td>
<td>Size of the messages written, total number of messages, the average size, and the message latency (in ms).</td>
</tr>
</tbody>
</table>

**Related Commands**

- `clear arp-cache`
- `show statistics accelerator`
- `show statistics connection egress-methods`
show statistics connection egress-methods

To display detailed egress method-related information about the connection segments for a WAE, use the `show statistics connection egress-methods` EXEC command.

```
show statistics connection egress-methods
 client-ip {ip_address | hostname} | client-port port | peer-id peer_id |
 server-ip {ip_address | hostname} | server-port port
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>client-ip</td>
<td>(Optional) Displays the closed connection statistics for the client with the specified IP address or hostname.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td>client-port port</td>
<td>(Optional) Displays the closed connection statistics for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td>peer-id peer_id</td>
<td>(Optional) Displays the connection statistics for the peer with the specified identifier. The peer ID is from 0 to 4294967295 identifying a peer.</td>
</tr>
<tr>
<td>server-ip</td>
<td>(Optional) Displays the connection statistics for the server with the specified IP address or hostname.</td>
</tr>
<tr>
<td>server-port port</td>
<td>(Optional) Displays the connection statistics for the server with the specified port number (1–65535).</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

Using the `show statistics connection egress-methods` command without options displays detailed information about each of the TFO connections for a WAE.

The `show statistics connection egress-methods` command displays egress method-related information about connection segments in an environment where the data flow from start-point to end-point is being transparently intercepted by multiple devices. A connection tuple represents one segment of an end-to-end connection that is intercepted by a WAAS device (WAE) for processing.

For example, a single client-server connection may have three segments (see Figure 3-1):

- Between the client and the Edge WAE
- Between the Edge WAE and the Core WAE
- Between the Core WAE and the server
In this example, the Edge WAE has two connection tuples for the two segments that it participates in the following:

- One connection tuple to represent the Client—Edge segment
- One connection tuple to represent the Edge—Core segment

In the `show` output, these two connection tuples appear as TUPLE and MATE. (See Table 3-97.) The important information to view is the local and remote IP address of the connection tuple and not whether it is marked as TUPLE or MATE.

**Figure 3-1  Topology with Three Segments and Corresponding Connection Tuples**

Because the WAAS device is transparent to both the client-end of the connection and the server-end of the connection, the local IP address for a connection tuple depends on the segment in the end-to-end topology.

For example, when WAAS intercepts a packet from the client, this packet enters the connection tuple that represents the Client—Edge segment. On this tuple, the WAAS device appears to the client as though it were the server: the local IP address in this connection tuple is the IP address of the server, while the remote IP address in this connection tuple is that of the client. Similarly, when the Edge WAE sends data to the client, the packet egresses from this connection tuple as though it were coming from the server.

When WAAS sends a packet to the server, the packet egresses from the connection tuple that represents the Edge—Core segment. On this tuple, the WAAS device appears to the server as though it were the client: the local IP address in the connection tuple is the IP address of the server, while the remote IP address in this connection tuple is that of the server. Similarly, when the Edge WAE intercepts a packet from the Core WAE, the data in this connection tuple appears to be coming from the server.

**Examples** Table 3-97 describes the fields shown in the `show tfo egress-methods connection` command display.
Each time a packet enters the connection tuple, the intercepting device IP address or MAC address is recorded. The updates field in the command output indicates whether the intercepting device IP address or intercepting device MAC address has been recorded. If, for example, the ID MAC address updates field is zero (0), the MAC address was not recorded, and the ID MAC address field will be blank. The recorded intercepting device information is used when a packet egresses from the WAE.

If the egress method for the connection tuple is IP forwarding, the updates fields are always zero (0) because the intercepting device information is neither required nor recorded for the IP forwarding egress method.

If the intercept method is WCCP GRE redirect and the egress method is WCCP GRE, only the IP address field is updated and recorded. The MAC address information is neither required nor recorded because the destination address in the GRE header only accepts an IP address.

If the intercept method is WCCP L2 redirect and the egress method is WCCP GRE, both the MAC address and the IP address fields are updated and recorded because incoming WCCP L2 packets contain only a MAC header. The MAC address is recorded and the intercepting device IP address is derived from

---

**Table 3-97  Field Descriptions for the show tfo egress-methods connection Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUPLE</td>
<td></td>
</tr>
<tr>
<td>Local-IP:Port</td>
<td>IP address and port number of the local device in the connection tuple.</td>
</tr>
<tr>
<td>Remote-IP:Port</td>
<td>IP address and port number of the remote device in the connection tuple.</td>
</tr>
<tr>
<td>MATE</td>
<td></td>
</tr>
<tr>
<td>Local-IP:Port</td>
<td>IP address and port number of the local device in the mate connection tuple.</td>
</tr>
<tr>
<td>Remote-IP:Port</td>
<td>IP address and port number of the remote device in the mate connection tuple.</td>
</tr>
<tr>
<td>Egress method</td>
<td>Egress method being used.</td>
</tr>
<tr>
<td>WCCP Service</td>
<td>Bucket</td>
</tr>
<tr>
<td>Tuple Flags</td>
<td>Flags for intercept method and intercept mechanism. This field may contain the following values: WCCP or NON-WCCP as the intercept method; L2 or GRE as the intercept mechanism; or PROT showing whether this tuple is receiving packets through the flow protection mechanism.</td>
</tr>
<tr>
<td>Intercepting device (ID)</td>
<td></td>
</tr>
<tr>
<td>ID IP address</td>
<td>IP address of the intercepting device.</td>
</tr>
<tr>
<td>ID MAC address</td>
<td>MAC address of the intercepting device.</td>
</tr>
<tr>
<td>ID IP address updates</td>
<td>Number of IP address changes for the intercepting device.</td>
</tr>
<tr>
<td>ID MAC address updates</td>
<td>Number of MAC address changes for the intercepting device.</td>
</tr>
<tr>
<td>Memory address</td>
<td>Memory address.</td>
</tr>
</tbody>
</table>
a reverse ARP lookup and is then recorded, also. When packets egress the connection tuple in this scenario, they will have a GRE header with the destination IP address of the intercepting device that was recorded.

The updates count may be greater than 1 in certain topologies. For example, in a redundant router topology, where for the same direction of the same connection between two hosts, packets may be coming in from different intercepting routers. Each time a packet comes in, the intercepting device MAC or IP address is compared against the last recorded address. If the MAC or IP address has changed, the updates field is incremented and the new MAC or IP address is recorded.

**Related Commands**

- `show statistics tfo`
show statistics connection optimized

To display optimized connection statistics for a WAAS device, use the `show statistics connection optimized` EXEC command.

```
show statistics connection optimized
[client-ip {ip_address | hostname} | client-port port | peer-id peer_id | server-ip {ip_address | hostname} | server-port port |
| cifs | http | ica | mapi | nfs | smb | ssl | wansecure | video | detail | windows-media | incoming | outgoing | dre { all | savings } | {cifs | http | ica | mapi | nfs | smb | ssl | video | wansecure}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>optimized</code></td>
<td>(Optional) Displays active connection statistics for optimized connections.</td>
</tr>
<tr>
<td><code>client-ip</code></td>
<td>(Optional) Displays the closed connection statistics for the client with the specified IP address or hostname.</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td><code>client-port port</code></td>
<td>(Optional) Displays the closed connection statistics for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td><code>peer-id peer_id</code></td>
<td>(Optional) Displays the connection statistics for the peer with the specified identifier. Number from 0 to 4294967295 identifying a peer.</td>
</tr>
<tr>
<td><code>server-ip</code></td>
<td>(Optional) Displays the connection statistics for the server with the specified IP address or hostname.</td>
</tr>
<tr>
<td><code>server-port port</code></td>
<td>(Optional) Displays the connection statistics for the server with the specified port number (1–65535).</td>
</tr>
<tr>
<td><code>cifs</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the CIFS application accelerator.</td>
</tr>
<tr>
<td><code>http</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the HTTP application accelerator.</td>
</tr>
<tr>
<td><code>ica</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the ICA application accelerator.</td>
</tr>
<tr>
<td><code>mapi</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the MAPI application accelerator.</td>
</tr>
<tr>
<td><code>nfs</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the NFS application accelerator.</td>
</tr>
<tr>
<td><code>smb</code></td>
<td>(Optional) Displays the connection statistics for connections optimized by the SMB application accelerator.</td>
</tr>
<tr>
<td><code>ssl</code></td>
<td>(Optional) Displays active connection statistics for connections optimized by the SSL application accelerator.</td>
</tr>
<tr>
<td><code>video</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the video application accelerator.</td>
</tr>
<tr>
<td><code>wansecure</code></td>
<td>(Optional) Displays closed connection statistics for connections optimized by the WAN secure application accelerator.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays detailed closed connection statistics for connections optimized by the video application accelerator for Windows Media streams.</td>
</tr>
<tr>
<td><code>windows-media</code></td>
<td>(Optional) Displays active connection statistics for connections optimized by the video application accelerator for Windows Media streams.</td>
</tr>
</tbody>
</table>
The `show statistics connection optimized` command displays the statistics for optimized TCP connections. This information is updated in real time.

Using the `show statistics connection optimized` command with no options displays a summary of all the optimized TCP connections on the WAE. To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as peer-id) show summary information and not details.

**Table 3-98** describes the fields shown in the `show statistics connection optimized` command display.

**Table 3-98 Field Descriptions for the show statistics connection optimized Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Optimized Flows</td>
<td>Number of current active optimized TCP connections of all types.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Plus Flows</td>
<td>Number of current active connections using DRE/LZ optimization or handled by an accelerator.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Only Flows</td>
<td>Number of current active connections using TFO optimization only.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Preposition Flows</td>
<td>Number of current active connections that were originated by an accelerator to acquire data in anticipation of its future use.</td>
</tr>
<tr>
<td>Current Active Auto-Discovery Flows</td>
<td>Number of current active connections in the auto-discovery state.</td>
</tr>
<tr>
<td>Current Active Reserved Flows</td>
<td>Number of reserved connections.</td>
</tr>
</tbody>
</table>
### Table 3-98 Field Descriptions for the show statistics connection optimized Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Pass-Through Flows</td>
<td>Number of current active pass-through connections.</td>
</tr>
<tr>
<td>Historical Flows</td>
<td>Number of closed TCP connections for which statistical data exists.</td>
</tr>
<tr>
<td>ConnID</td>
<td>Identification number assigned to the connection.</td>
</tr>
<tr>
<td>Source IP:Port</td>
<td>IP address and port of the incoming source connection.</td>
</tr>
<tr>
<td>Dest IP:Port</td>
<td>IP address and port of the outgoing destination connection.</td>
</tr>
<tr>
<td>PeerID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Accel</td>
<td>Types of acceleration in use on the connection.</td>
</tr>
<tr>
<td></td>
<td>D = DRE, L = LZ, T = TCP optimization, A = AOIM, C = CIFS, E = EPM, G = generic, H = HTTP, I = ICA, M = MAPI, N = NFS, S = SSL, W = WAN secure, V = video, X = signed SMB</td>
</tr>
</tbody>
</table>

**Related Commands**

- clear arp-cache
- show statistics accelerator
- show statistics connection egress-methods
show statistics connection pass-through

To display pass through connection statistics for a WAAS device, use the `show statistics connection pass-through` EXEC command.

```
show statistics connection pass-through
 client-ip {ip_address \ hostname} | client-port port \ peer-id peer_id |
 server-ip {ip_address \ hostname} | server-port port
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pass-through</code></td>
<td>Displays active connection statistics for pass-through connections.</td>
</tr>
<tr>
<td><code>client-ip</code></td>
<td>Displays the closed connection statistics for the client with the specified IP address or hostname.</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>IP address of a client or server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of a client or server.</td>
</tr>
<tr>
<td><code>client-port</code></td>
<td>Displays the closed connection statistics for the client with the specified port number (1–65535).</td>
</tr>
<tr>
<td><code>peer-id</code></td>
<td>Displays the connection statistics for the peer with the specified identifier. The peer ID is from 0 to 4294967295 identifying a peer.</td>
</tr>
<tr>
<td><code>peer_id</code></td>
<td></td>
</tr>
<tr>
<td><code>server-ip</code></td>
<td>Displays the connection statistics for the server with the specified IP address or hostname.</td>
</tr>
<tr>
<td><code>server-port</code></td>
<td>Displays the connection statistics for the server with the specified port number (1–65535).</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

The `show statistics connection pass-through` command displays the statistics for passed through TCP connections. This information is updated in real time.

Using the `show statistics connection pass-through` command with no options displays a summary of all the passed through TCP connections on the WAE. To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as peer-id) show summary information and not details.

**Examples**

Table 3-99 describes the fields shown in the `show statistics connection pass-through` command display.
show statistics connection pass-through

### Related Commands
- `clear arp-cache`
- `show statistics accelerator`
- `show statistics connection egress-methods`

### Table 3-99: Field Descriptions for the show statistics connection pass-through Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Active Optimized Flows</td>
<td>Number of current active optimized TCP connections of all types.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Plus Flows</td>
<td>Number of current active connections using DRE/LZ optimization or handled by an accelerator.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Only Flows</td>
<td>Number of current active connections using TFO optimization only.</td>
</tr>
<tr>
<td>Current Active Optimized TCP Preposition Flows</td>
<td>Number of current active connections that were originated by an accelerator to acquire data in anticipation of its future use.</td>
</tr>
<tr>
<td>Current Active Auto-Discovery Flows</td>
<td>Number of current active connections in the auto-discovery state.</td>
</tr>
<tr>
<td>Current Active Pass-Through Flows</td>
<td>Number of current active pass-through connections.</td>
</tr>
<tr>
<td>Historical Flows</td>
<td>Number of closed TCP connections for which statistical data exists.</td>
</tr>
<tr>
<td>Local IP:Port</td>
<td>IP address and port of the incoming local connection.</td>
</tr>
<tr>
<td>Remote IP:Port</td>
<td>IP address and port of the outgoing remote connection.</td>
</tr>
<tr>
<td>PeerID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>ConnType</td>
<td>Status of the connection (see Table 3-93).</td>
</tr>
</tbody>
</table>
show statistics crypto ssl ciphers

To display crypto SSL cipher usage statistics, use the `show statistics crypto ssl ciphers` EXEC command.

```
show statistics crypto ssl ciphers
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

The `show statistics crypto ssl ciphers` command displays the number of times each cipher was used on each segment of optimized flows.

**Examples**

Table 3-100 describes the fields shown in the `show statistics crypto ssl ciphers` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN</td>
<td>Segment between WAAS devices and client or server.</td>
</tr>
<tr>
<td>WAN</td>
<td>Segment between WAAS devices for data traffic.</td>
</tr>
<tr>
<td>Peering</td>
<td>Segment between WAAS devices for control traffic.</td>
</tr>
</tbody>
</table>

**Related Commands**

`show crypto`
show statistics datamover

To display statistics about the internal datamover component, use the `show statistics datamover` EXEC command.

```
show statistics datamover
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

The `show statistics datamover` command displays the statistics for the internal datamover component.

**Examples**

Table 3-104 describes the fields shown in the `show statistics datamover` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Datamover Statistics</td>
<td></td>
</tr>
<tr>
<td>Datamover users</td>
<td>Number of datamover clients (and Area blocks in the output).</td>
</tr>
<tr>
<td>Datamover container maps</td>
<td>Number of container_map structures allocated.</td>
</tr>
<tr>
<td>Datamover containers</td>
<td>Number of container structures allocated.</td>
</tr>
<tr>
<td>Datamover pages</td>
<td>Number of system pages used by datamover.</td>
</tr>
<tr>
<td>Datamover kmalloc areas</td>
<td>Number of kmalloc areas used by datamover.</td>
</tr>
<tr>
<td>Calls to cs_compact</td>
<td>Number of calls to cs_compact.</td>
</tr>
<tr>
<td>Container map allocation failures</td>
<td>Number of container_map structure allocation failures.</td>
</tr>
<tr>
<td>Container allocation failures</td>
<td>Number of container structure allocation failures.</td>
</tr>
<tr>
<td>Zone allocation failures</td>
<td>Number of zone allocation failures.</td>
</tr>
<tr>
<td>Kmemp allocation failures</td>
<td>Number of kernel memory allocation failures.</td>
</tr>
<tr>
<td>Page allocation failures</td>
<td>Number of page allocation failures.</td>
</tr>
<tr>
<td>Area n</td>
<td>Name of application area. There is one Area block in the output for every datamover client.</td>
</tr>
<tr>
<td>Max Area size in pages</td>
<td>Total datamover size limit in pages.</td>
</tr>
<tr>
<td>Number of identifiers</td>
<td>Number of distinct datamover objects.</td>
</tr>
</tbody>
</table>
### Table 3-101  Field Descriptions for the show statistics datamover Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 . . . 2048 byte areas used</td>
<td>Number of storage areas of each size.</td>
</tr>
<tr>
<td>Zone pages used</td>
<td>Number of pages used for the 32-2048 byte storage areas.</td>
</tr>
<tr>
<td>Non-zone pages used</td>
<td>Number of pages used for page mapping.</td>
</tr>
<tr>
<td>Cloned identifiers</td>
<td>Number of cloned identifiers.</td>
</tr>
<tr>
<td>Number of lookup stalls</td>
<td>Number of lookup stalls.</td>
</tr>
<tr>
<td>Calls to cs_compact</td>
<td>Number of calls to cs_compact.</td>
</tr>
<tr>
<td>Calls to cs_dup</td>
<td>Number of calls to cs_dup.</td>
</tr>
<tr>
<td>Calls to cs_send_bycopy</td>
<td>Number of calls to cs_send_bycopy.</td>
</tr>
<tr>
<td>Calls to cs_send_envoy</td>
<td>Number of calls to cs_send_envoy.</td>
</tr>
<tr>
<td>Calls to cs_recv_bycopy</td>
<td>Number of calls to cs_recv_bycopy.</td>
</tr>
<tr>
<td>Calls to cs_recv_envoy</td>
<td>Number of calls to cs_recv_envoy.</td>
</tr>
<tr>
<td>Identifier allocation failures</td>
<td>Number of identifier allocation failures.</td>
</tr>
<tr>
<td>Address allocation failures</td>
<td>Number of address allocation failures.</td>
</tr>
<tr>
<td>Total pages used</td>
<td>Number of pages used and percentage of the maximum area size used.</td>
</tr>
</tbody>
</table>
show statistics directed-mode

To directed mode statistics for a device, use the `show statistics directed-mode` EXEC command.

`show statistics directed-mode`

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

Table 3-102 describes the fields shown in the `show statistics directed-mode` command display.

**Table 3-102  Field Descriptions for the show statistics directed-mode Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumulative number of connections</td>
<td>Cumulative number of directed mode connections.</td>
</tr>
<tr>
<td>Total outgoing packets encapsulated</td>
<td>Number of outgoing packets encapsulated.</td>
</tr>
<tr>
<td>Total incoming packets de-capsulated</td>
<td>Number of incoming packets decapsulated.</td>
</tr>
<tr>
<td>Total RST+OPT packets received and dropped</td>
<td>Number of RST packets with option 33 set that are received and dropped.</td>
</tr>
<tr>
<td>Outgoing packet encapsulation failed</td>
<td>Number of outgoing packet encapsulation failures.</td>
</tr>
<tr>
<td>Invalid incoming packets received</td>
<td>Number of invalid incoming packets.</td>
</tr>
<tr>
<td>Invalid packet length received</td>
<td>Number of incoming packets with an invalid length.</td>
</tr>
<tr>
<td>Incoming packet pullups needed</td>
<td>Number of incoming packets that were fragmented and needed copying from data fragments.</td>
</tr>
<tr>
<td>Incoming packets with inner fragments</td>
<td>Number of incoming packets with inner fragments.</td>
</tr>
</tbody>
</table>

**Related Commands**

- clear arp-cache
- show directed-mode
- show statistics auto-discovery
- show statistics connection closed
- (config) directed-mode
show statistics dre

To display Data Redundancy Elimination (DRE) general statistics for a WAE, use the `show statistics dre` EXEC command,

```
show statistics dre [detail]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>detail</td>
<td>(Optional) Specifies to show detail.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

Table 3-103 describes the fields shown in the `show statistics dre detail` command display. This command shows the aggregated statistics for all connections.

**Table 3-103  Field Descriptions for the show statistics dre detail Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>Aggregated DRE cache data statistics.</td>
</tr>
<tr>
<td>Status</td>
<td>Current DRE status. Status values include: Initializing, Usable, and Fail.</td>
</tr>
<tr>
<td>Oldest Data (age)</td>
<td>Time that the DRE data has been in the cache in days (d), hours (h), minutes (m), and seconds (s). For example, “1d1h” means 1 day, 1 hour.</td>
</tr>
<tr>
<td>Total usable disk size</td>
<td>Total disk space allocated to the DRE cache.</td>
</tr>
<tr>
<td>Used (%)</td>
<td>Percentage of the total DRE cache disk space being used.</td>
</tr>
<tr>
<td>Replaced (last hour)</td>
<td>Amount of cache replaced within the last hour.</td>
</tr>
<tr>
<td>Total (cumulative)</td>
<td>Total cumulative connections.</td>
</tr>
<tr>
<td>Active</td>
<td>Number of active connections.</td>
</tr>
<tr>
<td>Overall: msg, in, out, ratio</td>
<td>All messages coming to DRE components. Number of messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
</tbody>
</table>
show statistics dre

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRE: msg, in, out, ratio</td>
<td>All messages handled by DRE compression. Number of DRE compressed messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
<tr>
<td>DRE Bypass: msg, in</td>
<td>Number of messages bypassed by DRE. Number of messages, number of bytes.</td>
</tr>
<tr>
<td>LZ: msg, in, out, ratio</td>
<td>All messages handled by LZ. Number of messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
<tr>
<td>LZ: bypass: msg, in</td>
<td>Number of messages bypassed by LZ. Number of messages, number of bytes.</td>
</tr>
<tr>
<td>Avg latency: ms, Delayed msg</td>
<td>Average latency introduced to compress a message.</td>
</tr>
<tr>
<td>Avg msg size</td>
<td>Average message size.</td>
</tr>
<tr>
<td>Message size distribution</td>
<td>Message sizes divided into six size groups. Number of messages in each group and their distribution percentage.</td>
</tr>
<tr>
<td>Decode</td>
<td></td>
</tr>
<tr>
<td>Overall: msg, in, out, ratio</td>
<td>All messages coming to DRE components. Number of messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
<tr>
<td>DRE: msg, in, out, ratio</td>
<td>All messages handled by DRE compression. Number of DRE compressed messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
<tr>
<td>DRE Bypass: msg, in</td>
<td>Number of messages bypassed by DRE. Number of messages, number of bytes.</td>
</tr>
<tr>
<td>LZ: msg, in, out, ratio</td>
<td>All messages handled by LZ. Number of messages, input bytes, output bytes, compression ratio (in less out, divided by in).</td>
</tr>
<tr>
<td>LZ: bypass: msg, in</td>
<td>Number of messages bypassed by LZ. Number of messages, number of bytes.</td>
</tr>
<tr>
<td>Avg latency: ms</td>
<td>Average latency introduced to compress a message.</td>
</tr>
<tr>
<td>Avg msg size</td>
<td>Average message size.</td>
</tr>
<tr>
<td>Message size distribution</td>
<td>Message sizes divided into six size groups. Number of messages in each group and their distribution percentage.</td>
</tr>
<tr>
<td>Connection details</td>
<td></td>
</tr>
<tr>
<td>Encode bypass due to: last partial chunk</td>
<td>Number of bypassed partial chunks and total size of bypassed chunks.</td>
</tr>
<tr>
<td>Nacks: total</td>
<td>Total NACKs.</td>
</tr>
<tr>
<td>R-tx: total</td>
<td>Total number of retransmissions.</td>
</tr>
<tr>
<td>Encode LZ latency: ms per msg, avg msg size</td>
<td>Encoding LZ latency in milliseconds per message and average message size in bytes.</td>
</tr>
<tr>
<td>Decode LZ latency: ms per msg, avg msg size</td>
<td>Decoding LZ latency in milliseconds per message and average message size in bytes.</td>
</tr>
</tbody>
</table>
Table 3-103  Field Descriptions for the show statistics dre detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache write detail</td>
<td></td>
</tr>
<tr>
<td>Disk size saving due to unidirectional mode</td>
<td>Amount of cache disk space saved due to using unidirectional caching mode.</td>
</tr>
</tbody>
</table>

Related Commands

show statistics peer
show statistics filtering

To display statistics about the incoming and outgoing TFO flows that the WAE currently has, use the `show statistics filtering` EXEC command.

```
show statistics filtering
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

The `show statistics filtering` command displays statistics about the TCP flows that the WAE is handling.

**Examples**

Table 3-104 describes the fields shown in the `show statistics filtering` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of filtering tuples</td>
<td>Number of filtering tuple structures.</td>
</tr>
<tr>
<td>Number of filtering tuple collisions</td>
<td>Number of times creation of duplicate filtering tuples was detected and avoided.</td>
</tr>
<tr>
<td>Packets dropped due to filtering tuple collisions</td>
<td>Number of packet drops resulting from duplicate filtering tuple detection. Not all duplicate tuple detection results in packet drops.</td>
</tr>
<tr>
<td>Number of transparent packets locally delivered</td>
<td>Number of incoming packets delivered to an application on the WAE that is optimizing the connection transparently.</td>
</tr>
<tr>
<td>Number of transparent packets dropped</td>
<td>Number of incoming transparent packets dropped.</td>
</tr>
<tr>
<td>Packets dropped due to ttl expiry</td>
<td>Number of incoming packets dropped because their TTL had reached 0.</td>
</tr>
<tr>
<td>Packets dropped due to bad route</td>
<td>Number of outgoing packets dropped because route lookup failed.</td>
</tr>
<tr>
<td>Syn packets dropped with our own id in the options</td>
<td>Syn packets output by the auto-discovery module that looped back to the WAE and were dropped.</td>
</tr>
<tr>
<td>Internal client syn packets dropped</td>
<td>Number of syn packets generated by a process on the WAE that were dropped.</td>
</tr>
</tbody>
</table>
### Table 3-104  Field Descriptions for the show statistics filtering Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syn packets received and dropped on estab. conn</td>
<td>Number of syn packets received for a connection that was in established state. In established state, the syn packet is invalid and is dropped.</td>
</tr>
<tr>
<td>Syn-Ack packets received and dropped on estab. conn</td>
<td>Number of syn-ack packets received on a connection that was in established state. In established state, the syn-ack packet is invalid and is dropped.</td>
</tr>
<tr>
<td>Syn packets dropped due to peer connection alive</td>
<td>Number of syn packets received on a partially terminated connection. In this state, the syn is invalid and is dropped.</td>
</tr>
<tr>
<td>Syn-Ack packets dropped due to peer connection alive</td>
<td>Number of syn-ack packets received on a partially terminated connection. In this state, the syn-ack is invalid and is dropped.</td>
</tr>
<tr>
<td>Packets received in progress conn. and not handled</td>
<td>Number of first packets on an in-progress connection that were dropped. If the first packet seen by the WAE for a connection is not a syn, it is called an in-progress connection.</td>
</tr>
<tr>
<td>Packets dropped due to peer connection alive</td>
<td>Number of packets received and dropped on a partially terminated connection.</td>
</tr>
<tr>
<td>Packets dropped due to invalid TCP flags</td>
<td>Number of TCP packets dropped because they had an invalid combination of the syn/find/ack/rst flags set.</td>
</tr>
<tr>
<td>Packets dropped by FB packet input notifier</td>
<td>Number of input packets dropped.</td>
</tr>
<tr>
<td>Packets dropped by FB packet output notifier</td>
<td>Number of output packets dropped.</td>
</tr>
<tr>
<td>Number of errors by FB tuple create notifier</td>
<td>Number of packets dropped because some action that was to be taken when a connection tuple is created failed.</td>
</tr>
<tr>
<td>Number of errors by FB tuple delete notifier</td>
<td>Number of packets dropped because some action that was to be taken when a connection tuple is destroyed failed.</td>
</tr>
<tr>
<td>Dropped WCCP GRE packets due to invalid WCCP service</td>
<td>Number of incoming packets received by WCCP GRE intercept that were dropped because of invalid WCCP service information.</td>
</tr>
<tr>
<td>Dropped WCCP L2 packets due to invalid WCCP service</td>
<td>Number of incoming packets received by WCCP L2 intercept that were dropped because of invalid WCCP service information.</td>
</tr>
<tr>
<td>Number of deleted tuple refresh events</td>
<td>Number of times invalid tuples were submitted for garbage collection.</td>
</tr>
<tr>
<td>Number of times valid tuples found on refresh list</td>
<td>Number of times valid tuples were reclaimed from the garbage collector.</td>
</tr>
<tr>
<td>SYN packets sent with non-opt option due to MAPI</td>
<td>Number of syn packets sent with the non-optimizing option due to the MAPI accelerator.</td>
</tr>
<tr>
<td>Internal Server conn. not optimized due to Serial Peer</td>
<td>Number of server connections not optimized because this device is in a serial cluster and is passing through the connections to its serial peer.</td>
</tr>
</tbody>
</table>
### Table 3-104  Field Descriptions for the show statistics filtering Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate packets to synq dropped</td>
<td>Number of dropped syn packets that were retransmitted and received for a connection while it was being processed in synq (without impacting the connection).</td>
</tr>
<tr>
<td>Number of ICMP Fragmentation Needed messages sent</td>
<td>Number of ICMP fragmentation needed messages sent.</td>
</tr>
<tr>
<td>Incorrect length or checksum received on Syn</td>
<td>Number of syn packets received with incorrect length or checksum.</td>
</tr>
<tr>
<td>Dropped optimized timewait sockets</td>
<td>Number of sockets in the time-wait state from a previous optimized connection that were dropped due to a new connection request.</td>
</tr>
<tr>
<td>Dropped non-optimized timewait sockets</td>
<td>Number of sockets in the time-wait state from a previous nonoptimized connection that were dropped due to a new connection request.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `show filtering list`
- `show statistics auto-discovery`
- `show statistics connection closed`
### show statistics flow

To display flow statistics for a WAAS device, use the `show statistics flow` EXEC command.

```
show statistics flow {filters | monitor type performance-monitor tcpstat-v1} | monitor MonitorName | exporter ExporterName
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filters</td>
<td>Displays flow filter statistics.</td>
</tr>
<tr>
<td>monitor type</td>
<td>Displays flow performance statistics.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Displays tcpstat-v1 collector statistics.</td>
</tr>
<tr>
<td>monitor MonitorName</td>
<td>Displays statistics for a specified flow monitor.</td>
</tr>
<tr>
<td>exporter ExporterName</td>
<td>Displays statistics for a specified exporter.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

Table 3-105 describes the fields shown in the `show statistics flow filters` command display.

**Table 3-105  Field Descriptions for the show statistics flow filters Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Filters</td>
<td>Number of filters.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of whether the filters are enabled or disabled.</td>
</tr>
<tr>
<td>Capture Mode</td>
<td>Operation of the filter. Values include FILTER or PROMISCUOUS. The promiscuous operation is not available in WAAS.</td>
</tr>
<tr>
<td>Server</td>
<td>IP address list of the servers for which flows are being monitored.</td>
</tr>
<tr>
<td>Flow Hits</td>
<td>Number of flow hits for each server.</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags identifying the flows. CSN: Client-Side Non-Optimized (Edge) SSO: Server-Side Optimized (Edge) CSO: Client-Side Optimized (Core) SSN: Server-Side Non-Optimized (Core) PT: Pass Through (Edge/Core/Intermediate) IC: Internal Client</td>
</tr>
</tbody>
</table>
Table 3-106 describes the fields shown in the **show statistics flow monitor** command display.

### Table 3-106  Field Descriptions for the show statistics flow monitor Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Connection</td>
<td></td>
</tr>
<tr>
<td>Configured host address</td>
<td>IP address of the tcpstat-v1 console for the connection.</td>
</tr>
<tr>
<td>Connection State</td>
<td>State of the connection.</td>
</tr>
<tr>
<td>Connection Attempts</td>
<td>Number of connection attempts.</td>
</tr>
<tr>
<td>Connection Failures</td>
<td>Number of connection failures.</td>
</tr>
<tr>
<td>Last connection failure</td>
<td>Date and time of the last connection failure.</td>
</tr>
<tr>
<td>Last configuration check sent</td>
<td>Date and time that the last configuration check was sent.</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Date and time that the last registration occurred.</td>
</tr>
<tr>
<td>Host Version</td>
<td>Version number of the tcpstat-v1 console for the connection.</td>
</tr>
<tr>
<td>Collector Connection</td>
<td></td>
</tr>
<tr>
<td>Collector host address:port</td>
<td>IP address and port number of the tcpstat-v1 aggregator identified through the host connection.</td>
</tr>
<tr>
<td>Connection State</td>
<td>State of the connection.</td>
</tr>
<tr>
<td>Connection Attempts</td>
<td>Number of connection attempts.</td>
</tr>
<tr>
<td>Connection Failures</td>
<td>Number of connection failures.</td>
</tr>
<tr>
<td>Last connection failure</td>
<td>Date and time of the last connection failure.</td>
</tr>
<tr>
<td>Last configuration check sent</td>
<td>Date and time that the last configuration check was sent.</td>
</tr>
<tr>
<td>Last update sent</td>
<td>Date and time that the last update was sent.</td>
</tr>
<tr>
<td>Updates sent</td>
<td>Number of updates sent.</td>
</tr>
<tr>
<td>Summaries discarded</td>
<td>Number of summaries that were discarded because disk space allocated for storage has reached its limit.</td>
</tr>
<tr>
<td></td>
<td>The numbers in this field indicate when summaries are being collected faster than they are able to be transferred to the collector.</td>
</tr>
<tr>
<td></td>
<td>Counters in this field generate a data_update alarm.</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Date and time that the last registration occurred.</td>
</tr>
<tr>
<td>Host Version</td>
<td>Version number of the tcpstat-v1 aggregator for the connection.</td>
</tr>
<tr>
<td>Collection Statistics</td>
<td></td>
</tr>
<tr>
<td>Collection State</td>
<td>State of the summary collection operation.</td>
</tr>
<tr>
<td>Summaries collected</td>
<td>Number of summaries collected. Summaries are packet digests of the traffic that is being monitored.</td>
</tr>
<tr>
<td>Summaries dropped</td>
<td>Total number of summaries dropped. This is the sum of the following subcategories.</td>
</tr>
<tr>
<td>Dropped by TFO</td>
<td>Number of packets that were dropped by TFO because of an error, such as not being able to allocate memory.</td>
</tr>
</tbody>
</table>
show statistics flow

Related Commands

- clear arp-cache

Table 3-106  Field Descriptions for the show statistics flow monitor Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped due to backlog</td>
<td>Number of packets that were dropped because the queue limit has been reached. This counter indicates whether the flow monitor application can keep up with the number of summaries being received.</td>
</tr>
<tr>
<td>Summary backlog</td>
<td>Number of packets that are waiting in the queue to be read by the collector module on the WAE.</td>
</tr>
<tr>
<td>Last drop occurred</td>
<td>Date and time that the last packet drop occurred.</td>
</tr>
</tbody>
</table>
show statistics generic-gre

To view the GRE tunnel statistics for each intercepting router, use the `show statistics generic-gre` EXEC command.

```
show statistics generic-gre
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Usage Guidelines**
Use the `clear statistics generic-gre` EXEC command to clear the generic GRE statistics.

**Examples**
Table 3-107 describes the fields shown in the `show statistics generic-gre` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Destination</td>
<td>IP address of the GRE tunnel destination.</td>
</tr>
<tr>
<td>Tunnel Peer Status</td>
<td>Tunnel peer status. When the egress method is not generic GRE, N/A is shown.</td>
</tr>
<tr>
<td>Tunnel Reference Count</td>
<td>Number of connections using the tunnel.</td>
</tr>
<tr>
<td>Packets dropped due to failed encapsulation</td>
<td>Number of generic GRE packets dropped due to failed encapsulation.</td>
</tr>
<tr>
<td>Packets dropped due to no route found</td>
<td>Number of generic GRE packets dropped due to no route found.</td>
</tr>
<tr>
<td>Packets sent</td>
<td>Number of generic GRE packets sent.</td>
</tr>
<tr>
<td>Packets sent to tunnel interface that is down</td>
<td>Number of generic GRE packets sent to a tunnel interface that is down.</td>
</tr>
<tr>
<td>Packets fragmented</td>
<td>Number of outgoing generic GRE packets fragmented.</td>
</tr>
</tbody>
</table>

**Related Commands**
clear arp-cache
show statistics icmp

To display ICMP statistics for a WAAS device, use the `show statistics icmp` EXEC command.

```
show statistics icmp
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Examples**
Table 3-108 describes the fields shown in the `show statistics icmp` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP messages received</td>
<td>Total number of Internet Control Message Protocol (ICMP) messages which the entity received, including all those counted as ICMP input errors.</td>
</tr>
<tr>
<td>ICMP messages receive failed</td>
<td>Number of ICMP messages which the entity received but determined as having ICMP-specific errors, such as bad ICMP checksums, bad length, and so forth.</td>
</tr>
<tr>
<td>Destination unreachable</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timeout in transit</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Wrong parameters</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Source quenches</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Redirects</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Echo requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Echo replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timestamp requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timestamp replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Address mask requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Address mask replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
</tbody>
</table>
### show statistics icmp

**Related Commands**

- clear arp-cache

#### Table 3-108  Field Descriptions for the show statistics icmp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP messages sent</td>
<td>Total total number of ICMP messages which this entity attempted to send. This counter includes all those counted as ICMP output errors.</td>
</tr>
<tr>
<td>ICMP messages send failed</td>
<td>Number of number of ICMP messages which this entity did not send because of problems discovered within ICMP, such as a lack of buffers.</td>
</tr>
<tr>
<td>Destination unreachable</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Time exceeded</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Wrong parameters</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Source quenches</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Redirects</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Echo requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Echo replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Timestamp requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Timestamp replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Address mask requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Address mask replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
</tbody>
</table>
show statistics ip

To display IP statistics for a WAAS device, use the `show statistics ip` EXEC command.

```
show statistics ip
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Examples**
Table 3-109 describes the fields shown in the `show statistics ip` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total packets in</td>
<td>Total number of input datagrams received from interfaces, including all those counted as input errors.</td>
</tr>
<tr>
<td>with invalid address</td>
<td>Number of input datagrams discarded because the IP address in their IP header destination field was not a valid address to be received at this entity. This count includes invalid addresses (such as 0.0.0.0) and addresses of unsupported classes (such as Class E). For entities that are not IP gateways and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address.</td>
</tr>
<tr>
<td>with invalid header</td>
<td>Number of input datagrams discarded because of errors in their IP headers, including bad checksums, version number mismatches other format errors, time-to-live exceeded errors, and errors discovered in processing their IP options.</td>
</tr>
<tr>
<td>forwarded</td>
<td>Number of input datagrams for which this entity was not their final IP destination, and as a result, an attempt was made to find a route to forward them to that final destination. In entities which do not act as IP gateways, this counter includes only those packets which were source-routed by way of this entity, and the source-route option processing was successful.</td>
</tr>
</tbody>
</table>
Table 3-109  Field Descriptions for the show statistics ip Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown protocol</td>
<td>Number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol.</td>
</tr>
<tr>
<td>discarded</td>
<td>Number of input IP datagrams for which no problems were encountered to prevent their continued processing, but which were discarded (such as, for lack of buffer space). This counter does not include any datagrams discarded while awaiting reassembly.</td>
</tr>
<tr>
<td>delivered</td>
<td>Total number of input datagrams successfully delivered to IP user protocols (including ICMP).</td>
</tr>
<tr>
<td>Total packets out</td>
<td>Total number of IP datagrams which local IP user protocols (including ICMP) supplied to IP in requests for transmission. This counter does not include any datagrams counted in the forwarded field.</td>
</tr>
<tr>
<td>dropped</td>
<td>Number of output IP datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (such as, for lack of buffer space). This counter includes datagrams counted in the forwarded field if any such packets meet this (discretionary) discard criterion.</td>
</tr>
<tr>
<td>dropped (no route)</td>
<td>Number of IP datagrams discarded because no route could be found to transmit them to their destination. This counter includes any packets counted in the forwarded field which meet this no-route criterion, including any datagrams that a host cannot route because all of its default gateways are down.</td>
</tr>
<tr>
<td>Fragments dropped after timeout</td>
<td>Maximum number of seconds that received fragments are held while they are awaiting reassembly at this entity.</td>
</tr>
<tr>
<td>Reassemblies required</td>
<td>Number of IP fragments received which needed to be reassembled at this entity.</td>
</tr>
<tr>
<td>Packets reassembled</td>
<td>Number of IP datagrams successfully reassembled.</td>
</tr>
<tr>
<td>Packets reassemble failed</td>
<td>Number of number of failures detected by the IP reassembly algorithm (for whatever reason: timed out, errors, and so forth). This count is not necessarily a count of discarded IP fragments because some algorithms (notably the algorithm in RFC 815) can lose track of the number of fragments by combining them as they are received.</td>
</tr>
<tr>
<td>Fragments received</td>
<td>Total number of IP datagrams that have been successfully fragmented at this entity.</td>
</tr>
<tr>
<td>Fragments failed</td>
<td>Number of IP datagrams that have been discarded because they needed to be fragmented at this entity but could not be fragmented because their Don’t Fragment flag was set.</td>
</tr>
<tr>
<td>Fragments created</td>
<td>Number of IP datagram fragments that have been generated as a result of fragmentation at this entity.</td>
</tr>
</tbody>
</table>

Related Commands  
**clear arp-cache**  
**confi@ ip**
(config-if) ip
show ip routes
show statistics monitor appnav-controller traffic

To display traffic monitoring statistics for an AppNav Controller Interface Module, use the `show statistics monitor appnav-controller traffic` EXEC command.

show statistics monitor appnav-controller traffic

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Examples**

The following is sample output from the `show statistics monitor appnav-controller traffic` command:

```
anc# show statistics monitor appnav-controller traffic
APPNAV CONTROLLER TRAFFIC MONITOR REPORT

Monitoring Access Control List Name: myacl

From Network to SN From SN to Network

Redirected Client->Server:
 Bytes 0 0
 Packets 0 0
Redirected Server->Client:
 Bytes 0 0
 Packets 0 0

Connections

 Intercepted by ANC 0
 Passed through by ANC 0
 Redirected by ANC 0
 Accepted by SN 0
 Passed through by SN (on-Syn) 0
 Passed through by SN (post-Syn) 0

Passthrough Reasons

<table>
<thead>
<tr>
<th>Collected by ANC:</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Flow Learn Failure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Cluster Degraded</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT SNG Overload</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AppNav Policy</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Unknown</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indicated by SN:</th>
<th>Packets</th>
<th>Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT No Peer</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```
### Chapter 3      CLI Commands

#### show statistics monitor appnav-controller traffic

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Rjct Capabilities</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Rjct Resources</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Rjct No License</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT App Config</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Global Config</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Asymmetric</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT In Progress</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Intermediate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Overload</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Internal Error</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT App Override</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Server Black List</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD Version Mismatch</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD AO Incompatible</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT AD AOIM Progress</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT DM Version Mismatch</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Peer Override</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Bad AD Options</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Non-optimizing Peer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT SN Interception ACL</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT IP Fragment Unsupported</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Cluster Member</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Flow Query Failure</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PT Flow Intercept ACL deny</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT Overall</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

#### Related Commands

- `clear statistics monitor appnav-controller traffic`
- `monitor appnav-controller traffic`
- `show monitor`
show statistics netstat

To display Internet socket connection statistics for a WAAS device, use the show statistics netstat EXEC command.

```
show statistics netstat
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-110 describes the fields shown in the show statistics netstat command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Internet connections (w/o servers)</td>
<td>The following output prints the list of all open Internet connections to and from this WAE.</td>
</tr>
<tr>
<td>Proto</td>
<td>Layer 4 protocol used on the Internet connection, such as, TCP, UDP, and so forth.</td>
</tr>
<tr>
<td>Recv-Q</td>
<td>Amount of data buffered by the Layer 4 protocol stack in the receive direction on a connection.</td>
</tr>
<tr>
<td>Send-Q</td>
<td>Amount of data buffered by the Layer 4 precool stack in the send direction on a connection.</td>
</tr>
<tr>
<td>Local Address</td>
<td>IP address and Layer 4 port used at the WAE end point of a connection.</td>
</tr>
<tr>
<td>Foreign Address</td>
<td>IP address and Layer 4 port used at the remote end point of a connection.</td>
</tr>
<tr>
<td>State</td>
<td>Layer 4 state of a connection. TCP states include the following: ESTABLISHED, TIME-WAIT, LAST-ACK, CLOSED, CLOSED-WAIT, SYN-SENT, SYN-RCVD, SYN-SENT, SYN-ACK-SENT, and LISTEN.</td>
</tr>
</tbody>
</table>
show statistics pass-through

To display pass-through traffic statistics for a WAAS device, use the `show statistics pass-through` EXEC command.

**show statistics pass-through**

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Examples**
Table 3-111 describes the fields shown in the `show statistics pass-through` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outbound</td>
<td></td>
</tr>
<tr>
<td>PT Client: Bytes</td>
<td>Number of bytes passed through in the client to server direction.</td>
</tr>
<tr>
<td>PT Client: Packets</td>
<td>Number of packets passed through in the client to server direction.</td>
</tr>
<tr>
<td>PT Server: Bytes</td>
<td>Number of bytes passed through in the server to client direction.</td>
</tr>
<tr>
<td>PT Server: Packets</td>
<td>Number of packets passed through in the server to client direction.</td>
</tr>
<tr>
<td>PT In Progress: Bytes</td>
<td>Number of bytes passed through in progress.</td>
</tr>
<tr>
<td>PT In Progress: Packets</td>
<td>Number of packets passed through in progress.</td>
</tr>
<tr>
<td>Active/Completed</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>Total number of connections passed through.</td>
</tr>
<tr>
<td>No Peer</td>
<td>Number of connections passed through because a remote peer WAE was not found.</td>
</tr>
<tr>
<td>Rjct Capabilities</td>
<td>Number of connections passed through due to capability mismatch.</td>
</tr>
<tr>
<td>Rjct Resources</td>
<td>Number of connections passed through due to unavailability of resources.</td>
</tr>
<tr>
<td>Rjct No License</td>
<td>Number of connections passed through due to no license.</td>
</tr>
<tr>
<td>App Config</td>
<td>Number of connections passed through due to policy configuration.</td>
</tr>
<tr>
<td>Global Config</td>
<td>Number of connections passed through due to optimization being disabled globally.</td>
</tr>
<tr>
<td>Asymmetric</td>
<td>Number of connections passed through due to asymmetric routing in the network (could be an interception problem).</td>
</tr>
</tbody>
</table>
### Table 3-111  Field Descriptions for the `show statistics pass-through` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Progress</td>
<td>Number of connections passed through due to connections seen by the WAE mid-stream.</td>
</tr>
<tr>
<td>Intermediate</td>
<td>Number of connections passed through because the WAE was in between two other WAEs.</td>
</tr>
<tr>
<td>Internal Error</td>
<td>Number of connections passed through due to miscellaneous internal errors such as memory allocation failures, and so on.</td>
</tr>
<tr>
<td>App Override</td>
<td>Number of connections passed through because an application accelerator requested the connection to be passed through.</td>
</tr>
<tr>
<td>Server Black List</td>
<td>Number of connections passed through due to the server IP being present in the black list.</td>
</tr>
<tr>
<td>AD Version Mismatch</td>
<td>Number of connections passed through due to auto discovery version incompatibility.</td>
</tr>
<tr>
<td>AD AO Incompatible</td>
<td>Number of connections passed through due application accelerator versions being incompatible.</td>
</tr>
<tr>
<td>AD AOIM Progress</td>
<td>Number of connections passed through due to ongoing peer negotiations.</td>
</tr>
<tr>
<td>DM Version Mismatch</td>
<td>Number of connections passed through because directed mode, though enabled locally, is not supported by the peer device.</td>
</tr>
<tr>
<td>Peer Override</td>
<td>Number of connections passed through due to an upstream serial peer handling optimization and telling this WAE not to optimize the connection.</td>
</tr>
<tr>
<td>Bad AD Options</td>
<td>Number of connections passed through due to invalid auto discovery options.</td>
</tr>
<tr>
<td>Non-optimizing Peer</td>
<td>Number of connections passed through because the only peer found is configured as a non-optimizing serial peer.</td>
</tr>
<tr>
<td>Interception ACL</td>
<td>Number of connections passed through due to an interception ACL denying them.</td>
</tr>
</tbody>
</table>
show statistics peer

To display peer Data Redundancy Elimination (DRE) statistics for a WAE, use the `show statistics peer` EXEC command.

```
show statistics peer
show statistics peer dre [context context-value | peer-id peer-id | peer-ip ip-address | peer-no peer-no]
show statistics peer dre detail [context context-value | peer-id peer-id | peer-ip ip-address | peer-no peer-no]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dre</td>
<td>Displays the peer DRE statistics.</td>
</tr>
<tr>
<td>context</td>
<td>Displays peer statistics for the specified context (0–4294967295).</td>
</tr>
<tr>
<td>peer-id</td>
<td>(Optional) Specifies the MAC address of the peer (0–4294967295).</td>
</tr>
<tr>
<td>peer-ip</td>
<td>(Optional) Specifies the IP address of the peer.</td>
</tr>
<tr>
<td>peer-no</td>
<td>(Optional) Specifies the peer number.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

Table 3-112 describes the fields shown in the `show statistics peer dre detail` command display. This command shows the peer DRE device connection information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current number of peers with active connections</td>
<td>Number of peer devices with active connections to this device.</td>
</tr>
<tr>
<td>Maximum number of peers with active connections</td>
<td>Maximum number of peer devices with active connections to this device (since reboot).</td>
</tr>
<tr>
<td>Active peer details</td>
<td></td>
</tr>
<tr>
<td>Peer-No</td>
<td>Number assigned to the peer compression device.</td>
</tr>
<tr>
<td>Context</td>
<td>Context ID for the DRE debugging trace.</td>
</tr>
<tr>
<td>Peer-ID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Hostname of the peer device.</td>
</tr>
<tr>
<td>IP reported from peer</td>
<td>IP address reported from the peer device.</td>
</tr>
</tbody>
</table>
### Table 3-112  Field Descriptions for the show statistics peer dre detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>DRE cache data statistics as shown by the peer.</td>
</tr>
<tr>
<td>Used disk:</td>
<td>Number of megabytes (MB) used on the disk for the DRE cache.</td>
</tr>
<tr>
<td>Age:</td>
<td>Time that the DRE data has been in the cache in days (d), hours (h), minutes (m), and seconds (s).</td>
</tr>
<tr>
<td>Connections:</td>
<td></td>
</tr>
<tr>
<td>Total (cumulative):</td>
<td>Number of cumulative connections that have been processed.</td>
</tr>
<tr>
<td>Active:</td>
<td>Number of connections that are still open.</td>
</tr>
<tr>
<td>Concurrent connections (Last 2 min):</td>
<td></td>
</tr>
<tr>
<td>max</td>
<td>Maximum number of concurrent connections in the last two minutes.</td>
</tr>
<tr>
<td>avg</td>
<td>Average number of concurrent connections in the last two minutes.</td>
</tr>
<tr>
<td>Encode</td>
<td>Statistics for compressed messages.</td>
</tr>
<tr>
<td>Overall: [msg</td>
<td>in</td>
</tr>
<tr>
<td></td>
<td>msg = Total number of messages.</td>
</tr>
<tr>
<td></td>
<td>in = Number of bytes before decompression.</td>
</tr>
<tr>
<td></td>
<td>out = Number of bytes after decompression.</td>
</tr>
<tr>
<td></td>
<td>ratio = Percentage of the total number of bytes that were compressed.</td>
</tr>
<tr>
<td>DRE: [msg</td>
<td>in</td>
</tr>
<tr>
<td>DRE Bypass: [msg</td>
<td>in]</td>
</tr>
<tr>
<td>LZ: [msg</td>
<td>in</td>
</tr>
<tr>
<td>LZ Bypass: [msg</td>
<td>in]</td>
</tr>
<tr>
<td>Message size distribution</td>
<td>Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.)</td>
</tr>
<tr>
<td>Decode</td>
<td>Statistics for decompressed messages.</td>
</tr>
<tr>
<td>Overall: [msg</td>
<td>in</td>
</tr>
<tr>
<td></td>
<td>msg = Total number of messages.</td>
</tr>
<tr>
<td></td>
<td>in = Number of bytes before decompression.</td>
</tr>
<tr>
<td></td>
<td>out = Number of bytes after decompression.</td>
</tr>
<tr>
<td></td>
<td>ratio = Percentage of the total number of bytes that were decompressed.</td>
</tr>
<tr>
<td>DRE: [msg</td>
<td>in</td>
</tr>
<tr>
<td>DRE Bypass: [msg</td>
<td>in]</td>
</tr>
<tr>
<td>LZ: [msg</td>
<td>in</td>
</tr>
<tr>
<td>LZ Bypass: [msg</td>
<td>in]</td>
</tr>
</tbody>
</table>
### Table 3-112 Field Descriptions for the show statistics peer dre detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (Last 3 sec): [max</td>
<td>avg]</td>
</tr>
<tr>
<td>Message size distribution</td>
<td>Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.)</td>
</tr>
<tr>
<td><strong>Connection details</strong></td>
<td></td>
</tr>
<tr>
<td>Encode bypass due to: last partial chunk</td>
<td>Number of bypassed partial chunks and total size of bypassed chunks.</td>
</tr>
<tr>
<td>Nacks: total</td>
<td>Total NACKs.</td>
</tr>
<tr>
<td>R-tx: total</td>
<td>Total number of retransmissions.</td>
</tr>
<tr>
<td>Encode LZ latency: ms per msg, avg msg size</td>
<td>Encoding LZ latency in milliseconds per message and average message size in bytes.</td>
</tr>
<tr>
<td>Decode LZ latency: ms per msg, avg msg size</td>
<td>Decoding LZ latency in milliseconds per message and average message size in bytes.</td>
</tr>
<tr>
<td><strong>Cache write detail</strong></td>
<td></td>
</tr>
<tr>
<td>Disk size saving due to unidirectional mode</td>
<td>Amount of cache disk space saved due to using unidirectional caching mode.</td>
</tr>
</tbody>
</table>

**Related Commands**

show statistics connection closed
show statistics policy-sub-class

To display the statistics for an AppNav class map, use the show statistics policy-sub-class EXEC command.

```
show statistics policy-sub-class type appnav [level1-class classmap-name [level2-class classmap-name]]
```

### Syntax Description

- **appnav**
  - Displays statistics for all of the class maps in the active AppNav policy map.

- **level1-class classmap-name**
  - Displays statistics for the specified class map in the top-level policy map, including all class maps in nested policies.

- **level2-class classmap-name**
  - Displays statistics for the specified class map in a nested policy map.

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

appnav-controller

### Usage Guidelines

The show statistics policy-sub-class type appnav command displays statistics for all the class maps in the active AppNav policy map and any nested policy maps.

The show statistics policy-sub-class type appnav level1-class classmap-name command displays statistics for the specified class map in the top-level AppNav policy map, including statistics for all class maps in any nested policies. The nested policy class maps display statistics only from connections that match both the top-level and nested class maps.

The show statistics policy-sub-class type appnav level1-class classmap-name level2-class classmap-name command displays statistics for the specified class map in a nested AppNav policy map. The nested policy class map displays statistics only from connections that match both the top-level and nested class maps.

### Examples

The following is sample output from the show statistics policy-sub-class type appnav command for a nested class map.

```
ANC# show statistics policy-sub-class type appnav level1 class-default level2 HTTP
Service-insertion service-policy : appnav_default
 Class class-map : class-default
 service-policy : waas_app_default
 Class : HTTP
Class Map
 From Network to SN From SN to Network
---------------------- ----------------------
HTTP
 Redirected Client->Server:
 Bytes 842666098 6195601143
```
#### Chapter 3 CLI Commands

**show statistics policy-sub-class**

```
Packets 11090593 64000604
Redirected Server->Client:
Bytes 179727547324 5174359780
Packets 126653705 10353111

Connections

Intercepted by ANC 344769
Passed through by ANC 11097
Redirected by ANC 333672
Accepted by SN 333672
Passed through by SN (on-Syn) 0
Passed through by SN (post-Syn) 169968

Passthrough Reasons Packets Bytes
------------------- ------- -----
Collected by ANC:
PT Flow Learn Failure 0 0
PT Cluster Degraded 0 0
PT SNG Overload 15033190 10912861203
PT AppNav Policy 0 0
PT Unknown 0 0

Indicated by SN:
PT No Peer 256892646 194277965057
PT Rjct Capabilities 0 0
PT Rjct Resources 0 0
PT Rjct No License 0 0
PT App Config 0 0
PT Global Config 0 0
PT Asymmetric 0 0
PT In Progress 0 0
PT Intermediate 0 0
PT Overload 0 0
PT Internal Error 0 0
PT App Override 0 0
PT Server Black List 0 0
PT AD Version Mismatch 0 0
PT AD AO Incompatible 0 0
PT AD AOIM Progress 0 0
PT DM Version Mismatch 0 0
PT Peer Override 0 0
PT Bad AD Options 0 0
PT Non-optimizing Peer 0 0
PT SN Interception ACL 0 0
PT IP Fragment Unsupported 0 0
PT Cluster Member 0 0
PT Flow Query Failure 0 0
PT Flow Intercept ACL deny 0 0

-------------------- --------------------
PT Overall 271925836 205190826260
```

**Related Commands**

- (config) policy-map
- show class-map
- show policy-map
- show policy-sub-class
show statistics punt

To display punt statistics, use the `show statistics punt` EXEC command.

```markdown
show statistics punt
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Examples**

The following is sample output from the `show statistics punt` command.

```
ANC# show statistics punt
Packets received from data-plane : 283841
Packets sent to data-plane : 179872
Packets received from punt clients : 179872
Packets sent to punt clients : 283840
Packet queue size : 1
Packets dropped : 0
Packets with unsupported packet type : 0
Packets from unknown interface : 0
Packets with invalid size : 0
Packets with invalid punt reason : 0
Packets exceeded max size : 0
Packets dropped due to insufficient memory : 0
Packets dropped due to insufficient recv buffer : 0
Packets dropped due to client unavailability : 0
Packets dropped due to premature closure of socket : 0
Client count : 2
 DIAG PKT : 1
 DUMP : 0
 TRACE : 0
 DUMP AND TRACE : 0
 STATISTICS : 1
 PUNT PKT CAPTURE : 0
```

**Related Commands**

`clear statistics`
show statistics radius

To display RADIUS authentication statistics for a WAAS device, use the `show statistics radius` EXEC command.

```
show statistics radius
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
-central-manager

Examples

Table 3-113 describes the fields shown in the `show statistics radius` command display.

<table>
<thead>
<tr>
<th>Field Descriptions for the show statistics radius Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Field</strong></td>
</tr>
<tr>
<td>RADIUS Statistics</td>
</tr>
<tr>
<td>Authentication</td>
</tr>
<tr>
<td>Number of access requests</td>
</tr>
<tr>
<td>Number of access deny responses</td>
</tr>
<tr>
<td>Number of access allow responses</td>
</tr>
<tr>
<td>Authorization</td>
</tr>
<tr>
<td>Number of authorization requests</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
</tr>
<tr>
<td>Number of authorization success responses</td>
</tr>
<tr>
<td>Accounting</td>
</tr>
<tr>
<td>Number of accounting requests</td>
</tr>
</tbody>
</table>
show statistics radius

Table 3-113  Field Descriptions for the show statistics radius Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

Related Commands

clear arp-cache
(config) radius-server
show radius-server
show statistics service-insertion

To display statistics about the entities (WNs, WNGs, ANCs, ANCG, and a service context) defined in an AppNav Cluster configuration, use the `show statistics service-insertion` EXEC command.

```
show statistics service-insertion { appnav-controller ip_address | appnav-controller-group detail | data-path | service-context | service-node [ip_address] | service-node-group [detail | name sng-name]}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>appnav-controller</td>
<td>(Optional) Displays statistics about the specified ANC.</td>
</tr>
<tr>
<td>ip_address</td>
<td></td>
</tr>
<tr>
<td>appnav-controller-group</td>
<td>(Optional) Displays ANCG statistics for the service context.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed statistics.</td>
</tr>
<tr>
<td>data-path</td>
<td>(Optional) Displays data path statistics.</td>
</tr>
<tr>
<td>service-context</td>
<td>(Optional) Displays service context statistics.</td>
</tr>
<tr>
<td>service-node</td>
<td>(Optional) Displays service node (WN) statistics.</td>
</tr>
<tr>
<td>ip_address</td>
<td>(Optional) Displays service node statistics of the specified node.</td>
</tr>
<tr>
<td>service-node-group</td>
<td>(Optional) Displays statistics for all the service node groups (WNGs) in</td>
</tr>
<tr>
<td></td>
<td>the service context.</td>
</tr>
<tr>
<td>name sng-name</td>
<td>(Optional) Displays statistics of the specified node group (WNG).</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

appnav-controller

**Related Commands**

- `show statistics appnav-controller`
- `show service-insertion`
show statistics services

To display services statistics for a WAAS device, use the show statistics services EXEC command.

```
show statistics services
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
- application-accelerator
- central-manager

**Examples**
Table 3-114 describes the fields shown in the show statistics services command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Statistics</td>
<td>Service-related statistics for each port on the WAAS device.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number.</td>
</tr>
<tr>
<td>Total Connections</td>
<td>Number of total connections.</td>
</tr>
</tbody>
</table>

**Related Commands**
- show services
show statistics sessions

To display the dynamic match session statistics, use the show statistics sessions EXEC command.

```
show statistics sessions [detail] [app-id {app-id | mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>app-id</th>
<th>detail</th>
<th>(Optional) Displays the detailed session statistics for all of the dynamic match sessions or for the specified traffic type.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntax Description</td>
<td></td>
<td>app-id</td>
<td>(Optional) Displays the session statistics for dynamic matched flows for the application with the specified application number (0-1023) or the specified traffic type.</td>
</tr>
<tr>
<td>mapi</td>
<td></td>
<td></td>
<td>Microsoft Exchange MAPI aka Exchange Server Store EMSMDB,</td>
</tr>
<tr>
<td>ms-ad-rep</td>
<td></td>
<td></td>
<td>Microsoft Active Directory Replication (drsuapi),</td>
</tr>
<tr>
<td>ms-exch-nspi</td>
<td></td>
<td></td>
<td>Microsoft Active Directory Name Service Provider (NSP),</td>
</tr>
<tr>
<td>ms-frs</td>
<td></td>
<td></td>
<td>Microsoft File Replication Services (FRS),</td>
</tr>
<tr>
<td>ms-frs-api</td>
<td></td>
<td></td>
<td>Microsoft File Replication API,</td>
</tr>
<tr>
<td>ms-rfr</td>
<td></td>
<td></td>
<td>Microsoft Exchange Directory RFR Interface,</td>
</tr>
<tr>
<td>ms-sql</td>
<td></td>
<td></td>
<td>Microsoft SQL,</td>
</tr>
<tr>
<td>msn-messenger</td>
<td></td>
<td></td>
<td>Microsoft Messenger Service,</td>
</tr>
<tr>
<td>netlogon</td>
<td></td>
<td></td>
<td>Netlogon RPC</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

The show statistics sessions command displays session statistics for all the dynamic matched flows. You can optionally specify an application ID or traffic type identifier to see session statistics for only that traffic type.

The show statistics sessions details command displays detailed session statistics for all the dynamic matched flows. You can optionally specify an application ID or traffic type identifier to see detailed session statistics for only that traffic type.

**Related Commands**

(config) policy-map

show class-map

show policy-map

show policy-sub-class
show statistics snmp

To display SNMP statistics for a WAAS device, use the `show statistics snmp` EXEC command.

```
show statistics snmp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-115 describes the fields shown in the `show statistics snmp` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP packets input</td>
<td>Total number of SNMP packets input.</td>
</tr>
<tr>
<td>Bad SNMP version errors</td>
<td>Number of packets with an invalid SNMP version.</td>
</tr>
<tr>
<td>Unknown community name</td>
<td>Number of SNMP packets with an unknown community name.</td>
</tr>
<tr>
<td>Illegal operation for community name supplied</td>
<td>Number of packets requesting an operation not allowed for that community.</td>
</tr>
<tr>
<td>Encoding errors</td>
<td>Number of SNMP packets that were improperly encoded.</td>
</tr>
<tr>
<td>Number of requested variables</td>
<td>Number of variables requested by SNMP managers.</td>
</tr>
<tr>
<td>Number of altered variables</td>
<td>Number of variables altered by SNMP managers.</td>
</tr>
<tr>
<td>Get-request PDUs</td>
<td>Number of GET requests received.</td>
</tr>
<tr>
<td>Get-next PDUs</td>
<td>Number of GET-NEXT requests received.</td>
</tr>
<tr>
<td>Set-request PDUs</td>
<td>Number of SET requests received.</td>
</tr>
<tr>
<td>SNMP packets output</td>
<td>Total number of SNMP packets sent by the router.</td>
</tr>
<tr>
<td>Too big errors</td>
<td>Number of SNMP packets that were larger than the maximum packet size.</td>
</tr>
<tr>
<td>Maximum packet size</td>
<td>Maximum size of SNMP packets.</td>
</tr>
<tr>
<td>No such name errors</td>
<td>Number of SNMP requests that specified a MIB object that does not exist.</td>
</tr>
</tbody>
</table>
### Table 3-115  Field Descriptions for the `show statistics snmp` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad values errors</td>
<td>Number of SNMP SET requests that specified an invalid value for a MIB object.</td>
</tr>
<tr>
<td>General errors</td>
<td>Number of SNMP SET requests that failed because of some other error. (It was not a No such name error, Bad values error, or any of the other specific errors.)</td>
</tr>
<tr>
<td>Response PDUs</td>
<td>Number of responses sent in reply to requests.</td>
</tr>
<tr>
<td>Trap PDUs</td>
<td>Number of SNMP traps sent.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `show snmp`
- `(config) snmp-server user`
- `(config) snmp-server view`
show statistics synq

To display the cumulative statistics for the SynQ module, use the `show statistics synq` EXEC command.

```
show statistics synq
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the `show statistics synq` command to display statistics for the SynQ module.

**Examples**

The following is sample output from the `show statistics synq` command:

```
WWAE# show statistics synq
Synq structures allocations success: 0
Synq structures allocations failure: 0
Synq structures deallocations: 0
Synq table entry adds: 0
Synq table entry drops: 0
Synq table entry lookups: 0
Synq table overflows: 0
Synq table entry count: 0
Packets received by synq: 0
Packets received with invalid filtering tuple: 0
Non-syn packets received: 0
Locally originated/terminating syn packets received: 0
Retransmitted syn packets received while in Synq: 0
Synq user structure allocations success: 0
Synq user structure allocations failure: 0
Invalid packets received 0
```

**Related Commands**

`show synq list`
show statistics tacacs

To display TACACS+ authentication and authorization statistics for a WAAS device, use the `show statistics tacacs` EXEC command.

Show statistics tacacs

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-116 describes the fields shown in the `show statistics tacacs` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACACS+ Statistics</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Number of access requests</td>
<td>Number of access requests.</td>
</tr>
<tr>
<td>Number of access deny responses</td>
<td>Number of access deny responses.</td>
</tr>
<tr>
<td>Number of access allow responses</td>
<td>Number of access allow responses.</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
</tr>
<tr>
<td>Number of authorization requests</td>
<td>Number of authorization requests.</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
<td>Number of authorization failure responses.</td>
</tr>
<tr>
<td>Number of authorization success responses</td>
<td>Number of authorization success responses.</td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Number of accounting requests</td>
<td>Number of accounting requests.</td>
</tr>
</tbody>
</table>
show statistics tacacs

Table 3-116  Field Descriptions for the show statistics tacacs Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

Related Commands
- clear arp-cache
- (config) tacacs
- show tacacs
**show statistics tcp**

To display TCP statistics for a WAAS device, use the `show statistics tcp` EXEC command.

```
show statistics tcp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

central-manager

**Examples**

Table 3-117 describes the fields shown in the `show statistics tcp` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP statistics</td>
<td>Number of times that TCP connections have made a direct transition to the SYN-SENT state from the CLOSED state.</td>
</tr>
<tr>
<td>Server connection openings</td>
<td>Number of times that TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state.</td>
</tr>
<tr>
<td>Client connection openings</td>
<td>Number of times that TCP connections have made a direct transition to the SYN-RCVD state from the LISTEN state.</td>
</tr>
<tr>
<td>Failed connection attempts</td>
<td>Number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-SENT state or the SYN-RCVD state, plus the number of times TCP connections have made a direct transition to the LISTEN state from the SYN-RCVD state.</td>
</tr>
<tr>
<td>Connections established</td>
<td>Number of TCP connections for which the current state is either ESTABLISHED or CLOSE-WAIT.</td>
</tr>
<tr>
<td>Connections resets received</td>
<td>Number of times TCP connections have made a direct transition to the CLOSED state from either the ESTABLISHED state or the CLOSE-WAIT state.</td>
</tr>
<tr>
<td>Connection resets sent</td>
<td>Number of TCP segments sent containing the RST flag.</td>
</tr>
<tr>
<td>Segments received</td>
<td>Total number of segments received, including those received in error. This count includes segments received on currently established connections.</td>
</tr>
</tbody>
</table>
### Field Descriptions for the show statistics tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments sent</td>
<td>Total number of segments sent, including those on current connections but excluding those containing only retransmitted octets.</td>
</tr>
<tr>
<td>Bad segments received</td>
<td>Number of bad segments received.</td>
</tr>
<tr>
<td>Segments retransmitted</td>
<td>Total number of segments retransmitted, that is, the number of TCP segments transmitted containing one or more previously transmitted octets.</td>
</tr>
<tr>
<td>TCP memory usage (KB)</td>
<td>TCP memory usage.</td>
</tr>
<tr>
<td>TCP extended statistics</td>
<td></td>
</tr>
<tr>
<td>Sync cookies sent</td>
<td>Number of SYN-ACK packets sent with SYN cookies in response to SYN packets.</td>
</tr>
<tr>
<td>Sync cookies received</td>
<td>Number of ACK packets received with the correct SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Sync cookies failed</td>
<td>Number of ACK packets received with the incorrect SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Embryonic connection resets</td>
<td>Number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-RCVD state, the SYN-SENT state, or the SYN-ACK-SENT state.</td>
</tr>
<tr>
<td>Prune message called</td>
<td>Number of times that the device exceeded the memory pool allocated for the connection.</td>
</tr>
<tr>
<td>Packets pruned from receive queue</td>
<td>Number of packets dropped from the receive queue of the connection because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-order-queue pruned</td>
<td>Number of times that the out-of-order queue was pruned because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-window Icmp messages</td>
<td>Number of ICMP packets received on a TCP connection that were out of the received window.</td>
</tr>
<tr>
<td>Lock dropped Icmp messages</td>
<td>Number of ICMP packets dropped because the socket is busy.</td>
</tr>
<tr>
<td>Arp filter</td>
<td>Number of ICMP responses dropped because of the ARP filter.</td>
</tr>
<tr>
<td>Time-wait sockets</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets recycled</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets killed</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from TIME-WAIT state.</td>
</tr>
<tr>
<td>PAWS passive</td>
<td>Number of incoming SYN packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS active</td>
<td>Number of incoming SYN-ACK packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS established</td>
<td>Number of packets dropped in ESTABLISHED state because of a PAWS check failure.</td>
</tr>
<tr>
<td>Delayed acks sent</td>
<td>Number of delayed ACKs sent.</td>
</tr>
</tbody>
</table>
### Table 3-117  Field Descriptions for the `show statistics tcp` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed acks blocked by socket lock</td>
<td>Number of delayed ACKs postponed because the socket is busy.</td>
</tr>
<tr>
<td>Delayed acks lost</td>
<td>Number of delayed ACKs lost.</td>
</tr>
<tr>
<td>Listen queue overflows</td>
<td>Number of incoming TCP connections dropped because of a listening server queue overflow.</td>
</tr>
<tr>
<td>Connections dropped by listen queue</td>
<td>Number of incoming TCP connections dropped because of an internal error.</td>
</tr>
<tr>
<td>TCP packets queued to prequeue</td>
<td>Number of incoming TCP packets prequeued to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from backlog</td>
<td>Number of incoming TCP packets copied from the backlog queue directly to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from prequeue</td>
<td>Number of incoming TCP packets copied from the prequeue directly to a process.</td>
</tr>
<tr>
<td>TCP prequeue dropped packets</td>
<td>Number of packets removed from the TCP prequeue.</td>
</tr>
<tr>
<td>TCP header predicted packets</td>
<td>Number of TCP header-predicted packets.</td>
</tr>
<tr>
<td>Packets header predicted and queued to user</td>
<td>Number of TCP packets header-predicted and queued to the user.</td>
</tr>
<tr>
<td>TCP pure ack packets</td>
<td>Number of ACK packets received with no data.</td>
</tr>
<tr>
<td>TCP header predicted acks</td>
<td>Number of header-predicted TCP ACK packets.</td>
</tr>
<tr>
<td>TCP Reno recoveries</td>
<td>Number of TCP Reno recoveries.</td>
</tr>
<tr>
<td>TCP SACK recoveries</td>
<td>Number of TCP SACK recoveries.</td>
</tr>
<tr>
<td>TCP SACK reneging</td>
<td>Number of TCP SACK reneging.</td>
</tr>
<tr>
<td>TCP FACK reorders</td>
<td>Number of TCP FACK reorders.</td>
</tr>
<tr>
<td>TCP SACK reorders</td>
<td>Number of TCP SACK reorders.</td>
</tr>
<tr>
<td>TCP Reno reorders</td>
<td>Number of TCP Reno reorders.</td>
</tr>
<tr>
<td>TCP TimeStamp reorders</td>
<td>Number of TCP TimeStamp reorders.</td>
</tr>
<tr>
<td>TCP full undos</td>
<td>Number of TCP full undos.</td>
</tr>
<tr>
<td>TCP partial undos</td>
<td>Number of TCP partial undos.</td>
</tr>
<tr>
<td>TCP DSACK undos</td>
<td>Number of TCP DSACK undos.</td>
</tr>
<tr>
<td>TCP loss undos</td>
<td>Number of TCP loss undos.</td>
</tr>
<tr>
<td>TCP losses</td>
<td>Number of TCP losses.</td>
</tr>
<tr>
<td>TCP lost retransmit</td>
<td>Number of TCP lost retransmit.</td>
</tr>
<tr>
<td>TCP Reno failures</td>
<td>Number of TCP Reno failures.</td>
</tr>
<tr>
<td>TCP SACK failures</td>
<td>Number of TCP SACK failures.</td>
</tr>
<tr>
<td>TCP loss failures</td>
<td>Number of TCP loss failures.</td>
</tr>
<tr>
<td>TCP fast retransmissions</td>
<td>Number of TCP fast retransmissions.</td>
</tr>
<tr>
<td>TCP forward retransmissions</td>
<td>Number of TCP forward retransmissions.</td>
</tr>
<tr>
<td>TCP slowstart retransmissions</td>
<td>Number of TCP slow start retransmissions.</td>
</tr>
<tr>
<td>TCP Timeouts</td>
<td>Number of TCP timeouts.</td>
</tr>
</tbody>
</table>
### Table 3-117  Field Descriptions for the show statistics tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Reno recovery fail</td>
<td>Number of TCP Reno recovery failures.</td>
</tr>
<tr>
<td>TCP Sack recovery fail</td>
<td>Number of TCP Sack recovery failures.</td>
</tr>
<tr>
<td>TCP scheduler failed</td>
<td>Number of TCP scheduler failures.</td>
</tr>
<tr>
<td>TCP receiver collapsed</td>
<td>Number of TCP receiver collapsed failures.</td>
</tr>
<tr>
<td>TCP DSACK old packets sent</td>
<td>Number of TCP DSACK old packets sent.</td>
</tr>
<tr>
<td>TCP DSACK out-of-order packets sent</td>
<td>Number of TCP DSACK out-of-order packets sent.</td>
</tr>
<tr>
<td>TCP DSACK packets received</td>
<td>Number of TCP DSACK packets received.</td>
</tr>
<tr>
<td>TCP DSACK out-of-order packets received</td>
<td>Number of TCP DSACK out-of-order packets received.</td>
</tr>
<tr>
<td>TCP connections abort on sync</td>
<td>Number of TCP connections aborted on sync.</td>
</tr>
<tr>
<td>TCP connections abort on data</td>
<td>Number of TCP connections aborted on data.</td>
</tr>
<tr>
<td>TCP connections abort on close</td>
<td>Number of TCP connections aborted on close.</td>
</tr>
<tr>
<td>TCP connections abort on memory</td>
<td>Number of TCP connections aborted on memory.</td>
</tr>
<tr>
<td>TCP connections abort on timeout</td>
<td>Number of TCP connections aborted on timeout.</td>
</tr>
<tr>
<td>TCP connections abort on linger</td>
<td>Number of TCP connections aborted on linger.</td>
</tr>
<tr>
<td>TCP connections abort failed</td>
<td>Number of TCP connections abort failed.</td>
</tr>
<tr>
<td>TCP memory pressures</td>
<td>Number of times the device approaches the allocated memory pool for the TCP stack.</td>
</tr>
</tbody>
</table>

**Related Commands**
- clear arp-cache
- show tcp
- (config) tcp
show statistics tfo

To display Traffic Flow Optimization (TFO) statistics for a WAE, use the `show statistics tfo` EXEC command.

```
show statistics tfo [connection | detail]
show statistics tfo peer [peer-id peer-id | peer-ip peer-ip | peer-no peer-no]
```

**Syntax Description**
- `connection` (Optional) Displays aggregated TFO connection statistics.
- `detail` (Optional) Displays detailed TFO statistics.
- `peer` (Optional) Displays DRE peer statistics.
- `peer-id peer-id` (Optional) Displays peer statistics for peer ID.
- `peer-ip peer-ip` (Optional) Displays peer statistics for peer IP.
- `peer-no peer-no` (Optional) Displays peer statistics for peer number.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Examples**
Table 3-118 describes the fields shown in the `show statistics tfo` command. The Policy Engine Statistics and Auto-Discovery Statistics sections are displayed only when you use the `detail` option.

**Table 3-118  Field Descriptions for the show statistics tfo Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of connections</td>
<td>Total number of TCP connections that were optimized since the last TFO statistics reset.</td>
</tr>
<tr>
<td>No. of active connections</td>
<td>Total number of TCP optimized connections.</td>
</tr>
<tr>
<td>No. of pending (to be accepted) connections</td>
<td>Number of TCP connections that will be optimized but are currently in the setup stage.</td>
</tr>
<tr>
<td>No. of bypass connections</td>
<td>Number of connections using TFO only, with no DRE or LZ.</td>
</tr>
<tr>
<td>No. of normal closed connections</td>
<td>Number of optimized connections closed without any issues using TCP FIN.</td>
</tr>
<tr>
<td>No. of reset connections</td>
<td>Number of connections closed with one of the following errors.</td>
</tr>
<tr>
<td>Socket write failure</td>
<td>Failed to write on a socket (either on the LAN or WAN side).</td>
</tr>
<tr>
<td>Socket read failure</td>
<td>Failed to read from a socket (either LAN or WAN side).</td>
</tr>
<tr>
<td>WAN socket close while waiting to write</td>
<td>Socket between two WAES (WAN socket) closed before completing writing into it.</td>
</tr>
<tr>
<td>AO socket close while waiting to write</td>
<td>Socket between the WAE and the client/server (LAN socket) closed before completing writing into it.</td>
</tr>
</tbody>
</table>
### Table 3-118  Field Descriptions for the `show statistics tfo` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAN socket error close while waiting to read</td>
<td>Socket between two WAEs (WAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>AO socket error close while waiting to read</td>
<td>Socket between the WAE and the client/server (LAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>DRE decode failure</td>
<td>DRE internal error while decoding data. (Should not happen.)</td>
</tr>
<tr>
<td>DRE encode failure</td>
<td>DRE internal error while encoding data. (Should not happen.)</td>
</tr>
<tr>
<td>Connection init failure</td>
<td>Failed to setup the connection although auto-discovery finished successfully.</td>
</tr>
<tr>
<td>WAN socket unexpected close while waiting to read</td>
<td>Socket between two WAEs (WAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>Exceeded maximum number of supported connections</td>
<td>Connection closed ungracefully because the WAE reached its scalability limit.</td>
</tr>
<tr>
<td>Buffer allocation or manipulation failed</td>
<td>Internal memory allocation failure. (Should not happen.)</td>
</tr>
<tr>
<td>Peer received reset from end host</td>
<td>TCP RST sent by the server or client. (Can be normal behavior and does not necessarily indicate a problem.)</td>
</tr>
<tr>
<td>DRE connection state out of sync</td>
<td>DRE internal error. (Should not happen.)</td>
</tr>
<tr>
<td>Memory allocation failed for buffer heads</td>
<td>Internal memory allocation failure. (Should not happen.)</td>
</tr>
<tr>
<td>Unoptimized packet received on optimized side</td>
<td>Unoptimized packet received by the WAE when it expected an optimized packet.</td>
</tr>
<tr>
<td>Data buffer usages</td>
<td>Data buffer usage statistics for allocated (Used) and cloned buffers. The first column indicates the size of the data stored in the buffers; the second column indicates the size of the buffers; and the third column indicates the number of memory blocks used.</td>
</tr>
<tr>
<td>Buffer Control</td>
<td>Buffer control statistics for encode and decode queue buffers. The first column indicates the size of the buffers; the second column indicates the number of slow reads issued to control the queue size; and the third column indicates the number of stop reads issued to control the queue size.</td>
</tr>
<tr>
<td>AckQ Control</td>
<td>Shows the total and current number of connections blocked due to a full ack queue.</td>
</tr>
<tr>
<td>Scheduler</td>
<td>Scheduler queue sizes and number of jobs processed by each queue.</td>
</tr>
<tr>
<td>Policy Engine Statistics</td>
<td></td>
</tr>
<tr>
<td>Session timeouts</td>
<td>Number of times the TFO component did not issue a keepalive to the Policy Engine in a timely manner. A session refers to the particular registration of the TFO component within the Policy Engine.</td>
</tr>
</tbody>
</table>
show statistics tfo

Total timeouts
Total number of times the TFO component did not issue a keepalive to the Policy Engine in a timely manner. This may encompass multiple registrations.

Last keepalive received
Amount of time since the last keepalive (seconds).

Last registration occurred
Amount of time since the TFO component registered with the Policy Engine (seconds). Most likely causes are as follows:
- WAE was rebooted
- Configuration change with TFO enabled
- Restart of the TFO component by the Node Manager

Hits
Number of connections that had a configured policy that specified the use of TFO.

