clear users 3-8
clock 3-10
cms 3-11
cms secure-store 3-14
configure 3-16
copy cdrom 3-17
copy compactflash 3-18
copy disk 3-19
copy ftp 3-20
copy http 3-25
copy running-config 3-29
copy startup-config 3-30
copy sysreport 3-31
copy system-status 3-33
copy tech-support 3-34
copy tftp 3-35
cpfile 3-37
debug 3-38
delfile 3-44
deltree 3-45
dir 3-46
disable 3-48
disk 3-49
dnslookup 3-53
enable 3-54
exit 3-55
find-pattern 3-56
help 3-58
install 3-59
less 3-61
lls 3-62
ls 3-64
mkdir 3-66
mkfile 3-67
ntpd 3-68
Contents

ping 3-69
pwd 3-70
reload 3-71
rename 3-72
restore 3-73
rmdir 3-77
scp 3-78
script 3-80
setup 3-81
show aaa accounting 3-82
show adapter 3-84
show alarms 3-85
show arp 3-88
show authentication 3-89
show auto-register 3-91
show banner 3-92
show bypass 3-93
show cdp 3-94
show cifs 3-100
show clock 3-102
show cms 3-104
show cms secure-store 3-107
show debugging 3-108
show device-mode 3-109
show disks 3-111
show egress-methods 3-118
show flash 3-119
show hardware 3-120
show hosts 3-123
show ined 3-124
show interface 3-125
show inventory 3-130
show ip access-list 3-131
show ip routes 3-133
show kerberos 3-134
show statistics wccp 3-206
show statistics windows-domain 3-211
show sysfs volumes 3-213
show tacacs 3-214
show tcp 3-216
show tech-support 3-218
show telnet 3-221
show tfo accelerators 3-222
show tfo auto-discovery 3-223
show tfo bufpool 3-225
show tfo connection 3-227
show tfo egress-methods connection 3-229
show tfo filtering 3-233
show tfo status 3-235
show tfo synq 3-236
show transaction-logging 3-237
show user 3-238
show users administrative 3-239
show version 3-241
show wccp 3-242
show windows-domain 3-248
shutdown 3-250
snmp trigger 3-253
ssh 3-256
tcpdump 3-257
telnet 3-259
terminal 3-260
tethereal 3-261
traceroute 3-263
transaction-log 3-264
type 3-265
type-tail 3-266
undebug 3-268
wafs 3-273
whoami 3-275
windows-domain 3-276
write 3-279

