Cisco Wide Area Application Services Monitoring Guide

Software Version 5.0.1
November 14, 2012

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-26583-01
CONTENTS

Preface vii
Audience vii
Organization viii
Conventions viii
Related Documentation ix
Obtaining Documentation and Submitting a Service Request ix

CHAPTER 1

Monitoring WAAS Using WAAS Central Manager 1-1

Accessing the Central Manager 1-1
Using the WAAS System Dashboard 1-1
Viewing Alarms 1-2
Viewing Device Information 1-3
Devices Window 1-3
Device Dashboard Window 1-5
Viewing Monitoring Reports 1-6
Viewing Network Reports 1-7
Viewing Network Summary Information 1-7
Viewing Network Topology 1-8
Viewing Optimization Reports 1-9
Viewing TCP Statistics 1-9
Viewing Connection Statistics 1-9
Viewing Connection Trends 1-11
Viewing Acceleration Reports 1-11
Viewing HTTPS Acceleration Statistics 1-12
Viewing AppNav Reports 1-12
Viewing Platform Reports 1-13
Monitoring Logs and System Messages 1-14
Viewing the System Message Log 1-14
Viewing the Audit Trail Log 1-15
Viewing the Device Log 1-15
Viewing System Properties 1-16
Running CLI Commands from the WAAS Central Manager GUI 1-16
show cms info Command 1-17
show wccp status Command Output 1-18
CHAPTER 2
Monitoring Traffic Interception 2-1
Verifying WCCPv2 Interception 2-1
show ip wccp IOS Command Output 2-1
show wccp WASS Command Outputs 2-6
 show wccp services Command Output 2-6
 show wccp status Command Output 2-6
 show wccp routers Command Output 2-6
 show wccp statistics Command Output 2-7
Verifying Inline Interception 2-7
show interface inlineGroup Command Output 2-7
show interface InlinePort Command Output 2-7

CHAPTER 3
Monitoring WAAS Using SNMP 3-1
Information About Supported MIBs 3-1
Downloading Supported MIBs 3-3
Working with SNMP Traps 3-3
 Enabling SNMP Traps 3-3
 Viewing SNMP Trigger Lists 3-4
 Defining New Traps 3-5
Information About Common SNMP MIB OIDS 3-6
 cceAlarmCriticalRaised OID 3-6
 coldStart OID 3-7
 cceAlarmCriticalCleared OID 3-7
 cceFailedDiskName OID 3-8
 ciscoContentEngineDiskFailed OID 3-8

CHAPTER 4
Monitoring WAAS Using XML API 4-1
Information About the XML-Based API 4-1
Using the Traffic Acceleration Service 4-2
Using the Events and Status Service 4-2
Using soapUI to Access the WAAS API Interface 4-3

CHAPTER 5 Monitoring WAAS Using Cisco Network Analysis Module 5-1

Information About NAM 5-1
Information About NAM Monitoring Functions 5-2
Configuring NAM Monitoring of WAAS Devices 5-3
Configuring Basic WAAS Setup 5-3
Configuring WAAS Monitored Servers 5-4
Configuring WAAS Data Sources in NAM 5-5
NAM Deployment Scenarios 5-6
Monitoring and Analyzing Traffic Using the NAM 5-7
NAM Metrics 5-7
Top Talkers Dashboards 5-8
Traffic Summary 5-8
Top Talkers Details 5-10
Throughput Dashboards 5-10
Network 5-10
Top Applications 5-10
Application 5-11
Performance Analysis Dashboards 5-11
Application 5-11
Conversation Multisegments 5-12
Preface

This preface describes the audience, organization, and conventions of the Cisco Wide Area Application Services Monitoring Guide. It also provides information about how to obtain related information.

Audience

This publication is for experienced system and network administrators who have specific knowledge in the following areas:

• Networking and data communications
• Network security
• Router and switch configuration
Organization

This publication is organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Monitoring WAAS Using WAAS Central Manager”</td>
<td>Describes how to use WAAS Central Manager to monitor your WAAS devices.</td>
</tr>
<tr>
<td>Chapter 2, “Monitoring Traffic Interception”</td>
<td>Describes different methods to monitor traffic interception.</td>
</tr>
<tr>
<td>Chapter 3, “Monitoring WAAS Using SNMP”</td>
<td>Describes how to use SNMP to monitor your WAAS devices.</td>
</tr>
<tr>
<td>Chapter 4, “Monitoring WAAS Using XML API”</td>
<td>Describes how to use WAAS XML API to monitor your WAAS devices.</td>
</tr>
<tr>
<td>Chapter 5, “Monitoring WAAS Using Cisco Network Analysis Module”</td>
<td>Describes how to use Cisco Network Analysis to monitor your WAAS devices.</td>
</tr>
</tbody>
</table>

Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Convention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commands and keywords</td>
<td>boldface font</td>
</tr>
<tr>
<td>Variables for which you supply values</td>
<td>italic font</td>
</tr>
<tr>
<td>Displayed session and system information</td>
<td>screen font</td>
</tr>
<tr>
<td>Information you enter</td>
<td>boldface screen font</td>
</tr>
<tr>
<td>Variables you enter</td>
<td>italic screen font</td>
</tr>
<tr>
<td>Menu items and button names</td>
<td>boldface font</td>
</tr>
<tr>
<td>Selecting a menu item in paragraphs</td>
<td>Option > Network Preferences</td>
</tr>
<tr>
<td>Selecting a menu item in tables</td>
<td>Option > Network Preferences</td>
</tr>
</tbody>
</table>

Note

Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the publication.

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.
Related Documentation

For additional information on the Cisco WAAS software and hardware, see the following documentation:

- Release Note for Cisco Wide Area Application Services
- Cisco Wide Area Application Services Upgrade Guide
- Cisco Wide Area Application Services Command Reference
- Cisco Wide Area Application Services Quick Configuration Guide
- Cisco Wide Area Application Services Configuration Guide
- Cisco Wide Area Application Services API Reference
- Cisco WAAS Troubleshooting Guide for Release 4.1.3 and Later
- Cisco Wide Area Application Services Monitoring Guide (this manual)
- Cisco Wide Area Application Services vWAAS Installation and Configuration Guide
- Cisco WAAS Installation and Configuration Guide for Windows on a Virtual Blade
- Configuring WAAS Express
- Cisco WAAS on Service Modules for Cisco Access Routers
- Cisco SRE Service Module Configuration and Installation Guide
- Configuring Cisco WAAS Network Modules for Cisco Access Routers
- WAAS Enhanced Network Modules
- Regulatory Compliance and Safety Information for the Cisco Wide Area Virtualization Engines
- Cisco Wide Area Virtualization Engine 294 Hardware Installation Guide
- Cisco Wide Area Virtualization Engine 594 and 694 Hardware Installation Guide
- Cisco Wide Area Virtualization Engine 7541, 7571, and 8541 Hardware Installation Guide
- Cisco Wide Area Virtualization Engine 274 and 474 Hardware Installation Guide
- Cisco Wide Area Virtualization Engine 574 Hardware Installation Guide
- Regulatory Compliance and Safety Information for the Cisco Content Networking Product Series
- Cisco Wide Area Application Engine 7341, 7371, and 674 Hardware Installation Guide
- Installing the Cisco WAE Inline Network Adapter

Obtaining Documentation and Submitting a Service Request

For information about obtaining documentation, submitting a service request, and gathering additional information, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the What’s New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Monitoring WAAS Using WAAS Central Manager

This chapter describes how to use WAAS Central Manager to monitor network health, device health, and traffic interception of your WAAS system.

This chapter contains the following sections:
- Accessing the Central Manager, page 1-1
- Using the WAAS System Dashboard, page 1-1
- Viewing Alarms, page 1-2
- Viewing Device Information, page 1-3
- Viewing Monitoring Reports, page 1-6
- Monitoring Logs and System Messages, page 1-14
- Viewing System Properties, page 1-16
- Running CLI Commands from the WAAS Central Manager GUI, page 1-16

For more information about using WAAS Central Manager, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the Cisco Wide Area Application Services Configuration Guide.

Accessing the Central Manager

From a secure web browser, log in to WAAS Central Manager using either its hostname or IP address on port 8443 as follows:

https://CM-Host-Name_or_IP Address:8443

You must have proper username and password credentials to log in to WAAS Central Manager.

You initially open to a view of the WAAS System Dashboard, from which you can monitor your WAAS system. When you choose a device from the Devices menu, you move to the a view of the Device Dashboard, from which you can monitor specific device activity and performance.

Using the WAAS System Dashboard

The WAAS Central Manager GUI allows you to view general and detailed information about your WAAS network from the System Dashboard window, which is shown in Figure 1-1.
Viewing Alarms

The dashboard provides a snapshot of your WAAS network. You can use the menu at the top of the dashboard window to view more detailed information about your devices, and to configure, monitor, and administer your network.