Updated Released
Number of hits that were released during Auto-Discovery and did not make use of the TFO component.

Active Connections
Number of hits that represent either active connections using the TFO component or connections that are still in the process of performing Auto-Discovery.

Completed Connections
Number of hits that have made use of the TFO component and have completed.

Drops
Number of hits that attempted use of the TFO component but were rejected for some reason. A separate hit and drop will be tallied for each TCP SYN packet received for a connection. This includes the original SYN and any retries.

Rejected Connection Counts Due To:
(Total:)
- Number of all of the reject reasons that represent hits that were not able to use TFO. Reject reasons include the following:
  - Not registered
  - Keepalive timeout
  - No license
  - Load level not within range
  - Connection limit exceeded
  - Rate limit exceeded (a new connection exceeded the number of connections allowed within the time window)
  - Minimum TFO not available
  - Resource manager (minimum resources not available)
  - Global config optimization disabled
  - TFO limit exceeded (systemwide connection limit reached)
  - Server-side invoked
  - DM deny (Policy Engine dynamic match deny rule matched)
  - No DM accept was matched

Table 3-18  Field Descriptions for the show statistics tfo Command (continued)
### Table 3-118  Field Descriptions for the show statistics tfo Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Discovery Statistics</td>
<td></td>
</tr>
<tr>
<td>Total connections queued for accept</td>
<td>Total number of connections added to the TFO connection accept queue by auto discovery.</td>
</tr>
<tr>
<td>Accept queue add failures</td>
<td>Number of connections that could not be added to the TFO connection accept queue due to a failure. The failure could possibly be due to queue overflow.</td>
</tr>
<tr>
<td>AO discovery successful</td>
<td>Number of times TFO discovery was successful.</td>
</tr>
<tr>
<td>AO discovery failure</td>
<td>Number of times TFO discovery failed.</td>
</tr>
</tbody>
</table>

**Related Commands**  
show statistics connection closed
show statistics udp

To display User Datagram Protocol (UDP) statistics for a WAAS device, use the `show statistics udp` EXEC command.

```
show statistics udp
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Examples**
Table 3-119 describes the fields shown in the `show statistics udp` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP statistics</td>
<td>Total number of UDP datagrams delivered to UDP users.</td>
</tr>
<tr>
<td>Packets received</td>
<td>Total number of received UDP datagrams for which there was no application at the destination port.</td>
</tr>
<tr>
<td>Packets to unknown port received</td>
<td>Number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port.</td>
</tr>
<tr>
<td>Packet receive error</td>
<td>Total number of UDP datagrams sent from this entity.</td>
</tr>
</tbody>
</table>

Table 3-119 Field Descriptions for the show statistics udp Command
show statistics vn-service vpath

To display VPATH interception statistics for your vWAAS device, use the `show statistics vn-service vpath` EXEC command.

show statistics vn-service vpath

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the `show statistics vn-service vpath` EXEC command to display statistics about VPATH interception on your vWAAS device.

**Note**

Only one type of interception can be enabled at a time on a vWAAS device (VPATH or WCCP).

**Examples**

Table 3-120 describes the fields shown in the `show statistics vn-service vpath` command display.

**Table 3-120 Field Descriptions for the show statistics vn-service vpath**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPATH Enabled</td>
<td>Indicates if VPATH interception is enabled on the WAAS device.</td>
</tr>
<tr>
<td>VPATH Packet received</td>
<td>Number of packets received through VPATH interception.</td>
</tr>
<tr>
<td>Optimized TCP Packets VPATH returned</td>
<td>Number of Optimized TCP packets returned through VPATH interception.</td>
</tr>
<tr>
<td>WAAS Bypassed VPATH packets returned</td>
<td>Number of packets that bypassed WAAS returned through VPATH interception.</td>
</tr>
<tr>
<td>VPATH encapsulated IP pkts(excluding TCP) returned</td>
<td>Number of encapsulated IP packets (excluding TCP) returned through VPATH interception.</td>
</tr>
<tr>
<td>VPATH encapsulated Non-IP packets returned</td>
<td>Number of encapsulated non-IP packets (excluding TCP) returned through VPATH interception.</td>
</tr>
<tr>
<td>VPATH Fragments received</td>
<td>Number of fragments received through VPATH interception.</td>
</tr>
</tbody>
</table>
### Table 3-120  Field Descriptions for the show statistics vn-service vpath (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPATH Fragments returned</td>
<td>Number of Fragments returned through VPATH interception.</td>
</tr>
<tr>
<td>VPATH Packets returned when VPATH not configured</td>
<td>Number of packets returned when VPATH interception is not configured.</td>
</tr>
<tr>
<td>Non-VPATH Packets received</td>
<td>Number of packets returned when VPATH interception is not configured.</td>
</tr>
<tr>
<td>Error Statistics</td>
<td>Displays the error statistics.</td>
</tr>
<tr>
<td>VPATH intercepted packets dropped</td>
<td>Number of intercepted packed dropped due to errors.</td>
</tr>
<tr>
<td>VPATH Packet CRC failures</td>
<td>Number of packets CRC failures.</td>
</tr>
<tr>
<td>VPATH packets with unsupported Version</td>
<td>Number of packets with unsupported version intercepted through VPATH.</td>
</tr>
<tr>
<td>VPATH packets with wrong request type</td>
<td>Number of packets with wrong request type intercepted through VPATH.</td>
</tr>
<tr>
<td>VPATH packets with wrong destination MAC</td>
<td>Number of packets with wrong destination MAC address.</td>
</tr>
</tbody>
</table>

**Related Commands**

(config) vn-service vpath  

clear statistics vn-service vpath
show statistics wccp

To display WCCP statistics for a WAE, use the **show statistics wccp** EXEC command.

```
show statistics wccp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

The output of this command differs depending on the device mode of the WAE.

**Examples**

Table 3-121 describes the fields shown in the **show statistics wccp gre** command display for an application accelerator device.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent GRE packets received</td>
<td>Total number of GRE packets received by the WAE, regardless of whether or not they have been intercepted by WCCP. GRE is a Layer 3 technique that allows packets to reach the WAE, even if there are any number of routers in the path to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets received</td>
<td>Number of non-GRE packets received by the WAE, either using the traffic interception and redirection functions of WCCP in the router hardware at Layer 2 or Layer 4 switching (a Content Switching Module [CSM]) that redirects requests transparently to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE non-WCCP packets received</td>
<td>Number of non-GRE packets transparently intercepted by a Layer 4 switch and redirected to the WAE.</td>
</tr>
<tr>
<td>Total packets accepted</td>
<td>Total number of packets that are transparently intercepted and redirected to the WAE to serve client requests for content.</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of packets that are dropped either because the redirected packet is a GRE packet and the WCCP GRE header has invalid data or the IP header of the redirected packet is invalid.</td>
</tr>
<tr>
<td>Packets received with invalid service</td>
<td>Number of WCCP version 2 GRE redirected packets that contain an invalid WCCP service number.</td>
</tr>
</tbody>
</table>
## Table 3-121: Field Descriptions for the `show statistics wccp` Command on a WAE (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets received on a disabled service</td>
<td>Number of WCCP version 2 GRE redirected packets that specify the WCCP service number for a service that is not enabled on the WAE. For example, an HTTPS request redirected to the WAE when the HTTPS-caching service (service 70) is not enabled.</td>
</tr>
<tr>
<td>Packets received too small</td>
<td>Number of GRE packets redirected to the WAE that do not contain the minimum amount of data required for a WCCP GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to zero TTL</td>
<td>Number of GRE packets that are dropped by the WAE because the IP header of the redirected packet has a zero TTL.</td>
</tr>
<tr>
<td>Packets dropped due to bad buckets</td>
<td>Number of packets that are dropped by the WAE because the WCCP flow redirection could not be performed due to a bad mask or hash bucket determination.</td>
</tr>
<tr>
<td>Note</td>
<td>A bucket is defined as a certain subsection of the allotted hash assigned to each WAE in a WAE cluster. If only one WAE exists in this environment, it has 256 buckets assigned to it.</td>
</tr>
<tr>
<td>Packets dropped due to no redirect address</td>
<td>Number of packets that are dropped because the flow redirection destination IP address could not be determined.</td>
</tr>
<tr>
<td>Packets dropped due to loopback redirect</td>
<td>Number of packets that are dropped by the WAE when the destination IP address is the same as the loopback address.</td>
</tr>
<tr>
<td>Pass-through pkts dropped on assignment update</td>
<td>Number of packets that were targeted for TFO pass-through, but were dropped instead because the bucket was not owned by the device.</td>
</tr>
<tr>
<td>Connections bypassed due to load</td>
<td>Number of connection flows that are bypassed when the WAE is overloaded. When the overload bypass option is enabled, the WAE bypasses a bucket and reroutes the overload traffic. If the load remains too high, another bucket is bypassed, and so on, until the WAE can handle the load.</td>
</tr>
<tr>
<td>Packets sent back to router</td>
<td>Number of requests that are passed back by the WAE to the WCCP-enabled router from which the request was received. The router then sends the flow toward the origin web server directly from the web browser, which bypasses the WAE.</td>
</tr>
<tr>
<td>Packets sent to another WAE</td>
<td>Number of packets that are redirected to another WAE in the WCCP service group. Service groups consist of up to 32 WAES and 32 WCCP-enabled routers. In both packet-forwarding methods, the hash parameters specify how redirected traffic should be load balanced among the WAES in the various WCCP service groups.</td>
</tr>
<tr>
<td>GRE fragments redirected</td>
<td>Number of GRE packets received by the WAE that are fragmented. These packets are redirected back to the router.</td>
</tr>
<tr>
<td>GRE encapsulated fragments received</td>
<td>Number of GRE encapsulated fragments received by the WAE. The tcp-promiscuous service does not inspect port information and therefore the router or switch may GRE encapsulate IP fragments and redirect them to the WAE. These fragments are then reassembled into packets before being processed.</td>
</tr>
</tbody>
</table>
Table 3-121  Field Descriptions for the show statistics wccp Command on a WAE (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets failed encapsulated reassembly</td>
<td>Number of reassembled GRE encapsulated packets that were dropped because they failed the reassembly sanity check. Reassembled GRE encapsulated packets are composed of two or more GRE encapsulated fragments. This field is related to the previous statistic.</td>
</tr>
<tr>
<td>Packets failed GRE encapsulation</td>
<td>Number of GRE packets that are dropped by the WAE because they could not be redirected due to problems while encapsulating the packet with a GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to invalid fwd method</td>
<td>Number of GRE packets that are dropped by the WAE because it was redirected using GRE but the WCCP service was configured for Layer 2 redirection.</td>
</tr>
<tr>
<td>Packets dropped due to insufficient memory</td>
<td>Number of GRE packets that are dropped by the WAE due to the failure to allocate additional memory resources required to handle the GRE packet.</td>
</tr>
<tr>
<td>Packets bypassed, no pending connection</td>
<td>Number of packets that failed to be associated with a pending connection because the initial handshake was not completed.</td>
</tr>
<tr>
<td>Packets due to clean wccp shutdown</td>
<td>Number of connection flows that are bypassed due to a clean WCCP shutdown. During a proper shutdown of WCCP, the WAE continues to service the flows it is handling but starts to bypass new flows. When the number of flows goes down to zero, the WAE takes itself out of the cluster by having its buckets reassigned to other WAEs by the lead WAE.</td>
</tr>
<tr>
<td>Packets bypassed due to bypass-list lookup</td>
<td>Number of connection flows that are bypassed due to a bypass list entry. When the WAE receives an error response from an origin server, it adds an entry for the server to its bypass list. When it receives subsequent requests for the content residing on the bypassed server, it redirects packets to the bypass gateway. If no bypass gateway is configured, then the packets are returned to the redirecting Layer 4 switch.</td>
</tr>
<tr>
<td>Conditionally Accepted connections</td>
<td>Number of connection flows that are accepted by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Conditionally Bypassed connections</td>
<td>Number of connection flows that are bypassed by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Packets dropped due to received on loopback</td>
<td>Number of packets that were dropped by the WCCP L2 intercept layer because they were received on the loopback interface but were not destined to a local address of the device. There is no valid or usable route for the packet.</td>
</tr>
<tr>
<td>Packets w/WCCP GRE received too small</td>
<td>Number of packets transparently intercepted by the WCCP-enabled router at Layer 2 and sent to the WAE that need to be fragmented for the packets to be redirected using GRE. The WAE drops the packets since it cannot encapsulate the IP header.</td>
</tr>
<tr>
<td>Packets dropped due to received on loopback</td>
<td>Number of packets that are dropped by the WAE because they were received on the loopback interface.</td>
</tr>
</tbody>
</table>
Table 3-121 Field Descriptions for the show statistics wccp Command on a WAE (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped due to IP access-list deny</td>
<td>Number of packets that are dropped by the WAE when an IP access list that the WAE applies to WCCP GRE encapsulated packets denies access to WCCP applications (the wccp access-list command).</td>
</tr>
<tr>
<td>Packets fragmented for bypass</td>
<td>Number of bypass GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packets fragmented for egress</td>
<td>Number of egress GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packet pullups needed</td>
<td>Number of times a packet had to be consolidated as part of its processing. Consolidation is required when a packet is received as fragments and the first fragment does not contain all the information needed to process it.</td>
</tr>
<tr>
<td>Packets dropped due to no route found</td>
<td>Number of packets that are dropped by the WAE because it cannot find the route.</td>
</tr>
<tr>
<td>WCCP Loop Packets detected</td>
<td>Number of WCCP loop packets detected.</td>
</tr>
<tr>
<td>WCCP Loop Packets dropped</td>
<td>Number of WCCP loop packets dropped.</td>
</tr>
</tbody>
</table>

Table 3-122 describes the fields shown in the show statistics wccp command display for an ANC device.

Table 3-122 Field Descriptions for the show statistics wccp Command on an ANC

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP Stats for Router</td>
<td>Router address. This section appears for each WCCP router.</td>
</tr>
<tr>
<td>Packets Received from Router</td>
<td>Packets received from the router.</td>
</tr>
<tr>
<td>Bytes Received from Router</td>
<td>Bytes received from the router.</td>
</tr>
<tr>
<td>Packets Transmitted to Router</td>
<td>Packets sent to the router.</td>
</tr>
<tr>
<td>Bytes Transmitted to Router</td>
<td>Bytes sent to the router.</td>
</tr>
<tr>
<td>Pass-thru Packets sent to Router</td>
<td>Pass-through packets sent to the router.</td>
</tr>
<tr>
<td>Pass-thru Bytes sent to Router</td>
<td>Pass-through bytes sent to the router.</td>
</tr>
<tr>
<td>Redirect Packets sent to SN</td>
<td>Redirect packets sent to WAAS nodes (WNs) for optimization.</td>
</tr>
<tr>
<td>Redirect Bytes sent to SN</td>
<td>Redirect bytes sent to WNs.</td>
</tr>
<tr>
<td>Cumulative WCCP Stats</td>
<td>Cumulative statistics for all WCCP routers.</td>
</tr>
<tr>
<td>Total Packets Received from all Routers</td>
<td>Total packets received from all routers.</td>
</tr>
<tr>
<td>Total Bytes Received from all Routers</td>
<td>Total bytes received from all routers.</td>
</tr>
<tr>
<td>Total Packets Transmitted to all Routers</td>
<td>Total packets sent to all routers.</td>
</tr>
<tr>
<td>Total Bytes Transmitted to all Routers</td>
<td>Total bytes sent to all routers.</td>
</tr>
</tbody>
</table>
show statistics wccp

Related Commands

- (config) wccp access-list
- (config) wccp flow-redirect
- (config) wccp router-list
- (config) wccp shutdown
- (config) wccp tcp-promiscuous service-pair

Table 3-122  Field Descriptions for the show statistics wccp Command on an ANC

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pass-thru Packets sent to all Routers</td>
<td>Total pass-through packets sent to all routers.</td>
</tr>
<tr>
<td>Total Pass-thru Bytes sent to all Routers</td>
<td>Total pass-through bytes sent to all routers.</td>
</tr>
<tr>
<td>Total Redirect Packets sent to SN</td>
<td>Total redirect packets sent to all WNs.</td>
</tr>
<tr>
<td>Total Redirect Bytes sent to SN</td>
<td>Total redirect bytes sent to all WNs.</td>
</tr>
</tbody>
</table>

Cisco Wide Area Application Services Command Reference
show statistics windows-domain

To display Windows domain server information for a WAAS device, use the show statistics windows-domain EXEC command.

show statistics windows-domain

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the show statistics windows-domain EXEC command to view the Windows domain server statistics, then clear the counters for these statistics by entering the clear statistics windows-domain EXEC command.

Examples
Table 3-123 describes the fields shown in the show statistics windows-domain command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Domain Statistics</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Number of access requests</td>
<td>Number of access requests.</td>
</tr>
<tr>
<td>Number of access deny responses</td>
<td>Number of access deny responses.</td>
</tr>
<tr>
<td>Number of access allow responses</td>
<td>Number of access allow responses.</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
</tr>
<tr>
<td>Number of authorization requests</td>
<td>Number of authorization requests.</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
<td>Number of authorization failure responses.</td>
</tr>
<tr>
<td>Number of authorization success responses</td>
<td>Number of authorization success responses.</td>
</tr>
</tbody>
</table>
### Field Descriptions for the show statistics windows-domain Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Number of accounting requests</td>
<td>Number of accounting requests.</td>
</tr>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `windows-domain`
- `(config) windows-domain`
show statistics windows-print requests

To display Windows print acceleration statistics for a WAE using a CIFS application accelerator, use the `show statistics windows-print requests` EXEC command.

```
show statistics windows-print requests
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the `show statistics windows-print requests` command to view the Windows print traffic details for a WAE using a CIFS application accelerator.

To display print acceleration statistics for a WAE using an SMB application accelerator, use the `show statistics accelerator SMB` EXEC command.

**Note**

For Windows 7 clients, depending on the printer driver installed, the EndPagePrinter, StartPagePrinter, and WritePrinter counters may not increment because these functions may be encapsulated in a different SMB command.

**Examples**

Table 3-124 describes the fields shown in the `show statistics windows-print requests` command display.

```
Table 3-124 Field Descriptions for the show statistics windows-print requests Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics gathering period</td>
<td>Number of hours, minutes, seconds, and milliseconds of the statistics gathering period.</td>
</tr>
<tr>
<td>Documents spooled</td>
<td>Number of documents spooled.</td>
</tr>
<tr>
<td>Pages spooled</td>
<td>Number of pages spooled.</td>
</tr>
<tr>
<td>Total commands</td>
<td>Total number of print commands.</td>
</tr>
<tr>
<td>Remote commands</td>
<td>Number of print commands that were not handled from the local cache.</td>
</tr>
<tr>
<td>ALL_COMMANDS total</td>
<td>All the print commands combined.</td>
</tr>
<tr>
<td>total</td>
<td>Total number of requests for all commands.</td>
</tr>
</tbody>
</table>
```
show statistics windows-print requests

**Table 3-124**  Field Descriptions for the show statistics windows-print requests Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remote</td>
<td>Number of remote requests for all commands.</td>
</tr>
<tr>
<td>async</td>
<td>Number of async requests for all commands.</td>
</tr>
<tr>
<td>avg local</td>
<td>Average local request time in milliseconds for all commands.</td>
</tr>
<tr>
<td>avg remote</td>
<td>Average remote request time in milliseconds for all commands.</td>
</tr>
<tr>
<td>Bind, ClosePrinter, EnumJobs, and so on</td>
<td>Statistics for individual print commands. Each has the same fields as the ALL_COMMANDS section.</td>
</tr>
</tbody>
</table>

**Related Commands**  
(config) accelerator windows-print
show synq list

To display the connections for the SynQ module, use the `show synq list` EXEC command.

```
show synq list [| { begin regex [regex] | exclude regex [regex] | include regex [regex]}] [| { begin regex [regex] | exclude regex [regex] | include regex [regex]}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>begin regex</td>
<td>Begins with the line that matches the regular expression. You can enter multiple expressions.</td>
</tr>
<tr>
<td>exclude regex</td>
<td>Excludes lines that match the regular expression. You can enter multiple expressions.</td>
</tr>
<tr>
<td>include regex</td>
<td>Includes lines that match the regular expression. You can enter multiple expressions.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the `show synq list` command to list connections that are currently being tracked in the SynQ module.

**Examples**

The following is sample output from the `show synq list` command:

```
WAE# show synq list
Src-IP:Src-Port Dest-IP:Dest-Port Timeout(msec) Rexmit cnt
```

**Related Commands**

`show statistics synq`
show sysfs volumes

To display system file system (sysfs) information for a WAAS device, use the `show sysfs volumes` EXEC command.

```
show sysfs volumes
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The system file system (sysfs) stores log files, including transaction logs, syslogs, and internal debugging logs. It also stores system image files and operating system files.

**Examples**

Table 3-125 describes the fields shown in the `show sysfs volumes` command display.

**Table 3-125 Field Descriptions for the show sysfs volumes Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysfs 00–04</td>
<td>System file system and disk number.</td>
</tr>
<tr>
<td>/local/local1–5</td>
<td>Mount point of the volume.</td>
</tr>
<tr>
<td>nnnnnKB</td>
<td>Size of the volume in kilobytes.</td>
</tr>
<tr>
<td>nn% free</td>
<td>Percentage of free space in the SYSFS partition.</td>
</tr>
</tbody>
</table>

**Related Commands**

`disk`

`(config) disk error-handling`
show tacacs

To display TACACS+ authentication protocol configuration information for a WAAS device, use the `show tacacs` EXEC command.

```
show tacacs
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
central-manager

**Examples**
Table 3-126 describes the fields shown in the `show tacacs` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication for Console/Telnet Session</td>
<td>Indicates whether TACACS+ server is enabled for login authentication.</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session</td>
<td>Indicates whether TACACS+ server is enabled for authorization or configuration authentication.</td>
</tr>
<tr>
<td>TACACS+ Configuration</td>
<td>TACACS+ server parameters.</td>
</tr>
<tr>
<td>TACACS+ Authentication</td>
<td>Indicates whether TACACS+ authentication is enabled on the WAAS device.</td>
</tr>
<tr>
<td>Key</td>
<td>Secret key that the WAE uses to communicate with the TACACS+ server. The maximum length of the TACACS+ key is 32 characters.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Number of seconds that the WAAS device waits for a response from the specified TACACS+ authentication server before declaring a timeout.</td>
</tr>
<tr>
<td>Retransmit</td>
<td>Number of times that the WAAS device is to retransmit its connection to the TACACS+ if the TACACS+ timeout interval is exceeded.</td>
</tr>
<tr>
<td>Password type</td>
<td>Mechanism for password authentication. By default, the Password Authentication Protocol (PAP) is the mechanism for password authentication.</td>
</tr>
<tr>
<td>Server</td>
<td>Hostname or IP address of the TACACS+ server.</td>
</tr>
</tbody>
</table>
show tacacs

-related Commands-

- clear arp-cache
- show statistics tacacs
- show tacacs
- (config) tacacs

Table 3-126  Field Descriptions for the show tacacs Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Port number of the TACACS+ server.</td>
</tr>
<tr>
<td>Status</td>
<td>Indicates whether server is the primary or secondary host.</td>
</tr>
</tbody>
</table>
show tcp

To display TCP configuration information for a WAAS device, use the `show tcp` EXEC command.

```
show tcp
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-127 describes the fields shown in the `show tcp` command display. This command displays the settings configured with the `tcp` global configuration command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Configuration</td>
<td></td>
</tr>
<tr>
<td>TCP keepalive timeout XX sec</td>
<td>Length of time that the WAAS device is set to keep a connection open before disconnecting.</td>
</tr>
<tr>
<td>TCP keepalive probe count X</td>
<td>Number of times the WAAS device will retry a connection before the connection is considered unsuccessful.</td>
</tr>
<tr>
<td>TCP keepalive probe interval XX sec</td>
<td>Length of time (in seconds) that the WAAS device is set to keep an idle connection open.</td>
</tr>
<tr>
<td>TCP explicit congestion notification disabled</td>
<td>Configuration status of the TCP explicit congestion notification feature. Values are enabled or disabled.</td>
</tr>
<tr>
<td>TCP cwnd base value X</td>
<td>Value (in segments) of the send congestion window.</td>
</tr>
<tr>
<td>TCP initial slowstart threshold value X</td>
<td>Threshold (in segments) for slow start.</td>
</tr>
<tr>
<td>TCP increase (multiply) retransmit timer by X</td>
<td>Number of times set to increase the length of the retransmit timer base value.</td>
</tr>
<tr>
<td>TCP memory_limit</td>
<td></td>
</tr>
<tr>
<td>Low water mark</td>
<td>Lower limit (in MB) of memory pressure mode, below which TCP enters into normal memory allocation mode.</td>
</tr>
<tr>
<td>High water mark (pressure)</td>
<td>Upper limit (in MB) of normal memory allocation mode, beyond which TCP enters into memory pressure mode.</td>
</tr>
<tr>
<td>High water mark (absolute)</td>
<td>Absolute limit (in MB) on TCP memory usage.</td>
</tr>
</tbody>
</table>
Related Commands

- clear arp-cache
- show statistics tcp
- (config) tcp
show tech-support

To view information necessary for Cisco TAC to assist you, use the show tech-support EXEC command.

    show tech-support [page]

Syntax Description

| page | (Optional) Displays command output page by page. |

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

Use the show tech-support command to view system information necessary for Cisco TAC to assist you with a WAAS device. We recommend that you log the output to a disk file. (See the (config) logging console command.)

Examples

The following is sample output from the show tech-support command:

Because the show tech-support command output can be long, excerpts are shown in this example.

    WAE# show tech-support
    ------------------ version and hardware ------------------
    Cisco Wide Area Application Services Software (WAAS)
    Copyright (c) 1999-2006 by Cisco Systems, Inc.
    ...
    Version: ce510-4.0.0.180
    Compiled 18:08:17 Feb 16 2006 by cnbuild
    System was restarted on Fri Feb 17 23:09:53 2006.
    The system has been up for 5 weeks, 3 days, 2 hours, 9 minutes, 49 seconds.
    CPU 0 is GenuineIntel Intel(R) Celeron(R) CPU 2.40GHz (rev 2) running at 2401MHz
    .
    Total 1 CPU.
    512 Mbytes of Physical memory.
    ...
    BIOS Information:
    Vendor : IBM
    Version : -{PLEC52AUS-C.52}-
    Rel. Date : 05/19/03
    ...
show tech-support

List of all disk drives:
Physical disk information:

<table>
<thead>
<tr>
<th>Disk</th>
<th>Status</th>
<th>Type</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk00</td>
<td>Normal</td>
<td>IDE disk</td>
<td>76324MB (74.5GB)</td>
</tr>
<tr>
<td>disk01</td>
<td>Normal</td>
<td>IDE disk</td>
<td>76324MB (74.5GB)</td>
</tr>
</tbody>
</table>

Mounted filesystems:

<table>
<thead>
<tr>
<th>Mount Point</th>
<th>Type</th>
<th>Device</th>
<th>Size</th>
<th>Inuse</th>
<th>Free</th>
<th>Use%</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>root</td>
<td>/dev/root</td>
<td>31MB</td>
<td>26MB</td>
<td>5MB</td>
<td>83%</td>
</tr>
<tr>
<td>/sw</td>
<td>internal</td>
<td>/dev/md0</td>
<td>991MB</td>
<td>430MB</td>
<td>561MB</td>
<td>43%</td>
</tr>
<tr>
<td>/swstore</td>
<td>internal</td>
<td>/dev/md1</td>
<td>991MB</td>
<td>287MB</td>
<td>704MB</td>
<td>28%</td>
</tr>
<tr>
<td>/state</td>
<td>internal</td>
<td>/dev/md2</td>
<td>3967MB</td>
<td>61MB</td>
<td>3906MB</td>
<td>1%</td>
</tr>
<tr>
<td>/disk00-04</td>
<td>CONTENT</td>
<td>/dev/md4</td>
<td>62539MB</td>
<td>32MB</td>
<td>62507MB</td>
<td>0%</td>
</tr>
<tr>
<td>/local/local</td>
<td>SYSFS</td>
<td>/dev/md5</td>
<td>3967MB</td>
<td>197MB</td>
<td>3770MB</td>
<td>4%</td>
</tr>
<tr>
<td>/local1/spool</td>
<td>PRINTSPOOL</td>
<td>/dev/md6</td>
<td>991MB</td>
<td>16MB</td>
<td>975MB</td>
<td>1%</td>
</tr>
</tbody>
</table>

Software RAID devices:

<table>
<thead>
<tr>
<th>Device Name</th>
<th>Type</th>
<th>Status</th>
<th>Physical Devices and Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/md0</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/00[GOOD] disk01/00[GOOD]</td>
</tr>
<tr>
<td>/dev/md1</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/01[GOOD] disk01/01[GOOD]</td>
</tr>
<tr>
<td>/dev/md0</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/00[GOOD] disk01/00[GOOD]</td>
</tr>
<tr>
<td>/dev/md1</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/01[GOOD] disk01/01[GOOD]</td>
</tr>
<tr>
<td>/dev/md2</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/02[GOOD] disk01/02[GOOD]</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Currently content-filesystems RAID level is not configured to change.

------------------ running configuration -------------------

! WAAS version 4.0.0
!
!
...  

------------------ processes -------------------

CPU average usage since last reboot:

cpu: 0.00% User, 1.79% System, 3.21% User(nice), 95.00% Idle

------------------ processes -------------------

<table>
<thead>
<tr>
<th>PID</th>
<th>State</th>
<th>Pri</th>
<th>User T</th>
<th>Sys T</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S</td>
<td>0</td>
<td>20138</td>
<td>21906</td>
<td>(init)</td>
</tr>
<tr>
<td>2</td>
<td>S</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(migration/0)</td>
</tr>
<tr>
<td>3</td>
<td>S</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>(ksoftirqd/0)</td>
</tr>
<tr>
<td>4</td>
<td>S</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>(events/0)</td>
</tr>
<tr>
<td>5</td>
<td>S</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>(khelper)</td>
</tr>
<tr>
<td>17</td>
<td>S</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>(kacpid)</td>
</tr>
<tr>
<td>93</td>
<td>S</td>
<td>-10</td>
<td>0</td>
<td>0</td>
<td>(kblockd/0)</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Commands:

types version
show hardware
show disks details
show running-config
show processes
show processes memory
show memory
show interface
show cdp entry
show cdp neighbors
show statistics wccp
show alarms all
show statistics auto-discovery
show statistics ip
show statistics icmp
show statistics netstat
show statistics peer
show statistics tfo
show disks SMART-info
show disks SMART-info details
show disks failed-sectors
show telnet

To display Telnet services configuration for a WAAS device, use the show telnet EXEC command.

show telnet

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Examples
The following is sample output from the show telnet command. It shows whether or not Telnet is enabled on the WAAS device.

WAE# show telnet
telnet service is enabled

Related Commands
telnet
(config) telnet enable
(config) exec-timeout
show tfo tcp

To display global Traffic Flow Optimization (TFO) TCP buffer information for a WAE, use the `show tfo tcp` EXEC command.

```
show tfo tcp
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator
appnav-controller

**Examples**
The following is sample output from the `show tfo tcp` command. It displays TCP buffer information for the WAE.

```
WAE# show tfo tcp
Maximum Segment Size:
 Configured:
 Optimized MSS : 1432 bytes
 Original MSS : 1432 bytes
 Default:
 Optimized MSS : 1432 bytes
 Original MSS : 1432 bytes

Buffer Sizing Status:
 Configured:
 Adaptive buffer sizing : enabled
 Maximum receive buffer size : 8192 KB
 Maximum orig side receive buf size : 256 KB (capped)
 Maximum send buffer size : 8192 KB
 Fixed buffer sizing : disabled
 Optimized side receive buffer size : 2048 KB
 Optimized side send buffer size : 2048 KB
 Original side receive buffer size : 32 KB
 Original side send buffer size : 32 KB
 Default:
 Adaptive buffer sizes :
 Maximum receive buffer size : 8192 KB
 Maximum send buffer size : 8192 KB
 Fixed buffer sizes:
 Optimized side receive buffer size : 32 KB
 Optimized side send buffer size : 32 KB
 Original side receive buffer size : 32 KB
 Original side send buffer size : 32 KB

TFO Status:
 Adaptive buffer sizing is enabled
```
show tfo tcp

Related Commands

- show statistics tfo
- show statistics auto-discovery
- show statistics connection closed
- show statistics filtering
- (config) tfo tcp adaptive-buffer-sizing
show transaction-logging

To display the transaction log configuration settings and a list of archived transaction log files for a WAE, use the `show transaction-logging` EXEC command.

**show transaction-logging**

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
EXEC

**Device Modes**
application-accelerator

**Usage Guidelines**
Use the `show transaction-logging` EXEC command to display information about the current configuration of transaction logging on a WAE. Transaction log file information is displayed for TFO transactions and video accelerator transactions.

**Note**
For security reasons, passwords are never displayed in the output of the `show transaction-logging` EXEC command.

**Examples**
The following is sample output from the `show transaction-logging` command. It lists information about the current configuration of transaction logging on a WAE.

```
WAAE# show transaction-logging
Flow transaction log configuration:

Flow Logging is disabled.
Flow Archive interval: every-day every 1 hour
Flow Maximum size of archive file: 2000000 KB

Exporting files to ftp servers is disabled.
File compression is disabled.
Export interval: every-day every 1 hour

Accelerator video windows-media transaction log configuration:

Accelerator video windows-media logging is disabled.
Accelerator video windows-media archive interval: every-day every 1 hour
Accelerator video windows-media maximum size of archive file: 2000000 KB

Exporting files to ftp servers is disabled.
File compression is disabled.
Export interval: every-day every 1 hour
```
show transaction-logging

Related Commands

- clear arp-cache
- transaction-log
- (config) transaction-logs
show user

To display user identification number and username information for a particular user of a WAAS device, use the `show user` EXEC command.

```
show user {uid number | username name}
```

**Syntax Description**

- `uid number` Displays user information based on the identification number of the user (0–65535).
- `username name` Displays user information based on the name of the user.

**Command Default**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Examples**

Table 3-128 describes the fields shown in the `show user` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uid</td>
<td>User ID number.</td>
</tr>
<tr>
<td>Username</td>
<td>Username.</td>
</tr>
<tr>
<td>Password</td>
<td>Login password. This field does not display the actual password.</td>
</tr>
<tr>
<td>Privilege</td>
<td>Privilege level of the user.</td>
</tr>
<tr>
<td>Configured in</td>
<td>Database in which the login authentication is configured.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `clear arp-cache`
- `show users administrative`
- `(config) username`
show users administrative

To display users with administrative privileges to the WAAS device, use the show users administrative EXEC command.

```
show users administrative [history | locked-out | logged-in]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrative</td>
<td>Displays a list of users defined on the device.</td>
</tr>
<tr>
<td>history</td>
<td>(Optional) Displays a historical list of user log-ins.</td>
</tr>
<tr>
<td>locked-out</td>
<td>(Optional) Displays a list of locked out users.</td>
</tr>
<tr>
<td>logged-in</td>
<td>(Optional) Displays a list of users that are logged in.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

EXEC

### Device Modes

application-accelerator
central-manager

### Examples

Table 3-129 describes the fields shown in the show users administrative history command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Users that have logged in to this appliance CLI during the historical period. When windows domain authentication is enabled, a space in the windows domain username is replaced by the “+” symbol in the output.</td>
</tr>
<tr>
<td>Line</td>
<td>Type of terminal used to access this appliance.</td>
</tr>
<tr>
<td>IP address/Host</td>
<td>IP address or hostname of the user that logged in to this appliance.</td>
</tr>
<tr>
<td>Loggin details</td>
<td>Day of the week, month, date, time, and whether or not the user is still logged in.</td>
</tr>
</tbody>
</table>

Table 3-130 describes the fields shown in the show users administrative logged-in command display.
### Table 3-130  Field Descriptions for the show users administrative logged-in Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Users currently logged in to the appliance CLI. When windows domain authentication is enabled, a space in the windows domain username is replaced by the “+” symbol in the output.</td>
</tr>
<tr>
<td>Line</td>
<td>Type of terminal used to access this appliance.</td>
</tr>
<tr>
<td>IP address/Host</td>
<td>IP address or hostname of the user that is logged in to this appliance.</td>
</tr>
<tr>
<td>Loginn details</td>
<td>Day of week, month, date, and time that each user logged in.</td>
</tr>
</tbody>
</table>

**Related Commands**

- clear arp-cache
- (config) username
show version

To display version information about the WAAS software that is running on the WAAS device, use the show version EXEC command.

```
show version [last | pending]
```

**Syntax Description**

- **last** (Optional) Displays the version information for the last saved image.
- **pending** (Optional) Displays the version information for the pending upgraded image.

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

- application-accelerator
- central-manager

**Examples**

Table 3-131 describes the fields shown in the show version command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Wide Area Application Services Software (WAAS)</td>
<td>Software application, copyright, release, and build information. Displays universal-k9 for the full software image, accelerator-k9 for the accelerator only software image, and universal-npe-k9 or accelerator-npe-k9 for the NPE versions of those images. The NPE image versions have the disk encryption feature disabled for use in countries where disk encryption is not permitted.</td>
</tr>
<tr>
<td>Copyright (c) year by Cisco Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Cisco Wide Area Application Services (universal-k9) Software Release XXX (build bXXX month day year)</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Version number of the software that is running on the device.</td>
</tr>
<tr>
<td>Compiled hour:minute:second month day year by cnbuild</td>
<td>Compiled information for the software build.</td>
</tr>
<tr>
<td>Device Id</td>
<td>Hardware device ID.</td>
</tr>
<tr>
<td>System was restarted on day of week month day hour:minute:second year</td>
<td>Date and time that the system was last restarted.</td>
</tr>
<tr>
<td>The system has been up for</td>
<td>Length of time the system has been running since the last reboot.</td>
</tr>
</tbody>
</table>
show virtual-blade

To display virtual blade information on your WAE device, use the `show virtual-blade` EXEC command.

```
show virtual-blade [virtual-blade-number [blockio | interface {1 | 2}] | detail | vmstat]
```

**Syntax Description**

- `virtual-blade-number`: Individual virtual blade for which to view detailed information.
- `blockio`: (Optional) Displays statistics information for disk devices on a virtual blade.
- `interface 1 | 2`: (Optional) Displays statistics information for a bridged network interface on a virtual blade.
- `detail`: (Optional) Displays detailed information about all virtual blades.
- `vmstat`: (Optional) Displays virtual machine statistics information for all virtual blades.

**Command Default**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

**Examples**

The following is sample output from the `show virtual-blade` command. It displays general virtual blade information for all virtual blades.

```
WAE# show virtual-blade
Virtual-blade resources:
 VB Memory: 1000MiB configured, 3072MiB available.
 VB Disk space: 40GiB configured, 180GiB available.
 VB Image space /local1/vbs: 128MiB used, 125644MiB available
 CPU(s) assigned: 2
Virtual-blade(s) state:
 virtual-blade 1 is running
```

The following is sample output from the `show virtual-blade detail` command. It displays detailed information for all virtual blades.

```
WAE# show virtual-blade detail
*** virtual blade 1 ***
virtual-blade 1
config:
 description Windows 2008 Server
device cpu qemu64
device nic rtl8139
device disk IDE
device keyboard us
cpu-list 1 2
memory 1000
disk 40
no boot fd-image
boot cd-image /local1/vbs/WoW_1.0.2.iso
```


```
boot from cd-rom
interface 1 bridge GigabitEthernet 1/0 mac-address 00:16:3E:97:6F:84
no vnc
autostart
state: running
serial console session inactive
vnc server disabled
current cd /local1/vbs/WoW_1.0.2.iso
current floppy [not inserted]
```

Table 3-132 describes the fields shown in the general `show virtual-blade` display.

**Table 3-132  Field Descriptions for the General show virtual-blade Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VB Memory</td>
<td>Amount of WAAS system memory assigned to all virtual blades, and the amount of memory remaining.</td>
</tr>
<tr>
<td>VB Disk Space</td>
<td>Amount of WAAS system disk space assigned to all virtual blades, and the amount of disk space remaining.</td>
</tr>
<tr>
<td>VB Image space</td>
<td>Location and amount of virtual blade image space assigned to the virtual blade, and the amount of disk space remaining.</td>
</tr>
<tr>
<td>CPU(s) Assigned</td>
<td>CPU numbers of the CPUs assigned for use by virtual blades. (For example, if 2 is shown, that means that CPU number 2 is assigned for use by virtual blades.)</td>
</tr>
<tr>
<td>Virtual Blade State</td>
<td>State of each defined virtual blade (running or stopped).</td>
</tr>
</tbody>
</table>

Table 3-133 describes the fields shown in the `show virtual-blade detail` command display for each virtual blade.

**Table 3-133  Field Descriptions for the show virtual-blade detail Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>virtual blade</td>
<td>Virtual blade number.</td>
</tr>
<tr>
<td>description</td>
<td>Description of the virtual blade.</td>
</tr>
<tr>
<td>device</td>
<td>Device emulation parameters used by the virtual blade.</td>
</tr>
<tr>
<td>cpu-list</td>
<td>CPUs allocated to the virtual blade.</td>
</tr>
<tr>
<td>memory</td>
<td>Memory allocated to the virtual blade, in MB.</td>
</tr>
<tr>
<td>disk</td>
<td>Disk space allocated to the virtual blade, in GB.</td>
</tr>
<tr>
<td>no boot fd-image</td>
<td>Floppy disk image from which the virtual blade is configured to boot. In this case, it shows that the virtual blade is not configured to boot from the floppy disk image.</td>
</tr>
<tr>
<td>boot cd-image</td>
<td>CD-ROM image from which the virtual blade is configured to boot. Appears only if boot cd-image is configured.</td>
</tr>
<tr>
<td>boot from</td>
<td>Boot source location.</td>
</tr>
<tr>
<td>interface</td>
<td>Interface bridging configuration.</td>
</tr>
<tr>
<td>no vnc</td>
<td>Shows that the VNC server is disabled. (This line does not appear when the VNC server is enabled.)</td>
</tr>
</tbody>
</table>
Related Commands

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autostart</td>
<td>Shows that the virtual blade is configured to start automatically.</td>
</tr>
<tr>
<td>state</td>
<td>State of the virtual blade (running or stopped) and other runtime information.</td>
</tr>
</tbody>
</table>

Table 3-133  Field Descriptions for the show virtual-blade detail Command (continued)
show wccp

To display Web Cache Connection Protocol (WCCP) information for a WAE, use the `show wccp` EXEC command.

```
show wccp clients
show wccp egress
show wccp flows tcp-promiscuous [summary]
show wccp masks tcp-promiscuous
show wccp routers [detail]
show wccp services [detail]
show wccp statistics
show wccp status
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clients</td>
<td>Displays which WAEs are seen by which routers.</td>
</tr>
<tr>
<td>egress</td>
<td>Displays WCCP egress methods.</td>
</tr>
<tr>
<td>flows</td>
<td>Displays WCCP packet flows. This option is not available on ANCs</td>
</tr>
<tr>
<td>tcp-promiscuous</td>
<td>Displays TCP-promiscuous service information.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays summarized information about TCP-Promiscuous caching service packet flows.</td>
</tr>
<tr>
<td>masks</td>
<td>Displays WCCP mask assignments for a given service.</td>
</tr>
<tr>
<td>routers</td>
<td>Displays routers seen and not seen by this WAE.</td>
</tr>
<tr>
<td>services</td>
<td>Displays WCCP services configured.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays details of routers or services.</td>
</tr>
<tr>
<td>statistics</td>
<td>Displays WCCP generic routing encapsulation packet-related information.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the enabled state of WCCP and the configured service IDs.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator

appnav-controller

**Examples**

Table 3-134 describes the fields shown in the `show wccp statistics` command display.
Table 3-134  Field Descriptions for the show wccp statistics Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent GRE packets received</td>
<td>Total number of GRE packets received by the WAE, regardless of whether or not they have been intercepted by WCCP. GRE is a Layer 3 technique that allows packets to reach the WAE, even if there are any number of routers in the path to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets received</td>
<td>Number of non-GRE packets received by the WAE, either using the traffic interception and redirection functions of WCCP in the router hardware at Layer 2 or Layer 4 switching (a Content Switching Module [CSM] ) that redirects requests transparently to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE non-WCCP packets received</td>
<td>Number of non-GRE packets transparently intercepted by a Layer 4 switch and redirected to the WAE.</td>
</tr>
<tr>
<td>Total packets accepted</td>
<td>Total number of packets that are transparently intercepted and redirected to the WAE to serve client requests for content.</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of packets that are dropped either because the redirected packet is a GRE packet and the WCCP GRE header has invalid data or the IP header of the redirected packet is invalid.</td>
</tr>
<tr>
<td>Packets received with invalid service</td>
<td>Number of WCCP version 2 GRE redirected packets that contain an invalid WCCP service number.</td>
</tr>
<tr>
<td>Packets received on a disabled service</td>
<td>Number of WCCP version 2 GRE redirected packets that specify the WCCP service number for a service that is not enabled on the WAE. For example, an HTTPS request redirected to the WAE when the HTTPS-caching service (service 70) is not enabled.</td>
</tr>
<tr>
<td>Packets received too small</td>
<td>Number of GRE packets redirected to the WAE that do not contain the minimum amount of data required for a WCCP GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to zero TTL</td>
<td>Number of GRE packets that are dropped by the WAE because the IP header of the redirected packet has a zero TTL.</td>
</tr>
<tr>
<td>Packets dropped due to bad buckets</td>
<td>Number of packets that are dropped by the WAE because the WCCP flow redirection could not be performed due to a bad mask or hash bucket determination.</td>
</tr>
<tr>
<td>Note</td>
<td>A bucket is defined as a certain subsection of the allotted hash assigned to each WAE in a WAE cluster. If only one WAE exists in this environment, it has 256 buckets assigned to it.</td>
</tr>
<tr>
<td>Packets dropped due to no redirect address</td>
<td>Number of packets that are dropped because the flow redirection destination IP address could not be determined.</td>
</tr>
<tr>
<td>Packets dropped due to loopback redirect</td>
<td>Number of packets that are dropped by the WAE when the destination IP address is the same as the loopback address.</td>
</tr>
<tr>
<td>Pass-through pkts on non-owned bucket</td>
<td>Number of packets that were targeted for TFO pass-through, but were dropped instead because the bucket was not owned by the device.</td>
</tr>
</tbody>
</table>
### Table 3-134 Field Descriptions for the show wccp statistics Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections bypassed due to load</td>
<td>Number of connection flows that are bypassed when the WAE is overloaded. When the overload bypass option is enabled, the WAE bypasses a bucket and reroutes the overload traffic. If the load remains too high, another bucket is bypassed, and so on, until the WAE can handle the load.</td>
</tr>
<tr>
<td>Packets sent back to router</td>
<td>Number of requests that are passed back by the WAE to the WCCP-enabled router from which the request was received. The router then sends the flow toward the origin web server directly from the web browser, which bypasses the WAE.</td>
</tr>
<tr>
<td>GRE packets sent to router (not bypass)</td>
<td>Number of GRE packets that are sent back from the WAE to the router from which the request was redirected, and are not bypass traffic.</td>
</tr>
<tr>
<td>Packets sent to another WAE</td>
<td>Number of packets that are redirected to another WAE in the WCCP service group. Service groups consist of up to 32 WAEs and 32 WCCP-enabled routers. In both packet-forwarding methods, the hash parameters specify how redirected traffic should be load balanced among the WAEs in the various WCCP service groups.</td>
</tr>
<tr>
<td>GRE fragments redirected</td>
<td>Number of GRE packets received by the WAE that are fragmented. These packets are redirected back to the router.</td>
</tr>
<tr>
<td>GRE encapsulated fragments received</td>
<td>Number of GRE encapsulated fragments received by the WAE. The tcp-promiscuous service does not inspect port information and therefore the router or switch may GRE encapsulate IP fragments and redirect them to the WAE. These fragments are then reassembled into packets before being processed.</td>
</tr>
<tr>
<td>Packets failed encapsulated reassembly</td>
<td>Number of reassembled GRE encapsulated packets that were dropped because they failed the reassembly sanity check. Reassembled GRE encapsulated packets are composed of two or more GRE encapsulated fragments. This field is related to the previous statistic.</td>
</tr>
<tr>
<td>Packets failed GRE encapsulation</td>
<td>Number of GRE packets that are dropped by the WAE because they could not be redirected due to problems while encapsulating the packet with a GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to invalid fwd method</td>
<td>Number of GRE packets that are dropped by the WAE because it was redirected using GRE but the WCCP service was configured for Layer 2 redirection.</td>
</tr>
<tr>
<td>Packets dropped due to insufficient memory</td>
<td>Number of GRE packets that are dropped by the WAE due to the failure to allocate additional memory resources required to handle the GRE packet.</td>
</tr>
<tr>
<td>Packets bypassed, no pending connection</td>
<td>Number of packets that failed to be associated with a pending connection because the initial handshake was not completed.</td>
</tr>
</tbody>
</table>
Table 3-134  Field Descriptions for the show wccp statistics Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections bypassed during wccp shutdown</td>
<td>Number of connection flows that are bypassed due to a clean WCCP shutdown. During a proper shutdown of WCCP, the WAE continues to service the flows it is handling but starts to bypass new flows. When the number of flows goes down to zero, the WAE takes itself out of the cluster by having its buckets reassigned to other WAEs by the lead WAE.</td>
</tr>
<tr>
<td>Packets bypassed due to bypass-list lookup</td>
<td>Number of connection flows that are bypassed due to a bypass list entry. When the WAE receives an error response from an origin server, it adds an entry for the server to its bypass list. When it receives subsequent requests for the content residing on the bypassed server, it redirects packets to the bypass gateway. If no bypass gateway is configured, then the packets are returned to the redirecting Layer 4 switch.</td>
</tr>
<tr>
<td>Conditionally Accepted connections</td>
<td>Number of connection flows that are accepted by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Conditionally Bypassed connections</td>
<td>Number of connection flows that are bypassed by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>L2 Bypass packets destined for loopback</td>
<td>Number of packets that were bypassed by the WCCP L2 intercept layer because they were received on the loopback interface but were not destined to a local address of the device.</td>
</tr>
<tr>
<td>Packets w/WCCP GRE received too small</td>
<td>Number of packets transparently intercepted by the WCCP-enabled router at Layer 2 and sent to the WAE that need to be fragmented for the packets to be redirected using GRE. The WAE drops the packets since it cannot encapsulate the IP header.</td>
</tr>
<tr>
<td>Packets dropped due to received on loopback</td>
<td>Number of packets that are dropped by the WAE because they were received on the loopback interface.</td>
</tr>
<tr>
<td>Packets dropped due to IP access-list deny</td>
<td>Number of packets that are dropped by the WAE when an IP access list that the WAE applies to WCCP GRE encapsulated packets denies access to WCCP applications (the wccp access-list command).</td>
</tr>
<tr>
<td>Packets fragmented for bypass</td>
<td>Number of bypass GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packets fragmented for egress</td>
<td>Number of egress GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packet pullups needed</td>
<td>Number of times a packet had to be consolidated as part of its processing. Consolidation is required when a packet is received as fragments and the first fragment does not contain all the information needed to process it.</td>
</tr>
<tr>
<td>Packets dropped due to no route found</td>
<td>Number of packets that are dropped by the WAE because it cannot find the route.</td>
</tr>
<tr>
<td>WCCP Loop Packets detected</td>
<td>Number of WCCP loop packets detected.</td>
</tr>
<tr>
<td>WCCP Loop Packets dropped</td>
<td>Number of WCCP loop packets dropped.</td>
</tr>
</tbody>
</table>
The following is sample output from the `show wccp clients` command:

```
WAE# show wccp clients
Wide Area Engine List for Service: 61
Number of WAE's in the Cache farm: 2
 IP address = 10.75.152.131 Lead WAE = NO Weight = 0
 Routers seeing this Wide Area Engine(1)
 10.75.152.226

 IP address = 10.75.152.130 Lead WAE = YES Weight = 0
 Routers seeing this Wide Area Engine(1)
 10.75.152.226

Wide Area Engine List for Service: 62
Number of WAE's in the Cache farm: 2
 IP address = 10.75.152.131 Lead WAE = NO Weight = 0
 Routers seeing this Wide Area Engine(1)
 10.75.152.226

 IP address = 10.75.152.130 Lead WAE = YES Weight = 0
 Routers seeing this Wide Area Engine(1)
 10.75.152.226
```

The following is sample output from the `show wccp services` command:

```
WAE# show wccp services
Services configured on this File Engine
 TCP Promiscuous 61
 TCP Promiscuous 62
```

The following is sample (partial) output from the `show wccp services detail` command:

```
WAE# show wccp services detail
Service Details for TCP Promiscuous 61 Service
 Webcache ID : 10.43.65.52
 Service Enabled : Yes
 Service Priority : 34
 Service Protocol : 6
 Service Flags (in Hex) : 501
 Weight for this Web-CE : 0
 Redirect method : GRE
 Assignment method : MASK
 Return method (Auto Negotiated) : GRE
 Egress method : IP-Forwarding
 Negotiated HIA interval : 2.00 second(s)
 Negotiated failure-detection timeout : 30.00 second(s)
 Negotiated RA timeout : 15.00 second(s)
 Values configured:
 Source IP mask (in Hex) : f00
 Destination IP mask (in Hex) : 0
 Last Received Assignment Key IP address: 0.0.0.0
 Last Received Assignment Key Change Number: 0
 Flow Protection Enabled: NO
 Flow Protection Timeout: 0 secs
 Join Alarm Raised for service: NO
 Mask Mismatch Alarm Raised for service: NO
 Missing Assignment Alarm Raised for service: NO
 Farm Incompatible Alarm Raised for service: NO

Service Details for TCP Promiscuous 62 Service
 Webcache ID : 10.43.65.52
 Service Enabled : Yes
 Service Priority : 34
```
Service Protocol : 6
Service Flags (in Hex) : 502
Weight for this Web-CE : 0
Redirect method : L2
Assignment method : MASK
Return method (Auto Negotiated) : L2
Egress method : L2
Negotiated HTA interval : 2.00 second(s)
Negotiated failure-detection timeout : 30.00 second(s)
Negotiated RA timeout : 15.00 second(s)
Values configured:
Source IP mask (in Hex) : 0
Destination IP mask (in Hex) : f00
Last Received Assignment Key IP address: 0.0.0.0
Last Received Assignment Key Change Number: 0
Flow Protection Enabled: NO
Flow Protection Timeout: 0 secs
Join Alarm Raised for service: NO
Mask Mismatch Alarm Raised for service: NO
Missing Assignment Alarm Raised for service: NO
Farm Incompatible Alarm Raised for service: NO

The following is sample output from the show wccp routers command:

WAE# show wccp routers
Router Information for Service Id: 61
     Routers Seeing this Wide Area Engine(1)
        Router Id       Sent To
        10.43.228.165    10.43.228.65
     Routers not Seeing this Wide Area Engine
        10.10.10.45    -Redirect Method Mismatch-
     Routers Notified of from other WAE's
        -NONE-

Router Information for Service Id: 62
     Routers Seeing this Wide Area Engine(1)
        Router Id       Sent To
        10.43.228.165    10.43.228.65
     Routers not Seeing this Wide Area Engine
        10.10.10.45    -Redirect Method Mismatch-
     Routers Notified of from other WAE's
        -NONE-

The following is sample output from the show wccp routers detail command:

WAE# show wccp routers detail
Router Information for Service Id: 61
     Routers Seeing this Wide Area Engine(1)
        Router Id         Sent To         Recv ID  KeyIP           KeyCN    MCN
        10.75.152.226      10.75.152.129    03456469 10.75.152.130    1        233
        Transmit timer (ms): 0/0        Timer Scale: (0/0),(0/0)
        Last ISU received: 1/19/2012 00:09:51
        Output Interface IP Address: 10.75.152.130        Interface State: Up
        MAC Addr: 00:24:97:7a:d0:30
     Routers not Seeing this Wide Area Engine
        -NONE-
     Routers Notified of from other WAE's
        -NONE-
Router Information for Service Id: 62

Routers Seeing this Wide Area Engine(1)

<table>
<thead>
<tr>
<th>Router Id</th>
<th>Sent To</th>
<th>Recv ID</th>
<th>KeyIP</th>
<th>KeyCN</th>
<th>MCN</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.75.152.226</td>
<td>10.75.152.129</td>
<td>03433645</td>
<td>10.75.152.130</td>
<td>1</td>
<td>229</td>
</tr>
</tbody>
</table>

Transmit timer (ms): 0/0  
Timer Scale: (0/0),(0/0)

Last ISU received: 1/19/2012 00:09:51

Output Interface IP Address: 10.75.152.130  
Interface State: UP

MAC Addr: 00:24:97:7a:d0:30

Routers not Seeing this Wide Area Engine
-NONE-

Routers Notified of from other WAE's
-NONE-

The following is sample output from the show wccp status command:

```
WAE# show wccp status
WCCP Interception:
Configured State: Enabled
Operational State: Enabled

Services Enabled on this WAE:
TCP Promiscuous 61
TCP Promiscuous 62
```

The Configured State refers to the state configured. The Operational State refers to the actual system state, which could differ from the configured state. For example, if an ANC is converging due to a cluster change, the system disables WCCP until convergence is completed.

The following is sample output from the show wccp egress command:

```
WAE# show wccp egress
TCP Promiscuous Service: 61
Egress Method in Use: L2

TCP Promiscuous Service: 62
Egress Method in Use: L2
```

Related Commands

- `(config) wccp access-list`
- `(config) wccp flow-redirect`
- `(config) wccp router-list`
- `(config) wccp shutdown`
- `(config) wccp tcp-promiscuous service-pair`
**show windows-domain**

To display Windows domain configuration information for a WAAS device, use the `show windows-domain` EXEC command.

```
show windows-domain
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values.

**Device Modes**

application-accelerator  
central-manager

**Examples**

Table 3-135 describes the fields shown in the `show windows-domain` command display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication for Console/Telnet Session:</td>
<td>Status of the primary login authentication method for the session: enabled or disabled.</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session: enabled (secondary)</td>
<td>Status of the secondary login authentication method for the session: enabled or disabled.</td>
</tr>
<tr>
<td>Windows domain Configuration:</td>
<td>Shows the Windows domain configuration settings.</td>
</tr>
<tr>
<td>Workgroup</td>
<td>Workgroup identification string.</td>
</tr>
<tr>
<td>Comment</td>
<td>Comment line.</td>
</tr>
<tr>
<td>Net BIOS</td>
<td>Windows NetBIOS name for the WAE.</td>
</tr>
<tr>
<td>Realm</td>
<td>Kerberos Realm (similar to the Windows domain name, except for Kerberos).</td>
</tr>
<tr>
<td>WINS Server</td>
<td>IP address of the WINS server.</td>
</tr>
<tr>
<td>Password Server</td>
<td>Kerberos server DNS name.</td>
</tr>
<tr>
<td>Security</td>
<td>Type of authentication configured, either “Domain” for NTLM or “ADS” for Kerberos.</td>
</tr>
<tr>
<td>Administrative groups</td>
<td></td>
</tr>
<tr>
<td>Super user group</td>
<td>Active Directory(AD) group name. Users in this group have administrative rights.</td>
</tr>
<tr>
<td>Normal user group</td>
<td>AD group name. Users in this group have the normal/default privilege level in the WAE.</td>
</tr>
</tbody>
</table>
show windows-domain

Related Commands

windows-domain

(config) windows-domain
show windows-domain encrypted services

To display Windows domain encrypted services information for a WAAS device, use the **show windows-domain encrypted services** EXEC command.

```
show windows-domain encrypted services { identity [detail] | blacklist identity | status | keylist user }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>identity</code></td>
<td>Identity tag of the encryption service.</td>
</tr>
<tr>
<td><code>identity detail</code></td>
<td>Identity details including identity tag, account type, account name, domain, realm, status, and match domains.</td>
</tr>
<tr>
<td><code>blacklist identity</code></td>
<td>Identity tag, blacklist reason, and domain name.</td>
</tr>
<tr>
<td><code>status</code></td>
<td>Service name, configuration state (enabled or disabled), and operational state (running or</td>
</tr>
<tr>
<td><code>keylist user</code></td>
<td>Number of keys, maximum retrieval time (in milliseconds), average retrieval time (in milliseconds), and domain name.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Device Modes

- application-accelerator
- central-manager

### Related Commands

- **windows-domain**
- *(config)* **windows-domain**
shutdown

To shut down the WAAS device, use the **shutdown** EXEC command.

```
shutdown [poweroff]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poweroff</td>
<td>(Optional) Turns off the power after closing all applications and operating system.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

EXEC

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

A controlled shutdown refers to the process of properly shutting down a WAAS device without turning off the power on the device. With a controlled shutdown, all of the application activities and the operating system are properly stopped on a WAE, but the power remains on. Controlled shutdowns of a WAAS device can help you minimize the downtime when the WAAS device is being serviced.

**Caution**

If a controlled shutdown is not performed, the WAAS file system can be corrupted. Rebooting the WAAS device takes longer if it was not properly shut down.

**Note**

A WAAS device cannot be powered on again through the WAAS software after a software poweroff. You must press the power button once on a WAAS device to bring it back online.

The **shutdown** EXEC command facilitates a proper shutdown for WAAS device, and is supported on all WAE hardware models. The **shutdown poweroff** command is also supported by all of the WAE hardware models as they support the ACPI.

The **shutdown** command closes all applications and stops all system activities, but keeps the power on. The fans continue to run and the power LED is on, indicating that the device is still powered on. The device console displays the following menu after the shutdown process is completed:

```
================= SHUTDOWN SHELL =================
System has been shut down.
```

You can
0. Power down system by pressing and holding power button
1. Reload system by software
2. Power down system by software
[1-2]?

*Warning* The **poweroff** command is also supported by all of the WAE hardware models as they support the ACPI.
The `shutdown` command closes all applications and the operating system, stops all system activities, and turn off the power. The fans stop running and the power LED starts flashing, indicating that the device has been powered off.

**Note**
If you use the `shutdown` or `shutdown poweroff` commands, the device does not perform a file system check when you power on and boot the device the next time.

Table 3-136 describes the shutdown-only operation and the shutdown poweroff operation for a WAAS device.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>User performs a shutdown operation on the WAE</td>
<td>Shutdown poweroff</td>
</tr>
<tr>
<td></td>
<td><code>WAE# shutdown poweroff</code></td>
</tr>
<tr>
<td>User intervention to bring WAE back online</td>
<td>After a shutdown poweroff, you must press the power button once to bring the WAAS device back online.</td>
</tr>
<tr>
<td>File system check</td>
<td>Is not performed after you turn the power on again and reboot the WAAS device.</td>
</tr>
</tbody>
</table>

You can enter the `shutdown` EXEC command from a console session or from a remote session (Telnet or SSH version 2) to shut down a WAAS device.

To shut down a WAAS device, enter the `shutdown` EXEC command as follows:

```
WAE# shutdown
```

When you are asked if you want to save the system configuration, enter `yes`.

```
System configuration has been modified. Save? [yes]: yes
```

When you are asked if you want to proceed with the shutdown, press `Enter` to proceed with the shutdown operation.

```
Device can not be powered on again through software after shutdown. Proceed with shutdown? [confirm]
```

A message appears, reporting that all services are being shut down on this WAE.

```
Shutting down all services, will timeout in 15 minutes. shutdown in progress .. System halted.
```

After the system is shut down (the system has halted), a WAAS software shutdown shell displays the current state of the system (for example, “System has been shut down”) on the console. You are asked whether you want to perform a software power off (the `Power down system by software` option), or if you want to reload the system through the software.

```
=============== SHUTDOWN SHELL ===============
System has been shut down.
You can either
 Power down system by pressing and holding power button
or
1. Reload system through software
2. Power down system through software
```
To power down the WAAS device, press and hold the power button on the WAAS device, or use one of the following methods to perform a shutdown poweroff:

- From the console command line, enter 2 when prompted, as follows:

```
================= SHUTDOWN SHELL ===============
System has been shut down.
You can either
 Power down system by pressing and holding power button
or
1. Reload system through software
2. Power down system through software

From the WAAS CLI, enter the **shutdown poweroff** EXEC command as follows:
```
WAE# shutdown poweroff
```

When you are asked if you want to save the system configuration, enter **yes**.
```
System configuration has been modified. Save?[yes]:yes
```

When you are asked to confirm your decision, press **Enter**.
```
Device can not be powered on again through software after poweroff.
Proceed with poweroff?[confirm]
Shutting down all services, will timeout in 15 minutes.
poweroff in progress ..Power down.
```

Examples

The following example shows how to close all applications and stop all system activities using the **shutdown** command:
```
WAE1# shutdown
System configuration has been modified. Save?[yes]:yes
Device can not be powered on again through software after shutdown.
Proceed with shutdown?[confirm]
Shutting down all services, will timeout in 15 minutes.
shutdown in progress ..System halted.
```

The following example shows how to close all applications, stop all system activities, and then turn off power to the WAAS device using the **shutdown poweroff** command:
```
WAE2# shutdown poweroff
System configuration has been modified. Save?[yes]:yes
Device can not be powered on again through software after poweroff.
Proceed with poweroff?[confirm]
Shutting down all services, will timeout in 15 minutes.
poweroff in progress ..Power down.
```
To configure thresholds for a user-selected MIB object for monitoring purposes on a WAAS device, use the `snmp trigger` EXEC command.

```plaintext
snmp trigger { create mibvar [wildcard] [wait-time
    [absent [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    equal [absolute value [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    falling [absolute value [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    greater-than [absolute value [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    less-than [absolute value [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    on-change [[LINE | mibvar1 mibvar1]][LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] |
    present [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    rising [absolute value [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] |
    [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]]]}
```

Syntax Description

- `create mibvar`: Configures a threshold for a MIB object. Specifies the name of the MIB object that you want to monitor or the MIB object for which you want to remove a monitoring threshold.

- `wildcard`: (Optional) Treats the specified MIB variable name as having a wildcard.

- `wait-time`: (Optional) Number of seconds, 60–600, to wait between trigger samples.

- `absent`: (Optional) Applies the absent existence test.

- `LINE`: (Optional) Description of the threshold being created.

- `mibvar1`: (Optional) Adds a MIB object to the notification.

- `mibvar2`: (Optional) Adds a MIB object to the notification.

- `mibvar3`: (Optional) Adds a MIB object to the notification.

- `equal`: Applies the equality threshold test.

- `absolute value`: (Optional) Specifies an absolute value sample type.
Chapter 3 CLI Commands

snmp trigger

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta value</td>
<td>Specifies a delta sample type.</td>
</tr>
<tr>
<td>falling</td>
<td>Applies the falling threshold test.</td>
</tr>
<tr>
<td>greater-than</td>
<td>Applies the greater-than threshold test.</td>
</tr>
<tr>
<td>less-than</td>
<td>Applies the less-than threshold test.</td>
</tr>
<tr>
<td>on-change</td>
<td>Applies the changed existence test.</td>
</tr>
<tr>
<td>present</td>
<td>Applies the present test.</td>
</tr>
<tr>
<td>rising</td>
<td>Applies the rising threshold test.</td>
</tr>
<tr>
<td>delete</td>
<td>Removes a threshold for a MIB object.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Using the `snmp trigger` EXEC command, you can define additional SNMP traps for other MIB objects of interest to your particular configuration. You can select any MIB object from any of the support MIBs for your trap. The trap can be triggered based on a variety of tests:

- absent—A specified MIB object that was present at the last sampling is no longer present as of the current sampling.
- equal—The value of the specified MIB object is equal to the specified threshold.
- falling—The value of the specified MIB object has fallen below the specified threshold value. After a trap is generated against this condition, another trap for this same condition is not generated until the sampled MIB object value rises above the threshold value and then falls below the falling threshold value again.
- greater-than—The value of the specified MIB object is greater than the specified threshold value.
- less-than—The value of the specified MIB object is less than the specified threshold value.
- on-change—The value of the specified MIB object has changed since the last sampling.
- present—A specified MIB object is present as of the current sampling that was not present at the previous sampling.
- rising—The value of the specified MIB object has risen above the specified threshold. After a trap is generated against this condition, another trap for this same condition is not generated until the sampled MIB object value falls below the threshold value and then rises above the rising threshold value again.

The threshold value can be based on an absolute sample type or on a delta sample type. An absolute sample type is one in which the test is evaluated against a fixed integer value between zero and 4294967295. A delta sample type is one in which the test is evaluated against the change in the MIB object value between the current sampling and the previous sampling.
After you configure SNMP traps, you must use the `snmp-server enable traps event` global configuration command for the event traps you just created to be generated. Also, to preserve SNMP trap configuration across a system reboot, you must configure event persistence using the `snmp-server mib persist event` global configuration command, and save the MIB data using the `write mib-data` EXEC command.

Note

You can create valid triggers only on read-write and read-only MIB objects. If you try to create a trigger on a read-create MIB object, you receive an error message.

Examples

The following example shows how to create a threshold for the MIB object `esConTabIsConnected` so that a trap is sent when the connection from the Edge WAE to the Core WAE is lost:

```
WAE# snmp trigger create esConTabIsConnected ?
<60-600> The number of seconds to wait between trigger sample
wildcard Option to treat the MIB variable as wildcarded
WAE# snmp trigger create esConTabIsConnected wildcard 600 ?
absent Absent existence test
equal Equality threshold test
falling Falling threshold test
greater-than Greater-than threshold test
less-than Less-than threshold test
on-change Changed existence test
present Present present test
rising Rising threshold test
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling ?
absolute Absolute sample type
delta Delta sample type
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute ?
<0-4294967295> Falling threshold value
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute 1 ?
LINE Trigger-comment
mibvar1 Optional mib object to add to the notification
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute 1 "Lost the connection with the core server."
WAE# configure
WAE(config)# snmp-server enable traps event
```

Once you have configured the WAE to send SNMP traps, you can view the results of these newly created traps using the `show snmp events` EXEC command.

You can also delete user-created SNMP traps. The following example shows how to delete the trap set for `esConTabIsConnected` that we created in the previous example.

```
WAE# snmp trigger delete esConTabIsConnected
```

Related Commands

- `show snmp`
- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server host`
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
write
ssh

To allow secure encrypted communications between an untrusted client machine and a WAAS device over an insecure network, use the `ssh` EXEC command.

`ssh options [management]`

Syntax Description

- **management**: Uses the designated management interface for the SSH operation.

Defaults

By default, the Secure Shell (SSH) feature is disabled on a WAAS device.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

SSH consists of a server and a client program. Like Telnet, you can use the client program to remotely log in to a machine that is running the SSH server, but unlike Telnet, messages transported between the client and the server are encrypted. The functionality of SSH includes user authentication, message encryption, and message authentication.

Note

The Telnet daemon can still be used with the WAAS device. SSH does not replace Telnet.

Examples

The following example shows how to log in to a WAAS device using the SSH client:

```
WAES# ssh 10.11.55.2
```

Related Commands

- `telnet`
- `(config) sshd`
- `(config) ssh-key-generate`
tcpdump

To dump network traffic, use the `tcpdump` EXEC command.

```
tcpdump [LINE]
```

Syntax Description

<table>
<thead>
<tr>
<th>LINE</th>
<th>(Optional) Dump options. For more information see the “Usage Guidelines” section.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

TCPdump is a utility that allows a user to intercept and capture packets passing through a network interface, making it useful for troubleshooting network applications.

Note

In WAAS version 5.0, TCPdump cannot capture data plane traffic on an AppNav Controller Interface Module interface; only control plane traffic is captured. Instead, use the `packet-capture` EXEC command to capture data plane traffic.

During normal network operation, only the packets which are addressed to a network interface are intercepted and passed on to the upper layers of the TCP/IP protocol layer stack. Packets which are not addressed to the interface are ignored. In Promiscuous mode, the packets which are not intended to be received by the interface are also intercepted and passed on to the higher levels of the protocol stack. TCPdump works by putting the network interface into promiscuous mode. TCPdump uses the free libpcap (packet capture library).

Use the `-h` option to view the options available, as shown in the following example:

```
WAE# tcpdump -h
```

```
tcpdump  version 3.8.1 (jlemon)
libpcap   version 0.8
Usage: tcpdump [-AAdDeflLnNOpqRStuUvxX] [-c count] [-C file_size]
         [-s snaplen] [-T type] [-w file] [-y datalinktype]
         [ expression ]
```

You can use either Linux interface port names (for example, eth0) or WAAS port names (for example, GigabitEthernet 1/0 port 80, or InlinePort 1/0 lan) to designate the interface from which you want to capture packets. You cannot specify an inlineGroup.
Examples

The following example shows how to start a network traffic dump to a file named `tcpdump.txt`:

```
WAE# tcpdump -w tcpdump.txt
```

Related Commands

- less
- packet-capture
- ping
- tethereal
- traceroute
telnet

To log in to a WAAS device using the Telnet client, use the `telnet` EXEC command.

```
telnet {hostname | ip-address} [portnum] [management]
```

Syntax Description

- `hostname`
 Hostname of the network device.
- `ip-address`
 IP address of the network device.
- `portnum`
 (Optional) Port number (1–65535). The default port number is 23.
- `management`
 Uses the designated management interface for the Telnet operation.

Defaults

The default port number is 23.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

UNIX shell functions such as escape and the `suspend` command are not available in the Telnet client. Multiple Telnet sessions are also not supported. This Telnet client allows you to specify a destination port.

Examples

The following example shows how to log in to a WAAS device using the Telnet client in several ways:

```
WAE# telnet cisco-wae
WAE# telnet 10.168.155.224
WAE# telnet cisco-wae 2048
WAE# telnet 10.168.155.224 2048 management
```

Related Commands

- `ssh`
- `telnet enable`
- `(config)`
terminal

To set the number of lines displayed in the console window, or to display the current console debug command output, use the terminal EXEC command.

```
terminal {length length | monitor [disable]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length length</td>
<td>Sets the length of the display on the terminal (0–512). Setting the length to 0 means there is no pausing.</td>
</tr>
<tr>
<td>monitor</td>
<td>Copies the debug output to the current terminal.</td>
</tr>
<tr>
<td>disable</td>
<td>(Optional) Disables monitoring at this specified terminal.</td>
</tr>
</tbody>
</table>

Defaults

The default is 24 lines.

Command Modes

EXEC

Device Modes

application-accelerator

central-manager

Usage Guidelines

When 0 is entered as the length parameter, the output to the screen does not pause. For all nonzero values of length, the -More- prompt is displayed when the number of output lines matches the specified length number. The -More- prompt is considered a line of output. To view the next screen, press the Spacebar. To view one line at a time, press the Enter key.

The terminal monitor command allows a Telnet session to display the output of the debug commands that appear on the console. Monitoring continues until the Telnet session is terminated.

For proper display of the setup command, leave the terminal length set to the default value of 24 lines.

Examples

The following example shows how to set the number of lines to display to 20:

```
WAE# terminal length 20
```

The following example shows how to configure the terminal for no pausing:

```
WAE# terminal length 0
```

Related Commands

All show commands.
To perform authentication and diagnostic tests for the Radius/Tacacs/Windows users, use the **test** EXEC command.

```
test aaa {radius | tacacs | windows} username password
```

```
test self-diagnostic [system | basic | connectivity | interfaces | application-security | tfo | wccp | inline] | all
```

Syntax Description

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>Performs authentication tests for the users trying to access the WAAS Central Manager or WAE.</td>
</tr>
<tr>
<td>radius</td>
<td>Uses the RADIUS server for authentication purposes.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Uses the TACACS server for authentication purposes.</td>
</tr>
<tr>
<td>windows</td>
<td>Uses the Windows domain for authentication purposes.</td>
</tr>
<tr>
<td>username</td>
<td>Username for authentication.</td>
</tr>
<tr>
<td>password</td>
<td>Password for authentication.</td>
</tr>
<tr>
<td>self-diagnostic</td>
<td>Performs self-diagnostics tests.</td>
</tr>
<tr>
<td>system</td>
<td>(Optional) Checks the device status, presence of core files, and alarms.</td>
</tr>
<tr>
<td>basic</td>
<td>(Optional) Checks the device network configuration.</td>
</tr>
<tr>
<td>connectivity</td>
<td>(Optional) Checks if the external hosts required for device operation are reachable by sending ICMP ping packets.</td>
</tr>
<tr>
<td>interfaces</td>
<td>(Optional) Checks the operation of physical or virtual interfaces, including ports on the Cisco WAE Inline Network Adapter and Cisco Interface Module.</td>
</tr>
<tr>
<td>application-security</td>
<td>(Optional) Checks for potentially malicious (XSS) entries.</td>
</tr>
<tr>
<td>tfo</td>
<td>(Optional) Checks the traffic optimization configuration settings and operation. (Applies only to application accelerator devices.)</td>
</tr>
<tr>
<td>wccp</td>
<td>(Optional) Checks the WCCP configuration settings and operation. (Applies only to application accelerator devices.)</td>
</tr>
<tr>
<td>inline</td>
<td>(Optional) Checks the inline group configuration settings and operation. (Applies only to application accelerator devices that have a Cisco WAE Inline Network Adapter or Cisco Interface Module installed.)</td>
</tr>
<tr>
<td>all</td>
<td>Runs all of the diagnostic tests.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC mode

Device Modes

application-accelerator
central-manager
Usage Guidelines

If you use the `test self-diagnostic` command with the **all** option, all applicable tests are performed. You can specify one or more test options to perform just those tests.

The last diagnostic test report is stored on the device in the following file: `/local1/diagnostic_report.txt`.

Examples

The following example shows how to perform the basic, connectivity, interfaces, and WCCP tests:

```
WAE# test self-diagnostic basic connectivity interfaces wccp
```

Table 3-137 describes the error messages that can be returned by the `test self-diagnostics` command.

<table>
<thead>
<tr>
<th>Test</th>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system</td>
<td>HAS_COREDUMP</td>
<td>Core files are present.</td>
</tr>
<tr>
<td></td>
<td>HAS_ALARM</td>
<td>Critical or major alarms are pending.</td>
</tr>
<tr>
<td>basic</td>
<td>NO_PRIM_IFACE</td>
<td>The primary interface is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_PRIM_ADDR</td>
<td>The primary interface has no IP address configured.</td>
</tr>
<tr>
<td></td>
<td>NO_HOSTNAME</td>
<td>The hostname is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_NAMESERVER</td>
<td>The name servers are not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_DOMAIN</td>
<td>The domain name is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_DEFAULT_GW</td>
<td>The default gateway is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_CM_ADDR</td>
<td>The WAAS Central Manager IP address is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_NTP_CFG</td>
<td>The NTP server is not configured.</td>
</tr>
<tr>
<td>connectivity</td>
<td>UNREACHABLE</td>
<td>The default gateway, name servers, NTP servers, authentication servers (RADIUS, TACACS, or Windows domain), or WAAS Central Manager are unreachable.</td>
</tr>
<tr>
<td></td>
<td>UNRESOLVABLE</td>
<td>The fully qualified domain name of the device cannot be resolved.</td>
</tr>
<tr>
<td></td>
<td>WINS_UNAVAILABLE</td>
<td>The WINS server is unreachable or not operational and cannot resolve the device netbios name.</td>
</tr>
<tr>
<td>interfaces</td>
<td>IFACE_DOWN</td>
<td>The interface is in shutdown mode. If all interfaces are shut down, the test will fail.</td>
</tr>
<tr>
<td></td>
<td>IFACE_BW</td>
<td>The interface is configured or negotiated to use 10-MB speed instead of a faster speed.</td>
</tr>
<tr>
<td></td>
<td>IFACE_HD</td>
<td>The interface is configured or negotiated to use half duplex instead of full duplex.</td>
</tr>
<tr>
<td></td>
<td>IFACE_ERRORS</td>
<td>The interface has packet errors on more than 1 percent of received or sent packets.</td>
</tr>
<tr>
<td></td>
<td>IFACE_COLLISIONS</td>
<td>The interface has packet collisions on more than 1 percent of sent packets.</td>
</tr>
<tr>
<td>tfo</td>
<td>TFO_DISABLED</td>
<td>TFO is disabled.</td>
</tr>
<tr>
<td></td>
<td>TFO_NO_DRE</td>
<td>DRE is disabled.</td>
</tr>
<tr>
<td></td>
<td>TFO_NO_LZ</td>
<td>Compression is disabled.</td>
</tr>
<tr>
<td></td>
<td>TFO_NOAOACCL</td>
<td>An application accelerator in the policy engine is not enabled to accelerate traffic.</td>
</tr>
<tr>
<td></td>
<td>PE_OTHER</td>
<td>Unclassified traffic is configured to pass through.</td>
</tr>
<tr>
<td></td>
<td>TFO_NOPT</td>
<td>Traffic that is configured to be optimized is being passed through.</td>
</tr>
</tbody>
</table>
Table 3-137 Error Codes Returned by the test self-diagnostics Command (continued)

<table>
<thead>
<tr>
<th>Test</th>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wccp</td>
<td>NO_RTRCFG</td>
<td>WCCP is enabled but TCP promiscuous mode is not configured.</td>
</tr>
<tr>
<td></td>
<td>NO_RTRLIST</td>
<td>The router list specified in WCCP configuration is not configured.</td>
</tr>
<tr>
<td></td>
<td>UNREACHABLE</td>
<td>Configured WCCP routers are unreachable or other WAEs in the WCCP farm are unreachable.</td>
</tr>
<tr>
<td></td>
<td>NO_WCCP_RTRS</td>
<td>The WAE and WCCP routers cannot communicate with each other.</td>
</tr>
<tr>
<td></td>
<td>NO_INTERCEPT</td>
<td>The WAE is not receiving intercepted traffic.</td>
</tr>
<tr>
<td>inline</td>
<td>INLINE_NO_INT</td>
<td>Traffic interception is not configured on the inlineGroup interface.</td>
</tr>
<tr>
<td></td>
<td>INLINE_SHUTDOWN</td>
<td>The inlineGroup interface is shut down.</td>
</tr>
<tr>
<td></td>
<td>INLINE_BYPASS</td>
<td>The inlineGroup interface is in bypass mode.</td>
</tr>
<tr>
<td></td>
<td>INLINE_INTRCPT</td>
<td>The inlineGroup interface is not intercepting traffic.</td>
</tr>
</tbody>
</table>
tethereal

To analyze network traffic from the command line, use the tethereal EXEC command.