Configuration Mode Commands 3-280

(config) aaa accounting 3-281
(config) adapter 3-285
(config) alarm overload-detect 3-286
(config) asset 3-288
(config) authentication 3-289
(config) authentication strict-password-policy 3-294
(config) auto-register 3-296
(config) banner 3-299
(config) bypass 3-302
(config) cdp 3-304
(config) central-manager 3-306
(config) clock 3-310
(config) cms 3-314
(config) device mode 3-316
(config) disk disk-name 3-318
(config) disk encrypt enable 3-320
(config) disk error-handling 3-322
(config) disk logical shutdown 3-324
(config) egress-method 3-325
(config) end 3-327
(config) exec-timeout 3-328
(config) exit 3-329
(config) external-ip 3-330
(config) flow monitor 3-332
(config) help 3-333
(config) hostname 3-335
(config) inetd enable 3-337
(config) interface 3-338
(config) ip 3-344
(config) ip access-list 3-347
(config) kerberos 3-350
(config) kernel kdb 3-352
(config) line 3-353
(config) logging 3-354
(config) no 3-358
(config) ntp 3-360
(config) policy-engine application classifier 3-362
(config) policy-engine application map adaptor EPM 3-364
(config) policy-engine application map adaptor WAFS transport 3-366
(config) policy-engine application map basic delete 3-368
(config) policy-engine application map basic disable 3-369
(config) policy-engine application map basic insert 3-370
(config) policy-engine application map basic list 3-371
(config) policy-engine application map basic move 3-372
(config) policy-engine application map basic name 3-374
(config) policy-engine application map other optimize DRE 3-376
(config) policy-engine application map other optimize full 3-378
(config) policy-engine application map other pass-through 3-379
(config) policy-engine application name 3-380
(config) policy-engine config 3-382
(config) port-channel 3-383
(config) primary-interface 3-384
(config) print-services 3-386
(config) radius-server 3-389
(config) smb-conf 3-391
(config) snmp-server access-list 3-395
(config) snmp-server community 3-396
(config) snmp-server contact 3-398
(config) snmp-server enable traps 3-399
(config) snmp-server group 3-402
(config) snmp-server host 3-404
(config) snmp-server location 3-406
(config) snmp-server mib persist event 3-407
(config) snmp-server notify inform 3-409
(config) snmp-server trap-source 3-410
(config) snmp-server user 3-412
(config) snmp-server view 3-414
(config) sshd 3-415
(config) ssh-key-generate 3-418
(config) tacacs 3-419
(config) tcp 3-422
(config) telnet enable 3-425
(config) tfo auto-discovery 3-426
(config) tfo optimize 3-427
(config) tfo tcp keepalive 3-428
(config) tfo tcp optimized-mss 3-429
(config) tfo tcp optimized-receive-buffer 3-430
(config) tfo tcp optimized-send-buffer 3-431
(config) tfo tcp original-mss 3-432
(config) tfo tcp original-receive-buffer 3-433
(config) tfo tcp original-send-buffer 3-434
(config) transaction-logs 3-435
(config) username 3-442
(config) wccp access-list 3-445
(config) wccp flow-redirect enable 3-448
(config) wccp router-list 3-449
(config) wccp shutdown 3-450
(config) wccp tcp-promiscuous 3-452
(config) wccp version 3-454
(config) windows-domain 3-456

Interface Configuration Mode Commands 3-458

(config-if) autosense 3-459
(config-if) bandwidth 3-460
(config-if) cdp 3-462
(config-if) exit 3-463
(config-if) failover timeout 3-464
(config-if) full-duplex 3-465
(config-if) half-duplex 3-467
(config-if) inline 3-469
(config-if) ip 3-471
(config-if) ip access-group 3-473
(config-if) mtu 3-475
Standard ACL Configuration Mode Commands 3-484

(config) ip access-list standard 3-485
(config-std-nacl) delete 3-488
(config-std-nacl) deny 3-489
(config-std-nacl) exit 3-491
(config-std-nacl) list 3-492
(config-std-nacl) move 3-493
(config-std-nacl) permit 3-494

Extended ACL Configuration Mode Commands 3-496

(config-ext-nacl) delete 3-499
(config-ext-nacl) deny 3-500
(config-ext-nacl) exit 3-505
(config-ext-nacl) list 3-506
(config-ext-nacl) move 3-507
(config-ext-nacl) permit 3-508

APPENDIX A

Acronyms and Abbreviations A-1
Preface

This preface describes who should read the Cisco Wide Area Application Services Command Reference, how it is organized, and its document conventions. It contains the following sections:

- Audience, page xiii
- Document Organization, page xiv
- Document Conventions, page xv
- Related Documentation, page xv
- Obtaining Documentation and Submitting a Service Request, page xvi

Audience

This command reference is intended for administrators who want to use the command-line interface (CLI) of the Wide Area Application Services (WAAS) software to configure, manage, and monitor WAAS devices on a per-device basis. This guide assumes that the WAAS device is running the WAAS software. The guide provides descriptions and syntax of the WAAS CLI command.

The WAAS CLI allows you to configure, manage, and monitor WAAS devices on a per-device basis through a console connection or a terminal emulation program. The WAAS CLI also allows you to configure certain features that are only supported through the WAAS CLI (for example, configuring LDAP signing on a WAE).

The instructions and examples in this guide describe only those features that can be configured on an individual WAAS device using the WAAS CLI.

In addition to the WAAS CLI, there are three WAAS graphical user interfaces (GUIs) that you access from your browser:

- The WAAS Central Manager GUI allows you to centrally configure, manage, and monitor a WAE or group of WAEs that are registered with the WAAS Central Manager. You also use this GUI to configure, manage, and monitor the WAAS Central Manager, which is the dedicated appliance on which the WAAS Central Manager GUI is running.