The Alarms section of the dashboard, in the gray status bar area at the bottom right of the window, provides instant access to any alarms, as described in the “Viewing Alarms” section on page 1-2.

Viewing Alarms

The Alarms panel at the bottom right side of the Central Manager window provides a near real-time view of incoming alarms and refreshes every two minutes to reflect updates to the system alarm database. The alarms are classified as Critical, Major, or Minor depending on the impact the issue might have upon the WAAS environment. You can click Alarms to display the panel, which is shown in Figure 1-2.
The Alarms panel contains a filtering option that allows you to control which alarms are shown in the panel. You can check the check box next to an alarm name, and then click the Acknowledge taskbar icon to enter any comments you have about the alarm.

For a complete list of alarm conditions, see the Alarm Book located in the WAAS Software Download area on Cisco.com.

Viewing Device Information

The WAAS Central Manager GUI allows you to view basic and detailed information about a device from the following two windows:

- **Devices Window**—Displays a list of all the devices in your WAAS network with basic information about each device such as the device status and the current software version installed on the device.
- **Device Dashboard Window**—Displays detailed information about a specific device, and provides menu access to reports and other information about the device.

Devices Window

The Devices window displays a list of all the devices in your WAAS network with basic information about each device such as the device status and the current software version installed on the device. You can use either of these actions to display the Devices window:

- Click the **Devices** menu in the Central Manager window.
- Roll over the Devices menu in the Central Manager window and click **All Devices**.

An example of the Devices window is shown in Figure 1-3.
This window displays information about each device, including its management status, which is one of the following: Online, Offline, Pending, or Inactive. If a device’s status is offline, you can use the command-line interface to verify its status and its participation in traffic optimization. For more information, see the “Running CLI Commands from the WAAS Central Manager GUI” section on page 1-16.

The Devices window also displays the device status for each device in your network in an alarm light bar, which has one of the following values:

- Green—No alarms (the system is in excellent health)
- Yellow—Minor alarms
- Orange—Major alarms
- Red—Critical alarms

If the device status is anything other than green, you can roll over the light bar to see a popup message with further details about the status. If you click the popup message, the Troubleshooting Devices window is displayed (see Figure 1-4).

When you roll over an Alarm Information message, a set of troubleshooting links displays in the top part of the window to help you with tracking down the problem. Table 1-1 shows the links you may see.
You can view the Troubleshooting Devices window for all devices by choosing **Monitor > Troubleshoot > Alerts** from the global context.

Device Dashboard Window

The Device Dashboard window provides detailed information about a WAAS device such as the device model, IP address, interception method, and device-specific charts. (See Figure 1-5.)

To access the Device Dashboard window, choose **Devices > device-name**.

Note

When you are using the Device Dashboard, the menu choices that are available are different than when you are using the System Dashboard.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update Software</td>
<td>Displays the Software Update window for this device. This link appears only if the device software version is lower than the Central Manager.</td>
</tr>
<tr>
<td>Edit/Monitor Device</td>
<td>Displays the Device Dashboard window for configuration.</td>
</tr>
<tr>
<td>Telnet to Device</td>
<td>Initiates a Telnet session using the device IP address.</td>
</tr>
<tr>
<td>View Device Log</td>
<td>Displays system message logs filtered for this device.</td>
</tr>
<tr>
<td>Run Show Commands</td>
<td>Displays the device show command tool. For more information, see the “Running CLI Commands from the WAAS Central Manager GUI” section on page 1-16.</td>
</tr>
</tbody>
</table>
Viewing Monitoring Reports

The WAAS Central Manager GUI provides access to a number of reports you can use to monitor your network. Some reports display system-wide monitoring information, while others are only available from the Device Dashboard to display device-specific information.
This section contains the following topics:

- Viewing Network Reports, page 1-7
- Viewing Optimization Reports, page 1-9
- Viewing Acceleration Reports, page 1-11
- Viewing AppNav Reports, page 1-12
- Viewing Platform Reports, page 1-13

For more information about the available monitoring reports, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the Cisco Wide Area Application Services Configuration Guide.

Viewing Network Reports

You can monitor overall system information in the WAAS Central Manager GUI with several system-level reports. This section provides examples of these reports:

- Viewing Network Summary Information, page 1-7
- Viewing Network Topology, page 1-8

For more information, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the Cisco Wide Area Application Services Configuration Guide.

Viewing Network Summary Information

The Network Summary Report provides you with an overall view of network health and performance. To display this report, choose Monitor > Network > Summary Report in the System Dashboard. Figure 1-6 shows an example report.
The Network Summary Report includes summary information about traffic, capacity, compression, and network applications.

Viewing Network Topology

You can use the Network Topology Report (see Figure 1-7) at the system level to display a graphical representation of all connections between WAAS devices. At the device level, the topology report lists all peer devices connected to a specific WAE, so you can see the relationship between devices in your WAAS network.

To view this report, choose **Monitor > Network > Topology** in either the System Dashboard or the Device Dashboard.
The topology information is important for troubleshooting and for deployment-sizing exercises, especially for large deployments where any site-to-site communication is required.

Viewing Optimization Reports

You can view connection optimization statistics for your network connections in the Central Manager GUI. This section contains the following topics:

- **Viewing TCP Statistics**, page 1-9
- **Viewing Connection Statistics**, page 1-9
- **Viewing Connection Trends**, page 1-11

For more information about optimization statistics and reports, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the *Cisco Wide Area Application Services Configuration Guide*.

Viewing TCP Statistics

You can use the TCP Summary Report to view a summary of TCP optimization statistics for your WAAS system (from the System Dashboard) or for a specific device (from the Device Dashboard). Figure 1-5 on page 1-6 shows an example of the report.

To display this report, choose *Monitor > Optimization > TCP Summary Report* from either dashboard. The report contains the following optimization charts:

- Traffic Summary
- Effective WAN Capacity
- Traffic Volume and Reduction
- Compression Summary
- Traffic Summary over Time
- Compression Summary over Time
- Network Traffic Summary

Viewing Connection Statistics

You can use the Connection Statistics Report to view all of the TCP connections handled by a device, as seen in Figure 1-8. To display this report, choose *Monitor > Optimization > Connection Statistics* in the Device Dashboard.
The table lists all the active connections served by the selected WAE. The output provides key details about the flow by highlighting type of traffic, peer ID, percent compression, applied policies, and so forth.

To view additional connection details for a specific connection, click the magnifying glass icon to the left of the connection. The Connection Details Report appears, as shown in Figure 1-9.
The Connection Details Report provides connection addresses, port information, policy information, and traffic statistics. The report window also displays graphs that plot real-time traffic statistics; these statistics are refreshed every two seconds.

Viewing Connection Trends

You can use the Connection Trend Report to view all of the traffic processed by a device, as seen in Figure 1-10. To display this report, choose **Monitor > Optimization > Connection Trend Report** in the Device Dashboard.

The Connection Trend Report provides data on the optimized and pass-through connections of all the traffic processed on the device. You can use this data to monitor the connection trends of all the applications on the device.

Viewing Acceleration Reports

The WAAS Central Manager GUI provides a number of statistical reports to help you monitor the performance boosts provided by different application accelerators.

This provides an example of one acceleration report:

- **Viewing HTTPS Acceleration Statistics, page 1-12**

Similar reports are available for all of the available accelerators.

For more information, including a complete list of acceleration reports, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the *Cisco Wide Area Application Services Configuration Guide*.
Viewing HTTPS Acceleration Statistics

The HTTPS Acceleration Report, shown in Figure 1-11, displays details about HTTPS acceleration in your network (in the System Dashboard) or for a specific device (in the Device Dashboard). To view this report, choose Monitor > Acceleration > HTTPS Acceleration Report in either dashboard.

![HTTPS Acceleration Report](image)

Viewing AppNav Reports

You can use the AppNav Report to monitor the status of an AppNav controller by choosing Monitor > AppNav Report from the Device Dashboard.

The AppNav Report shows a number of statistics about AppNav performance, as seen in Figure 1-12.
You can view information about intercepted and pass-through traffic, top AppNav policies, and the top reasons for AppNav distributing or passing data through.

Viewing Platform Reports

The platform reports allow you to monitor resource and utilization for your network. This section shows an example of one platform report: the Resource Utilization Report.

You can view resource utilization for a device by choosing **Monitor > Platform > Resource Utilization** in the Device Dashboard (see Figure 1-13).
The resource utilization report shows the percentage of CPU usage and disk utilization for the device.

Monitoring Logs and System Messages

The WAAS Central Manager logs information and messages about events and actions so you can track what has happened in your WAAS network. This section contains the following topics:

- Viewing the System Message Log, page 1-14
- Viewing the Audit Trail Log, page 1-15
- Viewing the Device Log, page 1-15

For more information, see the “Monitoring and Troubleshooting Your WAAS Network” chapter in the *Cisco Wide Area Application Services Configuration Guide*.