```
tethereal [LINE]
```

Syntax Description

| LINE | (Optional) Options. For more information see the “Usage Guidelines” and “Examples” sections. |

Defaults

No default behavior values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

Tethereal is the command-line version of the network traffic analyzer tool Ethereal. Like TCPdump, it also uses the packet capture library (libpcap). Aside from network traffic analysis, Tethereal also provides facilities for decoding packets.

Note

In WAAS version 5.0, Tethereal cannot capture data plane traffic on an AppNav Controller Interface Module interface; only control plane traffic is captured. Instead, use the packet-capture EXEC command to capture data plane traffic.

When using the -a option to print heavy traffic to the screen, it can take significantly longer than the autostop duration to display the information on the screen. Wait for the command to finish. Displaying output to the console can take significantly longer than through telnet or SSH, therefore console display is not recommended.

When using the -f option with the host or not host filter expression, the wrong traffic may be captured with WCCP GRE encapsulated or VLAN traffic. With WCCP GRE traffic, tethereal sees only the outermost IP address, not the original IP address inside the encapsulated packets. Add the proto 47 keyword into the -f filter expression to capture the correct traffic (protocol 47 is GRE traffic).

Additionally, for VLAN traffic, add the vlan keyword into the -f filter expression so that VLAN traffic is parsed correctly.

When using the -a filesize option together with the -R option, tethereal may stop unexpectedly and print the message "Memory limit is reached" before reaching the specified autostop file size. In this case, the maximum memory limit for the command was reached before the autostop file size limit.

You can use either Linux interface port names (for example, eth0) or WAAS port names (for example, GigabitEthernet 1/0 port 80, or InlinePort 1/0 lan) to designate the interface from which you want to capture packets. You cannot specify an inlineGroup.
The following example shows how to display the options available with the WAAS `tethereal` command:

```
WAE# tethereal -h
```

```
tethereal: Setting virtual memory limit to 209715200
TShark 1.0.0
Dump and analyze network traffic.
See http://www.wireshark.org for more information.
```

Copyright 1998-2008 Gerald Combs <gerald@wireshark.org> and contributors.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Usage: tshark [options] ...

Capture interface:
- `-i <interface>` name or idx of interface (def: first non-loopback)
- `-f <capture filter>` packet filter in libpcap filter syntax
- `-s <snaplen>` packet snapshot length (def: 65535)
- `-p` don't capture in promiscuous mode
- `-y <link type>` link layer type (def: first appropriate)
- `-D` print list of interfaces and exit
- `-L` print list of link-layer types of iface and exit

Capture stop conditions:
- `-c <packet count>` stop after n packets (def: infinite)
- `-a <autostop cond.>` ... duration:NUM - stop after NUM seconds
 filesize:NUM - stop this file after NUM KB
 files:NUM - stop after NUM files

Capture output:
- `-b <ringbuffer opt.>` ... duration:NUM - switch to next file after NUM secs
 filesize:NUM - switch to next file after NUM KB
 files:NUM - ringbuffer: replace after NUM files

Input file:
- `-r <infile>` set the filename to read from (no pipes or stdin!)

Processing:
- `-R <read filter>` packet filter in Wireshark display filter syntax
- `-n` disable all name resolutions (def: all enabled)
- `-N <name resolve flags>` enable specific name resolution(s): "mntC"
- `-d <layer_type>=<selector>,<decode_as_protocol>` ...
 "Decode As", see the man page for details
 Example: tcp.port==8888,http

Output:
- `-w <outfile|->` set the output filename (or '-' for stdout)
- `-C <config profile>` start with specified configuration profile
- `-F <output file type>` set the output file type, default is libpcap
 an empty "-F" option will list the file types
- `-V` add output of packet tree (Packet Details)
- `-S` display packets even when writing to a file
- `-x` add output of hex and ASCII dump (Packet Bytes)
- `-T pdml|ps|psml|text|fields` format of text output (def: text)
- `-e <field>` field to print if -Tfields selected (e.g. tcp.port);
 this option can be repeated to print multiple fields

- `-E<fieldsoption>=<value>` set options for output when -Tfields selected:
 header=y|n switch headers on and off
 separators=t|s|<char> select tab, space, printable character as separator
 quote=d|s|n select double, single, no quotes for values
 `ad|ar|dd|e` output format of time stamps (def: `r`: rel. to first)
 `-l` flush standard output after each packet
 `-q` be more quiet on stdout (e.g. when using statistics)
 `-X <key>:<value>` eXtension options, see the man page for details
 `-z <statistics>` various statistics, see the man page for details
Miscellaneous:
- h display this help and exit
- v display version info and exit
- o <name>:<value> ... override preference setting

Related Commands
 packet-capture
 tcpdump
top

To view the current top CPU activities, use the `top` EXEC command.

```
    top -hv | -cisS -d delay -n iterations [-u user | -U user] -p pid [,...]
```

Syntax Description

- `-h` Prints help information and exits.
- `-v` Prints version information and exits.
- `-c` Displays the command line instead of the command name only.
- `-i` Suppresses the display of any idle or zombie processes.
- `-s` Tells top to run in secure mode. This option disables the potentially dangerous interactive commands.
- `-S` (Optional) Specifies cumulative mode, where each process is listed with the CPU time it has spent. It also lists the CPU time of the dead children for each process.
- `-d delay` Specifies the delay between screen updates.
- `-n iterations` Specifies the number of iterations. Update the display this number of times and then exit.
- `-u user` Monitors only processes with the specified effective UID or username.
- `-p pid` (Optional) Monitors only those processes with the given process id. This option can be given up to twenty times. This option is not available interactively.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

The `top` command is a system-defined alias for the Linux `top` command, which displays and updates information about the top CPU processes. It provides a real-time view of the processor activity. It lists the most CPU-intensive tasks on the system, and provides an interactive interface for manipulating processes. It can sort the tasks by CPU usage, memory usage, and runtime.

The command runs in an interactive environment and you can interact with the output by pressing various keys. Press `h` or `?` to display the following help for interactive commands:

```
Help for Interactive Commands - procs version 3.2.5
Window 1:Def: Cumulative mode Off. System: Delay 3.0 secs; Secure mode Off.
Z,B    Global: 'Z' change color mappings; 'B' disable/enable bold
l,t,m  Toggle Summaries: 'l' load avg; 't' task/cpu stats; 'm' mem info
I,1    Toggle SMP view: 'I' single/separate states; '1' Irix/Solaris mode
```
f,o . Fields/Columns: 'f' add or remove; 'o' change display order
F or O . Select sort field
<,> . Move sort field: '<' next col left; '>' next col right
R . Toggle normal/reverse sort
c,i,S . Toggle: 'c' cmd name/line; 'i' idle tasks; 'S' cumulative time
x,y . Toggle highlights: 'x' sort field; 'y' running tasks
z,b . Toggle: 'z' color/mono; 'b' bold/reverse (only if 'x' or 'y')
u . Show specific user only
n or # . Set maximum tasks displayed
k,r . Manipulate tasks: 'k' kill; 'r' renice
d or s . Set update interval
W . Write configuration file
Q . Quit

Examples

The following example shows how to display the options available with the WAAS top command:

```
WAE# top -h
```

```
top: procps version 3.2.5
usage: top -hv | -bcisS -d delay -n iterations [-u user | -U user] -p pid [,pid ...]
```

Note

The -b option is not supported.

The following example shows an example of the interactive command output:

```
WAE# top
```

```
top - 17:54:02 up 9 days,  6:09,  1 user,  load average: 0.05, 0.17, 0.19
Tasks: 992 total,  1 running, 991 sleeping,  0 stopped,  0 zombie
Cpu(s):  0.7% us,  2.3% sy,  4.0% ni, 91.1% id,  1.7% wa,  0.0% hi,  0.3% si
Mem:  1939124k total,  1528440k used,  2037624k total,  812k used,  2036812k free,  554824k cached

PID USER PR NI VIRT RES SHR %CPU %MEM TIME+ COMMAND
28359 admin 20  0 2544 1584  808 R  1.3  0.1 0:00.29 top
7694 admin 30  10 1448m 105m  15m S  0.7  5.6 19:33.74 java
9312 admin 30  10  494m 173m  20m S  0.7  9.2  2:47.23 java
6950 admin 30  10  684m 204m  4876 S  0.3 10.8 28:31.64 so_dre
7702 admin 30  10  955m 121m  18m S  0.3  6.4  3:07.97 java
8782 admin 30  10  1448m 105m  15m S  0.3  5.6  3:32.04 java
8802 admin 30  10 1448m 105m  15m S  0.3  5.6  0:49.17 java
1 admin  20  0 1488  540  468 S  0.0  0.0 0:06.78 init
2 admin  15 -5  0  0  0  S  0.0  0.0 0:00.00 kthread
3 admin RT -5  0  0  0  S  0.0  0.0 0:00.00 migration/0
4 admin  15 -5  0  0  0  S  0.0  0.0 0:09.07 ksoftirqd/0
5 admin RT -5  0  0  0  S  0.0  0.0 0:00.00 watchdog/0
```

Related Commands

```
show processes
```
traceroute

To trace the route between a WAAS device to a remote host, use the `traceroute` EXEC command.

```
traceroute [management] {hostname | ip-address} [tcp-syn]
```

Syntax Description

- **management** (Optional) Uses the designated management interface for the traceroute.
- **hostname** Name of remote host.
- **ip-address** IP address of remote host.
- **tcp-syn** (Optional) Sends TCP-SYN packets for trace routing instead of UDP

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Traceroute is a widely available utility on most operating systems. Much like ping, it is a valuable tool for determining connectivity in a network. Ping allows the user to find out if there is a connection between two end systems. Traceroute does this as well, but also lists the intermediate routers between the two systems. Users can therefore see the possible routes packets can take from one system to another. Use `traceroute` to find the route to a remote host, when either the hostname or the IP address is known.

Examples

The following example shows how to trace the route between the WAAS device and a device with an IP address of 10.0.0.0:

```
WAE# traceroute 10.0.0.0
traceroute to 10.0.0.0 (10.0.0.0), 30 hops max, 38 byte packets
  1 sblab2-rtr.abc.com (192.168.10.1) 0.959 ms 0.678 ms 0.531 ms
  2 192.168.1.1 (192.168.1.1) 0.665 ms 0.576 ms 0.492 ms
  3 172.24.115.66 (172.24.115.66) 0.757 ms 0.734 ms 0.833 ms
  4 sjc20-sbb5-gw2.abc.com (192.168.180.93) 0.683 ms 0.644 ms 0.544 ms
  5 sjc20-rbb-gw5.abc.com (192.168.180.9) 0.588 ms 0.611 ms 0.569 ms
  6 sjc-rbb-gw1.abc.com (172.16.7.249) 0.746 ms 0.734 ms 0.833 ms
  7 sjc-wall-2.abc.com (172.16.7.178) 1.505 ms 1.101 ms 0.802 ms
  8 * * *
  9 * * *
   . . .
```

Related Commands

- ping
waas-tcptrace
transaction-log

To force the exporting or the archiving of the transaction log, use the `transaction-log` EXEC command.

```
transaction-log force {archive | export} {flow | accelerator video windows-media}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>archive</td>
<td>Forces the archiving of the transaction log file.</td>
</tr>
<tr>
<td>export</td>
<td>Forces the archived transaction log files to be exported.</td>
</tr>
<tr>
<td>flow</td>
<td>Forces the archiving or exporting of the Traffic Flow Optimization (TFO) transaction log file.</td>
</tr>
<tr>
<td>accelerator video</td>
<td>Forces the archiving or exporting of the video accelerator transaction log file.</td>
</tr>
<tr>
<td>windows-media</td>
<td></td>
</tr>
</tbody>
</table>

| Defaults | No default behavior or values. |

| Command Modes | EXEC |

| Device Modes | application-accelerator |

Examples

The following example shows how to force the archiving of the TFO transaction log file on the WAE:

```
WAE# transaction-log force archive flow
```

The following example shows how to force the exporting of the video transaction file on the WAE:

```
WAE# transaction-log force export accelerator video windows-media
```

Related Commands

- `(config) transaction-logs`
- `show transaction-logging`
type

To display a file, use the **type** EXEC command.

```
(type filename
```

Syntax Description

```
filename Name of file.
```

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

Use the **type** command to display the contents of a file within any file directory on a WAAS device. The **type** command may be used to monitor features such as transaction logging or system logging (syslog).

Examples

The following example shows how to display the contents of the **syslog.txt** file:

```
WAE# type /local1/syslog.txt
```

Related Commands

cpfile
dir
dl
l
pwd
rename
type-tail

To view a specified number of lines of the end of a log file, to view the end of the file continuously as new lines are added to the file, to start at a particular line in the file, or to include or exclude specific lines in the file, use the `type-tail` EXEC command.

```
type-tail filename [line | follow | | {begin LINE | exclude LINE | include LINE}]
```

Syntax Description

- **filename**: File to be examined.
- **line**: (Optional) Number of lines from the end of the file to be displayed (1–65535).
- **follow**: (Optional) Displays the end of the file continuously as new lines are added to the file.
- **begin LINE**: Identifies the line at which to begin file display. Specifies a regular expression to match in the file.
- **exclude LINE**: Indicates lines that are to be excluded from the file display. Specifies a regular expression to match in the file.
- **include LINE**: Indicates lines that are to be included in the file display. Specifies a regular expression to match in the file.

Defaults

The last ten lines are shown.

Command Modes

EXEC

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

The `type-tail` command allows you to monitor a log file by letting you view the end of the file. You can specify the number of lines at the end of the file that you want to view, or you can follow the last line of the file as it continues to log new information. To stop the last line from continuously scrolling as with the `follow` option, use the key sequence Ctrl-C.

You can further indicate the type of information to display using the output modifiers. These allow you to include or exclude specific lines or to indicate where to begin displaying the file.

Examples

The following example shows how to looks for a list of log files in the `/local1` directory and then displays the last ten lines of the syslog.txt file. In this example, the number of lines to display is not specified, so the default of ten lines is used:

```
WAE# ls /local1
actona
core_dir
crash
```
The following example shows how to follow the `syslog.txt` file as it grows:

WAE# type-tail /local1/syslog.txt follow
virtual-blade

To change the virtual blade CD-ROM, save or delete the memory state, reset, or start and stop a virtual blade, use the virtual-blade EXEC command.

```
virtual-blade [bladenumber] [ cd { cd-rom | disk pathname | eject } ] kill-save-state | reset | save | session [ clear ] | start [ delay ] | stop [ timeout ]
```

Syntax Description

`bladenumber` (Optional) Number of the virtual blade. Valid values depend on the hardware capabilities. If you do not specify a number, the command is applied to all virtual blades.

`cd` Changes the virtual blade CD-ROM.

`cd-rom` Changes the virtual blade CD-ROM.

`disk pathname` Specifies a CD-ROM image file located on the WAE hard drive. This file is located in the /local1/vbs directory.

`eject` Ejects the disk from the WAE CD-ROM drive.

`kill-save-state` Deletes the saved virtual blade memory state.

`reset` Resets the virtual blade immediately.

`save` Saves the current memory state of the virtual blade.

`session` Opens a telnet session to the remote host/port.

`clear` (Optional) Cancels the telnet session to the remote host/port.

`start` Starts the specified virtual blade.

`delay` (Optional) Startup delay for the virtual blade being started. Valid values are 1 through 60 seconds.

`stop` Stops the specified virtual blade.

`timeout` (Optional) Shutdown timeout delay for the virtual blade being stopped. Valid values are 0 through 900 seconds. Specify 0 to force immediate shutdown of the virtual blade (not a clean shutdown).

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

The virtual-blade EXEC command is used to execute general operations on a virtual blade. The virtual-blade n cd command changes the source of the virtual blade operating system image or ejects the CD. The virtual-blade n save command saves a snapshot of the current virtual blade memory state and saves it to /local1/vbs. The virtual-blade n kill-save-state command deletes the memory snapshot.
The `virtual-blade n reset` command immediately resets the virtual blade operating system, similar to pressing the reset button on a real computer. Because this is not a clean shutdown, you are prompted to confirm this command.

The `virtual-blade n start` and `virtual-blade n stop` commands allow you to activate and deactivate the virtual blade. Each command has an optional delay.

When you use the `virtual-blade n stop` command, it sends a power down command to the virtual blade so that the guest OS can shut down cleanly. If the guest OS does not respond within the specified timeout, the virtual blade is not shut down. You may want to cleanly shut down the guest OS from the VNC console. You can specify a timeout of 0 to force an immediate unclean shutdown of the guest OS; you are also prompted to confirm this command.

Examples

The following example shows how to start virtual blade 1 immediately:

```
WAE# virtual-blade 1 start
```

The following example shows how to stop virtual blade 1 after a 3 minute timeout period:

```
WAE# virtual-blade 1 stop 180
```

The following example shows how to eject the CD in the WAE CD-ROM drive:

```
WAE# virtual-blade 1 cd eject
```

Related Commands

- `show virtual-blade`
- `(config) virtual-blade`
- `(config-vb) boot`
- `(config-vb) device`
- `(config-vb) disk`
- `(config-vb) interface`
- `(config-vb) memory`
To initialize the virtual machine after the VMware cloning operation, or to configure the host clock sync setting, use the `vm` EXEC command.

```
vm { (clock-sync { disable | enable | status } | init }
```

Syntax Description
- `clock-sync`: Manually changes the host clock sync setting.
- `disable`: Disables VM clock sync to host.
- `enable`: Enables VM clock sync to host.
- `status`: Displays the status of the VM clock sync to host setting.
- `init`: Initializes the VM after the VMware cloning operation.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
Use the `vm` for vWAAS virtual machine operations. To speed up vWAAS deployments, you can create a clone of the vWAAS virtual machine. However, since the clone is an exact copy of the original vWAAS VM, you must use the `vm init` command to remove the certificate hash and the device registration information before the new vWAAS VM will register with the Central Manager.

You must reload the device after running `vm init`.

Use the `vm clock-sync` command to manually change the host clock sync setting without configuring NTP.

Examples
The following example shows how to initialize the virtual machine after the VMware cloning operation:

```
WAE# vm init
This command performs the following actions:
- remove any network interface IP addresses,
- deregister this device from CM, and
- delete the machine's unique certificate hash.

Reload is REQUIRED to generate a new certificate hash
Continue? (yes|no) [no]? yes
Interface Virtual 1/0 -> no ip address 2.1.6.116 255.255.255.0
Init complete. Reload the device to generate new certificate hash.
WAE#
```
| Related Commands | cms |
waas-tcptrace

To list all the WAAS devices in the path to a destination host, use the `waas-tcptrace` EXEC command.

waas-tcptrace ip-address port

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-address</td>
<td>IP address of the destination host.</td>
</tr>
<tr>
<td>port</td>
<td>Port to connect to on the destination host.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Use `waas-tcptrace` to list all the WAAS devices in the path between the device on which this command is run and the specified destination host. The path is traversed in both directions.

This command returns the configured application accelerators, system policy, and effective system policy for each WAAS device found in the path, as well as the overall system policy for the connection.

You can use this command to find the overall policy applied to the connection and to find asymmetric paths.

Examples

The following example shows how to trace the route between the WAAS device and a destination host with an IP address of 2.75.227.50 on port 80:

```
WAE# waas-tcptrace 2.75.227.50 80
Response recieved from 2.75.227.137 on path TO destination...
Response recieved from 2.75.227.137 on path FROM destination ....

******************************************************************************
****************************
Number of WAAS devices on the path TO 2.75.227.50 = 1
---------------------------------------------------------------------------------------------------------------
<table>
<thead>
<tr>
<th>IP</th>
<th>Configured TFO</th>
<th>MAC</th>
<th>AD Ver</th>
<th>Packet</th>
<th>Position</th>
<th>Device</th>
<th>Configured AO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75.227.137</td>
<td>Optimize Full</td>
<td>0:21:5e:28:e1:34</td>
<td>4</td>
<td>Regular</td>
<td>1</td>
<td>SN</td>
<td>HTTP</td>
</tr>
</tbody>
</table>
-----------------------------------------------------------------------------------------------------------------------
Number of WAAS devices on the path FROM 2.75.227.50 = 1
```
<table>
<thead>
<tr>
<th>IP</th>
<th>MAC</th>
<th>AD Ver</th>
<th>Packet</th>
<th>Position</th>
<th>Device</th>
<th>Configured AO</th>
<th>Configured TFO</th>
<th>Derived TFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.75.227.137</td>
<td>0:21:5e:28:e1:34</td>
<td>4</td>
<td>Regular</td>
<td>1</td>
<td>SN</td>
<td>HTTP</td>
<td>Optimize Full</td>
<td>Optimize Full</td>
</tr>
</tbody>
</table>

The derived TFO policy for this connection is Passthrough (No Peer)

| Related Commands | traceroute |
whoami

To display the username of the current user, use the `whoami` EXEC command.

```
whoami
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the `whoami` command to display the username of the current user.

Examples
The following example shows how to display your username:

```
WAE# whoami
admin
```

Related Commands
pwd
windows-domain

To join or leave a Windows domain or access the Windows domain utilities on a WAAS device, use the windows-domain EXEC command.

```plaintext
windows-domain join domain-name domain [organization-unit org_unit] user username [debug]

windows-domain leave [user username]

windows-domain diagnostics
   { domain-controller { list | status | time [domain-name domain_name] } |
   encryption-service { get-key fqdn domain_name } |
   getent |
   group { gid gid_no | groupname groupname | username username } |
   machine-account-info |
   user [sid sid_name | uid user_no | username username ] |
   verify join }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>join joins a Windows domain.</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain-name domain</td>
<td>Specifies the domain to join.</td>
</tr>
<tr>
<td>organization-unit org_unit</td>
<td>(Optional) Specifies the organization unit of the domain.</td>
</tr>
<tr>
<td>user username</td>
<td>Specifies a user that has the permission to create a machine account on the domain controller.</td>
</tr>
<tr>
<td>debug</td>
<td>(Optional) Logs the domain join operation to the following file: /local1/logs/windows_domain_join.log</td>
</tr>
<tr>
<td>leave leaves a Windows domain.</td>
<td></td>
</tr>
<tr>
<td>diagnostics Enables the selection of Windows domain diagnostic utilities.</td>
<td></td>
</tr>
<tr>
<td>domain-controller Displays domain controller status information.</td>
<td></td>
</tr>
<tr>
<td>list Displays information about all available domain controllers.</td>
<td></td>
</tr>
<tr>
<td>status Displays the status of the currently joined domain controller.</td>
<td></td>
</tr>
<tr>
<td>time Displays the time of the currently joined domain controller.</td>
<td></td>
</tr>
<tr>
<td>domain-name domain_name</td>
<td>(Optional) Displays the time of the domain controller specified.</td>
</tr>
<tr>
<td>encryption-service Displays encryption service status information.</td>
<td></td>
</tr>
<tr>
<td>get-key fqdn domain_name</td>
<td>Displays the key retrieval information of the fully qualified domain name (for example, machine-name.cisco.com) and domain name.</td>
</tr>
<tr>
<td>getent Displays the utility to get unified list of local users, PDC users, and groups.</td>
<td></td>
</tr>
<tr>
<td>group Displays the diagnostic information of all groups or a particular group on Active Directory. In the output, a space in the group name is replaced by the “+” symbol.</td>
<td></td>
</tr>
<tr>
<td>gid gid_no Displays group-related diagnostics information that corresponds to the group ID number specified.</td>
<td></td>
</tr>
<tr>
<td>groupname groupname</td>
<td>Displays group-related diagnostic information of a particular group.</td>
</tr>
<tr>
<td>username username Displays group-related diagnostics information of a user.</td>
<td></td>
</tr>
<tr>
<td>machine-account-info Displays the machine account-related information.</td>
<td></td>
</tr>
</tbody>
</table>
windows-domain

<table>
<thead>
<tr>
<th>user</th>
<th>Displays the diagnostic information of all users or a particular user on Active Directory. In the output, a space in the username is replaced by the “+” symbol.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid sid_name</td>
<td>(Optional) Displays the diagnostic information of a user based on the SID of the user specified.</td>
</tr>
<tr>
<td>uid user_no</td>
<td>(Optional) Displays the diagnostic information of a user based on the UID specified.</td>
</tr>
<tr>
<td>username username</td>
<td>(Optional) Display the diagnostic information of a user on Active Directory based on the username.</td>
</tr>
<tr>
<td>verify join</td>
<td>Displays the domain join status.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use the `windows-domain` command to join or leave a Windows domain or activate the selected Windows domain diagnostic utility.

When you use the `windows-domain join` command, it automatically discovers the windows domain configuration parameters and prompts you to approve the changes. You can respond with `yes` to approve the changes, `quit` to do nothing and exit the command, or `no` to enter interactive edit mode where you can edit any of the parameters before submitting the change.

If you do not specify the password as part of the command, you are prompted for the password and it is not shown on the console when you enter it.

Examples

The following example shows how to join a Windows domain and includes the interactive output:

```
WAE# windows-domain join domain-name waaslab.com user Administrator
Joining to AD Domain: WAASLAB.COM
With Computer DNS Name: wae.waaslab.com
administrator@WAASLAB.COM’s password:
SUCCESS
```

The following example shows how to leave a Windows domain:

```
WAE# windows-domain leave user myname
```
In version 5.1.1, although the `windows-domain leave` operation disables the machine account on Active Directory (AD), it does not delete it.

The following example shows how to display the options available for the Get Entity utility:

WAE# `windows-domain diagnostics getent --help`
Usage: getent [OPTION...] database [key ...]
getent - get entries from administrative database.

-s, --service=CONFIG Service configuration to be used
-?, --help Give this help list
 --usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional for any corresponding short options.

Supported databases:
aliases ethers group hosts netgroup networks passwd protocols rpc services shadow

Related Commands `(config) windows-domain`
write

To save startup configurations on a WAAS device, use the `write` EXEC command.

```
write [erase | memory | mib-data | terminal]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>erase</td>
<td>(Optional) Erases startup configuration from NVRAM.</td>
</tr>
<tr>
<td>memory</td>
<td>(Optional) Writes the configuration to NVRAM. This is the default location for saving startup information.</td>
</tr>
<tr>
<td>mib-data</td>
<td>(Optional) Saves MIB persistent configuration data to disk.</td>
</tr>
<tr>
<td>terminal</td>
<td>(Optional) Writes the configuration to a terminal session.</td>
</tr>
</tbody>
</table>

Defaults

The configuration is written to NVRAM by default.

Command Modes

EXEC

Device Modes

application-accelerator
central-manager

Usage Guidelines

Use the `write` command to either save running configurations to NVRAM or to erase memory configurations. Following a `write erase` command, no configuration is held in memory, and a prompt for configuration specifics occurs after you reboot the WAAS device.

Use the `write terminal` command to display the current running configuration in the terminal session window. The equivalent command is `show running-config`.

Examples

The following example shows how to save the current startup configuration to memory:

```
WAE# write memory
```

Related Commands

- `copy running-config`
- `copy startup-config`
- `show running-config`
- `show startup-config`
Global Configuration Mode Commands

Use global configuration mode for setting, viewing, and testing configuration of WAAS software features for the entire device. To enter this mode, enter the `configure` command from privileged EXEC mode. The prompt for global configuration mode consists of the hostname of the WAE followed by (config) and the pound sign (#). You must be in global configuration mode to enter global configuration commands.

```
WAE# configure
WAE(config)#
```

Commands entered in global configuration mode update the running configuration file as soon as they are entered. These changes are not saved into the startup configuration file until you enter the `copy running-config startup-config` EXEC mode command. Once the configuration is saved, it is maintained across WAE reboots.

You also can use global configuration mode to enter specific configuration modes. From global configuration mode you can enter the interface configuration mode, standard ACL configuration mode, or the extended ACL configuration mode.

To exit global configuration mode and return to privileged-level EXEC mode, use either the `exit` or `end` global configuration command:

```
WAE(config)# exit
WAE#
```
(config) aaa accounting

To configure AAA accounting on a WAAS device, use the `aaa accounting` global configuration command. To unconfigure AAA, use the `no` form of this command.

```plaintext
aaa accounting cms enable tacacs+
no aaa accounting cms enable tacacs+

aaa accounting commands {0 | 15} default {start-stop | stop-only | wait-start} tacacs
no aaa accounting commands {0 | 15} default {start-stop | stop-only | wait-start} tacacs

aaa accounting exec default {start-stop | stop-only | wait-start} tacacs
no aaa accounting exec default {start-stop | stop-only | wait-start} tacacs

aaa accounting system default {start-stop | stop-only} tacacs
no aaa accounting system default {start-stop | stop-only} tacacs
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cms enable tacacs+</td>
<td>Enables accounting for all commands executed internally by the Central Manager. This feature is disabled by default.</td>
</tr>
<tr>
<td>commands</td>
<td>Configures accounting for all commands at the specified privilege level.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the user privilege level for a normal user.</td>
</tr>
<tr>
<td>15</td>
<td>Specifies the user privilege level for an administrative user.</td>
</tr>
<tr>
<td>default</td>
<td>Sets AAA accounting to use the default accounting list.</td>
</tr>
<tr>
<td>start-stop</td>
<td>Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested user process begins regardless of whether the start accounting notice was received by the accounting server.</td>
</tr>
<tr>
<td>stop-only</td>
<td>Sends a stop accounting notice at the end of the process requested by the user.</td>
</tr>
<tr>
<td>wait-start</td>
<td>Sends both a start and a stop accounting notice to the accounting server. However, the requested user service does not begin until the start accounting notice is acknowledged. The user cannot execute a CLI command or login until the user is on record. A stop accounting notice is also sent but does not need acknowledgement.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Enables use of TACACS+ for accounting.</td>
</tr>
<tr>
<td>exec</td>
<td>Enables accounting for user EXEC processes (user shells). When enabled, the EXEC shell accounting reports EXEC terminal session (user shell) events and login and logout by an administrator to the EXEC shell.</td>
</tr>
<tr>
<td>system</td>
<td>Enables accounting for all system-level events not associated with users, such as reloads.</td>
</tr>
</tbody>
</table>
AAA accounting is disabled by default.

Command Modes

- global configuration

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows how to configure TACACS+ on the WAAS device. Specify that a start accounting notice should be sent at the beginning of the process and a stop accounting notice at the end of the process, and request that the user process should begin regardless of whether the start accounting notice was received by the accounting server:

```
WAE(config)# tacacs key abc
WAE(config)# tacacs server 192.168.50.1 primary
WAE(config)# aaa accounting system default start-stop tacacs
WAE# show aaa accounting
```

The following example shows that the WAAS device is set to record all user EXEC sessions. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of the session.

```
WAE(config)# aaa accounting exec default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by a normal user. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of each CLI command executed by a normal user.

```
WAE(config)# aaa accounting commands 0 default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by an administrative user. The command also specifies that a start accounting notice should be sent to the TACACS+ server at the beginning of the process and a stop accounting notice at the end of the process. The CLI command executed by the administrative user does not proceed until the start accounting notice has been acknowledged.

```
WAE(config)# aaa accounting commands 15 default wait-start tacacs
```

The following example shows the EXEC shell accounting report that is available on the TACACS+ server:

```
Wed Apr 14 11:19:19 2004 172.16.0.0 super10 pts/0 172.31.0.0 start
start_time=1081919558 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:19:23 2004 172.16.0.0 super10 pts/0 172.31.0.0 stop
stop_time=1081919562 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:22:13 2004 172.16.0.0 normal20 pts/0 via5.abc.com start
start_time=1081919732 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:22:16 2004 172.16.0.0 normal20 pts/0 via5.abc.com stop
stop_time=1081919735 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:25:29 2004 172.16.0.0 admin ftp via5.abc.com start
```
The following example shows the system accounting report that is available on the TACACS+ server:

```
Wed Apr 14 08:37:14 2004 172.16.0.0 unknown unknown 0.0.0.0 start start_time=1081909831
```

```
Wed Apr 14 10:19:18 2004 172.16.0.0 admin ttyS0 0.0.0.0 stop stop_time=1081915955
```

In addition to command accounting, the WAAS device records any executed CLI command in the system log (syslog.txt). The message format is as follows:

```
ce_syslog(LOG_INFO, CESM_PARSER, PARSER_ALL, CESM_350232,
        "CLI_LOG %s: %s \n", __FUNCTION__, pd->command_line);
```
(config) aaa authorization commands

To authorize commands issued through the CLI by a user on a WAAS device, use the `aaa authorization commands` global configuration command. To disable command authorization, use the `no` form of this command.

`aaa authorization commands level default tacacs+

no aaa authorization commands level default tacacs+`

Syntax Description

| level default tacacs+ | Configures command authorization for commands issued by the CLI user. Commands at the specified privilege level (0 or 15) are authorized. Level 0 authorizes EXEC commands, level 15 authorizes both EXEC and global configuration commands. |

Defaults

AAA command authorization is disabled by default.

Command Modes

global configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

Command authorization enforces authorization through an external AAA server for each command executed by the user. All commands executed by a CLI user are authorized before they are executed.

When command authorization is configured for level 0, only EXEC commands are authorized, regardless of user level (normal or super).

When command authorization is configured for level 15, EXEC and global configuration commands are authorized, regardless of user level (normal or super).

Once it is configured, command authorization configuration is displayed in the running config. When the running config is copied to the startup config, command authorization is configured as the last config so that during the reload, the startup config need not be authorized.

Only commands executed through the CLI interface are subject to command authorization.

Examples

The following example shows how to configure command authorization for level 15 (authorization for both EXEC and global configuration commands) on the WAAS device:

`WAE(config)# aaa authorization commands 15 default tacacs+

Related Commands

`show aaa authorization`
(config) accelerator cifs

To enable the CIFS application accelerator, use the `accelerator cifs` global configuration command. To disable the CIFS application accelerator, use the `no` form of this command.

```
accelerator cifs { [double-byte-unicode] | enable | eviction-monitor { cumulative-time mins | duration mins | enable } | dynamic-share share | clear cache | cache server-rename oldname newname | exception { coredump | debug | no-coredump } }

no accelerator cifs { [double-byte-unicode] | enable | eviction-monitor { cumulative-time mins | duration mins | enable } | dynamic-share share | clear cache | cache server-rename oldname newname | exception { coredump | debug | no-coredump } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>double-byte-unicode</td>
<td>(Optional) Enables support for double-byte Unicode languages for Windows 98 clients.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the CIFS traffic accelerator.</td>
</tr>
<tr>
<td>eviction-monitor</td>
<td>Configures cache eviction monitoring.</td>
</tr>
<tr>
<td>cumulative time mins</td>
<td>Sets the cumulative time in minutes over which aggressive cache eviction should be monitored.</td>
</tr>
<tr>
<td>duration mins</td>
<td>Sets the duration in minutes for aggressive cache eviction monitoring.</td>
</tr>
<tr>
<td>enable</td>
<td>Starts cache eviction monitoring.</td>
</tr>
<tr>
<td>dynamic-share share</td>
<td>Enables support for CIFS dynamic shares and specifies a path in the format: cifs://server/share</td>
</tr>
<tr>
<td>clear cache</td>
<td>Clears the CIFS application accelerator cache and restarts the accelerator.</td>
</tr>
<tr>
<td>cache server-rename oldname newname</td>
<td>Renames a CIFS file server for the cached data.</td>
</tr>
<tr>
<td>exception</td>
<td>Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The CIFS accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator cifs enable` command to enable the acceleration of CIFS traffic with the transparent CIFS accelerator (not the legacy mode of acceleration).
The CIFS application accelerator requires that the WINS server be configured. Use the `windows-domain wins-server` global configuration command to configure the WINS server.

Use the `accelerator cifs eviction-monitor` command to enable and monitor the aggressive cache eviction for a cumulative time or duration.

To configure prepositioning directives, use the `accelerator cifs preposition` global configuration command.

Use the `accelerator cifs dynamic-share` command to define a dynamic share, which allows multiple users to access the same share but then be automatically mapped to a different directory based on the user's credentials. Defining a dynamic share allows each user to see a different view of the share, and allows the operation of Access Based Enumeration, if configured on Windows Server.

We recommend that you use the WAAS Central Manager GUI to configure dynamic shares because the dynamic share CLI configuration can be overwritten by the Central Manager. For more information, see the “Creating Dynamic Shares” section in the Cisco Wide Area Application Services Configuration Guide.

Use the `accelerator cifs cache server-rename` command to rename the data in the cache if the name of a file server changed and you do not want to lose the cached data for the server. The renaming applies to prepositioned files and files cached on demand.

Note: Do not specify the name of another existing cached file server as the new name. If you do specify an existing name as the new name, the cached contents of this file server are overwritten with the cached contents of the file server you are renaming.

Examples

The following example shows how to enable the CIFS application accelerator:

```
WAE(config)# accelerator cifs enable
```

Related Commands

- `show accelerator`
- `show statistics accelerator`
- `(config) windows-domain`
(config) accelerator cifs preposition

To configure a CIFS application accelerator preposition directive, use the `accelerator cifs preposition` global configuration command. To disable the application accelerator, use the `no` form of this command.

```
accelerator cifs preposition [remove] directive_id
no accelerator cifs preposition [remove] directive_id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remove</td>
<td>(Optional) Deletes a preposition directive.</td>
</tr>
<tr>
<td>directive_id</td>
<td>ID of an existing preposition directive that you want to change or delete, or</td>
</tr>
<tr>
<td></td>
<td>a new directive that you want to create.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator cifs preposition` command to create and edit preposition directives to be used with the transparent CIFS accelerator. A preposition directive defines a set of files that are to be prepositioned on the WAE device.

The `accelerator cifs preposition` command invokes the preposition configuration submode. For details on the commands available in this submode to configure a preposition directive, see the “Preposition Configuration Mode Commands” section.

Note

We recommend that you use the WAAS Central Manager GUI to configure preposition directives. For more information, see the “Creating a Preposition Directive” section in the *Cisco Wide Area Application Services Configuration Guide*.

Note

If you create a preposition directive from the CLI before the secure store on the WAE is initialized, you must wait at least two datafeed poll cycles (10 minutes by default) before initializing the secure store; otherwise, the preposition directive will not propagate to the Central Manager because the credentials will not be able to be decrypted on the WAE.

Examples

The following example shows how to create a new CIFS preposition directive with ID 3:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)
```
Related Commands

- show accelerator
- show statistics accelerator
- (config) windows-domain
(config) accelerator epm

To enable the Endpoint Mapper (EPM) application accelerator, use the `accelerator epm` global configuration command. To disable the EPM application accelerator, use the `no` form of this command.

```
accelerator epm { enable | exception { coredump | debug | no-coredump } }
no accelerator epm { enable | exception { coredump | debug | no-coredump } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables the EPM application accelerator.</td>
</tr>
<tr>
<td><code>exception</code></td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td><code>coredump</code></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td><code>debug</code></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td><code>no-coredump</code></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The EPM accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

Command Modes

- **global configuration**

Device Modes

- **application-accelerator**

Usage Guidelines

Use the `accelerator epm enable` command to enable the acceleration of EPM traffic. The EPM accelerator must be enabled for the MAPI accelerator to operate.

Examples

The following example shows how to enable the EPM application accelerator:

```
WAE(config)# accelerator epm enable
```

Related Commands

- `(config) accelerator mapi`
- `show accelerator`
- `show statistics accelerator`
(config) accelerator http

To enable the HTTP application accelerator, use the accelerator http global configuration command. To disable the HTTP application accelerator, use the no form of this command.

```
accelerator http { enable | dre-hints { access-list acl | enable } | exception { coredump | debug | no-coredump } | metadatacache { access-list acl | enable | conditional-response enable | response-ignore-no-cache enable | unauthorized-response enable | max-age seconds | min-age seconds | filter-extension extension-list | https { access-list acl | enable } } | sharepoint-opt prefetch enable | suppress-server-encoding { access-list acl | enable } }
```

```
no accelerator http { enable | dre-hints { access-list acl | enable } | exception { coredump | debug | no-coredump } | metadatacache { access-list acl | enable | conditional-response enable | response-ignore-no-cache enable | unauthorized-response enable | max-age seconds | min-age seconds | filter-extension extension-list | https { access-list acl | enable } } | sharepoint-opt prefetch enable | suppress-server-encoding { access-list acl | enable } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables the HTTP application accelerator.</td>
</tr>
<tr>
<td><code>dre-hints</code></td>
<td>Configures HTTP and HTTPS DRE hints feature.</td>
</tr>
<tr>
<td><code>access-list acl</code></td>
<td>Configures the HTTP AO feature subnet to associate an access list to an HTTP AO feature. acl refers to an ACL that can be created by the <code>ip access-list</code> CLI. See (config) ip access-list, page -664.</td>
</tr>
<tr>
<td><code>exception</code></td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td><code>coredump</code></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td><code>debug</code></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td><code>no-coredump</code></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td><code>metadatacache</code></td>
<td>(Optional) Configures metadata caching.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables metadata caching.</td>
</tr>
<tr>
<td><code>conditional-response enable</code></td>
<td>(Optional) Enables caching of HTTP 304 messages.</td>
</tr>
<tr>
<td><code>redirect-response enable</code></td>
<td>(Optional) Enables caching of HTTP 301 messages.</td>
</tr>
<tr>
<td><code>request-ignore-no-cache enable</code></td>
<td>Configures the metadata cache to ignore cache-control on requests.</td>
</tr>
<tr>
<td><code>response-ignore-no-cache enable</code></td>
<td>Configures the metadata cache to ignore cache-control on responses.</td>
</tr>
<tr>
<td><code>unauthorized-response enable</code></td>
<td>(Optional) Enables caching of HTTP 401 messages.</td>
</tr>
<tr>
<td><code>max-age seconds</code></td>
<td>(Optional) Specifies the maximum number of seconds to retain HTTP header information in the cache. The default is 86400 seconds (24 hours). Valid time periods range from 5–2592000 seconds (30 days).</td>
</tr>
<tr>
<td><code>min-age seconds</code></td>
<td>(Optional) Specifies the minimum number of seconds to retain HTTP header information in the cache. The default is 60 seconds. Valid time periods range from 5–86400 seconds (24 hours).</td>
</tr>
</tbody>
</table>
The HTTP accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

The metadata caching feature is disabled by default for all response types. The default max-age is 86400 seconds (24 hours), the default min-age is 60 seconds, and the default filter extension list is empty (meaning that metadata caching is applied to all extension types).

The SharePoint optimization feature is disabled by default.

When suppress-server-encoding is enabled, it suppresses the server compression for both HTTP and HTTPS requests. The suppress server encoding feature is disabled by default.

The DRE hints feature applies to both HTTP and HTTPS requests. It is disabled by default.

The subnet feature is enabled after the subnet configuration is added.

Usage Guidelines

Use the **accelerator http enable** command to enable the acceleration of HTTP traffic.

You can enable or disable each of three metadata caches (conditional-response, redirect-response, and unauthorized-response) separately. By default they are all enabled when you enable HTTP metadata caching. If you disable the HTTP accelerator, metadata caching is also disabled.

When you enable the suppress-server-encoding feature, the WAE removes the Accept-Encoding header from HTTP requests, preventing the web server from compressing HTTP data that it sends to the client. This allows the WAE to apply its own compression to the HTTP data, typically resulting in much better compression than the web server.

Use the SharePoint optimization feature when you need to access Microsoft Office documents stored on a SharePoint server 2010, using a web browser. Enabling this feature will prefetch the data from the server and serve it from the cache, which reduces latency and improves the user experience.

The DRE hint feature improves DRE performance. This feature is not automatically enabled when metadata caching or the suppress server encoding feature is enabled.
The options **request-ignore-no-cache** and **response-ignore-no-cache** are disabled by default. Because the HTTP accelerator is conservative in caching client request metadata and server response metadata, deployments may want to test with these settings enabled to improve the HTTP metadata cache hit ratio to achieve less latency.

If an existing subnet configuration gets modified or removed, the new configuration applies to new connections only, and does not impact the existing HTTP sessions. The change takes effect only after the change is updated in the kernel. Only one ACL is associated with each feature and a new subnet configuration replaces the old one. Use the `no` command to remove the subnet configuration. If the HTTP AO feature is globally disabled, the feature is not applied to any session. If the HTTP AO feature is globally enabled, and if the acl lookup result for this session is permit, the feature applies to the session; otherwise, it does not apply. HTTP AO bypass-list takes precedence over this feature.

Examples

The following example shows how to enable the HTTP application accelerator:

```
WAE(config)# accelerator http enable
```

The following example shows how to enable and configure the metadata cache to operate only on specific file types:

```
WAE(config)# accelerator http metadatacache enable
WAE(config)# accelerator http metadatacache filter-extension html,css,jpg,gif
```

Related Commands

- `clear cache`
- `show accelerator`
- `show cache http-metadatacache`
- `show statistics accelerator`
(config) accelerator ica

To enable the ICA application accelerator, use the `accelerator ica` global configuration command. To disable the ICA application accelerator, use the `no` form of this command.

```
accelerator ica { enable | exception { coredump | debug | no-coredump } | wansecure-mode { always | none } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the ICA traffic accelerator.</td>
</tr>
<tr>
<td>exception</td>
<td>Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td>wansecure-mode</td>
<td>Configures the state of WAN Secure mode.</td>
</tr>
<tr>
<td>always</td>
<td>Enables WAN Secure mode for ICA.</td>
</tr>
<tr>
<td>none</td>
<td>Disables WAN Secure mode for ICA (default).</td>
</tr>
</tbody>
</table>

Defaults

The ICA accelerator is enabled by default. The default exception action is coredump. The default WAN Secure mode state is none.

Command Modes

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>global configuration</td>
<td></td>
</tr>
</tbody>
</table>

Device Modes

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-accelerator</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `accelerator ica enable` command to enable the acceleration of ICA (Independent Computing Architecture) traffic with the transparent ICA accelerator. The ICA application accelerator provides WAN optimization on a WAAS device for ICA traffic which is used to access a virtual desktop infrastructure (VDI). This is done through a process that is both automatic and transparent to the client and server.

Use the `accelerator ica wansecure-mode always` command to enable WAN Secure mode for ICA. The WAN Secure mode configuration in both of the peer WAEs must match in order for the ICA accelerator to optimize connections.

WAN Secure mode requires that the SSL application accelerator is enabled. Use the `accelerator ssl enable` global configuration command to enable the SSL accelerator.

Examples

The following example shows how to enable the ICA application accelerator:

```
WAE(config)# accelerator ica enable
```
Related Commands

- show accelerator
- show statistics accelerator
- (config) windows-domain
(config) accelerator mapi

To enable the MAPI application accelerator, use the accelerator mapi global configuration command. To disable the MAPI application accelerator, or one of its options, use the no form of this command.

```
accelerator mapi { enable | encryption | read-opt | write-opt | reserved-pool-size
  maximum-percent max_percent | wansecure-mode { always | auto | none } |
  exception { coredump | debug | no-coredump }}

no accelerator mapi { enable | encryption | read-opt | write-opt | reserved-pool-size
  maximum-percent max_percent | wansecure-mode { always | auto | none } |
  exception { coredump | debug | no-coredump }}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the MAPI traffic accelerator.</td>
</tr>
<tr>
<td>encryption</td>
<td>Enables the acceleration of encrypted MAPI traffic.</td>
</tr>
<tr>
<td>read-opt</td>
<td>Enables the read-ahead optimization of the MAPI traffic for mail reading.</td>
</tr>
<tr>
<td>write-opt</td>
<td>Enables the asynchronous write optimization of the MAPI traffic for mail sending.</td>
</tr>
<tr>
<td>reserved-pool-size</td>
<td>Configures the maximum reserved connection pool percent, specified as the percent of the device TFO connection limit, to restrict the maximum connections reserved for MAPI optimization during TFO overload. Range is from 5 to 50. Default is 15.</td>
</tr>
<tr>
<td>maximum-percent</td>
<td>maximum-percent max_percent</td>
</tr>
<tr>
<td>wansecure-mode</td>
<td>Configures the state of WAN Secure mode.</td>
</tr>
<tr>
<td>always</td>
<td>Enables WAN Secure mode for encrypted MAPI acceleration.</td>
</tr>
<tr>
<td>auto</td>
<td>Enables WAN Secure mode for encrypted MAPI acceleration only if encrypted traffic is received.</td>
</tr>
<tr>
<td>none</td>
<td>Disables WAN Secure mode for encrypted MAPI acceleration.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The MAPI accelerator is enabled by default and will start automatically if the Enterprise license is installed. Encrypted MAPI traffic acceleration is not enabled by default. The read optimization (read-opt) and write optimization (write-opt) features are enabled by default when the MAPI accelerator is enabled. The default maximum reserved connection pool percent is 15. The default WAN secure mode is auto. The default exception action is coredump.

Command Modes

global configuration

Device Modes

application-accelerator
Usage Guidelines

Use the `accelerator mapi enable` command to enable MAPI acceleration. This feature supports Microsoft Outlook 2000–2007 clients. Secure connections that use message authentication (signing) or encryption are not accelerated and MAPI over HTTP is not accelerated.

You must enable the EPM accelerator before the MAPI accelerator can operate.

Use the `reserved-pool-size` keyword to restrict the maximum number of connections reserved for MAPI optimization during TFO overload. It is specified as a percent of the TFO connection limit of the platform. Valid percent ranges from 5%-50%. The default is 15% which would reserve approximately 0.5 connection for each client-server Association Group (AG) optimized by MAPI accelerator.

The client maintains at least one AG per server it connects to with an average of about 3 connections per AG. For deployments that observe a greater average number of connections per AG, or where TFO overload is a frequent occurrence, a higher value for the reserved pool size maximum percent is recommended.

Reserved connections would remain unused when the device is not under TFO overload. Reserved connections are released when the AG terminates.

Examples

The following example shows how to enable the MAPI application accelerator:

```
WAE(config)# accelerator mapi enable
```

Related Commands

```
(config) accelerator epm
show accelerator
show statistics accelerator
```
(config) accelerator nfs

To enable the NFS application accelerator, use the accelerator nfs global configuration command. To disable the NFS application accelerator, use the no form of this command.

 accelerator nfs {enable | exception {coredump | debug | no-coredump}}

 no accelerator nfs {enable | exception {coredump | debug | no-coredump}}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>(Optional) Enables the EPM application accelerator.</td>
</tr>
<tr>
<td>exception</td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td>coredump</td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

Defaults

The NFS accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

Command Modes

- global configuration

Device Modes

- application-accelerator

Examples

The following example shows how to enable the NFS application accelerator:

```
WAE(config)# accelerator nfs enable
```

Related Commands

- show accelerator
- show statistics accelerator
(config) accelerator smb

To enable the SMB application accelerator, use the `accelerator smb` global configuration command. To disable the SMB application accelerator, use the `no` form of this command.

```
accelerator smb { enable [alarm digital-signing enable | batch-close-opt enable | change-notif size | dir-opt { enable | aging seconds } | dre-hints dre enable [dynamic-share name [exception { coredump | debug | no-coredump | highest-dialect { ntlm0-12 | smb2-002 | smb2-1 } exceed-action { handoff | mute | invalid-fid-opt enable | iobuf size mb | max-pkt-size size kb | metadata-opt { enable | cache-size mb [force] } | namedpipe-opt { enable | cache-size kb | resp-cache lifetime seconds | sess-cache lifetime seconds } | nf-cache { enable | aging seconds | bypass-patterns regex | size mb } | office-opt enable | optimization bypass-pattern regex | read-ahead { enable | buffer-size mb [force] | exhaust-distance kb | extended-window kb | hit-threshold percentage | init-window kb | max-active div | wait-distance kb } | write-opt { enable | quota-aging seconds | quota-threshold mb } ] } ] } ] }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the SMB traffic accelerator.</td>
</tr>
<tr>
<td><code>alarm digital-signing enable</code></td>
<td>Enables the digital-signing alarm.</td>
</tr>
<tr>
<td><code>batch-close-opt enable</code></td>
<td>Enables asynchronous close optimization for SMB2 protocol.</td>
</tr>
<tr>
<td><code>change-notif size size</code></td>
<td>Sets the change notification table size. Valid values range from 1–2048 entries. The default is 10.</td>
</tr>
<tr>
<td><code>dir-opt enable</code></td>
<td>Enables directory listing optimization.</td>
</tr>
<tr>
<td><code>aging seconds</code></td>
<td>Configures metadata directory list aging time to the specified number of seconds. If the age of a metadata directory list exceeds this time when the metadata is requested, the entry is considered stale and is updated by retrieving it from the file server.</td>
</tr>
<tr>
<td><code>dre-hints dre enable</code></td>
<td>Enables DRE and LZ hints.</td>
</tr>
<tr>
<td><code>dynamic-share name</code></td>
<td>Adds the specified share to the existing dynamic share configuration. The share name must use the format <code>//server/share</code> and must not exceed 256 characters.</td>
</tr>
<tr>
<td><code>exception</code></td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td><code>coredump</code></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td><code>debug</code></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td><code>no-coredump</code></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
<tr>
<td><code>highest-dialect</code></td>
<td>Configures the highest dialect to be optimized.</td>
</tr>
</tbody>
</table>
CLI Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) accelerator smb</td>
<td>Configures NTLM version 0.12 to be the highest dialect.</td>
</tr>
<tr>
<td>ntlm0-12</td>
<td>Configures NTLM version 0.12 to be the highest dialect.</td>
</tr>
<tr>
<td>smb2-002</td>
<td>Configures SMB version 2.002 to be the highest dialect.</td>
</tr>
<tr>
<td>smb2-1</td>
<td>Configures SMB version 2.1 to be the highest dialect.</td>
</tr>
<tr>
<td>exceed-action</td>
<td>Configures the action if a request uses a dialect higher than the configured highest dialect to be optimized.</td>
</tr>
<tr>
<td>handoff</td>
<td>The connection is handed off to the generic application accelerator.</td>
</tr>
<tr>
<td>mute</td>
<td>The connection is removed from the negotiate request.</td>
</tr>
<tr>
<td>invalid-fid-opt enable</td>
<td>Enables SMB2 invalid file ID optimization. The SMB accelerator issues a local response to files with invalid file ID values.</td>
</tr>
<tr>
<td>iobuf size mb</td>
<td>Configures the IOBUF buffer size, in MB, from 50 to 1000.</td>
</tr>
<tr>
<td>max-pkt-size kb</td>
<td>Configures the maximum SMB packet size, in KB, from 64 to 16384.</td>
</tr>
<tr>
<td>metadata-opt enable</td>
<td>Enables metadata optimization.</td>
</tr>
<tr>
<td>cache-size mb</td>
<td>Configures metadata cache size, in MB, from 50 to 360000.</td>
</tr>
<tr>
<td>force</td>
<td>Forces the metadata cache size setting.</td>
</tr>
<tr>
<td>namedpipe-opt enable</td>
<td>Enables named pipe optimization.</td>
</tr>
<tr>
<td>cache-size kb</td>
<td>Configures the size of the named pipe cache, in KB, from 128 to 150000.</td>
</tr>
<tr>
<td>resp-cache lifetime seconds</td>
<td>Configures the response cache lifetime, in seconds, from 0 to 1024.</td>
</tr>
<tr>
<td>sess-cache lifetime seconds</td>
<td>Configures the session cache lifetime, in seconds, from 0 to 1024.</td>
</tr>
<tr>
<td>nf-cache enable</td>
<td>Enables not-found metadata cache optimization.</td>
</tr>
<tr>
<td>aging seconds</td>
<td>Configures the length of time, in seconds, that not-found metadata cache entries are held in the cache, from 1 to 60 (the default is 30).</td>
</tr>
<tr>
<td>bypass-patterns regex</td>
<td>Configures a case-insensitive regular expression that matches filenames to be bypassed by the not-found metadata cache.</td>
</tr>
<tr>
<td>size mb</td>
<td>Configures the maximum size of the not-found metadata cache, in MB, from 1 to 256 (the default is 32).</td>
</tr>
<tr>
<td>office-opt enable</td>
<td>Enables Microsoft Office optimization.</td>
</tr>
<tr>
<td>optimization</td>
<td>Configures a case-insensitive regular expression that matches filenames to be bypassed for all optimizations.</td>
</tr>
<tr>
<td>bypass-pattern regex</td>
<td>Configures a case-insensitive regular expression that matches filenames to be bypassed for all optimizations.</td>
</tr>
<tr>
<td>read-ahead enable</td>
<td>Enables read-ahead optimization.</td>
</tr>
<tr>
<td>buffer size mb</td>
<td>Configures read-ahead buffer size, in MB, from 50 to 10000.</td>
</tr>
<tr>
<td>force</td>
<td>Forces the read-ahead cache size setting.</td>
</tr>
<tr>
<td>exhaust-distance kb</td>
<td>Configures read-ahead window exhaust distance, in KB, from 128 to 1024 (the default is 196).</td>
</tr>
<tr>
<td>extended-window kb</td>
<td>Configures read-ahead window exhaust distance, in KB, from 256 to 3200 (the default is 640).</td>
</tr>
<tr>
<td>hit-threshold percentage</td>
<td>Configures read-ahead hit threshold, as a percentage from 10 to 100 (the default is 70).</td>
</tr>
<tr>
<td>init-window kb</td>
<td>Configures read-ahead initial window size, in KB, from 128 to 1024 (the default is 196).</td>
</tr>
<tr>
<td>max-active div</td>
<td>Configures read-ahead maximum active memory usage divisor, from 2 to 10 (the default is 4).</td>
</tr>
</tbody>
</table>
Chapter 3 CLI Commands

```plaintext
(config) accelerator smb

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>wait-distance</strong> <em>kb</em></td>
<td>Configures read-ahead wait distance, in KB, from 128 to 3200 (the default is 512).</td>
</tr>
<tr>
<td><strong>write-opt enable</strong></td>
<td>Enables async-write optimization.</td>
</tr>
<tr>
<td><strong>quota-aging</strong> <em>seconds</em></td>
<td>Configures network share quota threshold aging time, in seconds, from 1 to 120 (the default is 60).</td>
</tr>
<tr>
<td><strong>quota-threshold</strong> <em>mb</em></td>
<td>Configure network share quota threshold, in MB, from 1 to 1024 (the default is 20).</td>
</tr>
</tbody>
</table>

**Defaults**
The SMB accelerator is disabled by default.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
The enterprise license is required to start the SMB accelerator. Enabling the SMB accelerator disables the CIFS accelerator if it is enabled.

The EXEC mode command `show running-config` displays non-default settings only. Therefore, the command `no accelerator smb enable` does not show up in the running configuration if the SMB accelerator is disabled, while the `accelerator smb enable` command does display if the SMB accelerator is enabled.

**Examples**
The following example shows how to enable the SMB application accelerator:

```
WAE(config)# accelerator smb enable
```

**Related Commands**
- `show accelerator`
- `show statistics accelerator`
(config) accelerator ssl

To enable the SSL application accelerator, use the accelerator ssl global configuration command. To disable the SSL application accelerator, use the no form of this command.

```
accelerator ssl {enable | exception {coredump | debug | no-coredump}}
no accelerator ssl {enable | exception {coredump | debug | no-coredump}}
```

### Syntax Description

- **enable** (Optional) Enables the SSL application accelerator.
- **exception** (Optional) Configures the action to be taken if an exception occurs.
- **coredump** Writes a core file (default).
- **debug** Hangs the system until it is explicitly restarted.
- **no-coredump** Restarts accelerator and does not write a core file.

### Defaults

The SSL accelerator is enabled by default and will start automatically if the Enterprise license is installed. The default exception action is coredump.

### Command Modes

global configuration

### Device Modes

application-accelerator

### Usage Guidelines

Use the accelerator ssl enable command to enable the acceleration of SSL traffic. To undo this command, for example to disable SSL acceleration after you have enabled it, use the no version of this command.

### Examples

The following example shows how to enable the SSL application accelerator:

```
WAE(config)# accelerator ssl enable
```

### Related Commands

- show accelerator
- show statistics accelerator
- crypto delete
- crypto export
- crypto generate
- crypto import
- (config) crypto pki
- (config) crypto ssl
(config-ca) ca-certificate

(config-ca) description

(config-ca) revocation-check
(config) accelerator video

To enable the video application accelerator, use the `accelerator video` global configuration command. To disable the video application accelerator, use the `no` form of this command.

```
accelerator video { enable | unaccelerated-traffic type { all | overload } action drop | max-initial-setup-delay seconds | windows-media { client idle-timeout seconds | log-forwarding enable } }

no accelerator video { enable | unaccelerated-traffic type { all | overload } action drop | max-initial-setup-delay seconds | windows-media { client idle-timeout seconds | log-forwarding enable } }
```

```
accelerator video exception { coredump | debug | no-coredump }

no accelerator video exception { coredump | debug | no-coredump }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables the video traffic accelerator.</td>
</tr>
<tr>
<td><code>unaccelerated-traffic</code></td>
<td>Configures the handling of video traffic that is not being accelerated due to overload or unsupported transport or format, including Windows Media video on demand traffic and all RTSP traffic that is not for Windows Media.</td>
</tr>
<tr>
<td><code>type</code></td>
<td></td>
</tr>
<tr>
<td><code>all</code></td>
<td>Selects all video traffic that is not being accelerated due to overload or unsupported transport or format, including Windows Media video on demand traffic and all RTSP traffic that is not for Windows Media.</td>
</tr>
<tr>
<td><code>overload</code></td>
<td>Selects video traffic that is not being accelerated due to an overload condition.</td>
</tr>
<tr>
<td><code>action drop</code></td>
<td>Drops the specified type of video traffic that is not being accelerated. The connection is actually reset. If you do not specify this action, the default is to handle such traffic with the negotiated TCP optimization policy.</td>
</tr>
<tr>
<td><code>max-initial-setup-delay</code></td>
<td>Sets the maximum number of seconds to wait for the first message from the client and the first response from the server, after the connection is accepted by the video accelerator, and before timing out the connection. Valid values range from 10–180 seconds. The default is 60.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td></td>
</tr>
<tr>
<td><code>windows-media</code></td>
<td>Configures Windows Media-specific settings.</td>
</tr>
<tr>
<td><code>client idle-timeout</code></td>
<td>Sets the maximum number of seconds to wait after the initial client request, while the client connection is idle, before timing out the connection. Valid values range from 30–300 seconds. The default is 60.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td></td>
</tr>
<tr>
<td><code>log-forwarding enable</code></td>
<td>Enables forwarding of Windows Media logs to the upstream Windows Media Server. Log forwarding is enabled by default.</td>
</tr>
<tr>
<td><code>exception</code></td>
<td>(Optional) Configures the action to be taken if an exception occurs.</td>
</tr>
<tr>
<td><code>coredump</code></td>
<td>Writes a core file (default).</td>
</tr>
<tr>
<td><code>debug</code></td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td><code>no-coredump</code></td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

**Defaults**

The video accelerator is enabled by default and will start automatically if both the Enterprise and Video licenses are installed. The default exception action is coredump.
Command Modes: global configuration

Device Modes: application-accelerator

Usage Guidelines: Use the `accelerator video enable` command to enable the acceleration of Windows Media live streaming video traffic that uses the RTSP.

You can configure the video accelerator to discard unaccelerated video traffic by using the `unaccelerated-traffic type {all | overload} action drop` option. If you do not specify this option, the unaccelerated video traffic is handled with the negotiated TCP optimization policy.

Examples: The following example shows how to enable the video application accelerator:

```
WAE(config)# accelerator video enable
```

Related Commands: `show accelerator`
`show statistics accelerator`
(config) accelerator windows-print

To enable the Windows print accelerator for print traffic using a CIFS application accelerator, use the `accelerator windows-print` global configuration command. To disable the Windows print accelerator, use the `no` form of this command.

**Note**

To enable the Windows print accelerator for print traffic using an SMB application accelerator, use the `(config) smb accelerator print-opt enable` command.

```plaintext
accelerator windows-print enable
no accelerator windows-print enable
```

### Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td><code>enable</code></td>
</tr>
</tbody>
</table>

Enables the Windows print accelerator.

### Defaults

The Windows print accelerator is enabled by default and will start automatically if the Enterprise license is installed.

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`

### Examples

The following example shows how to enable the Windows print accelerator:

```plaintext
WAE(config)# accelerator windows-print enable
```

### Related Commands

- `show statistics windows-print requests`
(config) alarm overload-detect

To detect alarm overload situations, use the **alarm overload-detect** global configuration command. To unconfigure alarm parameters, use the **no** form of this command.

```
alarm overload-detect { clear 1-999 [raise 10-1000] | enable [raise 10-1000] [clear 1-999] }
```

```
no alarm overload-detect { clear 1-999 [raise 10-1000] | enable [raise 10-1000] [clear 1-999] }
```

### Syntax Description

- **clear 1-999**: Specifies the number of alarms per second at which the alarm overload state on the WAAS device is cleared. When the alarm drops below this threshold, the alarm is cleared and the SNMP traps and alarm notifications are again sent to your NMS.

  **Note**: The **alarm overload-detect clear** value must be less than the **alarm overload-detect raise** value.

- **raise 10-1000** *(Optional)*: Specifies the number of alarms per second at which the WAAS device enters an alarm overload state and SNMP traps and alarm notifications to your network management station (NMS) are suspended.

- **enable**: Enables the detection of alarm overload situations.

### Defaults

- **clear**: 1 alarm per second
- **raise**: 10 alarms per second

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**
- **central-manager**

### Usage Guidelines

In the alarm overload state, applications continue to raise alarms and these alarms are recorded within the WAAS device. Use the **show alarms** and **show alarms history** EXEC commands to display all the alarms in the alarm overload state.

### Examples

The following example shows how to enable detection of alarm overload:

```
WAE(config)# alarm overload-detect enable
```

The following example shows how to set the threshold for triggering the alarm overload at 100 alarms per second:

```
WAE(config)# alarm overload-detect raise 100
```

The following example shows how to set the level for clearing the alarm overload at 10 alarms per second:

```
WAE(config)# alarm overload-detect clear 10
```
(config) alarm overload-detect

WAE(config)# alarm overload-detect clear 10

Related Commands

show alarms
(config) asset

To set the tag name for the asset tag string, use the `asset` global configuration command. To remove the asset tag name, use the `no` form of this command.

```
asset tag name

no asset tag name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag name</td>
<td>Sets the asset tag name.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behaviors or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator
central-manager

**Examples**

The following example shows how to configure a tag name for the asset tag string on a WAAS device:

```
WAE(config)# asset tag entitymib
```
(config) authentication configuration

To specify administrative login authorization parameters for a WAAS device, use the `authentication configuration` global configuration mode command. To selectively disable options, use the `no` form of this command.

```
authentication {configuration {local | radius | tacacs | windows-domain}
 enable [primary | secondary | tertiary | quaternary]}

no authentication {configuration {local | radius | tacacs | windows-domain}
 enable [primary | secondary | tertiary | quaternary]}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Sets the administrative login authorization (configuration) parameters for</td>
</tr>
<tr>
<td></td>
<td>the WAAS device.</td>
</tr>
<tr>
<td>local</td>
<td>Selects the local database method for the WAAS device.</td>
</tr>
<tr>
<td>radius</td>
<td>Selects the RADIUS method for the WAAS device.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Selects the TACACS+ method for the WAAS device.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Selects the Windows domain controller method for the WAAS device.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified methods for the WAAS device.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Specifies the first method that the WAAS device should use.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Specifies the second method that the WAAS device should use.</td>
</tr>
<tr>
<td>tertiary</td>
<td>(Optional) Specifies the third method that the WAAS device should use if</td>
</tr>
<tr>
<td></td>
<td>the primary and secondary methods fail.</td>
</tr>
<tr>
<td>quaternary</td>
<td>(Optional) Specifies the fourth method that the WAAS device should use if</td>
</tr>
<tr>
<td></td>
<td>the primary, secondary, and tertiary methods all fail.</td>
</tr>
</tbody>
</table>

### Defaults

The local authentication method is enabled by default.

### Command Modes

- `global configuration`

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

The `authentication` command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

### Note

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*. 
The **authentication login** command determines whether the user has any level of permission to access the WAAS device. The **authentication configuration** command authorizes the user with privileged access (configuration access) to the WAAS device.

The **authentication login local** and the **authentication configuration local** commands use a local database for authentication and authorization.

The **authentication login tacacs** and **authentication configuration tacacs** commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the **authentication** and **tacacs** commands. To enable TACACS+, use the **tacacs enable** command. For more information on TACACS+ authentication, see the **(config) tacacs** command.

The **authentication login radius** and **authentication configuration radius** commands use a remote RADIUS server to determine the level of user access.

By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The primary option specifies the first method to attempt for both login and configuration; the secondary option specifies the method to use if the primary method fails. The tertiary option specifies the method to use if both primary and secondary methods fail. The quaternary option specifies the method to use if both primary, secondary, and tertiary methods fail. If all methods of an **authentication login** or **authentication configuration** command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

**Enforcing Authentication with the Primary Method**

The **authentication fail-over server-unreachable** global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the **authentication fail-over server-unreachable** command.

**Login Authentication and Authorization Through the Local Database**

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.
Specifying RADIUS Authentication and Authorization Settings
To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the `radius-server` global configuration command. (See the `(config) radius-server` command.)

Use the `authentication login radius` global configuration command to enable RADIUS authentication for normal login mode.

Use the `authentication configuration radius` global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the `no` form of the `authentication` global configuration command (for example, use the `no authentication login radius enable` command to disable RADIUS authentication).

Specifying TACACS+ Authentication and Authorization Settings
To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the `tacacs` global configuration command. (See the `(config) tacacs` command.)

Server Redundancy
Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication
You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the `(config) windows-domain` command.)

Note: WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples
The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```
WAE(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.
To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the `authentication login` global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary
```

**Note** If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the `authentication configuration` global configuration command.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

**Note** Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

**Note** If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the `show authentication` command:

```
WAE# show authentication user
Login Authentication: Console/Telnet/Ftp/SSH Session

local enabled (primary)
Windows domain enabled
Radius disabled
Tacacs+ disabled
```

Cisco Wide Area Application Services Command Reference
(config) authentication configuration

Configuration Authentication: Console/Telnet/Ftp/SSH Session

----------------------------- ------------------------------
local                         enabled (primary)
Radius                        disabled
Tacacs+                       disabled

Related Commands

( config ) radius-server
show authentication
show statistics radius
show statistics tacacs
( config ) tacacs
windows-domain
( config ) windows-domain
(config) authentication enable

To configure “enable authentication” to use local "admin" user account password instead of using external authentication servers, use the **authentication enable** global configuration mode command. To disable this, use the **no** form of the command.

```
authentication enable local
no authentication enable local
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Selects the local admin user account password to enable authentication information for the WAAS device.</td>
</tr>
</tbody>
</table>

### Defaults

When this command is configured, the local admin user account password is used for enable authentication by default.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

When a user who does not have privileged EXEC level types "enable" at the WAE> prompt, the request for enable access is not sent to the external authentication servers, but is processed on the WAE, using only the local admin user account password to verify the given password and provide access.

#### Note

Critical commands (e.g. configuration and management) require that the user be at the privileged EXEC level. To change to the privileged EXEC level, type "enable" at the WAE> prompt.

### Examples

The following example shows how to configure enable authentication by using local admin user account password.

```
WAE(config)# authentication enable local.
```

### Related Commands

- **(config) authentication configuration**
- **show authentication**
(config) authentication content-request

To authenticate a request for content, use the **authentication content-request** global configuration mode command. To selectively disable options, use the **no** form of this command.

```
authentication content-request windows-domain-ctrl disconnected-mode enable
no authentication content-request windows-domain-ctrl disconnected-mode enable
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>windows-domain-ctrl</code></td>
<td>Selects a Windows domain controller for domain server authentication.</td>
</tr>
<tr>
<td><code>disconnected-mode</code></td>
<td>Enables authentication in the disconnected mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

The local authentication method is enabled by default.

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**

### Usage Guidelines

The **authentication** command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAES, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

The **authentication login** command determines whether the user has any level of permission to access the WAAS device. The **authentication configuration** command authorizes the user with privileged access (configuration access) to the WAAS device.

The **authentication login local** and the **authentication configuration local** commands use a local database for authentication and authorization.

The **authentication login tacacs** and **authentication configuration tacacs** commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the **authentication** and **tacacs** commands. To enable TACACS+, use the **tacacs enable** command. For more information on TACACS+ authentication, see the **(config) tacacs** command.

The **authentication login radius** and **authentication configuration radius** commands use a remote RADIUS server to determine the level of user access.
By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The **primary** option specifies the first method to attempt for both login and configuration; the **secondary** option specifies the method to use if the primary method fails. The **tertiary** option specifies the method to use if both primary and secondary methods fail. The **quaternary** option specifies the method to use if the primary, secondary, and tertiary methods fail. If all methods of an **authentication login** or **authentication configuration** command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

### Enforcing Authentication with the Primary Method

The **authentication fail-over server-unreachable** global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the **authentication fail-over server-unreachable** command.

### Login Authentication and Authorization Through the Local Database

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.

### Specifying RADIUS Authentication and Authorization Settings

To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the **radius-server** global configuration command. (See the **(config) radius-server** command.)

Use the **authentication login radius** global configuration command to enable RADIUS authentication for normal login mode.

Use the **authentication configuration radius** global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the **no** form of the **authentication** global configuration command (for example, use the **no authentication login radius enable** command to disable RADIUS authentication).

### Specifying TACACS+ Authentication and Authorization Settings

To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the **tacacs** global configuration command. (See the **(config) tacacs** command.)
Server Redundancy

Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication

You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the `(config) windows-domain` command.)

Note

WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples

The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```
WAE(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.

To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the `authentication login` global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary
```

Note

If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either `TACACS+` or `RADIUS` as the primary scheme for authentication, and specify `local` as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the `authentication configuration` global configuration command.
Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

Note If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the `show authentication` command:

```
WAE# show authentication user

Login Authentication: Console/Telnet/Ftp/SSH Session
----------------------------- ------------------------------
local enabled (primary)
Windows domain enabled
Radius disabled
Tacacs+ disabled

Configuration Authentication: Console/Telnet/Ftp/SSH Session
----------------------------- ------------------------------
local enabled (primary)
Radius disabled
Tacacs+ disabled
```

Related Commands

- `(config) radius-server`
- `show authentication`
- `show statistics radius`
- `show statistics tacacs`
- `(config) tacacs`
- `windows-domain`
- `(config) windows-domain`
**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-unreachable</td>
<td>Specifies that the WAAS device is to query the secondary authentication</td>
</tr>
<tr>
<td></td>
<td>database only if the primary authentication server is unreachable.</td>
</tr>
</tbody>
</table>

**Defaults**

This feature is disabled by default. This means that the WAAS device tries the other authentication methods if the primary method fails for any reason, not just if the server is unreachable.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

The `authentication` command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

The `authentication fail-over server-unreachable` global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

---

**Note**

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

The `authentication fail-over server-unreachable` global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.
Examples

The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

WAE(config)# authentication fail-over server-unreachable

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.

Note
If you enable the failover server-unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

Related Commands

(config) radius-server
show authentication
show statistics radius
show statistics tacacs
(config) tacacs
windows-domain
(config) windows-domain
(config) authentication login

To set the administrative login authentication parameters for a WAAS device, use the `authentication login` global configuration mode command. To selectively disable options, use the `no` form of this command.

```
authentication login {local | radius | tacacs | windows-domain}
 enable [primary | secondary | tertiary | quaternary]

no authentication login {local | radius | tacacs | windows-domain}
 enable [primary | secondary | tertiary | quaternary]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Selects the local database method for the WAAS device.</td>
</tr>
<tr>
<td>radius</td>
<td>Selects the RADIUS method for the WAAS device.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Selects the TACACS+ method for the WAAS device.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Selects the Windows domain controller method for the WAAS device.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified methods for the WAAS device.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Specifies the first method that the WAAS device should use.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Specifies the second method that the WAAS device should use.</td>
</tr>
<tr>
<td>tertiary</td>
<td>(Optional) Specifies the third method that the WAAS device should use if the primary and secondary methods fail.</td>
</tr>
<tr>
<td>quaternary</td>
<td>(Optional) Specifies the fourth method that the WAAS device should use if the primary, secondary, and tertiary methods all fail.</td>
</tr>
</tbody>
</table>

### Defaults

The local authentication method is enabled by default.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

The `authentication` command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on a single WAE or group of WAESs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*. 
The **authentication login** command determines whether the user has any level of permission to access the WAAS device. The **authentication configuration** command authorizes the user with privileged access (configuration access) to the WAAS device.

The **authentication login local** and the **authentication configuration local** commands use a local database for authentication and authorization.

The **authentication login tacacs** and **authentication configuration tacacs** commands use a remote TACACS+ server to determine the level of user access. The WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the **authentication** and **tacacs** commands. To enable TACACS+, use the **tacacs enable** command. For more information on TACACS+ authentication, see the **(config) tacacs** command.

The **authentication login radius** and **authentication configuration radius** commands use a remote RADIUS server to determine the level of user access.

By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled the local method is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The primary option specifies the first method to attempt for both login and configuration; the secondary option specifies the method to use if the primary method fails. The tertiary option specifies the method to use if both primary and secondary methods fail. The quaternary option specifies the method to use if all methods of an authentication login or authentication configuration command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

**Enforcing Authentication with the Primary Method**

The **authentication fail-over server-unreachable** global configuration command allows you to specify that a failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with a user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

You can configure multiple TACACS+ or RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+ or RADIUS farm, in order. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the authentication fail-over server-unreachable command.

**Login Authentication and Authorization Through the Local Database**

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.
Specifying RADIUS Authentication and Authorization Settings
To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the `radius-server` global configuration command. (See the `(config) radius-server` command.)

Use the `authentication login radius` global configuration command to enable RADIUS authentication for normal login mode.

Use the `authentication configuration radius` global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the `no` form of the `authentication` global configuration command (for example, use the `no authentication login radius enable` command to disable RADIUS authentication).

Specifying TACACS+ Authentication and Authorization Settings
To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the `tacacs` global configuration command. (See the `(config) tacacs` command.)

Server Redundancy
Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access. Secondary authentication servers are queried in order only if the primary server is unreachable. If authentication fails for any other reason, alternate servers are not queried.

Specifying the Windows Domain Login Authentication
You can enable the Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the `(config) windows-domain` command.)

Note
WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples
The following example shows how to query the secondary authentication database if the primary authentication server is unreachable. This feature is referred to as the failover server-unreachable feature.

```bash
WAE(config)# authentication fail-over server-unreachable
```

If you enable the failover server-unreachable feature on the WAAS device, only two login authentication schemes (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.
To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication, use the `authentication login` global configuration command. In the following example, RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary
```

**Note** If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.

To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the `authentication configuration` global configuration command.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

**Note** Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the failover server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

**Note** If you enable the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the `show authentication` command:

```
WAE# show authentication user
Login Authentication: Console/Telnet/Ftp/SSH Session
---------------------------- ------------------------------
local enabled (primary)
Windows domain enabled
Radius disabled
Tacacs+ disabled
```
Chapter 3 CLI Commands

(config) authentication login

Configuration Authentication: Console/Telnet/Ftp/SSH Session

---------------------------------  ---------------------------------
local                              enabled (primary)
Radius                            disabled
Tacacs+                            disabled

Related Commands

(config) radius-server
show authentication
show statistics radius
show statistics tacacs
(config) tacacs
windows-domain
(config) windows-domain
(config) authentication strict-password-policy

To activate the strong password policy on a WAAS device, use the `authentication` `strict-password-policy` global configuration command. To deactivate the strong password policy and use the standard password policy on a WAAS device, use the `no` form of this command.

```
authentication strict-password-policy [max-retry-attempts number]

no authentication strict-password-policy [max-retry-attempts number]
```

**Syntax Description**

| max-retry-attempts number | (Optional) Specifies the maximum number of failed login attempts allowed before the user is locked out. The range is 1–25; the default is 3. |

**Defaults**
The strong password policy is enabled on the WAAS device.

**Command Modes**
global configuration

**Device Modes**
application-accelerator  
central-manager

**Usage Guidelines**
When you enable the strong password policy, your user passwords must meet the following requirements:

- The password must be 8 to 31 characters long.
- The password can include both uppercase and lowercase letters (A–Z and a–z), numbers (0–9), and special characters including ~`!@#$%^&*()_+-=<>?[]\{};:,./
- The password cannot contain all the same characters (for example, 99999).
- The password cannot contain consecutive characters (for example, 12345).
- The password cannot be the same as the username.
- Each new password must be different from the previous 12 passwords. User passwords expire within 90 days.
- The password cannot contain the characters '”| (apostrophe, double quote, or pipe) or any control characters.
- The password cannot contain dictionary words.

When you disable the strong password policy, user passwords must meet the following requirements:

- The password must have 1 to 31 characters.
- The password can include both uppercase and lowercase letters (A–Z and a–z), and numbers (0–9).
- The password cannot contain the characters '”| (apostrophe, double quote, or pipe) or any control characters.
**Note**

When you enable the strong password policy, existing standard-policy passwords will still work. However, these passwords are subject to expiration under the strong password policy.

---

**Examples**

The following example shows how to enable the strong password policy:

```
WAE(config)# authentication strict-password-policy
```

The following example shows how to enable the strong password policy and set the maximum retry attempts to 5:

```
WAE(config)# authentication strict-password-policy max-retry-attempts 5
```

The following example shows how to disable the strong password policy:

```
WAE(config)# no authentication strict-password-policy
```

**Related Commands**

- clear users
- show authentication
- (config) authentication configuration
(config) auto-discovery

To configure a WAE to automatically discover origin servers (such as those servers behind firewalls) that cannot receive TCP packets with setup options and add these server IP addresses to a blacklist for a specified number of minutes, use the auto-discovery global configuration command. To disable auto-discovery, use the no form of this command.

```
 auto-discovery blacklist {enable | hold-time minutes}
 no auto-discovery blacklist {enable | hold-time minutes}
```

**Syntax Description**
- **blacklist**: Specifies the TFO auto-discovery blacklist server configuration.
- **enable**: Enables the TFO auto-discovery blacklist operation.
- **hold-time minutes**: Specifies the maximum time to hold the blacklisted server address in the cache. The range is 1–10080 minutes. The default is 60 minutes.

**Defaults**
The default auto-discovery blacklist hold time is 60 minutes.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
Use the **auto-discovery blacklist hold-time** command to adjust the blacklist hold time for the TFO auto-discovery feature. With auto-discovery, the WAE keeps track of origin servers (such as those servers behind firewalls) that cannot receive TCP packets with options and learns not to send out TCP packets with options to these blacklisted servers. When a server IP address is added to the blacklist, it remains on the blacklist for the configured number of minutes. After the hold time expires, subsequent connection attempts will again include TCP options so that the WAE can redetermine if the server can receive them. Resending TCP options periodically is useful because network packet loss could cause a server to be blacklisted erroneously.