Note

When you use the WAAS Central Manager GUI, you have the added capability of centrally configuring settings and policies for groups of WAEs (device groups). When you use the WAAS CLI, you can only configure settings and policies on a per-device basis.
• The WAE Device Manager GUI allows you to remotely configure, manage, and monitor an individual WAE through your browser. In many cases, the same device settings can be found in both the WAE Device Manager GUI and the WAAS Central Manager GUI. For this reason, we strongly recommend that you always configure a WAE from the WAAS Central Manager GUI whenever possible.

• The WAAS Print Services Administration GUI allows you to remotely configure an individual WAAS print server and view a list of active and completed print jobs. You can access the WAAS Print Services Administration GUI from either the WAAS Central Manager GUI or the WAE Device Manager GUI.

The WAAS GUIs are the primary resources for configuration and monitoring WAEs. We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI, whenever possible. For more information about how to use the WAAS GUIs to configure, manage, and monitor your WAAS devices, see the Cisco Wide Area Application Services Configuration Guide.

We recommend that you be familiar with the basic concepts and terminology used in internetworking, in your network topology, and in the protocols that the devices in your network can use. We also recommend that you have a working knowledge of the operating systems on which you are running your WAAS network, such as Microsoft Windows, Linux, or Solaris. This guide is not a tutorial.

Document Organization

This command reference includes the following chapters:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1, “Using the WAAS Command-Line Interface”</td>
<td>Describes how to use the command-line interface.</td>
</tr>
<tr>
<td>Chapter 2, “Cisco WAAS Software Command Summary”</td>
<td>Lists WAAS software commands, providing a brief description of each.</td>
</tr>
<tr>
<td>Chapter 3, “CLI Commands”</td>
<td>Provides detailed information for the following types of CLI commands for the WAAS software:</td>
</tr>
<tr>
<td></td>
<td>• Commands you can enter after you log in to the WAAS device (EXEC mode).</td>
</tr>
<tr>
<td></td>
<td>• Configuration mode commands that you can enter after you log in to the WAAS device, and then access configuration mode and its subset of modes.</td>
</tr>
<tr>
<td></td>
<td>The description of each command includes:</td>
</tr>
<tr>
<td></td>
<td>• The syntax of the command</td>
</tr>
<tr>
<td></td>
<td>• Any related commands, when appropriate</td>
</tr>
<tr>
<td>Appendix A, “Acronyms and Abbreviations”</td>
<td>Defines the acronyms used in this publication.</td>
</tr>
<tr>
<td>“CLI Command Summary by Mode”</td>
<td>Lists each command by command mode.</td>
</tr>
</tbody>
</table>
Document Conventions

This command reference uses these basic conventions to represent text and table information:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Commands, keywords, and button names are in boldface.</td>
</tr>
<tr>
<td>italic font</td>
<td>Variables for which you supply values are in italics. Directory names and filenames are also in italics.</td>
</tr>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the system displays are printed in screen font.</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Variables you enter are printed in italic screen font.</td>
</tr>
<tr>
<td>plain font</td>
<td>Enter one of a range of options as listed in the syntax description.</td>
</tr>
<tr>
<td>^D or Ctrl-D</td>
<td>Hold the Ctrl key while you press the D key.</td>
</tr>
<tr>
<td>string</td>
<td>Defined as a nonquoted set of characters. For example, when setting a community string for SNMP to “public,” do not use quotation marks around the string, or the string will include the quotation marks.</td>
</tr>
<tr>
<td>Vertical bars (</td>
<td>)</td>
</tr>
<tr>
<td>{ }</td>
<td>Elements in braces are required elements.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td>[]</td>
<td>Braces within square brackets indicate a required choice within an optional element.</td>
</tr>
</tbody>
</table>

Note

Means reader take note. Notes contain helpful suggestions or references to materials not contained in the manual.