Viewing the System Message Log

You can use the system message log feature of the WAAS Central Manager GUI to view information about events that have occurred in your WAAS network. To view this log, an example of which is shown in Figure 1-14, choose Admin > Logs > System Messages in the System Dashboard.
You can customize which messages are shown in the log and how many lines to display in the log window.

Viewing the Audit Trail Log

Any time an activity changes the WAAS network, the Central Manager audits that user activity, storing the time and action taken into a log. You can view this audit trail (see Figure 1-15) by choosing **Admin > Logs > Audit Trail Log** in the System Dashboard.

![Figure 1-15 Audit Trail Log Window](image-url)

Note that you can add filtering and select the number of rows to display in the log window.

Viewing the Device Log

You can view audit information for a specific device (see Figure 1-16) in your WAAS network by choosing **Admin > Logs > Device Logs** from the Device Dashboard window.

![Figure 1-16 Device Log Window](image-url)

You can add filtering and select the number of rows to display in the log window. You can also export the log to a comma-separated values (csv) file.
Viewing System Properties

You can view and modify the current system properties by choosing **Configure > System Properties** from the System Dashboard. The Config Properties window appears (see **Figure 1-17**).

Figure 1-17 System Properties Window

For more information, see the *Cisco Wide Area Application Services Configuration Guide* chapter on “Configuring Other System Settings.”

Running CLI Commands from the WAAS Central Manager GUI

To run command-line interface (CLI) commands from the WAAS Central Manager GUI, first select a device in the dashboard, and then choose **Monitor > CLI Commands > Show Commands**.

The CLI includes numerous **show** commands, which are described in detail in the *Cisco Wide Area Application Services Command Reference*.

This section provides examples of several of the **show** commands, to give you an idea of the kind of information you can display. To access the **show** commands, follow these steps:

Step 1 Select a device in the dashboard.

Step 2 Choose **Monitor > CLI Commands > Show Commands**. The WAAS Show Commands window displays.

Step 3 Choose which command you want to run from the Show Commands dropdown list, as shown in **Figure 1-18**.

Step 4 Add any required or optional options for the command.

Step 5 Click **Submit**.
The command output displays in a popup window.

Figure 1-18 WAAS Show Commands

![Image](image.png)

This section contains the following topics:

- show cms info Command, page 1-17
- show wccp status Command Output, page 1-18
- show wccp statistics Command Output, page 1-18
- show statistics connection Command Output, page 1-18
- show statistics connection optimized http Command Output, page 1-19
- show statistics dre Command Output, page 1-20
- show statistics tfo Command Output, page 1-20
- show interface GigabitEthernet Command Output, page 1-21
- show ip access-list Command Output, page 1-21

show cms info Command

The **show cms info** command output provides the WAE registration information with the last configuration synchronization time with WAAS Central Manager, which is useful when you suspect an application policy configuration issue.

```
WAE-231-03# show cms info
Device registration information :
Device Id                  = 3806
Device registered as       = WAAS Appnav Controller
Current WAAS Central Manager = 2.43.65.50
Registered with WAAS Central Manager = 2.43.65.50
Status                      = Online
Time of last config-sync    = Fri Jun 8 05:27:47 2012

CMS services information :
```

```
Service cms_ce is running

**show wccp status Command Output**

The *show wccp status* command output displays the current status of WCCP, including which services are enabled on the device.

```
WAE-231-03# show wccp status
WCCP Interception : Enabled
Services Enabled on this WAE:
 TCP Promiscuous 61
 TCP Promiscuous 62
```

The *show wccp* command can be used with different options. For more information about using this command, see the *Cisco Wide Area Application Services Command Reference*.

**show wccp statistics Command Output**

The *show wccp statistics* command output includes three packets received counters, one of which should be incrementing to indicate that the WAE is receiving redirected packets.

```
WAE-231-03# show wccp statistics
Transparent GRE packets received: 0 <<< Packet received counters
Transparent non-GRE packets received: 212389542 <<<
Transparent non-GRE non-WCCP packets received: 0 <<<
Total packets accepted: 158369766 <<<
Invalid packets received: 0
Packets received with invalid service: 0
Packets received on a disabled service: 0
Packets received too small: 0
Packets dropped due to zero TTL: 0
Packets dropped due to bad buckets: 42
Packets dropped due to no redirect address: 0
Packets dropped due to loopback redirect: 0
Pass-through pkts on non-owned bucket: 0
Connections bypassed due to load: 0 <<< Bypass counter
Packets sent back to router: 3
GRE packets sent to router (not bypass): 0
Packets sent to another WAE: 0 ...
```

If the device is under heavy load and no new flows can be optimized, the Connections bypassed due to load counter increments. A nonzero value for this counter indicates that the device is under overload or has previously gone into overload and should be further investigated.

**show statistics connection Command Output**

The *show statistics connection* command output displays all connection statistics for a WAAS device.

```
sjc22-00a-WAE-674# show statistics connection
Current Active Optimized Flows: 7
 Current Active Optimized TCP Plus Flows: 2
 Current Active Optimized TCP Only Flows: 12
```
Current Active Optimized TCP Preposition Flows: 0
Current Active Auto-Discovery Flows: 16
Current Reserved Flows: 40
Current Active Pass-Through Flows: 25
Historical Flows: 597

D:DRE,L:LLZ,T:TCP Optimization RR:Total Reduction Ratio
X: SMB Signed Connection

<table>
<thead>
<tr>
<th>ConnID</th>
<th>Source IP:Port</th>
<th>Dest IP:Port</th>
<th>PeerID</th>
<th>Accel RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>445095</td>
<td>10.34.209.79:54455</td>
<td>199.47.216.147:80</td>
<td>58:8d:09:dl:bc:cl</td>
<td>THDL 87.1%</td>
</tr>
<tr>
<td>447076</td>
<td>10.34.209.123:50028</td>
<td>171.70.151.1344:8445</td>
<td>58:8d:09:dl:bc:cl</td>
<td>TG 00.0%</td>
</tr>
<tr>
<td>447268</td>
<td>10.34.209.106:56632</td>
<td>171.71.160.68:445</td>
<td>58:8d:09:dl:bc:cl</td>
<td>TCDL 07.9%</td>
</tr>
<tr>
<td>447293</td>
<td>10.34.209.123:63628</td>
<td>172.25.210.42:22</td>
<td>58:8d:09:dl:bc:cl</td>
<td>T 00.0%</td>
</tr>
<tr>
<td>447296</td>
<td>10.34.209.106:62564</td>
<td>128.107.191.124:12834</td>
<td>58:8d:09:dl:bc:cl</td>
<td>TG 00.0%</td>
</tr>
<tr>
<td>447349</td>
<td>10.34.215.74:31787</td>
<td>10.32.176.206:7878</td>
<td>00:21:5e:76:1d:64</td>
<td>TL 04.8%</td>
</tr>
<tr>
<td>447350</td>
<td>10.34.209.106:64183</td>
<td>128.107.191.124:12834</td>
<td>58:8d:09:dl:bc:cl</td>
<td>TG 00.0%</td>
</tr>
</tbody>
</table>

The `show statistics` command can be used with different options. For more information about using this command, see the Cisco Wide Area Application Services Command Reference.

**show statistics connection optimized http Command Output**

The `show statistics connection optimized http` command output displays the connection optimized by the http application accelerator.

```
sjc22-00a-WAE-674# show statistics connection optimized http
```

Current Active Optimized Flows: 14
Current Active Optimized TCP Plus Flows: 2
Current Active Optimized TCP Only Flows: 11
Current Active Optimized TCP Preposition Flows: 0
Current Active Auto-Discovery Flows: 16
Current Reserved Flows: 40
Current Active Pass-Through Flows: 27
Historical Flows: 593

D:DRE,L:LLZ,T:TCP Optimization RR:Total Reduction Ratio
X: SMB Signed Connection

<table>
<thead>
<tr>
<th>ConnID</th>
<th>Source IP:Port</th>
<th>Dest IP:Port</th>
<th>PeerID</th>
<th>Accel RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>445095</td>
<td>10.34.209.79:54455</td>
<td>199.47.216.147:80</td>
<td>58:8d:09:dl:bc:cl</td>
<td>THDL 87.2%</td>
</tr>
</tbody>
</table>

The `show statistics connection optimized` command can be used with different options. For more information about using this command, see the Cisco Wide Area Application Services Command Reference.
**Chapter 1  Monitoring WAAS Using WAAS Central Manager**

---

### show statistics dre Command Output

The **show statistics dre** command output displays overall Data Redundancy Eliminate (DRE) statistics. The command output includes compression ratios for both encode and decode and details about DRE age, cache size available, and used percentage.