**Examples**
The following example shows how to enable TFO auto-discovery blacklist using the **auto-discovery** command:

```
 WAE(config)# auto-discovery blacklist enable
```

**Related Commands**
- **show statistics auto-discovery**
(config) auto-register

To enable the discovery of a WAE and its automatic registration with the WAAS Central Manager through the Dynamic Host Configuration Protocol (DHCP), use the auto-register global configuration command. To disable the autoregistration feature on a WAE, use the no form of this command.

auto-register enable [FastEthernet slot/port | GigabitEthernet slot/port | TenGigabitEthernet slot/port]

no auto-register enable [FastEthernet slot/port | GigabitEthernet slot/port | TenGigabitEthernet slot/port] [preserve-ip]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the automatic registration of devices using DHCP with the WAAS Central Manager.</td>
</tr>
<tr>
<td>FastEthernet slot/port</td>
<td>(Optional) Selects a Fast Ethernet interface for automatic registration using DHCP. Selects slot number and port number of the Fast Ethernet interface. Valid slot values depend on the hardware platform.</td>
</tr>
<tr>
<td>GigabitEthernet slot/port</td>
<td>(Optional) Selects a Gigabit Ethernet interface for automatic registration using DHCP. Selects slot number and port number of the Gigabit Ethernet interface. Valid slot values depend on the hardware platform.</td>
</tr>
<tr>
<td>TenGigabitEthernet slot/port</td>
<td>(Optional) Selects a TenGigabitEthernet interface for automatic registration using DHCP. Selects slot number and port number of the 10-Gigabit Ethernet interface. Valid slot values depend on the hardware platform.</td>
</tr>
<tr>
<td>preserve-ip</td>
<td>(Optional) Converts a dynamic IP address to a static IP address when you remove the automatic registration from an interface so that the interface remains configured with an IP address.</td>
</tr>
</tbody>
</table>

Defaults

Automatic registration using DHCP is enabled on a WAE by default.

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Autoregistration automatically configures network settings and registers WAEs with the WAAS Central Manager. On bootup, devices that run the WAAS software (with the exception of the WAAS Central Manager) automatically discover the WAAS Central Manager and register with it. You do not have to do any manual configuration on the device. Once the WAE is registered, you can approve the device and configure it remotely using the WAAS Central Manager GUI.

You can use the auto-register enable command to allow a WAE to discover the hostname of the WAAS Central Manager through DHCP and to automatically register the device with the WAAS Central Manager. Discovery and registration occur at bootup.
Note

You must disable autoregistration when both device interfaces are configured as port-channel interfaces.

Note

The DHCP that is used for autoregistration is not the same as the interface-level DHCP that is configurable through the **ip address dhcp** interface configuration command.

To assign a static IP address using the **interface** command, you must first disable the automatic registration of devices through DHCP by using the **no auto-register enable** command. If you want to keep the dynamic IP address that had been assigned to the interface, use the **preserve-ip** option to convert it to a static IP address.

After the WAE configures its network settings from DHCP, it needs to know the Central Manager hostname so it can register with the Central Manager.

The WAE queries the DNS server to obtain the Central Manager hostname. For autoregistration to work, you must configure the DNS server with the Central Manager hostname by configuring a DNS SRV (Service Location) record. For more information about autoregistration and how to configure the DNS SRV record, see the section on autoregistration in the “Planning Your WAAS Network” chapter of the *Cisco Wide Area Application Services Configuration Guide*.

**Examples**

The following example shows how to enable autoregistration on GigabitEthernet port 1/0:

```
WAE(config)# auto-register enable GigabitEthernet 1/0
```

The following example shows how to disable autoregistration on all configured interfaces on the WAE without losing any IP addresses assigned by autoregistration DHCP:

```
WAE(config)# no auto-register enable preserve-ip
```

**Related Commands**

- **show auto-register**
- **show running-config**
- **show startup-config**
(config) banner

To configure the EXEC, login, and message-of-the-day (MOTD) banners, use the `banner` global configuration command. To disable the banner feature, use the `no` form of this command.

```
 banner {enable | [{exec | login | motd} [message text]] }
 no banner {enable | [{exec | login | motd} [message text]] }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables banner support on the WAE.</td>
</tr>
<tr>
<td><code>exec</code></td>
<td>Configures an EXEC banner.</td>
</tr>
<tr>
<td><code>login</code></td>
<td>Configures a login banner.</td>
</tr>
<tr>
<td><code>motd</code></td>
<td>Configures an MOTD banner.</td>
</tr>
<tr>
<td><code>message text</code></td>
<td>(Optional) Specifies a message to be displayed when an EXEC process is created. The message text is on a single line (980 characters maximum). The WAE translates the <code>\n</code> portion of the message to a new line when the banner is displayed to the user.</td>
</tr>
</tbody>
</table>

### Defaults

Banner support is disabled by default.

### Command Modes

global configuration

### Usage Guidelines

The `message` keyword is optional. If you enter a carriage return without specifying the `message` keyword, you will be prompted to enter your message text. For message text on one or more lines, press the `Return` key or enter delimiting characters (`\n`) to specify a message to appear on a new line. You can enter up to a maximum of 980 characters, including new-line characters (`\n`). Enter a period (.) at the beginning of a new line to save the message and return to the prompt for the global configuration mode.

**Note**

The EXEC banner content is obtained from the command-line input that you enter when prompted for the input.

After you configure the banners, enter the `banner enable` global configuration command to enable banner support on the appliance. Enter the `show banner` EXEC command to display information about the configured banners.

### Examples

The following example shows how to use the `banner motd message` global configuration command to configure the MOTD banner. In this example, the MOTD message consists of a single line of text.

```
WAE(config)# banner motd message This is a WAAS 4.0.7 device
```

The following example shows how to use the `banner motd message` global command to configure a MOTD message that is longer than a single line. In this case, the WAE translates the `\n` portion of the message to a new line when the MOTD message is displayed to the user.
WAE(config)# banner motd message "This is the motd message.\nThis is a WAAS 4.0.7 device\n"

The following example shows how to use the `banner login message` global configuration command to configure a login message that is longer than a single line. In this case, WAE A translates the `\n` portion of the message to a new line in the login message that is displayed to the user.

WAE(config)# banner login message "This is login banner.\nUse your password to login\n"

The following example shows how to enable banner support:

WAE(config)# banner enable

The following example shows how to use the `banner exec` global configuration command to configure an interactive banner. The `banner exec` command is similar to the `banner motd message` commands except that for the `banner exec` command, the banner content is obtained from the command-line input that the user enters after being prompted for the input.

WAE(config)# banner exec
Please type your MOTD messages below and end it with '.' at beginning of line: (plain text only, no longer than 980 bytes including newline)
This is the EXEC banner.\nUse your WAAS username and password to log in to this WAE.\n.
Message has 99 characters.
WAE(config)#

Assume that a WAE has been configured with the MOTD, login, and EXEC banners as shown in the previous examples. When a user uses an SSH session to log in to the WAE, the user will see a login session that includes a MOTD banner and a login banner that asks the user to enter a login password as follows:

This is the motd banner.
This is a WAAS 4.0.7 device
This is login banner.
Use your password to login.

Cisco Wide Area Application Services Engine
admin@wae's password:

After the user enters a valid login password, the EXEC banner is displayed, and the user is asked to enter the WAAS username and password as follows:

Last login: Fri Oct 1 14:54:03 2004 from client
System Initialization Finished.
This is the EXEC banner.
Use your WAAS username and password to log in to this WAE.

After the user enters a valid WAAS username and password, the WAE CLI is displayed. The CLI prompt varies depending on the privilege level of the login account. In the following example, because the user entered a username and password that had administrative privileges (privilege level of 15), the EXEC mode CLI prompt is displayed:

WAE#

**Related Commands**

- `show banner`
To configure a bridge group for use by a virtual blade or by inline interfaces on an AppNav Controller Interface Module, use the `bridge` global configuration command. To unconfigure the bridge group, use the `no` form of this command.

```
bridge bridge-id {protocol {ieee | interception}| description description | intercept vlan {add | except | remove} {all | native | list}| propagate-link-state}

no bridge bridge-id {protocol {ieee | interception}| description description | intercept vlan {add | except | remove} {all | native | list}| propagate-link-state}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge-id</td>
<td>Bridge ID from 1-4. On devices with an AppNav Controller Interface Module that has 12 ports, the bridge ID ranges from 1-5. On devices with an AppNav Controller Interface Module that has 4 ports, the bridge ID must be 1.</td>
</tr>
<tr>
<td>protocol</td>
<td>Defines the protocol.</td>
</tr>
<tr>
<td>ieee</td>
<td>Specifies the IEEE protocol, used for a virtual blade bridge group. This option is not available on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>interception</td>
<td>Specifies the interception protocol, used for an inline group interception interface on an AppNav Controller Interface Module. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>description</td>
<td>(Optional) Specifies a description of the bridge group with up to 200 alphanumeric and space characters. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>intercept vlan</td>
<td>(Optional) Configures VLANS that this bridge group is to intercept. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>add</td>
<td>(Optional) Adds VLANS to the list of VLANS that this bridge group is to intercept. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>except</td>
<td>(Optional) Adds VLANS to the list of VLANS that this bridge group is to intercept. All VLANS (1-4095) are added to the list except those specified with this keyword. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>remove</td>
<td>(Optional) Removes VLANS from the list of VLANS that this bridge group is to intercept. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Specifies that all VLANS are to be added or removed from the list. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
<tr>
<td>native</td>
<td>(Optional) Specifies that the native VLAN is to be added or removed from the list. This option is available only on devices operating in appnav-controller mode.</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge</td>
<td>Creates a bridge interface for bridging to a virtual blade or for inline interception on an AppNav Controller Interface Module.</td>
</tr>
</tbody>
</table>

### List

(Optional) Specifies a comma separated list of VLANS or VLAN ranges that are to be added or removed from the list. Valid values range from 1-4094 and include native and all. This option is available only on devices operating in appnav-controller mode.

### Propagate-Link-State

(Optional) Enables or disables link state propagation on inline bridge group interfaces. This option is available only on devices operating in appnav-controller mode. When link state propagation is enabled and one interface in the bridge group goes down, the system automatically shuts down the other interface.

### Defaults

For an inline bridge group, all VLANS are intercepted and link state propagation is enabled.

### Command Modes

Global configuration

### Device Modes

Application-accelerator

Appnav-controller

### Usage Guidelines

This command can create a bridge group for bridging to a virtual blade, by using the protocol ieee option. After using this command, create a bridge virtual interface in the bridge group by using the interface bvi global configuration command. You must add one physical, port-channel, or standby interface to the bridge group, along with the BVI interface.

This command can also create a bridge group for bridging two inline interfaces for interception on an AppNav Controller Interface Module in an AppNav deployment, by using the protocol interception option. The two member interfaces of this kind of bridge group do not need to be similar. For example, one could be a physical interface and one could be a port-channel interface. A standby interface is not allowed in a bridge group for inline interception on an AppNav Controller Interface Module.

### Examples

The following example shows how to create and configure a bridge interface for a virtual blade:

```
WAE# configure
WAE(config)# bridge 1 protocol ieee
WAE(config)# interface GigabitEthernet 1/0 bridge-group 1
WAE(config)# interface bvi 1 ip address 10.10.10.10 255.0.0.0
WAE(config)# virtual-blade 2
WAE(config-vb)# interface 1 bridge-group 1
```

The following example shows how to remove a bridge virtual interface:

```
WAE(config)# no bridge 1 protocol ieee
```

The following example shows how to create and configure a bridge group for inline interfaces on an AppNav Controller Interface Module:

```
WAE# configure
WAE(config)# interception-method inline
WAE(config)# bridge 5 protocol interception
WAE(config)# bridge 5 intercept vlan add 100-200,300-350,native
WAE(config)# interface GigabitEthernet 1/10 bridge-group 5
```
WAE(config)# interface GigabitEthernet 1/11 bridge-group 5

Related Commands

  (config) interception-method
  (config) interface bvi
  show bridge
(config) cdp

To configure the Cisco Discovery Protocol (CDP) options globally on all WAAS device interfaces, use the `cdp` global configuration command. To disable CDP, use the `no` form of this command.

```plaintext
(cdp { enable | holdtime seconds | timer seconds })
no cdp { enable | holdtime seconds | timer seconds }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CDP globally.</td>
</tr>
<tr>
<td>holdtime seconds</td>
<td>Sets the length of time in seconds (10–255) that a receiver keeps CDP packets before they are discarded. The default is 180 seconds.</td>
</tr>
<tr>
<td>timer seconds</td>
<td>Sets the interval between the CDP advertisements in seconds (5–254). The default is 60 seconds.</td>
</tr>
</tbody>
</table>

**Defaults**

- **holdtime**: 180 seconds
- **timer**: 60 seconds

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Examples**

The following example shows that when CDP is first enabled, the hold time is set to 10 seconds for keeping CDP packets, and then the rate at which CDP packets are sent (15 seconds) is set:

```plaintext
WAE(config)# cdp enable
WAE(config)# cdp holdtime 10
WAE(config)# cdp timer 15
```

**Related Commands**

- (config-if) cdp
- clear arp-cache
- show cdp
### (config) central-manager

To specify the WAAS Central Manager role and port number, use the `central-manager` global configuration command in central-manager device mode. To specify the IP address or hostname of the WAAS Central Manager with which a WAE is to register, use the `central-manager` global configuration command in application-accelerator device mode. To negate these actions, use the `no` form of this command.

```
central-manager { address { hostname | ip-address } | role { primary | standby } | ui port port-num }
no central-manager { address { hostname | ip-address } | role { primary | standby } | ui port port-num }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Specifies the hostname or IP address of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the WAAS Central Manager with which the WAE should register.</td>
</tr>
<tr>
<td>role</td>
<td>Configures the WAAS Central Manager role to either primary or standby.</td>
</tr>
<tr>
<td>primary</td>
<td>Configures the WAAS Central Manager to be the primary WAAS Central Manager for the WAEs that are registered with it.</td>
</tr>
<tr>
<td>standby</td>
<td>Configures the WAAS Central Manager to be the standby WAAS Central Manager for the WAEs that are registered with it.</td>
</tr>
<tr>
<td>ui</td>
<td>Configures the WAAS Central Manager GUI port address.</td>
</tr>
<tr>
<td>port</td>
<td>Configures the WAAS Central Manager GUI port (1–65535). The default is port 8443.</td>
</tr>
<tr>
<td>port-num</td>
<td>Configures the WAAS Central Manager GUI port (1–65535). The default is port 8443.</td>
</tr>
</tbody>
</table>

**Note**

The `address` option works in the application-accelerator device mode only. The `role` and `ui port` options work in the central-manager device mode only.

**Defaults**

The WAAS Central Manager GUI is preconfigured to use port 8443.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Examples**

The following example shows how to specify that the WAAS device named waas-cm is to function as the primary WAAS Central Manager for the WAAS network:
waas-cm(config)# **central-manager role primary**

The following example shows how to specify that the WAE should register with the WAAS Central Manager that has an IP address of 10.1.1.1. This command associates the WAE with the primary WAAS Central Manager so that the WAE can be approved as a part of the WAAS network.

WAE(config)# **central-manager address 10.1.1.1**

The following example shows how to configure a new GUI port to access the WAAS Central Manager GUI:

WAE(config)# **central-manager ui port 8550**

The following example shows how to configure the WAAS Central Manager as the standby WAAS Central Manager:

WAE(config)# **central-manager role standby**

Switching CDM to standby will cause all configuration settings made on this CDM to be lost.

Please confirm you want to continue [no]?yes

Restarting CMS services
To configure an AppNav or optimization class map, use the `class-map` global configuration command. To unconfigure settings, use the `no` form of this command.

```
class-map type { appnav | waas } [match-all | match-any] classmap-name [rename new-name]
```

1. **appnav** - Configures an AppNav class map.
2. **waas** - Configures a WAAS optimization class map.
3. **match-all** - (Optional) Specifies that all match conditions must be satisfied to consider the class map matched (logical AND). Valid only on AppNav class maps.
4. **match-any** - (Optional) Specifies that any match condition must be satisfied to consider the class map matched (logical OR).
5. **classmap-name** - Class map name for AppNav (up to 40 alpha-numeric characters and hyphen, beginning with a letter).
   Class map name for AppNav-XE (up to 40 alpha-numeric characters and special characters including !@#$%^&*()_+-\[\]{}|\).
6. **rename new-name** - (Optional) Renames the class map with the specified new name.

### Usage Guidelines
Use the `class-map` command to add or modify class maps and match conditions to identify specific types of traffic for use in policies. This command invokes the Class Map configuration mode, which is indicated by a different prompt (config-cmap). For more information on Class Map configuration mode commands, see the “Class Map Configuration Mode Commands” section. To return to global configuration mode, enter the `exit` command.

You can delete a class map by using the `no` form of this command. You cannot delete a class map if any policies are using it.

When creating a new class map, you must add at least one condition. If any of the conditions specified match an already existing condition in the class-map, no action is taken.

### Note
You cannot have more than 512 different class maps and 1024 total match conditions.
The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one. For a list of the default applications, class maps, and policy rules, see the Cisco Wide Area Application Services Configuration Guide.

Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure class maps for your WAAS devices. For more information, see the Cisco Wide Area Application Services Configuration Guide.

There is one exception this recommendation. Use the CLI to create an AppNav class map with type Application or Custom, and whose source or destination address has one of the following: an IP address ending in “0.0.0” or a non-Class A IP address ending in “0.0”.

Examples

The following example shows how to configure a WAAS optimization class map:

```
waec(config)# class-map type waas myclass1
waec(config-cmap)# description My class number one
waec(config-cmap)# match protocol ma tcp source ip 10.10.10.35
waec(config-cmap)# exit
```

The following example shows how to configure an AppNav class map:

```
waec(config)# class-map type appnav myclass1
waec(config-cmap)# match peer 50:3d:e5:9c:8f:aa description SanJose_branch
waec(config-cmap)# exit
```

Related Commands

```
(config) policy-map
```
(config) clock

To set the summer daylight saving time and time zone for display purposes, use the `clock` global configuration command. To disable this function, use the `no` form of this command.

```
clock {timezone timezone hoursoffset [minutesoffset]} | summertime timezone {date startday startmonth startyear starthour endday endmonth endhour offset | recurring {1-4 startweekday startmonth startyear endday endmonth endhour offset | first startweekday startmonth startyear endday endmonth endhour offset | last startweekday startmonth startyear endday endmonth endhour offset}}
```

```
no clock {timezone timezone hoursoffset [minutesoffset]} | summertime timezone {date startday startmonth startyear starthour endday endmonth endhour offset | recurring {1-4 startweekday startmonth startyear endday endmonth endhour offset | first startweekday startmonth startyear endday endmonth endhour offset | last startweekday startmonth startyear endday endmonth endhour offset}}
```

### Syntax Description

**timezone timezone hoursoffset**	Configures the name of the standard time zone and hours offset from UTC (–23 to +23). See Table 3-1 in the “Usage Guidelines” section.
**minutesoffset**	(Optional) Minutes offset (see Table 3-1 in the “Usage Guidelines” section) from UTC (0–59).
**summertime timezone**	Configures the name of the summer or daylight saving time zone.
**date**	Configures the absolute summer time.
**startday**	Date (1–31) to start.
**startmonth**	Month (January through December) to start.
**startyear**	Year (1993–2032) to start.
**starthour**	Hour (0–23) to start in hour:minute (hh:mm) format.
**endday**	Date (1–31) to end.
**endmonth**	Month (January through December) to end.
**endyear**	Year (1993–2032) to end.
**endhour**	Hour (0–23) to end in hour:minute (hh:mm) format.
**offset**	Minutes offset from UTC (0–1439). The summer time offset specifies the number of minutes that the system clock moves forward at the specified start time and backward at the end time.
**recurring**	Configures the recurring summer time.
**1-4**	Configures the starting week number 1–4.
**startweekday**	Day of the week (Monday–Friday) to start.
**endweekday**	Weekday (Monday–Friday) to end.
**first**	Configures the summer time to recur beginning the first week of the month.
**last**	Configures the summer time to recur beginning the last week of the month.

### Defaults

No default behavior or values.
**Command Modes**  
global configuration

**Device Modes**  
application-accelerator  
central-manager

**Usage Guidelines**  
To set and display the local and UTC current time of day without an NTP server, use the `clock timezone` command with the `clock set` command. The `clock timezone` parameter specifies the difference between UTC and local time, which is set with the `clock set` EXEC command. The UTC and local time are displayed with the `show clock detail` EXEC command.

**Note**  
Unexpected time changes can result in unexpected system behavior. We recommend reloading the system after changing the system clock.

Use the `clock timezone offset` command to specify a time zone, where `timezone` is the desired time zone entry listed in the table below and `0 0` is the offset (ahead or behind) UTC is in hours and minutes. (UTC was formerly known as Greenwich mean time [GMT]).

```plaintext
WAE(config)# clock timezone timezone 0 0
```

**Note**  
The time zone entry is case sensitive and must be specified in the exact notation listed in Table 3-1. When you use a time zone entry from the time zone table, the system is automatically adjusted for daylight saving time.

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa/Algiers</td>
<td>+1</td>
</tr>
<tr>
<td>Africa/Cairo</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Casablanca</td>
<td>0</td>
</tr>
<tr>
<td>Africa/Harare</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Johannesburg</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Nairobi</td>
<td>+3</td>
</tr>
<tr>
<td>America/Buenos_Aires</td>
<td>-3</td>
</tr>
<tr>
<td>America/Caracas</td>
<td>-4</td>
</tr>
<tr>
<td>America/Mexico_City</td>
<td>-6</td>
</tr>
<tr>
<td>America/Lima</td>
<td>-5</td>
</tr>
<tr>
<td>America/Santiago</td>
<td>-4</td>
</tr>
<tr>
<td>Atlantic/Azores</td>
<td>-1</td>
</tr>
<tr>
<td>Atlantic/Cape_Verde</td>
<td>-1</td>
</tr>
<tr>
<td>Asia/Almaty</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Baghdad</td>
<td>+3</td>
</tr>
<tr>
<td>Asia/Baku</td>
<td>+4</td>
</tr>
</tbody>
</table>
### Table 3-1 Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia/Bangkok</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Colombo</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Dacca</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Hong Kong</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Irkutsk</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Jerusalem</td>
<td>+2</td>
</tr>
<tr>
<td>Asia/Kabul</td>
<td>+4.30</td>
</tr>
<tr>
<td>Asia/Karachi</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Katmandu</td>
<td>+5.45</td>
</tr>
<tr>
<td>Asia/Krasnoyarsk</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Magadan</td>
<td>+11</td>
</tr>
<tr>
<td>Asia/Muscat</td>
<td>+4</td>
</tr>
<tr>
<td>Asia/New Delhi</td>
<td>+5.30</td>
</tr>
<tr>
<td>Asia/Rangoon</td>
<td>+6.30</td>
</tr>
<tr>
<td>Asia/Riyadh</td>
<td>+3</td>
</tr>
<tr>
<td>Asia/Seoul</td>
<td>+9</td>
</tr>
<tr>
<td>Asia/Singapore</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Taipei</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Tehran</td>
<td>+3.30</td>
</tr>
<tr>
<td>Asia/Vladivostok</td>
<td>+10</td>
</tr>
<tr>
<td>Asia/Yekaterinburg</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Yakutsk</td>
<td>+9</td>
</tr>
<tr>
<td>Australia/Adelaide</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Brisbane</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Darwin</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Hobart</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Perth</td>
<td>+8</td>
</tr>
<tr>
<td>Australia/Sydney</td>
<td>+10</td>
</tr>
<tr>
<td>Canada/Atlantic</td>
<td>–4</td>
</tr>
<tr>
<td>Canada/Newfoundland</td>
<td>–3.30</td>
</tr>
<tr>
<td>Canada/Saskatchewan</td>
<td>–6</td>
</tr>
<tr>
<td>Europe/Athens</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Berlin</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Bucharest</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Helsinki</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/London</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 3-1  Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe/Moscow</td>
<td>+3</td>
</tr>
<tr>
<td>Europe/Paris</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Prague</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Warsaw</td>
<td>+1</td>
</tr>
<tr>
<td>Japan</td>
<td>+9</td>
</tr>
<tr>
<td>Pacific/Auckland</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Fiji</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Guam</td>
<td>+10</td>
</tr>
<tr>
<td>Pacific/Kwajalein</td>
<td>-12</td>
</tr>
<tr>
<td>Pacific/Samoa</td>
<td>-11</td>
</tr>
<tr>
<td>US/Alaska</td>
<td>-9</td>
</tr>
<tr>
<td>US/Central</td>
<td>-6</td>
</tr>
<tr>
<td>US/Eastern</td>
<td>-5</td>
</tr>
<tr>
<td>US/East-Indiana</td>
<td>-5</td>
</tr>
<tr>
<td>US/Hawaii</td>
<td>-10</td>
</tr>
<tr>
<td>US/Mountain</td>
<td>-7</td>
</tr>
<tr>
<td>US/Pacific</td>
<td>-8</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to specify the local time zone as Pacific Standard Time with an offset of 8 hours behind UTC:

WAE(config)# clock timezone US/Pacific -8 0

The following example shows how to negate the time zone setting on the WAAS device:

WAE(config)# no clock timezone

The following example shows how to configure daylight saving time:

WAE(config)# clock summertime US/Pacific date 10 October 2005 23:59 29 April 2006 23:59 60

Related Commands

- `clock`
- `show clock`
(config) cms

To schedule maintenance and enable the Centralized Management System (CMS) on a WAAS device, use the `cms` global configuration command. To negate these actions, use the `no` form of this command.

```
cms database maintenance { full { enable | schedule weekday at time } } | regular { enable | schedule weekday at time } } | enable

cms rpc timeout { connection 5-1800 | incoming-wait 10-600 | transfer 10-7200 }

no cms database maintenance { full { enable | schedule weekday at time } } | regular { enable | schedule weekday at time } } | enable

no cms rpc timeout { connection 5-1800 | incoming-wait 10-600 | transfer 10-7200 }
```

### Syntax Description

<table>
<thead>
<tr>
<th>database maintenance</th>
<th>Configures the embedded database clean or reindex maintenance routine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>Configures the full maintenance routine and cleans the embedded database tables.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the specified routine or process to be performed on the embedded database tables.</td>
</tr>
<tr>
<td>schedule weekday</td>
<td>Sets the schedule for performing the maintenance routine to a day of the week.</td>
</tr>
<tr>
<td>at time</td>
<td>Sets the maintenance schedule time of day to start the maintenance routine (0–23:0–59) (hh:mm).</td>
</tr>
<tr>
<td>regular</td>
<td>Configures the regular maintenance routine and reindexes the embedded database tables.</td>
</tr>
<tr>
<td>rpc timeout</td>
<td>Configures the timeout values for remote procedure call connections.</td>
</tr>
<tr>
<td>connection 5-1800</td>
<td>Specifies the maximum time to wait when making a connection. The timeout period is in seconds. The default for the WAAS Central Manager is 30 seconds; the default for a WAE is 180 seconds.</td>
</tr>
</tbody>
</table>
Defaults

<table>
<thead>
<tr>
<th>Database Maintenance Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>database maintenance regular: enabled</td>
<td>Specifies the maximum time to wait for a client response. The timeout period is in seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>database maintenance full: enabled</td>
<td>Specifies the maximum time to allow a connection to remain open. The timeout period is in seconds. The default is 300 seconds.</td>
</tr>
<tr>
<td>connection: 30 seconds for WAAS Central Manager; 180 seconds for a WAE</td>
<td></td>
</tr>
<tr>
<td>incoming wait: 30 seconds</td>
<td></td>
</tr>
<tr>
<td>transfer: 300 seconds</td>
<td></td>
</tr>
</tbody>
</table>

Command Modes

global configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

Use the **cms database maintenance** global configuration command to schedule routine full maintenance cleaning (vacuuming) or a regular maintenance reindexing of the embedded database. The full maintenance routine runs only when the disk is more than 90 percent full and only runs once a week. Cleaning the tables returns reusable space to the database system.

The **cms enable** global configuration command automatically registers the node in the database management tables and enables the CMS process. The **no cms enable** global configuration command only stops the management services on the WAAS device. Use the **cms deregister** EXEC command to de-register (remove) a WAAS device from the WAAS network.

Tip

If you are trying to register a device that had previously been registered with a WAAS Central Manager and the **cms enable** global configuration command fails, use the **cms deregister force** command. If you get an error saying that the management service is not enabled when you use the **cms deregister force** command, delete the device from the WAAS Central Manager.

Examples

The following example shows how to schedule a regular (reindexing) maintenance routine to start every Friday at 11:00 p.m on the WAAS device:

```plaintext
WAE(config)# cms database maintenance regular schedule Fri at 23:00
```

The following example shows how to enable the CMS process on a WAAS device:

```plaintext
WAE(config)# cms enable
Generating new RPC certificate/key pair
Restarting RPC services
Registering Wide Area Central Manager...
Registration complete.
```
(config) cms

Please preserve running configuration using 'copy running-config startup-config'. Otherwise management service will not be started on reload and node will be shown 'offline' in Wide Area Central Manager UI. management services enabled

Related Commands

- cms
- show cms
To configure public key infrastructure (PKI) encryption parameters on a WAAS device, use the `crypto pki` global configuration command. To negate these actions, use the `no` form of this command.

```
crypto pki { ca certificate-authority-name }
crypto pki global-settings [ocsp url url] [revocation-check { ocsp-cert-url [none] | ocsp-url [none] }]
```

### Syntax Description

**ca certificate-authority-name**
Configures encryption certificate authority information. Using this command enables certificate authority configuration mode. See PKI Certificate Authority Configuration Mode Commands, page 859.

**global-settings**
Configures PKI encryption global settings. Using this command enables PKI global settings configuration mode. See PKI Certificate Authority Configuration Mode Commands, page 859.

**ocsp url url**
(Optional) Configures an OCSP URL.

**revocation-check**
(Optional) Configures certificate revocation methods.

**ocsp-cert-url**
Specifies to use the URL from the certificate.

**none**
(Optional) Specifies a null method that returns revocation success.

**ocsp-url**
Specifies to use the URL from the global OCSP setting.

### Defaults
No default behavior or values.

### Command Modes
**global configuration**

### Device Modes
application-accelerator
central-manager

### Usage Guidelines
Use the `crypto pki` global configuration command to enter CA configuration mode or PKI global settings configuration mode.

### Examples
The following example puts WAAS into CA configuration mode, editing the “my-ca” certification authority. The mode change is indicated by the system prompt:

```
WAE(config)# crypto pki my-ca
WAE(config-ca)#
```

### Related Commands
- `(config) crypto ssl`
- `(config-ca) ca-certificate`
(config-crypto) crypto pki

(config-ca) description

(config-ca) revocation-check
(config) crypto ssl

To configure secure sockets layer (SSL) encryption parameters on a WAAS device, use the crypto ssl global configuration command. To negate these actions, use the no form of this command.

```
crypto ssl { cipher-list cipher-list-name | management-service |
 services { accelerated-service service-name | global-settings | host-service peering } }
```

```
no crypto ssl { cipher-list cipher-list-name | management-service |
 services { accelerated-service service-name | global-settings | host-service peering } }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cipher-list cipher-list-name</code></td>
<td>Configures the SSL cipher suite list. Using this command enables SSL cipher list configuration mode. See the SSL Cipher List Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>management-service</code></td>
<td>Configures SSL management services. Using this command enables SSL management service configuration mode. See the SSL Management Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>services</code></td>
<td>Configures other SSL services (accelerated, global, and host peering).</td>
</tr>
<tr>
<td><code>accelerated-service</code></td>
<td>Configures SSL accelerated services. Using this command enables SSL accelerated service configuration mode. See the SSL Accelerated Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>service-name</code></td>
<td></td>
</tr>
<tr>
<td><code>global-settings</code></td>
<td>Configures SSL service global settings. Using this command enables SSL service global configuration mode. See the SSL Global Service Configuration Mode Commands chapter.</td>
</tr>
<tr>
<td><code>host-service peering</code></td>
<td>Configures SSL host peering services. Using this command enables SSL host peering service configuration mode. See the SSL Host Peering Service Configuration Mode Commands chapter.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

global configuration

### Device Modes

application-accelerator

### Usage Guidelines

Use the crypto ssl global configuration command to enter SSL cipher list configuration mode, SSL management service configuration mode, SSL accelerated service configuration mode, SSL service global configuration mode, or SSL host peering service configuration mode.

### Examples

The following example puts the WAAS device into SSL cipher list configuration mode, editing the mylist cipher suite list. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl cipher-list mylist
WAE(config-cipher-list)#
```
The following example puts the WAAS device into SSL management service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl management-service
WAE(config-ssl-mgmt)#
```

The following example puts the WAAS device into SSL accelerated service configuration mode, editing the myservice accelerated service. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)#
```

The following example puts the WAAS device into SSL global service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services global-settings
WAE(config-ssl-global)#
```

The following example puts the WAAS device into SSL host peering service configuration mode. The mode change is indicated by the system prompt:

```
WAE(config)# crypto ssl services host-service peering
WAE(config-ssl-peering)#
```

**Related Commands**

```
(config) crypto pki
```
(config) device mode

To configure the device mode for the WAAS device, use the device mode global configuration command. To reset the mode of operation on your WAAS device, use the no form of this command.

```
device mode {application-accelerator | central-manager | appnav-controller}

no device mode {application-accelerator | central-manager | appnav-controller}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-accelerator</td>
<td>Configures the WAAS device to function as a WAAS Accelerator. All of the branch and data center WAEs that are doing traffic optimization must be operating in this mode.</td>
</tr>
<tr>
<td>central-manager</td>
<td>Configures the WAAS device to function as a WAAS Central Manager.</td>
</tr>
<tr>
<td>appnav-controller</td>
<td>Configures the WAAS device to function as an AppNav Controller in an AppNav deployment.</td>
</tr>
</tbody>
</table>

### Defaults

The default device operation mode is application-accelerator.

### Command Modes

global configuration

### Device Modes

application-accelerator
central-manager
appnav-controller

### Usage Guidelines

If the WAAS device is operating with an Accelerator only image, you will not be able to convert it to central-manager mode until after you update it with a Full image and reboot. You can use the `show version` EXEC command to check the type of software image the WAE is running.

### Examples

The following example shows how to specify central manager as the device mode of a WAAS device:

```
WAE(config)# device mode central-manager
```

The following example shows how to specify application accelerator as the device mode of a WAAS device:

```
WAE(config)# device mode application-accelerator
```

To change the device mode from central-manager to application-accelerator or appnav-controller, you must first use the `cms deregister` command in EXEC mode to disable the Centralized Management System on the Central Manager. Then use the device mode command in global configuration mode, as shown in the following example:

```
WAE# cms deregister
WAE(config)# device mode application-accelerator
```
WAE# copy running-config startup-config

Related Commands

show device-mode
(config) directed-mode

To configure the mode by which traffic is sent between two WAEs, use the directed-mode global configuration command. To configure the WAAS device not to use directed mode, use the no form of this command.

```
directed-mode enable [port udp-port]
```

```
no directed-mode enable [port udp-port]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables directed mode.</td>
</tr>
<tr>
<td>port udp-port</td>
<td>(Optional) Sets the UDP port number to use to send traffic between two WAEs. The default port is 4050.</td>
</tr>
</tbody>
</table>

### Defaults

The default communication mode to a peer WAE is transparent mode (not directed mode).

### Command Modes

- global configuration

### Device Modes

- application-accelerator

### Examples

The following example shows how to configure a WAE for directed mode on the default UDP port of 4050:

```
WAE{config}# directed-mode enable
```

### Related Commands

- show statistics auto-discovery
- show statistics connection closed
(config) disk disk-name

To disable the disk for online removal, use the `disk disk-name` global configuration command. To reenable the disk, use the `no` form of this command.

```
 disk disk-name diskxx shutdown [force]
 no disk disk-name diskxx shutdown [force]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diskxx</code></td>
<td>Name of the disk (disk00-disk05).</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>Disables the disk for maintenance.</td>
</tr>
<tr>
<td><code>force</code></td>
<td>(Optional) Forces a disk to be reenabled when used with the <code>no</code> form of this command.</td>
</tr>
<tr>
<td></td>
<td>This option is not available on RAID-5 systems.</td>
</tr>
</tbody>
</table>

**Defaults**

Disks are enabled.

**Command Modes**

global configuration

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

This command is not available on the WAE-7341 and WAE-7371 models. Instead, use the `disk disk-name diskxx replace` EXEC mode command.

You can replace a failed disk or perform a scheduled disk maintenance on the WAE-612. Use the `disk disk-name diskxx shutdown` global configuration command to manually shut down a disk for a scheduled disk maintenance, or on the WAE-7341 and WAE-7371, use the `disk disk-name diskxx replace` EXEC command to manually shut down a disk for scheduled disk maintenance. (For the schedule disk maintenance procedure, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 14.)

**Note**

The `show disks failed-disk-id` EXEC command is not available on WAE-7341 and WAE-7371 models.

**Examples**

The following example shows how to disable disk00 for online removal using the `disk disk-name` command:

```
WAE(config)# disk disk-name disk00 shutdown
```

**Related Commands**

`(config) disk error-handling`
(config) disk logical shutdown
disk
show disks
To enable disk encryption, use the `disk encrypt` global configuration command. To disable disk encryption, use the `no` form of this command.

```plaintext
disk encrypt enable
no disk encrypt enable
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Enables disk encryption.</th>
</tr>
</thead>
</table>

**Defaults**

Disk encryption is disabled by default.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

To view the encryption status details, use the `show disks details` EXEC command. While the file system is initializing, you will see the following message: “System initialization is not finished, please wait...” You may also view the disk encryption status to check whether a disk is enabled or disabled in the Central Manager GUI, Device Home window.

**Note**

If you are using a No Payload Encryption (NPE) image, the disk encryption feature has been disabled for use in countries where disk encryption is not permitted.

**Examples**

The following example shows how to enable disk encryption using the `disk encrypt` command:

```
WAE(config)# disk encrypt enable
```

**Related Commands**

- `disk`
- `show disks`
(config) disk error-handling

To configure how disk errors are handled on a WAAS device, use the disk error-handling global configuration command. To disable automatic remapping of disk errors, use the no form of this command.

    disk error-handling remap

    no disk error-handling remap

Syntax Description

| remap | Sets the disk to attempt to remap disk errors automatically. |

Defaults

The disk is configured to remap disk errors automatically.

Command Modes

global configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to disable automatic remapping of disk errors:

    WAE(config)# no disk error-handling remap

Related Commands

disk

    show disks
(config) disk logical shutdown

To shut down the RAID-5 logical disk drive, use the disk logical shutdown global configuration command. To reenable the RAID-5 logical disk drive, use the no form of this command.

```
 disk logical shutdown

 no disk logical shutdown [force]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>force</td>
<td>(Optional) Forces RAID Logical drive to be reenabled when used with the no form of this command.</td>
</tr>
</tbody>
</table>

**Defaults**

The RAID-5 array is configured by default.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

This command is supported on WAE-7341, WAE-7371, and WAE-674 models only.

Use this command to operate the WAE in diskless mode. In diskless mode, the partitions and disks are not mounted and cannot be used.

You must reload the device for this command to take effect.

After a multiple disk failure or RAID controller failure, and after the drives are replaced and the RAID disk is rebuilt, the logical disk may remain in the error state. To reenable the disk, use the no disk logical shutdown force command, then reload the WAE.

**Examples**

The following example shows how shutdown the RAID-5 logical disk drive using the disk logical shutdown command:

```
WAE(config)# disk logical shutdown
```

**Related Commands**

(config) disk disk-name
(config) disk object-cache extend

To enable extended object cache, use the **disk object-cache extend** global configuration command. To disable this feature, use the **no** form of this command.

```
 disk object-cache extend

 no disk object-cache extend
```

### Syntax Description

This command has no arguments or keywords.

### Command Default

No default behavior or values.

### Command Modes

**global configuration**

### Device Modes

**application-accelerator**

### Usage Guidelines

When extended object cache is enabled, the object cache space is increased only after saving the configuration and performing a reload.

**Note**

If you have a virtual blade enabled using vbspace of greater than 30 GB, you must stop the virtual blade and remove the configuration before enabling extended object cache. If the virtual blade usage is less than 30 GB (including saved memory state) vbspace content will be preserved, otherwise vbspace content will be erased. In either case, after enabling extended object cache, the vbspace filesystem will be reduced to 30 GB if virtual blade is enabled.

The status of extended object cache can be displayed using the **show disk details** EXEC mode command. The output of this command states whether extended object cache is enabled or disabled.

This feature is supported only on WA VE-694, WAE-674-4G, and WAE-674-8G models.

When a device is changed to AppNav mode, a warning message tells the user that changing the Device mode to AppNav Controller, will forcefully disable disk object-cache extend. The new configuration will take effect after a reload. If the user confirms, the system proceeds with reloading the system configuration and the extended object cache is disabled.

### Examples

The following example shows how to enable extended object cache:

```
WAE(config)# disk object-cache extend
Cumulative disk space for all VBs will be reduced to 30 GB.
Are you sure want to enable [yes/no]?
```

### Related Commands

( config) disk logical shutdown
(config) dre

To enable and configure DRE (Data Redundancy Elimination) auto bypass and load monitor settings, use the `dre` global configuration command. To disable DRE settings, use the `no` form of this command.

```
```

```
no dre {auto-bypass [cache-percent | comp-threshold | enable] | load-monitor [report | threshold]}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-bypass</td>
<td>Configures DRE auto bypass settings.</td>
</tr>
<tr>
<td>cache-percent</td>
<td>Sets the cache size percent threshold for bypass trigger (1-99).</td>
</tr>
<tr>
<td>percent_no</td>
<td></td>
</tr>
<tr>
<td>comp-threshold</td>
<td>Sets the DRE compression ratio threshold for bypass trigger (1-50).</td>
</tr>
<tr>
<td>comp_threshold</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables DRE auto bypass.</td>
</tr>
<tr>
<td>load-monitor</td>
<td>Configures load monitor settings.</td>
</tr>
<tr>
<td>report</td>
<td>Enables load report.</td>
</tr>
<tr>
<td>threshold</td>
<td>Sets the DRE load threshold (50-99).</td>
</tr>
<tr>
<td>threshold</td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

Enabled by default.

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`

### Usage Guidelines

Use the `dre auto-bypass` global configuration command to generate an alarm and automatically DRE bypass application traffic.

### Examples

The following example shows how to enable DRE auto bypass using the `dre` command:

```
WAE(config)# dre auto-bypass enable
```

### Related Commands

- `(config) dre`
(config) end

To exit global configuration mode, use the end global configuration command.

end

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Use the end command to exit global configuration mode after completing any changes to the running configuration. To save new configurations to NVRAM, use the write command.
In addition, you can press Ctrl-Z to exit global configuration mode.

**Examples**
The following example shows how to exit global configuration mode on a WAAS device:

WAE(config)# end
WAE#

**Related Commands**
(config) exit
(config) exec-timeout

To configure the length of time that an inactive Telnet or SSH session remains open on a WAAS device, use the exec-timeout global configuration command. To revert to the default value, use the no form of this command.

```
exec-timeout timeout

no exec-timeout timeout
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>Timeout in minutes (0–44640). A value of 0 sets the logout timeout to infinite.</td>
</tr>
</tbody>
</table>

**Defaults**

The default is 15 minutes.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

A Telnet session or Secure Shell (SSH) session with the WAAS device can remain open and inactive for the interval of time specified by the exec-timeout command. When the exec-timeout interval elapses, the WAAS device automatically closes the Telnet or SSH session.

**Examples**

The following example shows how to configure a timeout of 100 minutes:

```
WAE(config)# exec-timeout 100
```

The following example shows how to negate the configured timeout of 100 minutes and revert to the default value of 15 minutes:

```
WAE(config)# no exec-timeout
```

**Related Commands**

- (config) telnet enable
(config) exit

To terminate global configuration mode and return to the privileged-level EXEC mode, use the `exit` command.

```
exit
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values.

**Command Modes**
All modes

**Device Modes**
- application-accelerator
- central-manager

**Usage Guidelines**
This command is equivalent to pressing `Ctrl-Z` or entering the `end` command.

**Examples**
The following example shows how to terminate global configuration mode and return to the privileged-level EXEC mode:

```
WAE(config)# exit
WAE#
```

**Related Commands**
(config) end
To enable network traffic flow monitoring and to register the WAE with the tcpstat-v1 collector for traffic analysis, use the `flow monitor` global configuration command. To disable the network traffic flow configuration, use the `no` form of this command.

```
flow monitor tcpstat-v1 {enable | host ip_address}
no flow monitor tcpstat-v1 {enable | host ip_address}
```

**Syntax Description**

- `tcpstat-v1` Sets the tcpstat-v1 collector configuration.
- `enable` Enables flow monitoring.
- `host ip_address` Specifies the IP address of the collection control agent.

**Defaults**

The default configuration has no host address configured and the feature is disabled.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

For information about how to configure flow monitoring on the WAE, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 15.

**Examples**

The following example shows how to enable flow monitoring using the `flow monitor` command:

```
WAE(config)# flow monitor tcpstat-v1 enable
```

**Related Commands**

`debug flow`
(config) help

To obtain online help for the command-line interface, use the help global configuration command. To disable help, use the no form of this command.

help
no help

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
EXEC and global configuration

Device Modes
application-accelerator
central-manager
appnav-controller

Usage Guidelines
You can obtain help at any point in a command by entering a question mark (?). If nothing matches, the help list will be empty, and you must use the backspace key until entering a ? shows the available options.

Two styles of help are provided:
- Full help is available when you are ready to enter a command argument (for example, show ?) and describes each possible argument.
- Partial help is provided when you enter an abbreviated command and you want to know what arguments match the input (for example, show stat?).

Examples
The following example shows the output of the help global configuration command:

WAE# configure
WAE(config)# help
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument.
2. Partial help is provided when an abbreviated argument is entered.

The following example shows how to use full help to see what WCCP command arguments are available:

WAE# configure
WAE(config)# wccp ?
access-list Configure an IP access-list for inbound WCCP encapsulate
traffic
flow-redirect Redirect moved flows
router-list Router List for use in WCCP services
shutdown Wccp Shutdown parameters
tcp-promiscuous TCP promiscuous mode service

The following example shows how to use partial help to determine the syntax of a WCCP argument:

WAE(config)# wccp tcp ?
    service-pair Pair of TCP promiscuous services

Related Commands  show running-config
(config) hostname

To configure the network hostname on a WAAS device, use the `hostname` global configuration command. To reset the hostname to the default setting, use the `no` form of this command.

```
hostname name
no hostname name
```

**Syntax Description**

- `name`: New hostname for the WAAS device; the name is case sensitive. The name may be from 1 to 30 alphanumeric characters.

**Defaults**

The default hostname is the model number of the WAAS device (for example WAE-612 or WAE-7371).

**Command Modes**

- **global configuration**

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

Use this command to configure the hostname for the WAAS device. The hostname is used for the command prompts and default configuration filenames. This name is also used for routing, so it conforms to the following rules:

- It can use only alphanumeric characters and hyphens (-).
- The maximum length is 30 characters.
- The following characters are considered illegal and cannot be used when naming a device: @, #, $, %, ^, & , *, (), |, "", /, <, >.

**Examples**

The following example shows how to change the hostname of the WAAS device to `sandbox`:

```
WAE-674(config)# hostname sandbox
Sandbox(config)#
```

The following example shows how to remove the hostname:

```
Sandbox(config)# no hostname
WAE-674(config)#
```

**Related Commands**

- `dnslookup`
- `(config) ip`
- `(config-if) ip`
(config) hostname

show hosts
To enable FTP and RCP services on a WAAS device, use the `inetd enable` global configuration command. To disable these same services, use the `no` form of this command.

```
inetd enable {ftp | rcp}
```

```
no inetd enable {ftp | rcp}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables services.</td>
</tr>
<tr>
<td><code>ftp</code></td>
<td>Enables FTP services.</td>
</tr>
<tr>
<td><code>rcp</code></td>
<td>Enables RCP services.</td>
</tr>
</tbody>
</table>

**Defaults**

FTP is enabled; RCP is disabled.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

Inetd (an Internet daemon) is a program that listens for connection requests or messages for certain ports and starts server programs to perform the services associated with those ports. Use the `inetd enable` command with the `ftp` and `rcp` keywords to enable and disable services on the WAAS device. To disable the service, enter the `no` form of the `inetd enable` command. Use the `show inetd` EXEC command to see whether current `inetd` sessions are enabled or disabled.

**Examples**

The following example shows how to enable an FTP service session on the WAAS device:

```
WAE(config)# inetd enable ftp
```

The following example shows how to disable FTP services:

```
WAE(config)# no inetd enable ftp
```

**Related Commands**

- `show inetd`
(config) inline

To configure the failover timeout of inline interfaces on a Cisco Interface Module, use the **inline** global configuration command. To unconfigure the failover timeout, use the **no** form of this command.

```plaintext
inline failover timeout {1 | 5 | 25}
no inline failover timeout {1 | 5 | 25}
```

**Syntax Description**
- `failover timeout {1 | 5 | 25}` Sets the failover timeout for the inline interfaces. Valid values are 1, 5, or 25 seconds. The default is 1.

**Defaults**
- 1 second.

**Command Modes**
- global configuration

**Device Modes**
- application-accelerator

**Usage Guidelines**
This command applies only to the following WAAS devices that use a Cisco Interface Module: WAVE-294, WAVE-594, WAVE-694, WAVE-7541, WAVE-7571, and WAVE-8541. This command does not apply to the TenGigabitEthernet module, which cannot be used in inline mode, or to interfaces on the Cisco AppNav Controller Interface Module.

The **inline failover timeout** command sets the number of seconds the interface should wait before going into bypass mode, after a device or power failure.

**Examples**
The following example shows how to configure the inline failover timeout for 5 seconds:

```plaintext
WAE(config)# inline failover timeout 5
```

**Related Commands**
- (config) bridge
- (config) interception-method
- (config) interface InlineGroup
- (config) interface GigabitEthernet
- (config) interface TenGigabitEthernet
(config) inline vlan-id-connection-check

To enable VLAN ID checking on intercepted traffic, use the `inline vlan-id-connection-check` global configuration command. To disable VLAN ID checking, use the `no` form of this command.

```
inline vlan-id-connection-check

no inline vlan-id-connection-check
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
VLAN ID checking is enabled.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to enable VLAN ID checking of the intercepted traffic on the WAAS device:

```
WAE(config)# inline vlan-id-connection-check
```

The following example shows how to disable VLAN ID checking:

```
WAE(config)# no inline vlan-id-connection-check
```

**Related Commands**
- (config) interface InlineGroup
- (config) interface GigabitEthernet
- (config) interface TenGigabitEthernet
- (config-if) encapsulation dot1Q
(config) interception

To configure traffic interception with an access list, use the **interception** global configuration command. To disable the interception access list, use the **no** form of this command.

```
interception [appnav-controller] access-list { acl-num | acl_name }

no interception [appnav-controller] access-list { acl-num | acl_name }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>appnav-controller</th>
<th>Configures an access list for an ANC.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>acl_num</td>
<td>Numeric identifier that identifies the ACL to apply to traffic interception. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td></td>
<td>acl_name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to traffic interception.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behaviors or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator
central-manager
appnav-controller

**Usage Guidelines**

Use the **interception** command to apply an access list (ACL) to traffic interception. Packets permitted by the ACL are intercepted for WAAS optimization (on an application accelerator device) or for distribution (on an ANC). Packets denied by the ACL are passed through by WAAS. You can define ACLs by using the **ip access-list standard** or **ip access-list extended** configuration commands.

**Note**

On an ANC the tcp ... established extended ACL rule type is not supported.

You can configure only one interception ACL, except if the device is an ANC that is also acting as a WN. In this situation, you can configure one **interception appnav-controller access-list** for the ANC and one **interception access-list** for the WN. The ANC ACL could permit a flow that is subsequently denied by the WN ACL.

If you specify an interception ACL that is not defined, it is considered to be a “permit any” ACL and all traffic is intercepted.

An interception ACL works both with WCCP and inline interception modes.

When used with interface ACLs and WCCP ACLs, the interface ACL is applied first, the WCCP ACL is applied second, and then the interception ACL is applied last.
Chapter 3  CLI Commands

Examples

The following example shows how to define and apply an ACL that intercepts all traffic except WWW traffic from a particular client:

```
dc-wae(config)# ip access-list extended iacl
dc-wae(config-ext-nacl)# deny tcp host 10.74.2.132 any eq www
dc-wae(config-ext-nacl)# permit ip any any
dc-wae(config-ext-nacl)# exit

dc-wae(config)# interception access-list iacl
```

The following example uses the same ACL for an ANC:

```
anc(config)# interception appnav-controller access-list iacl
```

Related Commands

- (config) ip access-list
- show ip access-list
To configure the traffic interception method, use the `interception-method` global configuration command. To disable the interception method, use the `no` form of this command.

```
interception-method {inline | appnav-controller | wccp | vn-service}[force]
no interception-method {inline | appnav-controller | wccp | vn-service}[force]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>inline</code></td>
<td>Enables inline traffic interception.</td>
</tr>
<tr>
<td><code>appnav-controller</code></td>
<td>Enables a WAAS node to receive traffic for optimization from an AppNav Controller in an AppNav deployment. <em>(Available only on devices in application-accelerator device mode.)</em></td>
</tr>
<tr>
<td><code>wccp</code></td>
<td>Enables WCCP traffic interception.</td>
</tr>
<tr>
<td><code>vn-service</code></td>
<td>Enables VPATH traffic interception on a vWAAS instance.</td>
</tr>
<tr>
<td><code>force</code></td>
<td>Forces the configuration without prompting.</td>
</tr>
</tbody>
</table>

### Defaults

No default behaviors or values.

### Command Modes

global configuration

### Device Modes

application-accelerator

appnav-controller

### Usage Guidelines

You must use the `interception-method` command to enable a traffic interception method before configuring other traffic interception settings. Other settings that are specific to a particular traffic interception method are not available until after you use this command to enable the method.

When you are changing the traffic interception method, all configuration settings for the current method are removed before the new method is enabled. You are prompted to confirm before the command proceeds.

### Examples

The following example shows how to enable WCCP interception:

```
dc-wae(config)# interception-method wccp
Inline interception method will be removed. Proceed?[yes]: yes
```

### Related Commands

- (config) bridge
- (config) inline
- (config) interface InlineGroup
(config) wccp tcp-promiscuous service-pair
show interception-method
(config) interface bvi

To configure a bridge virtual interface, use the `interface bvi` global configuration command. To disable a bridge virtual interface, use the `no` form of this command.

```
interface bvi bridge-id [description text | ip address ip-address netmask [secondary] |
dhcp [client-id id][hostname name] | load-interval seconds]

no interface bvi bridge-id [description text | ip address ip-address netmask [secondary] |
dhcp [client-id id][hostname name] | load-interval seconds]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bridge-id</td>
<td>Bridge virtual interface. Specify a bridge ID from 1–4.</td>
</tr>
<tr>
<td>description text</td>
<td>(Optional) Specifies a description of the interface.</td>
</tr>
<tr>
<td>ip address ip-address netmask</td>
<td>Sets the interface IP address and netmask.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Defines the IP address as a secondary IP address.</td>
</tr>
<tr>
<td>dhcp</td>
<td>(Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).</td>
</tr>
<tr>
<td>client-id id</td>
<td>(Optional) Specifies the client identifier.</td>
</tr>
<tr>
<td>hostname name</td>
<td>(Optional) Specifies the hostname.</td>
</tr>
<tr>
<td>load-interval seconds</td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

global configuration

### Device Modes

application-accelerator

### Usage Guidelines

This command configures a bridge virtual interface for bridging to a virtual blade. Before you can use this command, you must create a bridge group by using the `bridge` global configuration command.

When DHCP is configured, the bridge virtual interface gets its IP address from the DHCP server when a physical interface supporting DHCP is added to the bridge group.

A bridge virtual interface is not supported on AppNav Controller Interface Module interfaces.

### Examples

The following example shows how to create and configure a bridge interface for a virtual blade:

```
WAE# configure
WAE(config)# bridge 1 protocol ieee
WAE(config)# interface GigabitEthernet 1/0 bridge-group 1
WAE(config)# interface bvi 1 ip address 10.10.10.10 255.0.0.0
```
WAE(config)# virtual-blade 2
WAE(config-vb)# interface 1 bridge-group 1

The following example shows how to remove the configuration of a bridge virtual interface:
WAE(config)# no interface bvi 1

Related Commands
  (config) bridge
  (config) interface GigabitEthernet
  (config) interface TenGigabitEthernet
(config) interface GigabitEthernet

To configure a Gigabit Ethernet interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```plaintext
interface GigabitEthernet slot/port [autosense | bandwidth {10 | 100 | 1000} | cdp enable | channel-group index | description text | full-duplex | half-duplex | ip {access-group {acl-num | acl_name} {in | out} | address {ip_address净mask [secondary] | dhcp [client-id id][hostname name]} | load-interval seconds | mtu mtusize | shutdown | standby group-index [primary] | bridge-group bridge-id]

no interface GigabitEthernet slot/port [autosense | bandwidth {10 | 100 | 1000} | cdp enable | channel-group index | description text | full-duplex | half-duplex | ip {access-group {acl-num | acl_name} {in | out} | address {ip_address净mask [secondary] | dhcp [client-id id][hostname name]} | load-interval seconds | mtu mtusize | shutdown | standby group-index [primary] | bridge-group bridge-id]
```

### Syntax Description

- **GigabitEthernet slot/port**: Selects a Gigabit Ethernet interface to configure (slot and port number). The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.

- **autosense**: (Optional) Sets the GigabitEthernet interface to automatically sense the interface speed.

- **bandwidth**: (Optional) Sets the bandwidth of the specified interface.

- **10**: Sets the bandwidth of the interface to 10 megabits per second (Mbps).

- **100**: Sets the bandwidth of the interface to 100 Mbps.

- **1000**: Sets the bandwidth of the interface to 1000 Mbps. This option is not available on all ports and is the same as autosense.

- **cdp enable**: (Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.

- **channel-group index**: (Optional) Assigns the interface to the EtherChannel with the specified index (1-7).

- **description text**: Enters a description of the interface.

- **full-duplex**: (Optional) Sets the interface to full-duplex operation.

- **half-duplex**: (Optional) Sets the interface to half-duplex operation.

  **Note**: We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices.

- **ip**: (Optional) Enables IP configuration commands for the interface.

- **access-group**: Configures access control for IP packets on this interface using access control list (ACL).

- **acl_num**: Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.

- **acl_name**: Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.
The first attached interface in a standby group is defined as the active interface. There are no other default behaviors or values.

**Defaults**

**Command Modes**

global configuration

**Device Modes**

application-accelerator
appnav-controller
central-manager

**Usage Guidelines**

Although the CLI contains the `no interface` option, you cannot apply the `no` command to an interface. The software displays the following error message: Removing of physical interface is not permitted.

To configure an interface bandwidth on a WAAS device, use the `bandwidth` interface configuration command. The bandwidth is specified in megabits per second (Mbps). Using this option automatically enables autosense on the interface.

**Note**

Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 30 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.
Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the `cdp enable` command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface GigabitEthernet 1/0), use the `show running-config` or `show startup-config` commands. The `autosense`, `bandwidth`, `full-duplex`, `half-duplex`, `ip`, and `shutdown` commands are listed separately in this command reference.

**Note**
When you use the `ip address` command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.

### Configuring Multiple Secondary IP Addresses on a Single Physical Interface

Use the `interface secondary` global configuration command to configure more than one IP address on the same interface. By configuring multiple IP addresses on a single interface, the WAAS device can be present in more than one subnet. This configuration allows you to optimize the response time because the content goes directly from the WAAS device to the requesting client without being redirected through a router. The WAAS device becomes visible to the client because they are configured on the same subnet.

You can assign up to four secondary addresses to an interface. These addresses become active only after you configure the primary address. No two interfaces can have the same IP address in the same subnetwork. To set these secondary IP addresses, use the `ip address` command.

If a WAAS device has one physical interface that has multiple secondary IP addresses assigned to it, the egress traffic uses the source IP address that is chosen by IP routing. If the secondary IP addresses of a WAAS device in the same subnet as the primary IP address, then the egress traffic uses the primary IP address only. If the secondary IP addresses are in a different subnet than the primary IP address, then the destination IP address determines which IP address on the WAAS device is used for the egress traffic.

### Configuring Interfaces for DHCP

When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the `ip address dhcp client-id id hostname name` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.

**Note**
You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

### Defining Interface Descriptions

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters. This feature is supported for the Gigabit Ethernet, 10 Gigabit Ethernet, port-channel, standby, and bridge virtual interfaces.
After you define the description for an interface, use the `show` EXEC commands to display the defined interface descriptions. Enter the `show interface interface-type slot/port` EXEC command to display the defined description for a specific interface on the WAE.

### Configuring a Standby Group

You can associate an interface with a standby group by using the `standby group-index interface` configuration command. To make an interface the active interface in a standby group, use the `standby group-index primary interface` configuration command. If you have already associated an interface with a standby group but have not made it the primary interface, you cannot specify the command again to add the primary designation. First, remove the interface from the standby group, then reassign it, specifying the `primary` option at the same time.

A physical interface can be a member of a standby group or a port channel, but not both.

If a device has only two interfaces, you cannot assign an IP address to both a standby group and a port channel. On such a device, only one virtual interface can be configured with an IP address.

### Examples

The following example shows how to configure an attribute of an interface with a single CLI command:

```
WAE(config)# interface GigabitEthernet 1/0 full-duplex
```

The following example shows that an interface can be configured in a sequence of CLI commands:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# full-duplex
WAE(config-if)# exit
```

The following example shows how to enable a shut down interface:

```
WAE(config)# no interface GigabitEthernet 1/0 shutdown
```

The following example shows how to add an interface to a channel group:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# channel-group 1
WAE(config-if)# exit
```

The following example shows how to remove an interface from a channel group:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# no channel-group 1
WAE(config-if)# exit
```

The following example shows how to assign a secondary IP address on a Gigabit Ethernet interface on a WAAS device:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```

The following example shows how to configure a description for a Gigabit Ethernet interface:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# description This is a GigabitEthernet interface.
```

### Related Commands

- `(config) interface InlineGroup`
(config) interface PortChannel
(config) interface standby
(config) interface TenGigabitEthernet
(config) interface virtual
show interface
show running-config
show startup-config
To configure an InlineGroup interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```plaintext
interface InlineGroup slot/grpnumber [autosense | bandwidth [10 | 100 | 1000] | cdp enable | encapsulation dot1q VLAN | failover timeout [1 | 3 | 5 | 10] | full-duplex | half-duplex | inline [vlan {all | native | vlan_list}] | ip {access-group {acl-num | acl_name} {in | out} | load-interval seconds | shutdown]

no interface InlineGroup slot/grpnumber [autosense | bandwidth [10 | 100 | 1000] | cdp enable | encapsulation dot1q VLAN | failover timeout [1 | 3 | 5 | 10] | full-duplex | half-duplex | inline [vlan {all | native | vlan_list}] | ip {access-group {acl-num | acl_name} {in | out} | load-interval seconds | shutdown]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>slot/grpnumber</code></td>
<td>Slot and inline group number for the selected interface. The slot and inline group number are separated with a forward slash character (/). Valid slot and inline group values depend on the hardware platform.</td>
</tr>
<tr>
<td><code>autosense</code></td>
<td>(Optional) Sets the Gigabit Ethernet interface to automatically sense the interface speed.</td>
</tr>
<tr>
<td><code>bandwidth</code></td>
<td>(Optional) Sets the bandwidth of the specified interface.</td>
</tr>
<tr>
<td><code>10</code></td>
<td>Sets the bandwidth of the interface to 10 megabits per second (Mbps).</td>
</tr>
<tr>
<td><code>100</code></td>
<td>Sets the bandwidth of the interface to 100 Mbps.</td>
</tr>
<tr>
<td><code>1000</code></td>
<td>Sets the bandwidth of the interface to 1000 Mbps. This option is not available on all ports and is the same as autosense.</td>
</tr>
<tr>
<td><code>cdp enable</code></td>
<td>(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.</td>
</tr>
<tr>
<td><code>encapsulation dot1q VLAN</code></td>
<td>(Optional) Sets the 802.1Q VLAN ID to be assigned to traffic leaving the WAE through this interface. The VLAN ID can range from 1–4094.</td>
</tr>
<tr>
<td><code>failover timeout</code></td>
<td>(Optional) Sets the maximum time for the inline group of interfaces to transfer traffic to another port in the group after a failover event. (Applies only to interfaces on the Cisco WAE Inline Network Adapter.)</td>
</tr>
<tr>
<td><code>1</code></td>
<td>Specifies the number of seconds before a failover occurs (default).</td>
</tr>
<tr>
<td><code>3</code></td>
<td>Specifies the number of seconds before a failover occurs.</td>
</tr>
<tr>
<td><code>5</code></td>
<td>Specifies the number of seconds before a failover occurs.</td>
</tr>
<tr>
<td><code>10</code></td>
<td>Specifies the number of seconds before a failover occurs.</td>
</tr>
<tr>
<td><code>full-duplex</code></td>
<td>(Optional) Sets the interface to full duplex.</td>
</tr>
<tr>
<td><code>half-duplex</code></td>
<td>(Optional) Sets the interface to half duplex.</td>
</tr>
<tr>
<td><code>inline</code></td>
<td>(Optional) Enables inline interception for an InlineGroup of interfaces.</td>
</tr>
<tr>
<td><code>vlan</code></td>
<td>(Optional) Modifies the VLAN list parameters.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Applies the command to all tagged and untagged packets.</td>
</tr>
<tr>
<td><code>native</code></td>
<td>Specifies untagged packets.</td>
</tr>
<tr>
<td><code>Note</code></td>
<td>We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices.</td>
</tr>
</tbody>
</table>
### (config) interface InlineGroup

**Defaults**
No default behavior or values.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
An InlineGroup interface is a logical grouping of a pair of Ethernet ports that are physically contained on the optional Cisco WAE Inline Network Adapter or Cisco Interface Module. This command does not apply to the Cisco AppNav Controller Interface Module; use the (config) bridge command to configure an inline bridge on that platform.

You can have multiple InlineGroup interfaces, which allows for multiple bypass-enabled paths for traffic to pass through the WAE appliance, making multiple-router deployments possible. The InlineGroup interfaces provide failover capability and can be assigned to any set of VLANs. (For examples of InlineGroup interface configurations, see the (config-if) inline command.)

You can configure the InlineGroup interface for link speed (bandwidth or autosense) and mode of operation (half-duplex or full-duplex).

The failover timeout set by this command applies only to interfaces on the Cisco WAE Inline Network Adapter. To set the failover timeout for all interfaces together on the Cisco Interface Module, use the (config) inline command.

**Note**
If the VLAN ID that you set with the encapsulation dot1q option does not match the VLAN ID expected by the router subinterface, you may not be able to connect to the inline interface IP address.

---

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan_list</td>
<td>Comma-separated list of VLAN IDs. Restricts the inline feature to the specified set of VLANs.</td>
</tr>
<tr>
<td>ip</td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td>access-group</td>
<td>Configures access control for IP packets on this interface using access control list (ACL).</td>
</tr>
<tr>
<td>acl_num</td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td>in</td>
<td>Applies the specified ACL to inbound packets on the current interface.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the specified ACL to outbound packets on the current interface.</td>
</tr>
<tr>
<td>load-interval seconds</td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>shutdown</td>
<td>(Optional) Shuts down this interface.</td>
</tr>
</tbody>
</table>
The inline adapter supports only a single VLAN ID for each inline group interface. If you have configured a secondary address from a different subnet on an inline interface, you must have the same secondary address assigned on the router subinterface for the VLAN.

**Note**

We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices. Use of half-duplex impedes system ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full duplex is configured.

**Related Commands**

- (config) interface GigabitEthernet
- (config) interface PortChannel
- (config) interface standby
- (config) interface TenGigabitEthernet
- (config) interface virtual
- show interface
- show running-config
- show startup-config
(config) interface PortChannel

To configure a port-channel interface, use the `interface` PortChannel global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface PortChannel index [description text | ip {access-group {acl-num | acl_name} {in | out} | address ip-address netmask} | load-interval seconds | shutdown | standby index | bridge-group bridge-id]
```

```
no interface PortChannel index [description text | ip {access-group {acl-num | acl_name} {in | out} | address ip-address netmask} | load-interval seconds | shutdown | standby index | bridge-group bridge-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>PortChannel index</th>
<th>Configures an EtherChannel with an interface number of 1–7.</th>
</tr>
</thead>
<tbody>
<tr>
<td>description text</td>
<td>(Optional) Enters a description of the interface.</td>
</tr>
<tr>
<td>ip</td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td>access-group</td>
<td>Configures access control for IP packets on this interface using an access control list (ACL).</td>
</tr>
<tr>
<td>acl_num</td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td>in</td>
<td>Applies the specified ACL to inbound packets on the current interface.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the specified ACL to outbound packets on the current interface.</td>
</tr>
<tr>
<td>address ip-address</td>
<td>Sets the interface IP address and netmask.</td>
</tr>
<tr>
<td>netmask</td>
<td></td>
</tr>
<tr>
<td>load-interval seconds</td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>shutdown</td>
<td>(Optional) Shuts down this interface.</td>
</tr>
<tr>
<td>standby index</td>
<td>(Optional) Includes the port-channel interface in the specified standby group (1-3).</td>
</tr>
<tr>
<td>bridge-group bridge-id</td>
<td>(Optional) Places the port-channel interface into the specified bridge group.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
  - appnav-controller
Usage Guidelines

Port channels (EtherChannels) for the WAAS software support the grouping of multiple same-speed network interfaces into one virtual interface. This configuration allows you to set or remove a virtual interface that consists of up to four physical interfaces (eight on an AppNav Controller Interface Module). Port channels also provide interoperability with Cisco routers, switches, and other networking devices or hosts that support port channels, load balancing, and automatic failure detection and recovery based on the current link status of each interface. You must configure port channels on the switch or router if you configure it on the WAE.

You cannot add an interface that already has a configured IP address, or is configured as primary or secondary, to a port channel.

You cannot remove a port-channel interface that is configured as the primary interface on a WAE.

Note

You cannot use the inline Ethernet interfaces that are located on the Cisco WAE Inline Network Adapter to form a port-channel interface. However, you can use the interfaces on a Cisco Interface Module to form a port-channel interface.

Note

No two interfaces can have IP addresses in the same subnet.

Examples

The following example shows how to create a port-channel interface. The port channel is port channel 1 and is assigned an IP address of 10.10.10.10 and a netmask of 255.0.0.0:

```
WAE# configure
WAE(config)# interface PortChannel 1
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
```

The following example shows how to remove a port-channel interface:

```
WAE(config)# interface PortChannel 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
WAE(config)# no interface PortChannel 1
```

Related Commands

- (config) interface GigabitEthernet
- (config) interface InlineGroup
- (config) interface standby
- (config) interface TenGigabitEthernet
- (config) interface virtual
- (config) port-channel
- show interface
- show running-config
- show startup-config
(config) interface standby

To configure a standby interface, use the `interface standby` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface standby group-index { description text | ip address ip_address netmask | load-interval seconds | shutdown | bridge-group bridge-id}

no interface standby group-index { description text | ip address ip_address netmask | load-interval seconds | shutdown | bridge-group bridge-id}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>group-index</td>
<td>Standby group interface. Specify a group index of 1–3, depending on the platform.</td>
</tr>
<tr>
<td>description text</td>
<td>Enters a description of the interface.</td>
</tr>
<tr>
<td>ip address</td>
<td>Specifies the IP address and netmask of the interface.</td>
</tr>
<tr>
<td>netmask</td>
<td></td>
</tr>
<tr>
<td>load-interval</td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down this interface.</td>
</tr>
<tr>
<td>bridge-group</td>
<td>Places the standby interface into the specified bridge group.</td>
</tr>
<tr>
<td>bridge-id</td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- appnav-controller
- central-manager

### Usage Guidelines

Only one standby group is supported on the following WAAS devices: WAE-674, WAE-7341, WAE-7371, WAVE-274, WAVE-474, and WAVE-574. WAVE-294/594/694/7541/7571/8541 devices support up to two standby groups. All devices with the AppNav Controller Interface Module support up to three standby interfaces.

A standby group cannot be removed if it is configured as the system primary interface.

A standby group can have up to two member interfaces.

### Note

No two interfaces can have IP addresses in the same subnet.
Related Commands

(config) interface GigabitEthernet
(config) interface InlineGroup
(config) interface PortChannel
(config) interface TenGigabitEthernet
(config) interface virtual
show interface
show running-config
show startup-config
(config) interface TenGigabitEthernet

To configure a TenGigabitEthernet interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface TenGigabitEthernet slot/port [cdp enable | channel-group index | description text | ip {access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary] | dhcp [client-id id][hostname name]} } | load-interval seconds | mtu mtusize | shutdown | standby group-index [primary] | bridge-group bridge-id]
```

```
no interface TenGigabitEthernet slot/port [cdp enable | channel-group index | description text | ip {access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary] | dhcp [client-id id][hostname name]} } | load-interval seconds | mtu mtusize | shutdown | standby group-index [primary] | bridge-group bridge-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>slot/port</td>
<td>TenGigabitEthernet interface to configure (slot and port number). The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td>cdp enable</td>
<td>(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.</td>
</tr>
<tr>
<td>channel-group</td>
<td>(Optional) Assigns the interface to the EtherChannel with the specified index (1–7).</td>
</tr>
<tr>
<td>index</td>
<td>description text</td>
</tr>
<tr>
<td>ip</td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td>access-group</td>
<td>Configures access control for IP packets on this interface using access control list (ACL).</td>
</tr>
<tr>
<td>acl_num</td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td>in</td>
<td>Applies the specified ACL to inbound packets on the current interface.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the specified ACL to outbound packets on the current interface.</td>
</tr>
<tr>
<td>address ip-address</td>
<td>Sets the interface IP address and netmask.</td>
</tr>
<tr>
<td>netmask</td>
<td>secondary</td>
</tr>
<tr>
<td>dhcp</td>
<td>(Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).</td>
</tr>
<tr>
<td>client-id id</td>
<td>(Optional) Specifies the client identifier.</td>
</tr>
<tr>
<td>hostname name</td>
<td>(Optional) Specifies the hostname.</td>
</tr>
</tbody>
</table>
## (config) interface TenGigabitEthernet

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>load-interval seconds</code></td>
<td>(Optional) Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td><code>mtu mtusize</code></td>
<td>(Optional) Sets the interface Maximum Transmission Unit (MTU) size in bytes (576–1500).</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>(Optional) Shuts down this interface.</td>
</tr>
<tr>
<td><code>standby group-index</code></td>
<td>(Optional) Sets the standby group number to <code>group-index</code>.</td>
</tr>
<tr>
<td><code>primary</code></td>
<td>(Optional) Sets this interface as the active interface in the standby group.</td>
</tr>
<tr>
<td><code>bridge-group bridge-id</code></td>
<td>Places the interface into the specified bridge group.</td>
</tr>
</tbody>
</table>

### Defaults

The first attached interface in a standby group is defined as the active interface. There are no other default behaviors or values.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- appnav-controller
- central-manager

### Usage Guidelines

Although the CLI contains the `no interface` option, you cannot apply the `no` command to an interface. The software displays the following error message: Removing of physical interface is not permitted.

#### Note

Changing the MTU can cause network disruption for up to 30 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the `cdp enable` command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface TenGigabitEthernet 1/0), use the `show running-config` or `show startup-config` commands. The `ip` and `shutdown` commands are listed separately in this command reference.

#### Note

When you use the `ip address` command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.

### Configuring Multiple Secondary IP Addresses on a Single Physical Interface

Use the `interface secondary` global configuration command to configure more than one IP address on the same interface. By configuring multiple IP addresses on a single interface, the WAAS device can be present in more than one subnet. This configuration allows you to optimize the response time because the content goes directly from the WAAS device to the requesting client without being redirected through a router. The WAAS device becomes visible to the client because they are configured on the same subnet.
You can assign up to four secondary addresses to an interface. These addresses become active only after you configure the primary address. No two interfaces can have the same IP address in the same subnetwork. To set these secondary IP addresses, use the `ip address` command.

If a WAAS device has one physical interface that has multiple secondary IP addresses assigned to it, the egress traffic uses the source IP address that is chosen by IP routing. If the secondary IP addresses of a WAAS device in the same subnet as the primary IP address, then the egress traffic uses the primary IP address only. If the secondary IP addresses are in a different subnet than the primary IP address, then the destination IP address determines which IP address on the WAAS device is used for the egress traffic.

**Configuring Interfaces for DHCP**

When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the `ip address dhcp client-id id hostname name` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and the hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.

**Note**

You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

**Defining Interface Descriptions**

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters. This feature is supported for the Gigabit Ethernet, 10 Gigabit Ethernet, port-channel, standby, and bridge virtual interfaces.

After you define the description for an interface, use the `show EXEC` commands to display the defined interface descriptions. Enter the `show interface interface type slot/port EXEC` command to display the defined description for a specific interface on the WAE.

**Configuring a Standby Group**

You can associate an interface with a standby group by using the `standby group-index interface` interface configuration command. To make an interface the active interface in a standby group, use the `standby group-index primary interface configuration` command. If you have already associated an interface with a standby group but have not made it the primary interface, you cannot specify the command again to add the primary designation. First, remove the interface from the standby group, and then reassign it, specifying the `primary` option at the same time.

A physical interface can be a member of a standby group or a port channel, but not both.

If a device has only two interfaces, you cannot assign an IP address to both a standby group and a port channel. On such a device, only one virtual interface can be configured with an IP address.

**Examples**

The following example shows how to configure an attribute of an interface with a single CLI command:

```bash
WAE(config)# interface TenGigabitEthernet 1/0 ip access-group 1 in
```
The following example shows that an interface can be configured in a sequence of CLI commands:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# ip access-group 1 in
WAE(config-if)# exit
```

The following example shows how to enable a shut down interface:

```
WAE(config)# no interface TenGigabitEthernet 1/0 shutdown
```

The following example shows how to add an interface to a channel group:

```
WAE# configure
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# channel-group 1
WAE(config-if)# exit
```

The following example shows how to remove an interface from a channel group:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# no channel-group 1
WAE(config-if)# exit
```

The following example shows how to assign a secondary IP address on a TenGigabitEthernet interface:

```
WAE# configure
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```

The following example shows how to configure a description for a TenGigabitEthernet interface:

```
WAE(config)# interface TenGigabitEthernet 1/0
WAE(config-if)# description This is a TenGigabitEthernet interface.
```

**Related Commands**

- (config) interface GigabitEthernet
- (config) interface InlineGroup
- (config) interface PortChannel
- (config) interface standby
- (config) interface virtual
- show interface
- show running-config
- show startup-config
(config) interface virtual

To configure a virtual interface, use the `interface virtual` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface virtual slot/port [cdp enable | description text]
 ip {access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary] | dhcp [client-id id][hostname name]} | mtu mtusize | shutdown]

no interface virtual slot/port [cdp enable | description text]
 ip {access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary] | dhcp [client-id id][hostname name]} | mtu mtusize | shutdown]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>slot/port</code></td>
<td>vWAAS interface to configure (slot and port number). The slot range is 1–2; the port range is 0. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td><code>cdp enable</code></td>
<td>(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.</td>
</tr>
<tr>
<td><code>description text</code></td>
<td>Enters a description of the interface.</td>
</tr>
<tr>
<td><code>ip</code></td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td><code>access-group</code></td>
<td>Configures access control for IP packets on this interface using access control list (ACL).</td>
</tr>
<tr>
<td><code>acl_num</code></td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td><code>acl_name</code></td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td><code>in</code></td>
<td>Applies the specified ACL to inbound packets on the current interface.</td>
</tr>
<tr>
<td><code>out</code></td>
<td>Applies the specified ACL to outbound packets on the current interface.</td>
</tr>
<tr>
<td><code>address ip-address netmask</code></td>
<td>Sets the interface IP address and netmask.</td>
</tr>
<tr>
<td><code>secondary</code></td>
<td>(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
<tr>
<td><code>dhcp</code></td>
<td>(Optional) Sets the IP address to the address that is negotiated over Dynamic Host Configuration Protocol (DHCP).</td>
</tr>
<tr>
<td><code>client-id id</code></td>
<td>(Optional) Specifies the client identifier.</td>
</tr>
<tr>
<td><code>hostname name</code></td>
<td>(Optional) Specifies the hostname.</td>
</tr>
<tr>
<td><code>mtu mtusize</code></td>
<td>(Optional) Sets the interface Maximum Transmission Unit (MTU) size in bytes (576–1500).</td>
</tr>
<tr>
<td><code>shutdown</code></td>
<td>(Optional) Shuts down this interface.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.
Command Modes  global configuration

Device Modes  application-accelerator
central-manager

Usage Guidelines  Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, use the `cdp enable` command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface virtual 1/0), use the `show running-config` or `show startup-config` commands.

**Note**  When you use the `ip address` command to change the IP address of an interface that has been shut down, it automatically brings up that interface by default.

Configuring Interfaces for DHCP

When you configure a WAAS device initially, you can configure a static IP address or use interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

You can enable an interface for DHCP using the `ip address dhcp client-id id hostname name` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. You can configure DHCP servers to identify the client identifier and the hostname that the WAAS device is sending and then send the specific network settings that are assigned to the WAAS device.

**Note**  You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

Defining Interface Descriptions

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text` interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters.

After you define the description for an interface, use the `show EXEC` commands to display the defined interface descriptions. Enter the `show interface virtual` EXEC command to display the defined description for a virtual interface on the WAE.

Examples

The following example shows how to assign a secondary IP address on a virtual interface on a vWAAS device:

```
WAE# configure
WAE(config)# interface virtual 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```
The following example shows how to configure a description for a virtual interface:

```
WAE(config)# interface virtual 1/0
WAE(config-if)# description This is a virtual interface.
```

Related Commands

- (config) interface GigabitEthernet
- (config) interface InlineGroup
- (config) interface PortChannel
- (config) interface standby
- (config) interface TenGigabitEthernet
- show interface
- show running-config
- show startup-config
(config) ip

To change the initial network device configuration settings, use the `ip` global configuration command. To delete or disable these settings, use the `no` form of this command.