Caution

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

Related Documentation

For additional information on the Cisco WAAS software, see the following documentation:

- Release Note for Cisco Wide Area Application Services
- Cisco Wide Area Application Services Configuration Guide
- Cisco Wide Area Application Services Quick Configuration Guide
The following sections provide sources for obtaining documentation from Cisco Systems.

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly *What’s New in Cisco Product Documentation*, which also lists all new and revised Cisco technical documentation, at:

Subscribe to the *What’s New in Cisco Product Documentation* as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS version 2.0.
Using the WAAS Command-Line Interface

The Cisco WAAS software command-line interface (CLI) is used in combination with the WAAS Manager GUI to configure, monitor, and maintain a WAAS device. The CLI on a WAAS device can be accessed directly through the console port of an attached PC or remotely through a Telnet session on a PC running terminal emulation software.

The WAAS software runs on the WAE-511, WAE-512, WAE-611, WAE-612, WAE-7326, WAE-7341, and WAE-7371. You must deploy the WAAS Central Manager on a dedicated appliance.

Throughout this book, the term WAE is used to refer collectively to the supported WAE platforms unless otherwise noted. For simplification, the term WAAS device is used to refer collectively to WAAS Central Managers and WAEs that are running the WAAS software.

This chapter provides an overview of how to use the WAAS CLI, including an explanation of CLI command modes, navigation and editing features, and help features.

This chapter includes the following sections:

- Using Command Modes, page 1-1
- Using Command-Line Processing, page 1-6
- Checking Command Syntax, page 1-7
- Using the no Form of Commands, page 1-8
- Using System Help, page 1-9
- Saving Configuration Changes, page 1-9
- Navigating the WAAS Directories on a WAE, page 1-9
- Managing WAAS Files Per Device, page 1-12

Using Command Modes

The CLI for WAAS software is similar to the CLI for Cisco IOS software. Like Cisco IOS software, the WAAS CLI is organized into different command and configuration modes. Each mode provides access to a specific set of commands. This section describes the command modes provided by the WAAS software CLI and includes the following topics:

- Organization of the WAAS CLI, page 1-2
- Using EXEC Mode, page 1-2
Organization of the WAAS CLI

The WAAS software CLI is organized into multiple command modes. Each command mode has its own set of commands to use for the configuration, maintenance, and monitoring of a WAAS WAE. The commands available to you at any given time depend on the mode you are in. Entering a question mark (?) at the system prompt allows you to obtain a list of commands available for each command mode.

The WAAS command modes include the following:

- **EXEC mode**—For setting, viewing, and testing system operations. This mode is divided into two access levels: user and privileged. To use the privileged access level, enter the `enable` command at the user access level prompt, and then enter the privileged EXEC password when you see the password prompt.

- **Global configuration mode**—For setting, viewing, and testing configuration of WAAS software features for the entire device. To use this mode, enter the `configure` command from privileged EXEC mode.

- **Interface configuration mode**—For setting, viewing, and testing the configuration of a specific interface. To use this mode, enter the `interface` command from global configuration mode.

- **Standard ACL configuration mode**—For creating and modifying standard access lists on a WAAS device for controlling access to interfaces or applications. To use this mode, enter the `ip access-list standard` command from global configuration mode.

- **Extended ACL configuration mode**—For creating and modifying extended access lists on a WAAS device for controlling access to interfaces or applications. To use this mode, enter the `ip access-list extended` command.

Use specific commands to navigate from one command mode to another. Use this standard order to access the modes: user EXEC mode, privileged EXEC mode, global configuration mode, interface configuration mode, standard ACL configuration mode, or extended ACL configuration mode.

Using EXEC Mode

Use the EXEC mode for setting, viewing, and testing system operations. In general, the user EXEC commands allow you to connect to remote devices, change terminal line settings on a temporary basis, perform basic tests, and list system information.