```
sjc22-00a-WAE-674# show statistics dre
```

**Cache:**
- Status: Usable, Oldest Data (age): 739d
- Total usable disk size: 311289 MB, Used: 35.12%

**Connections:**
- Total (cumulative): 428069  Active: 18

**Encode:**
- Overall: msg: 8879839, in: 36648 MB, out: 19474 MB, ratio: 46.86%
- DRE Bypass: msg: 6273500, in: 278 MB
- average latency: 0.335 ms, average msg size: 4327 B

**Decode:**
- Overall: msg: 2677837, in: 615 MB, out: 2931 MB, ratio: 79.00%
- DRE: msg: 1511198, in: 648 MB, out: 2296 MB, ratio: 71.75%
- DRE Bypass: msg: 2346105, in: 635 MB
- LZ: msg: 1254878, in: 401 MB, out: 1089 MB, ratio: 63.15%
- average latency: 0.059 ms, average msg size: 1148 B

The **show statistics dre** command can be used with the **detail option** to show more detailed information.

### show statistics tfo Command Output

The **show statistics tfo** command output displays Traffic Flow Optimization (TFO) statistics for a WAE.

```
sjc22-00a-WAE-674# show statistics tfo
```

**Total number of connections:** 428073
**No. of active connections:** 21
**No. of pending (to be accepted) connections:** 0
**No. of bypass connections:** 139585
**No. of normal closed conns:** 301317
**No. of reset connections:** 126735
**Socket write failure:** 1060
**Socket read failure:** 0
**WAN socket close while waiting to write:** 285
**AO socket close while waiting to write:** 205
**WAN socket error close while waiting to read:** 0
**AO socket error close while waiting to read:** 6435
**DRE decode failure:** 0
**DRE encode failure:** 0
**Connection init failure:** 0
**WAN socket unexpected close while waiting to read:** 57305
**Exceeded maximum number of supported connections:** 0
**Buffer allocation or manipulation failed:** 0
**Peer received reset from end host:** 59283
**DRE connection state out of sync:** 0
**Memory allocation failed for buffer heads:** 0
The `show statistics tfo` command can be used with different options. For more information about using this command, see the *Cisco Wide Area Application Services Command Reference*.

**show interface GigabitEthernet Command Output**

The `show interface GigabitEthernet` command displays GigabitEthernet interface device information. A speed and duplex mismatch is one of the most common reasons for poor performance.

```
WAE-231-03# show interface GigabitEthernet 1/0
Description this is my interception interface
lsp: Link State Propagation
flow sync: AppNav Controller is in the process of flow sync
Ethernet Address : 50:3d:e5:9d:ea:79
Internet Address : --
Netmask : --
Admin State : Down
Operation State : Down
Maximum Transfer Unit Size : 1500
Input Errors : 0
Input Packets Dropped : 0
Packets Received : 0
Output Errors : 0
Output Packets Dropped : 0
Load Interval : 30
Input Throughput : 0 bits/sec, 0 packets/sec
Output Throughput : 0 bits/sec, 0 packets/sec
Packets Sent : 0
Auto-negotiation : On
Full Duplex : Yes
Speed : 1000 Mbps

Interception Statistics
Input Packets Forwarded/Bridged : 0
Input Packets Redirected : 0
Input Packets Punted : 0
Input Packets Dropped : 0
Output Packets Forwarded/Bridged : 0
Output Packets Injected : 0
Output Packets Dropped : 0
```

The `show interface` command can be used with different options. For more information about using this command, see the *Cisco Wide Area Application Services Command Reference*.

**show ip access-list Command Output**

The `show ip access-list` command displays the access lists that are defined and applied to specific interfaces or appliances on a WAAS device.

```
WAE-231-03# show ip access-list
Space available:
 49 access lists
 499 access list conditions
 32619 TCAM Entries

Standard IP access list myacl
 1 permit 192.168.1.0 0.0.0.255
```
(implicit deny any: 0 matches, SN=0, ANC=0)
total invocations: 0 (SN=0, ANC=0)
[Legend: SN = Service Node ACL Hits, ANC = AppNav Controller ACL Hits]

Interface access list references:
None Configured

Application access list references:
No applications registered.
Monitoring Traffic Interception

This chapter describes how to use traffic interception to monitor your WAAS devices and contains the following sections:

- Verifying WCCPv2 Interception, page 2-1
- Verifying Inline Interception, page 2-7

Verifying WCCPv2 Interception

This section describes several Cisco IOS and WAAS WCCP commands that are available to verify if WCCP interception is working correctly.

This section contains the following topics:

- show ip wccp IOS Command Output, page 2-1
- show wccp WAAS Command Outputs, page 2-6

show ip wccp IOS Command Output

The `show ip wccp` IOS command output provides an WCCP inventory that includes the number of routers, WAEs or service group, packets redirected, and forwarding and return method. This command is most commonly used to verify if WCCP interception is working correctly.

The command syntax is as follows:

```
show ip wccp [service_group#] [detail]
```

The following examples show how to use the command both with and without the optional argument and keyword.

Figure 2-1 highlights the area of the `show ip wccp` IOS command output that show that there is one intercepting router and one WAE registered to Service Group 61.
Figure 2-1 Command Output Sample 1: show ip wccp

<table>
<thead>
<tr>
<th>Router# show ip wccp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global WCCP information:</td>
</tr>
<tr>
<td>Router information:</td>
</tr>
<tr>
<td>Router Identifier:</td>
</tr>
<tr>
<td>Protocol Version:</td>
</tr>
<tr>
<td>Service Identifier:</td>
</tr>
<tr>
<td>Number of Service Group Clients:</td>
</tr>
<tr>
<td>Number of Service Group Routers:</td>
</tr>
<tr>
<td>Total Packets s/w Redirected:</td>
</tr>
<tr>
<td>Process:</td>
</tr>
<tr>
<td>CEF:</td>
</tr>
<tr>
<td>Service mode:</td>
</tr>
<tr>
<td>Service access-list:</td>
</tr>
<tr>
<td>Total Packets Dropped Closed:</td>
</tr>
<tr>
<td>Redirect access-list:</td>
</tr>
<tr>
<td>Total Packets Denied Redirect:</td>
</tr>
<tr>
<td>Total Packets Unassigned:</td>
</tr>
<tr>
<td>Group access-list:</td>
</tr>
<tr>
<td>Total Messages Denied to Group:</td>
</tr>
<tr>
<td>Total Authentication failures:</td>
</tr>
<tr>
<td>Total Bypassed Packets Received:</td>
</tr>
</tbody>
</table>

Figure 2-2 highlights the area of the `show ip wccp` IOS command output that shows that the Total Packets s/w Redirect counter is incrementing on software-based platforms (for example, Cisco ISR).
Figure 2-2  Command Output Sample 2: show ip wccp

Figure 2-2 highlights the area of the `show ip wccp` IOS command output that shows that the Total Packets s/w Redirect counter is not incrementing on hardware-based platforms (for example, Cisco Catalyst 6500 Series Switches).

Figure 2-3  highlights the area of the `show ip wccp` IOS command output that shows that the Total Packets s/w Redirect counter is not incrementing on hardware-based platforms (for example, Cisco Catalyst 6500 Series Switches).
Figure 2-3  Command Output Sample 3: show ip wccp

The `show ip wccp` command output provides information about the state, redirection and return methods used, connect time, and so forth. Figure 2-4 shows an example output from a software-based platform where the default redirection and assignment methods are used.
Chapter 2      Monitoring Traffic Interception

Verifying WCCPv2 Interception

**Figure 2-4**  Command Output Sample 1: show ip wccp service_group#detail

```
Router# show ip wccp 61 detail
WCCP Client information:
 WCCP Client ID: 10.88.81.242
 Protocol Version: 2.0
 State: Usable
 Redirection: GRE
 Packet Return: GRE
 Assignment: HASH
 Initial Hash Info: 189a595336c0a7f5a9bc0e5f8d3b588f
 Assigned Hash Info: 189a595336c0a7f5a9bc0e5f8d3b588f
 Hash Allotment: 256 (100.00%)
 Packets s/w Redirected: 68755
 Connect Time: 3w6d
 Bypassed Packets:
 Process: 2
 CEF: 68753
 Errors: 0
```

**Figure 2-5**  shows an example output from a hardware-based platform that is configured for Layer 2 redirect and mask assignment. The CLI output is slightly different, reflecting these configured parameters.

**Figure 2-5**  Command Output Sample 2: show ip wccp service_group#detail

```
Cat6k# sh ip wccp 61 det
WCCP Client information:
 WCCP Client ID: 10.88.80.135
 Protocol Version: 2.0
 State: Usable
 Redirection: L2
 Packet Return: GRE
 Packets Redirected: 0
 Connect Time: 1d18h
 Assignment: MASK