```
ip [default-gateway [management] ip-address | domain-name name1 name2 name3 |
 ftp management | host hostname ip-address | name-server ip-addresses | radius management |
 tacacs management | path-mtu-discovery enable | route [management] dest_addrs
 net_addrs gateway_addrs | tftp management]

no ip [default-gateway [management] ip-address | domain-name name1 name2 name3 |
 ftp management | host hostname ip-address | name-server ip-addresses | radius management |
 tacacs management | path-mtu-discovery enable | route [management] dest_addrs
 net_addrs [gateway_addrs] | tftp management]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Default-gateway ip-address</th>
<th>Specifies the IP address of the default gateway (if not routing IP).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>management</td>
<td>Specifies that the default gateway or net route is for the management interface.</td>
</tr>
<tr>
<td>Domain-name name1 name2 name3</td>
<td></td>
<td>Specifies domain names (up to three can be specified).</td>
</tr>
<tr>
<td>Ftp management</td>
<td></td>
<td>Configures the device to use the management interface for FTP traffic.</td>
</tr>
<tr>
<td>Host hostname ip-address</td>
<td></td>
<td>Adds an entry to the /etc/hosts file on the device, mapping the specified hostname to the specified IP address of the host.</td>
</tr>
<tr>
<td>Name-server ip-addresses</td>
<td></td>
<td>Specifies the address of the name server and IP addresses of the name servers (up to a maximum of eight).</td>
</tr>
<tr>
<td>Radius management</td>
<td></td>
<td>Configures the device to use the management interface for radius traffic.</td>
</tr>
<tr>
<td>Tacacs management</td>
<td></td>
<td>Configures the device to use the management interface for tacacs traffic.</td>
</tr>
<tr>
<td>Path-mtu-discovery enable</td>
<td></td>
<td>Enables RFC 1191 Path Maximum Transmission Unit (MTU) discovery.</td>
</tr>
<tr>
<td>Route dest_addrs net_addrs gateway_addr</td>
<td></td>
<td>Specifies the net route (destination route address, netmask address, and gateway address).</td>
</tr>
<tr>
<td>Tftp management</td>
<td></td>
<td>Configures the device to use the management interface for TFTP traffic.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
- appnav-controller
Usage Guidelines

To define a default gateway, use the `ip default-gateway` command. If you have designated a management interface, you can configure a different default gateway for the management interface by using the `management` keyword. To remove the IP default gateway, use the `no` form of this command. The WAAS device uses the default gateway to route IP packets when there is no specific route found to the destination.

To define a default domain name, use the `ip domain-name` command. To remove the IP default domain name, use the `no` form of this command. You can enter up to three domain names. If a request arrives without a domain name appended in its hostname, the proxy tries to resolve the hostname by appending `name1`, `name2`, and `name3` in that order until one of these names succeeds.

To add an entry to the `/etc/hosts` file on the device, mapping a hostname to an IP address, use the `ip host` command. A given hostname can be mapped only to a single IP address, while an IP address can have multiple hostnames mapped to it, each one through a separate issuance of this command. To remove the entry from the `/etc/hosts` file, use the `no` form of this command. You can use the `show hosts` EXEC command to display the contents of the `/etc/hosts` file.

To specify the address of one or more name servers to use for name and address resolution, use the `ip name-server ip-addresses` command. To disable IP name servers, use the `no` form of this command. For proper resolution of the hostname to the IP address or the IP address to the hostname, the WAAS device uses DNS servers. Use the `ip name-server` command to point the WAAS device to a specific DNS server. You can configure up to eight servers.

Path MTU autodiscovery discovers the MTU and automatically sets the correct value. Use the `ip path-mtu-discovery enable` command to start this autodiscovery utility. By default, this feature is disabled because the WAE does not receive ICMP packets. When this feature is disabled, the sending device uses a packet size that is smaller than 576 bytes and the next hop MTU. Existing connections are not affected when this feature is turned on or off.

Use the `ip route` command to add a specific static route for a network or host. Any IP packet designated for the specified destination uses the configured route.

To configure static IP routing, use the `ip route` command. To remove the route, use the `no` form of this command. Do not use the `ip route 0.0.0.0 0.0.0.0` command to configure the default gateway; use the `ip default-gateway` command instead.

Examples

The following example shows how to configure a default gateway for the WAAS device:

```
WAE(config)# ip default-gateway 192.168.7.18
```

The following example shows how to configure a default gateway for the management interface on the WAAS device, if it is different from the standard default gateway:

```
WAE(config)# ip default-gateway management 192.168.10.35
```

The following example shows how to configure a static IP route for the WAAS device:

```
WAE(config)# ip route 172.16.227.128 255.255.255.0 172.16.227.250
```

The following example shows how to configure a default domain name for the WAAS device:

```
WAE(config)# ip domain-name cisco.com
```

The following example shows how to add an entry to the `/etc/hosts` file on the WAAS device:

```
WAE(config)# ip host corp-B7 10.11.12.140
```

The following example shows how to configure a name server for the WAAS device:

```
WAE(config)# ip name-server 10.11.12.13
```
Related Commands

- show hosts
- show ip routes
To create and modify access lists on a WAAS device for controlling access to interfaces or applications, and to define subnets, use the `ip access-list` global configuration command. To disable an access list, use the `no` form of this command.

```plaintext
ip access-list {standard {acl-name | acl-num} | extended {acl-name | acl-num} | logging}

no ip access-list {standard {acl-name | acl-num} | extended {acl-name | acl-num} | logging}
```

**Syntax Description**

- **standard**: Enables standard ACL configuration mode. The CLI enters the standard ACL configuration mode in which all subsequent commands apply to the current standard access list. The (config-std-nacl) prompt appears:

  WAE(config-std-nacl)#

  See the “Standard ACL Configuration Mode Commands” section for details about working with entries in a standard access list and the commands available from the standard ACL configuration mode (config-std-nacl)#.

- **extended**: Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access list. The (config-ext-nacl) prompt appears:

  WAE(config-ext-nacl)#

  See the “Extended ACL Configuration Mode Commands” section for details about working with entries in an extended access list and the commands available from the extended ACL configuration mode (config-ext-nacl)#.

- **acl-name**: Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.

- **acl-num**: Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For standard access lists, the valid range is 1 to 99; for extended access lists, the valid range is 100 to 199.

- **logging**: Enables logging for all IP access lists.

**Defaults**

An access list drops all packets unless you configure at least one `permit` entry.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

Within ACL configuration mode, you can use the editing commands (list, delete, and move) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, use the exit command at the ACL configuration mode prompt.

To create an entry, use a the deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. You must include at least one permit entry to create a valid access list.

Note

IP ACLs that are defined on a router take precedence over the IP ACLs that are defined on the WAE. IP ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

After creating an access list, you can include the access list in an access group using the access-group command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a permit any condition statement.

To work with access lists, enter either the ip access-list standard or ip access-list extended global configuration command. Identify the new or existing access list with a name up to 30 characters long beginning with a letter, or with a number. If you use a number to identify a standard access list, it must be between 1 and 99; for an extended access list, use a number from 100 to 199. You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

After you identify the access list, the CLI enters the appropriate configuration mode and all subsequent commands apply to the specified access list. The prompt for each configuration mode is shown in the following examples.

```
WAE(config)# ip access-list standard test
WAE(config-standard-nacl)# exit
WAE(config)# ip access-list extended test2
WAE(config-ext-nacl)#
```

To define a subnet, use either a standard or an extended ACL. In an HTTP AO subnet configuration, the access-list option must have at least one condition statement in it for it to exist. The list is terminated by an implicit deny any (standard access list) or deny ip any any (extended access list) condition statement. This statement applies to HTTP AO optimizations unless the ACL has an explicit permit all statement in it. If an acl name or acl number does not exist (if no condition statements exist in the access list), it is considered as an implicit permit any (standard access list) or permit ip any any (extended access list) condition statement. We recommend that you explicitly add permit any or deny any at the end of the ACL to make all the conditions clear for the subnet feature.

Use the ip access-list logging command to log denied packets.

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it but limit host administrative access using SSH:

```
WAE(config)# ip access-list extended example
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
```
The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group example in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...!
interface GigabitEthernet 1/0
 ip address 10.1.1.50 255.255.0.0
 ip access-group example in
 exit
...;
ip access-list extended example
 permit tcp any any eq www
 permit tcp host 10.1.1.5 any eq ssh
 exit
...;
```

The following example shows how to configure an ACL to define a subnet:

```
WAE(config)# ip access-list extended md_acl
WAE(config-ext-nacl)# permit ip 2.57.34.0 0.0.0.255 2.57.34.0 0.0.0.255
WAE(config-ext-nacl)# exit
WAE(config)# ip access-list standard 10
WAE(config-std-nacl)# deny 1.1.1.0 0.0.0.255
WAE(config-std-nacl)# permit any
WAE(config-std-nacl)# exit
```
(config) ip icmp rate-limit unreachable

To limit the rate at which Internet Control Message Protocol (ICMP) destination unreachable messages are generated, use the `ip icmp rate-limit unreachable` command in global configuration mode. To remove the rate limit, use the no form of this command.

```
ip icmp rate-limit unreachable df microseconds
```
```
no ip icmp rate-limit unreachable df microseconds
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>Limits the rate ICMP destination unreachable messages are sent when Type 3 code 4, destination unreachable, don't fragment (DF) bit sent and fragmentation required, is specified in the IP header of the ICMP destination unreachable message.</td>
</tr>
<tr>
<td>microseconds</td>
<td>Time limit (in microseconds) in which one ICMP destination unreachable message is sent. The range is 250 microseconds to 1000000 microseconds.</td>
</tr>
</tbody>
</table>

**Defaults**
The default value is one ICMP destination unreachable message per 500 microseconds.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
This feature is enabled by default. The no ip icmp rate-limit unreachable df command turns off the previously configured rate limit.

The software maintains two timers: one for general destination unreachable messages and one for DF destination unreachable messages. Both share the same time limits and defaults. If the df option is not configured, the ip icmp rate-limit unreachable command sets the time values for DF destination unreachable messages. If the df option is configured, its time values remain independent from those of general destination unreachable messages.

**Examples**
The following example sets the rate of the ICMP destination unreachable message to one message every 10 microseconds:

```
WAE(config)# ip icmp rate-limit unreachable df 10
```

The following example turns off the previously configured rate limit:

```
WAE(config)# no ip icmp rate-limit unreachable df
```

**Related Commands**
clear arp-cache
(config) ip icmp rate-limit unreachable

(config-if) ip access-group
show ip access-list
(config) ip unreachable df
(config) ip unreachables df

To enable the generation of Internet Control Message Protocol (ICMP) unreachable messages, use the ip unreachables df command in global configuration mode. To disable this function, use the no form of this command.

```
ip unreachables df

no ip unreachables df
```

### Syntax Description

- `df` Limits the rate ICMP destination unreachable messages are sent when Type 3 code 4, destination unreachable, don’t fragment (DF) bit sent and fragmentation required, is specified in the IP header of the ICMP destination unreachable message.

### Defaults

The default value is one ICMP destination unreachable message per 500 microseconds.

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**

### Usage Guidelines

If the software receives a nonbroadcast packet destined for itself that uses an unknown protocol, it sends an ICMP protocol unreachable message back to the source. Similarly, if the software receives a packet that it is unable to deliver to the ultimate destination because it knows of no route to the destination address, it sends an ICMP host unreachable message to the source. This feature is enabled by default.

### Examples

The following example enables the generation of ICMP unreachable messages, as appropriate, on an interface:

```
WAE(config)# interface ethernet 0
WAE(config)# ip unreachables df
```

### Related Commands

- `clear arp-cache`
- `(config-if) ip access-group`
- `show ip access-list`
- `(config) ip icmp rate-limit unreachable`
To authenticate a user that is defined in the Kerberos database, use the `kerberos` global configuration command. To disable authentication, use the `no` form of this command.

```
kerberos { dns | local-realm } kerberos-realm { dns-domain | host } kerberos-realm |
server kerberos-realm { hostname | ip-address } [port-number]

no kerberos { dns | local-realm } kerberos-realm { dns-domain | host } kerberos-realm |
server kerberos-realm { hostname | ip-address } [port-number]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dns</code></td>
<td>Enables or disables DNS lookup for Kerberos.</td>
</tr>
<tr>
<td><code>local-realm</code></td>
<td>Displays the default Kerberos realm (IP address or name in uppercase letters).</td>
</tr>
<tr>
<td><code>kerberos-realm</code></td>
<td>for WAAS. Configures a switch to authenticate users defined in the Kerberos database. The default value is a null string.</td>
</tr>
<tr>
<td><code>realm</code></td>
<td>Maps a hostname or DNS domain name to a Kerberos realm.</td>
</tr>
<tr>
<td><code>dns-domain</code></td>
<td>DNS domain name to map to the Kerberos realm.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Host IP address or name to map to Kerberos host realm.</td>
</tr>
<tr>
<td><code>note</code></td>
<td>The name must begin with a leading dot (·).</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Kerberos realm (IP address or name in uppercase letters). The default value is a null string.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>Specifies the Key Distribution Center (KDC) to use in a given Kerberos realm and, optionally, the port number that the KDC is monitoring.</td>
</tr>
<tr>
<td><code>port-number</code></td>
<td>Name of the host running the KDC.</td>
</tr>
</tbody>
</table>

### Defaults

- `kerberos-realm`: NULL string
- `port-number`: 88

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`
- `central-manager`

### Usage Guidelines

All Windows 2000 domains are also Kerberos realms. Because the Windows 2000 domain name is also a DNS domain name, the Kerberos realm name for the Windows 2000 domain name is always in uppercase letters. This capitalization follows the recommendation for using DNS names as realm names in the Kerberos Version 5 protocol document (RFC-1510) and affects only interoperability with other Kerberos-based environments.
Your Windows domain server must have a Reverse DNS Zone configured for this command to execute successfully.

The KDC server and all hosts with Kerberos authentication configured must interact within a 5-minute window or authentication will fail. All hosts, especially the KDC, should be running NTP. For information about configuring NTP, see the (config) ntp command.

The KDC server and Admin server must have the same IP address. The default port number for both servers is port 88.

The `kerberos` command modifies the krb5.conf file.

**Examples**

The following example shows how to configure the WAAS device to authenticate with a specified KDC in a specified Kerberos realm. The configuration is then verified.

```
WAE(config)# kerberos ?
 local-realm Set local realm name
 realm Add domain to realm mapping
 server Add realm to host mapping
WAE(config)# kerberos local-realm WAE.ABC.COM
WAE(config)# kerberos realm wae.abc.com WAE.ABC.COM
WAE(config)# kerberos server wae.abc.com 10.10.192.50
WAE(config)# exit
WAE# show kerberos
Kerberos Configuration:

Local Realm: WAE.ABC.COM
DNS suffix: wae.abc.com
Realm for DNS suffix: WAE.ABC.COM
Name of host running KDC for realm:
 Master KDC: 10.10.192.50
 Port: 88
```

**Related Commands**

`show kerberos`
To enable access to the kernel debugger (kdb), use the `kernel kdb` global configuration command. To disable access to the kernel debugger, use the `no` form of this command.

```
kernel kdb

no kernel kdb
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

The kernel debugger is disabled by default.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager

**Usage Guidelines**

Once enabled, kdb is automatically activated if kernel problems occur, or you can manually activate it from the local console for the WAAS device. Once activated, all normal functioning of the WAAS device is suspended until kdb is manually deactivated. The kdb prompt looks like this:

```
[0]kdb>
```

To deactivate kdb, enter the `go` command at the kdb prompt. If kdb was automatically activated because of kernel problems, the system generates a core dump and restarts. If you activated kdb manually for diagnostic purposes, the system resumes normal functioning in whatever state it was when you activated kdb. In either case, if you enter the `reboot` command, the system restarts and normal operation resumes.

kdb is disabled by default and you must enter the `kernel kdb` command in global configuration mode to enable it. If kdb has been previously enabled, you can enter the `no kernel kdb` global configuration command to disable it. When kdb is enabled, you can activate it manually from the local console by pressing `Ctrl-_` followed by `Ctrl-B`. On a vWAAS device, kdb can be enabled by pressing the `Esc` key and typing `kdb`.

The WAAS device is often unattended at many sites, and it is desirable for the WAAS device to automatically reboot after generating a core dump instead of requiring user intervention. Disabling the kernel debugger allows automatic recovery.

**Examples**

The following example shows how to enable, and then disable, access to the kernel debugger:

```
WAE(config)# kernel kdb
WAE(config)# no kernel kdb
```
Related Commands

(config) kernel kdump enable
(config) kernel kdump enable

To enable the kernel crash dump mechanism, use the kernel kdump enable global configuration command. To disable the kernel crash dump mechanism, use the no form of this command.

  kernel kdump enable
  no kernel kdump enable

Syntax Description
This command has no arguments or keywords.

Defaults
The kernel crash dump mechanism is enabled by default.

Command Modes
  global configuration

Device Modes
  application-accelerator
  central-manager

Usage Guidelines
A kernel crash dump file is stored in the following disk location:
/local/local1/crash/timestamp/vmcore

The analysis of the kernel crash dump file is stored in the following file:
/local/local1/crash/timestamp/analysis.txt

Examples
The following example shows how to enable, and then disable, the kernel crash dump mechanism:

  WAE(config)# kernel kdump enable
  WAE(config)# no kernel kdump enable

Related Commands
  (config) kernel kdb
  show kdump
(config) line

To specify terminal line settings, use the **line** global configuration command. To configure the WAAS device to not check for the carrier detect signal, use the **no** form of this command.

```
line console carrier-detect

no line console carrier-detect
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>console</th>
<th>carrier-detect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configures the console terminal line settings.</td>
<td>Sets the device to check the carrier detect signal before writing to the console.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

central-manager

**Examples**

The following example shows how to set the WAAS device to check for the carrier detect signal:

```
WAE(config)# line console carrier-detect
```
(config) logging console

To set system logging to console, use the `logging console` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging console { enable | priority loglevel }

no logging console { enable | priority loglevel }
```

### Syntax Description

**enable**
- Enables system logging.

**priority loglevel**
- Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:
  - `alert`—Immediate action needed. Priority 1.
  - `emergency`—System is unusable. Priority 0.
  - `error`—Error conditions. Priority 3.
  - `notice`—Normal but significant conditions. Priority 5.

### Defaults

- Logging: on
- Priority of message for console: warning (4)
- Log file: /local1/syslog.txt

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

Use the `logging` command to set specific parameters of the system log file.

You can configure logging to send various levels of messages to the console using the `logging console priority` option.

### Examples

The following example shows how to send messages that have a priority code of “error” (Level 3) to the console:

```
WAE(config)# logging console priority error
```
The following example shows how to disable sending of messages that have a priority code of "error" (level 3) to the console:

```
WAE(config)# no logging console error
```

**Related Commands**

- clear arp-cache
- show logging
(config) logging disk

To system logging to a disk file, use the `logging disk` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging disk {enable | filename filename | priority loglevel | recycle size}
```

```
no logging disk {enable | filename filename | priority loglevel | recycle size}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables system logging.</td>
</tr>
<tr>
<td>filename filename</td>
<td>Sets the name of the syslog file.</td>
</tr>
<tr>
<td>priority loglevel</td>
<td>Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:</td>
</tr>
<tr>
<td></td>
<td>• alert—Immediate action needed. Priority 1.</td>
</tr>
<tr>
<td></td>
<td>• critical—Immediate action needed. Priority 2.</td>
</tr>
<tr>
<td></td>
<td>• debug—Debugging messages. Priority 7.</td>
</tr>
<tr>
<td></td>
<td>• emergency—System is unusable. Priority 0.</td>
</tr>
<tr>
<td></td>
<td>• error—Error conditions. Priority 3.</td>
</tr>
<tr>
<td></td>
<td>• information—Informational messages. Priority 6.</td>
</tr>
<tr>
<td></td>
<td>• notice—Normal but significant conditions. Priority 5.</td>
</tr>
<tr>
<td></td>
<td>• warning—Warning conditions. Priority 4.</td>
</tr>
<tr>
<td>recycle size</td>
<td>Overwrites <code>syslog.txt</code> when it surpasses the recycle size (1000000–50000000 bytes).</td>
</tr>
</tbody>
</table>

### Defaults

Logging: on

Priority of message for disk log file: debug (7)

Log file: /local1/syslog.txt

Log file recycle size: 10,000,000 bytes

### Command Modes

global configuration

### Device Modes

application-accelerator

central-manager

### Usage Guidelines

Use the `logging` command to set specific parameters of the system log file.

The `no logging disk recycle size` command sets the file size to the default value. Whenever the current log file size surpasses the recycle size, the log file is rotated. The log file cycles through at most five rotations, and they are saved as `[log file name].[1-5]` under the same directory as the original log. The rotated log file is the one configured using the `logging disk filename` command.
Examples

The following example shows how to send messages that have a priority code of “error” (level 3) to a file:

WAE(config)# logging disk priority error

Related Commands

clear arp-cache
show logging
(config) logging facility

To set the facility parameter for system logging, use the `logging facility` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging facility facility

no logging facility facility
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>facility</th>
<th>Facility parameter for syslog messages. Use one of the following keywords:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- <code>auth</code> — Authorization system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>daemon</code> — System daemons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>kernel</code> — Kernel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local0</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local1</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local2</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local3</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local4</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local5</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local6</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>local7</code> — Local use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>mail</code> — Mail system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>news</code> — USENET news</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>syslog</code> — Syslog itself</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>user</code> — User process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>uucp</code> — UUCP system</td>
</tr>
</tbody>
</table>

**Defaults**

Logging: on

**Command Modes**

- global configuration

**Device Modes**

- applicationAccelerator
- central-manager

**Examples**

The following example shows how to set the facility parameter to authorization system for syslog messages:

```
WAE(config)# logging facility auth
```
Related Commands

- clear arp-cache
- show logging
(config) logging host

To configure system logging to a remote host, use the logging host global configuration command. To disable logging functions, use the no form of this command.

```
logging host {hostname | ip-address} [port port_num | priority loglevel | rate-limit message_rate]

no logging host {hostname | ip-address} [port port_num | priority loglevel | rate-limit message_rate]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Hostname of the remote syslog host. Specify up to four remote syslog hosts.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the remote syslog host. Specify up to four remote syslog hosts.</td>
</tr>
<tr>
<td>port port_num</td>
<td>(Optional) Specifies the port to be used when logging to a host. The default port is 514.</td>
</tr>
<tr>
<td>priority loglevel</td>
<td>(Optional) Sets which priority level messages to send. Use one of the following keywords or you can specify the numeric priority:</td>
</tr>
<tr>
<td></td>
<td>• alert—Immediate action needed. Priority 1.</td>
</tr>
<tr>
<td></td>
<td>• critical—Immediate action needed. Priority 2.</td>
</tr>
<tr>
<td></td>
<td>• debug—Debugging messages. Priority 7.</td>
</tr>
<tr>
<td></td>
<td>• emergency—System is unusable. Priority 0.</td>
</tr>
<tr>
<td></td>
<td>• error—Error conditions. Priority 3.</td>
</tr>
<tr>
<td></td>
<td>• information—Informational messages. Priority 6.</td>
</tr>
<tr>
<td></td>
<td>• notice—Normal but significant conditions. Priority 5.</td>
</tr>
<tr>
<td></td>
<td>• warning—Warning conditions. Priority 4.</td>
</tr>
<tr>
<td>rate-limit message_rate</td>
<td>(Optional) Sets the rate limit (in messages per second) for sending messages to a host. Rate limit is 0-10000 (in messages per second). Setting the rate limit to 0 disables rate limiting.</td>
</tr>
</tbody>
</table>

**Defaults**

- Logging: on
- Priority of message for a host: warning (4)

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

Use the `logging` command to set specific parameters of the system log file.

To configure the WAAS device to send varying levels of event messages to an external syslog host, use the `logging host` option.

You can configure a WAAS device to send varying levels of messages to up to four remote syslog hosts using the `logging host hostname` command.

Examples

The following example shows how to send messages that have a priority code of “error” (level 3) to the remote syslog host that has an IP address of 172.31.2.160:

```
WAE(config)# logging host 172.31.2.160 priority error
```

Related Commands

- `clear arp-cache`
- `show logging`
(config) ntp

To configure the NTP server and to allow the system clock to be synchronized by a time server, use the ntp global configuration command. To disable this function, use the no form of this command.

```
ntp [authenticate | authentication-key key-num [md5 authentication-key] | server {ip-address | hostname} [ip-addresses | hostnames] | server-with-authentication {ip-address | hostname} key key-num]
```

```
ntp [authenticate | authentication-key authentication-key [md5 encryption-type] | server {ip-address | hostname} [ip-addresses | hostnames] | server-with-authentication {ip-address | hostname} authentication-key]
```

```
no ntp [authenticate | authentication-key key-num [md5 authentication-key] | server {ip-address | hostname} [ip-addresses | hostnames] | server-with-authentication {ip-address | hostname} key key-num]
```

**Syntax Description**

- **authenticate** (Optional) Authenticates the NTP server.
- **authentication-key key-num** (Optional) Sets the ID of the NTP authentication key. Maximum of 4 authentication keys can be configured. The ID must be a positive integer.
- **md5 authentication-key** (Optional) Sets the value for the NTP authentication key (type MD5). The key value must be from 0 to 4294967295.
- **server** (Optional) Sets the NTP server IP address for the WAAS device.
  - **ip-address** NTP server IP address.
  - **hostname** NTP server hostname.
- **ip-addresses** (Optional) IP address of the time server that provides the clock synchronization (maximum of 4).
- **hostnames** (Optional) Hostname of the time server that provides the clock synchronization (maximum of 4).
- **server-with-authentication** (Optional) Sets the authentication NTP server IP address for the WAAS device.
  - **key key-num** (Optional) Sets the NTP authentication key ID for the authentication NTP server.

**Defaults**

The default NTP version number is 3.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

Note

Unexpected time changes can result in unexpected system behavior. We recommend reloading the system after enabling an NTP server.

Examples

The following example shows how to specify the NTP server IP address as the time source for a WAAS device. It also removes this configuration.

```
WAE(config)# ntp 172.16.22.44
WAE(config)# no ntp 172.16.22.44

WAE(config)# clock
WAE(config)# show clock
WAE(config)# show ntp
```
(config) peer

To enable peer optimization, use the peer global configuration command. To disable peer optimization, use the no form of this command.

```
peer device-id deviceid [description description] optimization enable
no peer device-id deviceid [description description] optimization enable
```

**Syntax Description**

- `device-id deviceid` - Configures the device ID of the peer device with which to enable or disable optimization.
- `description hostname` - (Optional) Configures a string that is the device description of the peer device. You should use the hostname of the peer WAE for the description.
- `optimization enable` - Enables optimization with the specified peer.

**Defaults**

No default behavior or values.

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`

**Usage Guidelines**

Use the `no peer` command to disable optimization between peer devices in a serial cluster.

Use the `peer` command to reenable optimization between peer devices if it has been disabled previously.

The `deviceid` is a hexadecimal string (for example, d4:65:01:40:40:8a) that you can obtain with the `show device-id` or `show hardware` EXEC commands.

You can configure optimization for only one peer device with this command.

**Examples**

The following example shows how to disable optimization with a serial peer device:

```
WAE(config)# no peer device-id d4:65:01:40:40:8a description wae-sj-dc2 optimization enable
```

**Related Commands**

- `show device-id`
- `show hardware`
- `(config) interception`
(config) policy-map

To configure an AppNav or optimization policy map, use the `policy-map` global configuration command. To unconfigure settings, use the `no` form of this command.

```
policy-map type {appnav | waas} policymap-name [rename new-name]

no policy-map type {appnav | waas} policymap-name
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>appnav</code></td>
<td>Configures an AppNav policy map.</td>
</tr>
<tr>
<td><code>waas</code></td>
<td>Configures a WAAS optimization policy map.</td>
</tr>
<tr>
<td><code>policymap-name</code></td>
<td>Policy map name (up to 40 alpha-numeric characters and hyphen, beginning with a letter).</td>
</tr>
<tr>
<td><code>rename new-name</code></td>
<td>(Optional) Renames the policy map with the specified new name.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- appnav-controller

### Usage Guidelines

Use the `policy-map` command to add or modify policy maps that associate policy actions with class maps. This command invokes the Policy Map configuration mode, which is indicated by a different prompt (config-pmap). For more information on Policy Class Map configuration mode commands, see the “Policy Map Configuration Mode Commands” section. To return to global configuration mode, enter the `exit` command.

You can delete a policy map by using the `no` form of this command.

The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one. For a list of the default applications, class maps, and policy rules, see the Cisco Wide Area Application Services Configuration Guide.

### Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure policy maps for your WAAS devices. For more information, see the Cisco Wide Area Application Services Configuration Guide.

### Examples

The following example shows how to configure a WAAS optimization policy map:
(config) policy-map

```plaintext
wae(config)# policy-map type waas myPolicy
wae(config-pmap)# description My optimization policy
wae(config-pmap)# class httpx
wae(config-pmap-c)# optimize full accelerate http application Web
```

The following example shows how to configure an AppNav policy map:

```plaintext
wae(config)# policy-map type appnav mypolicy
wae(config-pmap)# description My AppNav policy
wae(config-pmap)# class httpx
wae(config-pmap-c)# distribute service-node-group wng3
wae(config-pmap-c)# monitor-load http
```

**Related Commands**

- (config) class-map
- (config) service-policy
(config) port-channel

To configure port channel load-balancing on a WAAS device, use the **port-channel** global configuration command. To set load balancing on the port channel to its default method, use the **no** form of this command.

```
port-channel load-balance {src-dst-ip | src-dst-ip-port}
no port-channel load-balance {src-dst-ip | src-dst-ip-port}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>load-balance</strong></td>
<td>Configures the load-balancing method.</td>
</tr>
<tr>
<td><strong>src-dst-ip</strong></td>
<td>Specifies the load-balancing method based on a combination of source and destination IP addresses.</td>
</tr>
<tr>
<td><strong>src-dst-ip-port</strong></td>
<td>Specifies the load-balancing method based on a combination of source and destination IP addresses/ports.</td>
</tr>
</tbody>
</table>

### Defaults

src-dst-ip-port is the default load-balancing method.

### Command Modes

global configuration

### Device Modes

- application-accelerator
- appnav-controller
- central-manager

### Examples

The following example shows how to configure src-dst-ip load balancing on a port channel and then disable it:

```
WAE(config)# port-channel load-balance src-dst-ip
WAE(config)# no port-channel load-balance src-dst-ip
```

### Related Commands

(config) interface PortChannel
To configure the primary interface for a WAAS device, use the `primary-interface` global configuration command. To remove the configured primary interface, use the `no` form of this command.

```
primary-interface { BVI bridge-id | GigabitEthernet slot/port | PortChannel index | Standby group-index | TenGigabitEthernet slot/port } [management]
```

```
no primary-interface { BVI bridge-id | GigabitEthernet slot/port | PortChannel index | Standby group-index | TenGigabitEthernet slot/port } [management]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVI bridge-id</td>
<td>Selects a bridge virtual interface as the primary interface of the WAAS device. Specify the bridge ID (1–4).</td>
</tr>
<tr>
<td>GigabitEthernet slot/port</td>
<td>Selects a Gigabit Ethernet interface as the primary interface of the WAAS device. Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td>PortChannel index</td>
<td>Selects a port channel interface as the primary interface of the WAAS device. Specify the port channel index number (1–4).</td>
</tr>
<tr>
<td>Standby group-index</td>
<td>Selects a standby group as the primary interface of the WAAS device. Specify the standby group number (1–3).</td>
</tr>
<tr>
<td>TenGigabitEthernet slot/port</td>
<td>Selects a TenGigabitEthernet interface as the primary interface of the WAAS device. Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td>management</td>
<td>Designates the specified interface for management traffic.</td>
</tr>
</tbody>
</table>

**Defaults**

The default primary interface is the Gigabit Ethernet 0/0 or 1/0 interface, depending on the hardware platform. If this interface is not configured, then the first operational interface on which a link beat is detected becomes the default primary interface. Interfaces with lower number IDs are polled first (for example, Gigabit Ethernet 1/0 is checked before 2/0). The Gigabit Ethernet interfaces are polled before the port-channel interfaces.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- appnav-controller
- central-manager

**Usage Guidelines**

You can change the primary interface without disabling the WAAS device. To change the primary interface, reenter the command string and specify a different interface.

**Note**

If you use the `restore factory-default preserve basic-config` command, the configuration for the primary interface is not preserved. If you want to reenable the WAAS device after using the `restore factory-default preserve basic-config` command, make sure to reconfigure the primary interface after the factory defaults are restored.
Setting the primary interface to be a Standby group does not imply that Standby functionality is available. You must configure Standby interfaces using the `interface standby` global configuration command.

### Examples
The following example shows how to specify the Gigabit Ethernet slot 1, port 0 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 1/0
```

The following example shows how to specify the Gigabit Ethernet slot 2, port 0 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 2/0
```

The following example shows how to specify port channel interface 1 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface portchannel 1
```

### Related Commands
- `(config) interface GigabitEthernet`
- `(config) interface TenGigabitEthernet`
(config) radius-server

To configure a set of RADIUS authentication server settings on the WAAS device, use the `radius-server` global configuration command. To disable RADIUS authentication server settings, use the `no` form of this command.

```
radius-server { host hostname | hostipaddr [primary] | key keyword | retransmit retries | timeout seconds }
```

```
no radius-server { host hostname | hostipaddr [primary] | key keyword | retransmit retries | timeout seconds }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>host hostname</code></td>
<td>Specifies a RADIUS server. You can have a maximum of 5 servers.</td>
</tr>
<tr>
<td><code>hostipaddr</code></td>
<td>IP address of the RADIUS server.</td>
</tr>
<tr>
<td><code>primary</code></td>
<td>(Optional) Sets the server as the primary server.</td>
</tr>
<tr>
<td><code>key keyword</code></td>
<td>Specifies the encryption key shared with the RADIUS servers. You can have a maximum of 15 characters.</td>
</tr>
<tr>
<td><code>retransmit retries</code></td>
<td>Specifies the number of transmission attempts (1–3) to an active server for a transaction. The default is 2.</td>
</tr>
<tr>
<td><code>timeout seconds</code></td>
<td>Specifies the time to wait for a RADIUS server to reply. The range is from 1 to 20 seconds. The default is 5 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

- `retransmit retries`: 2
- `timeout seconds`: 5

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

RADIUS authentication is disabled by default. You can enable RADIUS authentication and other authentication methods at the same time. You can also specify which method to use first. (See the (config) `authentication configuration` command.)

You can configure multiple RADIUS servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the RADIUS farm, in the order in which they were configured. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

### Examples

The following example shows how to specify a RADIUS server, specify the RADIUS key, and accept retransmit defaults. You can verify the configuration using the `show radius-server` command.
WAE(config)# radius-server host 172.16.90.121
WAE(config)# radius-server key myradiuskey
WAE(config)# show radius-server
Radius Configuration:
---------------------
Radius Authentication is on
  Timeout          = 5
  Retransmit       = 3
  Key              = ****
Servers
------

Related Commands  show radius-server
(config) service-insertion

To configure WNs, WNGs, ANCs, an ANCG, and a service context that are part of an AppNav Cluster, use the service-insertion global configuration command. To unconfigure settings, use the no form of this command.

```
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass-through offload enable</td>
<td>Enables pass-through traffic to be passed through at the ANC instead of being distributed to the WN and then passed through.</td>
</tr>
<tr>
<td>all</td>
<td>Offload all pass-through connections, including connections passed through due to error conditions.</td>
</tr>
<tr>
<td>config</td>
<td>Offload connections passed through due to missing policy configuration.</td>
</tr>
<tr>
<td>intermediate</td>
<td>Offload connections passed through due to an intermediate WN.</td>
</tr>
<tr>
<td>no-peer</td>
<td>Offload connections passed through due to no peer WN.</td>
</tr>
<tr>
<td>service-context contextname</td>
<td>Specifies the name of the service context to configure and enters service context configuration mode. If the service context does not exist, this command creates it.</td>
</tr>
<tr>
<td>rename newname</td>
<td>Renames an existing service context with the specified new name. This command is not available in the configuration submode, only at this top level.</td>
</tr>
<tr>
<td>appnav-controller distribute enable</td>
<td>Reenables distribution on an ANC if it has been disabled by the no form of this command. The default setting is enabled.</td>
</tr>
<tr>
<td>appnav-controller-group ancgrouplname</td>
<td>Specifies the name of an ANCG to configure and enters AppNav Controller group configuration mode. If the ANCG does not exist, this command creates it.</td>
</tr>
<tr>
<td>service-node</td>
<td>Enters service node configuration mode to configure WN settings on the device.</td>
</tr>
<tr>
<td>service-node-group sngrouplname</td>
<td>Specifies the name of a WNG to configure and enters service node group configuration mode to configure WNG settings. If the WNG does not exist, this command creates it.</td>
</tr>
<tr>
<td>swap src-ip</td>
<td>Enables swapping of client and WAAS device source IP address fields in intra-cluster traffic.</td>
</tr>
</tbody>
</table>

### Defaults

Distribution is enabled on an ANC. Pass-through offload is enabled for config, intermediate, and no-peer reasons.
Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Use the `service-insertion` command to configure the entities (WNs, WNGs, ANCs, an ANCG, and a service context) that are part of an AppNav Cluster. Some options of this command initiate configuration submodes, which are indicated by a different prompt (for example, config-scg). For more information on the configuration submode commands, see the following sections:

- `service-context`—“Service Context Configuration Mode Commands”
- `appnav-controller-group`—“AppNav Controller Group Configuration Mode Commands”
- `service-node`—“Service Node Configuration Mode Commands”
- `service-node-group`—“Service Node Group Configuration Mode Commands”

Within configuration submodes, you can use the various commands to define the settings of the entity. To return to global configuration mode, enter the `exit` command.

Each WN (and ANC acting as a WN) in the AppNav Cluster must be configured with WN settings by the `service-insertion service-node` command.

Each ANC in the AppNav Cluster must be configured with the following:

- ANCG settings by the `service-insertion appnav-controller-group` command
- WNG settings by the `service-insertion service-node-group` command
- Service context settings by the `service-insertion service-context` command

You can put an ANC into monitoring mode with the `no service-insertion appnav-controller distribute enable` command. This command stops the ANC from distributing any traffic to WNs for optimization. Instead, all traffic is passed through. This mode can be used for traffic monitoring for deployment sizing or troubleshooting purposes. If one ANC in an AppNav Cluster has this setting, all ANCs operate in monitor mode. You can reenable distribution with the `service-insertion appnav-controller distribute enable` command.

You can use the `service-insertion pass-through offload enable` command on a WN to prevent the ANCs from sending pass-through traffic to that WN. You can use this command on an ANC to prevent the ANC from sending pass-through traffic to any WN. The options allow you to specify what kind of pass-through traffic is to be off loaded by the ANC.

You may want to use the `swap src-ip` option if you are using a port channel for the cluster interface or there is a load balancing device between the ANC and WN. This option may improve the load balancing of traffic that the ANC distributes to WNs for optimization because it load balances based on the client IP address rather than the ANC IP address. (For traffic from the server to the client, it swaps the server IP address with the ANC IP address.) The Central Manager enables this feature automatically if any existing ANCs or WNs have port channel cluster interfaces that you configure with the Central Manager.

Examples

The following example shows how to configure and enable a WN:

```
WAE(config)# service-insertion service-node
WAE(config-sn)# description London branch node 1
WAE(config-sn)# authentication sha1 key myauthkey
WAE(config-sn)# shutdown max-wait 120
```
WAE(config-sn)# enable

The following example shows how to configure and enable two WNGs, each having two WNs, on an ANC:

ANC(config)# service-insertion service-node-group LondonNodeGroup
ANC(config-sng)# description London branch node group
ANC(config-sng)# service-node 10.10.10.15 description London branch node 1
ANC(config-sng)# service-node 10.10.10.16 description London branch node 2
ANC(config-sng)# exit
ANC(config)# service-insertion service-node-group ChicagoNodeGroup
ANC(config-sng)# description Chicago branch node group
ANC(config-sng)# service-node 10.10.11.25 description Chicago branch node 1
ANC(config-sng)# service-node 10.10.11.26 description Chicago branch node 2

The following example shows how to configure and enable an ANCG with two ANC members, on an ANC:

ANC(config)# service-insertion appnav-controller-group myControllerGroup
ANC(config-scg)# description AppNav Controller group
ANC(config-scg)# appnav-controller 10.10.8.15 description Primary controller
ANC(config-scg)# appnav-controller 10.10.8.16 description Secondary controller

The following example shows how to configure and enable a service context:

WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# description My service context
WAE(config-scxt)# authentication sha1 key myauthkey
WAE(config-scxt)# appnav-controller-group myControllerGroup
WAE(config-scxt)# service-node-group LondonNodeGroup
WAE(config-scxt)# service-node-group ChicagoNodeGroup
WAE(config-scxt)# service-policy myAppNavPolicy
WAE(config-scxt)# enable

The following example shows how to enable pass-through offloading of traffic for all reasons:

WAE(config)# service-insertion pass-through offload enable all

The following example shows how to enable the source IP address swapping feature:

WAE(config)# service-insertion swap src-ip

The following example shows how to enable the

Related Commands

show service-insertion
(config) service-policy

To configure AppNav and optimization service policy, use the `service-policy` global configuration command. To unconfigure settings, use the `no` form of this command.

```
service-policy { optimize policy-map-name | type
 { appnav config { remove-all | restore-predefined } |
 waas { config { remove-all | restore-predefined } | set ip dscp dscp-marking } }

no service-policy { optimize policy-map-name | type
 { appnav config { remove-all | restore-predefined } |
 waas { config { remove-all | restore-predefined } | set ip dscp dscp-marking } }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimize</td>
<td>Specifies the active optimization policy map.</td>
</tr>
<tr>
<td>policy-map-name</td>
<td></td>
</tr>
<tr>
<td>type</td>
<td>Specifies an operation on AppNav or optimization policies.</td>
</tr>
<tr>
<td>appnav config</td>
<td>Specifies an operation on AppNav policies.</td>
</tr>
<tr>
<td>remove-all</td>
<td>Removes all class map and policy map configurations.</td>
</tr>
<tr>
<td>restore-predefined</td>
<td>Replaces all class map and policy map configurations with factory default configurations.</td>
</tr>
<tr>
<td>waas</td>
<td>Specifies an operation on optimization policies.</td>
</tr>
<tr>
<td>set ip dscp dscp-marking</td>
<td>Specifies the default DSCP marking value, as shown in Table 3-2.</td>
</tr>
</tbody>
</table>

**Defaults**

The default DSCP marking value is `copy`.

**Command Modes**

`global configuration`

**Device Modes**

`application-accelerator`
`appnav-controller`

**Usage Guidelines**

The DSCP field in an IP packet enables different levels of service to be assigned to network traffic. Levels of service are assigned by marking each packet on the network with a DSCP code. DSCP is the combination of IP Precedence and Type of Service (ToS) fields. For more information, see RFC 2474.

A DSCP value is assigned in a policy rule and applies to all traffic associated with a class map. If a DSCP value is not assigned or defined, the default DSCP value is applied to traffic. The global default DSCP value is `copy`, which copies the DSCP value from the incoming packet and uses it for the outgoing packet.

Table 3-2 lists the valid DSCP marking values that you can specify.
Chapter 3      CLI Commands

Table 3-2  DSCP Marking Values

<table>
<thead>
<tr>
<th>DSCP Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 63</td>
<td>Marks packets with a numeric dscp from 0 to 63.</td>
</tr>
<tr>
<td>af11</td>
<td>Marks packets with AF11 dscp (001010).</td>
</tr>
<tr>
<td>af12</td>
<td>Marks packets with AF12 dscp (001100).</td>
</tr>
<tr>
<td>af13</td>
<td>Marks packets with AF13 dscp (001110).</td>
</tr>
<tr>
<td>af21</td>
<td>Marks packets with AF21 dscp (010010).</td>
</tr>
<tr>
<td>af22</td>
<td>Marks packets with AF22 dscp (010100).</td>
</tr>
<tr>
<td>af23</td>
<td>Marks packets with AF23 dscp (010110).</td>
</tr>
<tr>
<td>af31</td>
<td>Marks packets with AF31 dscp (011010).</td>
</tr>
<tr>
<td>af32</td>
<td>Marks packets with AF32 dscp (011100).</td>
</tr>
<tr>
<td>af33</td>
<td>Marks packets with AF33 dscp (011110).</td>
</tr>
<tr>
<td>af41</td>
<td>Marks packets with AF41 dscp (100010).</td>
</tr>
<tr>
<td>af42</td>
<td>Marks packets with AF42 dscp (100100).</td>
</tr>
<tr>
<td>af43</td>
<td>Marks packets with AF43 dscp (100110).</td>
</tr>
<tr>
<td>cs1</td>
<td>Marks packets with CS1 (precedence 1) dscp (001000).</td>
</tr>
<tr>
<td>cs2</td>
<td>Marks packets with CS2 (precedence 2) dscp (010000).</td>
</tr>
<tr>
<td>cs3</td>
<td>Marks packets with CS3 (precedence 3) dscp (011000).</td>
</tr>
<tr>
<td>cs4</td>
<td>Marks packets with CS4 (precedence 4) dscp (100000).</td>
</tr>
<tr>
<td>cs5</td>
<td>Marks packets with CS5 (precedence 5) dscp (101000).</td>
</tr>
<tr>
<td>cs6</td>
<td>Marks packets with CS6 (precedence 6) dscp (110000).</td>
</tr>
<tr>
<td>cs7</td>
<td>Marks packets with CS7 (precedence 7) dscp (111000).</td>
</tr>
<tr>
<td>copy</td>
<td>Copies the DSCP value from the incoming packet to the outgoing packet. (default)</td>
</tr>
<tr>
<td>default</td>
<td>Marks packets with default dscp (000000).</td>
</tr>
<tr>
<td>ef</td>
<td>Marks packets with EF dscp (101110).</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the default DSCP marking value to copy:

WAE(config)# service-policy type waas set ip dscp copy

The following example shows how to restore optimization policies:

WAE(config)# service-policy type waas config restore-predefined

The following example shows how to remove all AppNav policies:

WAE(config)# service-policy type appnav config remove-all

Related Commands

show service-policy
(config) class-map
(config) policy-map
(config) smb-conf

To manually configure the parameters for a WAAS device Samba configuration file, `smb.conf`, use the `smb-conf` global configuration command. To return a parameter to its default value, use the `no` form of this command.

```
smb-conf section {global} name attr-name value attr-value
no smb-conf section {global} name attr-name value attr-value
```

### Syntax Description

- **global**: Specifies one of the global print parameters.
- **name attr-name**: Specifies the name of the parameter in the specified section that you want to manually configure (up to 80 characters).
- **value attr-value**: Specifies the value of the parameter (up to 255 characters).

### Defaults

No default behavior or values.

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**
- **central-manager**

### Usage Guidelines

Legacy print services are no longer supported in WAAS 4.4.x and later. We recommend using the Windows print accelerator (see the (config) accelerator windows-print command).

The `smb.conf` file contains a variety of samba Configuration parameters. Global parameters apply to the server. Service level parameters, which define default settings for all other sections and shares, allow you to avoid the need to set the same value repeatedly. You can override these globally set share settings and specify other values for each individual section or share.

### Table 3-3 Samba Configuration Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>global parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>idmap uid</td>
<td>70000-200000</td>
<td>Range of user IDs allocated for mapping UNIX users to NT user SIDs.</td>
</tr>
<tr>
<td>idmap gid</td>
<td>70000-200000</td>
<td>Range of group IDs allocated for mapping UNIX groups to NT group SIDs.</td>
</tr>
</tbody>
</table>
### Table 3-3  Samba Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>winbind enum users</td>
<td>no</td>
<td>Parameter that does not enumerate domain users using MSRPC.</td>
</tr>
<tr>
<td>winbind enum groups</td>
<td>no</td>
<td>Parameter that does not enumerate domain groups using MSRPC.</td>
</tr>
<tr>
<td>winbind cache time</td>
<td>10</td>
<td>Time that a domain user or group information remains in the cache before expiring.</td>
</tr>
<tr>
<td>winbind use default domain</td>
<td>yes</td>
<td>Use the default domain for users and groups.</td>
</tr>
<tr>
<td>lpq cache time</td>
<td>0</td>
<td>Cache time for the results of the <code>lpq</code> command.</td>
</tr>
<tr>
<td>log file</td>
<td>/local/local1/errorlog/samba.log</td>
<td>Location where print-related errors are logged.</td>
</tr>
<tr>
<td>max log size</td>
<td>50</td>
<td>Maximum number of errors the log file can contain. After 50 errors, for each new error logged, the oldest error is removed.</td>
</tr>
<tr>
<td>socket options</td>
<td>TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192</td>
<td>Controls on the network layer of the operating system that allows the connection with the client to be tuned. This option is typically used to tune your Samba server for optimal performance for your local network.</td>
</tr>
<tr>
<td>smb ports</td>
<td>50139</td>
<td>Available ports on the Samba server.</td>
</tr>
<tr>
<td>local master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a local master browser on a subnet.</td>
</tr>
<tr>
<td>domain master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a domain master browser for its given workgroup.</td>
</tr>
<tr>
<td>preferred master</td>
<td>no</td>
<td>Parameter that sets <code>nmbd</code> to be a preferred master browser for its workgroup.</td>
</tr>
<tr>
<td>dns proxy</td>
<td>no</td>
<td>DNS proxy that is not enabled.</td>
</tr>
<tr>
<td>template homedir</td>
<td>/local/local1/</td>
<td>Home directory on File Engine or WAE.</td>
</tr>
<tr>
<td>template shell</td>
<td>/admin-shell</td>
<td>Directory of the administrative shell.</td>
</tr>
<tr>
<td>comment</td>
<td>Comment:</td>
<td>Optional description of the print server (or share) that is visible when a client queries the server. This parameter can also be set by the <code>windows-domain comment</code> command.</td>
</tr>
<tr>
<td>netbios name</td>
<td>MYFILEENGINE</td>
<td>Name of the Samba server hosting print services. This parameter can also be set by the <code>windows-domain netbios-name</code> command.</td>
</tr>
<tr>
<td>realm</td>
<td>CISCO</td>
<td>Active Directory domain name. Always uppercase. This parameter can also be set by the <code>windows-domain realm</code> command.</td>
</tr>
<tr>
<td>wins server</td>
<td>10.10.10.1</td>
<td>IP address of the Windows domain server used to authenticate user access to print services. This parameter can also be set by the <code>windows-domain wins-server</code> command.</td>
</tr>
<tr>
<td>password server</td>
<td>10.10.10.10</td>
<td>Optional IP address of the password server used for authentication of users. This parameter can also be set by the <code>windows-domain password-server</code> command.</td>
</tr>
</tbody>
</table>
Table 3-3  Samba Configuration Parameters (continued)

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>security</td>
<td>domain</td>
<td>Use Windows domain server for authentication. This parameter can also be set by the <code>windows-domain security</code> command.</td>
</tr>
<tr>
<td>client schannel</td>
<td>no</td>
<td>Secure channel indicator used for Windows domain server authentication.</td>
</tr>
<tr>
<td>ldap ssl</td>
<td>none</td>
<td>Defines whether or not Samba should use SSL when connecting to the LDAP server. The default is unconfigured. If set to “off,” SSL is never used when querying the directory server. To enable the LDAPv3 StartTLS extended operation (RFC2830), set to “yes”.</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to change the maximum size of the Samba error log file from the default of 50 errors to 75 errors:

```
WAE# smb-conf global max log size 75
```

The following example shows how to change the realm from the default of CISCO to MYCOMPANYNAME:

```
WAE# smb-conf global realm MYCOMPANYNAME
```

The following example shows how to enable LDAP server signing:

```
WAE# smb-conf global name “ldap ssl” value “yes”
```

Related Commands

- `show smb-conf`
- `windows-domain`
- `(config) accelerator windows-print`
- `(config) windows-domain`
To configure a standard access control list on a WAAS device to allow access through an SNMP agent, use the `snmp-server access-list` global configuration command. To remove a standard access control list, use the `no` form of this command.

```
(snmp-server access-list {num | name})
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>num</code></td>
<td>Standard access list number (1–99).</td>
</tr>
<tr>
<td><code>name</code></td>
<td>Standard access list name. You can use a maximum of 30 characters.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values.

### Command Modes

**global configuration**

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

If you are using an SNMP server ACL, you must permit the loopback interface.

### Examples

The following example shows how to allow the SNMP agent to check against access control list 12 before accepting or dropping packets:

```
WAE(config)# snmp-server access-list 12
```

**Note**

You must first create access list 12 using the `ip access-list standard` global configuration command.

### Related Commands

- `(config) ip access-list`
- `show running-config`
(config) snmp-server community

To enable the SNMP agent on a WAAS device and to set up the community access string to permit access to the SNMP agent, use the `snmp-server community` global configuration command. To disable the SNMP agent and remove the previously configured community string, use the `no` form of this command.

```
 snmp-server community string [group groupname | rw]
 no snmp-server community string [group groupname | rw]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td>Community string that acts like a password and permits access to the SNMP agent. You can use up to a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>group</code></td>
<td>(Optional) Specifies the group name to which the community string belongs. You can use a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>groupname</code></td>
<td>(Optional) Specifies the group name to which the community string belongs.</td>
</tr>
<tr>
<td><code>rw</code></td>
<td>(Optional) Enables read-write access to this community string.</td>
</tr>
</tbody>
</table>

**Defaults**

The SNMP agent is disabled and a community string is not configured. When configured, an SNMP community string by default permits read-only access to all objects.

**Command Modes**

- **global configuration**

**Device Modes**

- application-accelerator
- central-manager

**Examples**

The following example shows how to enable the SNMP agent and assign the community string `comaccess` to SNMP:

```
 WAE(config)# snmp-server community comaccess
```

The following example shows how to disable the SNMP agent and remove the previously defined community string:

```
 WAE(config)# no snmp-server community
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
(config) snmp-server community

(config) snmp-server notify inform

(config) snmp-server user

(config) snmp-server view

snmp trigger
**snmp-server contact**

To set the system server contact string on a WAAS device, use the `snmp-server contact` global configuration command. To remove the system contact information, use the `no` form of this command.

```
(snifg) snmp-server contact
```

```
no snmp-server contact
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contact line</code></td>
<td>Specifies the text for MIB-II object <code>sysContact</code>. This is the identification of the contact person for this managed node.</td>
</tr>
</tbody>
</table>

**Defaults**

No system contact string is set.

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`
- `central-manager`

**Usage Guidelines**

The system contact string is the value stored in the MIB-II system group `sysContact` object.

**Examples**

The following example shows how to set a system contact string and then remove it:

```
WAE(config)# snmp-server contact Dial System Operator at beeper # 27345
WAE(config)# no snmp-server contact
```

**Related Commands**

- `(config) snmp-server community`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server host`
- `(config) snmp-server location`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `snmp trigger`
To enable the WAAS device to send SNMP traps, use the `snmp-server enable traps` global configuration command. To disable all SNMP traps or only SNMP authentication traps, use the `no` form of this command.

```
(snmp-server enable traps [alarm [clear-critical | clear-major | clear-minor | raise-critical | raise-major | raise-minor]]

(snmp-server enable traps config | entity | event)

(snmp-server enable traps content-engine [disk-fail | disk-read | disk-write | overload-bypass | transaction-log])

(snmp-server enable traps snmp [authentication | cold-start | linkdown | linkup])
```

### Syntax Description

- **alarm** (Optional) Enables WAAS alarm traps.
- **clear-critical** (Optional) Enables clear-critical alarm traps.
- **clear-major** (Optional) Enables clear-major alarm traps.
- **clear-minor** (Optional) Enables clear-minor alarm traps.
- **raise-critical** (Optional) Enables raise-critical alarm traps.
- **raise-major** (Optional) Enables raise-major alarm traps.
- **raise-minor** (Optional) Enables raise-minor alarm traps.
- **config** Enables CiscoConfigManEvent traps.
- **entity** Enables SNMP entity traps.
- **event** Enables Event MIB traps.
- **content-engine** Enables SNMP WAAS traps.
- **disk-fail** (Optional) Enables disk failure error traps.
- **disk-read** (Optional) Enables disk read error traps.
- **disk-write** (Optional) Enables disk write error traps.
- **overload-bypass** (Optional) Enables WCCP overload bypass error traps.
- **transaction-log** (Optional) Enables transaction log write error traps.
- **snmp** Enables SNMP-specific traps.
- **authentication** (Optional) Enables authentication trap.
- **cold-start** (Optional) Enables cold start trap.
- **linkdown** (Optional) Enables link down trap.
- **linkup** (Optional) Enables link up trap.

### Defaults

This command is disabled by default. No traps are enabled.

### Command Modes

```
global configuration
```
Device Modes

application-accelerator
central-manager

Usage Guidelines

In the WAAS software the following six generic alarm traps are available in the CISCO-CONTENT-ENGINE-MIB:

<table>
<thead>
<tr>
<th>Name of Alarm Trap</th>
<th>Severity</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cceAlarmCriticalRaised</td>
<td>Critical</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmCriticalCleared</td>
<td>Critical</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMajorRaised</td>
<td>Major</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMajorCleared</td>
<td>Major</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMinorRaised</td>
<td>Minor</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMinorCleared</td>
<td>Minor</td>
<td>Cleared</td>
</tr>
</tbody>
</table>

By default, these six general alarm traps are disabled.

These six general alarm traps provide SNMP and Node Health Manager integration. You can enable or disable each of these six alarm traps through the WAAS CLI.

To configure traps, you must enter the `snmp-server enable traps` command. If you do not enter the `snmp-server enable traps` command, no traps are sent.

The `snmp-server enable traps` command is used with the `snmp-server host` command. Use the `snmp-server host` command to specify which host or hosts receive SNMP traps. To send traps, you must configure at least one host using the `snmp-server host` command.

To allow a host to receive a trap, you must enable both the `snmp-server enable traps` command and the `snmp-server host` command for that host.

You must enable SNMP with the `snmp-server community` command.

To disable the sending of the MIB-II SNMP authentication trap, you must enter the command `no snmp-server enable traps snmp authentication`.

Examples

The following example shows how to enable the WAAS device to send all traps to the host 172.31.2.160 using the community string public:

```
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.31.2.160 public
```

The following example shows how to disable all traps:

```
WAE(config)# no snmp-server enable traps
```

Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
(config) snmp-server enable traps

(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
snmp trigger
To define a user security model group for a WAAS device, use the **snmp-server group** global configuration command. To remove the specified group, use the **no** form of this command.

```
snmp-server group name { v1 [notify name] [read name] [write name] | v2c [notify name] [read name] [write name] | v3 { auth [notify name] [read name] [write name] | noauth [notify name] [read name] [write name] | priv [notify name] [read name] [write name] }}
```

```
no snmp-server group name { v1 [notify name] [read name] [write name] | v2c [notify name] [read name] [write name] | v3 { auth [notify name] [read name] [write name] | noauth [notify name] [read name] [write name] | priv [notify name] [read name] [write name] }}
```

### Syntax Description

- **group name**
  - Specifies the SNMP group. You can enter a maximum of 64 characters.
- **v1**
  - Specifies the group using the Version 1 Security Model.
- **notify name**
  - (Optional) Specifies a notify view name for the group that enables you to specify a notify, inform, or trap. You can enter a maximum of 64 characters.
- **read name**
  - (Optional) Specifies a read view name for the group that enables you to view only the contents of the agent. You can enter a maximum of 64 characters.
- **write**
  - (Optional) Specifies a write view name for the group that enables you to enter data and configure the contents of the agent. You can enter a maximum of 64 characters.
- **v2c**
  - Specifies the group using the Version 2c Security Model.
- **v3**
  - Specifies the group using the User Security Model (SNMPv3).
- **auth**
  - Specifies the group using the AuthNoPriv Security Level.
- **noauth**
  - Specifies the group using the noAuthNoPriv Security Level.
- **priv**
  - Specifies the group using the AuthPriv Security Level.

### Defaults

The default is that no user security model group is defined.

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**
- **central-manager**

### Usage Guidelines

The maximum number of SNMP groups that can be created is 10.
Select one of three SNMP security model groups: Version 1 (v1) Security Model, Version 2c (v2c) Security Model, or the User Security Model (v3 or SNMPv3). Optionally, you then specify a notify, read, or write view for the group for the particular security model chosen. The v3 option allows you to specify the group using one of three security levels: auth (AuthNoPriv Security Level), noauth (noAuthNoPriv Security Level), or priv (AuthPriv Security Level).

Examples

The following example shows how to define a user security model group named acme that uses the SNMP version 1 security model and a view name of mymib for notifications:

WAE(config)# snmp-server group acme v1 notify mymib

Related Commands

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
- (config) snmp-server notify inform
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
**Syntax**

```
(config) snmp-server host
```

To specify the recipient of a host SNMP trap operation, use the `snmp-server host` global configuration command. To remove the specified host, use the `no` form of this command.

```
snmp-server host {hostname | ip-address} communitystring
 [v2c [retry number] [timeout seconds] | v3 [auth [retry number] [timeout seconds] | noauth [retry number] [timeout seconds] | priv [retry number] [timeout seconds]]

no snmp-server host {hostname | ip-address} communitystring
 [v2c [retry number] [timeout seconds] | v3 [auth [retry number] [timeout seconds] | noauth [retry number] [timeout seconds] | priv [retry number] [timeout seconds]]
```

**Syntax Description**

- **hostname**: Hostname of the SNMP trap host that will be sent in the SNMP trap messages from the WAAS device.
- **ip-address**: IP address of the SNMP trap host that will be sent in the SNMP trap messages from the WAAS device.
- **communitystring**: Password-like community string sent in the SNMP trap messages from the WAE. You can enter a maximum of 64 characters.
- **v2c**: (Optional) Specifies the Version 2c Security Model.
- **retry number**: (Optional) Sets the count for the number of retries (1–10) for the inform request. (The default is 2 tries.)
- **timeout seconds**: (Optional) Sets the timeout for the inform request (1–1000 seconds). The default is 15 seconds.
- **v3**: (Optional) Specifies the User Security Model (SNMPv3).
- **auth**: Sends a notification using the AuthNoPriv Security Level.
- **noauth**: Sends a notification using the noAuthNoPriv Security Level.
- **priv**: Sends a notification using the AuthPriv Security Level.

**Defaults**

This command is disabled by default. No traps are sent. If enabled, the default version of the SNMP protocol used to send the traps is SNMP Version 1.

- **retry number**: 2 retries
- **timeout**: 15 seconds

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- central-manager
Usage Guidelines

If you do not enter an `snmp-server host` command, no traps are sent. To configure the WAAS device to send SNMP traps, you must enter at least one `snmp-server host` command. To enable multiple hosts, you must enter a separate `snmp-server host` command for each host. The maximum number of `snmp-server host` commands is four.

When multiple `snmp-server host` commands are given for the same host, the community string in the last command is used.

The `snmp-server host` command is used with the `snmp-server enable traps` command to enable SNMP traps.

You must enable SNMP with the `snmp-server community` command.

Examples

The following example shows how to send the SNMP traps defined in RFC 1157 to the host specified by the IP address 172.16.2.160. The community string is comaccess:

```
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.16.2.160 comaccess
```

The following example shows how to remove the host 172.16.2.160 from the SNMP trap recipient list:

```
WAE(config)# no snmp-server host 172.16.2.160
```

Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server location`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `snmp trigger`
To set the SNMP system location string on a WAAS device, use the `snmp-server location` global configuration command. To remove the location string, use the `no` form of this command.

```
(snmp-server location) line

no (snmp-server location) line
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>line</code></td>
<td>Specifies the text for MIB-II object <code>sysLocation</code>. This string describes the physical location of this node.</td>
</tr>
</tbody>
</table>

**Defaults**

No system location string is set.

**Command Modes**

global configuration

**Device Modes**

application-accelerator
central-manager

**Usage Guidelines**

The system location string is the value stored in the MIB-II system group system location object. You can see the system location string with the `show snmp` EXEC command.

**Examples**

The following example shows how configure a system location string:

```
WAE(config)# snmp-server location Building 3/Room 214
```

**Related Commands**

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server host`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `snmp trigger`
(config) snmp-server mib

To configure persistence for the SNMP Event MIB, use the `snmp-server mib` global configuration command. To disable the Event MIB, use the `no` form of this command.

```
snmp-server mib persist event

no snmp-server mib persist event
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>persist</th>
<th>Configures MIB persistence.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>event</td>
<td>Enables MIB persistence for the Event MIB.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

The Event MIB can set the threshold on any MIB variables supported by the WAAS software and store the threshold permanently on the disk.

The WAAS software implementation of SNMP supports the following MIBs:

- ACTONA-ACTASTORE-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-CDP-MIB
- CISCO-CONTENT-ENGINE-MIB (partial)
- CISCO-ENTITY-ASSET-MIB
- CISCO-SMI
- CISCO-TC
- ENTITY-MIB
- EVENT-MIB
- HOST-RESOURCES-MIB
- MIB-II
- SNMP-COMMUNITY-MIB
- SNMP-FRAMEWORK-MIB
- SNMP-NOTIFICATION-MIB
- SNMP-TARGET-MIB
- SNMP-USM-MIB
- SNMPv2
- SNMP-VACM-MIB

**Note**
The WAAS software supports six generic alarm traps in the CISCO-CONTENT-ENGINE-MIB for SNMP and Node Health Manager integration.

**Examples**
The following example shows how to set persistence for the Event MIB:

```plaintext
WAE(config)# snmp-server mib persist event
```

**Related Commands**
- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server notify inform
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
(config) snmp-server notify inform

To configure the SNMP notify inform request on a WAAS device, use the `snmp-server notify inform` global configuration command. To return the setting to the default value, use the `no` form of this command.

```
snmp-server notify inform

no snmp-server notify inform
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
If you do not enter the `snmp-server notify inform` command, the default is an SNMP trap request.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to configure an SNMP notify inform request versus the default SNMP trap:

```
WAE(config)# snmp-server notify inform
```

**Related Commands**
- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
### (config) snmp-server trap-source

To set the source interface from which SNMP traps are sent on a WAAS device, use the `snmp-server trap-source` global configuration command. To remove the trap source configuration, use the `no` form of this command.

```
(snmp-server trap-source
{ GigabitEthernet slot/port | PortChannel index | Standby grpnumber |
 TenGigabitEthernet slot/port }

no snmp-server trap-source { GigabitEthernet slot/port | PortChannel index |
 Standby grpnumber | TenGigabitEthernet slot/port | bvi bridge-id }
```

#### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>Selects a Gigabit Ethernet interface to configure as the trap source. The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td>slot/port</td>
<td></td>
</tr>
<tr>
<td>PortChannel</td>
<td>Selects a port channel (1–4) to configure as the trap source.</td>
</tr>
<tr>
<td>index</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>Selects a standby group (1–3) to configure as the trap source.</td>
</tr>
<tr>
<td>grpnumber</td>
<td></td>
</tr>
<tr>
<td>TenGigabitEthernet</td>
<td>Selects a TenGigabitEthernet interface to configure as the trap source. The slot number and port number are separated with a forward slash character (/). Valid slot and port values depend on the hardware platform.</td>
</tr>
<tr>
<td>slot/port</td>
<td></td>
</tr>
<tr>
<td>bvi</td>
<td>Selects a bridge virtual interface (1–4) to configure as the trap source.</td>
</tr>
<tr>
<td>bridge-id</td>
<td></td>
</tr>
</tbody>
</table>

#### Defaults

No system trap source is set.

#### Command Modes

- global configuration

#### Device Modes

- application-accelerator
- central-manager

#### Examples

The following example shows how to configure gigabit Ethernet interface 1/0 as the trap source:

```
WAE(config)# snmp-server trap-source gigabitethernet 1/0
```

#### Related Commands

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server mib
(config) snmp-server notify inform

(config) snmp-server user

(config) snmp-server view

snmp trigger
(config) snmp-server user

To define a user who can access the SNMP server, use the `snmp-server user` global configuration command. To remove access, use the `no` form of this command.

```plaintext
snmp-server user name group
 [auth {md5 password [priv password]} | sha password [priv password]] | remote octetstring [auth {md5 password [priv password]} | sha password [priv password]]]

no snmp-server user name group
 [auth {md5 password [priv password]} | sha password [priv password]] | remote octetstring [auth {md5 password [priv password]} | sha password [priv password]]]
```

**Syntax Description**

- `name group`: Name and group of the SNMP user. Use letters, numbers, dashes, and underscores, but no blanks. The name specifies the user on the SNMP host who wants to communicate with the SNMP agent on the WAAS device. You can enter a maximum of 32 characters for the name. The group specifies the group to which the SNMP user belongs. You can enter a maximum of 64 characters for the group.

- `auth`: (Optional) Configures user authentication parameters.

  - `md5 password`: Configures HMAC MD5 user authentication password.
  - `priv password`: (Optional) Configures authentication HMAC-MD5 user private password. You can enter a maximum of 256 characters.
  - `sha password`: Configures the HMAC-SHA authentication password. You can enter a maximum of 256 characters.

- `remote octetstring`: (Optional) Specifies the globally unique identifier (engineID) for a remote SNMP entity (for example, the SNMP network management station) for at least one of the SNMP users (10 to 64 characters, not counting colons).

  To send an SNMPv3 inform message, you must configure at least one SNMPv3 user with a remote SNMP ID option on the WAAS device. The SNMP ID is entered in octet string form. For example, if the IP address of a remote SNMP entity is 192.147.142.129, then the octet string would be 00:00:63:00:00:00:a1:c0:93:8e:81. (Colons will be removed in the show running-config command output.)

**Defaults**

No default behavior or values.

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`
central-manager

Examples

The following example shows how to create an SNMPv3 user account on the WAAS device. The SNMPv3 user is named acme and belongs to the group named admin. Because this SNMP user account has been set up with no authentication password, the SNMP agent on the WAAS device does not perform authentication on SNMP requests from this user.

```
WAE(config)# snmp-server user acme admin
```

Related Commands

```
(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib
(config) snmp-server notify inform
(config) snmp-server view
snmp trigger
```
To define an SNMPv2 MIB view on a WAAS device, use the `snmp-server view` global configuration command. To remove the MIB view definition, use the `no` form of this command.

```
(snmp-server view viewname MIBfamily {excluded | included})
no snmp-server view viewname MIBfamily {excluded | included}
```

### Syntax Description

**viewname**
- Name of this family of view subtrees and a subtree of the MIB. You can enter a maximum of 64 characters.

**MIBfamily**
- Excludes the MIB family from the view.
- Includes the MIB family in the view.

### Defaults

No default behavior or values.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Examples

The following example shows how to define an SNMPv2 MIB view:

```
WAE(config)# snmp-server view fileview ciscoFileEngineMIB included
```

### Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server host`
- `(config) snmp-server location`
- `(config) snmp-server mib`
- `(config) snmp-server notify inform`
- `(config) snmp-server user`
- `snmp trigger`
(config) sshd

To enable the SSH daemon on a WAAS device, use the `sshd` global configuration command. To disable the SSH daemon on a WAAS device, use the `no` form of this command.

```
sshd [allow-non-admin-users | enable | password-guesses number | timeout seconds]
```

```
o sshd [allow-non-admin-users | enable | password-guesses number | timeout seconds]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>allow-non-admin-users</td>
<td>Allows nonadministrative users to gain SSH access to the chosen device (or device group). By default, this option is disabled.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the SSH daemon on a WAAS device.</td>
</tr>
<tr>
<td>password-guesses</td>
<td>Specifies the maximum number of allowable password guesses per connection (1–3). The default is 3.</td>
</tr>
<tr>
<td>number</td>
<td></td>
</tr>
<tr>
<td>timeout</td>
<td>Configures the number of seconds for which an SSH session will be active during the negotiation (authentication) phase between the client and server before it times out. The SSH login grace time value in seconds is 1–99999. The default is 300. If you have established an SSH connection to the WAAS device but have not entered the username when prompted at the login prompt, the connection will be terminated by the WAAS device if the grace period expires even after a successful login.</td>
</tr>
<tr>
<td>seconds</td>
<td></td>
</tr>
</tbody>
</table>

### Defaults

By default, the SSH daemon is disabled on a WAAS device. If you use the `sshd enable` command to enable the SSH daemon on a WAAS device, the following default settings are used:

- **password-guesses number**: 3 guesses
- **timeout seconds**: 300 seconds
- **version**: ssh version 2 protocol is enabled

**Note** The SSH version 1 protocol is no longer supported. Only the SSH version 2 protocol is supported by the WAAS device.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager
Usage Guidelines

Before you enable the `sshd` command, use the `ssh-key-generate` command to generate a private and a public host key, which the client uses to verify the server identity.

Although the `sshd password-guesses` command specifies the number of allowable password guesses from the SSH server side, the actual number of password guesses for an SSH login session is determined by the combined number of allowable password guesses of the SSH server and the SSH client. Some SSH clients limit the maximum number of allowable password guesses to three (or to one in some cases), even though SSH server side allows more than this number of guesses.

When you enter the `sshd password-guesses` command and specify \( n \) allowable password guesses, certain SSH clients interpret this number as \( n+1 \). For example, when configuring the number of guesses to two by issuing the command `sshd password-guesses 2` for a particular device, SSH sessions from some SSH clients will allow three password guesses.

Note

You can use the Telnet daemon with the WAAS device. SSH does not replace Telnet.

Examples

The following example shows how to enable and configure a Secure Shell daemon on the WAAS device:

```
WAE(config)# sshd enable
WAE(config)# sshd timeout 20
```

Related Commands

`ssh-key-generate`
(config) ssh-key-generate

To generate the SSH host key for a WAAS device, use the `ssh-key-generate` global configuration command. To remove the SSH key, use the `no` form of this command.

```
ssh-key-generate [key-length length]
```

```
no ssh-key-generate [key-length length]
```

### Syntax Description

**key-length length**: (Optional) Configures the length of the SSH key. The number of bits is 512–2048.

### Defaults

**key-length length**: 1024 bits

### Command Modes

- **global configuration**

### Device Modes

- **application-accelerator**
- **central-manager**

### Usage Guidelines

Before you enter the `sshd enable` command, enter the `ssh-key-generate` command to generate a private and a public host key, which the client programs use to verify a server identity.

When you use an SSH client and log in to a WAAS device, the public key for the SSH daemon that is running on the device is recorded in the client machine known_hosts file in your home directory. If you regenerate the host key by specifying the number of bits in the `key-length` command option, you must delete the old public key entry associated with the WAAS device in the known_hosts file before running the SSH client program to log in to the WAAS device. When you use the SSH client program after deleting the old entry, the known_hosts file is updated with the new SSH public key for the WAAS device.

### Examples

The following example shows how to generate an SSH public key and then enables the SSH daemon on the WAAS device:

```
WAE(config)# ssh-key-generate
Ssh host key generated successfully
Saving the host key to box ...
Host key saved successfully
WAE(config)# sshd enable
Starting ssh daemon ...
Ssh daemon started successfully
```

### Related Commands

- **(config) ssdh**
(config) stats-collector logging

To configure the statistics collector for the SMB accelerator, use the `stats-collector logging` global configuration command. To unconfigure the statistics collector, use the `no` form of this command.

```
stats-collector logging {enable | rate {10 | 30}}

no stats-collector logging {enable | rate {10 | 30}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the statistics collector.</td>
</tr>
<tr>
<td>rate {10</td>
<td>30}</td>
</tr>
</tbody>
</table>

### Defaults

The statistics collector is disabled. The collection interval is set to 30 seconds.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- appnav-controller

### Usage Guidelines

This command configures periodic statistics logging for the SMB application accelerator. After enabling logging, you can disable it with the `no` form of the command. Statistics for the most recent 14 days are saved.

### Examples

The following example shows how to enable statistics collection:

```
WAE(config)# stats-collector logging enable
```

The following example shows how to disable statistics collection:

```
WAE(config)# no stats-collector logging enable
```

### Related Commands

- `copy monitoring-log`
(config) system jumbomtu

To configure a jumbo MTU on all devices interfaces, use the `system jumbomtu` global configuration command. To remove the jumbo MTU, use the `no` form of this command.

```
 system jumbomtu size
 no system jumbomtu size
```

**Syntax Description**

- `size` Configures the size of the MTU (576–9000 or 9216 bytes, depending on platform).

**Defaults**

MTU size is 1500 bytes.

**Command Modes**

- Global configuration

**Device Modes**

- Application-accelerator
- Appnav-controller

**Usage Guidelines**

This command is available only on the following platforms: WAE-674/7341/7371, WAVE-294/594/694/7541/7571/8541, and vWAAS. This command changes the MTU setting for all interfaces on the device, including logical interfaces with at least one physical member, and may cause current active connections to time out. After you change the MTU using this command, you cannot change the MTU of individual interfaces.

**Examples**

The following example shows how to configure a jumbo MTU:

```
WAE(config)# system jumbomtu 9000
Changing system mtu setting will change the MTU values on all the interfaces. This may cause the current active connections in the device to timeout.
Are you sure you want to do this? [y/n] [n]y
```

**Related Commands**

- `show interface`
(config) tacacs

To configure TACACS+ server parameters on a WAAS device, use the tacacs global configuration command. To disable individual options, use the no form of this command.

```
tacacs { host { hostname | ip-address } [primary | port number] | key keyword | password ascii | retransmit retries | timeout seconds }
```

```
no tacacs { host { hostname | ip-address } | key keyword | password ascii | retransmit retries | timeout seconds }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Specifies a server address.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TACACS+ server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TACACS+ server.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Sets the server as the primary server.</td>
</tr>
<tr>
<td>port number</td>
<td>Sets the port number of the TACACS+ server. If not specified, the default port 49 is used.</td>
</tr>
<tr>
<td>key keyword</td>
<td>Sets the security word. An empty string is the default.</td>
</tr>
<tr>
<td>password ascii</td>
<td>Specifies ASCII as the TACACS+ password type.</td>
</tr>
<tr>
<td>retransmit retries</td>
<td>Sets the number of times that requests are retransmitted to a server. The number of retry attempts allowed is 1–3. The default is 2 retry attempts.</td>
</tr>
<tr>
<td>timeout seconds</td>
<td>Sets the number of seconds to wait before a request to a server is timed out. The timeout is in seconds (1–20). The default is 5 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

- **port number**: 49
- **keyword**: none (empty string)
- **timeout seconds**: 5
- **retries**: 2
- **password**: The default password type is PAP.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

To enable user authentication with a TACACS+ server, use the `authentication` global configuration command. (See the `(config) authentication configuration` command.)

### Note

When AAA Command Authorization is enabled for a device through the Central Manager GUI, TACACS+ CLI configuration changes are not allowed and tacacs commands will fail.
You can use the TACACS+ remote database to maintain login and configuration privileges for administrative users. The `tacacs host` command allows you to configure the network parameters required to access the remote database.

Use the `tacacs key` command to specify the TACACS+ key, used to encrypt the packets transmitted to the server. This key must be the same as the one specified on the server daemon. The maximum number of characters in the key must not exceed 32 printable ASCII characters. An empty key string is the default. All leading spaces are ignored; spaces within and at the end of the key string are not ignored. Double quotes are not required even if there are spaces in the key.

**Note** If you configure a TACACS+ key on the WAAS device (the TACACS+ client), make sure that you configure an identical key on the external TACACS+ server. Do not use the following characters: backwards single quote (‘), double quote (“), pipe (|), closing bracket (]), number sign (#), or backslash (\).

The `tacacs timeout` is the number of seconds that the WAAS device waits before declaring a timeout on a request to a particular TACACS+ server. The range is from 1 to 20 seconds, with 5 seconds as the default. The number of times that the WAAS device repeats a retry-timeout cycle before trying the next TACACS+ server is specified by the `tacacs retransmit` command. The default is two retry attempts.

Three unsuccessful login attempts are permitted. TACACS+ logins may appear to take more time than local logins depending on the number of TACACS+ servers and the configured timeout and retry values.

Use the `tacacs password ascii` command to specify the TACACS+ password type as ASCII. The default password type is PAP (Password Authentication Protocol). When the `no tacacs password ascii` command is used to disable the ASCII password type, the password type is once again reset to PAP.

If you do not use the `primary` keyword to specify the primary server, the primary server is the first one configured. If you remove the primary server by using the `no tacacs host` command, the first configured server (other than the removed server) becomes the primary server.

You can configure multiple TACACS+ servers; authentication is attempted on the primary server first. If the primary server is unreachable, then authentication is attempted on the other servers in the TACACS+, in the order in which they were configured. If authentication fails for any reason other than a server is unreachable, authentication is not attempted on the other servers in the farm. This process applies regardless of the setting of the `authentication fail-over server-unreachable` command.

**Examples**

The following example shows how to configure the key used in encrypting packets:

```
WAE(config)# tacacs key human789
```

The following example shows how to configure the host named spearhead as the primary TACACS+ server:

```
WAE(config)# tacacs host spearhead primary
```

The following example shows how to set the timeout interval for the TACACS+ server:

```
WAE(config)# tacacs timeout 10
```

The following example shows how to set the number of times that authentication requests are retried (retransmitted) after a timeout:

```
WAE(config)# tacacs retransmit 5
```

The following example shows the password type to be PAP by default:

```
WAE# show tacacs
```
Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)

TACACS+ Configuration:
---------------------
TACACS+ Authentication is off
Key        = *****
Timeout    = 5
Retransmit = 2
Password type: pap

<table>
<thead>
<tr>
<th>Server</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.107.192.148</td>
<td>primary</td>
</tr>
<tr>
<td>10.107.192.168</td>
<td></td>
</tr>
<tr>
<td>10.77.140.77</td>
<td></td>
</tr>
</tbody>
</table>

You can configure the password type to be ASCII using the `tacacs password ascii` command. You can then verify the changes using the `show tacacs` command.

```
WAE(config)# tacacs password ascii
WAE(config)# exit
WAE# show tacacs
```

Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)

TACACS+ Configuration:
---------------------
TACACS+ Authentication is off
Key        = *****
Timeout    = 5
Retransmit = 2
Password type: ascii

<table>
<thead>
<tr>
<th>Server</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.107.192.148</td>
<td>primary</td>
</tr>
<tr>
<td>10.107.192.168</td>
<td></td>
</tr>
<tr>
<td>10.77.140.77</td>
<td></td>
</tr>
</tbody>
</table>

**Related Commands**

- `(config) authentication configuration`
- `show authentication`
- `show statistics authentication`
- `show statistics tacacs`
- `show tacacs`
To configure TCP parameters on a WAAS device, use the `tcp` global configuration command. To disable TCP parameters, use the `no` form of this command.

```
tcp { cwnd-base segments | ecn enable | increase-xmit-timer-value value | init-ss-threshold value | keepalive-probe-cnt count | keepalive-probe-interval seconds | keepalive-timeout seconds}
```

```
no tcp { cwnd-base segments | ecn enable | increase-xmit-timer-value value | init-ss-threshold value | keepalive-probe-cnt count | keepalive-probe-interval seconds | keepalive-timeout seconds}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cwnd-base segments</code></td>
<td>Sets initial send congestion window in segments (1–10).</td>
</tr>
<tr>
<td><code>ecn enable</code></td>
<td>Enables TCP explicit congestion notification.</td>
</tr>
<tr>
<td><code>increase-xmit-timer-value value</code></td>
<td>Specifies the factor (1-3) used to modify the length of the retransmit timer by 1 to 3 times the base value determined by the TCP algorithm. <strong>Note</strong> Use this keyword with caution. The keyword can improve throughput when TCP is used over slow reliable connections but should never be changed in an unreliable packet delivery environment.</td>
</tr>
<tr>
<td><code>init-ss-threshold value</code></td>
<td>Sets initial slow-start threshold value (2-10).</td>
</tr>
<tr>
<td><code>keepalive-probe-cnt count</code></td>
<td>Specifies the length of time that the WAAS device keeps an idle connection open. The number of probe counts is 1–10.</td>
</tr>
<tr>
<td><code>keepalive-probe-interval seconds</code></td>
<td>Specifies the number of times that the WAAS device retries a connection. The keepalive probe interval is in seconds (1–300).</td>
</tr>
<tr>
<td><code>keepalive-timeout seconds</code></td>
<td>Specifies the length of time that the WAAS device keeps a connection open before disconnecting. The keepalive timeout is in seconds (1–3600).</td>
</tr>
</tbody>
</table>

### Defaults

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tcp cwnd-base</code></td>
<td>2</td>
</tr>
<tr>
<td><code>tcp increase-xmit-timer-value</code></td>
<td>1</td>
</tr>
<tr>
<td><code>tcp init-ss-threshold</code></td>
<td>2 segments</td>
</tr>
<tr>
<td><code>tcp keepalive-probe-cnt</code></td>
<td>4</td>
</tr>
<tr>
<td><code>tcp keepalive-probe-interval</code></td>
<td>75 seconds</td>
</tr>
<tr>
<td><code>tcp keepalive-timeout</code></td>
<td>90 seconds</td>
</tr>
</tbody>
</table>

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

---

Cisco Wide Area Application Services Command Reference
Usage Guidelines

The following are the usage guidelines for this command:

⚠️ Caution

Be careful using these parameters. In nearly all environments, the default TCP settings are adequate. Fine tuning of TCP settings is for network administrators who are experienced and have a full understanding of TCP operation details. See the *Cisco Wide Area Application Services Configuration Guide* for more information.

Use the `tcp keepalive-probe-cnt` global configuration command to specify how many times the WAAS device should attempt to connect to the device before closing the connection. The count can be from 1 to 10. The default is 4 attempts.

Use the `tcp keepalive-probe-interval` global configuration command to specify how often the WAAS device is to send out a TCP keepalive. The interval can be from 1 to 120 seconds. The default is 75 seconds.

Use the `tcp keepalive-timeout` global configuration command to wait for a response (the device does not respond) before the WAAS device logs a miss. The timeout can be from 1 to 120 seconds. The default is 90 seconds.

Examples

The following example shows how to enable a TCP explicit congestion notification:

```
WAES(config)# tcp ecn enable
```

Related Commands

- `clear arp-cache`
- `show statistics tcp`
- `show tcp`
(config) telnet enable

To enable Telnet on a WAAS device, use the `telnet enable` global configuration command. To disable this feature, use the `no` form of this command.