The EXEC mode is divided into two access levels: user and privileged. The user EXEC mode is used by local and general system administrators, while the privileged EXEC mode is used by the root administrator. Use the `enable` and `disable` commands to switch between the two levels. Access to the user-level EXEC command line requires a valid password. The user-level EXEC commands are a subset of the privileged-level EXEC commands. The user-level EXEC prompt is the hostname followed by a right angle bracket (>). You can change the hostname using the `hostname` global configuration
Chapter 1 Using the WAAS Command-Line Interface

Using Command Modes

command. The prompt for the privileged-level EXEC command line is the pound sign (#). To execute an EXEC command, enter the command at the EXEC system prompt and press the Return key. In the following example, a user accesses the privileged-level EXEC command line from the user level:

WAE> enable
WAE#

Use the Delete or Backspace key sequences to edit commands when you enter commands at the EXEC prompt.

Most EXEC mode commands are one-time commands, such as show or more commands, which show the current configuration status, and clear commands, which clear counters or interfaces. EXEC mode commands are not saved across reboots of the WAE.

As a shortcut, you can abbreviate commands to the fewest letters that make them unique. For example, the letters sho can be entered for the show command.

Certain EXEC commands display multiple screens with the following prompt at the bottom of the screen:

--More--

Press the Spacebar to continue the output, or press Return to display the next line. Press any other key to return to the prompt. Also, at the --More-- prompt, you can enter a ? to display the help message.

To leave EXEC mode, use the exit command at the system prompt:

WAE# exit
WAE>

The EXEC commands are entered in EXEC mode.

Using Global Configuration Mode

Use global configuration mode for setting, viewing, and testing configuration of WAAS software features for the entire device. To enter this mode, enter the configure command from privileged EXEC mode. The prompt for global configuration mode consists of the hostname of the WAE followed by (config) and the pound sign (#). You must be in global configuration mode to enter global configuration commands.

WAE# configure
WAE(config)#

Commands entered in global configuration mode update the running configuration file as soon as they are entered. These changes are not saved into the startup configuration file until you enter the copy running-config startup-config EXEC mode command. See the “Saving Configuration Changes” section on page 1-9. Once the configuration is saved, it is maintained across WAE reboots.

You also can use global configuration mode to enter specific configuration modes. From global configuration mode you can enter the interface configuration mode, standard ACL configuration mode, or the extended ACL configuration mode.

From configuration modes, you can enter configuration submodes. Configuration submodes are used for the configuration of specific features within the scope of a given configuration mode. As an example, this chapter describes the subinterface configuration mode, a submode of the interface configuration mode.

To exit global configuration mode, use the end global configuration command:

WAE(config)# end
WAE#
You can also exit global configuration mode by entering the `exit` command or by pressing `Ctrl-Z`. Global configuration commands are entered in global configuration mode.

Configuration changes that you make in global configuration mode on a WAE are propagated to the Centralized Management System (CMS) database on the WAAS Central Manager. CLI changes are sent to the Central Manager after you exit out of configuration mode, or if all configuration mode sessions have been inactive for 10 minutes.

Using the Interface Configuration Mode

Use the interface configuration mode for setting, viewing, and testing the configuration of WAAS software features on a specific interface. To enter this mode, enter the `interface` command from the global configuration mode. The following example demonstrates how to enter interface configuration mode:

```
WAE# configure
WAE(config)# interface ?
    GigabitEthernet  Select a gigabit ethernet interface to configure
    InlineGroup      Select an inline group interface to configure
    InlinePort       Select an inline port interface to configure
    PortChannel      Ethernet Channel of interfaces
    Standby          Standby groups

WAE(config)# interface gigabitethernet ?
    <1-2>/ GigabitEthernet slot/port

WAE(config)# interface gigabitethernet 1/0
WAE(config-if)#
```

To exit interface configuration mode, enter `exit` to return to global configuration mode:

```
WAE(config-if)# exit
WAE(config)#
```

The interface configuration commands are entered in interface configuration mode.

Using ACL Configuration Modes

From global configuration mode, you can enter the standard and extended ACL configuration modes.

- To work with a standard access list, enter the `ip access-list standard` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.
- To work with an extended access list, enter the `ip access-list extended` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.