<table>
<thead>
<tr>
<th>Mask</th>
<th>SrcAddr</th>
<th>DstAddr</th>
<th>SrcPort</th>
<th>DstPort</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0x00000040</td>
<td>0x00000000</td>
<td>0x0000</td>
<td>0x0000</td>
</tr>
<tr>
<td>0001</td>
<td>0x00000000</td>
<td>0x00000000</td>
<td>0x0000</td>
<td>0x0000</td>
</tr>
<tr>
<td>0002</td>
<td>0x00000000</td>
<td>0x00000000</td>
<td>0x0000</td>
<td>0x0000</td>
</tr>
<tr>
<td>0003</td>
<td>0x00000000</td>
<td>0x00000000</td>
<td>0x0000</td>
<td>0x0000</td>
</tr>
</tbody>
</table>

```

Verifying WAE State in Service Group

Current Time in the Service Group

% of Hash Buckets Assigned

Service group mask
show wccp WAAS Command Outputs

You can use the show wccp WAAS commands that are available from the WAE CLI to verify that WCCP is configured and operating properly.

This section contains the following topics:

- show wccp services Command Output, page 2-6
- show wccp status Command Output, page 2-6
- show wccp routers Command Output, page 2-6
- show wccp statistics Command Output, page 2-7

show wccp services Command Output

You can use the show wccp services command to display which WCCP services are configured.

WAE# show wccp services

Services Enabled on this WAE:
  TCP Promiscuous 61
  TCP Promiscuous 62

show wccp status Command Output

The show wccp status command displays the enabled state of WCCP and the configured service IDs.

WAE# show wccp status

WCCP Interception :
  Configured State :  Enabled

Services Enabled on this WAE:
  TCP Promiscuous 61
  TCP Promiscuous 62

show wccp routers Command Output

The show wccp routers command displays information about the routers seen and not seen by the WAE.

WAE# show wccp routers

Router Information for Service Id: 61
  Routers Seeing this Wide Area Engine(1)
    Router Id   Sent To
    10.43.228.165  10.43.228.65

Router Information for Service Id: 62
  Routers Seeing this Wide Area Engine(1)
    Router Id   Sent To
    10.43.228.165  10.43.228.65

- Redirect Method Mismatch-

Routers Notified of from other WAE’s
-None-
show wccp statistics Command Output

The `show wccp statistics` command displays WCCP generic routing encapsulation packet-related information. You know that WCCP redirection is working if either of the first two lines of output is incrementing:

```plaintext
WAE# show wccp statistics
Transparent GRE packets received: 0
Transparent non-GRE packets received: 212389542
Transparent non-GRE non-WCCP packets received: 0
Total packets accepted: 158369766
Invalid packets received: 0
Packets received with invalid service: 0
Packets received on a disabled service: 0
Packets received too small: 0
...```

Verifying Inline Interception

This section describes how to use the `show interface` command to verify inline interception configuration and proper operation.

This section contains the following topics:

- `show interface inlineGroup Command Output`, page 2-7
- `show interface InlinePort Command Output`, page 2-7

show interface inlineGroup Command Output

You can use the `show interface InlineGroup` command to display the inline group information and the slot and inline group number for the selected interface.

```plaintext
WAE612# show interface InlineGroup 1/0
Interface is in intercept operating mode.
Standard NIC mode is off.
Disable bypass mode is off.
VLAN IDs configured for inline interception: All
Watchdog timer is enabled.
Timer frequency: 1600 ms.
Autoreset frequency 500 ms.
The watchdog timer will expire in 1221 ms.
```

The inline interface operates in two modes:

- Intercept operating mode—Packets are passed to WAAS for potential optimization.
- Bypass operating mode—Mechanical bypass between ports in InlineGroup during a failure or administrative shutdown (not applicable on Cisco AppNav Controller Interface Modules).

show interface InlinePort Command Output

You can use the `show interface InlinePort` command to display the inline port information for the selected interface.

```plaintext
WAE# show interface InlinePort 1/0 lan
```
For more information about troubleshooting WCCP, see the *WAAS Troubleshooting Guide* available on Cisco DocWiki.
Monitoring WAAS Using SNMP

This chapter describes how to use the Simple Network Management Protocol (SNMP) to monitor your WAAS devices. SNMP is an interoperable standards-based protocol that allows for external monitoring of WAAS devices through an SNMP agent.

For more information about using and configuring SNMP, see the “Configuring SNMP Monitoring” chapter in the Cisco Wide Area Application Services Configuration Guide.

This chapter contains the following sections:
- Information About Supported MIBs, page 3-1
- Downloading Supported MIBs, page 3-3
- Working with SNMP Traps, page 3-3
- Information About Common SNMP MIB OIDS, page 3-6

Information About Supported MIBs

This section describes the Cisco-specific MIBs that are supported by WAAS as shown in Table 3-1.

<table>
<thead>
<tr>
<th>MIB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-APPNAV-MIB</td>
<td>Provides information about AppNav objects, including WAAS nodes, WAAS node groups, AppNav controllers, and AppNav controller groups.</td>
</tr>
<tr>
<td>CISCO-CONTENT-ENGINE-MIB</td>
<td>The MIB module for the Cisco WAAS device from Cisco Systems. The following objects from this MIB are supported:</td>
</tr>
<tr>
<td></td>
<td>• cceAlarmCriticalCount</td>
</tr>
<tr>
<td></td>
<td>• cceAlarmMajorCount</td>
</tr>
<tr>
<td></td>
<td>• cceAlarmMinorCount</td>
</tr>
<tr>
<td></td>
<td>• cceAlarmHistTableSize</td>
</tr>
<tr>
<td>CISCO-ENTITY-ASSET-MIB</td>
<td>Monitors the asset information of items in the ENTITY-MIB (RFC 2037) entPhysicalTable. This MIB lists the orderable part number, serial number, hardware revision, manufacturing assembly number and revision, firmware ID and revision (if any) and software ID and revision (if any) of relevant entities listed in ENTITY-MIB entPhysicalTable.</td>
</tr>
</tbody>
</table>
Table 3-1 MIBs Supported by WAAS (continued)

<table>
<thead>
<tr>
<th>MIB</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-SMI</td>
<td>The MIB module for Cisco Enterprise Structure of Management Information. There is nothing to query in this MIB; it describes the structure of Cisco MIBs.</td>
</tr>
<tr>
<td>CISCO-WAN-OPTIMIZATION-MIB</td>
<td>Provides the following information:</td>
</tr>
<tr>
<td></td>
<td>• application optimizer status and statistics</td>
</tr>
<tr>
<td></td>
<td>• TFO statistics</td>
</tr>
<tr>
<td></td>
<td>• application, policy map, and class map statistics</td>
</tr>
<tr>
<td>ENTITY-MIB</td>
<td>Represents multiple logical entities supported by a single SNMP agent.</td>
</tr>
<tr>
<td></td>
<td>The entConfigChange notification is supported. This MIB is documented in RFC 2737.</td>
</tr>
<tr>
<td>EVENT-MIB</td>
<td>Defines event triggers and actions for network management purposes. The MIB is published as RFC 2981.</td>
</tr>
<tr>
<td>HOST-RESOURCES-MIB</td>
<td>Manages host systems. The term “host” implies any computer that communicates with other similar computers connected to the Internet. The HOST-RESOURCES-MIB does not necessarily apply to devices whose primary function is communications services (terminal servers, routers, bridges, monitoring equipment). This MIB provides attributes that are common to all Internet hosts, for example, personal computers and systems that run variants of UNIX.</td>
</tr>
<tr>
<td>IF-MIB</td>
<td>Supports querying for interface-related statistics including 64-bit interface counters. These counters include received and sent octets, unicast, multicast, and broadcast packets on the device interfaces. All the objects from ifXEntry are supported except for ifCounterDiscontinuityTime. This MIB is documented in RFC 2233.</td>
</tr>
<tr>
<td>MIB-II</td>
<td>The Internet Standard MIB that is documented in RFC 1213 and for use with network management protocols in TCP/IP-based Internets. This MIB is found in the RFC1213-MIB file in the v1 directory on the download site (other MIBs are in the v2 directory).</td>
</tr>
<tr>
<td>SNMP-COMMUNITY-MIB</td>
<td>Documented in RFC 2576.</td>
</tr>
<tr>
<td>SNMP-FRAMEWORK-MIB</td>
<td>Documented in RFC 2571.</td>
</tr>
<tr>
<td>SNMP-NOTIFICATION-MIB</td>
<td>Documented in RFC 3413.</td>
</tr>
<tr>
<td>SNMP-TARGET-MIB</td>
<td>Documented in RFC 3413.</td>
</tr>
<tr>
<td>SNMP-USM-MIB</td>
<td>Documented in RFC 2574.</td>
</tr>
<tr>
<td>SNMPv2-MIB</td>
<td>Documented in RFC 1907. This MIB supports the following notifications:</td>
</tr>
<tr>
<td></td>
<td>• coldStart</td>
</tr>
<tr>
<td></td>
<td>• linkUp</td>
</tr>
<tr>
<td></td>
<td>• linkDown</td>
</tr>
<tr>
<td></td>
<td>• authenticationFailure</td>
</tr>
<tr>
<td>SNMP-VACM-MIB</td>
<td>Documented in RFC 2575.</td>
</tr>
</tbody>
</table>
Downloading Supported MIBs

All supported MIB files can be downloaded from the following Cisco FTP locations:

The MIB objects that are defined in each MIB are described in the MIB files and are self-explanatory.