```
telnet enable
no telnet enable
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
By default, the Telnet service is enabled on a WAAS device.

**Command Modes**
global configuration

**Device Modes**
application-accelerator
central-manager

**Usage Guidelines**
Use terminal emulation software to start a Telnet session with a WAAS device.
You must use a console connection instead of a Telnet session to define device network settings on the WAAS device. However, after you have used a console connection to define the device network settings, you can use a Telnet session to perform subsequent configuration tasks.

**Note**
Messages transported between the client and the device are not encrypted.

**Examples**
The following example shows how to enable the use of Telnet on the WAAS device:

```
WAE(config)# telnet enable
```

**Related Commands**
- `telnet`
- `show telnet`
(config) tfo exception

To configure exception handling for Traffic Flow Optimization (TFO), use the `tfo exception` global configuration command. To disable TFO exception handling configuration, use the `no` form of this command.

```
tfo exception { coredump | debug | no-coredump }

no tfo exception { coredump | debug | no-coredump }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>coredump</th>
<th>Writes a core file (default).</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>debug</td>
<td>Hangs the system until it is explicitly restarted.</td>
</tr>
<tr>
<td></td>
<td>no-coredump</td>
<td>Restarts the accelerator and does not write a core file.</td>
</tr>
</tbody>
</table>

**Defaults**
The default is coredump.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Examples**
The following example shows how to write TFO exception handling to a core file using the `tfo exception` command:

```
WAE(config)# tfo exception coredump
```

**Related Commands**
`(config) tfo optimize`
To configure a WAE for Traffic Flow Optimization (TFO), use the `tfo optimize` global configuration command. To disable TFO optimization, use the `no` form of this command.

```
tfo optimize {DRE {yes | no} compression {LZ | none} | full}
no tfo optimize {DRE {yes | no} compression {LZ | none} | full}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRE</td>
<td>Configures TFO optimization with or without Data Redundancy Elimination (DRE).</td>
</tr>
<tr>
<td>yes</td>
<td>Enables DRE.</td>
</tr>
<tr>
<td>no</td>
<td>Disables DRE.</td>
</tr>
<tr>
<td>compression</td>
<td>Configures TFO optimization with or without generic compression.</td>
</tr>
<tr>
<td>LZ</td>
<td>Configures TFO optimization with Lempel-Ziv (LZ) compression.</td>
</tr>
<tr>
<td>none</td>
<td>Configures TFO optimization with no compression.</td>
</tr>
<tr>
<td>full</td>
<td>Configures TFO optimization with DRE and LZ compression. Using this keyword is the same as specifying the <code>tfo optimize DRE yes compression LZ</code> command.</td>
</tr>
</tbody>
</table>

**Defaults**
The default TFO optimization on a WAAS device is `tfo optimize full`.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Examples**
The following example shows to configures TFO optimization with DRE and full compression using the `tfo optimize` command:

```
WAE(config)# tfo optimize DRE yes compression full
```

**Related Commands**
`show statistics tfo`
(config) tfo tcp adaptive-buffer-sizing

To configure a WAE for Traffic Flow Optimization (TFO) with TCP adaptive buffering, use the `tfo tcp adaptive-buffer-sizing` global configuration command. To disable adaptive buffer sizing or to unconfigure the buffer size, use the `no` form of this command.

```
tfo tcp adaptive-buffer-sizing {enable | receive-buffer-max size | send-buffer-max size}

no tfo tcp adaptive-buffer-sizing {enable | receive-buffer-max size | send-buffer-max size}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables TCP adaptive buffer sizing.</td>
</tr>
<tr>
<td>receive-buffer-max</td>
<td>Sets the maximum size of the receive buffer. Valid values range from 1 to</td>
</tr>
<tr>
<td>size</td>
<td>32768 KB.</td>
</tr>
<tr>
<td>send-buffer-max</td>
<td>Sets the maximum size of the send buffer. Valid values range from 1 to</td>
</tr>
<tr>
<td>size</td>
<td>32768 KB.</td>
</tr>
</tbody>
</table>

### Defaults

Adaptive buffering is enabled by default. The default maximum send and receive buffer sizes depend on the WAE device model.

### Command Modes

- `global configuration`

### Device Modes

- `application-accelerator`

### Usage Guidelines

If you would rather use preallocated and unchanging send and receive buffers, you can configure them with the following global configuration commands: `tfo tcp optimized-receive-buffer`, `tfo tcp optimized-send-buffer`, `tfo tcp original-receive-buffer`, and `tfo tcp original-send-buffer`. You can turn off adaptive buffer sizing by using the `no tfo tcp adaptive-buffer-sizing` command.

### Examples

The following example shows how to configure a WAE for Traffic Flow Optimization (TFO) with TCP adaptive buffering using the `tfo tcp adaptive-buffer-sizing` command:

```
WAE(config)# tfo tcp adaptive-buffer-sizing enable
```

### Related Commands

- `(config) tfo tcp optimized-mss`
- `(config) tfo tcp optimized-receive-buffer`
- `(config) tfo tcp optimized-send-buffer`
- `(config) tfo tcp original-receive-buffer`
- `(config) tfo tcp original-send-buffer`
- `show tfo tcp`
(config) tfo tcp keepalive

To configure a WAE for Traffic Flow Optimization (TFO) with TCP keepalives, use the `tfo tcp keepalive` global configuration command. To disable TFO TCP keepalives, use the `no` form of this command.

```
tfo tcp keepalive
no tfo tcp keepalive
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

Keepalives are disabled by default.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

This command enables TCP keepalives on the TFO optimized sockets (the connection between two peer WAEs).

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with TCP keepalives using the `tfo tcp keepalive` command:

```
WAE(config)# tfo tcp keepalive
```

**Related Commands**

- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp optimized-mss

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side TCP maximum segment size, use the tfo tcp optimized-mss global configuration command. To disable this function, use the no form of this command.

```
tfo tcp optimized-mss segment-size
no tfo tcp optimized-mss segment-size
```

**Syntax Description**

| segment-size | Optimized side TCP max segment size (512–9216). |

**Defaults**

The default value of the segment size is 1432 bytes. If a jumbo MTU is configured, the default segment size is the jumbo MTU value – 68 bytes.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

This command sets the TCP maximum segment size on TFO optimized sockets (the connection between two peer WAEs).

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with an optimized-side TCP maximum segment size of 512 using the tfo tcp optimized-mss command:

```
WAE(config)# tfo tcp optimized-mss 512
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp optimized-receive-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side receive buffer, use the `tfo tcp optimized-receive-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp optimized-receive-buffer buffer-size
no tfo tcp optimized-receive-buffer buffer-size
```

**Syntax Description**

| `buffer-size` | Receive buffer size in kilobytes. Valid values range from 1 to 32768 KB. |

**Defaults**

32 KB

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB optimized-side receive buffer using the `tfo tcp optimized-receive-buffer` command:

```
WAE(config)# tfo tcp optimized-receive-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp optimized-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an optimized-side send buffer, use the `tfo tcp optimized-send-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp optimized-send-buffer buffer-size

no tfo tcp optimized-send-buffer buffer-size
```

**Syntax Description**

<table>
<thead>
<tr>
<th><code>buffer-size</code></th>
<th>Send buffer size in kilobytes. Valid values range from 1 to 32768 KB.</th>
</tr>
</thead>
</table>

**Defaults**

32 KB

**Command Modes**

Global configuration

**Device Modes**

Application-accelerator

**Usage Guidelines**

The buffer should be equal to or greater than twice the Bandwidth Delay Product (BDP). The BDP is equivalent to the bandwidth (in bits per second) * latency (in seconds). For example, for a 45-Mbps link with a 150-ms (0.15 sec) round-trip delay, the BDP is 45 Mbps * 0.15 sec = 6.75 Mb, or 0.844 MB (844 KB). In this case, you could set the buffer size to 2000 KB.

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB optimized-side send buffer using the `tfo tcp optimized-send-buffer` command:

```
WAE(config)# tfo tcp optimized-send-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimal-mss
- (config) tfo tcp optimal-receive-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-mss

To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side TCP maximum segment size, use the `tfo tcp original-mss` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp original-mss segment-size
no tfo tcp original-mss segment-size
```

**Syntax Description**

| segment-size | Original (end-point) side TCP max segment size (512–9216). |

**Defaults**

The default value of the segment size is 1432 bytes. If a jumbo MTU is configured, the default segment size is the jumbo MTU value – 68 bytes.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 1432 byte unoptimized-side TCP maximum segment size using the `tfo tcp original-mss` command:

```
WAEC(config)# tfo tcp original-mss 1432
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side receive buffer, use the `tfo tcp original-receive-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp original-receive-buffer buffer-size
no tfo tcp original-receive-buffer buffer-size
```

**Syntax Description**

```
buffer-size
```

Receive buffer size in kilobytes. Valid values range from 1 to 32768 KB.

**Defaults**

32 KB

**Command Modes**

```
global configuration
```

**Device Modes**

```
application-accelerator
```

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB unoptimized-side receive buffer using the `tfo tcp original-receive-buffer` command:

```
WAE(config)# tfo tcp original-receive-buffer 32
```

**Related Commands**

```
(config) tfo tcp keepalive
(config) tfo tcp optimized-mss
(config) tfo tcp optimized-receive-buffer
(config) tfo tcp optimized-send-buffer
(config) tfo tcp original-mss
(config) tfo tcp original-send-buffer
```
(config) tfo tcp original-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) with an unoptimized-side send buffer, use the `tfo tcp original-send-buffer` global configuration command. To disable this function, use the `no` form of this command.

```
tfo tcp original-send-buffer buffer-size
no tfo tcp original-send-buffer buffer-size
```

**Syntax Description**

| buffer-size | Send buffer size in kilobytes. Valid values range from 1 to 32768 KB. |

**Defaults**

32 KB

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Examples**

The following example shows how to configure a WAE for Traffic Flow Optimization with a 32 KB unoptimized-side receive buffer using the `tfo tcp original-send-buffer` command:

```
WAE(config)# tfo tcp original-send-buffer 32
```

**Related Commands**

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
(config) threshold-monitor

To configure monitoring thresholds, use the **threshold-monitor** global configuration command. To restore default settings, use the **no** form of this command.

```
threshold-monitor { appnav-controller asymmetric-flow-query-failure value number | accelerator cifs { directory resources no_of_resources | ff-average-local-response-time milliseconds | ff-average-remote-response-time milliseconds | open-files number } | system load percent | cpu { percent | enable } | softirq enable }

no threshold-monitor { appnav-controller asymmetric-flow-query-failure value number | accelerator cifs { directory resources no_of_resources | ff-average-local-response-time milliseconds | ff-average-remote-response-time milliseconds | open-files number } | system load percent | cpu { percent | enable } | softirq enable }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>appnav-controller asymmetric-flow-query-failure value number</strong></td>
<td>Sets the asymmetric connections threshold to the specified number of asymmetric connections (1-3000 in thousands) in a one-minute interval.</td>
</tr>
<tr>
<td><strong>accelerator cifs directory resources no_of_resources</strong></td>
<td>Configures the threshold values for the accelerator cifs.</td>
</tr>
<tr>
<td><strong>directory resources no_of_resources</strong></td>
<td>Sets the directory resources threshold to the specified number (10-700). The directory resources indicate the number of available directory resources in the system.</td>
</tr>
<tr>
<td><strong>ff-average-local-response-time milliseconds</strong></td>
<td>Sets the find first average local response time threshold to the specified time (10–9999999) in milliseconds. The find first average local response time parameter indicates the average response time for find first requests that are served locally.</td>
</tr>
<tr>
<td><strong>ff-average-remote-response-time milliseconds</strong></td>
<td>Sets the find first average remote response time threshold to the specified time (10–9999999) in milliseconds. The find first average remote response time parameter indicates the average response time of find first requests that are served by the file server.</td>
</tr>
<tr>
<td><strong>open-files number</strong></td>
<td>Sets the open files threshold to the specified number (10-9999999). The open files counter maintains the number of open files and directories.</td>
</tr>
<tr>
<td><strong>system load percent</strong></td>
<td>Sets the system load threshold to the specified percentage (80–100) of rated connection capacity.</td>
</tr>
<tr>
<td><strong>cpu percent</strong></td>
<td>Configures the threshold value for CPU load monitoring.</td>
</tr>
<tr>
<td><strong>enable</strong></td>
<td>Enables CPU load monitoring.</td>
</tr>
<tr>
<td><strong>softirq enable</strong></td>
<td>Enables load monitoring of CPU utilization on the CPUs that are processing incoming TCP packets.</td>
</tr>
</tbody>
</table>

### Defaults

- The asymmetric connections threshold is 600,000.
- The system load percentage is 95 percent of rated connection capacity for the device.
- The CPU load percentage is 95 percent of the total CPU usage.
### Command Modes

**global configuration**

### Device Modes

**application-accelerator**

**appnav-controller**

### Usage Guidelines

An asymmetric connection occurs if an ANC receives a SYN-ACK packet for which it does not have a flow state and for which no other ANC in the cluster has a flow state. This indicates a problem where the ANC is not intercepting both directions of the connection.

If the asymmetric connections threshold is exceeded during a one-minute interval, a “Total failed asymmetric flow queries has crossed threshold limit” alarm is raised. This alarm is cleared after the number of asymmetric flow learning failures drops below half of the configured threshold for five consecutive minutes. This threshold applies only to ANCs in an AppNav deployment.

The CIFS accelerator performs below the optimum level when certain resources are running low, if the find first requests are too many, or if there are too many open files.

These parameters can be monitored by setting thresholds. If the configured threshold for any CIFS application accelerator is exceeded on a WAE, the relevant threshold alarm is raised. The alarm is cleared when the relevant count falls to less than the configured threshold. The alarms are CIFS ‘Find First’ Local Operation Above Threshold, CIFS ‘Find First’ Remote Operation Above Threshold, CIFS Directory Resources Low, and CIFS ‘Open Files’ Above Threshold.

The maximum value of the open-file count is platform dependent. For WAE 294, the maximum number of open files can be preconfigured to 500; for WAE 574, the maximum number is 1500; for WAE 674, the maximum number is 12000 and for WAE 7571, the maximum number of open files is 64000.

The system load percentage threshold refers to the percentage of connection capacity used for application accelerators and TFO connections on a WAE. If the configured load threshold for any application accelerator or TFO connections is exceeded on a WAE, the connection threshold exceeded alarm is raised. This alarm is cleared when the connection count falls to 10 percent less than the configured threshold (85 percent by default).

The CPU load threshold refers to the CPU load utilization on a WAE. When the average CPU utilization on the device exceeds the set threshold for 2 minutes, the device stops accepting new connections and passes any new connections through. When the average CPU utilization falls below the threshold for 2 minutes, the device resumes accepting optimized connections. You can disable CPU load monitoring by using the no form of the CPU enable command.

### Examples

The following example shows how to configure an asymmetric connection threshold of 100,000:

```
WAE(config)# threshold-monitor appnav-controller asymmetric-flow-query-failure value 100
```

The following example shows how to configure an open files threshold of 500:

```
WAE-231-03(config)# threshold-monitor accelerator cifs open-files 500
```

The following example shows how to configure a system load threshold of 90 percent:

```
WAE(config)# threshold-monitor system load 90
```
(config) threshold-monitor

Related Commands

- show statistics accelerator
- show statistics connection
- show statistics tfo
(config) transaction-logs

To configure and enable transaction logging on a WAE, use the `transaction-logs` global configuration command. To disable a transaction logging option, use the `no` form of this command.

```
transaction-logs { accelerator video windows-media | flow } enable

transaction-logs flow access-list acl-name

transaction-logs { accelerator video windows-media | flow } archive interval seconds

transaction-logs { accelerator video windows-media | flow } archive interval every-day
 { at hour:minute | every hours }

transaction-logs { accelerator video windows-media | flow } archive interval every-hour
 { at minute | every minutes }

transaction-logs { accelerator video windows-media | flow } archive interval every-week
 [on weekdays at hour:minute]

transaction-logs { accelerator video windows-media | flow } archive max-file-size filesize

transaction-logs { accelerator video windows-media | flow } export compress

transaction-logs { accelerator video windows-media | flow } export enable

transaction-logs { accelerator video windows-media | flow } export ftp-server
 [hostname | servipaddrs] [management] login passw directory

transaction-logs { accelerator video windows-media | flow } export interval minutes

transaction-logs { accelerator video windows-media | flow } export interval every-day
 { at hour:minute | every hours }

transaction-logs { accelerator video windows-media | flow } export interval every-hour
 { at minute | every minutes }

transaction-logs { accelerator video windows-media | flow } export interval every-week
 [on weekdays at hour:minute]

transaction-logs { accelerator video windows-media | flow } export sftp-server
 [hostname | servipaddrs] [management] login passw directory
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>accelerator video windows-media</code></td>
<td>Specifies the video accelerator transaction log feature for Windows Media transactions.</td>
</tr>
<tr>
<td><code>flow</code></td>
<td>Specifies the TFO flow transaction log feature.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the transaction log feature.</td>
</tr>
<tr>
<td><code>access-list acl-name</code></td>
<td>Configures an access list name to restrict logged traffic. Only traffic that is included in the access list is logged.</td>
</tr>
<tr>
<td><code>archive</code></td>
<td>Configures archive parameters.</td>
</tr>
<tr>
<td><code>interval seconds</code></td>
<td>Determines how frequently the archive file is to be saved. Value is in seconds (120–604800).</td>
</tr>
</tbody>
</table>
### CLI Commands

**every-day** Archives using intervals of 1 day or less.

**at hour:minute** Specifies the local time at which to archive each day (hh:mm).

**every hours** Specifies the interval in hours. The interval aligns with midnight. The intervals are as follows:

1. Hourly
2. Every 2 hours
3. Every 3 hours
4. Every 4 hours
5. Every 6 hours
6. Every 8 hours
7. Every 12 hours
8. Every 24 hours

**every-hour** Specifies intervals of 1 hour or less.

**at minute** Sets the time at each hour. The minute alignment for the hourly task is from 0 to 59.

**every minutes** Specifies the interval in minutes for hourly task that aligns with the top of the hour. The intervals are as follows:

1. Every 5 minutes
2. Every 2 minutes
3. Every 10 minutes
4. Every 15 minutes
5. Every 20 minutes
6. Every 30 minutes
7. Every 40 minutes
8. Every 45 minutes
9. Every 50 minutes
10. Every 5 minutes

**every-week** Specifies intervals of 1 or more times a week.

**on weekdays** (Optional) Sets the day of the week and the weekdays on which to perform the task. You can specify one or more weekdays:

- Fri Every Friday
- Mon Every Monday
- Sat Every Saturday
- Sun Every Sunday
- Thu Every Thursday
- Tue Every Tuesday
- Wed Every Wednesday

**max-file-size filesize** Specifies the maximum size in kilobytes (1000–2000000) of the archive file to be maintained on the local disk.

**export** Configures file export parameters. The FTP export feature can support up to four servers. Each server must be configured with a username, password, and directory that are valid for that server.

**compress** Enables compression of archived log files into a zip format before exporting them to external FTP servers.

**ftp-server** Sets the FTP server to receive exported archived files.

**hostname** Hostname of the target server.

**servipaddr** IP address of the target server.

**management** Uses the designated management interface for exporting the log files.

**login** User login to target server (1–10080).

**passw** User password to target server (less than 40 characters).

**directory** Target directory path for exported files on the server.
Defaults

The default settings for the logging feature are as follows:

- **archive**: disabled
- **enable**: disabled
- **export compress**: disabled
- **export**: disabled
- **archive interval**: every day, every one hour
- **archive max-file-size**: 2,000,000 KB
- **export interval**: every day, every one hour

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Related Commands

- `clear arp-cache`
- `show transaction-logging`
- `transaction-log`
(config) username

To establish username authentication on a WAAS device, use the `username` global configuration command. To disable this feature, use the `no` form of this command.

```
username name {passwd | privilege {0 | 15}}
```

```
no username name {passwd | privilege {0 | 15}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Username.</td>
</tr>
<tr>
<td>passwd</td>
<td>Configures the password interactively.</td>
</tr>
<tr>
<td>privilege</td>
<td>Sets the user privilege level.</td>
</tr>
<tr>
<td>0</td>
<td>Specifies the user privilege level for the normal user.</td>
</tr>
<tr>
<td>15</td>
<td>Specifies the user privilege level for the superuser.</td>
</tr>
</tbody>
</table>

### Defaults

The default administrator account is as follows:

- Username: admin
- Password: default
- Privilege: superuser (15)

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- central-manager

### Usage Guidelines

**Note**

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure passwords and privilege levels for users on your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure and administer users on a single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the *Cisco Wide Area Application Services Configuration Guide*.

### Examples

The following example demonstrates how passwords and privilege levels are reconfigured:

```
WAE(config)# username bwhidney passwd
```

Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure user accounts.

New WAAS password:

Retype new WAAS password:

```
WAE(config)# username abeddoe privilege 15
```

Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure
(config) username

user accounts.

Related Commands  show user
To configure virtual blades on your W AAS device, use the `virtual-blade` global configuration command. To negate these actions, use the `no` form of this command.

```
virtual-blade {virtual-blade-number | enable}
no virtual-blade {virtual-blade-number | enable}
```

**Syntax Description**

- `virtual-blade-number` Number of the virtual blade that you want to edit. This value can be from 1 through 6, depending on the number of virtual blades supported on the device. Using this command enables virtual blade configuration mode. See the “Virtual Blade Configuration Mode Commands” section for more information.

- `enable` Enables the virtual blade feature on your WAAS device. You must reboot the device after executing this command.

**Defaults**

No default behavior or values.

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`

**Usage Guidelines**

Use the `virtual-blade` global configuration command to enter virtual blade configuration mode. This command is available only on WAAS devices that support virtual blades. See the “Virtual Blade Configuration Mode Commands” section for more information.

**Examples**

The following example shows how to enable the virtual blade feature on your device:

```
WAE(config)# virtual-blade enable
WAE(config)# exit
```

The following example shows that after a reload, you can enter the `show EXEC` command to see the new virtual blade resource allocation:

```
show virtual-blade
Virtual-blade resources:
 VB Memory: 299MiB configured, 1749MiB available.
 VB Disk space: 0GiB configured, 204GiB available.
/local1/vbs: 128MiB used, 214203MiB available
CPU(s) assigned: 3 4
Virtual-blade(s) state:
 virtual-blade 2 has incomplete configuration
```

The following example puts your device into virtual blade configuration mode, editing virtual blade 2. The mode change is indicated by the system prompt:
WAE(config)# **virtual-blade** 2
WAE(config-vb)#

**Related Commands**

- `show virtual-blade`
- `(config-vb) autostart`
- `(config-vb) boot`
- `(config-vb) cpu-list`
- `(config-vb) description`
- `(config-vb) device`
- `(config-vb) disk`
- `(config-vb) interface`
- `(config-vb) memory`
- `(config-vb) vnc`
(config) vn-service vpath

To enable VPATH interception on your vWAAS device, use the vn-service vpath global configuration command. To disable this feature, use the no form of this command.

vn-service vpath

no vn-service vpath

Syntax Description
This command has no arguments or keywords.

Defaults
VPATH interception is disabled by default.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
Use the vn-service vpath global configuration command to enable VPATH interception on your vWAAS device. VPATH intercepts traffic from the VM server and redirects it to a vWAAS device for WAN optimization, and then returns the response back to the VEM. The vWAAS egress traffic received by VEM is forwarded without further VPATH interception.

Note
Only one type of interception can be enabled at a time on a vWAAS device (VPATH or WCCP).

The following example shows how to enable VPATH interception on a vWAAS device:

WAE(config)# vn-service vpath

Related Commands
show statistics vn-service vpath
clear statistics vn-service vpath
(config) wccp access-list

To configure an IP access list on a WAE for inbound WCCP GRE encapsulated traffic, use the **wccp access-list** global configuration command. To disable this feature, use the **no** form of this command.

**wccp access-list** \{acl-number | ext-acl-number | acl-name\}

**no wccp access-list** \{acl-number | ext-acl-number | acl-name\}

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-number</td>
<td>Standard IP access list number (1–99).</td>
</tr>
<tr>
<td>ext-acl-number</td>
<td>Extended IP access list number (100–199).</td>
</tr>
<tr>
<td>acl-name</td>
<td>Name of the access list. You can use a maximum of 30 characters.</td>
</tr>
</tbody>
</table>

**Defaults**

WCCP access lists are not configured by default.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

The **wccp access-list** number global configuration command configures an access control list to allow access to WCCP applications. See the **Cisco Wide Area Application Services Configuration Guide** for a detailed description of how to use standard IP ACLs to control WCCP access on a WAE.

**Note**

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the **interception-method** command.

**Examples**

The following example shows how to configure the WAE to apply IP access list number 10 to the inbound WCCP traffic:

WAE(config)# **wccp access-list** 10

The following example shows sample output from the **show ip access-list** EXEC command from a WAE that has several WCCP access lists configured:

WAE(config)# **show ip access-list**
Space available:
40 access lists
489 access list conditions

Standard IP access list 10
1 deny 10.1.1.1
2 deny any
   (implicit deny any: 0 matches)
   total invocations: 0
Standard IP access list 98
1 permit any
  (implicit deny any: 0 matches)
total invocations: 0
Extended IP access list 100
1 permit icmp any any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 101
1 permit ip any any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 102
1 permit icmp 0.0.1.1 255.255.0.0 any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 111
1 permit gre 0.1.1.1 255.0.0.0 any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 112
1 permit ip any any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 113
1 permit gre 0.1.1.1 255.0.0.0 any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list ext_acl_2
1 permit gre any any
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list extended_ip_acl
1 permit tcp any eq 2 any eq exec
  (implicit fragment permit: 0 matches)
  (implicit deny ip any any: 0 matches)
total invocations: 0

Interface access list references:
  PortChannel     2    inbound   extended_ip_acl
  PortChannel     2    outbound  101

Application access list references:
  snmp-server                     standard  2
  UDP ports: none (List Not Defined)
  WCCP                            either    10
  Any IP Protocol

Related Commands
  show ip access-list
  show wccp
(config) wccp flow-redirect

To enable WCCP flow redirection on a WAE, use the wccp flow-redirect global configuration command. To disable flow redirection, use the no form of this command.

```
wccp flow-redirect enable [timeout seconds]
```

```
no wccp flow-redirect enable
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables flow redirection (protection).</td>
</tr>
<tr>
<td>timeout seconds</td>
<td>Sets the maximum amount of time for which to enable flow protection, in seconds (0-86400). If you do not specify this option, flow protection is enabled with no timeout (indefinitely).</td>
</tr>
</tbody>
</table>

**Defaults**

Disabled

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the wccp flow-redirect global configuration command to implement WCCP flow protection. Flow protection is designed to keep the TCP flow intact as well as to not overwhelm WAEs when they are first started up or are reassigned new traffic. This feature also has a slow start mechanism where the WAEs try to take a load appropriate for their capacity.

In a WCCP cache farm, the flow protection timeout value configured in the lead WAE is effective regardless of the values configured in the other WAEs in cache farm. After the timeout value is expired, the flow flush request is sent by the lead WAE to all other WAEs in the cache farm.

**Note**

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the interception-method command.

**Note**

Designs that require redirected frames to be returned to the originating router are not compatible with the WCCP flow protection feature.

**Examples**

The following example shows how to enable WCCP flow protection on a WAE for one hour:

```
WAE(config)# wccp flow-redirect enable timeout 3600
```
Related Commands  show wccp
(config) wccp router-list

To configure a router list for WCCP Version 2, use the `wccp router-list` global configuration command. To disable this function, use the `no` form of this command.

```
 wccp router-list number ip-address
 no wccp router-list number ip-address
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>Router list number (1–7).</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the router to add to the list. You can specify up to 32 IP addresses, each separated by the space character.</td>
</tr>
</tbody>
</table>

**Defaults**

Disabled

**Command Modes**

global configuration

**Device Modes**

application-accelerator

appnav-controller

**Usage Guidelines**

Each router list can contain up to 32 routers and you can have up to 8 router lists.

**Note**

The WAAS Central Manager uses router list number 8 for a default router list that contains the default gateway.

**Note**

The `ip wccp` global configuration command must be used to enable WCCP on each router that is included on the router list.

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` command.

**Examples**

The following example shows that router list number 2 is created and contains a single router (the WCCP Version 2-enabled router with IP address 192.168.68.98):

```
WAE(config)# wccp router-list 2 192.168.68.98
```

The following example shows how to delete the router list number 2 created in the previous example:

```
WAE(config)# no wccp router-list 2 192.168.68.98
```
The following example shows how to create a router list (router list 1) with two routers and then configure the WAE to accept redirected TCP traffic from the WCCP Version 2-enabled router on router list 1:

```
WAE(config)# wccp router-list 1 10.10.10.2 10.10.10.3
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# router-list-num 1
WAE(config-wccp-service)# enable
```

Related Commands

(config) wccp tcp-promiscuous service-pair
(config) wccp shutdown

To set the maximum time interval after which the WAE will perform a clean shutdown of the WCCP, use the `wccp shutdown` global configuration command. To disable the clean shutdown, use the `no` form of this command.

```
 wccp shutdown max-wait seconds

 no wccp shutdown max-wait seconds
```

**Syntax Description**

- `max-wait seconds`: Sets the clean shutdown time interval. The time is in seconds (0–86400). The default is 120 seconds.

**Defaults**

The maximum time interval before a clean shutdown is 120 seconds.

**Command Modes**

- `global configuration`

**Device Modes**

- `application-accelerator`

**Usage Guidelines**

To prevent broken TCP connections, the WAE performs a clean shutdown of the WCCP after you enter the `reload` command or disable WCCP. The WAE does not reboot until either all connections have been serviced or the configured `max-wait` interval has elapsed.

**Note**

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` command.

**Examples**

The following example shows how to configure the WAE to wait 1000 seconds:

```plaintext
WAE(config)# wccp shutdown max-wait 1000
```

The following example shows how to shut down WCCP Version 2 on the WAE by entering the `no enable` WCCP command. After you enter this command, the WAE waits 1000 seconds before it shuts down WCCP Version 2.

```plaintext
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# no enable
```

A countdown message appears, indicating how many seconds remain before WCCP will be shut down on the WAE:

```
WCCP clean shutdown initiated
Waiting for shutdown ok (999 seconds) . Press ^C to skip waiting
WCCP clean shutdown wait time expired
```
(config) wccp shutdown

**Related Commands**

(config) wccp tcp-promiscuous service-pair
To configure the Web Cache Coordination Protocol (WCCP) Version 2 TCP promiscuous mode service, use the `wccp tcp-promiscuous service-pair` global configuration command. To negate these actions, use the `no` form of this command.

```
wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
no wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
```

**Syntax Description**
- `service-pair serviceID serviceID+1` Specifies a pair of IDs for the WCCP service on devices configured as application accelerators. Valid values are two consecutive numbers from 1-100, inclusive.
- `serviceID` Specifies one ID for the WCCP service. A valid value is from 1-100, inclusive. On devices operating as AppNav Controllers, you can specify either one or two service IDs.

**Defaults**
No default behavior or values.

**Command Modes**
- global configuration

**Device Modes**
- application-accelerator
- appnav-controller

**Usage Guidelines**
Use the `wccp tcp-promiscuous service-pair` command to configure and enable the WCCP interception method. This command initiates the WCCP configuration mode as indicated by the (config-wccp-service) prompt. For more information on WCCP configuration mode commands, see the “WCCP Configuration Mode Commands” section.

Within WCCP configuration mode, you can use the various commands (egress-method, failure-detection, and so on) to define WCCP settings. To return to global configuration mode, enter the `exit` command.

You must use the `enable` WCCP configuration command to enable the WCCP service.

You must configure two WCCP service IDs on WAEs operating in application-acceleration mode. On WAEs operating as AppNav Controllers, you can specify either one or two service IDs.

**Note**
WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` global configuration command.

**Examples**
The following example shows how to configure WCCP service IDs 61 and 62 and put a WAE into WCCP configuration mode:
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)#

The following example shows how to configure WCCP service ID 61 and put an AppNav Controller into WCCP configuration mode:
WAE(config)# wccp tcp-promiscuous 61
WAE(config-wccp-service)#

**Related Commands**

- (config) wccp router-list
- (config) wccp shutdown
- show wccp
(config) windows-domain

To configure Windows domain server options on a WAAS device, use the `windows-domain` global configuration command. To disable this feature, use the `no` form of this command.

```plaintext
windows-domain {administrative group [normal-user | super-user] groupname | comment string | encryption-service [enable | identity name [default | enable | machine-account | match | password | user-account]] | ldap-sign-and-seal enable | machine-account-password lifespan duration | netbios-name name | password-server {hostname | ipaddress} | realm kerberos-realm | wins-server {hostname | ipaddress} | workgroup name | security ADS}

no windows-domain {administrative group [normal-user | super-user] groupname | comment string | encryption-service [enable | identity name] | ldap-sign-and-seal enable | machine-account-password lifespan duration | netbios-name | password-server {hostname | ipaddress} | realm kerberos-realm | wins-server {hostname | ipaddress} | workgroup name | security ADS}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administrative</td>
<td>Sets administrative options.</td>
</tr>
<tr>
<td>group</td>
<td>Sets an administrative group name.</td>
</tr>
<tr>
<td>normal-user</td>
<td>Sets the administrative group name for the normal user (privilege 0).</td>
</tr>
<tr>
<td>super-user</td>
<td>Sets the administrative group name for the superuser (privilege 15).</td>
</tr>
<tr>
<td>groupname</td>
<td>Name of the administrative group.</td>
</tr>
<tr>
<td>comment string</td>
<td>Specifies a comment for the Windows domain server. This is a text string.</td>
</tr>
<tr>
<td>encryption-service</td>
<td>Configures encrypted service.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables encrypted service.</td>
</tr>
<tr>
<td>identity name</td>
<td>Specifies the encrypted service identity to manage. The name is the WAAS</td>
</tr>
<tr>
<td></td>
<td>tag-name identifier.</td>
</tr>
<tr>
<td>default</td>
<td>Sets the identity as the default match.</td>
</tr>
<tr>
<td>machine-account</td>
<td>Specifies machine account identity.</td>
</tr>
<tr>
<td>match</td>
<td>Specifies a match.</td>
</tr>
<tr>
<td>password</td>
<td>Specifies the password for the identity.</td>
</tr>
<tr>
<td>user-account name</td>
<td>Defines and edits the user account identity.</td>
</tr>
<tr>
<td>ldap-sign-and-seal</td>
<td>Configures the LDAP sign and seal service.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the LSAP sign and seal service. This service is disabled by default.</td>
</tr>
<tr>
<td>machine-account-password</td>
<td>Configures the password settings.</td>
</tr>
<tr>
<td>lifespan duration</td>
<td>Configures the lifespan duration in seconds. The minimum is 1 hour, the</td>
</tr>
<tr>
<td></td>
<td>maximum is 60 days, and the default is 30 days.</td>
</tr>
<tr>
<td>netbios-name name</td>
<td>Specifies the NetBIOS name of the WAE. The NetBIOS name must not consist of</td>
</tr>
<tr>
<td></td>
<td>only numbers; it must include some letters.</td>
</tr>
<tr>
<td>password-server</td>
<td>Specifies the password server used to verify a client password.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the password server.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>IP address of the password server.</td>
</tr>
</tbody>
</table>
Chapter 3      CLI Commands

```
(config) windows-domain

Defaults
Windows domain options are disabled by default.

Command Modes
 global configuration

Device Modes
 application-accelerator
 central-manager

Usage Guidelines
Use this global configuration command to set the Windows domain server parameters for a WAAS device.

When you enable Kerberos authentication, the default realm is DOMAIN.COM and the security is ADS. If you disable Kerberos authentication, the security is domain.

Note
WAAS supports authentication by a Windows domain controller running only on Windows Server 2000 or Windows Server 2003.

Examples
The following example shows how to configure the Windows domain server at 10.10.24.1 for a WAAS device with a NetBIOS name of myWaasDevice in the ABC domain. It also identifies the password server:

```
WAE(config)# windows-domain wins-server 10.10.24.1
WAE(config)# windows-domain password-server 10.10.100.4
WAE(config)# windows-domain netbios-name myWaasDevice
WAE(config)# windows-domain workgroup ABC
```

The following example shows how to configure the windows domain server when Kerberos authentication is enabled using the kerberos command:

```
WAE(config)# windows-domain realm ABC.COM
```
WAE(config)# windows-domain security ADS

============= checking new config using testparm ==============

Load smb config files from /state/actona/conf/smb.conf
Processing section "[print$]"
Processing section "[printers]"
Loaded services file OK.

WAE(config)# exit
WAE# show windows-domain
Login Authentication for Console/Telnet Session: enabled

Windows domain Configuration:

Workgroup:
Comment: Comment:
Net BIOS: MYWAASDEVICE
Realm: ABC
WINS Server: 10.10.10.1
Password Server: 10.10.10.10
Security: ADS

Related Commands
(config) kerberos
show windows-domain
windows-domain
Interface Configuration Mode Commands

To set, view, and test the configuration of WAAS software features on a specific interface, use the `interface` global configuration command.

```
interface { GigabitEthernet slot/port | InlineGroup slot/group | PortChannel index |
            Standby group-index | TenGigabitEthernet slot/port | bvi bridge-id }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>Selects a Gigabit Ethernet interface to configure.</td>
</tr>
<tr>
<td>slot/port</td>
<td></td>
</tr>
<tr>
<td>InlineGroup</td>
<td>Selects an inline group interface to configure.</td>
</tr>
<tr>
<td>slot/group</td>
<td></td>
</tr>
<tr>
<td>PortChannel</td>
<td>Selects the port channel interface to configure.</td>
</tr>
<tr>
<td>index</td>
<td></td>
</tr>
<tr>
<td>Standby</td>
<td>Selects the standby group to configure.</td>
</tr>
<tr>
<td>group-index</td>
<td></td>
</tr>
<tr>
<td>TenGigabitEthernet</td>
<td>Selects a 10-Gigabit Ethernet interface to configure.</td>
</tr>
<tr>
<td>slot/port</td>
<td></td>
</tr>
<tr>
<td>bvi</td>
<td>Selects the bridge virtual interface to configure.</td>
</tr>
<tr>
<td>bridge-id</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Within interface configuration mode, you can use the interface commands (`autosense`, `bandwidth`, `cdp`, and so on) to configure the specified interface.

To return to global configuration mode, use the `exit` command at the interface configuration mode prompt.

Examples

The following example shows how to enter interface configuration mode:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)#
```

Related Commands

- `(config) interface InlineGroup`
- `(config) interface PortChannel`
(config) interface standby
(config-if) autosense

To enable autosense on an interface, use the autosense interface configuration command. To disable this function, use the no form of this command.

 autosense
 no autosense

Syntax Description
This command has no arguments or keywords.

Defaults
Autosense is enabled by default.

Command Modes
interface configuration

Device Modes
application-accelerator
appnav-controller
central-manager

Usage Guidelines
Cisco router Ethernet interfaces do not negotiate duplex settings. If the WAAS device is connected to a router directly with a crossover cable, the WAAS device interface must be manually set to match the router interface settings. Disable autosense before configuring an Ethernet interface. When autosense is on, manual configurations are overridden. You must reboot the WAAS device to start autosensing.

Examples
The following example shows how to disable autosense on Gigabit Ethernet port 1/0:

 WAE(config)# interface GigabitEthernet 1/0
 WAE(config-if)# no autosense

The following example shows how to reenable autosense on Gigabit Ethernet port 1/0:

 WAE(config)# interface GigabitEthernet 1/0
 WAE(config-if)# autosense
 WAE(config-if)# exit
 WAE(config)# exit
 WAE# reload

Related Commands
(config) interface GigabitEthernet
show interface
show running-config
(config-if) bandwidth

To configure the link speed on a network interface, use the bandwidth interface configuration command. To restore default values, use the no form of this command.

```
bandwidth { 10 | 100 | 1000 }
```

```
no bandwidth { 10 | 100 | 1000 }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Sets the link speed to 10 megabits per second (Mbps).</td>
</tr>
<tr>
<td>100</td>
<td>Sets the link speed to 100 Mbps.</td>
</tr>
<tr>
<td>1000</td>
<td>Sets the link speed to 1000 Mbps. This option is not available on all ports and is the same as autosense.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

interface configuration

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

To configure the link speed of a network interface on a WAAS device, use the bandwidth interface configuration command. The speed is specified in megabits per second (Mbps). The WAAS software automatically enables autosense if the speed is set to 1000 Mbps.

Note Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 10 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

You can configure the Gigabit Ethernet interface settings (autosense, link speed, and duplex settings) if the Gigabit over copper interface is up or down. If the interface is up, it applies the specific interface settings. If the interface is down, the specified settings are stored and then applied when the interface is brought up. For example, you can specify any of the following commands for a Gigabit over copper interface, which is currently down, and have these settings automatically applied when the interface is brought up.

```
WAE(config-if)# bandwidth 10
WAE(config-if)# bandwidth 100
WAE(config-if)# bandwidth 1000
WAE(config-if)# autosense
WAE(config-if)# half-duplex
WAE(config-if)# full-duplex
```
Note
We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices. Half duplex impedes the system ability to improve performance and should not be used. Check each Cisco WAE interface and the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full duplex is configured.

Examples
The following example shows how to set an interface bandwidth to 1000 Mbps:

WAE(config-if)# bandwidth 1000

The following example shows how to restore default bandwidth values on an interface:

WAE(config-if)# no bandwidth

Related Commands
(config-if) autosense
(config) interface GigabitEthernet
(config-if) bridge-group

To configure the bridge group for a network interface, use the `bridge-group` interface configuration command. To restore default values, use the `no` form of this command.

`bridge-group bridge-id`

`no bridge-group bridge-id`

Syntax Description

| bridge-id | Bridge ID from 1–4. On devices with an AppNav Controller Interface Module that has 12 ports, the bridge ID ranges from 1–5. On devices with an AppNav Controller Interface Module that has 4 ports, the bridge ID must be 1. |

Defaults

No default behaviors or values.

Command Modes

interface configuration

Device Modes

application-accelerator

appnav-controller

central-manager

Usage Guidelines

Use this command to configure a network interface with a bridge group for use by a virtual blade or an AppNav Controller Interface Module that is intercepting traffic in inline mode.

Examples

The following example shows how to configure an interface with a bridge group for a virtual blade:

```console
WAE(config)# bridge 1 protocol ieee
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# bridge-group 1
WAE(config)# interface bvi 1 ip address 10.10.10.10 255.0.0.0
WAE(config)# virtual-blade 2
WAE(config-vb)# interface 1 bridge-group 1
```

The following example shows how to configure interfaces with a bridge group for use in inline mode on an AppNav Controller Interface Module:

```console
WAE(config)# interception-method inline
WAE(config)# bridge 5 protocol interception
WAE(config)# bridge 5 intercept vlan add 100-200,300-350,native
WAE(config)# interface GigabitEthernet 1/10
WAE(config-if)# bridge-group 5
WAE(config)# interface GigabitEthernet 1/11
WAE(config-if)# bridge-group 5
```
Related Commands

```plaintext
(config) interface GigabitEthernet
```
(config-if) cdp

To enable the Cisco Discovery Protocol (CDP) on a particular interface on a WAAS device, rather than on all interfaces, use the `cdp` interface configuration command.

```
cdp enable
```

Syntax Description

| enable | Enables CDP on an interface. |

Defaults

No default behavior or values.

Command Modes

interface configuration

Device Modes

application-accelerator

appnav-controller

central-manager

Usage Guidelines

Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces of the WAAS device. If you want to control CDP behavior per interface, then use the `cdp enable` command in interface configuration mode.

Note

Enabling CDP at the interface level overrides the global control. However, you must enable CDP globally on the WAAS device before you enable CDP on an interface. Otherwise, the following message is displayed in the command output:

```
WAE(config-if)# cdp enable
Cannot enable CDP on this interface, CDP Global is disabled
```

Examples

The following example shows how to enable CDP on Gigabit Ethernet interface (slot 1/port 0) of the WAAS device:

```
WAE# configure
WAE(config)# cdp enable
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# cdp enable
```

Related Commands

```
(config) cdp
show cdp
show interface
```
(config-if) channel-group

To configure the port-channel group for a network interface, use the channel-group interface configuration command. To restore default values, use the no form of this command.

```
channel-group index
no channel-group index
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>Assigns the interface to the port channel with the specified index 1–7.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values.

Command Modes

- interface configuration

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Examples

The following example shows how to configure an interface with a channel group:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# channel-group 1
```

Related Commands

- (config) interface GigabitEthernet
(config-if) description

To configure the description for a network interface, use the description interface configuration command. To remove the description, use the no form of this command.

```
description description
no description
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>description</th>
<th>Interface description.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>No default behaviors or values.</td>
<td></td>
</tr>
<tr>
<td>Command Modes</td>
<td>interface configuration</td>
<td></td>
</tr>
<tr>
<td>Device Modes</td>
<td>application-accelerator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>appnav-controller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>central-manager</td>
<td></td>
</tr>
</tbody>
</table>

Examples
The following example shows how to configure an interface with a description:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# description interception interface 1
```
(config-if) encapsulation dot1Q

To set the VLAN ID that is to be assigned to traffic that leaves a WAE, use the **encapsulation dot1Q** interface configuration command.

```
encapsulation dot1Q VLAN
```

Syntax Description

| VLAN | VLAN ID from 1–4094. |

Defaults

No default behavior or values.

Command Modes

interface configuration

Device Modes

application-accelerator

Usage Guidelines

The **encapsulation dot1Q** command is available only for the inlineGroup interface.

Note

- If the VLAN ID that you set with the **encapsulation dot1Q** interface command does not match the VLAN ID expected by the router subinterface, you may not be able to connect to the inline interface IP address.
- The inline adapter or module supports only a single VLAN ID for each inline group interface. If you have configured a secondary address from a different subnet on an inline interface, you must have the same secondary address assigned on the router subinterface for the VLAN.

Examples

The following example shows how to set a VLAN ID to encapsulate traffic leaving the WAE:

```
(config)# interface inlineGroup 1/0
(config-if)# encapsulation dot1q 100
```

Related Commands

- **(config) interface GigabitEthernet**
- **(config-if) ip**
(config-if) exit

To terminate interface configuration mode and return to the global configuration mode, use the exit command.

 exit

Syntax Description This command has no arguments or keywords.

Defaults No default behavior or values

Command Modes All modes

Device Modes application-accelerator
 appnav-controller
 central-manager

Examples The following example shows how to terminate interface configuration mode and return to global configuration mode:

WAE(config-if)# exit
WAE(config)#
(config-if) failover timeout

To set the maximum time for the inline interface to transition traffic to another port after a failure event, use the **failover timeout** interface configuration command. To disable this function, use the **no** form of this command.

```
failover timeout {1 | 3 | 5}
```

```
no failover timeout {1 | 3 | 5}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
<tr>
<td>3</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
<tr>
<td>5</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
</tbody>
</table>

Defaults
The default is 1 second.

Command Modes
interface configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
This command applies only to interfaces on the Cisco WAE Inline Network Adapter card. To set the failover timeout for all interfaces together on the Cisco Interface Module, use the **(config) inline** command.

The **failover timeout** command is used in inlineGroup interface scope. It sets the maximum time (in seconds) for the inline interface to transition to a fail-to-wire mode of operation after a failure event occurs (such as a power outage and kernel crash). For example, if the timeout is set to 3 seconds, traffic is dropped for a maximum of 3 seconds after the WAE loses power or suffers a kernel crash. After this time, all traffic received on either port of the group interface is sent out of the other port in the group. The default timeout is 1 second.

Examples
The following example shows how to set the failover time limit for the inline group 0 of the adapter that is installed in slot 1 to 5 seconds and then remove that setting:

```
(config)# interface inlineGroup 1/0
(config-if)# failover timeout 5
(config-if)# no failover timeout 5
```

Related Commands

- **(config) interface GigabitEthernet**
- **(config-if) inline**
(config-if) failover timeout

(config-if) shutdown
(config-if) full-duplex

To configure an interface for full-duplex operation on a WAAS device, use the `full-duplex` interface configuration command. To disable this function, use the `no` form of this command.

```
full-duplex
no full-duplex
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

interface configuration

Device Modes

application-accelerator
appnav-controller
central-manager

Usage Guidelines

Use this interface command to configure an interface for full duplex. Full duplex allows data to travel in both directions at the same time through an interface or a cable. Half duplex ensures that data travels only in one direction at any given time. Although full duplex is faster, the interfaces sometimes cannot operate effectively in this mode. If you encounter excessive collisions or network errors, configure the interface for half duplex rather than full duplex.

Note

We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices. Half duplex impedes the system ability to improve performance and should not be used. Check each Cisco WAE interface and the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full duplex is configured.

Note

Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 10 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Examples

The following example shows how to configure full duplex on a Gigabit Ethernet interface in slot 1/port 0:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# full-duplex
```
The following example shows how to disable full duplex:

WAE(config-if)# no full-duplex

Related Commands

- (config-if) half-duplex
- (config) interface GigabitEthernet
- show interface
- show running-config
(config-if) half-duplex

To configure an interface for half-duplex operation on a WAAS device, use the half-duplex interface configuration command. To disable this function, use the no form of this command.

 half-duplex
 no half-duplex

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
interface configuration

Device Modes
application-accelerator
appnav-controller
central-manager

Usage Guidelines
Use this interface configuration command to configure an interface for half duplex. Full duplex allows data to travel in both directions at the same time through an interface or a cable. Half duplex ensures that data travels only in one direction at any given time. Although full duplex is faster, the interfaces sometimes cannot operate effectively in this mode. If you encounter excessive collisions or network errors, configure the interface for half duplex rather than full duplex.

Note
We strongly recommend that you do not use half duplex on the WAE, routers, switches, or other devices. Half duplex impedes the system ability to improve performance and should not be used. Check each Cisco WAE interface and the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full duplex is configured.

Note
Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 10 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Examples
The following example shows how to configure half duplex on the Gigabit Ethernet interface in slot 1/port 0:

 WAE# configure
 WAE(config)# interface GigabitEthernet 1/0
 WAE(config-if)# half-duplex
The following example shows how to disable half duplex:

```
WAE(config-if)# no half-duplex
```

Related Commands
- (config-if) full-duplex
- (config) interface GigabitEthernet
- show interface
- show running-config
(config-if) inline

To enable inline interception for an inlineGroup interface, use the `inline` interface configuration command. To disable inline interception, use the `no` form of this command.

```
inline [vlan {all | native | vlan_list}]
no inline [vlan {all | native | vlan_list}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vlan</code></td>
<td>(Optional) Modifies the VLAN list parameters.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Applies the command to all tagged and untagged packets.</td>
</tr>
<tr>
<td><code>native</code></td>
<td>Specifies untagged packets.</td>
</tr>
<tr>
<td><code>vlan_list</code></td>
<td>List of VLAN IDs to either allow or restrict on this interface. A comma (,) is used to separate list entries. A hyphen (-) is used to specify a range of VLAN IDs. The valid range is 0 to 4095.</td>
</tr>
</tbody>
</table>

Defaults

The default is enabled for all VLANs if you have a WAE inline network adapter installed.

Command Modes

interface configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

The `inline` command is used in the inlineGroup interface scope. It enables or disables inline interception. If the VLAN list is omitted, the command applies to all VLAN tagged or untagged packets. You can restrict the inline feature to any specified set of VLANs.

The VLAN list can be “all,” a comma-separated list of VLAN IDs, or ranges of VLAN IDs. The special VLAN ID “native” can be included to specify untagged packets.

Note

When inline inspection is active, you cannot configure WCCP until you explicitly disable the inline capability on all VLANs. Conversely, you cannot enable inline interception on any inline groups until you disable WCCP.

Examples

The following example shows how to enable inline interception for all untagged and tagged packets with any VLAN ID received on ports in inlineGroup 0 of the adapter that is installed in slot 1:

```
(config)# interface inlineGroup 1/0
(config-if)# inline
(config-if)# exit
```
The following example shows how to disable inline interception on the same ports for
802.1Q-encapsulated packets that have the VLAN ID 5 or any VLAN ID between 10 and 15, inclusive.
If the two VLANs are combined in the given order, inline interception is performed for all packets
received on ports in group 0 of slot 1, except those packets on VLANs 5, 10, 11, 12, 13, 14, and 15.

```
(config)# interface inlineGroup 1/0
(config-if)# no inline vlan 5,10-15
(config-if)# exit
```

The following example shows how to enable inline interception for all untagged traffic and traffic only
on VLANs 0 through 100 on the ports in group 1 in slot 2:

```
(config)# interface inlineGroup 2/1
(config-if)# no inline vlan 101-4095
(config-if)# exit
```

The following example shows how to enable inline interception for traffic only on VLAN 395 on the
ports in group 1 in slot 2. Because the default behavior is to enable traffic on all VLANs, you must first
disable all VLANs, and then enable just the set that you want.

```
(config)# interface inlineGroup 2/1
(config-if)# no inline vlan all
(config-if)# inline vlan 395
(config-if)# exit
```

Related Commands

- **show interface**
(config-if) ip

To configure the IP address or subnet mask, or to negotiate an IP address from DHCP on the interface of the WAAS device, use the ip interface configuration command. To disable this function, use the no form of this command.

```
ip address {ip-address ip-subnet [secondary] | dhcp [client-id id][hostname name]}
```

```
no ip address {ip-address ip-subnet [secondary] | dhcp [client-id id][hostname name]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>address</td>
<td>Sets the IP address of an interface.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address.</td>
</tr>
<tr>
<td>ip-subnet</td>
<td>IP subnet mask.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Makes this IP address a secondary address.</td>
</tr>
<tr>
<td>dhcp</td>
<td>Sets the IP address negotiated over DHCP.</td>
</tr>
<tr>
<td>client-id id</td>
<td>(Optional) Specifies the client identifier.</td>
</tr>
<tr>
<td>hostname name</td>
<td>(Optional) Specifies the hostname.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- interface configuration

Device Modes

- application-accelerator
- appnav-controller
- central-manager

Usage Guidelines

Use this command to set or change the IP address, subnet mask, or DHCP IP address negotiation of the network interfaces of the WAAS device or inline module. The change in the IP address takes place immediately.

The `ip address` interface configuration command allows configuration of secondary IP addresses for a specified interface as follows:

```
WAE(config-if)# ip address ip_address netmask secondary
```

Up to four secondary IP addresses can be specified for each interface. The same IP address cannot be assigned to more than one interface. The secondary IP address becomes active only after a primary IP address is configured. The following command configures the primary IP address:

```
WAE(config-if)# ip address ip_address netmask
```

The secondary IP addresses are disabled when the interface is shut down and are enabled when the interface is brought up.
Use the **no** form of the command to disable a specific IP address:

```
WAE(config-if)# no ip address ip_address netmask
```

Note

No two interfaces can have IP addresses in the same subnet.

Use the **ip-address dhcp** command to negotiate a reusable IP address from DHCP.

Examples

The following example shows how to configure the port-channel interface with an IP address of 10.10.10.10 and a netmask of 255.0.0.0:

```
WAE# configure
WAE(config)# interface PortChannel 1
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
```

The following example shows how to delete the IP address configured on the interface:

```
WAE(config-if)# no ip address
```

The following example shows how to enable an interface for DHCP:

```
WAE(config-if)# ip address dhcp
```

The following example shows how to configure a client identifier and hostname on the WAAS device to be sent to the DHCP server:

```
WAE(config-if)# ip address dhcp client-id myclient hostname myhost
```

Related Commands

- **(config) interface GigabitEthernet**
 - **show interface**
 - **show running-config**
To control connections on a specific interface of a WAAS device by applying a predefined access list, use the `ip access-group` interface configuration command. To disable an access list, use the `no` form of this command.

```
ip access-group {acl-name | acl-num} {in | out}
```

```
no ip access-group {acl-name | acl-num} {in | out}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td>acl-num</td>
<td>Numeric identifier that identifies the access list to apply to the current interface. For standard access lists, the valid range is 1 to 99; for extended access lists, the valid range is 100 to 199.</td>
</tr>
<tr>
<td>in</td>
<td>Applies the specified access list to inbound packets on the current interface.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the specified access list to outbound packets on the current interface.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

interface configuration

Device Modes

application-accelerator

appnav-controller

central-manager

Usage Guidelines

Use the `ip access-group` interface configuration command to activate an access list on a particular interface. You can use one outbound access list and one inbound access list on each interface.

Before entering the `ip access-group` command, enter interface configuration mode for the interface to which you want to apply the access list. Define the access list to apply using the `ip access-list` command.

Examples

The following example shows how to apply the access list named `acl-out` to outbound traffic on the interface Gigabit Ethernet 1/2:

```
WAE(config)# interface GigabitEthernet 1/2
WAE(config-if)# ip access-group acl-out out
```

Related Commands

`clear arp-cache`

`(config) ip access-list`
(config-if) ip access-group

show ip access-list
(config-if) load-interval

To configure the interval at which to poll the network interface for statistics, use the `load-interval` interface configuration command. To remove the configuration, use the `no` form of this command.

```
load-interval seconds

no load-interval seconds
```

Syntax Description

| `seconds` | Sets the interval at which to poll the interface for statistics and calculate throughput. Ranges from 30 to 600 seconds. The default is 30 seconds. |

Defaults

30 seconds.

Command Modes

interface configuration

Device Modes

application-accelerator

appnav-controller

central-manager

Examples

The following example shows how to configure the load interval for an interface:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# load-interval 60
```

Related Commands

`(config) interface GigabitEthernet`
(config-if) mtu

To set the interface Maximum Transmission Unit (MTU) packet size, use the mtu interface configuration command. To reset the MTU packet size, use the no form of this command.

```
mtu mtusize
no mtu mtusize
```

Syntax Description

| mtusize | MTU packet size in bytes (88–1500). |

Defaults

No default behavior or values.

Command Modes

interface configuration

Device Modes

application-accelerator

appnav-controller

central-manager

Usage Guidelines

The MTU is the largest size of IP datagram that can be transferred using a specific data link connection. Use the mtu command to set the maximum packet size in bytes.

The MTU field is not editable if the interface is assigned to a standby or port channel group.

Note Changing the interface bandwidth, duplex mode, or MTU can cause network disruption for up to 10 seconds. The best practice is to make such changes when traffic interception is disabled or at an off-peak time when traffic disruption is acceptable.

Examples

The following example shows how to set the MTU to 1500 bytes and then remove that setting:

```
WAE(config-if)# mtu 1500
WAE(config-if)# no mtu 1500
```

Related Commands

- `show interface`
- `show running-config`
(config-if) shutdown

To shut down a specific hardware interface on a WAAS device, use the `shutdown` interface configuration command. To restore an interface to operation, use the `no` form of this command.

```
shutdown
no shutdown
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
interface configuration

Device Modes
application-accelerator
appnav-controller
central-manager

Usage Guidelines
See the "(config) interface GigabitEthernet" command for alternative syntax.

Examples
The following example shows how to shut down a Gigabit Ethernet interface on the WAAS device:

```
WAE# configure
WAE(config)# interface GigabitEthernet 2/0
WAE(config-if)# shutdown
```

Related Commands
- `(config) interface GigabitEthernet`
- `show interface`
- `show running-config`
(config-if) standby

To configure an interface on a WAAS device to be a backup for another interface, use the `standby` interface configuration command. To restore the default configuration of the interface, use the `no` form of this command.

```
standby group-index [primary] { description text | ip ip-address netmask | shutdown |
   bridge-group bridge-id }

no standby group-index [primary] { description text | ip ip-address netmask | shutdown |
   bridge-group bridge-id }
```

Syntax Description

- **group-index**
 - Standby group.
- **primary**
 - (Optional) Defines the active interface in the standby group. By default, the first attached interface is active.
- **description text**
 - (Optional) Sets the description for the specified interface. The maximum length of the description text is 240 characters.
- **ip ip-address netmask**
 - Sets the IP address and the netmask for the specified standby group. The group IP address and netmask of a standby group must be configured on all of the member interfaces.
- **shutdown**
 - (Optional) Shuts down the specified standby group. You can shut down a standby group even if you have not configured a group IP address for the standby group.
 - **Note** When a standby group is shut down, all of the alarms previously raised by this standby group are cleared.
- **bridge-group bridge-id**
 - Places the standby interface into the specified bridge group.

Defaults

There are no standby interfaces by default.

Command Modes

- `interface configuration`

Device Modes

- `application-accelerator`
- `appnav-controller`
- `central-manager`

Usage Guidelines

You can associate an interface with a standby group by using the `standby` interface configuration command. To make an interface the active interface in a standby group, use the `standby group-index primary` interface configuration command. If you have already associated an interface with a standby group but have not made it the primary interface, you cannot specify the command again to add the primary designation. First, remove the interface from the standby group by using the `no standby group-index` command and then reassign it, specifying the `primary` option at the same time.

A physical interface can be a member of a standby group or a port channel, but not both.
Examples

The following example shows how to create a standby group:

WAE# configure
WAE(config)# interface standby 1
WAE(config-if)#

The following example shows how to assign a group IP address of 10.10.10.10 and a netmask of 255.0.0.0 to Standby Group 1. You can configure a group IP address regardless of whether the standby group is shut down or not.

WAE(config-if)# ip address 10.10.10.10 255.0.0.0

The following example shows how to add two Gigabit Ethernet interfaces to Standby Group 1 and then assign one of these member interfaces as the active interface in the group:

a. A Gigabit Ethernet interface (slot 1/port 0) is added to Standby Group 1.

WAE(config)# interface gigabitEthernet 1/0
WAE(config-if)# standby 1

b. A second Gigabit Ethernet interface (slot 2/port 0) is added to Standby Group 1 and assigned as the primary (active) interface.

WAE(config)# interface gigabitEthernet 2/0
WAE(config-if)# standby 1 primary
WAE(config-if)# exit
WAE(config)#

The following example shows how to remove the GigabitEthernet slot 1/port 0 interface from Standby Group 1 using the no form of the standby command:

WAE(config)# interface gigabitEthernet 1/0
WAE(config-if)# no standby 1
WAE(config-if)# exit
WAE(config)#

The following example shows how to shut down Standby Group 1. When a standby group is shut down, all of the alarms previously raised by this standby group are cleared:

WAE(config)# interface standby 1
WAE(config-if)# exit
WAE(config)#

The following example shows how to tear down Standby Group 1:

WAE(config)# interface standby 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
Please remove member interface(s) from this standby group first.
WAE(config)# interface GigabitEthernet 2/0
WAE(config-if)# no standby 1
WAE(config-if)# exit
WAE(config)# interface standby 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
WAE(config)# no interface standby 1
WAE(config)# exit

Related Commands

(config) interface GigabitEthernet
show interface
show running-config
Standard ACL Configuration Mode Commands

To create and modify standard access lists on a WAAS device for controlling access to interfaces or applications, use the `ip access-list standard` global configuration command. To disable a standard access list, use the `no` form of this command.

```
ip access-list standard {acl-name | acl-num}
no ip access-list standard {acl-name | acl-num}
```

Syntax Description

- **standard**
 - Enables standard ACL configuration mode. The CLI enters the standard ACL configuration mode in which all subsequent commands apply to the current standard access list. The (config-std-nacl) prompt appears:

```
WAE(config-std-nacl)#
```

- **acl-name**
 - Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.

- **acl-num**
 - Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For standard access lists, the valid range is 1 to 99.

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

global configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

Within ACL configuration mode, you can use the editing commands (`list`, `delete`, and `move`) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, enter the `exit` command at the ACL configuration mode prompt.

To create an entry, use the `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.
Note

IP ACLs that are defined on a router take precedence over the IP ACLs that are defined on the WAE. IP ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

After creating an access list, you can include the access list in an access group using the access-group command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a permit any condition statement.

To create a standard access list, enter the ip access-list standard global configuration command. Identify the new or existing access list with a name up to 30 characters beginning with a letter, or identify a new or existing access list beginning with a number. If you use a number to identify a standard access list, it must be between 1 and 99.

Note

You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the permit host source-ip option and replace source-ip with the IP address of the specific host.

To allow connections from a specific network, use the permit host source-ip wildcard option. Replace source-ip with a network ID or the IP address of any host on the network that you want to specify. Replace wildcard with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the permit 192.168.1.0 0.0.0.255 entry allows access from any host on the 192.168.1.0 network.

After you identify the standard access list, the CLI enters the standard ACL configuration mode and all subsequent commands apply to the specified access list.

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# exit
```

Examples

The following example shows how to create a standard access list on the WAAS device that permits any packets from source IP address 192.168.1.0 for further processing:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# permit 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the show running-configuration command:

```
...!
interface GigabitEthernet 1/0
```
ip address 10.1.1.50 255.255.0.0
ip access-group teststdacl in
exit
.
.
.
ip access-list standard teststdacl
permit 192.168.1.0 any
exit
.
.
Related Commands

- clear arp-cache
- show ip access-list
- (config) ip access-list
- (config-if) ip access-group
- (config-std-nacl) deny
- (config-std-nacl) delete
- (config-std-nacl) list
- (config-std-nacl) move
- (config-std-nacl) permit
(config-std-nacl) delete

To delete a line from the standard IP ACL, use the delete standard ACL configuration command.

```
delete line-num
```

Syntax Description

| line-num | Entry at a specific line number in the access list. |

Defaults

No default behavior or values.

Command Modes

standard ACL configuration mode

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to delete line 10 from the standard IP ACL teststdacl:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# delete 10
```

Related Commands

(config-std-nacl) deny
(config-std-nacl) delete
(config-std-nacl) list
(config-std-nacl) move
(config-std-nacl) permit
To add a line to a standard access-list that specifies the type of packets that you want the WAAS device to drop, use the `deny` standard ACL configuration command. To negate a standard IP ACL, use the `no` form of this command.

```
[insert line-num] deny {source-ip [ wildcard ] | host source-ip | any } 
no deny { source-ip [ wildcard ] | host source-ip | any }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert line-num</code></td>
<td>(Optional) Inserts the conditions following the specified line number into the access list.</td>
</tr>
<tr>
<td><code>deny</code></td>
<td>Causes packets that match the specified conditions to be dropped.</td>
</tr>
<tr>
<td><code>source-ip</code></td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
<tr>
<td><code>wildcard</code></td>
<td>(Optional) Portions of the preceding IP address to match, expressed using 4-digit, dotted-decimal notation. Bits to match are identified by a digital value of 0; bits to ignore are identified by a 1.</td>
</tr>
<tr>
<td><code>host source-ip</code></td>
<td>Matches the following IP address.</td>
</tr>
<tr>
<td><code>any</code></td>
<td>Matches any IP address.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

standard ACL configuration mode

Device Modes

application-accelerator
central-manager

Usage Guidelines

To create an entry, use the `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the `permit host source-ip` option and replace `source-ip` with the IP address of the specific host.

To allow connections from a specific network, use the `permit host source-ip wildcard` option. Replace `source-ip` with a network ID or the IP address of any host on the network that you want to specify. Replace `wildcard` with the dotted decimal notation for a mask that is the reverse of a subnet mask, where...
a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the **permit 192.168.1.0 0.0.0.255** entry allows access from any host on the 192.168.1.0 network.

Examples

The following example shows how to create a standard access list that denies any packets from source IP address 192.168.1.0 for processing:

```plaintext
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# deny 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following example shows how to activate the standard access list for an interface:

```plaintext
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```plaintext
...!
interface GigabitEthernet 1/0
  ip address 10.1.1.50 255.255.0.0
  ip access-group teststdacl in
  exit
  .
  ip access-list standard example
    deny 192.168.1.0 any
    exit
  .
```

Related Commands

- `(config-std-nacl) delete`
- `(config-std-nacl) list`
- `(config-std-nacl) move`
- `(config-std-nacl) permit`
(config-std-nacl) exit

To terminate standard ACL configuration mode and return to the global configuration mode, use the `exit` command.

`exit`

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
All modes

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to terminate standard ACL configuration mode and return to global configuration mode:

```
WAE(config-std-nacl)# exit
WAE(config)#
```
(config-std-nacl) list

To display a list of specified entries within the standard IP ACL, use the list standard ACL configuration command.

```
list [start-line-num [end-line-num]]
```

Syntax Description

<table>
<thead>
<tr>
<th>start-line-num</th>
<th>(Optional) Line number from which the list begins.</th>
</tr>
</thead>
<tbody>
<tr>
<td>end-line-num</td>
<td>(Optional) Last line number in the list.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

standard ACL configuration mode

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to display a list of specified entries within the standard IP ACL:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# list 25 50
```

Related Commands

<table>
<thead>
<tr>
<th>(config-std-nacl) delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-std-nacl) move</td>
</tr>
</tbody>
</table>
(config-std-nacl) move

To move a line to a new position within the standard IP ACL, use the `move` standard ACL configuration command.

```
move old-line-num new-line-num
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>old-line-num</code></td>
<td>Line number of the entry to move.</td>
</tr>
<tr>
<td><code>new-line-num</code></td>
<td>New position of the entry. The existing entry is moved to the following position in the access list.</td>
</tr>
</tbody>
</table>

Command Modes

standard ACL configuration mode

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to move a line to a new position within the standard IP ACL:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# move 25 30
```

Related Commands

- `(config-std-nacl) delete`
- `(config-std-nacl) list`
(config-std-nacl) permit

To add a line to a standard access list that specifies the type of packets that you want the WAAS device to accept for further processing, use the `permit` standard ACL configuration command. To negate a standard IP ACL, use the `no` form of this command.

```
[insert line-num] permit {source-ip [wildcard] | host source-ip | any}
no permit {source-ip [wildcard] | host source-ip | any}
```

Syntax Description

<table>
<thead>
<tr>
<th>insert line-num</th>
<th>(Optional) Inserts the conditions following the specified line number into the access list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ip</td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
<tr>
<td>wildcard</td>
<td>(Optional) Portions of the preceding IP address to match, expressed using 4-digit, dotted-decimal notation. Bits to match are identified by a digital value of 0; bits to ignore are identified by a 1.</td>
</tr>
</tbody>
</table>

Note For standard IP ACLs, the `wildcard` parameter of the `ip access-list` command is always optional. If the `host` keyword is specified for a standard IP ACL, then the `wildcard` parameter is not allowed.

<table>
<thead>
<tr>
<th>host source-ip</th>
<th>Matches the following IP address.</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Matches any IP address.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

standard ACL configuration mode

Device Modes

application-accelerator
central-manager

Usage Guidelines

To create an entry, use the `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the `permit host source-ip` option and replace `source-ip` with the IP address of the specific host.

To allow connections from a specific network, use the `permit host source-ip wildcard` option. Replace `source-ip` with a network ID or the IP address of any host on the network that you want to specify. Replace `wildcard` with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For
instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

Examples

The following example shows how to create a standard access list that permits any packets from source IP address 192.168.1.0 for further processing:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# permit 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following example shows how to activate the standard access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...!
interface GigabitEthernet 1/0
  ip address 10.1.1.50 255.255.0.0
  ip access-group teststdacl in
  exit
  ...
  ip access-list standard example
  permit 192.168.1.0 any
  exit
  ...
```

Related Commands

- `(config-std-nacl) delete`
- `(config-std-nacl) deny`
- `(config-std-nacl) list`
- `(config-std-nacl) move`
Extended ACL Configuration Mode Commands

To create and modify extended access lists on a WAAS device for controlling access to interfaces or applications, use the `ip access-list extended` global configuration command. To disable an extended access list, use the `no` form of this command.

```
ip access-list extended {acl-name | acl-num}
no ip access-list extended {acl-name | acl-num}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>extended</td>
<td>Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access list. The (config-ext-nacl) prompt appears:</td>
</tr>
<tr>
<td>acl-name</td>
<td>Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td>acl-num</td>
<td>Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For extended access lists, valid values range from 100 to 199.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

global configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

Within ACL configuration mode, you can use the editing commands (`list`, `delete`, and `move`) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, enter the `exit` command at the ACL configuration mode prompt.

To create an entry, use a `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.
ACLs that are defined on a router take precedence over the ACLs that are defined on the WAE. ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

After creating an access list, you can include the access list in an access group using the `access-group` command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a `permit any` condition statement.

To create an extended access list, enter the `ip access-list extended` global configuration command. Identify the new or existing access list with a name up to 30 characters long beginning with a letter, or with a number. If you use a number to identify an extended access list, it must be from 100 to 199.

You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

To allow connections from a specific host, use the `permit host source-ip` option and replace `source-ip` with the IP address of the specific host.

To allow connections from a specific network, use the `permit host source-ip wildcard` option. Replace `source-ip` with a network ID or the IP address of any host on the network that you want to specify. Replace `wildcard` with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard `0.0.0.255` causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

After you identify the extended access list, the CLI enters the extended ACL configuration mode and all subsequent commands apply to the specified access list.

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)#
```

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it but limit host administrative access using SSH:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
```

The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group testextacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group testextacl in
exit

ip access-list extended testextacl
permit tcp any any eq www
permit tcp host 10.1.1.5 any eq ssh
exit

Related Commands
- clear arp-cache
- show ip access-list
- (config-if) ip access-group
- (config-ext-nacl) deny
- (config-ext-nacl) delete
- (config-ext-nacl) list
- (config-ext-nacl) move
- (config-ext-nacl) permit
(config-ext-nacl) delete

To delete a line from the extended ACL, use the `delete` extended ACL configuration command.

```
delete line-num
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>line-num</td>
<td>Entry at a specific line number in the access list.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

extended ACL configuration mode

**Device Modes**

application-accelerator

central-manager

**Examples**

The following example shows how to delete line 10 from the extended ACL testextacl:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# delete 10
```

**Related Commands**

- (config-ext-nacl) list
- (config-ext-nacl) move
(config-ext-nacl) deny

To add a line to an extended access list that specifies the type of packets that you want the WAAS device to drop, use the `deny` extended ACL configuration command. To add a condition to the extended ACL, note that the options depend on the chosen protocol.

For IP, use the following syntax to add a condition:

```
```

For TCP, use the following syntax to add a condition:

```
no deny tcp {source-ip [wildcard] | host source-ip | any} [operator port [port]] {dest-ip [wildcard] | host dest-ip | any} [operator port [port]] [established]
```

For UDP, use the following syntax to add a condition:

```
no deny udp {source-ip [wildcard] | host source-ip | any} [operator port [port]] {dest-ip [wildcard] | host dest-ip | any} [operator port [port]]
```

For ICMP, use the following syntax to add a condition:

```
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert line-num</code></td>
<td>(Optional) Specifies to insert the conditions following the specified line number into the access list.</td>
</tr>
<tr>
<td><code>gre</code></td>
<td>Specifies to match packets using the Generic Routing Encapsulation protocol.</td>
</tr>
<tr>
<td><code>icmp</code></td>
<td>Specifies to match ICMP packets.</td>
</tr>
<tr>
<td><code>tcp</code></td>
<td>Specifies to match packets using the TCP protocol.</td>
</tr>
<tr>
<td><code>udp</code></td>
<td>Specifies to match packets using the UDP protocol.</td>
</tr>
<tr>
<td><code>ip</code></td>
<td>Specifies to match all IP packets.</td>
</tr>
<tr>
<td><code>proto-num</code></td>
<td>IP protocol number.</td>
</tr>
<tr>
<td><code>source-ip</code></td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
</tbody>
</table>
(config-ext-nacl) deny

wildcard (Optional) Wildcard. The notation is in 4-digit, dotted-decimal format. The bits to match are identified by a digital value of 0; the bits to ignore are identified by a 1.

For extended IP ACLs, the wildcard parameter of the ip access-list command is always optional. If the host keyword is specified for a extended IP ACL, then the wildcard parameter is not allowed.

host source-ip Specifies to match the following IP address.

any Specifies to match any IP address.

dest-ip Specifies destination IP address. The number of the network or host to which the packet is being sent, specified as a 32-bit quantity in 4-part dotted decimal format (for example, 0.0.0.0).

operator port (Optional) Operator to use with specified ports, where lt = less than, gt = greater than, eq = equal to, neq = not equal to, and range = an inclusive range.

The port value is a number (0–65535) or a keyword; two port numbers are required with the range keyword. See the “Usage Guidelines” section for a listing of the UDP and TCP keywords.

established (Optional) Specifies to match TCP packets with the acknowledgment or reset bits set.

icmp-type (Optional) Match with ICMP message type (0–255).

code (Optional) Code type is 0–255.

icmp-msg (Optional) Match a combination of ICMP message type and code types, as expressed by the keywords shown in the “Usage Guidelines” section.

 Defaults

An access list drops all packets unless you configure at least one permit entry.

 Command Modes

extended ACL configuration mode

 Device Modes

application-accelerator

central-manager

 Usage Guidelines

To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. You must include at least one permit entry to create a valid access list.

To allow connections from a specific host, use the permit host source-ip option and replace source-ip with the IP address of the specific host.

To allow connections from a specific network, use the permit host source-ip wildcard option. Replace source-ip with a network ID or the IP address of any host on the network that you want to specify. Replace wildcard with the dotted decimal notation for a mask that is the reverse of a subnet mask, where
A 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. The **permit 192.168.1.0 0.0.0.255** entry allows access from any host on the 192.168.1.0 network.

For extended IP ACLs, the **wildcard** parameter is required if the **host** keyword is not specified.

Use an extended access list to control connections based on the destination IP address or based on the protocol type. You can combine these conditions with information about the source IP address to create more restrictive conditions.

Table 3-1 lists the UDP keywords that you can use with extended access lists.

**Table 3-1  UDP Keywords for Extended Access Lists**

<table>
<thead>
<tr>
<th>CLI UDP Keyword</th>
<th>Description</th>
<th>UDP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootpc</td>
<td>Bootstrap Protocol (BOOTP) client</td>
<td>68</td>
</tr>
<tr>
<td>bootps</td>
<td>Bootstrap Protocol (BOOTP) server</td>
<td>67</td>
</tr>
<tr>
<td>cmm</td>
<td>Cluster Membership Manager service</td>
<td>5787</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name System (DNS)</td>
<td>53</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>NetBIOS datagram service</td>
<td>138</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>NetBIOS name service</td>
<td>137</td>
</tr>
<tr>
<td>netbios-ss</td>
<td>NetBIOS session service</td>
<td>139</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File Server service</td>
<td>2049</td>
</tr>
<tr>
<td>ntp</td>
<td>Network Time Protocol</td>
<td>123</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol</td>
<td>161</td>
</tr>
<tr>
<td>snmptrap</td>
<td>SNMP traps</td>
<td>162</td>
</tr>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>tftp</td>
<td>Trivial File Transfer Protocol</td>
<td>69</td>
</tr>
<tr>
<td>wccp</td>
<td>Web Cache Communication Protocol</td>
<td>2048</td>
</tr>
</tbody>
</table>

Table 3-2 lists the TCP keywords that you can use with extended access lists.

**Table 3-2  TCP Keywords for Extended Access Lists**

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>Domain Name System</td>
<td>53</td>
</tr>
<tr>
<td>exec</td>
<td>Exec (rcp)</td>
<td>512</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections (used infrequently)</td>
<td>20</td>
</tr>
<tr>
<td>https</td>
<td>Secure HTTP</td>
<td>443</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ssh</td>
<td>Secure Shell login</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3-2  TCP Keywords for Extended Access Lists (continued)

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>www</td>
<td>World Wide Web (HTTP)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 3-3 lists the keywords that you can use to match specific ICMP message types and codes.