To exit an ACL configuration mode, enter `exit` to return to global configuration mode:

```
WAE(config-std-nacl)# exit
WAE(config)#
```

To return to global configuration mode, enter the `exit` command.
Command Modes Summary

Table 1-1 shows a summary of the WAAS command modes.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in to WAE.</td>
<td>WAE></td>
<td>Use the end command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the enable EXEC command.</td>
<td>WAE#</td>
<td>To return to user EXEC mode, use the disable command. To enter global configuration mode, use the configure command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the configure command.</td>
<td>WAE(config)#</td>
<td>To return to privileged EXEC mode, use the exit command or press Ctrl-Z. To enter interface configuration mode, use the interface command.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, use the interface command.</td>
<td>WAE(config-if)#</td>
<td>To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command or press Ctrl-Z.</td>
</tr>
<tr>
<td>Standard ACL configuration</td>
<td>From global configuration mode, use the ip access-list standard command.</td>
<td>WAE(config-std-nacl)#</td>
<td>To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command or press Ctrl-Z.</td>
</tr>
<tr>
<td>Extended ACL configuration</td>
<td>From global configuration mode, use the ip access-list extended command.</td>
<td>WAE(config-ext-nacl)#</td>
<td>To return to global configuration mode, use the exit command. To return to privileged EXEC mode, use the end command or press Ctrl-Z.</td>
</tr>
</tbody>
</table>

Device Mode

The WAAS software provides the ability to specify the device mode of a WAAS device. In a WAAS network, you must deploy a WAAS device in one of the following device modes:

- Central Manager mode—Mode that the WAAS Central Manager device needs to use.
- Application accelerator mode—Mode for a WAAS Accelerator (that is a Core WAE or Edge WAE) that is running the WAAS software. WAES are used to optimize TCP traffic over your network. When client and server applications attempt to communicate with each other, the network intercepts and redirects this traffic to the WAES so that they can act on behalf of the client application and the destination server. The WAES examine the traffic and use built-in application policies to determine whether to optimize the traffic or allow it to pass through your network unoptimized.
- Replication accelerator mode—Mode for a WAAS Accelerator specifically optimized for replication applications running between data centers. This mode is similar to application accelerator mode, but the WAE’s optimization policies are tuned for data-center-to-data-center operations.
Chapter 1 Using the WAAS Command-Line Interface

Using Command-Line Processing

The default device mode for a WAAS device is application accelerator mode. The device mode global configuration command allows you to change the device mode of a WAAS device.

```
waas-cm(config)# device mode ?
application-accelerator Configure device to function as a WAAS Engine.
replication-accelerator Configure device to function as a WAAS Engine in replication environment.
central-manager Configure device to function as a WAAS Central Manager.
```

For example, after you use the WAAS CLI to specify the basic network parameters for the designated WAAS Central Manager (the WAAS device named waas-cm) and assign it as a primary interface, you can use the device mode configuration command to specify its device mode as central-manager.

```
waas-cm# configure
waas-cm(config)#
waas-cm(config)# primary-interface gigabitEthernet 1/0
waas-cm(config)# device mode central-manager
waas-cm(config)# exit
waas-cm# copy run start
waas-cm# reload
Proceed with reload?[confirm] y
Shutting down all services, will Reload requested by CLI@ttyS0.
Restarting system.
```

To display the current mode that the WAAS device is operating in, enter the show device-mode current EXEC command:

```
WAE# show device-mode current
Current device mode: application-accelerator
```

To display the configured device mode that has not taken effect, enter the show device-mode configured EXEC command. For example, if you had entered the device mode central-manager global configuration command on a WAAS device to change its device mode to central manager but haven't entered the copy run start EXEC command to save the running configuration on the device, then if you were to enter the show device-mode configured command on the WAAS device, the command output would indicate that the configured device mode is central-manager:

```
WAE# show device-mode configured
Configured device mode: central-manager
```

A WAAS device can operate only in one device mode. The set of WAAS CLI commands that are available vary based on the device mode of the WAAS device.

Using Command-Line Processing

Cisco WAAS software commands are not case sensitive. You can abbreviate commands and parameters as long as they contain enough letters to be different from any other currently available commands or parameters.