Working with SNMP Traps

This section contains the following topics:
- Enabling SNMP Traps, page 3-3
- Viewing SNMP Trigger Lists, page 3-4
- Defining New Traps, page 3-5

Enabling SNMP Traps

To send SNMP traps, follow these steps:

Step 1 From the WAAS Central Manager menu, choose Devices > device-name (or Device Groups > device-group-name).

Step 2 Choose Configure > Monitoring > SNMP > General Settings. The SNMP General Settings window appears. See Figure 3-1. The settings window display which traps are enabled for the device or group.

Step 3 Configure the trap settings as desired. For more information, see the “Configuring SNMP Monitoring” chapter in the Cisco Wide Area Application Services Configuration Guide.
Viewing SNMP Trigger Lists

To view the list of SNMP trap triggers defined for a device or group, follow these steps:

Step 1
From the WAAS Central Manager menu, choose Devices > *device-name* (or Device Groups > *device-group-name*).

Step 2
Choose Configure > Monitoring > SNMP > Trigger. The SNMP Trigger List window appears. See Figure 3-2.
Figure 3-2 SNMP Trigger List Window

For more information about SNMP Triggers, see the “Configuring SNMP Monitoring” chapter in the Cisco Wide Area Application Services Configuration Guide.

Defining New Traps

To add a new SNMP trap on a WAAS device or device group, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Devices > device-name** (or **Device Groups > device-group-name**).

Step 2 Choose **Configure > Monitoring > SNMP > Trigger**. The SNMP Trigger List window appears. See Figure 3-2.

Step 3 In the Trigger list window, click **Create**. The SNMP Trigger window appears. See Figure 3-3.
Information About Common SNMP MIB OIDS

This section describes some of the common SNMP trap Object Identifiers (OIDs) that you might see:

- **cceAlarmCriticalRaised OID**, page 3-6
- **coldStart OID**, page 3-7
- **cceAlarmCriticalCleared OID**, page 3-7
- **cceFailedDiskName OID**, page 3-8
- **ciscoContentEngineDiskFailed OID**, page 3-8

cceAlarmCriticalRaised OID

The cceAlarmCriticalRaisedOID trap signifies that a module raised a Critical alarm.
coldStart OID

The coldStart trap signifies that the SNMP entity, supporting a notification originator application, is reinitializing itself and that its configuration may have been altered.

<table>
<thead>
<tr>
<th>Object</th>
<th>cceAlarmCriticalRaised</th>
</tr>
</thead>
<tbody>
<tr>
<td>OID</td>
<td>1.3.6.1.4.1.9.9.178.2.0.7</td>
</tr>
<tr>
<td>Status</td>
<td>current</td>
</tr>
<tr>
<td>MIB</td>
<td>CISCO-CONTENT-ENGINE-MIB; View Supporting Images</td>
</tr>
</tbody>
</table>

cceAlarmCriticalCleared OID

The cceAlarmCriticalRaisedOID trap signifies that a module cleared a Critical alarm.

<table>
<thead>
<tr>
<th>Object</th>
<th>cceAlarmCriticalCleared</th>
</tr>
</thead>
<tbody>
<tr>
<td>OID</td>
<td>1.3.6.1.4.1.9.9.178.2.0.8</td>
</tr>
<tr>
<td>Status</td>
<td>current</td>
</tr>
</tbody>
</table>
Information About Common SNMP MIB OIDS

MIB: CISCO-CONTENT-ENGINE-MIB; View Supporting Images

Trap Components
- cceAlarmHistId
- cceAlarmHistModuleId
- cceAlarmHistCategory
- cceAlarmHistInfo
- cceAlarmHistTimeStamp

ccFailedDiskName OID

The cceFailedDiskNameOID trap signifies that a disk failure event occurred and includes the name of that disk.

- **Object:** cceFailedDiskName
- **OID:** 1.3.6.1.4.1.9.9.178.1.5.1
- **Type:** OCTET STRING
- **Permission:** accessible-for-notify
- **Status:** current
- **MIB:** CISCO-CONTENT-ENGINE-MIB; View Supporting Images

ciscoContentEngineDiskFailed OID

The ciscoContentEngineDiskFailed trap signifies that a Content Engine data drive failed. This object supersedes ciscoContentEngineDataDiskFailed. Additional information about the error is logged to syslog.

- **Object:** ciscoContentEngineDiskFailed
- **OID:** 1.3.6.1.4.1.9.9.178.2.0.6
- **Status:** current
- **MIB:** CISCO-CONTENT-ENGINE-MIB; View Supporting Images
- **Trap Components:** cceFailedDiskName
Monitoring WAAS Using XML API

This chapter describes how to use the WAAS API to monitor your WAAS devices and how to use soapUI with the WAAS API interface.

This chapter contains the following sections:

- Information About the XML-Based API, page 4-1
- Using the Traffic Acceleration Service, page 4-2
- Using the Events and Status Service, page 4-2
- Using soapUI to Access the WAAS API Interface, page 4-3

Information About the XML-Based API

The WAAS Central Manager Web Service provides an XML-based API that supports monitoring device status and information, alarms, and statistics. It does not support device configuration.

For more information about the XML API, see the Cisco Wide Area Application Services API Reference.

The following services are offered:

- AppNav Statistics Service (AppNavStats)
- CIFS Statistics Service (CIFSSStats)
- Device Configuration Service (DeviceConf)
- Events Service (AlarmStatus)
- HTTP and HTTPS Statistics Service (HttpStats and HttpsStats)
- ICA Statistics Service (ICASStats)
- MAPI Statistics Service (MapiStats)
- NFS Statistics Service (NfsStats)
- SMB Statistics Service (SmbStats)
- SSL Statistics Service (SSLStats)
- Status Service (DeviceStatus)
- Traffic Acceleration Service (TrafficStats)
- Video Streaming Statistics Service (VideoStats)
To obtain the WSDL file defined for a particular service in the WAAS Central Manager monitoring API implementation, you submit a URL to the service with a ?wsdl suffix as follows:

https://<host/ip>:8443/ws/service_name?wsdl

To query a service for information, you send an XML-formatted SOAP request to the service at the following URL:

https://<host/ip>:8443/ws/service_name

Using the Traffic Acceleration Service

You can retrieve traffic and application statistics for individual WAEs, device groups, and for the WAAS network using the Traffic Acceleration service (TrafficStats Web Service), which performs actions that include the following:

- `getAllClassMap`—Retrieves all of the monitored class map names.
- `getMonitoredApplications`—Retrieves a list of all types of applications known in the scope of the system.
- `retrieveAppTrafficStats`—Retrieves overall traffic statistics collected on either a WAAS device, WAEs within a device group, or all system-wide WAEs. The traffic is further filtered based on the specified application names.
- `retrieveAverageThroughPutClassStats`—Retrieves average throughput counts for a set of class map names.
- `retrieveAverageThroughPutStats`—Retrieves the average throughput values collected on a device.
- `retrieveClassTrafficStats`—Retrieves traffic byte counts for the specified class map names.
- `retrieveConnection`—Retrieves overall connection details for the current time.
- `retrieveConnectionTrendClassStats`—Retrieves overall connection trend details of applications collected on a device.
- `retrieveConnectionTrendStats`—Retrieves connection counts for the specified set of class map names.
- `retrieveCPUUtilization`—Retrieves the CPU utilization information for a specified WAE.
- `retrievePeakThroughPutClassStats`—Retrieves peak throughput values for the specified set of class map names.
- `retrievePeakThroughPutStats`—Retrieves the peak throughput values collected on a device.
- `retrieveTrafficStats`—Retrieves the overall statistics collected on either a WAAS device, WAEs within a device group, or all system-wide WAEs.

Using the Events and Status Service

You can retrieve alarm information, device status, and disk status using the Events and Status service (AlarmStatus Web Service), which performs one or more of the following actions:

- `getDeviceStatus`—Retrieves the device status.
- `getDiskEncryptStatus`—Retrieves the disk encryption status.
- `getDiskInformation`—Retrieves information about the disk.
• getDiskStatus—Retrieves the physical disk status.
• getMonitoredAOsByWaeIDs—Retrieves the operational status of application accelerators for a list of device IDs.
• getMonitoredAOs—Retrieves the operational status of application accelerators for either a WAAS device, WAEs within a device group, or all system-wide WAEs.
• retrieveAlarmByName—Retrieves a list of all alarms filtered by the name of the WAE or WAE group, the object type, or the alarm name.
• retrieveAlarmBySeverity—Retrieves a list of all active alarms for the specified WAE or WAE group, further filtered on alarm severity.
• retrieveAllAlarms—Retrieves all alarms.

Using soapUI to Access the WAAS API Interface

You can access the WAAS API interface using third-party tools such as soapUI, WebInject, ApacheCXF, and so forth. The soapUI website (http://www.soapui.org/) offers a free software version that you can download and install on a client PC. The procedure in this section describes how to create a project using soapUI after you install and start the software.