Table 3-3  Keywords for ICMP Messages

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>administratively-prohibited</td>
<td>alternate-address</td>
<td>conversion-error</td>
</tr>
<tr>
<td>dod-host-prohibited</td>
<td>dod-net-prohibited</td>
<td>echo</td>
</tr>
<tr>
<td>echo-reply</td>
<td>general-parameter-problem</td>
<td>host-isolated</td>
</tr>
<tr>
<td>host-precedence-unreachable</td>
<td>host-redirect</td>
<td>host-tos-redirect</td>
</tr>
<tr>
<td>host-tos-unreachable</td>
<td>host-unknown</td>
<td>host-unreachable</td>
</tr>
<tr>
<td>information-reply</td>
<td>information-request</td>
<td>mask-reply</td>
</tr>
<tr>
<td>mask-request</td>
<td>mobile-redirect</td>
<td>net-redirect</td>
</tr>
<tr>
<td>net-tos-redirect</td>
<td>net-tos-unreachable</td>
<td>net-unreachable</td>
</tr>
<tr>
<td>network-unknown</td>
<td>no-room-for-option</td>
<td>option-missing</td>
</tr>
<tr>
<td>packet-too-big</td>
<td>parameter-problem</td>
<td>port-unreachable</td>
</tr>
<tr>
<td>precedence-unreachable</td>
<td>protocol-unreachable</td>
<td>reassembly-timeout</td>
</tr>
<tr>
<td>redirect</td>
<td>router-advertisement</td>
<td>router-solicitation</td>
</tr>
<tr>
<td>source-quench</td>
<td>source-route-failed</td>
<td>time-exceeded</td>
</tr>
<tr>
<td>timestamp-reply</td>
<td>timestamp-request</td>
<td>traceroute</td>
</tr>
<tr>
<td>ttl-exceeded</td>
<td>unreachable</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it but limit host administrative access using SSH:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# deny tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
```

The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group extended testextacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...!
```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group extended testextacl in
exit

ip access-list extended testextacl
permit tcp any any eq www
permit tcp host 10.1.1.5 any eq ssh
exit

Related Commands
(config-ext-nacl) delete
(config-ext-nacl) list
(config-ext-nacl) move
(config-ext-nacl) permit
To terminate extended ACL configuration mode and return to the global configuration mode, use the `exit` command.

```
exit
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values

**Command Modes**
all modes

**Device Modes**
application-accelerator
central-manager

**Examples**
The following example shows how to terminate extended ACL configuration mode and return to global configuration mode:

```
WAE(config-ext-nacl)# exit
WAE(config)#
```
(config-ext-nacl) list

To display a list of specified entries within the extended ACL, use the list extended ACL configuration command.

```
list [start-line-num [end-line-num]]
```

Syntax Description

| start-line-num | (Optional) Line number from which the list begins. |
| end-line-num   | (Optional) Last line number in the list.          |

Defaults

No default behavior or values.

Command Modes

- extended ACL configuration mode

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows how to display a list of specified entries within the extended ACL:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# list 25 50
```

Related Commands

- (config-ext-nacl) delete
- (config-ext-nacl) move
(config-ext-nacl) move

To move a line to a new position within the extended ACL, use the move extended ACL configuration command.

```
move old-line-num new-line-num
```

**Syntax Description**

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>old-line-num</td>
<td>Line number of the entry to move.</td>
</tr>
<tr>
<td>new-line-num</td>
<td>New position of the entry. The existing entry is moved to the following position in the access list.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values.

**Command Modes**

extended ACL configuration mode

**Device Modes**

application-accelerator
central-manager

**Examples**

The following example shows how to move a line to a new position within the extended ACL:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# move 25 30
```

**Related Commands**

(config-ext-nacl) delete
(config-ext-nacl) list
(config-ext-nacl) permit

To add a line to an extended access list that specifies the type of packets that you want the WAAS device to accept for further processing, use the `permit` extended ACL configuration command. To add a condition to the extended ACL, note that the options depend on the chosen protocol.

For IP, use the following syntax to add a condition:

```

no permit (gre | icmp | tcp | udp | ip | proto-num) { source-ip [wildcard] | host source-ip | any} { dest-ip [wildcard] | host dest-ip | any}
```

For TCP, use the following syntax to add a condition:

```

no permit tcp { source-ip [wildcard] | host source-ip | any} [operator port [port]] { dest-ip [wildcard] | host dest-ip | any} [operator port [port]] [established]
```

For UDP, use the following syntax to add a condition:

```

no permit udp { source-ip [wildcard] | host source-ip | any} [operator port [port]] { dest-ip [wildcard] | host dest-ip | any} [operator port [port]]
```

For ICMP, use the following syntax to add a condition:

```

```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert line-num</code></td>
<td>(Optional) Specifies to insert the conditions following the specified line number into the access list.</td>
</tr>
<tr>
<td><code>gre</code></td>
<td>Specifies to match packets using the Generic Routing Encapsulation protocol.</td>
</tr>
<tr>
<td><code>icmp</code></td>
<td>Specifies to match ICMP packets.</td>
</tr>
<tr>
<td><code>tcp</code></td>
<td>Specifies to match packets using the TCP protocol.</td>
</tr>
<tr>
<td><code>udp</code></td>
<td>Specifies to match packets using the UDP protocol.</td>
</tr>
<tr>
<td><code>ip</code></td>
<td>Specifies to match all IP packets.</td>
</tr>
<tr>
<td><code>proto-num</code></td>
<td>IP protocol number.</td>
</tr>
<tr>
<td><code>source-ip</code></td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
</tbody>
</table>
wildcard  (Optional) Wildcard. The notation is in 4-digit, dotted-decimal format. The bits to match are identified by a digital value of 0; the bits to ignore are identified by a 1.

For extended IP ACLs, the wildcard parameter of the `ip access-list` command is always optional. If the host keyword is specified for a extended IP ACL, then the wildcard parameter is not allowed.

host source-ip  Specifies to match the following IP address.

any  Specifies to match any IP address.

dest-ip  Specifies destination IP address. The number of the network or host to which the packet is being sent, specified as a 32-bit quantity in 4-part dotted decimal format (for example, 0.0.0.0).

operator port  (Optional) Operator to use with specified ports, where `lt` = less than, `gt` = greater than, `eq` = equal to, `neq` = not equal to, and `range` = an inclusive range.

The port value is a number (0–65535) or a keyword; two port numbers are required with the range keyword. See the “Usage Guidelines” section for a listing of the UDP and TCP keywords.

established  (Optional) Specifies to match TCP packets with the acknowledgment or reset bits set.

icmp-type  (Optional) Match with ICMP message type (0–255).

code  (Optional) Code type is 0–255.

icmp-msg  (Optional) Match a combination of ICMP message type and code types, as expressed by the keywords shown in the “Usage Guidelines” section.

**Defaults**

An access list drops all packets unless you configure at least one permit entry.

**Command Modes**

extended ACL configuration mode

**Device Modes**

application-accelerator

central-manager

**Usage Guidelines**

To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. You must include at least one permit entry to create a valid access list.

To allow connections from a specific host, use the permit host source-ip option and replace source-ip with the IP address of the specific host.

To allow connections from a specific network, use the permit host source-ip wildcard option. Replace source-ip with a network ID or the IP address of any host on the network that you want to specify. Replace wildcard with the dotted decimal notation for a mask that is the reverse of a subnet mask, where
a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. The `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

For extended IP ACLs, the **wildcard** parameter is required if the **host** keyword is not specified.

Use an extended access list to control connections based on the destination IP address or based on the protocol type. You can combine these conditions with information about the source IP address to create more restrictive condition.

Table 3-4 lists the UDP keywords that you can use with extended access lists.

<table>
<thead>
<tr>
<th>CLI UDP Keyword</th>
<th>Description</th>
<th>UDP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootpc</td>
<td>Bootstrap Protocol (BOOTP) client</td>
<td>68</td>
</tr>
<tr>
<td>bootps</td>
<td>Bootstrap Protocol (BOOTP) server</td>
<td>67</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name System (DNS)</td>
<td>53</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>NetBIOS datagram service</td>
<td>138</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>NetBIOS name service</td>
<td>137</td>
</tr>
<tr>
<td>netbios-ss</td>
<td>NetBIOS session service</td>
<td>139</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ntp</td>
<td>Network Time Protocol</td>
<td>123</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol</td>
<td>161</td>
</tr>
<tr>
<td>snmptrap</td>
<td>SNMP traps</td>
<td>162</td>
</tr>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>tftp</td>
<td>Trivial File Transfer Protocol</td>
<td>69</td>
</tr>
<tr>
<td>wccp</td>
<td>Web Cache Communication Protocol</td>
<td>2048</td>
</tr>
</tbody>
</table>

Table 3-5 lists the TCP keywords that you can use with extended access lists.

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>Domain Name System</td>
<td>53</td>
</tr>
<tr>
<td>exec</td>
<td>Exec (rcp)</td>
<td>512</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections (used infrequently)</td>
<td>20</td>
</tr>
<tr>
<td>https</td>
<td>Secure HTTP</td>
<td>443</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ssh</td>
<td>Secure Shell login</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3-5  
TCP Keywords for Extended Access Lists (continued)

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>www</td>
<td>World Wide Web (HTTP)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 3-6 lists the keywords that you can use to match specific ICMP message types and codes.

Table 3-6  
Keywords for ICMP Messages

<table>
<thead>
<tr>
<th>Administrative-Prohibited</th>
<th>Alternate-Address</th>
<th>Conversion-Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOD-Host-Prohibited</td>
<td>DOD-Net-Prohibited</td>
<td>Echo</td>
</tr>
<tr>
<td>Echo-Reply</td>
<td>General-Parameter-Problem</td>
<td>Host-Isolated</td>
</tr>
<tr>
<td>Host-Precedence-Unreachable</td>
<td>Host-Redirect</td>
<td>Host-Tos-Redirect</td>
</tr>
<tr>
<td>Host-Tos-Unreachable</td>
<td>Host-Unknown</td>
<td>Host-Unreachable</td>
</tr>
<tr>
<td>Information-Reply</td>
<td>Information-Request</td>
<td>Mask-Reply</td>
</tr>
<tr>
<td>Mask-Request</td>
<td>Mobile-Redirect</td>
<td>Net-Redirect</td>
</tr>
<tr>
<td>Net-Tos-Redirect</td>
<td>Net-Tos-Unreachable</td>
<td>Net-Unreachable</td>
</tr>
<tr>
<td>Network-Unknown</td>
<td>No-Room-For-Option</td>
<td>Option-Missing</td>
</tr>
<tr>
<td>Packet-Too-Big</td>
<td>Parameter-Problem</td>
<td>Port-Unreachable</td>
</tr>
<tr>
<td>Precedence-Unreachable</td>
<td>Protocol-Unreachable</td>
<td>Reassembly-Time-Out</td>
</tr>
<tr>
<td>Redirect</td>
<td>Router-Advertisement</td>
<td>Router-Solicitation</td>
</tr>
<tr>
<td>Source-Quench</td>
<td>Source-Route-Failed</td>
<td>Time-Exceeded</td>
</tr>
<tr>
<td>Timestamp-Reply</td>
<td>Timestamp-Request</td>
<td>Traceroute</td>
</tr>
<tr>
<td>TTL-Exceeded</td>
<td>Unreachable</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it but limit host administrative access using SSH:

WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit

The following example shows how to activate the access list for an interface:

WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group example in
WAE(config-if)# exit

The following example shows how this configuration appears when you enter the show running-configuration command:

```
...
!```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group testextacl in
exit

ip access-list extended testextacl
permit tcp any any eq www
permit tcp host 10.1.1.5 any eq ssh
exit

Related Commands
(config-ext-nacl) delete
(config-ext-nacl) deny
(config-ext-nacl) list
(config-ext-nacl) move
(config-ext-nacl) permit
Preposition Configuration Mode Commands

To create and modify preposition directives on a WAAS device for prepositioning files for CIFS (WAFS), use the `accelerator cifs preposition` global configuration command.

```
accelerator cifs preposition directive_id
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directive_id</td>
<td>Preposition directive ID of an existing preposition directive that you want to change or a new directive that you want to create.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Use the `accelerator cifs preposition` command to create and edit preposition directives to be used with the transparent CIFS accelerator. A preposition directive defines a set of files that are to be prepositioned on the WAE device.

Within preposition configuration mode, you can use the various commands (`server`, `root`, `scan-type`, `schedule`, and so on) to configure a preposition directive. After you are done defining and scheduling the preposition directive, you must use the `exit` command to enable it. To return to global configuration mode, enter the `exit` command at the preposition configuration mode prompt.

Note

We recommend that you use the WAAS Central Manager GUI to configure preposition directives. For more information, see the “Creating a Preposition Directive” section in the *Cisco Wide Area Application Services Configuration Guide*.

Note

If you create a preposition directive from the CLI before the secure store on the WAE is initialized, you must wait at least two datafeed poll cycles (10 minutes by default) before initializing the secure store; otherwise, the preposition directive will not propagate to the Central Manager because the credentials will not be able to be decrypted on the WAE.

Examples

The following example shows how to enter preposition configuration mode and configure a preposition directive using the `accelerator cifs preposition` command:

```
WAE(config)# accelerator cifs preposition 1
WAE(config-preposition)# credentials username administrator domain PRINT password 0 foo
```
WAE(config-preposition)# dscp 45
WAE(config-preposition)# duration 30
WAE(config-preposition)# min-file-size 0
WAE(config-preposition)# name "Program Files"
WAE(config-preposition)# root Program_Files
WAE(config-preposition)# scan-type full
WAE(config-preposition)# server 10.1.221.3
WAE(config-preposition)# schedule daily 23:00
WAE(config-preposition)# enable
WAE(config-preposition)# exit

Related Commands

(config) accelerator cifs
(config-preposition) credentials

To set the username and password credentials for a file server in a preposition directive, use the credentials preposition configuration command.

credentials username username password {0 | 1} password

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>username username</td>
<td>Specifies the username.</td>
</tr>
<tr>
<td>password {0</td>
<td>1} password</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to set the username and password credentials:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# credentials username ramyav password 0 ux5TjW8r
```

Related Commands

(config-preposition) server
(config-preposition) dscp

To set the DSCP marking value for a preposition task, use the `dscp` preposition configuration command. To remove a DSCP marking value, use the `no` form of this command.

```
dscp value

no dscp value
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>value</th>
<th>DSCP marking value to assign to prepositioning traffic.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Usage Guidelines

This command specifies the DSCP marking value to be used for prepositioning traffic.

DSCP is a field in an IP packet that enables different levels of service to be assigned to the network traffic. The levels of service are assigned by marking each packet on the network with a DSCP code and associating a corresponding level of service. DSCP is the combination of IP Precedence and Type of Service (ToS) fields. For more information, see RFC 2474.

For details on the valid DSCP marking values, see Table 3-2 on page 698.

Examples

The following example shows how to set the DSCP marking value to cs7:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# dscp cs7
```

Related Commands

```
(config) service-policy
```
(config-preposition) duration

To set the maximum duration for a preposition task, use the `duration` preposition configuration command. To remove a duration limit, use the `no` form of this command.

```
duration minutes

no duration minutes
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>minutes</th>
<th>Maximum number of minutes that the preposition task is allowed to run.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Usage Guidelines

This command specifies the maximum amount of time that the WAAS software should take to complete the preposition task. If the software takes longer than this amount of time, the software stops the prepositioning process before all files are copied to the Edge WAE cache. If the preposition task does not start at the scheduled start time (for example, because the Edge and the Core have no connection), the start retries are counted in the duration. If you do not specify a value for this command, WAAS takes as much time as needed to export this file server.

Examples

The following example shows how to set the maximum task duration to 60 minutes:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# duration 60
```

Related Commands

`schedule`
(config-preposition) enable

To enable a preposition directive, use the enable preposition configuration command. To disable a preposition directive, use the no form of this command.

```
   enable
   no enable
```

Syntax Description
This command has no arguments or keywords.

Defaults
Not enabled.

Command Modes
preposition configuration mode

Device Modes
application-accelerator

Usage Guidelines
You must use this command to enable a preposition directive after you define it and schedule it.

Examples
The following example shows how to enable a preposition directive:

```
WAE(config)# accelerator cifs preposition 5
WAE(config-preposition)# enable
```

Related Commands
(config) accelerator cifs preposition
(config-preposition) ignore-hidden-dir

To ignore hidden directories in the set of files to be prepositioned, use the `ignore-hidden-dir` preposition configuration command.

```
ignore-hidden-dir
```

Syntax Description
This command has no arguments or keywords.

Defaults
Hidden directories are not ignored.

Command Modes
preposition configuration mode

Device Modes
application-accelerator

Examples
The following example shows how to prevent hidden directories from being prepositioned:
```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# ignore-hidden-dir
```

Related Commands

```
(config-preposition) root
```
(config-preposition) max-cache

To set the maximum percentage of the cache that the files from a preposition directive can use, use the `max-cache` preposition configuration command.

```
max-cache percentage
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th><code>percentage</code></th>
<th>Integer from 1–100 that specifies a percentage of the overall Edge WAE cache that prepositioned files can consume.</th>
</tr>
</thead>
</table>

| Defaults | 5 |

| Command Modes | Preposition configuration mode |

| Device Modes | application-accelerator |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to set the maximum cache percentage to 10 percent:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>WAE(config)# accelerator cifs preposition 3</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config-preposition)# max-cache 10</code></td>
</tr>
</tbody>
</table>

| Related Commands | (config-preposition) max-file-size |

(config-preposition) max-file-size

To set the maximum size file that can be prepositioned, use the `max-file-size` preposition configuration command. To remove this limit, use the `no` form of this command.

```
max-file-size size_in_kb
no max-file-size size_in_kb
```

Syntax Description
- `size_in_kb`: Number of kilobytes of the maximum file size.

Defaults
- No default behavior or values.

Command Modes
- preposition configuration mode

Device Modes
- application-accelerator

Usage Guidelines
- Files that are larger than the specified size are not prepositioned.

Examples
The following example shows how to set the maximum file size to 1000 KB:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# max-file-size 1000
```

Related Commands
- (config-preposition) max-cache
(config-preposition) min-file-size

To set the minimum size file that can be prepositioned, use the **min-file-size** preposition configuration command. To remove this limit, use the **no** form of this command.

```
min-file-size size_in_kb
no min-file-size size_in_kb
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>size_in_kb</th>
<th>Number of kilobytes of the minimum file size.</th>
</tr>
</thead>
</table>

Defaults

20 KB

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Usage Guidelines

Files that are smaller than the specified size are not prepositioned.

Examples

The following example shows how to set the minimum file size to 50 KB:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# min-file-size 50
```

Related Commands

(config-preposition) max-file-size
(config-preposition) name

To set the display name of a preposition directive, use the name preposition configuration command.

 name name

Syntax Description:
- **name**: Name of a preposition directive.

Defaults:
The default name is New preposition directive n.

Command Modes:
- preposition configuration mode

Device Modes:
- application-accelerator

Examples:
The following example shows how to set the preposition directive name:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# name working_files
```

Related Commands:
- (config-preposition) enable
(config-preposition) pattern

To filter the files included for a preposition directive, use the pattern preposition configuration command. To remove this filter, use the no form of this command.

```
pattern {equals | starts-with | ends-with | contains} text

no pattern {equals | starts-with | ends-with | contains} text
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>equals</td>
<td>Specifies to limit the selected files to those filenames that are equal to the specified text.</td>
</tr>
<tr>
<td>starts-with</td>
<td>Specifies to limit the selected files to those filenames that start with the specified text.</td>
</tr>
<tr>
<td>ends-with</td>
<td>Specifies to limit the selected files to those filenames that end with the specified text.</td>
</tr>
<tr>
<td>contains</td>
<td>Specifies to limit the selected files to those filenames that contain the specified text.</td>
</tr>
<tr>
<td>text</td>
<td>Text string that filters the selected files based on the pattern option.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to set a pattern filter to select only files that end with .doc:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# pattern ends-with .doc
```

Related Commands

[(config-preposition) root](#)
(config-preposition) recursive

To include files in subdirectories for a preposition directive, use the recursive preposition configuration command. To not include subdirectories, use the no form of this command.

```
recursive

no recursive
```

Syntax Description

This command has no arguments or keywords.

Defaults

Subdirectories are included.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to exclude subdirectories from prepositioning:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# no recursive
```

Related Commands

(config-preposition) root
(config-preposition) root

To set a root directory for a preposition directive, use the root preposition configuration command.

```
root path
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>Full pathname to the directory, not including the server name.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Usage Guidelines

You can configure multiple root directories by executing this command multiple times for a preposition directive.

Examples

The following example shows how to set a root preposition directory:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# root home/working
```

Related Commands

- (config-preposition) pattern
- (config-preposition) recursive
- (config-preposition) scan-type
- (config-preposition) server
(config-preposition) scan-type

To set the file scanning type for a preposition directive, use the `scan-type` preposition configuration command.

```
scan-type { full | since last | since period units }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>full</td>
<td>Specifies to copy all files to the Edge WAE cache.</td>
</tr>
<tr>
<td>since last</td>
<td>Specifies to copy only the files that have changed since the last preposition to the Edge WAE cache. This differential filter is applied from the second iteration of a task execution onward. If a new directory is moved to an already prepositioned directory (without changing its last-modified time), this new directory is not prepositioned during the next prepositioning session when you choose this option.</td>
</tr>
<tr>
<td>since period units</td>
<td>Specifies to copy only the files that have changed within the specified period. Period values are the number of minutes, hours, days, or weeks (depending on the units specified). Unit values are <code>min</code>, <code>hour</code>, <code>day</code>, or <code>week</code>.</td>
</tr>
</tbody>
</table>

Defaults

Full

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to set the scan-type for a preposition directive:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# scan-type since last
```

Related Commands

- (config-preposition) recursive
- (config-preposition) root
(config-preposition) schedule

To set the schedule for starting a preposition task, use the schedule preposition configuration command.

```
schedule { now |
    daily time |
    date date time |
    weekly { dayname [dayname]... } time time |
    monthly { week-day dayname weeknumber time time | { day day [day]... } } time time }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>Specifies that prepositioning occurs within a few minutes of submitting the schedule.</td>
</tr>
<tr>
<td>daily time</td>
<td>Specifies that prepositioning occurs daily at the defined time at which to run the prepositioning task, in the following format: \textit{hh:mm}, where \textit{hh} is the hour (00–23) and \textit{mm} is the minutes (00–59). Hours are in 24-hour format, as in the following example: 23:01</td>
</tr>
<tr>
<td>date date time</td>
<td>Specifies that prepositioning occurs at the defined time and date at which to run the prepositioning task, in the following format: \textit{DD:MM:YYYY}, where \textit{DD} is the day (01–31), \textit{MM} is the month (01–12), and \textit{YYYY} is the year (1993–2035). The time is in the following format: \textit{hh:mm}, where \textit{hh} is the hour (00–23) and \textit{mm} is the minutes (00–59). Example: 28:09:2008 23:01</td>
</tr>
<tr>
<td>weekly dayname</td>
<td>Specifies that prepositioning occurs on the selected days of the week at the defined time. To specify multiple days, separate them with spaces, as follows: Monday Tuesday</td>
</tr>
<tr>
<td>time time</td>
<td>Specifies the time to run the preposition task on the specified days.</td>
</tr>
<tr>
<td>monthly</td>
<td>Specifies that prepositioning occurs on the selected days or dates of the month at the defined time.</td>
</tr>
<tr>
<td>week-day dayname weeknumber</td>
<td>Specifies a named day of the week and week of the month to start preposition. Only one day is allowed. Week number values are 1–4.</td>
</tr>
<tr>
<td>day day</td>
<td>Specifies a numbered day of the month (integer). To specify multiple days, separate them with spaces, as follows: day 1 6 11 16 21 26 31.</td>
</tr>
</tbody>
</table>

Defaults

now

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to set the preposition task to run daily at 11:30 p.m.:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# schedule daily 23 30 00
```
The following example shows how to set the preposition task to run on December 15, 2008 at midnight:
WAE(config-preposition)# schedule date 15:12:2008 00:00

The following example shows how to set the preposition task to run weekly on Wednesdays and Fridays at 8 p.m.:
WAE(config-preposition)# schedule weekly Wednesday Friday time 20:00

The following example shows how to set the preposition task to run monthly on the 1st and 15th days at 1:00 a.m.:
WAE(config-preposition)# schedule monthly day 1 time 15 1:00

Related Commands
(config-preposition) duration
(config-preposition) server

To set a server name for a preposition directive, use the server preposition configuration command.

```
server name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>name</th>
<th>Server name.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

preposition configuration mode

Device Modes

application-accelerator

Examples

The following example shows how to set a server name for a preposition directive:

```
WAE(config)# accelerator cifs preposition 3
WAE(config-preposition)# server win12srv
```

Related Commands

-(config-preposition) credentials

-(config-preposition) root
Virtual Blade Configuration Mode Commands

To configure virtual blades on a WAE device, use the `virtual-blade` global configuration command. To disable a virtual blade, use the `no` form of this command.

```
virtual-blade [virtual-blade-number]
```

```
no virtual-blade [virtual-blade-number]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>virtual-blade-number</code></td>
<td>Number of the virtual blade that you want to configure. The range of valid values depends on the number of virtual blades that your WAE or WAVE appliance can support.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
</table>

| Usage Guidelines | Use the `virtual-blade` command to configure virtual blades on a WAAS device that supports virtual blades. This command initiates the virtual blade configuration mode as indicated by the (config-vb) prompt. Within virtual blade configuration mode, you can use the various commands (`device`, `disk`, `interface`, and so on) to define the resource parameters for the virtual blade. To return to global configuration mode, enter the `exit` command. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to edit virtual blade 2 and put your WAE into virtual blade configuration mode:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>WAE(config)# virtual-blade 2</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config-vb)#</code></td>
</tr>
<tr>
<td></td>
<td>The following example shows that the prompt changes to (config-vb) to indicate virtual blade mode.</td>
</tr>
<tr>
<td></td>
<td><code>WAE(config-vb)# description This-is-my-virtual-blade-description</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config-vb)# exit</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config)#</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th><code>(config-vb) autostart</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>(config-vb) boot</code></td>
</tr>
</tbody>
</table>
(config-vb) cpu-list
(config-vb) description
(config-vb) device
(config-vb) disk
(config-vb) interface
(config-vb) memory
(config-vb) vnc
To set a virtual blade to automatically start when the WAE is started, use the `autostart` virtual blade configuration command. To prevent a virtual blade from starting automatically, use the `no` form of this command.

```
autostart

no autostart
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
virtual blade configuration mode

Device Modes
application-accelerator

Examples
The following example shows how to configure virtual blade 2 to start automatically when the WAE restarts:

```
WAE(config)# virtual-blade 2
WAE(config-vb)# autostart
```

Related Commands
- (config-vb) boot
- (config-vb) cpu-list
- (config-vb) description
- (config-vb) device
- (config-vb) disk
- (config-vb) interface
- (config-vb) memory
(config-vb) boot

To configure the boot image location and source for a virtual blade, use the boot virtual blade configuration command.

```
boot {cd-image {cd-rom | disk location} | fd-image disk location | from {cd-rom | disk | network}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cd-image</td>
<td>Specifies the location of the boot CD image for the virtual blade. This image can be located on a CD in the WAE CD-ROM drive or it can be an ISO file located on the WAE hard drive.</td>
</tr>
<tr>
<td>cd-rom</td>
<td>Specifies that the CD image location is a physical CD in the WAE CD-ROM drive.</td>
</tr>
<tr>
<td>disk location</td>
<td>Specifies that the CD image location is an ISO file on the WAE hard drive (for example, /local1/vbs/windows_2003.iso).</td>
</tr>
<tr>
<td>fd-image disk location</td>
<td>Specifies the location of the floppy disk image for the virtual blade. This image file must be located on the WAE hard drive (for example, /local1/vbs/fdimage).</td>
</tr>
<tr>
<td>from</td>
<td>Specifies the source from which the virtual blade will boot. The boot source (defined by the boot cd-image command) can be a physical CD or a CD image.</td>
</tr>
<tr>
<td>cd-rom</td>
<td>Specifies that the virtual blade boots from a physical CD or a CD image (.iso image file stored in the /local1/vbs directory). If you specify this option, the cd-image option is required and configures the location of the boot image.</td>
</tr>
<tr>
<td>disk</td>
<td>Specifies that the virtual blade boots from a guest OS installed on the WAE hard drive. If you specify this option, the cd-image option is optional and configures the location of a CD-ROM image that is made available to the guest OS (but is not used for booting).</td>
</tr>
<tr>
<td>network</td>
<td>Specifies that the virtual blade boots from a network location. You must have PXE enabled on your network.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

virtual blade configuration mode

Device Modes

application-accelerator

Usage Guidelines

The floppy disk image and bootable CD-ROM image must be located in the /local1/vbs directory. The path used with the boot cd-image disk and boot fd-image disk commands must be /local1/vbs/filename. The CD-ROM image can be used to boot the operating system running on the virtual blade. The floppy disk image reserves resources for an emulated floppy disk drive on the virtual blade.
Use the `boot from cd-rom` option before you have installed a guest OS, to boot from a guest OS installer CD (a physical CD or an .iso file located in /local1/vbs).

Use the `boot from disk` option after you have installed a guest OS, to boot from the installed guest OS.

If you specified `boot from disk`, the `cd-image` keyword is optional and configures the location of a CD-ROM image that is made available to the guest OS (but is not used for booting). The CD image can be changed during operation, by using the `virtual-blade n cd disk /local1/vbs/newimage.iso` or the `virtual-blade n cd cd-rom` EXEC command.

The `boot from network` option requires PXE to be enabled on your network. A DHCP broadcast message with PXE boot options is sent, and the DHCP server provides the location of files to download for boot.

Use the `boot from network` option to install the same version of software to many virtual blades, or to boot each virtual blade with a complete OS stored and managed in a centralized network location. If you are network booting to install the guest OS, then you may want to configure the virtual blade to boot from the disk on subsequent boots. You can do this by modifying the `boot from` parameter while the virtual blade is running.

Examples

The following example shows how to configure virtual blade 2 to boot from a CD image file (such as a guest OS installer CD) located on the WAE hard disk:

```
WAE(config)# virtual-blade 2
WAE(config-vb)# boot from cd-rom
WAE(config-vb)# boot cd-image disk /local1/vbs/windows_2003.iso
```

The following example shows how to configure virtual blade 1 to boot from a CD-ROM located in the WAE optical drive:

```
WAE(config)# virtual-blade 1
WAE(config-vb)# boot from cd-rom
WAE(config-vb)# boot cd-image cd-rom
```

The following example shows how to configure virtual blade 1 to boot from a previously installed guest OS installed on the WAE hard disk:

```
WAE(config)# virtual-blade 1
WAE(config-vb)# boot from disk
```

The following example shows how to configure virtual blade 1 to boot from a network location:

```
WAE(config)# virtual-blade 1
WAE(config-vb)# boot from network
```

Related Commands

- `(config-vb) autostart`
- `(config-vb) cpu-list`
- `(config-vb) description`
- `(config-vb) device`
- `(config-vb) disk`
- `(config-vb) interface`
- `(config-vb) memory`
(config-vb) cpu-list

To configure the CPU assignments that the virtual blade runs on, use the `cpu-list` virtual blade configuration command. To remove the virtual blade CPU list configuration, use the `no` form of this command.

```plaintext
cpu-list cpu1 [cpu2]  
no cpu-list cpu1 [cpu2]
```

Syntax Description: `cpu-list cpu1 [cpu2]` Specifies the CPUs that are available for this virtual blade. The virtual blade may run on a single CPU or both, if available.

Defaults: A single CPU is assigned per virtual blade by default. If more than one CPU is available, odd numbered virtual blades will use CPU 1, and even numbered virtual blades will use CPU 2.

Command Modes: virtual blade configuration mode

Device Modes: application-accelerator

Usage Guidelines:

- If the CPU list contains a single entry, then only that CPU will be used. If the CPU list contains two entries, then both CPUs will be used in SMP mode.
- You may configure any combination of CPUs, however enabling a virtual blade to use more than one core in SMP mode may interfere with another virtual blade using the same core. In this case, a warning is displayed.

Note: A running virtual blade can be moved between CPUs, but the virtual blade must be stopped to add or remove CPUs.

The number of CPUs available for virtual blades depends on the device. On a device with two CPUs, one CPU is always reserved for the WAAS software. On a device with four CPUs, two are reserved for the WAAS software. If no virtual blades are started, all CPUs are used for the WAAS software.

Examples:
The following example shows how to configure CPU 1 and CPU 2 for virtual blade 2:

```plaintext
WAE(config)# virtual-blade 2  
WAE(config-vb)# cpu-list 1 2
```

Related Commands:
- `(config-vb) autostart`
- `(config-vb) boot`
(config-vb) device
(config-vb) disk
(config-vb) interface
(config-vb) memory
(config-vb) description

To enter a description for a virtual blade on your WAE, use the `description` virtual blade configuration command.

```
description description-text
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Text to briefly describe the virtual blade.</th>
</tr>
</thead>
</table>

| Defaults | No default behavior or values. |

| Command Modes | virtual blade configuration mode |

| Device Modes | application-accelerator |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to define the descriptive text for virtual blade 2 as “Windows Server 2003”:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE(config)# virtual-blade 2</td>
</tr>
<tr>
<td></td>
<td>WAE(config-vb)# description Windows Server 2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>(config-vb) autostart</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(config-vb) boot</td>
</tr>
<tr>
<td></td>
<td>(config-vb) cpu-list</td>
</tr>
<tr>
<td></td>
<td>(config-vb) device</td>
</tr>
<tr>
<td></td>
<td>(config-vb) disk</td>
</tr>
<tr>
<td></td>
<td>(config-vb) interface</td>
</tr>
<tr>
<td></td>
<td>(config-vb) memory</td>
</tr>
</tbody>
</table>
(config-vb) device

To set the device emulation parameters used by the virtual blade on your WAE, use the device virtual blade configuration command.

```
device {cpu {qemu64 | qemu32} | nic {rtl8139 | E1000 | virtio} | disk {IDE | virtio} |
keyboard {emulation} }
```

Syntax Description

- **cpu**
 - Specifies the CPU emulation to be used on the virtual blade.
 - **qemu64**
 - Specifies a 64-bit processor emulator.
 - **qemu32**
 - Specifies a 32-bit processor emulator.
- **nic**
 - Specifies the network interface card emulation to be used on the virtual blade.
 - **rtl8139**
 - Specifies a Realtek network card emulator.
 - **E1000**
 - Specifies an Intel PRO/1000 network card emulator.
 - **virtio**
 - Specifies a generic NIC emulator optimized for virtual machines.
- **disk**
 - Specifies the type of hard drive emulation to be used on the virtual blade.
 - **IDE**
 - Specifies an IDE (ATA) type disk emulator.
 - **virtio**
 - Specifies a generic disk controller emulator optimized for virtual machines.
- **keyboard emulation**
 - Specifies the keyboard device emulation. See Usage Guidelines for values.

Defaults

The default values are as follows:

- **device cpu qemu64**
- **device nic rtl8139**
- **device disk IDE**
- **device keyboard en-us**

Command Modes

- virtual blade configuration mode

Device Modes

- application-accelerator

Usage Guidelines

Table 3-1 shows valid values for keyboard device emulation.

<table>
<thead>
<tr>
<th>Emulation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>ar</td>
</tr>
<tr>
<td>Danish</td>
<td>da</td>
</tr>
<tr>
<td>German</td>
<td>de</td>
</tr>
</tbody>
</table>
Table 3-1 Keyboard Device Emulation Values (continued)

<table>
<thead>
<tr>
<th>Emulation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>German (Swiss)</td>
<td>de-ch</td>
</tr>
<tr>
<td>English (UK)</td>
<td>en-gb</td>
</tr>
<tr>
<td>English (US) (default)</td>
<td>en-us</td>
</tr>
<tr>
<td>Spanish</td>
<td>es</td>
</tr>
<tr>
<td>Estonian</td>
<td>et</td>
</tr>
<tr>
<td>Finnish</td>
<td>fi</td>
</tr>
<tr>
<td>Faroese</td>
<td>fo</td>
</tr>
<tr>
<td>French</td>
<td>fr</td>
</tr>
<tr>
<td>French (Belgium)</td>
<td>fr-be</td>
</tr>
<tr>
<td>French (Canada)</td>
<td>fr-ca</td>
</tr>
<tr>
<td>French (Switzerland)</td>
<td>fr-ch</td>
</tr>
<tr>
<td>Croatian</td>
<td>hr</td>
</tr>
<tr>
<td>Hungarian</td>
<td>hu</td>
</tr>
<tr>
<td>Icelandic</td>
<td>is</td>
</tr>
<tr>
<td>Italian</td>
<td>it</td>
</tr>
<tr>
<td>Japanese</td>
<td>ja</td>
</tr>
<tr>
<td>Lithuanian</td>
<td>lt</td>
</tr>
<tr>
<td>Latvian</td>
<td>lv</td>
</tr>
<tr>
<td>Macedonian</td>
<td>mk</td>
</tr>
<tr>
<td>Dutch</td>
<td>nl</td>
</tr>
<tr>
<td>Dutch (Belgium)</td>
<td>nl-be</td>
</tr>
<tr>
<td>Norwegian</td>
<td>nor</td>
</tr>
<tr>
<td>Polish</td>
<td>pl</td>
</tr>
<tr>
<td>Portuguese</td>
<td>pt</td>
</tr>
<tr>
<td>Portuguese (Brazil)</td>
<td>pt-br</td>
</tr>
<tr>
<td>Russian</td>
<td>ru</td>
</tr>
<tr>
<td>Slovenian</td>
<td>sl</td>
</tr>
<tr>
<td>Swedish</td>
<td>sv</td>
</tr>
<tr>
<td>Thai</td>
<td>th</td>
</tr>
<tr>
<td>Turkish</td>
<td>tr</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the device emulation parameters for virtual blade 2. The CPU emulator is set to qemu64, the NIC emulator is set to rtl8139, and the disk type emulator is set to IDE.

```
WAE(config)# virtual-blade 2
WAE(config-vb)# device cpu qemu64
WAE(config-vb)# device nic rtl8139
WAE(config-vb)# device disk IDE
```
Related Commands

- (config-vb) autostart
- (config-vb) boot
- (config-vb) cpu-list
- (config-vb) description
- (config-vb) disk
- (config-vb) interface
- (config-vb) memory
(config-vb) disk

To allocate disk space for a virtual blade on the WAE hard drive, use the disk virtual blade configuration command.

```
disk disk1-size disk2-size disk3-size disk4-size
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>disk1-size</th>
<th>Amount of disk space allocated for the virtual disk 1 of the virtual blade in gigabytes. The range of valid values is from 1 to 1000.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disk2-size</td>
<td>Amount of disk space allocated for the virtual disk 2 of the virtual blade in gigabytes. The range of valid values is from 0 to 1000.</td>
</tr>
<tr>
<td></td>
<td>disk3-size</td>
<td>Amount of disk space allocated for the virtual disk 3 of the virtual blade in gigabytes. The range of valid values is from 0 to 1000. If you are using IDE disk emulation, you must specify 0 for the size of disk 3, because this IDE bus position is used for a CD-ROM.</td>
</tr>
<tr>
<td></td>
<td>disk4-size</td>
<td>Amount of disk space allocated for the virtual disk 4 of the virtual blade in gigabytes. The range of valid values is from 0 to 1000.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

virtual blade configuration mode

Device Modes

application-accelerator

Usage Guidelines

You can configure up to four virtual hard disks on the virtual blade.

Examples

The following example shows how to allocate 40 GB of disk space for a single virtual hard disk in virtual blade 1:

```
WAE(config)# virtual-blade 1
WAE(config-vb)# disk 40
```

The following example shows how to allocate four virtual hard disks in virtual blade 2:

```
WAE(config)# virtual-blade 2
WAE(config-vb)# disk 10 30 0 15
```

Related Commands

- (config-vb) autostart
- (config-vb) boot
- (config-vb) cpu-list
- (config-vb) description
(config-vb) device
(config-vb) interface
(config-vb) memory
To bridge a virtual blade interface to an interface on your WAE, use the `interface` virtual blade configuration command.

```
interface vb-interface bridge-group bridge-id [mac-address mac]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vb-interface</td>
<td>Virtual blade interface to be bridged; valid values are 1 or 2.</td>
</tr>
<tr>
<td>bridge-group</td>
<td>Specifies that a virtual blade interface is bridged to a bridge virtual interface associated with the specified bridge group.</td>
</tr>
<tr>
<td>bridge-id</td>
<td>Specifies that a virtual blade interface is bridged to a bridge virtual interface associated with the specified bridge group.</td>
</tr>
<tr>
<td>mac-address mac</td>
<td>(Optional) Specifies the MAC address to be assigned to the virtual interface. If you do not specify a MAC address, WAAS generates one for the interface.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

virtual blade configuration mode

Device Modes

application-accelerator

Usage Guidelines

The virtual blade requires bridging of its virtual interface to a bridge group on the WAE so that it can connect to the network defined in the bridge group. You must have previously defined the bridge group and bridge virtual interface by using the `bridge` and `interface bvi` global configuration commands.

Examples

The following example shows how to bridge interface 1 on virtual blade 2 to bridge group 3:

```
WAE# configure
WAE(config)# bridge 3 protocol ieee
WAE(config)# interface GigabitEthernet 1/0 bridge-group 3
WAE(config)# interface bvi 3 ip address 10.10.10.10 255.0.0.0
WAE(config)# virtual-blade 2
WAE(config-vb)# interface 1 bridge-group 3
```

Related Commands

- `(config-vb) autostart`
- `(config-vb) boot`
- `(config-vb) cpu-list`
- `(config-vb) description`
- `(config-vb) device`
- `(config-vb) disk`
- `(config-vb) memory`
(config-vb) memory

To allocate memory for a virtual blade from the WAE system, use the memory virtual blade configuration command.

```
memory memory-allocation
```

Syntax Description

| memory-allocation | Amount of memory allocated for the virtual memory of a virtual blade, in megabytes. |

Defaults

No default behavior or values.

Command Modes

virtual blade configuration mode

Device Modes

application-accelerator

Usage Guidelines

The amount of memory that can be allocated for a virtual blade depends on the amount of memory in your WAE or WAVE appliance, and on the amount of memory that is assigned to other virtual blades. The minimum amount of memory that you can allocate for a single virtual blade is 512 MB.

Examples

The following example shows how to allocate 4 MB of memory for virtual blade 2:

```
WAE(config)# virtual-blade 2
WAE(config-vb)# memory 4
```

Related Commands

- (config-vb) autostart
- (config-vb) boot
- (config-vb) cpu-list
- (config-vb) description
- (config-vb) device
- (config-vb) disk
- (config-vb) interface
(config-vb) vnc

To enable the VNC server for a virtual blade, use the vnc virtual blade configuration command. To disable the VNC server for a virtual blade, use the no form of this command.

 vnc
 no vnc

Syntax Description

This command has no arguments or keywords.

Defaults

The VNC server is enabled by default.

Command Modes

virtual blade configuration mode

Device Modes

application-accelerator

Usage Guidelines

The VNC server is enabled by default.

When you disable the VNC server, any active VNC connections are closed.

Examples

The following example shows how to disable the VNC server for virtual blade 2:

```
WAE(config)# virtual-blade 2
WAE(config-vb)# no vnc
```

Related Commands

(config-vb) autostart
(config-vb) boot
(config-vb) cpu-list
(config-vb) description
(config-vb) device
(config-vb) disk
(config-vb) interface
PKI Certificate Authority Configuration Mode Commands

To configure public key infrastructure (PKI) encryption certificate authorities on a WAAS device, use the `crypto pki ca` global configuration command. To delete a PKI encryption certificate authority, use the `no` form of the command.

```
crypto pki ca certificate_authority_name
no crypto pki ca certificate_authority_name
```

Syntax Description
- `certificate_authority_name`: Name of the certificate authority (CA). The CA name may contain up to 64 characters.

Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the command to add and configure a certificate authority. This command initiates the certificate authority configuration mode, indicated by the `(config-ca)` prompt.

Within certificate authority configuration mode, you can use the various commands (`ca-certificate`, `description`, `revocation check`, and so on) to define an encryption certificate authority. To return to global configuration mode, enter `exit` at the certificate authority configuration mode prompt.

Examples
The following example shows how to create or edit a certificate authority named mycertauth. If the certificate authority is already established on the WAAS device, the `crypto pki ca` command edits it. If the certificate authority does not exist, the `crypto pki ca` command creates it.

```
WAE(config)# crypto pki ca mycertauth
WAE(config-ca)# description This-is-my-CA-description
WAE(config-ca)# exit
WAE(config)#
```

Related Commands
- `(config-ca) ca-certificate`
(config-ca) description
(config-ca) revocation-check
(config-ca) ca-certificate

To set the certification authority file to be used by the WAAS device, use the `ca-certificate` certification authority configuration command.

```
ca-certificate filename.ca
```

Syntax Description

- `filename.ca`: Filename of the certificate authority. The filename must end in `.ca` and be no longer than 32 characters.

Defaults

No default behavior or values.

Command Modes

- Certification authority configuration

Device Modes

- Application-accelerator
- Central-manager

Usage Guidelines

Before you can assign a certification authority file using the `ca-certificate` command, the certification authority file must be imported using the `crypto import ca-certificate` EXEC command. See the `crypto import` command.

Examples

The following example shows how to specify the certification authority file to use:

```
WAE(config)# crypto pki ca mycertauth
WAE(config-ca)# ca-certificate mycafile.ca
```

Related Commands

- `(config-ca) description`
- `(config-ca) revocation-check`
(config-ca) description

To enter a description for the certification authority to be used by the WAAS device, use the `description` command.

```
description description-text
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>description-text</th>
<th>Test to briefly describe the certification authority being used. The description text must not exceed 128 characters.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>certification authority configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to define the descriptive text for the certification authority:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAE(config)# crypto pki ca mycertauth</td>
<td></td>
</tr>
<tr>
<td>WAE(config-ca)# description This is my CA description</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>(config-ca) ca-certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(config-ca) revocation-check</td>
</tr>
</tbody>
</table>
(config-ca) revocation-check

To configure the certification authority revocation checking method, use the `revocation-check` command.

```
revocation-check { none | ocsp-cert-url | ocsp-url } [ none | ocsp-cert-url | ocsp-url ]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>none</th>
<th>No revocation checking is used.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ocsp-cert-url</td>
<td>Enables Online Certificate Status Protocol (OCSP) revocation status checking using the CA server URL defined in the CA certificate.</td>
</tr>
<tr>
<td></td>
<td>ocsp-url</td>
<td>Enables OCSP revocation status checking using the URL defined for the global OCSP settings.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

certification authority configuration

Device Modes

application-accelerator
中央管理器 central-manager

Examples

The following example shows how to configure certification authority revocation checking to use the URL defined in the global OCSP settings:

```
WAE(config)# crypto pki ca mycertauth
WAE(config-ca)# revocation-check ocsp-url
```

The following example shows how to configure revocation checking to use the URL defined in the global OCSP settings as the first method, and to use no checking as the second method:

```
WAE(config)# crypto pki ca mycertauth
WAE(config-ca)# revocation-check ocsp-url none
```

Related Commands

- (config-ca) ca-certificate
- (config-ca) description
(config-ca) revocation-check
PKI Global Settings Configuration Mode Commands

To configure public key infrastructure (PKI) encryption global settings on a WAAS device, use the `crypto pki global-settings` global configuration command.

```
crypto pki global-settings
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
Use the `crypto pki global-settings` command to configure OCSP and revocation checking. The `crypto pki global-settings` command initiates the global settings configuration mode, as indicated by the following prompt:

```
WAE(config-pki-global-settings)
```

Within PKI global settings configuration mode, you can use PKI global settings commands to define PKI settings. To return to global configuration mode, enter `exit` at the PKI global settings configuration mode prompt.

Examples
The following example shows how to enter PKI global settings configuration mode:

```
WAE(config)# crypto pki global-settings
WAE(config-pki-global-settings)#
```

Related Commands
- `(config-pki-global-settings) ocsp`
- `(config-pki-global-settings) revocation-check`
(config-pki-global-settings) ocsp

To enter the URL to be used as the global settings for the Online Certificate Status Protocol (OCSP) protocol revocation status checking, use the ocsp global settings configurations mode command.

```
ocsp url http://address
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>url http://address</td>
<td>URL to be used for OCSP revocation status checking.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

- PKI global settings configuration

Device Modes

- application-accelerator
- central-manager

Examples

The following example shows how to define the OCSP URL as www.myocspurl.com:

```
WAE(config)# crypto pki global-settings
WAE(config-pki-global-settings)# ocsp url http://www.myocspurl.com
```

Related Commands

- (config-pki-global-settings) revocation-check
To configure the global settings revocation checking method, use the `revocation-check` command.

```
revocation-check {ocsp-cert-url | ocsp-url} [none]
```

Syntax Description

- `ocsp-cert-url`: Enables Online Certificate Status Protocol (OCSP) revocation status checking using the CA server URL defined in the CA certificate.
- `ocsp-url`: Enables OCSP revocation status checking using the URL defined for the global OCSP settings.
- `none or null`: Specifies a revocation check null method that returns revocation.

Defaults

No default behavior or values.

Command Modes

PKI global settings configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to configure the global revocation checking to use the URL defined in the global OCSP settings:

```
WAE(config)# crypto pki global-settings
WAE(config-pki-global-settings)# revocation-check ocsp-url
```

The following example shows how to configure the global revocation checking use the URL defined in the global OCSP settings as the first method, and to use no checking as the second method:

```
WAE(config)# crypto pki global-settings
WAE(config-pki-global-settings)# revocation-check ocsp-url none
```

Related Commands

`ocsp`
(config-pki-global-settings) revocation-check
SSL Accelerated Service Configuration Mode Commands

SSL accelerated services lets you enable and configure SSL acceleration on your WAAS system, and define services to be accelerated on the SSL path. To configure secure socket layer (SSL) encryption accelerated services on a WAAS device, use the `crypto ssl services accelerated-service` global configuration command. To delete a parameter use the `no` form of the command.

```
crypto ssl service accelerated-service service-name
no crypto ssl service accelerated-service service-name
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>service-name</code></td>
<td>Name of the accelerated service that you want to create or edit. The service list name may contain up to 128 characters.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Use the <code>crypto ssl services accelerated-service</code> command to add and configure an accelerated service. The <code>crypto ssl services accelerated-service</code> command initiates accelerated service configuration mode, as indicated by the following prompt:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>WAE(config-ssl-accelerated)#</code></td>
</tr>
</tbody>
</table>

Within SSL accelerated service configuration mode, you can use SSL accelerated service configuration commands. To return to global configuration mode, enter `exit` at the accelerated service configuration mode prompt.

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to create or edit an accelerated service called myservice. If the service is already established on the WAAS device, the <code>crypto ssl services accelerated-service</code> command edits it. If the service does not exist, the <code>crypto ssl services accelerated-service</code> command creates it:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>WAE(config)# crypto ssl services accelerated-service myservice</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config-ssl-accelerated)# exit</code></td>
</tr>
<tr>
<td></td>
<td><code>WAE(config)#</code></td>
</tr>
</tbody>
</table>
Related Commands

(config-ssl-accelerated) cipher-list
(config-ssl-accelerated) client-cert-verify
(config-ssl-accelerated) client-version-rollback-check
(config-ssl-accelerated) description
(config-ssl-accelerated) inservice
(config-ssl-accelerated) server-cert-key
(config-ssl-accelerated) server-cert-verify
(config-ssl-accelerated) server-domain
(config-ssl-accelerated) server-ip
(config-ssl-accelerated) server-name
(config-ssl-accelerated) version
(config-ssl-accelerated) cipher-list

To configure secure socket layer (SSL) encryption cipher lists on a WAAS device, use the `cipher-list` command. To delete a cipher list use the `no` form of the command.

```
cipher-list cipher-list-name

no cipher-list cipher-list-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cipher-list-name</code></td>
<td>Name of the cipher list you want to create or edit. The cipher list name may contain up to 64 characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

- application-accelerator
- central-manager

Usage Guidelines

A cipher list is customer list of cipher suites that you assign to an SSL connection. (See the SSL Cipher List Configuration Mode Commands chapter for more information.)

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then create or edit a cipher list called myciphers. If the cipher list is already established on the WAAS device, the `cipher-list` command edits it. If the cipher list does not exist, the `cipher-list` command creates it:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# cipher-list myciphers
```

Related Commands

- (config) crypto ssl
To enable verification of client certificates, use the `client-cert-verify` command.

```
client-cert-verify [revocation-check none]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>revocation-check none</th>
<th>(Optional) Specifies a revocation check null method that returns revocation success.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

If the server and client devices are using self-signed certificates and certificate verification is enabled, WAAS devices will not be able to accelerate SSL traffic.

To disable OCSP certificate revocation checking, set the revocation check value to none.

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then set the revocation check method to none:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# client-cert-verify revocation-check none
```

Related Commands

(config) crypto ssl
(config-ssl-accelerated) client-version-rollback-check

To disable the client SSL version rollback check, use the client-version-rollback-check command.

```
client-version-rollback-check disable
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>disable</th>
<th>Disables the client SSL version rollback check.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

If a non-RFC 2246 compliant client passes the incorrect client version in the SSL message, a bad record MAC SSL handshake failure may occur. The SSL accelerator terminates such connections. In this case, you can disable the client version rollback check which allows these connections to be optimized.

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then disable the client SSL version rollback check:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# client-version-rollback-check disable
```

Related Commands

(config) crypto ssl
To add a description of the SSL accelerated service, use the `description` command.

```
description description
```

Syntax Description

```
description String that is the description of the SSL accelerated service.
```

Defaults
No default behavior or values.

Command Modes
SSL accelerated service configuration

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to enter SSL accelerated service configuration mode, and then a description of the accelerated service:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# description SSL accelerated service
```

Related Commands

```
(config) crypto ssl
```
(config-ssl-accelerated) inservice

To enable the accelerated service, use the inservice command.

inservice

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
SSL accelerated service configuration

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to enter SSL accelerated service configuration mode, and then enable the accelerated service:

WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# inservice

Related Commands
(config) crypto ssl
(config-ssl-accelerated) protocol-chaining enable

To enable the accelerated service, use the `protocol-chaining enable` command. To disable this accelerated service, use the `no` form of this command.

```
protocol-chaining enable
```

Syntax Description

This command has no arguments or keywords.

Defaults

By default, protocol chaining is enabled.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then enable the protocol chaining:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# protocol-chaining enable
```
(config-ssl-accelerated) server-cert-key

To configure a certificate and private key, use the server-cert-key command.

server-cert-key filename

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Filename of the certificate and key. Must be in PKCS#12 and have a “.p12” extension.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then import a certificate and key:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# server-cert-key cert.p12
```

Related Commands

(config) crypto ssl
(config-ssl-accelerated) server-cert-verify

To enable verification of server certificates, use the **server-cert-verify** command.

```
server-cert-verify [revocation-check none]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>revocation-check none</td>
<td>(Optional) Specifies a revocation check null method that returns revocation success.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

If the server and client devices are using self-signed certificates and certificate verification is enabled, WAAS devices will not be able to accelerate SSL traffic.

To disable OCSP certificate revocation checking, set the revocation check value to none.

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then set the revocation check method to none:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# server-cert-verify revocation-check none
```

Related Commands

```
(config) crypto ssl
```
(config-ssl-accelerated) server-domain

To configure the accelerated server domain and TCP port, use the `server-domain` command.

```
server-domain srv-domain [port port-no]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>server-domain srv-domain</th>
<th>Specifies the domain name of the accelerated server starting with the characters “*.”. 255 alphanumeric characters maximum, 63 characters per label/segment.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>port port-no</td>
<td>Specifies the port number of the accelerated server. Range is 1 to 65535.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>SSL accelerated service configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to enter SSL accelerated service configuration mode, and then set the accelerated server domain name and port:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE(config)# crypto ssl services accelerated-service myservice</td>
</tr>
<tr>
<td></td>
<td>WAE(config-ssl-accelerated)# server-domain 2.2.2.2 port 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>(config) crypto ssl</th>
</tr>
</thead>
</table>
(config-ssl-accelerated) server-ip

To configure the accelerated server IP address and TCP port, use the **server-ip** command.

```
server-ip ip-address {port port-no}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-ip ip-address</td>
<td>Specifies the IP address of the accelerated server.</td>
</tr>
<tr>
<td>port port-no</td>
<td>Specifies the port number of the accelerated server. Range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then set the accelerated server IP address and port:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# server-ip 2.2.2.2 port 1
```

Related Commands

(config) crypto ssl
(config-ssl-accelerated) server-name

To configure the accelerated server hostname and TCP port, use the server-name command.

server-name hostname {port port-no}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>server-name</td>
<td>Specifies the hostname of the accelerated server. 255 alphanumeric characters max, 63 characters per label/segment.</td>
</tr>
<tr>
<td>port</td>
<td>Specifies the port number of the accelerated server. Range is 1 to 65535.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then set the accelerated server name and port:

WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# server-name acc_server port 1

Related Commands

(config) crypto ssl
To specify the type of SSL protocol to use for accelerated services, use the `version` command.

```
version {all | ssl3 | tls1}
```

Syntax Description

`version {all | ssl3 | tls1}`

Specifies SSL3 for the SSL version 3 protocol, TLS1 for the Transport Layer Security version 1 protocol, or All to use both SSL3 and TLS1 SSL protocols.

Defaults

No default behavior or values.

Command Modes

SSL accelerated service configuration

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to enter SSL accelerated service configuration mode, and then set the protocol to SSL version 3:

```
WAE(config)# crypto ssl services accelerated-service myservice
WAE(config-ssl-accelerated)# version SSL3
```

Related Commands

`(config) crypto ssl`
SSL Cipher List Configuration Mode Commands

A cipher list is customer list of cipher suites that you assign to an SSL connection. To configure secure socket layer (SSL) encryption cipher lists on a WAAS device, use the `crypto ssl cipher-list` global configuration command. To delete a cipher list use the `no` form of the command.

```
crypto ssl cipher-list cipher-list-name
no crypto ssl cipher-list cipher-list-name
```

Syntax Description
- `cipher-list-name`: Name of the cipher list you want to create or edit. The cipher list name may contain up to 64 characters.

Defaults
No default behavior or values.

Command Modes
- global configuration

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
Use the `crypto ssl cipher-list` command to add and configure a cipher list. The `crypto ssl cipher-list` command initiates cipher list configuration mode, as indicated by the following prompt:

```
WAE(config-cipher-list)#
```

Within cipher list configuration mode, you can use the `cipher` cipher list configuration command to define list of cipher suites. To return to global configuration mode, enter `exit` at the cipher list configuration mode prompt.

Examples
The following example shows how to create or edit a cipher list called myciphers. If the cipher list is already established on the WAAS device, the `crypto ssl cipher-list` command edits it. If the cipher list does not exist, the `crypto ssl cipher-list` command creates it:

```
WAE(config)# crypto ssl cipher-list myciphers
WAE(config-ca)# cipher rsa-with-rc4-128-sha
WAE(config-ca)# exit
WAE(config)#
```

Related Commands
- `(config-cipher-list) cipher`
To add a cipher suite to a cipher list, or to change the priority of a cipher suite on the list, use the `cipher` command.

```
cipher cipher-suite-name [priority value]
```

Syntax Description

- **cipher-suite-name**: Name of the cipher suite you want to add or reprioritize. Type any of the following strings:
 - `dhe-rsa-with-3des-ede-cbc-sha`
 - `dhe-rsa-with-aes-128-cbc-sha`
 - `dhe-rsa-with-aes-256-cbc-sha`
 - `dhe-rsa-with-des-cbc-sha`
 - `rsa-with-3des-ede-cbc-sha`
 - `rsa-with-aes-128-cbc-sha`
 - `rsa-with-aes-256-cbc-sha`
 - `rsa-with-des-cbc-sha`
 - `rsa-with-rc4-128-md5`
 - `rsa-with-rc4-128-sha`

priority value *(Optional specifies)* The priority of the cipher suite in relation to other suites in the list. The priority value is from 1 to 15 (15 is the highest).

Defaults

No default behavior or values.

Command Modes

- `cipher list configuration`

Device Modes

- `application-accelerator`
- `central-manager`

Usage Guidelines

The SSL protocol supports a variety of different cryptographic algorithms, or ciphers, for use in operations such as authenticating the server and client to each other, transmitting certificates, and establishing session keys. Clients and servers may support different cipher suites, or sets of ciphers, depending on various factors such as the version of SSL they support, company policies regarding acceptable encryption strength, and government restrictions on export of SSL-enabled software. Among its other functions, the SSL handshake protocol determines how the server and client negotiate which cipher suites they will use to authenticate each other to transmit certificates and to establish session keys.
Note Exportable cipher suites are those cipher suites that are considered not to be as strong as some of the other cipher suites (for example, 3DES or RC4 with 128-bit encryption) as defined by U.S. export restrictions on software products. Exportable cipher suites may be exported to most countries from the United States, and provide the strongest encryption available for exportable products.

Each cipher suite specifies a set of key exchange algorithms. For example, Figure 3-1 summarizes the algorithms associated with the rsa-export-with-rc4-40-md5 cipher suite.

Figure 3-1 Cipher Suite Algorithms

![Cipher Suite Algorithms Diagram]

Table 3-1 lists the supported cipher suites and indicates whether those cipher suites are exportable, the authentication certificate, and the encryption key required by the cipher suite.

Table 3-1 SSL Cipher Suites

<table>
<thead>
<tr>
<th>Cipher Suite</th>
<th>Exportable</th>
<th>Authentication Certificate Used</th>
<th>Key Exchange Algorithm Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsa-with-rc4-128-md5</td>
<td>No</td>
<td>RSA certificate</td>
<td>RSA key exchange</td>
</tr>
<tr>
<td>rsa-with-rc4-128-sha</td>
<td>No</td>
<td>RSA certificate</td>
<td>RSA key exchange</td>
</tr>
<tr>
<td>rsa-with-des-cbc-sha</td>
<td>No</td>
<td>RSA certificate</td>
<td>RSA key exchange</td>
</tr>
<tr>
<td>rsa-with-3des-ede-cbc-sha</td>
<td>No</td>
<td>RSA certificate</td>
<td>RSA key exchange</td>
</tr>
<tr>
<td>dhe-rsa-with-des-cbc-sha</td>
<td>No</td>
<td>RSA certificate</td>
<td>Ephemeral Diffie-Hellman key exchange</td>
</tr>
<tr>
<td>dhe-rsa-with-3des-ede-cbc-sha</td>
<td>No</td>
<td>RSA certificate</td>
<td>Ephemeral Diffie-Hellman key exchange</td>
</tr>
</tbody>
</table>

The client-specified order for ciphers overrides the cipher list priority assigned here if the cipher list is applied to an accelerated service. The priorities assigned in this cipher list are only applicable if the cipher list is applied to SSL peering and management services.

Examples

The following example shows how to enter cipher list configuration mode for the cipher list named myciphers, and then add the cipher suite rsa-with-3des-ede-cbc-sha with a priority of 1:

```console
WAE(config)# crypto ssl cipher-list myciphers
```
WAE(config-cipher-list)# cipher rsa-with-3des-ede-cbc-sha priority 1

Related Commands
 (config) crypto ssl
SSL Global Service Configuration Mode Commands

SSL global service lets you enable and configure basic SSL acceleration settings on your WAAS system. To configure global services on a WAAS device, use the `crypto ssl services global-settings` global configuration command. To delete a parameter use the `no` form of the command.

```
crypto ssl services global-settings
no crypto ssl services global-settings
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the `crypto ssl services global-settings` command to configure basic SSL acceleration settings. The `crypto ssl services global-settings` command initiates SSL global service configuration mode, as indicated by the following prompt:

```
WAE(config-ssl-global)#
```

Within SSL global service configuration mode, you can use SSL global service configuration commands. To return to global configuration mode, enter `exit` at the SSL global service configuration mode prompt.

Examples
The following example shows how to enter SSL global service configuration mode:

```
WAE(config)# crypto ssl services global-settings
WAE(config-ssl-global)# exit
WAE(config)#
```

Related Commands
(config-ssl-global) cipher-list
(config-ssl-global) machine-cert-key
(config-ssl-global) version
(config-ssl-global) cipher-list

To configure secure socket layer (SSL) encryption cipher lists on a WAAS device, use the `cipher-list` command. To delete a cipher list use the `no` form of the command.

```
cipher-list cipher-list-name
no cipher-list cipher-list-name
```

Syntax Description
- `cipher-list-name`: Name of the cipher list you want to create or edit. The cipher list name may contain up to 64 characters.

Defaults
No default behavior or values.

Command Modes
SSL global service configuration

Device Modes
- application-accelerator
- central-manager

Usage Guidelines
A cipher list is customer list of cipher suites that you assign to an SSL connection. (See the SSL Cipher List Configuration Mode Commands chapter for more information.)

Examples
The following example shows how to enter SSL global service configuration mode, and then create or edit a cipher list called myciphers. If the cipher list is already established on the WAAS device, the `cipher-list` command edits it. If the cipher list does not exist, the `cipher-list` command creates it:

```
WAE(config)# crypto ssl services management-service
WAE(config-ssl-global)# cipher-list myciphers
```

Related Commands
- `(config) crypto ssl`
(config-ssl-global) machine-cert-key

To configure a certificate and private key, use the `machine-cert-key` command.

```
machine-cert-key filename
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>Filename of the certificate and key. Must be in PKCS#12 and have a “.p12” extension.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
SSL global service configuration

Device Modes
application-accelerator
central-manager

Examples
The following example shows how to enter SSL global service configuration mode, and then import a certificate and key:

```
WAE(config)# crypto ssl services global-settings
WAE(config-ssl-global)# machine-cert-key cert.p12
```

Related Commands
(config) crypto ssl
(config-ssl-global) version

To specify the type of SSL protocol to use for global services, use the `version` command.

```
version {all | ssl3 | tls1}
```

Syntax Description

| Syntax Description | version {all | ssl3 | tls1} |
|--------------------|-----------------------------|
| | Specifies SSL3 for the SSL version 3 protocol, TLS1 for the Transport Layer Security version 1 protocol, or All to use both SSL3 and TLS1 SSL protocols. |

Defaults

No default behavior or values.

Command Modes

SSL global service configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to enter SSL global service configuration mode, and then set the protocol to SSL version 3:

```
WAE(config)# crypto ssl global-settings
WAE(config-ssl-global)# version SSL3
```

Related Commands

(config) crypto ssl
(config-ssl-global) version
SSL Host Peering Service Configuration Mode Commands

SSL peering service configuration parameters control secure communications established by the SSL accelerator between WAE devices while optimizing SSL connections. To configure secure socket layer (SSL) encryption peering services on a WAAS device, use the `crypto ssl services host-service peering` global configuration command. To delete a parameter use the `no` form of the command.

```
crypto ssl services host-service peering
```
```
no crypto ssl services host-service peering
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
global configuration

Device Modes
application-accelerator
central-manager

Usage Guidelines
Use the `crypto ssl services host-service` command to configure SSL peering service parameters. The `crypto ssl services host-service` command initiates SSL host peering service configuration mode, as indicated by the following prompt:

```
WAE(config-ssl-peering)#
```

Within SSL host peering service configuration mode, you can use SSL host peering service configuration commands. To return to global configuration mode, enter `exit` at the SSL host peering service configuration mode prompt.

Examples
The following example shows how to enter SSL host peering service configuration mode:

```
WAE(config)# crypto ssl services host-service peering
WAE(config-ssl-peering)# exit
WAE(config)#
```

Related Commands
`cmd`
`cmd`
(config-ssl-peering) version
(config-ssl-peering) cipher-list

To configure secure socket layer (SSL) encryption cipher lists on a WAAS device, use the cipher-list command. To delete a cipher list use the no form of the command.

```
cipher-list cipher-list-name
```

```
no cipher-list cipher-list-name
```

Syntax Description

| `cipher-list-name` | Name of the cipher list you want to create or edit. The cipher list name may contain up to 64 characters. |

Defaults

No default behavior or values.

Command Modes

SSL host peering service configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

A cipher list is customer list of cipher suites that you assign to an SSL connection. (See the SSL Cipher List Configuration Mode Commands chapter for more information.)

Examples

The following example shows how to enter SSL host peering service configuration mode, and then create or edit a cipher list called myciphers. If the cipher list is already established on the WAAS device, the cipher-list command edits it. If the cipher list does not exist, the cipher-list command creates it:

```
WAE(config)# crypto ssl services management-service
WAE(config-ssl-peering)# cipher-list myciphers
```

Related Commands

(config) crypto ssl
(config-ssl-peering) peer-cert-verify

To enable verification of peer certificates, use the `peer-cert-verify` command.

```
peer-cert-verify [revocation-check none]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>revocation-check</td>
<td>(optional) Specifies a revocation check null method that returns revocation success.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL host peering service configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

SSL peering service configuration parameters control secure communications established by the SSL accelerator between WAE devices while optimizing SSL connections.

If peer certificate verification is enabled, WAAS devices that use self-signed certificates will not be able to establish peering connections to each other and, thus, not be able to accelerate SSL traffic.

To disable OCSP certificate revocation checking, set the revocation check value to none.

Examples

The following example shows how to enter SSL host peering service configuration mode, and then set the revocation check method to none:

```
WAE(config)# crypto ssl services host-service peering
WAE(config-ssl-peering)# peer-cert-verify revocation-check none
```

Related Commands

```
(config) crypto ssl
```
(config-ssl-peering) version

To specify the type of SSL protocol to use for management services, use the version command.

```
version {all | ssl3 | tls1}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>version {all</td>
<td>ssl3</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL host peering service configuration

Device Modes

application-accelerator

central-manager

Examples

The following example shows how to enter SSL host peering service configuration mode, and then set the protocol to SSL version 3:

```
WAE(config)# crypto ssl services host-service peering
WAE(config-ssl-peering)# version SSL3
```

Related Commands

(config) crypto ssl
(config-ssl-peering) version
SSL Management Service Configuration Mode

Commands

SSL management services let you configure SSL parameters used for secure communications between the Central Manager and the WAE devices. To configure secure socket layer (SSL) encryption management service parameters on a WAAS device, use the `crypto ssl management-service` global configuration command. To delete a parameter use the `no` form of the command.

```
crypto ssl management-service

no crypto ssl management-service
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

Global configuration

Device Modes

Application-accelerator

Central-manager

Usage Guidelines

Use the `crypto ssl management-service` command to configure management services. The `crypto ssl management-service` command initiates SSL management service configuration mode, as indicated by the following prompt:

```
WAE(config-ssl-mgmt)#
```

Within SSL management service configuration mode, you can use the SSL management service configuration commands. To return to global configuration mode, enter `exit` at the SSL management service configuration mode prompt.

Examples

The following example shows how to enter SSL management service configuration mode:

```
WAE(config)# crypto ssl management-service
WAE(config-ssl-mgmt)# exit
WAE(config)#
```

Related Commands

`(config-ssl-mgmt) cipher-list`

`config-ssl-mgmt) peer-cert-verify`
(config-ssl-mgmt) version
(config-ssl-mgmt) cipher-list

To configure secure socket layer (SSL) encryption cipher lists on a WAAS device, use the `cipher-list` command. To delete a cipher list use the `no` form of the command.

```
cipher-list cipher-list-name
no cipher-list cipher-list-name
```

Syntax Description

| `cipher-list-name` | Name of the cipher list you want to create or edit. The cipher list name may contain up to 64 characters. |

Defaults

No default behavior or values.

Command Modes

SSL management service configuration

Device Modes

application-accelerator
central-manager

Usage Guidelines

A cipher list is customer list of cipher suites that you assign to an SSL connection. (See the SSL Cipher List Configuration Mode Commands chapter for more information.)

Examples

The following example shows how to enter SSL management service configuration mode, and then create or edit a cipher list called myciphers. If the cipher list is already established on the WAAS device, the `cipher-list` command edits it. If the cipher list does not exist, the `cipher-list` command creates it:

```
WAE(config)# crypto ssl services management-service
WAE(config-ssl-mgmt)# cipher-list myciphers
```

Related Commands

`(config) crypto ssl`
(config-ssl-mgmt) peer-cert-verify

To enable verification of peer certificates, use the `peer-cert-verify` command.

```
peer-cert-verify [revocation-check none]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>revocation-check none</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Optional) Specifies a revocation check null method that returns revocation success.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL management service configuration

Device Modes

application-accelerator

central-manager

Usage Guidelines

SSL peering service configuration parameters control secure communications established by the SSL accelerator between WAE devices while optimizing SSL connections.

If peer certificate verification is enabled, WAAS devices that use self-signed certificates will not be able to establish peering connections to each other and not be able to accelerate SSL traffic.

To disable OCSP certificate revocation checking, set the revocation check value to none.

Examples

The following example shows how to enter SSL management service configuration mode, and then set the revocation check method to none:

```
WAE(config)# crypto ssl management-service
WAE(config-ssl-mgmt)# peer-cert-verify revocation-check none
```

Related Commands

```
(config) crypto ssl
```
(config-ssl-mgmt) version

To specify the type of SSL protocol to use for management services, use the `version` command.

```
version { all | ssl3 | tls1 }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>version tls1</code></td>
<td>Specifies TLS1 for the SSL version 3 protocol.</td>
</tr>
<tr>
<td><code>version ssl3</code></td>
<td>Specifies SSL3 for the Transport Layer Security version 1 protocol.</td>
</tr>
<tr>
<td><code>version all</code></td>
<td>Specifies ALL to use both SSL3 and TLS1 SSL protocols.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

SSL management service configuration

Device Modes

application-accelerator
central-manager

Examples

The following example shows how to enter SSL management service configuration mode, and then set the protocol to SSL version 3:

```
WAE(config)# crypto ssl management-service
WAE(config-ssl-mgmt)# version SSL3
```

Related Commands

(config) crypto ssl
(config-ssl-mgmt) version
WCCP Configuration Mode Commands

To configure the Web Cache Coordination Protocol (WCCP) Version 2 TCP promiscuous mode service, use the `wccp tcp-promiscuous service-pair` global configuration command. To negate these actions, use the `no` form of this command.

```
wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
no wccp tcp-promiscuous {service-pair serviceID serviceID+1 | serviceID}
```

Syntax Description

<table>
<thead>
<tr>
<th>service-pair serviceID serviceID+1</th>
<th>Specifies a pair of IDs for the WCCP service on devices configured as application accelerators. Valid values are two consecutive numbers from 1-100, inclusive.</th>
</tr>
</thead>
<tbody>
<tr>
<td>serviceID</td>
<td>Specifies one ID for the WCCP service. A valid value is from 1-100, inclusive. On devices operating as AppNav Controllers, you can specify either one or two service IDs.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

application-accelerator

appnav-controller

Usage Guidelines

Use the `wccp tcp-promiscuous service-pair` command to configure and enable the WCCP interception method. This command initiates the WCCP configuration mode as indicated by the (config-wccp-service) prompt.

Within WCCP configuration mode, you can use the various commands (`egress-method`, `failure-detection`, and so on) to define WCCP settings. To return to global configuration mode, enter the `exit` command.

You must use the `enable` WCCP configuration command to enable the WCCP service.

You must configure two WCCP service IDs on WAEs operating in application-acceleration mode. On WAEs operating as AppNav Controllers, you can specify either one or two service IDs.

Configurable WCCP service IDs allows a router to support multiple WCCP farms because the WAEs in different farms can use different service IDs. In WAAS versions earlier than 5.0, the default WCCP service IDs were 61 and 62.

The router service priority varies inversely with the service ID. The service priority of the service IDs 61/62 is 34. If you specify a lower service ID, the service priority is higher than 34 and if you specify a higher service ID, the service priority is lower than 34.
Note

WCCP works only with IPv4 networks. WCCP commands are available only after the interception method is set to WCCP by the `interception-method` global configuration command.

Examples

The following example shows how to configure WCCP service IDs 61 and 62 and put a WAE into WCCP configuration mode:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)#
```

The following example shows how to configure WCCP service ID 61 and put an AppNav Controller into WCCP configuration mode:

```
WAE(config)# wccp tcp-promiscuous 61
WAE(config-wccp-service)#
```

Related Commands

```
show wccp
(config-wccp-service) assignment-method
(config-wccp-service) egress-method
(config-wccp-service) enable
(config-wccp-service) exit
(config-wccp-service) failure-detection
(config-wccp-service) password
(config-wccp-service) redirect-method
(config-wccp-service) router-list-num
(config-wccp-service) weight
```
(config-wccp-service) assignment-method

To configure the WCCP assignment method, hash type, or mask, use the assignment-method WCCP configuration command. To unconfigure the hash or mask setting, use the no form of this command.

```
assignment-method {hash {hash-destination-ip | hash-source-ip} | mask {dst-ip-mask mask | src-ip-mask mask}}
no assignment-method {hash {hash-destination-ip | hash-source-ip} | mask {dst-ip-mask mask | src-ip-mask mask}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash</td>
<td>Specifies that the load-balancing assignment method is hash. Not supported on ANCs.</td>
</tr>
<tr>
<td>hash-destination-ip</td>
<td>Specifies that the load-balancing hash method should make use of the destination IP address. You can specify both the hash-destination-ip option and the hash-source-ip option.</td>
</tr>
<tr>
<td>hash-source-ip</td>
<td>Specifies that the load-balancing hash method should make use of the source IP address.</td>
</tr>
<tr>
<td>mask</td>
<td>Specifies that the load-balancing assignment method is mask.</td>
</tr>
<tr>
<td>dst-ip-mask</td>
<td>Specifies the IP address mask defined by a hexadecimal number (for example, 0xFE000000) used to match the packet destination IP address. The range is 0x00000000–0xFF000000.</td>
</tr>
<tr>
<td>src-ip-mask</td>
<td>Specifies the IP address mask defined by a hexadecimal number (for example, 0xFE000000) used to match the packet source IP address. The range is 0x00000000–0xFF000000.</td>
</tr>
</tbody>
</table>

Defaults

The default load-balancing assignment method is mask. The default destination IP address mask is 0. The default source IP address mask for application accelerators is 0xF00 and for ANCs it is 0xF.

Command Modes

WCCP configuration

Device Modes

application-accelerator

apnav-controller

Usage Guidelines

In a service farm where the WAEs have different masks, the first WAE to establish two-way communication with the router(s) determines the farm’s mask. All other WAEs cannot join the farm unless they are configured with the same mask.

The hash assignment method is not supported on ANCs.
Examples

The following example shows how to set a TCP promiscuous mode service mask on the source IP address:

WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# assignment-method mask src-ip-mask 0xFC0

Related Commands

show wccp
(config-wccp-service) egress-method
(config-wccp-service) enable
(config-wccp-service) exit
(config-wccp-service) failure-detection
(config-wccp-service) password
(config-wccp-service) redirect-method
(config-wccp-service) router-list-num
(config-wccp-service) weight
To configure the WCCP egress method, use the `egress-method` WCCP configuration command. To unconfigure the egress method setting, use the `no` form of this command.

```
egress-method {ip-forwarding | generic-gre | L2 | wccp-gre}

no egress-method {ip-forwarding | generic-gre | L2 | wccp-gre}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-forwarding</td>
<td>Configures the IP forwarding egress method.</td>
</tr>
<tr>
<td>generic-gre</td>
<td>Configures the generic GRE egress method.</td>
</tr>
<tr>
<td>L2</td>
<td>Configures the L2 egress method.</td>
</tr>
<tr>
<td>wccp-gre</td>
<td>Configures the WCCP GRE egress method.</td>
</tr>
</tbody>
</table>

Defaults

The default egress method is L2.

Command Modes

WCCP configuration

Device Modes

application-accelerator

Usage Guidelines

The egress methods available on an application accelerator depend on the configured redirect method. If the redirect method is L2, the available egress methods include ip-forwarding and L2. If the redirect method is GRE, the available egress methods include ip-forwarding, generic-gre, and wccp-gre.

If you choose the L2 egress method, the WAE must be connected to a router or switch to which it has a Layer 2 connection and the router or switch must be configured for Layer 2 redirection.

On ANCs the egress method is not configurable and is set to match the redirect method.

Examples

The following example shows how to configure the egress method for WCCP GRE packet return:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# egress-method wccp-gre
```

The following example shows how to configure the egress method for IP forwarding:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# egress-method ip-forwarding
```

The following example shows how to configure the egress method for generic GRE by configuring an intercepting router list, and then configuring the generic GRE egress method:

```
WAE(config)# wccp router-list 1 192.168.68.98
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# router-list-num 1
WAE(config-wccp-service)# egress-method generic-gre
```
The router list must contain the IP address of each intercepting router. Multicast addresses are not supported. Additionally, you must configure a GRE tunnel interface on each router.

To view the egress method that is configured and that is being used on a particular WAE, use the `show wccp egress` EXEC command or the `show statistics connection egress-methods` EXEC command.

To view information about the generic GRE egress method, use the `show statistics generic-gre` EXEC command. To clear statistics information for the generic GRE egress method, use the `clear statistics generic-gre` EXEC command.

Related Commands

- `show wccp`
- `(config-wccp-service) assignment-method`
- `(config-wccp-service) enable`
- `(config-wccp-service) exit`
- `(config-wccp-service) failure-detection`
- `(config-wccp-service) password`
- `(config-wccp-service) redirect-method`
- `(config-wccp-service) router-list-num`
- `(config-wccp-service) weight`
To enable the WCCP service, use the `enable` WCCP configuration command. To disable the WCCP service, use the `no` form of this command.

```
enable
no enable
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values.

Command Modes

WCCP configuration

Device Modes

application-accelerator
appnav-controller

Examples

The following example shows how to configure and enable WCCP:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# enable
WCCP configuration for TCP Promiscuous service 61 and 62 succeeded. Please remember to configure WCCP service 61 and 62 on the corresponding router.
```

Related Commands

- `show wccp`
- `assignment-method`
- `egress-method`
- `exit`
- `failure-detection`
- `password`
- `redirect-method`
- `router-list-num`
- `weight`
To terminate WCCP configuration mode and return to the global configuration mode, use the `exit` WCCP configuration command.

```
exit
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values.

Command Modes
WCCP configuration

Device Modes
application-accelerator
apppnav-controller

Examples
The following example shows how to terminate WCCP configuration mode:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# enable
WCCP configuration for TCP Promiscuous service 61 and 62 succeeded. Please remember to configure WCCP service 61 and 62 on the corresponding router.
WAE(config-wccp-service)# exit
WAE(config)#
```

Related Commands
- `show wccp`
- `(config-wccp-service) assignment-method`
- `(config-wccp-service) egress-method`
- `(config-wccp-service) enable`
- `(config-wccp-service) failure-detection`
- `(config-wccp-service) password`
- `(config-wccp-service) redirect-method`
- `(config-wccp-service) router-list-num`
- `(config-wccp-service) weight`
(config-wccp-service) failure-detection

To configure the WCCP failure detection timeout, use the failure-detection WCCP configuration command. To unconfigure the failure detection setting, use the no form of this command.

```
failure-detection {3 | 6 | 9 | 15 | 30}
no failure-detection {3 | 6 | 9 | 15 | 30}
```

Syntax Description

{3 | 6 | 9 | 15 | 30} Specifies the failure detection timeout in seconds. The 3 and 6 second values are valid only on ANCs.

Defaults

The default failure detection timeout is 30 seconds.

Command Modes

WCCP configuration

Device Modes

application-accelerator
appnav-controller

Usage Guidelines

The failure detection timeout value is negotiated with the router and takes effect only if the router also has the variable timeout capability. If the router has a fixed timeout of 30 seconds and you have configured a failure detection value on the WAE other than the default 30 seconds, the WAE is not able to join the farm and an alarm is raised (“Router unusable” with a reason of “Timer interval mismatch with router”).

Examples

The following example shows how to configure the failure detection timeout for 9 seconds:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# failure-detection 9
```

Related Commands

- show wccp
- (config-wccp-service) assignment-method
- (config-wccp-service) egress-method
- (config-wccp-service) enable
- (config-wccp-service) exit
- (config-wccp-service) password
- (config-wccp-service) redirect-method
- (config-wccp-service) router-list-num
(config-wccp-service) weight
(config-wccp-service) password

To configure the WCCP service password, use the `password` WCCP configuration command. To unconfigure the password, use the `no` form of this command.

```
password password
no password password
```

Syntax Description

```
password
```

Specifies the WCCP service password to be used for secure traffic between the WAEs within a cluster and the router for a specified service. Be sure to enable all other WAEs and routers within the cluster with the same password. You can use a maximum of 8 characters.