Procedure

Step 1 Right-click Projects and click New soapUI Project to create a project (for example, WAAS-Project). See Figure 4-1.

Figure 4-1 soapUI: Create New Project

![soapUI: Create New Project](image)

The New soapUI Project dialog box appears.

Step 2 From the New soapUI Project dialog box (see Figure 4-2), do the following:

a. Enter the WSDL URL.

b. Check the Create Requests check box.

c. Click Ok. A progress window appears while the data is gathered, which may take several seconds to load.
Step 3 Specify security credentials by doing the following:

a. Right-click the new project (such as WAAS-Project) and click **Show Project View**. See **Figure 4-3**.

b. From the WAAS-Project pane, add a new WSS by clicking the **Security Configurations** tab and click the plus sign (+) below the Outgoing WS-Security Configurations tab. See **Figure 4-4**.

Figure 4-2 soapUI: New Project Dialog Box

![New soapUI Project Dialog Box](image)

After the WSDL loads, the available navigation options appear.
The New Outgoing WSS Configuration dialog box appears.

c. From the New Outgoing WSS Configuration dialog box, enter a name for the new WSS (such as Admin) and click OK. See Figure 4-5.

The dialog box closes and the Outgoing WS-Security Configuration tab displays the new WSS.

d. From the Outgoing WS-Security Configuration tab, enter the device username and password. See Figure 4-6.

e. Click the plus sign (+) in the lower pane to add a new WSS Entry. See Figure 4-7.
Figure 4-7 soapUI: Add WSS Entry

The Add WSS Entry dialog box appears.

f. From the Select Type of Entry to Add drop-down list, choose **Username**. See **Figure 4-8**.

Figure 4-8 soapUI: Add WSS Entry

The dialog box closes and the lower pane of the Outgoing WS-Security Configuration tab displays the Username tab with your username and password already populated.

g. From the Username tab’s Password Type drop-down list, choose **PasswordText**. See **Figure 4-9**.
Step 4 From the Projects tree on the left, click + to expand one of the listed items, double-click Request x to display the drop-down list, and choose Show Request Editor from the menu. See Figure 4-10.

The Request Editor pane appears.

Step 5 From the Request Editor pane, click Aut at the bottom and choose Admin from the Outgoing WSS drop-down list. See Figure 4-11.
Step 6 Verify the WSDL URL and click **Submit** to query the device. After the request is complete, the data in XML format appears. See Figure 4-12.

Figure 4-11 **soapUI: Request Editor**

Figure 4-12 **soapUI: Data in XML Format**
Step 7 (Optional) To add more WSDL, right-click the project to display the drop-down list and choose **Add WSDL** from the menu. See **Figure 4-13**.

Figure 4-13 soapUI: Add WSDL
Using soapUI to Access the WAAS API Interface
This chapter describes Cisco Network Analysis Module (NAM), which you can use to monitor your WAAS devices.

This chapter contains the following sections:

- Information About NAM, page 5-1
- Configuring NAM Monitoring of WAAS Devices, page 5-3
- NAM Deployment Scenarios, page 5-6
- Monitoring and Analyzing Traffic Using the NAM, page 5-7

Information About NAM

NAM monitors network and application response time (ART) by analyzing the exchanges of TCP packets between clients and application servers. The NAM Traffic Analyzer software enables network managers to understand, manage, and improve how applications and services are delivered to end users by combining flow-based and packet-based analysis into one solution.

The Cisco NAM includes an embedded, web-based Traffic Analyzer GUI that provides quick access to the configuration menus and presents easy-to-read performance monitoring and analysis on network traffic. A FlowAgent (FA) runs on WAAS devices to collect TCP packet data and send the flow data to NAM for analyzing and reporting. See Figure 5-1.
For more information about NAM, see the following documentation URLs:

- Complete NAM documentation set:
- *Cisco WAAS NAM Virtual Service Blade Installation and Configuration Guide*:

Information About NAM Monitoring Functions

NAM provides the following monitoring functions:

- Monitoring Client-Edge Connections—By monitoring the TCP connections between the clients and the WAAS edge device (connection TCP-1 in Figure 5-1), the following ART metrics can be measured:
 - Total Delay (TD) as experienced by the client
 - Total Transaction Time as experienced by the client
 - Bandwidth usage (bytes/packets) before compression
 - Number of transactions and connections
 - Network round-trip time (RTT) broken down into two segment: client-edge and edge-server

- Monitoring Edge-Core Optimized Connections—By monitoring the spoofed TCP connections between the edge and core WAAS devices (connection TCP-2 in Figure 5-1), the following additional ART metric can be measured: Bandwidth usage (bytes/packets) after compression.

- Monitoring Edge-Core Connections—By monitoring the TCP connections between the core WAAS devices and the servers (connection TCP-3 in Figure 5-1), additional ART metrics can be measured:
 - Application (Server) Delay (without the proxy acceleration/caching server)
 - Network RTT between the core WAAS device and the servers

The sections that follow show how to configure WAAS to enable monitoring by NAM and how to configure NAM to monitor specific WAAS functions.
Configuring NAM Monitoring of WAAS Devices

This section contains the following topics:

- Configuring Basic WAAS Setup, page 5-3
- Configuring WAAS Monitored Servers, page 5-4
- Configuring WAAS Data Sources in NAM, page 5-5

Configuring Basic WAAS Setup

Before you can monitor WAAS traffic, you must first set up basic NAM configuration by completing the following tasks:

- Connect to a NAM server by providing the server’s IP address, protocol, and port.
- Establish account credentials.
- Associate a WAAS device group or WAAS Express device group with configured policies.
- Enable Flow Agent.

Follow the steps below to complete basic NAM configuration. Only device group level policy configurations are applicable for NAM.

Step 1
From the WAAS Central Manager, choose Configure > Network Analysis Module > Basics > Setup. The Setup window appears. (See Figure 5-2).

Figure 5-2 NAM Setup Window

Step 2
Choose either HTTP or HTTPS, depending on which access was configured during NAM installation.

Step 3
Enter the hostname and IP address of the NAM server.
Configuring NAM Monitoring of WAAS Devices

Step 4
Configure the credentials: use the preconfigured login credentials by selecting the **Use Default Credentials** option, or configure the credentials manually by filling in the fields with valid values.

Step 5
Configure the WAAS Integration Preferences to configure a WAAS device group to work with the NAM server as follows:

- **a.** Choose the device group from which applications and classifier definitions are pushed to the NAM when performing a synchronization operation.
- **b.** Choose the **Enable Flow Agent** option to data export.
- **c.** Choose the **Sync all classifiers/apps to NAM on submit** to initiate synchronization with the NAM.

Step 6
Click **Submit**.

For additional information about configuring NAM, see the NAM chapter in the *Cisco Wide Area Application Services Configuration Guide*.

Configuring WAAS Monitored Servers

To monitor the response time for a server, you need to add the server IP address in the NAM configuration setup, as follows:

Step 1
From the WAAS Central Manager menu, choose **Configure > Network Analysis Module > Basics > Monitored Servers**. The NAM WAAS Servers Monitoring window appears. See **Figure 5-3**.

Figure 5-3 WAAS Servers Monitoring Window

Step 2
Choose the IP address of one or more servers to monitor.
Step 3 Click **Add**. The Add WAAS Servers(s) window appears.

Step 4 Click **Submit** to add the server IP address(es).

Configuring WAAS Data Sources in NAM

You usually don’t need to add WAAS devices because export-enabled WAAS devices are detected and added automatically.

To manually add a WAAS device to the list of devices monitored by NAM, follow these steps:

Step 1 From the WAAS Central Manager menu, choose **Configure > Network Analysis Module > Basics > Monitored Servers**. The NAM Data Source Configuration window appears. (See Figure 5-4).

Figure 5-4 NAM Data Sources

![NAM Data Sources](image)

Step 2 From the list of Types, choose **WAAS device**.

Step 3 In the IP field, enter the device IP address.

Step 4 Check the check boxes for the data sources that you want to monitor. See **Table 5-1** for more information.

Step 5 Click **Submit** to add the new data source.
For additional information about configuring and using NAM, see the User Guide for Cisco Network Analysis Module Traffic Analyzer.

NAM Deployment Scenarios

The NAM uses WAAS data sources to monitor traffic collected from different WAAS segments: Client, Client WAN, Server WAN, and Server. Each WAAS segment is represented by a data source. You can set up the NAM to monitor and report other traffic statistics of the WAAS data sources (such as application, host, and conversation information) in addition to the monitored ART metrics.

The use of the data source depends upon on the WAAS deployment scenario. Table 5-2 describes several common WAAS deployment scenarios and their applicable data sources.