Defaults

No default behavior or values.

Command Modes

WCCP configuration

Device Modes

application-accelerator

appnav-controller

Examples

The following example shows how to configure a WCCP service password:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# password mypass
```

Related Commands

- `show wccp`
- `(config-wccp-service) assignment-method`
- `(config-wccp-service) egress-method`
- `(config-wccp-service) enable`
- `(config-wccp-service) exit`
- `(config-wccp-service) failure-detection`
- `(config-wccp-service) redirect-method`
- `(config-wccp-service) router-list-num`
- `(config-wccp-service) weight`
To configure the WCCP redirect method, use the `redirect-method` WCCP configuration command. To unconfigure the redirect method setting, use the `no` form of this command.

```
redirect-method {gre | L2}
no redirect-method {gre | L2}
```

Syntax Description

- **gre**: Configures the WAE to use Layer 3 GRE packet redirection.
- **L2**: Configures the WAE to receive transparently redirected traffic from a WCCP Version 2-enabled switch or router if the WAE has a Layer 2 connection with the device and the device is configured for Layer 2 redirection.

Defaults

The default redirect method is L2.

Command Modes

- WCCP configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

- The redirect method configures how the WAE is to receive packets redirected by the switch or router.
- The return method used to return nonoptimized (bypassed) packets to the router is automatically set the same as the configured redirect method.
- The L2 redirect method is supported only if the WAE has a Layer 2 connection with the switch or router and the switch or router is configured for Layer 2 redirection. Because L2 redirection is implemented in hardware, it is more efficient and faster than GRE redirection.

Examples

The following example shows how to configure the redirect method for GRE:

```plaintext
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# redirect-method gre
```

Related Commands

- `show wccp`
- `assignment-method`
- `egress-method`
- `enable`
- `exit`
(config-wccp-service) failure-detection
(config-wccp-service) password
(config-wccp-service) router-list-num
(config-wccp-service) weight
(config-wccp-service) router-list-num

To associate a configured router list with the WCCP service on a WAE, use the `router-list-num` WCCP configuration command. To unassociate the router list, use the `no` form of this command.

```
router-list-num number

no router-list-num number
```

Syntax Description

| number | Number of the WCCP router list (1–7) that should be associated with the TCP promiscuous mode service. (These WCCP Version 2-enabled routers will transparently redirect TCP traffic to the WAE.) |

Defaults

No default behavior or values.

Command Modes

WCCP configuration

Device Modes

application-accelerator

appnav-controller

Usage Guidelines

A WCCP router list must be configured on a WAE for WCCP traffic redirection to operate.

Using the `no router-list-num` WCCP configuration command removes the WAE from the cache farm of the routers in the list.

Examples

The following example shows how to configure a WCCP router list:

```
WAE(config)# wccp router-list 1 10.10.10.2
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# router-list-num 1
```

Related Commands

- `show wccp`
- `(config-wccp-service) assignment-method`
- `(config-wccp-service) egress-method`
- `(config-wccp-service) enable`
- `(config-wccp-service) exit`
- `(config-wccp-service) failure-detection`
- `(config-wccp-service) password`
- `(config-wccp-service) redirect-method`
(config-wccp-service) weight
(config-wccp-service) weight

To configure the weight assigned to a WAE, use the `weight` WCCP configuration command. To unconfigure the weight, use the `no` form of this command.

```
weight number

no weight number
```

Syntax Description

- `weight`: A weight value from 1-10000. The way this number is interpreted depends on the total of the weight values of all WAEs in the service group. See the Usage Guidelines section for details.

Defaults

Weights are not assigned and the traffic load is distributed evenly between the WAEs in a service group.

Command Modes

- WCCP configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

This command specifies the weight value that is used for load balancing. The weight value ranges from 0 to 10000. If the total of all the weight values of the WAEs in a service group is less than or equal to 100, then the weight value represents a literal percentage of the total load redirected to the device for load-balancing purposes. For example, a WAE with a weight of 10 receives 10 percent of the total load in a service group where the total of all weight values is 50. If a WAE in such a service group fails, the other WAEs still receive the same load percentages as before the failure; they will not receive the load allocated to the failed WAE.

If the total of all the weight values of the WAEs in a service group is between 101 and 10000, then the weight value is treated as a fraction of the total weight of all the active WAEs in the service group. For example, a WAE with a weight of 200 receives 25 percent of the total load in a service group where the total of all the weight values is 800. If a WAE in such a service group fails, the other WAEs will receive the load previously allocated to the failed WAE. The failover handling is different than if the total weights are less than or equal to 100.

Examples

The following example shows how to configure the weight for WCCP load balancing:

```
WAE(config)# wccp tcp-promiscuous service-pair 61 62
WAE(config-wccp-service)# weight 250
```

Related Commands

- `show wccp`
- `(config-wccp-service) assignment-method`
(config-wccp-service) egress-method
(config-wccp-service) enable
(config-wccp-service) exit
(config-wccp-service) failure-detection
(config-wccp-service) password
(config-wccp-service) redirect-method
(config-wccp-service) router-list-num
(config-wccp-service) weight
AppNav Controller Group Configuration Mode Commands

To configure an AppNav Controller group (ANCG) that is part of an AppNav Cluster, use the `service-insertion appnav-controller-group` global configuration command. To unconfigure settings, use the `no` form of this command.

```
  service-insertion appnav-controller-group ancgname [description description | appnav-controller ip-address [description description]]

  no service-insertion appnav-controller-group ancgname [description description | appnav-controller ip-address [description description]]
```

Syntax Description

- **ancgroupname**
 Specifies the name of an ANCG to configure and enters AppNav Controller group configuration mode to configure ANCG settings. If the ANCG does not exist, this command creates it.

- **description**
 (Optional) Specifies a description of the ANCG with up to 200 alphanumeric and space characters.

- **appnav-controller**
 Specifies the IP address of an ANC to be added to the ANCG. The address must be the IP address of the interface on which the ANC communicates with other devices in the cluster.

- **description**
 (Optional) Specifies a description of the ANC with up to 200 alphanumeric and space characters.

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- appnav-controller

Usage Guidelines

Use the `service-insertion appnav-controller-group` command to configure an ANCG that is part of a AppNav Cluster. This command initiates the AppNav Controller group configuration mode, which is indicated by a different prompt (config-scg). To return to global configuration mode, enter the `exit` command.

Each ANC in the AppNav Cluster must be configured with the settings for each ANCG in the cluster by using the `service-insertion appnav-controller-group` command.

An ANCG can contain a maximum of eight ANCs.
Examples

The following example shows how to configure and enable an ANCG with two ANC members, on an ANC:

```
ANC(config)# service-insertion appnav-controller-group myControllerGroup
ANC(config-scg)# description AppNav Controller group
ANC(config-scg)# appnav-controller 10.10.8.15 description Primary controller
ANC(config-scg)# appnav-controller 10.10.8.16 description Secondary controller
```

Related Commands

- (config-scg) appnav-controller
- (config-scg) description
- (config-scg) service-insertion
- show service-insertion
(config-scg) appnav-controller

To configure the IP address and description of an ANC to be added to the ANCG, use the `appnav-controller` AppNav Controller group configuration command. To unconfigure the IP address or description, use the `no` form of this command.

```
appnav-controller ip-address [description description]

no appnav-controller ip-address [description description]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ip-address</code></td>
<td>Specifies the IP address of an ANC to be added to the ANCG. The address must be the IP address of the interface on which the ANC communicates with other devices in the cluster.</td>
</tr>
<tr>
<td><code>description</code></td>
<td>(Optional) Specifies a description of the ANC with up to 200 alphanumeric and space characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

AppNav Controller group configuration

Device Modes

appnav-controller

Usage Guidelines

An ANCG can contain a maximum of eight ANCs.

Examples

The following example shows how to configure the IP addresses of two ANCs in an ANCG:

```
ANC(config)# service-insertion appnav-controller-group myControllerGroup
ANC(config-scg)# appnav-controller 10.10.8.15 description Primary controller
ANC(config-scg)# appnav-controller 10.10.8.16 description Secondary controller
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-scg) description</td>
</tr>
<tr>
<td>(config) service-insertion</td>
</tr>
<tr>
<td>show service-insertion</td>
</tr>
</tbody>
</table>
(config-scg) description

To configure the ANC description, use the description AppNav Controller group configuration command. To unconfigure the description, use the no form of this command.

```
description description
no description description
```

Syntax Description

- `description`: Specifies a description of the ANC with up to 200 alphanumeric and space characters.

Defaults

No default behavior or values.

Command Modes

AppNav Controller group configuration

Device Modes

appnav-controller

Examples

The following example shows how to configure an ANC description:

```
ANC(config)# service-insertion appnav-controller-group myControllerGroup
ANC(config-scg)# description AppNav Controller group
```

Related Commands

- (config-scg) appnav-controller
- (config) service-insertion
- show service-insertion
Chapter 3 CLI Commands

Service Node Group Configuration Mode

Commands

To configure a WAAS Node (WNG) that is part of an AppNav Cluster, use the service-insertion
service-node-group global configuration command. To unconfigure settings, use the no form of this
command.

```
service-insertion service-node-group sngroupname [description description | service-node
   ip-address [description description]]
```

```
no service-insertion service-node-group sngroupname [description description | service-node
   ip-address [description description]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sngroupname</td>
<td>Specifies the name of a WNG to configure and enters service node group configuration mode to configure WNG settings. If the WNG does not exist, this command creates it.</td>
</tr>
<tr>
<td>description description</td>
<td>(Optional) Specifies a description of the WNG with up to 200 alphanumeric and space characters.</td>
</tr>
<tr>
<td>service-node ip-address</td>
<td>Specifies the IP address of a WN to be added to the WNG. The address must be the IP address of the interface on which the WN is to receive traffic from the ANCs.</td>
</tr>
<tr>
<td>description description</td>
<td>(Optional) Specifies a description of the WN with up to 200 alphanumeric and space characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

global configuration

Device Modes

appnav-controller

Usage Guidelines

Use the service-insertion service-node-group command to configure a WNG that is part of an AppNav Cluster. This command initiates the service node group configuration mode, which is indicated by a different prompt (config-sng). To return to global configuration mode, enter the exit command.

Each ANC in the AppNav Cluster must be configured with the settings for each WNG in the cluster by using the service-insertion service-node-group command.

A WNG can contain a maximum of 32 WNs, with a maximum of 32 WNs across all WNGs in the AppNav Cluster.
Examples

The following example shows how to configure and enable two WNGs, each having two WNs, on a ANC:

ANC(config)# service-insertion service-node-group LondonNodeGroup
ANC(config-sng)# description London branch node group
ANC(config-sng)# service-node 10.10.10.15 description London branch node 1
ANC(config-sng)# service-node 10.10.10.16 description London branch node 2
ANC(config-sng)# exit
ANC(config)# service-insertion service-node-group ChicagoNodeGroup
ANC(config-sng)# description Chicago branch node group
ANC(config-sng)# service-node 10.10.11.25 description Chicago branch node 1
ANC(config-sng)# service-node 10.10.11.26 description Chicago branch node 2

Related Commands

(config-sng) description
(config-sng) service-node
(config) service-insertion
show service-insertion
(config-sng) description

To configure the WNG description, use the **description** service node group configuration command. To unconfigure the description, use the **no** form of this command.

```
description description

no description description
```

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>description</code></td>
<td>Specifies a description of the WNG with up to 200 alphanumeric and space characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Service node group configuration

Device Modes

appnav-controller

Examples

The following example shows how to configure a WNG description:

```
ANC(config)# service-insertion service-node-group LondonNodeGroup
ANC(config-sng)# description London branch node group
```

Related Commands

- (config-sng) service-node
- (config) service-insertion
- show service-insertion
(config-sng) service-node

To configure the IP address and description of a WN to be added to the WNG, use the `service-node` service node group configuration command. To unconfigure the IP address or description, use the `no` form of this command.

```
    service-node ip-address [description description]
    no service-node ip-address [description description]
```

Syntax Description

- `ip-address` Specifies the IP address of a WN to be added to the WNG. The address must be the IP address of the interface on which the WN is to receive traffic from the ANCs.
- `description description` (Optional) Specifies a description of the WN with up to 200 alphanumeric and space characters.

Defaults

No default behavior or values.

Command Modes

Service node group configuration

Device Modes

appnav-controller

Examples

The following example shows how to configure the IP addresses of two WNs in a group:

```
ANC(config)# service-insertion service-node-group LondonNodeGroup
ANC(config-sng)# service-node 10.10.10.15 description London branch node 1
ANC(config-sng)# service-node 10.10.10.16 description London branch node 2
```

Related Commands

- `(config-sng) description`
- `(config) service-insertion`
- `show service-insertion`
Service Node Configuration Mode Commands

To configure a WAAS Node (WN) that is part of an AppNav Cluster, use the `service-insertion service-node` global configuration command. To unconfigure settings, use the `no` form of this command.

```
service-insertion service-node {authentication sha1 key authkey | description description | enable | node-discovery enable | shutdown max-wait seconds}

no service-insertion service-node {authentication sha1 key authkey | description description | enable | node-discovery enable | shutdown max-wait seconds}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>authentication sha1 key authkey</code></td>
<td>(Optional) Enables authentication between the WN and other devices in the AppNav Cluster and specifies an authentication key of up to 64 alphanumeric characters. This key must match the key configured in the service context.</td>
</tr>
<tr>
<td><code>description description</code></td>
<td>(Optional) Specifies a description of the node with up to 200 alphanumeric and space characters.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables the participation of the node in the AppNav Cluster.</td>
</tr>
<tr>
<td><code>node-discovery enable</code></td>
<td>(Optional) Specifies service-node discovery parameters and enables service-node discovery.</td>
</tr>
<tr>
<td><code>shutdown max-wait seconds</code></td>
<td>(Optional) Specifies the number of seconds that the node should wait for all connections to terminate when shutting down. Valid values range from 0-3600 seconds. The default is 120 seconds.</td>
</tr>
</tbody>
</table>

Defaults

There is no authentication key and no description configured. The shutdown waiting time is 120 seconds. The node is disabled.

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Use the `service-insertion service-node` command to configure a WN that is part of an AppNav Cluster. When used without options, this command initiates the service node configuration mode, which is indicated by a different prompt (config-sn). To return to global configuration mode, enter the `exit` command.

Each WN (and ANC acting as a WN) in the AppNav Cluster must be configured with WN settings by using the `service-insertion service-node` command. To begin using the node in the cluster, you must use the `enable` option.
The following example shows how to configure and enable a WN:

WAE(config)# service-insertion service-node
WAE(config-sn)# description London branch node 1
WAE(config-sn)# authentication sha1 key myauthkey
WAE(config-sn)# shutdown max-wait 120
WAE(config-sn)# enable

Related Commands

(config-sn) authentication
(config-sn) description
(config-sn) enable
(config-sn) node-discovery enable
(config-sn) shutdown
(config) service-insertion
show service-insertion
(config-sn) authentication

To configure the WN authentication key, use the authentication service node configuration command. To unconfigure the authentication key, use the no form of this command.

authentication sha1 key authkey

no authentication sha1 key

Syntax Description

| sha1 key authkey | Enables authentication between the WN and other devices in the AppNav Cluster and specifies an authentication key of up to 64 alphanumeric characters. |

Defaults

No key is defined and authentication is not enabled.

Command Modes

Service node configuration

Device Modes

application-accelerator
appnav-controller

Usage Guidelines

The specified key must match the key configured in the service context.

Examples

The following example shows how to configure an authentication key:

WAE(config)# service-insertion service-node
WAE(config-sn)# authentication sha1 key myauthkey

Related Commands

(config-sn) description
(config-sn) enable
(config-sn) node-discovery enable
(config-sn) shutdown
(config) service-insertion
show service-insertion
(config-sn) description

To configure the WN description, use the description service node configuration command. To unconfigure the description, use the no form of this command.

```
description description

no description
```

Syntax Description

```
description
```

Specifies a description of the node with up to 200 alphanumeric and space characters.

Defaults

No default behavior or values.

Command Modes

Service node configuration

Device Modes

application-accelerator

appnav-controller

Examples

The following example shows how to configure a description:

```
WAE(config)# service-insertion service-node
WAE(config-sn)# description London branch node 1
```

Related Commands

- (config-sn) authentication
- (config-sn) enable
- (config-sn) node-discovery enable
- (config-sn) shutdown
- (config-sn) service-insertion
- show service-insertion
(config-sn) enable

To enable the participation of the WN in the AppNav Cluster, use the enable service node configuration command. To disable the node, use the no form of this command.

```
  enable

  no enable
```

Syntax Description

This command has no arguments or keywords.

Defaults

Disabled.

Command Modes

Service node configuration

Device Modes

application-accelerator

appnav-controller

Usage Guidelines

A WN must be enabled before it can actively participate in an AppNav Cluster and receive traffic for optimization.

Examples

The following example shows how to enable a WN for participation in an AppNav Cluster:

```
WAE(config)# service-insertion service-node
WAE(config-sn)# enable
```

Related Commands

(config-sn) authentication

(config-sn) description

(config-sn) node-discovery enable

(config-sn) shutdown

(config) service-insertion

show service-insertion
(config-sn) node-discovery enable

To enable the node discovery of the Service Node(SN) in the AppNav Cluster, use the node-discovery enable service node configuration command. To disable the service node, use the no form of this command.

```
node-discovery enable { bvi bridge_group_number | GigabitEthernet interface_slot | portchannel etherchannel_index | standby standby_index }
```

```
no node-discovery enable
```

Syntax Description

- **bvi bridge_group_number**: Select a bridge virtual interface for node-discovery.
- **GigabitEthernet interface_slot**: Selects a gigabit ethernet interface for node discovery.
- **portchannel etherchannel_index**: Selects an ethernet channel interface for node discovery.
- **standby standby_index**: Selects a standby group for node discovery.

Defaults

When service node is enabled, node discovery is enabled by default on eth0 interface.

Command Modes

Service node configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Use the node-discovery enable command to configure the service node in the L2 proximity of any participating AppNav Controller so that it is automatically added to the cluster and can participate in WAN optimization. The node discovery configuration for a Service Node cannot be changed when the SN is enabled. To make changes on the node discovery configuration for a SN, the SN should be first disabled. For e.g. if you want to enable/disable the node discovery or change the node discovery interface, you can do so only when the SN is disabled.

Examples

The following example shows how to enable the node discovery of a SN for participation in an AppNav Cluster:

```
WAE(config)# service-insertion service-node
WAE(config-sn)# node-discovery enable?
WAE(config-sn)# bvi 1
WAE(config-sn)# GigabitEthernet 1
WAE(config-sn)# portchannel 2
WAE(config-sn)# standby 1
```
(config-sn) node-discovery enable

Related Commands

 (config-sn) authentication
 (config-sn) description
 (config-sn) shutdown
 (config) service-insertion
 show service-insertion
(config-sn) shutdown

To configure the WN shutdown timeout, use the shutdown service node configuration command. To unconfigure the shutdown timeout, use the no form of this command.

```
  shutdown max-wait seconds
  no shutdown max-wait
```

Syntax Description

| max-wait seconds | Specifies the number of seconds that the node should wait for all connections to terminate when shutting down. Valid values range from 0-3600 seconds. The default is 120 seconds. |

Defaults

The shutdown waiting time is 120 seconds.

Command Modes

Service node configuration

Device Modes

application-accelerator

appnav-controller

Examples

The following example shows how to configure the shutdown timeout for two minutes:

```
WAE(config)# service-insertion service-node
WAE(config-sn)# shutdown max-wait 120
```

Related Commands

- (config-sn) authentication
- (config-sn) description
- (config-sn) enable
- (config-sn) node-discovery enable
- (config-sn) service-insertion
- show service-insertion
Service Context Configuration Mode Commands

To configure a service context for an AppNav Cluster, use the `service-insertion service-context` global configuration command. To unconfigure settings, use the `no` form of this command.

```
service-insertion service-context contextname { authentication sha1 key authkey | description description | enable [graceful] | appnav-controller-group ancgroupname | service-node-group sngroupname | service-policy policyname }
```

```
no service-insertion service-context contextname { authentication sha1 key authkey | description description | enable | appnav-controller-group ancgroupname | service-node-group sngroupname | service-policy policyname }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>contextname</code></td>
<td>Specifies the service context name to configure and enters service context</td>
</tr>
<tr>
<td></td>
<td>group configuration mode to configure service context settings. If the</td>
</tr>
<tr>
<td></td>
<td>service context does not exist, this command creates it.</td>
</tr>
<tr>
<td><code>authentication sha1 key authkey</code></td>
<td>(Optional) Enables authentication between devices in the AppNav Cluster</td>
</tr>
<tr>
<td></td>
<td>and specifies an authentication key of up to 64 alphanumeric characters.</td>
</tr>
<tr>
<td></td>
<td>This key must match the key configured on the WNs in the cluster.</td>
</tr>
<tr>
<td><code>description description</code></td>
<td>(Optional) Specifies a description of the service context with up to 200</td>
</tr>
<tr>
<td></td>
<td>alphanumeric and space characters.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>(Optional) Enables the service context for operation immediately.</td>
</tr>
<tr>
<td><code>graceful</code></td>
<td>(Optional) Enables the service context for operation in a graceful way that</td>
</tr>
<tr>
<td></td>
<td>does not enable interception on this device until all cluster devices have</td>
</tr>
<tr>
<td></td>
<td>agreed that this device has joined the cluster.</td>
</tr>
<tr>
<td><code>appnav-controller-group ancgroupname</code></td>
<td>Specifies the name of the ANCG to add to the service context. The ANCG</td>
</tr>
<tr>
<td></td>
<td>must have been previously configured by the <code>service-insertion</code></td>
</tr>
<tr>
<td></td>
<td><code>appnav-controller-group</code> command.</td>
</tr>
<tr>
<td><code>service-node-group sngroupname</code></td>
<td>Specifies the name of a WNG to add to the service context. The WNG</td>
</tr>
<tr>
<td></td>
<td>must have been previously configured by the <code>service-insertion</code></td>
</tr>
<tr>
<td></td>
<td><code>service-node-group</code> command.</td>
</tr>
<tr>
<td><code>service-policy policyname</code></td>
<td>Specifies the name of the AppNav policy to add to the service context. The</td>
</tr>
<tr>
<td></td>
<td>policy must have been previously configured.</td>
</tr>
</tbody>
</table>

Defaults

There is no authentication key and no other settings are configured.

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller
Usage Guidelines

Use the `service-insertion service-context` command to configure a service context for an AppNav Cluster. This command initiates the service context configuration mode, which is indicated by a different prompt (config-scxt). To return to global configuration mode, enter the `exit` command.

Each ANC in the AppNav Cluster must be configured with the settings for the service context by using the `service-insertion service-context` command.

An AppNav Cluster can have up to 32 member WNGs and a maximum of 32 WNs.

Examples

The following example shows how to configure and enable a service context:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# description My service context
WAE(config-scxt)# authentication sha1 key myauthkey
WAE(config-scxt)# appnav-controller-group myControllerGroup
WAE(config-scxt)# service-node-group LondonNodeGroup
WAE(config-scxt)# service-node-group ChicagoNodeGroup
WAE(config-scxt)# service-policy myAppNavPolicy
WAE(config-scxt)# enable
```

Related Commands

```
(config-scxt) appnav-controller-group
(config-scxt) authentication
(config-scxt) description
(config-scxt) enable
(config-scxt) service-node-group
(config-scxt) service-policy
(config) service-insertion
show service-insertion
```
(config-scxt) appnav-controller-group

To configure the name of the ANCG to be used in a service context, use the `appnav-controller-group` service context configuration command. To unconfigure the ANCG, use the `no` form of this command.

```
appnav-controller-group ancgrouplname

no appnav-controller-group ancgrouplname
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>appnav-controller-group ancgrouplname</code></td>
<td>Specifies the name of the ANCG to add to the service context. The ANCG must have been previously configured by the <code>service-insertion appnav-controller-group</code> command.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Service context configuration

Device Modes

appnav-controller

Usage Guidelines

A service context can have only one member ANCG.

Examples

The following example shows how to add the ANCG to the service context:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# appnav-controller-group myControllerGroup
```

Related Commands

- `(config-scxt) authentication`
- `(config-scxt) description`
- `(config-scxt) enable`
- `(config-scxt) service-node-group`
- `(config-scxt) service-policy`
- `(config) service-insertion`
- `show service-insertion`
(config-scxt) authentication

To configure the service context authentication key, use the `authentication` service context configuration command. To unconfigure the authentication key, use the `no` form of this command.

```
authentication sha1 key authkey

no authentication sha1 key authkey
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>sha1 key authkey</code></td>
<td>Enables authentication between devices in the AppNav Cluster and specifies an authentication key of up to 64 alphanumeric characters. This key must match the key configured on the WNs in the cluster.</td>
</tr>
</tbody>
</table>

Defaults

No key is defined and authentication is not enabled.

Command Modes

Service context configuration

Device Modes

appnav-controller

Usage Guidelines

The specified key must match the key configured on the other devices in the cluster.

Examples

The following example shows how to configure an authentication key:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# authentication sha1 key myauthkey
```

Related Commands

- (config-scxt) appnav-controller-group
- (config-scxt) description
- (config-scxt) enable
- (config-scxt) service-node-group
- (config-scxt) service-policy
- (config) service-insertion
- show service-insertion
To configure the service context description, use the `description` service context configuration command. To unconfigure the description, use the `no` form of this command.

```plaintext
(description) description

(no description) description
```

Syntax Description

| description | Specifies a description of the service context with up to 200 alphanumeric and space characters. |

Defaults

No default behavior or values.

Command Modes

Service context configuration

Device Modes

appnav-controller

Examples

The following example shows how to configure a description:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# description My service context
```

Related Commands

- `(config-scxt) appnav-controller-group`
- `(config-scxt) authentication`
- `(config-scxt) enable`
- `(config-scxt) service-node-group`
- `(config-scxt) service-policy`
- `(config) service-insertion`
- `show service-insertion`
(config-scxt) enable

To enable the service context for operation, use the **enable** service context configuration command. To disable the service context, use the **no** form of this command.

```
  enable [graceful]
  no enable
```

Syntax Description

| graceful | (Optional) Enables the service context for operation on a new device in a graceful way that does not enable interception on the device until all cluster devices have agreed that this device has joined the cluster. Use this option only when adding a new device to an existing cluster. |

Defaults

Disabled.

Command Modes

Service context configuration

Device Modes

appnav-controller

Usage Guidelines

A service context must be enabled before it can operate to distribute and optimize traffic.

If you use the **graceful** option when enabling a service context on a new ANC, the new ANC is added to the cluster only after all devices and the new ANC have agreed that they can all communicate with each other and the addition of the new ANC has no negative impact on the existing cluster.

If you do not use the **graceful** option when enabling a service context on a new ANC, the new ANC is added immediately. You have the responsibility to ensure that the new ANC has network connectivity and can communicate with all other devices in the cluster. If some devices cannot communicate with the new ANC, its addition to the cluster can degrade the cluster and result in pass-through traffic.

Use the **graceful** option only when adding a new device to an existing cluster, not when enabling a new cluster for the first time.

Examples

The following example shows how to enable a service context:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# enable
```

Related Commands

- (config-scxt) appnav-controller-group
- (config-scxt) authentication
- (config-scxt) description
- (config-scxt) service-node-group
(config-scxt) service-policy
(config) service-insertion
show service-insertion
(config-scxt) service-node-group

To configure the name of a WNG to be used in a service context, use the `service-node-group` service context configuration command. To unconfigure the WNG, use the `no` form of this command.

```
service-node-group sngroupname
no service-node-group sngroupname
```

Syntax Description
- `service-node-group sngroupname`: Specifies the name of a WNG to add to the service context. The WNG must have been previously configured by the `service-insertion service-node-group` command.

Defaults
No default behavior or values.

Command Modes
- Service context configuration

Device Modes
- `appnav-controller`

Usage Guidelines
An AppNav Cluster can have up to 32 member WNGs and a maximum of 32 WNs.

Examples
The following example shows how to add two WNGs to the service context:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# service-node-group LondonNodeGroup
WAE(config-scxt)# service-node-group ChicagoNodeGroup
```

Related Commands
- `(config-scxt) appnav-controller-group`
- `(config-scxt) authentication`
- `(config-scxt) description`
- `(config-scxt) enable`
- `(config-scxt) service-policy`
- `(config) service-insertion`
- `show service-insertion`
Cisco Wide Area Application Services Command Reference

Chapter 3 CLI Commands

service-policy

To configure the name of the AppNav policy to be used in a service context, use the `service-policy` service context configuration command. To unconfigure the AppNav policy, use the `no` form of this command.

```
  service-policy policymame

  no service-policy policymame
```

Syntax Description

- `service-policy policymame`: Specifies the name of the AppNav policy to add to the service context. The policy must have been previously configured.

Defaults

No default behavior or values.

Command Modes

Service context configuration

Device Modes

appnav-controller

Usage Guidelines

A service context can have only one configured AppNav policy.

Examples

The following example shows how to add the AppNav policy to the service context:

```
WAE(config)# service-insertion service-context mycontext
WAE(config-scxt)# service-policy myAppNavPolicy
```

Related Commands

- `appnav-controller-group`
- `authentication`
- `description`
- `enable`
- `service-node-group`
- `service-insertion`
- `show service-insertion`
(config-scxt) service-policy
Class Map Configuration Mode Commands

To configure an AppNav or optimization class map, use the `class-map` global configuration command. To unconfigure settings, use the `no` form of this command.

```
class-map type {appnav | waas} [match-all | match-any] classmap-name [rename new-name]
no class-map type {appnav | waas} [match-all | match-any] classmap-name
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>appnav</td>
<td>Configures an AppNav class map.</td>
</tr>
<tr>
<td>waas</td>
<td>Configures a WAAS optimization class map.</td>
</tr>
<tr>
<td>match-all</td>
<td>(Optional) Specifies that all match conditions must be satisfied to consider</td>
</tr>
<tr>
<td></td>
<td>the class map matched (logical AND). Valid only on AppNav class maps.</td>
</tr>
<tr>
<td>match-any</td>
<td>(Optional) Specifies that any match condition must be satisfied to consider</td>
</tr>
<tr>
<td></td>
<td>the class map matched (logical OR).</td>
</tr>
<tr>
<td>classmap-name</td>
<td>Class map name (up to 40 alpha-numeric characters and hyphen, beginning</td>
</tr>
<tr>
<td></td>
<td>with a letter).</td>
</tr>
<tr>
<td>rename new-name</td>
<td>(Optional) Renames the class map with the specified new name.</td>
</tr>
</tbody>
</table>

Defaults

For AppNav class maps, match-all is the default when multiple match criteria exist.

Command Modes

```
global configuration
```

Device Modes

```
application-accelerator
appnav-controller
```

Usage Guidelines

Use the `class-map` command to add or modify class maps and match conditions to identify specific types of traffic for use in policies. This command invokes the Class Map configuration mode, which is indicated by a different prompt (config-cmap). To return to global configuration mode, enter the `exit` command.

You can delete a class map by using the `no` form of this command. You cannot delete a class map if any policies are using it.

When creating a new class map, you must add at least one condition. If any of the conditions specified match an already existing condition in the class-map, no action is taken.

Note

You cannot have more than 512 different class maps and 1024 total match conditions.
The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one. For a list of the default applications, class maps, and policy rules, see the *Cisco Wide Area Application Services Configuration Guide*.

Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure class maps for your WAAS devices. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

Examples

The following example shows how to configure a WAAS optimization class map:

```plaintext
waed(config)# class-map type waas myclass1
waed(config-cmap)# description My class number one
waed(config-cmap)# match protocol mapi tcp source ip 10.10.10.35
waed(config-cmap)# exit
```

The following example shows how to configure an AppNav class map:

```plaintext
waed(config)# class-map type appnav myclass1
waed(config-cmap)# match peer 50:3d:e5:9c:8f:aa description SanJose_branch
waed(config-cmap)# exit
```

Related Commands

* (config-cmap) description
* (config-cmap) match peer
* (config-cmap) match protocol
* (config-cmap) match tcp
(config-cmap) description

To configure the class map description, use the `description` class map configuration command. To unconfigure the description, use the `no` form of this command.

```
description description

no description description
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>description</code></td>
<td>Specifies a description of the class map with up to 200 alphanumeric and space characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Class map configuration

Device Modes

application-accelerator

appnav-controller

Examples

The following example shows how to configure a class map description:

```
waec(config)# class-map type waas myclass1
waec(config-cmap)# description My class number one
```

Related Commands

- (config-cmap) match peer
- (config-cmap) match protocol
- (config-cmap) match tcp
(config-cmap) match peer

To configure a match condition based on peer ID for the class map, use the `match peer` class map configuration command. To unconfigure a match condition, use the `no` form of this command.

```
match peer peer-ID [description description]
no match peer peer-ID [description description]
```

Syntax Description

- **peer peer-ID** Specifies matching based on the device ID of the peer device that is the source or destination of the traffic. The device ID is specified as six hexadecimal bytes separated by colons (aa:bb:cc:dd:ee:ff).
- **description description** Specifies a description of the peer with up to 32 characters.

Defaults

No default behavior or values.

Command Modes

- Class map configuration

Device Modes

- appnav-controller

Usage Guidelines

This command is available only for configuring AppNav class maps.

Examples

The following example shows how to configure a peer match condition for a class map:

```
waec(config)# class-map type appnav myclass1
waec(config-cmap)# match peer 50:3d:e5:9c:8f:aa description SanJose_branch
```

Related Commands

- `(config-cmap) description`
- `(config-cmap) match protocol`
- `(config-cmap) match tcp`
To configure a match condition based on layer 7 protocol for the class map, use the match protocol class map configuration command. To unconfigure a match condition, use the no form of this command. The options for this command differ depending on what type of class map you are configuring.

For an AppNav class map:

```
match protocol { mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon} [tcp source [ip ip_address [wildcard_mask]]]
```

```
no match protocol { mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon} [tcp source [ip ip_address [wildcard_mask]]]
```

For a WAAS optimization class map:

```
match protocol { epm-uuid uuid | mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon} [tcp source [ip ip_address [wildcard_mask]] [port begin [end]]]
```

```
no match protocol { epm-uuid uuid | mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon} [tcp source [ip ip_address [wildcard_mask]] [port begin [end]]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>epm-uuid uuid</td>
<td>Specifies a custom EndPoint Mapper (EPM) service by its Universal Unique ID (UUID). Available only for WAAS optimization class maps.</td>
</tr>
<tr>
<td>mapi</td>
<td>Microsoft Exchange MAPI (Exchange Server Store EMSMDB),</td>
</tr>
<tr>
<td>ms-ad-rep</td>
<td>Microsoft Active Directory Replication (drsuapi),</td>
</tr>
<tr>
<td>ms-exch-nspi</td>
<td>Microsoft Active Directory Name Service Provider (NSP),</td>
</tr>
<tr>
<td>ms-frs</td>
<td>Microsoft File Replication Services (FRS),</td>
</tr>
<tr>
<td>ms-frs-api</td>
<td>Microsoft File Replication API,</td>
</tr>
<tr>
<td>ms-rfr</td>
<td>Microsoft Exchange Directory RFR interface,</td>
</tr>
<tr>
<td>ms-sql</td>
<td>Microsoft SQL,</td>
</tr>
<tr>
<td>msn-messenger</td>
<td>Microsoft Messenger Service,</td>
</tr>
<tr>
<td>netlogon</td>
<td>Netlogon RPC</td>
</tr>
<tr>
<td>tcp source</td>
<td>Specifies the criteria for matching source TCP packets.</td>
</tr>
<tr>
<td>ip ip_address</td>
<td>Specifies the IP address of the system that is the source of the traffic.</td>
</tr>
<tr>
<td>wildcard_mask</td>
<td>A wildcard subnet mask, which matches a range of source IP addresses. Use dotted decimal notation (such as 0.0.0.255 for /24).</td>
</tr>
<tr>
<td>port begin [end]</td>
<td>Specifies the criteria for identifying the port or ports used by the source host. Specify a single port or a begin and end port for a range. Available only for WAAS optimization class maps.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Class map configuration
Device Modes

- application-accelerator
- appnav-controller

Examples

The following example shows how to configure a protocol match condition for a class map:

```
waec(config)# class-map type waas myclass1
waec(config-cmap)# match protocol mapi tcp source ip 10.10.10.35
```

Related Commands

- (config-cmap) description
- (config-cmap) match peer
- (config-cmap) match tcp
(config-cmap) match tcp

To configure a match condition based on source and/or destination IP address and port for the class map, use the match tcp class map configuration command. To unconfigure a match condition, use the no form of this command. The options for this command differ depending on what type of class map you are configuring.

For an AppNav class map:

```
match tcp { any |
  destination [ip ip_address [wildcard_mask]] [port begin [end]] [source ip ip_address [wildcard_mask] [port begin [end]] |
  source ip ip_address [wildcard_mask] [destination ip ip_address [wildcard_mask] [port begin [end]] [protocol {mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon}]]}

no match { any |
  destination [ip ip_address [wildcard_mask]] [port begin [end]] [source ip ip_address [wildcard_mask] [port begin [end]] |
  source ip ip_address [wildcard_mask] [destination ip ip_address [wildcard_mask] [port begin [end]] [protocol {mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon}]]}
```

For a WAAS optimization class map:

```
match tcp { any |
  destination [ip ip_address [wildcard_mask]] [port begin [end]] [source ip ip_address [wildcard_mask] [port begin [end]] |
  source [ip ip_address [wildcard_mask]] [port begin [end]] [destination ip ip_address [wildcard_mask] [port begin [end]] [protocol {epm-uuid uuid | mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon}]]}

no match tcp { any |
  destination [ip ip_address [wildcard_mask]] [port begin [end]] [source ip ip_address [wildcard_mask] [port begin [end]] |
  source [ip ip_address [wildcard_mask]] [port begin [end]] [destination ip ip_address [wildcard_mask] [port begin [end]] [protocol {epm-uuid uuid | mapi | ms-ad-rep | ms-exch-nspi | ms-frs | ms-frs-api | ms-rfr | ms-sql | msn-messenger | netlogon}]]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>Matches any TCP packets.</td>
</tr>
<tr>
<td>destination</td>
<td>Specifies the destination criteria for matching TCP packets.</td>
</tr>
<tr>
<td>ip ip_address</td>
<td>Specifies the IP address of the system that is the source or destination of the traffic.</td>
</tr>
<tr>
<td>wildcard_mask</td>
<td>A wildcard subnet mask, which matches a range of IP addresses. Use dotted decimal notation (such as 0.0.0.255 for /24).</td>
</tr>
<tr>
<td>port begin [end]</td>
<td>Specifies the criteria for identifying the port or ports used by the source or destination host. Specify a single port or a begin and end port for a range.</td>
</tr>
<tr>
<td>source</td>
<td>Specifies the source criteria for matching TCP packets.</td>
</tr>
<tr>
<td>protocol</td>
<td>Specifies the criteria for matching TCP packets based on layer 7 protocol.</td>
</tr>
</tbody>
</table>
(config-cmap) match tcp

Defaults
No default behavior or values.

Command Modes
Class map configuration

Device Modes
application-accelerator
appnav-controller

Examples
The following example shows how to configure a TCP match condition for a class map:

```
waec(config)# class-map type appnav myclass2
waec(config-cmap)# match tcp source port 4000 4004 destination ip 10.10.20.50
```

Related Commands
- (config-cmap) description
- (config-cmap) match peer
- (config-cmap) match protocol
Policy Map Configuration Mode Commands

To configure an AppNav or optimization policy map, use the `policy-map` global configuration command. To unconfigure settings, use the `no` form of this command.

```
policy-map type {appnav | waas} policymap-name [rename new-name]

no policy-map type {appnav | waas} policymap-name
```

Syntax Description

- **appnav**: Configures an AppNav policy map.
- **waas**: Configures a WAAS optimization policy map.
- **policymap-name**: Policy map name (up to 40 alpha-numeric characters and hyphen, beginning with a letter).
- **rename new-name**: (Optional) Renames the policy map with the specified new name.

Defaults

No default behavior or values.

Command Modes

- global configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Use the `policy-map` command to add or modify policy maps that associate policy actions with class maps. This command invokes the Policy Map configuration mode, which is indicated by a different prompt (config-pmap). To return to global configuration mode, enter the `exit` command.

You can delete a policy map by using the `no` form of this command.

The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one.

For a list of the default applications, class maps, and policy rules, see the Cisco Wide Area Application Services Configuration Guide.

Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure policy maps for your WAAS devices. For more information, see the Cisco Wide Area Application Services Configuration Guide.
Examples

The following example shows how to configure a WAAS optimization policy map:

```plaintext
waec(config)# policy-map type waas myPolicy
waec(config-pmap)# description My optimization policy
waec(config-pmap)# class httpx
waec(config-pmap-c)# optimize full accelerate http application Web
```

The following example shows how to configure an AppNav policy map:

```plaintext
waec(config)# policy-map type appnav mypolicy
waec(config-pmap)# description My AppNav policy
waec(config-pmap)# class httpx
waec(config-pmap-c)# distribute service-node-group wng3
waec(config-pmap-c)# monitor-load http
```

Related Commands

- `(config-pmap) class`
- `(config-pmap) description`
To configure the service policy for a class map, use the `class` policy map configuration command. To unconfigure the service policy, use the `no` form of this command.

```
class classmap-name [insert-before existing_class]
no class classmap-name [insert-before existing_class]
```

Syntax Description

<table>
<thead>
<tr>
<th>Classmap Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classmap-name</td>
<td>Class map name (up to 40 alpha-numeric characters and hyphen, beginning with a letter).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert-before existing_class</td>
<td>Inserts a new class, or moves an existing class, before the specified class. If you do not specify an existing class name, the class is moved to the last position in the policy map.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Policy map configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

Use the `class` command to add or modify a service policy (policy rule) for traffic identified by a class map. This command invokes the Policy Map Class configuration mode, which is indicated by a different prompt (config-pmap-c). For more information on Policy Class Map configuration mode commands, see the “Policy Map Class Configuration Mode Commands” section. To return to global configuration mode, enter the `exit` command.

You can delete a policy rule by using the `no` form of this command.

Examples

The following example shows how to configure a policy rule in an optimization policy map:

```
waec(config)# policy-map waas WAAS-GLOBAL
waec(config-pmap)# class httpx
waec(config-pmap-c)# optimize full accelerate http application Web
```

The following example shows how to configure an AppNav policy rule in a policy map:

```
waec(config)# policy-map type appnav mypolicy
waec(config-pmap)# class httpx
waec(config-pmap-c)# distribute service-node-group wng3
waec(config-pmap-c)# monitor-load http
```

Related Commands

- `(config-pmap) description`
(config-pmap) description

To configure the policy map description, use the `description` policy map configuration command. To unconfigure the description, use the `no` form of this command.

```
description description

no description description
```

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>description</code></td>
<td>Specifies a description of the policy map with up to 200 alphanumeric and space characters.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Policy map configuration

Device Modes

- application-accelerator
- appnav-controller

Examples

The following example shows how to configure a policy map description:

```
waes(config)# policy-map type waas myPolicy
waes(config-pmap)# description My optimization policy
```

Related Commands

- (config-pmap) class
Policy Map Class Configuration Mode Commands

To configure a service policy in an AppNav or optimization policy map, use the `class` policy map configuration command. To unconfigure settings, use the `no` form of this command.

```
class classmap-name [insert-before existing_class]
no class classmap-name [insert-before existing_class]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>classmap-name</code></td>
</tr>
<tr>
<td>Class map name (up to 40 alpha-numeric characters and hyphen, beginning with a letter).</td>
</tr>
<tr>
<td><code>insert-before existing_class</code></td>
</tr>
<tr>
<td>Inserts a new class, or moves an existing class, before the specified class. If you do not specify an existing class name, the class is moved to the last position in the policy map.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values.

Command Modes
Policy map configuration

Device Modes
application-accelerator
appnav-controller

Usage Guidelines
Use the `class` command to add or modify a service policy (policy rule) for traffic identified by a class map. This command invokes the Policy Map Class configuration mode, which is indicated by a different prompt (config-pmap-c). To return to global configuration mode, enter the `exit` command.

You can delete a policy rule by using the `no` form of this command.

The WAAS software comes with many class maps and policy rules that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new class map or policy rule, we recommend that you review the default class map and policy rules and modify them as appropriate. It is usually easier to modify an existing class map or policy rule than to create a new one. For a list of the default applications, class maps, and policy rules, see the Cisco Wide Area Application Services Configuration Guide.

Note
We strongly recommend that you use the WAAS Central Manager GUI to centrally configure policy maps for your WAAS devices. For more information, see the Cisco Wide Area Application Services Configuration Guide.
Examples
The following example shows how to configure an AppNav policy rule in a policy map:

```plaintext
waee(config)# policy-map type appnav mypolicy
waee(config-pmap)# class httpx
waee(config-pmap-c)# distribute service-node-group wng3
waee(config-pmap-c)# monitor-load http
```

The following example shows how to configure a policy rule in an optimization policy map:

```plaintext
waee(config)# policy-map waas WAAS-GLOBAL
waee(config-pmap)# class httpx
waee(config-pmap-c)# optimize full accelerate http application Web
```

Related Commands
- (config-pmap-c) distribute
- (config-pmap-c) monitor-load
- (config-pmap-c) optimize
- (config-pmap-c) pass-through
- (config-pmap-c) service-policy
- (config-pmap-c) set ip dscp
(config-pmap-c) distribute

To configure the WAAS node group to which to distribute traffic in an AppNav policy rule, use the distribute policy class map configuration command. To unconfigure the distribution policy, use the no form of this command.

```
distribute service-node-group node-group-name [insert-before [existing-node-group]]
```

```
no distribute service-node-group node-group-name [insert-before [existing-node-group]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>service-node-group</td>
<td>Name of a configured service node group (WAAS node group) to which you want to distribute traffic in the class.</td>
</tr>
<tr>
<td>node-group-name</td>
<td>Name of the service node group to which you want to distribute traffic.</td>
</tr>
<tr>
<td>insert-before</td>
<td>Inserts the new distribute action before an existing distribute action.</td>
</tr>
<tr>
<td>existing-node-group</td>
<td>Specifies the existing service node group.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Policy map class configuration

Device Modes

appnav-controller

Usage Guidelines

Use this command to add a distribute action to an AppNav policy rule. One or two distribute actions are allowed in an AppNav policy rule, which specify primary and secondary WAAS node groups to which traffic in the class is to be distributed.

If one distribute action already exists, you can use the `insert-before` option to add the new distribute action before the existing one. If you do not specify the `insert-before` option, the new distribute action is placed after the existing one.

If you specify the distribute action in a policy, any pass-through action is removed.

Examples

The following example shows how to configure traffic distribution in a policy rule:

```
waef(config)# policy-map type appnav mypolicy
waef(config-pmap)# class httpx
waef(config-pmap-c)# distribute service-node-group wng3
```

Related Commands

- (config-pmap-c) monitor-load
- (config-pmap-c) pass-through
- (config-pmap-c) service-policy
(config-pmap-c) monitor-load

To configure the application accelerator to monitor in an AppNav policy rule, use the `monitor-load` policy class map configuration command. To unconfigure monitoring, use the `no` form of this command.

```
monitor-load {cifs | http | ica | mapi | MS-port-mapper | nfs | ssl | video}
```

```
no monitor-load {cifs | http | ica | mapi | MS-port-mapper | nfs | ssl | video}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>monitor-load</code></td>
<td>Monitors the load on the specified application accelerator, as follows:</td>
</tr>
<tr>
<td><code>cifs</code></td>
<td>CIFS or SMB accelerator</td>
</tr>
<tr>
<td><code>http</code></td>
<td>HTTP accelerator</td>
</tr>
<tr>
<td><code>ica</code></td>
<td>ICA accelerator</td>
</tr>
<tr>
<td><code>mapi</code></td>
<td>MAPI accelerator</td>
</tr>
<tr>
<td><code>MS-port-mapper</code></td>
<td>EPM accelerator</td>
</tr>
<tr>
<td><code>nfs</code></td>
<td>NFS accelerator</td>
</tr>
<tr>
<td><code>ssl</code></td>
<td>SSL accelerator</td>
</tr>
<tr>
<td><code>video</code></td>
<td>Video accelerator</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Policy map class configuration

Device Modes

appnav-controller

Usage Guidelines

Use this command to monitor the load on an application accelerator in an AppNav policy rule. When you monitor an application accelerator, the AppNav Controller checks for overload on that application accelerator and does not send new flows to a WAAS node that is overloaded.

If you specify the monitor-load action in a policy, any pass-through action is removed.

Examples

The following example shows how to configure monitoring in a policy rule:

```
wa(e(config)# policy-map type appnav mypolicy
wa(e(config-pmap)# class httpx
wa(e(config-pmap-c)# monitor-load http
```

Related Commands

- `(config-pmap-c) distribute`
- `(config-pmap-c) pass-through`
(config-pmap-c) service-policy
(config-pmap-c) optimize

To configure optimization actions in a WAAS optimization policy, use the `optimize` policy class map configuration command. To unconfigure optimization actions, use the `no` form of this command.

```
optimize { tfo-only | [{DRE { bidirectional | adaptive | unidirectional}} | [LZ] | full} [accelerate { cifs | http | ica | mapi | MS-port-mapper | nfs | ssl | video}] [application app-name]
```

```
no optimize { tfo-only | [{DRE { bidirectional | adaptive | unidirectional}} | [LZ] | full} [accelerate { cifs | http | ica | mapi | MS-port-mapper | nfs | ssl | video}] [application app-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tfo-only</td>
<td>Optimize with transport flow optimizations (TFO) and not data redundancy elimination (DRE) or Lempel-Ziv (LZ) compression.</td>
</tr>
<tr>
<td>DRE</td>
<td>Optimize with DRE of the specified type.</td>
</tr>
<tr>
<td>bidirectional</td>
<td>Optimize with bidirectional caching DRE.</td>
</tr>
<tr>
<td>adaptive</td>
<td>Optimize with adaptive caching DRE.</td>
</tr>
<tr>
<td>unidirectional</td>
<td>Optimize with unidirectional caching DRE.</td>
</tr>
<tr>
<td>LZ</td>
<td>Apply LZ compression.</td>
</tr>
<tr>
<td>full</td>
<td>Apply full Layer 4 optimization; this keyword is equivalent to DRE bidirectional LZ.</td>
</tr>
<tr>
<td>accelerate</td>
<td>Accelerate the traffic using the specified application accelerator, as follows:</td>
</tr>
<tr>
<td></td>
<td>- cifs—CIFS or SMB accelerator</td>
</tr>
<tr>
<td></td>
<td>- http—HTTP accelerator</td>
</tr>
<tr>
<td></td>
<td>- ica—ICA accelerator</td>
</tr>
<tr>
<td></td>
<td>- mapi—MAPI accelerator</td>
</tr>
<tr>
<td></td>
<td>- MS-port-mapper—EPM accelerator</td>
</tr>
<tr>
<td></td>
<td>- nfs—NFS accelerator</td>
</tr>
<tr>
<td></td>
<td>- ssl—SSL accelerator</td>
</tr>
<tr>
<td></td>
<td>- video—Video accelerator</td>
</tr>
<tr>
<td>application</td>
<td>Assign the specified application identifier to connections matching the</td>
</tr>
<tr>
<td>app-name</td>
<td>class for statistics collection.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values.

Command Modes

Policy map class configuration

Device Modes

application-accelerator

appnav-controller
This command configures the optimization actions in a WAAS optimization policy.

You may specify only a single optimize or pass-through action for a particular class. If one of these actions is already present and you specify a new action, the new action replaces the existing action. If neither of these actions is specified, the default is pass-through.

The following DRE caching modes are supported:

- **Bidirectional**—The peer WAEs maintain identical caches for inbound and outbound traffic. This caching mode is best suited where a significant portion of the traffic seen in one direction between the peers is also seen in the reverse direction.

- **Unidirectional**—The peer WAEs maintain different caches for inbound and outbound traffic. This caching mode is best suited where a significant portion of the traffic seen in one direction between the peers is not seen in the reverse direction.

- **Adaptive**—The peer WAEs negotiate either bidirectional or unidirectional caching based on the characteristics of the traffic seen between the peers.

The following example shows how to configure the optimization action in a policy:

```bash
wae(config)# policy-map waas WAAS-GLOBAL
wae(config-pmap)# class httpx
wae(config-pmap-c)# optimize full accelerate http application Web
```

Related Commands

- `(config-pmap-c) pass-through`
- `(config-pmap-c) set ip dscp`
(config-pmap-c) pass-through

To configure the pass-through action in an AppNav or optimization policy rule, use the `pass-through` policy class map configuration command. To unconfigure the pass-through action, use the `no` form of this command.

```plaintext
pass-through [application app-name]

no pass-through [application app-name]
```

Syntax Description

- `application app-name` (Optional) Assign the specified application identifier to connections matching the class for statistics collection. Available only for WAAS optimization class maps.

Defaults

No default behavior or values.

Command Modes

Policy map class configuration

Device Modes

- application-accelerator
- appnav-controller

Usage Guidelines

In an optimization policy, this command prevents the traffic in the class from being optimized and instead the traffic is passed through unoptimized. You can optionally specify an application name with which to associate the traffic in the class for statistics collection purposes.

You may specify only a single `optimize` or `pass-through` action for a particular class. If one of these actions is already present and you specify a new action, the new action replaces the existing action. If neither of these actions is specified, the default is `pass-through`.

In an AppNav policy rule, this command prevents the traffic in the class from being distributed to WAAS nodes and instead the traffic is passed through unoptimized.

This command is useful in a nested policy to override a distribute action specified in the parent policy.

If you specify the pass-through action in a policy, any distribute or monitor-load actions are removed.

Examples

The following example shows how to configure the pass-through action in an optimization policy:

```plaintext
waes(config)# policy-map waas WAAS-GLOBAL
waes(config-pmap)# class httpx
waes(config-pmap-c)# pass-through
```

The following example shows how to configure the pass-through action in an AppNav policy rule:

```plaintext
waes(config)# policy-map type appnav mypolicy
waes(config-pmap)# class httpx
waes(config-pmap-c)# pass-through
```
Related Commands

- (config-pmap-c) distribute
- (config-pmap-c) monitor-load
- (config-pmap-c) optimize
- (config-pmap-c) service-policy
- (config-pmap-c) set ip dscp
(config-pmap-c) service-policy

To configure a nested policy map in an AppNav policy rule, use the `service-policy` policy class map configuration command. To unconfigure a nested policy map, use the `no` form of this command.

```
   service-policy policymap-name

   no service-policy policymap-name
```

Syntax Description

| `policymap-name` | Name of an existing policy map to nest under this policy rule. |

Defaults

No default behavior or values.

Command Modes

Policy map class configuration

Device Modes

appnav-controller

Usage Guidelines

This command specifies another policy map that is applied as a nested policy to the traffic in the class. Policy rules in the nested policy map override policy rules in the parent policy map.

Only one nested policy is allowed in a class. If you specify this command when an existing nested policy exists in the class, the new nested policy replaces the existing one.

You can specify the same nested policy in multiple classes, which allows you to apply the same nested policy action, such as monitoring application accelerators, to many classes of traffic.

A policy map used as a nested policy may not contain classes that use match peer conditions.

Examples

The following example shows how to configure nested policy map for a policy rule:

```
waec(config)# policy-map type appnav mypolicy
waec(config-pmap)# class httpx
waec(config-pmap-c)# distribute service-node-group wng3
waec(config-pmap-c)# service-policy npolicymonitor
```

Related Commands

- `(config-pmap-c) distribute`
- `(config-pmap-c) monitor-load`
- `(config-pmap-c) pass-through`
(config-pmap-c) set ip dscp

To configure the DSCP marking in a WAAS optimization policy, use the `set ip dscp` policy class map configuration command. To unconfigure DSCP marking, use the `no` form of this command.

```
set ip dscp dscp-marking
no set ip dscp dscp-marking
```

Syntax Description

| dscp-marking | Assign the specified DSCP marking value (Table 3-2) to the connections in the class. |

Defaults

The default DSCP marking value is `copy`.

Command Modes

Policy map class configuration

Device Modes

application-accelerator

appnav-controller

Usage Guidelines

This command overrides the global default DSCP marking value, which is set to `copy` by default.

If you do not specify the `set ip dscp` command, the class uses the global default DSCP marking, which is set by the `service-policy type waas set ip dscp` command.

You can specify the `set ip dscp` command only when the `optimize` action has been configured for a class.

Examples

The following example shows how to configure the DSCP marking value for connections in the class:

```
waes(config)# policy-map waas WAAS-GLOBAL
waes(config-pmap)# class httpx
waes(config-pmap-c)# optimize full accelerate http application Web
waes(config-pmap-c)# set ip dscp 10
```

Related Commands

- `(config-pmap-c) optimize`
- `(config-pmap-c) pass-through`
- `(config) service-policy`
(config-pmap-c) set ip dscp
Acronyms and Abbreviations

Table A-1 defines the acronyms and abbreviations that are used in this publication.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>authentication, authorization, and accounting</td>
</tr>
<tr>
<td>ACL</td>
<td>access control list</td>
</tr>
<tr>
<td>ACPI</td>
<td>Advanced Configuration and Power Interface</td>
</tr>
<tr>
<td>ADS</td>
<td>Active Directory Service</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Bootstrap Protocol</td>
</tr>
<tr>
<td>CBA</td>
<td>cipher block chaining</td>
</tr>
<tr>
<td>CDP</td>
<td>Cisco Discovery Protocol</td>
</tr>
<tr>
<td>CIFS</td>
<td>Common Internet File System</td>
</tr>
<tr>
<td>CLI</td>
<td>command-line interface</td>
</tr>
<tr>
<td>CM</td>
<td>Central Manager</td>
</tr>
<tr>
<td>CUPS</td>
<td>Common UNIX Printing System</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DSCP</td>
<td>differentiated services code point</td>
</tr>
<tr>
<td>ECN</td>
<td>Explicit Congestion Notification</td>
</tr>
<tr>
<td>FTP</td>
<td>file transfer protocol</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time (now known as UTC)</td>
</tr>
<tr>
<td>GRE</td>
<td>generic routing encapsulation</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hash-Based Message Authentication Code</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Drive Electronics</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>KDC</td>
<td>key distribution center</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>Mbps</td>
<td>megabits per second</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MSRPC</td>
<td>Microsoft Remote Procedure Call</td>
</tr>
<tr>
<td>MTU</td>
<td>maximum transmission unit</td>
</tr>
<tr>
<td>NAS</td>
<td>network access server/network attached storage</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Network Basic Input/Output System</td>
</tr>
<tr>
<td>NMS</td>
<td>Network Management system</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NTLM</td>
<td>NT LAN Manager</td>
</tr>
<tr>
<td>NVRAM</td>
<td>nonvolatile RAM</td>
</tr>
<tr>
<td>PAP</td>
<td>Password Authentication Protocol</td>
</tr>
<tr>
<td>PDC</td>
<td>primary domain controller</td>
</tr>
<tr>
<td>PID</td>
<td>product ID</td>
</tr>
<tr>
<td>POST</td>
<td>Power-on Self Test</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Access Dial-In User Service</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>RAM</td>
<td>random access memory</td>
</tr>
<tr>
<td>rcp</td>
<td>remote copy protocol</td>
</tr>
<tr>
<td>RMSS</td>
<td>receiver maximum segment size</td>
</tr>
<tr>
<td>ROM</td>
<td>read-only memory</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer Systems Interface</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SMART</td>
<td>Self Monitoring, Analysis, and Reporting Technology</td>
</tr>
<tr>
<td>SMB</td>
<td>Server Message Block</td>
</tr>
<tr>
<td>SMSS</td>
<td>sender maximum segment size</td>
</tr>
<tr>
<td>SN</td>
<td>serial number</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell Protocol</td>
</tr>
<tr>
<td>SYSFS</td>
<td>System File System</td>
</tr>
<tr>
<td>TAC</td>
<td>Technical Assistance Center</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access Control System Plus</td>
</tr>
</tbody>
</table>
Table A-1
List of Acronyms and Abbreviations (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TDB</td>
<td>Trivial DataBase</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>ToS</td>
<td>type of service</td>
</tr>
<tr>
<td>UDI</td>
<td>unique device identifier</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UPS</td>
<td>uninterruptible power supply</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UUCP</td>
<td>Unix-to-Unix Copy Program</td>
</tr>
<tr>
<td>VID</td>
<td>version ID</td>
</tr>
<tr>
<td>WAE</td>
<td>Wide Area Application Engine</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Application Services</td>
</tr>
<tr>
<td>WAFS</td>
<td>Wide Area File Services</td>
</tr>
<tr>
<td>WAFSFS</td>
<td>Wide Area File Services File System</td>
</tr>
<tr>
<td>WCCP</td>
<td>Web Cache Communication Protocol</td>
</tr>
<tr>
<td>WINS</td>
<td>Windows naming service</td>
</tr>
</tbody>
</table>
AppNav Controller Group
Configuration Mode Commands

(config-seg) appnav-controller 3-919
(config-seg) description 3-920

Class Map Configuration Mode Commands

(config) class-map 3-598
(config-cmap) description 3-945
(config-cmap) match peer 3-946
(config-cmap) match protocol 3-947
(config-cmap) match tcp 3-949

Configuration Mode Commands

(config) aaa accounting 3-540
(config) aaa authorization commands 3-543
(config) accelerator cifs 3-544
(config) accelerator cifs preposition 3-546
(config) accelerator epm 3-548
(config) accelerator http 3-549
(config) accelerator ica 3-552
(config) accelerator mapi 3-554
(config) accelerator nfs 3-556
(config) accelerator smb 3-557
(config) accelerator ssl 3-560
(config) accelerator video 3-562
(config) accelerator windows-print 3-564
(config) alarm overload-detect 3-565
(config) asset 3-567
(config) authentication configuration 3-568
(config) authentication content-request 3-574
(config) authentication enable 3-573
(config) authentication fail-over 3-578
(config) authentication login 3-580
(config) auto-discovery 3-587
(config) auto-register 3-588
(config) banner 3-590
(config) bridge 3-592
(config) cdp 3-595
(config) central-manager 3-596
(config) clock 3-600
(config) cms 3-604
(config) crypto pki 3-607
(config) crypto ssl 3-609
(config) device mode 3-611
(config) directed-mode 3-613
(config) disk disk-name 3-614
(config) disk encrypt 3-616
(config) disk error-handling 3-617
(config) disk logical shutdown 3-618
(config) disk object-cache extend 3-619
(config) dre 3-620
(config) end 3-621
(config) exec-timeout 3-622
(config) exit 3-623
(config) flow monitor 3-624
(config) help 3-625
(config) hostname 3-627
(config) inetd 3-629
(config) inline 3-630
(config) inline vlan-id-connection-check 3-631
(config) interception 3-632
(config) interception-method 3-634
EXEC Mode Commands

authentication strict-password-policy 3-585

cd 3-4

clear arp-cache 3-5

clear bmc 3-6

clear cache 3-7

clear cdp 3-9

clear cifs msg-signing-servers 3-10
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear connection</td>
<td>3-11</td>
</tr>
<tr>
<td>clear dre</td>
<td>3-12</td>
</tr>
<tr>
<td>clear ip</td>
<td>3-13</td>
</tr>
<tr>
<td>clear license</td>
<td>3-14</td>
</tr>
<tr>
<td>clear logging</td>
<td>3-15</td>
</tr>
<tr>
<td>clear service-policy</td>
<td>3-16</td>
</tr>
<tr>
<td>clear statistics</td>
<td>3-17</td>
</tr>
<tr>
<td>clear statistics accelerator</td>
<td>3-19</td>
</tr>
<tr>
<td>clear statistics connection</td>
<td>3-20</td>
</tr>
<tr>
<td>clear statistics vn-service vpath</td>
<td>3-22, 3-23</td>
</tr>
<tr>
<td>clear transaction-log</td>
<td>3-24</td>
</tr>
<tr>
<td>clear users</td>
<td>3-25</td>
</tr>
<tr>
<td>clear windows-domain</td>
<td>3-27</td>
</tr>
<tr>
<td>clear windows-domain-log</td>
<td>3-28</td>
</tr>
<tr>
<td>clock</td>
<td>3-29</td>
</tr>
<tr>
<td>cms</td>
<td>3-30</td>
</tr>
<tr>
<td>cms secure-store</td>
<td>3-33</td>
</tr>
<tr>
<td>configure</td>
<td>3-36</td>
</tr>
<tr>
<td>copy cdrom</td>
<td>3-37</td>
</tr>
<tr>
<td>copy cdrom wow-recovery</td>
<td>3-38</td>
</tr>
<tr>
<td>copy compactflash</td>
<td>3-39</td>
</tr>
<tr>
<td>copy disk</td>
<td>3-40</td>
</tr>
<tr>
<td>copy ftp</td>
<td>3-41</td>
</tr>
<tr>
<td>copy http</td>
<td>3-44</td>
</tr>
<tr>
<td>copy monitoring-log</td>
<td>3-46</td>
</tr>
<tr>
<td>copy running-config</td>
<td>3-47</td>
</tr>
<tr>
<td>copy scp</td>
<td>3-49</td>
</tr>
<tr>
<td>copy startup-config</td>
<td>3-51</td>
</tr>
<tr>
<td>copy sysreport</td>
<td>3-52</td>
</tr>
<tr>
<td>copy system-status</td>
<td>3-54</td>
</tr>
<tr>
<td>copy tech-support</td>
<td>3-55</td>
</tr>
<tr>
<td>copy tftp</td>
<td>3-57</td>
</tr>
<tr>
<td>cpfile</td>
<td>3-60</td>
</tr>
<tr>
<td>crypto delete</td>
<td>3-61</td>
</tr>
<tr>
<td>crypto export</td>
<td>3-62</td>
</tr>
<tr>
<td>crypto generate</td>
<td>3-64</td>
</tr>
<tr>
<td>crypto import</td>
<td>3-66</td>
</tr>
<tr>
<td>crypto pki</td>
<td>3-68</td>
</tr>
<tr>
<td>debug aaa accounting</td>
<td>3-69</td>
</tr>
<tr>
<td>debug accelerator</td>
<td>3-73</td>
</tr>
<tr>
<td>debug all</td>
<td>3-79</td>
</tr>
<tr>
<td>debug appnav-controller connection</td>
<td>3-81</td>
</tr>
<tr>
<td>debug authentication</td>
<td>3-85</td>
</tr>
<tr>
<td>debug auto-discovery</td>
<td>3-87</td>
</tr>
<tr>
<td>debug buf</td>
<td>3-89</td>
</tr>
<tr>
<td>debug cdp</td>
<td>3-91</td>
</tr>
<tr>
<td>debug cli</td>
<td>3-93</td>
</tr>
<tr>
<td>debug cmcm</td>
<td>3-95</td>
</tr>
<tr>
<td>debug cms</td>
<td>3-97</td>
</tr>
<tr>
<td>debug connection</td>
<td>3-99</td>
</tr>
<tr>
<td>debug controllers</td>
<td>3-101</td>
</tr>
<tr>
<td>debug dataserver</td>
<td>3-103</td>
</tr>
<tr>
<td>debug dhcp</td>
<td>3-105</td>
</tr>
<tr>
<td>debug directed-mode</td>
<td>3-107</td>
</tr>
<tr>
<td>debug dre</td>
<td>3-109</td>
</tr>
<tr>
<td>debug egress-method</td>
<td>3-111</td>
</tr>
<tr>
<td>debug encryption-service</td>
<td>3-113</td>
</tr>
<tr>
<td>debug fda</td>
<td>3-115</td>
</tr>
<tr>
<td>debug fdm</td>
<td>3-117</td>
</tr>
<tr>
<td>debug filtering</td>
<td>3-119</td>
</tr>
<tr>
<td>debug flow</td>
<td>3-121</td>
</tr>
<tr>
<td>debug generic-gre</td>
<td>3-123</td>
</tr>
<tr>
<td>debug hw-raid</td>
<td>3-125</td>
</tr>
<tr>
<td>debug imd</td>
<td>3-127</td>
</tr>
<tr>
<td>debug inline</td>
<td>3-129</td>
</tr>
<tr>
<td>debug logging</td>
<td>3-133</td>
</tr>
<tr>
<td>debug monapi</td>
<td>3-131, 3-135</td>
</tr>
<tr>
<td>debug nplgd</td>
<td>3-137</td>
</tr>
<tr>
<td>debug ntp</td>
<td>3-139</td>
</tr>
<tr>
<td>debug punt</td>
<td>3-141</td>
</tr>
<tr>
<td>debug rbcp</td>
<td>3-143</td>
</tr>
<tr>
<td>debug rmd</td>
<td>3-145</td>
</tr>
<tr>
<td>debug rpc</td>
<td>3-147</td>
</tr>
<tr>
<td>debug service-insertion</td>
<td>3-149</td>
</tr>
<tr>
<td>debug service-policy</td>
<td>3-151</td>
</tr>
<tr>
<td>debug snmp</td>
<td>3-153</td>
</tr>
<tr>
<td>debug standby</td>
<td>3-155</td>
</tr>
<tr>
<td>debug statistics</td>
<td>3-157</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>debug synq</td>
<td>3-159</td>
</tr>
<tr>
<td>debug tfo</td>
<td>3-161</td>
</tr>
<tr>
<td>debug translog</td>
<td>3-163</td>
</tr>
<tr>
<td>debug wafs</td>
<td>3-165</td>
</tr>
<tr>
<td>debug wccp</td>
<td>3-167</td>
</tr>
<tr>
<td>delfile</td>
<td>3-169</td>
</tr>
<tr>
<td>deltree</td>
<td>3-170</td>
</tr>
<tr>
<td>dir</td>
<td>3-171</td>
</tr>
<tr>
<td>disable</td>
<td>3-173</td>
</tr>
<tr>
<td>disk</td>
<td>3-174</td>
</tr>
<tr>
<td>dnslookup</td>
<td>3-177</td>
</tr>
<tr>
<td>enable</td>
<td>3-178</td>
</tr>
<tr>
<td>exit</td>
<td>3-179</td>
</tr>
<tr>
<td>find-pattern</td>
<td>3-180</td>
</tr>
<tr>
<td>help</td>
<td>3-182</td>
</tr>
<tr>
<td>install</td>
<td>3-183</td>
</tr>
<tr>
<td>less</td>
<td>3-185</td>
</tr>
<tr>
<td>license add</td>
<td>3-186</td>
</tr>
<tr>
<td>lls</td>
<td>3-187</td>
</tr>
<tr>
<td>ls</td>
<td>3-188</td>
</tr>
<tr>
<td>lsusb</td>
<td>3-190</td>
</tr>
<tr>
<td>mkdir</td>
<td>3-191</td>
</tr>
<tr>
<td>mkfile</td>
<td>3-192</td>
</tr>
<tr>
<td>monitor appnav-controller traffic</td>
<td>3-193</td>
</tr>
<tr>
<td>ntpdate</td>
<td>3-194</td>
</tr>
<tr>
<td>packet-capture</td>
<td>3-195</td>
</tr>
<tr>
<td>ping</td>
<td>3-197</td>
</tr>
<tr>
<td>pwd</td>
<td>3-198</td>
</tr>
<tr>
<td>reload</td>
<td>3-199</td>
</tr>
<tr>
<td>rename</td>
<td>3-200</td>
</tr>
<tr>
<td>restore</td>
<td>3-201</td>
</tr>
<tr>
<td>rmdir</td>
<td>3-205</td>
</tr>
<tr>
<td>scp</td>
<td>3-206</td>
</tr>
<tr>
<td>script</td>
<td>3-208</td>
</tr>
<tr>
<td>setup</td>
<td>3-209</td>
</tr>
<tr>
<td>show appnav-controller flow-distribution</td>
<td>3-220</td>
</tr>
<tr>
<td>show arp</td>
<td>3-222</td>
</tr>
<tr>
<td>show authentication</td>
<td>3-223</td>
</tr>
<tr>
<td>show auto-discovery</td>
<td>3-225</td>
</tr>
<tr>
<td>show auto-register</td>
<td>3-226</td>
</tr>
<tr>
<td>show banner</td>
<td>3-227</td>
</tr>
<tr>
<td>show bmc</td>
<td>3-228</td>
</tr>
<tr>
<td>show bridge</td>
<td>3-230</td>
</tr>
<tr>
<td>show cache http-metadatocache</td>
<td>3-232</td>
</tr>
<tr>
<td>show cdp</td>
<td>3-234</td>
</tr>
<tr>
<td>show cifs</td>
<td>3-240</td>
</tr>
<tr>
<td>show class-map</td>
<td>3-246</td>
</tr>
<tr>
<td>show clock</td>
<td>3-242</td>
</tr>
<tr>
<td>show cms</td>
<td>3-244</td>
</tr>
<tr>
<td>show cms secure-store</td>
<td>3-249</td>
</tr>
<tr>
<td>show crypto</td>
<td>3-251</td>
</tr>
<tr>
<td>show debugging</td>
<td>3-253</td>
</tr>
<tr>
<td>show device-id</td>
<td>3-254</td>
</tr>
<tr>
<td>show device-mode</td>
<td>3-255</td>
</tr>
<tr>
<td>show directed-mode</td>
<td>3-257</td>
</tr>
<tr>
<td>show disks</td>
<td>3-258</td>
</tr>
<tr>
<td>show dre</td>
<td>3-265</td>
</tr>
<tr>
<td>show filtering list</td>
<td>3-266</td>
</tr>
<tr>
<td>show flash</td>
<td>3-268</td>
</tr>
<tr>
<td>show hardware</td>
<td>3-269</td>
</tr>
<tr>
<td>show hosts</td>
<td>3-272</td>
</tr>
<tr>
<td>show inetd</td>
<td>3-273</td>
</tr>
<tr>
<td>show interception-method</td>
<td>3-274</td>
</tr>
<tr>
<td>show interface</td>
<td>3-275</td>
</tr>
<tr>
<td>show inventory</td>
<td>3-279</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>3-280</td>
</tr>
<tr>
<td>show ip routes</td>
<td>3-282</td>
</tr>
<tr>
<td>show kdump</td>
<td>3-283</td>
</tr>
<tr>
<td>show kerberos</td>
<td>3-284</td>
</tr>
<tr>
<td>show key-manager</td>
<td>3-285</td>
</tr>
<tr>
<td>show license</td>
<td>3-286</td>
</tr>
<tr>
<td>show logging</td>
<td>3-287</td>
</tr>
<tr>
<td>show memory</td>
<td>3-288</td>
</tr>
<tr>
<td>show monitor</td>
<td>3-289</td>
</tr>
</tbody>
</table>
show ntp 3-290
show peer optimization 3-292
show policy-map 3-293
show policy-sub-class 3-294
show processes 3-296
show radius-server 3-298
show reload 3-300
show running-config 3-301
show service-insertion 3-303
show service-policy 3-309
show services 3-312
show smb-conf 3-313
show smtp 3-315
show ssh 3-321
show startup-config 3-322
show statistics accelerator 3-324
show statistics aom 3-373
show statistics application 3-377
show statistics appnav-controller 3-380
show statistics authentication 3-382
show statistics auto-discovery 3-383
show statistics cifs 3-386
show statistics class-default 3-388
show statistics class-map 3-389
show statistics connection 3-391
show statistics connection auto-discovery 3-395
show statistics connection closed 3-397
show statistics connection conn-id 3-400
show statistics connection egress-methods 3-403
show statistics connection optimized 3-407
show statistics connection pass-through 3-410
show statistics crypto ssl ciphers 3-412
show statistics datamover 3-413
show statistics directed-mode 3-415
show statistics dre 3-416
show statistics filtering 3-419
show statistics flow 3-422
show statistics generic-gre 3-425
show statistics icmp 3-426
show statistics ip 3-428
show statistics monitor appnav-controller traffic 3-431
show statistics netstat 3-433
show statistics pass-through 3-434
show statistics peer 3-436
show statistics policy-sub-class 3-439
show statistics punt 3-441
show statistics radius 3-442
show statistics service-insertion 3-444
show statistics services 3-445
show statistics sessions 3-446
show statistics snmp 3-447
show statistics synq 3-449
show statistics tacacs 3-450
show statistics tcp 3-452
show statistics tfo 3-456
show statistics udp 3-460
show statistics vn-service vpath 3-461
show statistics wccp 3-463
show statistics windows-domain 3-468
show statistics windows-print requests 3-470
show synq list 3-472
show system volumes 3-473
show tacacs 3-474
show tcp 3-476
show tech-support 3-478
show telnet 3-481
show tfo tcp 3-482
show transaction-logging 3-484
show user 3-486
show users administrative 3-487
show version 3-489
show virtual-blade 3-490
show wccp 3-493
show windows-domain 3-500
shutdown 3-502
snmp trigger 3-505
ssh 3-509
tcpdump 3-510
telnet 3-512
terminal 3-513
test 3-514
tethereal 3-517
top 3-520
traceroute 3-522
transaction-log 3-524
type 3-525
type-tail 3-526
virtual-blade 3-528
vm 3-530
waas-tcptrace 3-532
whoami 3-534
windows-domain 3-535
write 3-538

Extended ACL Configuration Mode Commands

(config-ext-nacl) delete 3-805
(config-ext-nacl) deny 3-806
(config-ext-nacl) exit 3-811
(config-ext-nacl) list 3-812
(config-ext-nacl) move 3-813
(config-ext-nacl) permit 3-814

Interface Configuration Mode Commands

(config-if) autosense 3-764
(config-if) bandwidth 3-765
(config-if) bridge-group 3-767
(config-if) cdp 3-769
(config-if) channel-group 3-770
(config-if) description 3-771
(config-if) encapsulation dot1Q 3-772
(config-if) exit 3-773
(config-if) failover timeout 3-774
(config-if) full-duplex 3-776
(config-if) half-duplex 3-778
(config-if) inline 3-780
(config-if) ip 3-782
(config-if) ip access-group 3-784
(config-if) load-interval 3-786
(config-if) mtu 3-787
(config-if) shutdown 3-788
(config-if) standby 3-789

PKI Certificate Authority Configuration Mode Commands

(config-ca) ca-certificate 3-855
(config-ca) description 3-856
(config-ca) revocation-check 3-857

PKI Global Settings Configuration Mode Commands

(config-pki-global-settings) ocsp 3-860
(config-pki-global-settings) revocation-check 3-861

Policy Map Class Configuration Mode Commands

(config-pmap-c) distribute 3-957
(config-pmap-c) monitor-load 3-958
(config-pmap-c) optimize 3-960
(config-pmap-c) pass-through 3-962
(config-pmap-c) service-policy 3-964
(config-pmap-c) set ip dscp 3-965

Policy Map Configuration Mode Commands

(config-pmap) class 3-953
(config-pmap) description 3-954
Preposition Configuration Mode Commands

- (config-preposition) credentials 3-821
- (config-preposition) dscp 3-822
- (config-preposition) duration 3-823
- (config-preposition) enable 3-824
- (config-preposition) ignore-hidden-dir 3-825
- (config-preposition) max-cache 3-826
- (config-preposition) max-file-size 3-827
- (config-preposition) min-file-size 3-828
- (config-preposition) name 3-829
- (config-preposition) recursive 3-831
- (config-preposition) root 3-832
- (config-preposition) scan-type 3-830, 3-833
- (config-preposition) schedule 3-834
- (config-preposition) server 3-836

Service Context Configuration Mode Commands

- (config-scxt) appnav-controller-group 3-935
- (config-scxt) authentication 3-936
- (config-scxt) description 3-937
- (config-scxt) enable 3-938
- (config-scxt) service-node-group 3-940
- (config-scxt) service-policy 3-941

Service Node Configuration Mode Commands

- (config-sn) authentication 3-927
- (config-sn) description 3-928
- (config-sn) enable 3-929
- (config-sn) node-discovery 3-930
- (config-sn) shutdown 3-932

Service Node Group Configuration Mode Commands

- (config-sng) description 3-923
- (config-sng) service-node 3-924

SSL Accelerated Service Configuration Mode Commands

- (config-ssl-accelerated) cipher-list 3-865
- (config-ssl-accelerated) client-cert-verify 3-866
- (config-ssl-accelerated) client-version-rollback-check 3-867
- (config-ssl-accelerated) description 3-868
- (config-ssl-accelerated) inservice 3-869
- (config-ssl-accelerated) server-cert-key 3-870
- (config-ssl-accelerated) server-cert-verify 3-871
- (config-ssl-accelerated) server-domain 3-872
- (config-ssl-accelerated) server-ip 3-873
- (config-ssl-accelerated) server-name 3-874
- (config-ssl-accelerated) version 3-875

SSL Cipher List Configuration Mode Commands

- (config-cipher-list) cipher 3-878

SSL Global Service Configuration Mode Commands

- (config-ssl-global) cipher-list 3-883
- (config-ssl-global) machine-cert-key 3-884
- (config-ssl-global) version 3-885

SSL Host Peering Service Configuration Mode Commands

- (config-ssl-peering) cipher-list 3-889
- (config-ssl-peering) peer-cert-verify 3-890
SSL Management Service Configuration Mode Commands

(config-ssl-mgmt) cipher-list 3-895
(config-ssl-mgmt) peer-cert-verify 3-896
(config-ssl-mgmt) version 3-897

Standard ACL Configuration Mode Commands

(config-std-nacl) delete 3-794
(config-std-nacl) deny 3-795
(config-std-nacl) exit 3-797
(config-std-nacl) list 3-798
(config-std-nacl) move 3-799
(config-std-nacl) permit 3-800

Virtual Blade Configuration Mode Commands

(config-vb) autostart 3-839
(config-vb) boot 3-840
(config-vb) cpu-list 3-842
(config-vb) description 3-844, 3-845
(config-vb) disk 3-848
(config-vb) interface 3-850
(config-vb) memory 3-851
(config-vb) vnc 3-852

WCCP Configuration Mode Commands

(config-wccp-service) assignment-method 3-901
(config-wccp-service) egress-method 3-903
(config-wccp-service) enable 3-905
(config-wccp-service) exit 3-906
(config-wccp-service) failure-detection 3-907
(config-wccp-service) password 3-909

(config-wccp-service) redirect-method 3-910
(config-wccp-service) router-list-num 3-912
(config-wccp-service) weight 3-914