Table 5-1 WAAS Data Sources

<table>
<thead>
<tr>
<th>WAAS Data Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Export the original (LAN side) TCP flows originated from its clients to NAM for monitoring.</td>
</tr>
<tr>
<td>Client WAN</td>
<td>Export the optimized (WAN side) TCP flows originated from its clients to NAM for monitoring.</td>
</tr>
<tr>
<td>Server WAN</td>
<td>Export the optimized (WAN side) TCP flows from its servers to NAM for monitoring.</td>
</tr>
<tr>
<td>Server</td>
<td>Export the original (LAN side) TCP flows from its servers to NAM for monitoring.</td>
</tr>
<tr>
<td>Pass-Through</td>
<td>Export the flows that traverses WAAS without being optimized.</td>
</tr>
</tbody>
</table>

Table 5-2 WAAS Deployment Scenarios

<table>
<thead>
<tr>
<th>Deployment Scenario</th>
<th>Edge WAE Data Source</th>
<th>Core WAE Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Clients in the branch</td>
<td>Client</td>
<td>Server</td>
</tr>
<tr>
<td>▪ Servers in the core (data center)</td>
<td></td>
<td>Server WAN</td>
</tr>
<tr>
<td>▪ NAM in the core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Clients in the branch</td>
<td>Client</td>
<td>Server</td>
</tr>
<tr>
<td>▪ Servers in the core (data center)</td>
<td>Client WAN</td>
<td>Not specified</td>
</tr>
<tr>
<td>▪ NAM in the core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Servers in the branch</td>
<td>Server</td>
<td>Client</td>
</tr>
<tr>
<td>▪ Clients in the core (data center)</td>
<td></td>
<td>Client WAN</td>
</tr>
<tr>
<td>▪ NAM in the core</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Servers in the branch</td>
<td>Server</td>
<td>Client</td>
</tr>
<tr>
<td>▪ Clients in the core (data center)</td>
<td>Server WAN</td>
<td>Client</td>
</tr>
<tr>
<td>▪ NAM in the branch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitoring and Analyzing Traffic Using the NAM

The monitoring and analyzing traffic using the NAM feature provides intuitive workflows and interactive reporting capabilities.

The monitoring and analyzing dashboards allow you to view network traffic, application performance, site performance, and alarms at a glance. From there, you can isolate one area, for example an application with response time issues, and then drill down to the dashboard for further investigation.

The section contains the following topics:
- NAM Metrics, page 5-7
- Top Talkers Dashboards, page 5-8
- Throughput Dashboards, page 5-10
- Performance Analysis Dashboards, page 5-11

NAM Metrics

You can use the NAM to report a variety of metrics, depending on which data sources you are monitoring, as shown in Table 5-3.

<table>
<thead>
<tr>
<th>Monitored WAAS Data Sources</th>
<th>Metrics Available</th>
</tr>
</thead>
</table>
| Monitoring Client Data Sources: monitor TCP connections between the client and the WAE device | - Total response time as experienced by the client
- Total transaction time as experience by the client
- Bandwidth usage (bytes/packets) before optimization
- Number of transactions and connections
- Network time separated into client-edge and edge-server times |
Monitoring WAN Data Sources: Monitor the TCP connections between edge and core WAE devices

- Bandwidth usage (bytes/packets) after optimization
- Network time of the WAN segment

Monitoring Server Data Sources: Monitor TCP connections between core WAE devices and the servers

- Server response time (without proxy acceleration or caching server)
- Network time between the core WAE device and the servers

You can also configure data sources from the core WAE. You can add the Server, Server-WAN, and Passthrough data sources to monitor application performance analytics as observed from the server LAN, WAN, and the client LAN.

Top Talkers Dashboards

This section includes the following topics:

- Traffic Summary, page 5-8
- Top Talkers Details, page 5-10

Traffic Summary

The Top Talkers Summary dashboard allows you to view the Top N Applications, Top N Application Groups, Top N Hosts (In and Out), IP Distribution by Bytes, Top N DSCP, and Top N VLAN that is being monitored on your network. It provides auto-monitoring of traffic from all WAAS devices. You can view the Traffic Summary Dashboard by going to Monitor > Network Analysis Module > Overview. (See Figure 5-5).
The charts shown on this dashboard are as follows:

- **Top N Applications**
 The Top N Applications Chart enables you to view the traffic rate (bytes per second or bits per second) or traffic volume (bytes or bits), depending on the Interactive Report filter selection (data rate or cumulative, respectively).

- **Top N Application Groups**
 This chart shows a detailed analysis of the Top N application groups and the traffic rate or volume for this interval.

- **Top N Hosts (In and Out)**
 This chart displays the traffic rate (bytes per second or bits per second) or traffic volume (bytes or bits).

- **IP Distribution by Bytes**
 This chart shows the percentages of bytes that are distributed to IP protocols (for example, IPv4 TCP).

- **Top N DSCP**
 This chart shows statistics for the top DSCP aggregation groups.

- **Top N VLAN**
 This chart shows the Top N VLAN statistics. In this chart, you might see VLAN 0, which is for traffic that does not have any VLAN tags.
Top Talkers Details

While you are in the process of deploying WAAS devices, you can get data to assist in the WAAS planning and configuration.

When you go to Monitor > Network Analysis Module > Top Talkers Details, you will see the window that assists you in the predeployment process. Use the Interactive Report window to select the traffic you want to analyze for optimization. The window displays the Top Applications, Top Network Links, Top Clients, and Top Servers.

Based on the results, you can then configure the WAAS products to optimize your network.

Throughput Dashboards

This section includes the following topics:

- Network, page 5-10
- Top Applications, page 5-10
- Application, page 5-11

Network

The Network dashboard enables you to view LAN versus WAN throughput for WAAS users both in the incoming and outgoing directions. To view these reports, configure interface groups that comprise WAN and LAN interfaces. The displayed information represents the total data collected since the collection was created or since the NAM was restarted. To view the Network dashboard, go to Monitor > Network Analysis Module > Throughput > Network.

Choose an interface group view from the Interface Selector on the left side of the window to see traffic in the charts. Click the arrow icon to the left of the NDE data source name to display all interfaces groups, and then select an interface group view. If the charts show no data, and you see the message “Interface needs to be selected,” you have not yet chosen an interface group view.

After you choose the interface group view, you see the following charts populated:

- Interface Traffic (Ingress % Utilization and Egress % Utilization)
- Top N Applications—Ingress
- Top N Applications—Egress
- Top N Hosts—Ingress
- Top N Hosts—Egress
- Top N DSCP Aggr—Ingress
- Top N DSCP Aggr—Egress

You can enter the interface speed manually through the Interface capacity table, or the speed can be automatically configured if the SNMP settings for the NDE device are entered in the data source table.

Top Applications

In the Top Applications dashboard, you can view the top applications by the traffic rate over a selected time and for the specified site and/or data source.
Applications Over Time shows you all of the applications that have been running for the time period interval. The color-coded legend shows you what the applications are running.

Application

In the Application Analysis window, you can see the traffic level for a given application over a selected period of time. It is available under the **Monitor > Network Analysis Module > Throughput > Application**. This window shows you the following:

- A graph of application traffic over time.
- Top hosts that transmit and receive traffic on that application for the selected time period.
- Application Configuration that shows the criteria by which the NAM classifies packets as that application. This criteria is typically a list of TCP and/or UDP ports that identify the application. Some applications are identified by heuristic or other state-based algorithms.

Hosts Detail

On the “Top N Hosts - Traffic In” or “Top N Hosts - Traffic Out” chart, you can choose **Hosts Detail** to see the All Hosts window and the detailed information about all hosts. The All Hosts window displays the following information:

- **Host**—Host address
- **Application**—Application type
- **In Bytes/sec**—Number of bytes per second incoming
- **In Packets/sec**—Number of packets per second incoming
- **Out Bytes/sec**—Number of bytes per second outgoing
- **Out Packets/sec**—Number of packets per second outgoing

Performance Analysis Dashboards

This section includes the following topics:

- **Application**, page 5-11
- **Conversation Multisegments**, page 5-12

Application

The Application dashboard provides the transaction time performance for an application as well as the original and optimized traffic volume reported by the flow agent. Information about how the transaction time is broken up across client, WAN, and server segments is also provided. For example, if the transaction time is dominated by the server segment time (due to a slow server), WAAS may not be able to improve the performance as much as when it is dominated by the WAN network time. To view the Application performance analysis dashboard, go to **Monitor > Network Analysis Module > Performance Analysis > Application**.

The charts available on this dashboard are as follows:

- Transaction Time (Client Experience)
- Traffic Volume and Compression Ratio
- Average Concurrent Connections (Optimized vs. Passthru)
- Multi-Segment Network Time (Client LAN - WAN - Server LAN)

Conversation Multisegments

The Conversation Multiple Segments dashboard correlates data from different data sources and allows you to view and compare response time metrics from multiple WAAS segments (data sources). To view the Conversation Multiple Segments dashboard, go to **Monitor > Network Analysis Module > Performance Analysis > Conversation Multisegments**.

The Response Time Across Multiple Segments window shows the response time metrics of the selected server or client-server pair from applicable data sources.