You can also scroll through the last 20 commands stored in the history buffer and enter or edit the command at the prompt. Table 1-2 lists and describes the function performed by the available WAAS command-line processing options.
Checking Command Syntax

The user interface provides error isolation in the form of an error indicator, a caret symbol (^). The ^ symbol appears at the point in the command string where you have entered an incorrect command, keyword, or argument.

In the following example, suppose you want to set the clock. Use context-sensitive help to check the syntax for setting the clock.

```
WAE# clock 1222
^%Invalid input detected at '^' marker.
WAE# clock ?
  read-calendar Read the calendar and update system clock
  set Set the time and date
  update-calendar Update the calendar with system clock

The help output shows that the set keyword is required.

Check the syntax for entering the time.
```

```
WAE# clock set ?
  <0-23>: Current Time (hh:mm:ss)
```
Using the no Form of Commands

Almost every configuration command has a no form. The **no** form of a command is generally used to disable a feature or function, but it can also be used to set the feature or function to its default values. Use the command without the **no** keyword to reenable a disabled feature or to enable a feature that is disabled by default.
Using System Help

You can obtain help when you enter commands by using the following methods:

- For a brief description of the context-sensitive help system, enter `help`.
- To list all commands for a command mode, enter a question mark (`) at the system prompt.
- To obtain a list of commands that start with a particular character set, enter an abbreviated command immediately followed by a question mark (``).

```
WAE# cl?
  clear clock
```

- To list the command keywords or arguments, enter a space and a question mark (``) after the command.

```
WAE# clock ?
  read-calendar  Read the calendar and update system clock
  set           Set the time and date
  update-calendar  Update the calendar with system clock
```

Saving Configuration Changes

To avoid losing new configurations, save them to NVRAM using the `copy` or `write` commands, as shown in the following example:

```
WAE# copy running-config startup-config
```

or

```
WAE# write
```

See the `copy running-config startup-config` and `write` commands for more information about running and saved configuration modes.

Navigating the WAAS Directories on a WAE

The WAAS CLI provides several commands for navigating among directories and viewing their contents. These commands are entered from privileged EXEC mode. Table 1-3 lists and describes these commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cd [directory-name]</code></td>
<td>Change Directory—Moves you from the current directory to the specified directory in the WAAS tree. If no directory is specified, <code>cd</code> takes you up one directory.</td>
</tr>
<tr>
<td><code>deltree directory-name</code></td>
<td>Remove Directory Tree—Deletes the specified directory and all subdirectories and files without displaying a warning message to you.</td>
</tr>
<tr>
<td><code>dir [directory-name]</code></td>
<td>Show Directory—Lists the size, date of last changes, and the name of the specified directory (or all directories if one is not specified) within the current directory path. The output from this command is the same as the <code>lls</code> command.</td>
</tr>
</tbody>
</table>
Navigating the WAAS Directories on a WAE

Navigating the WAAS Directories on a WAE

The following example displays a detailed list of all the files for the WAE’s current directory:

```
WAE# dir
  size time of last change name
  ----------- -------------------------  -----------
  4096 Fri Feb 24 14:40:00 2006 <DIR> actona
  4096 Tue Mar 28 14:42:44 2006 <DIR> core_dir
  4096 Wed Apr 12 20:23:10 2006 <DIR> crash
  4506 Tue Apr 11 13:52:45 2006 dbupgrade.log
  4096 Tue Apr  4 22:50:11 2006 downgrade
  4096 Sun Apr 16 09:01:56 2006 errorlog
  4096 Wed Apr 12 20:23:41 2006 logs
  16384 Thu Feb 16 12:25:29 2006 lost+found
  4096 Wed Apr 12 03:26:02 2006 sa
  24576 Sun Apr 16 23:38:21 2006 service_logs
  4096 Thu Feb 16 23:38:20 2006 <DIR> var
  9945390 Sun Apr 16 23:38:20 2006 syslog.txt
  10026298 Thu Apr 6 12:25:00 2006 syslog.txt.1
  10013564 Thu Apr 6 12:25:00 2006 syslog.txt.2
  10055850 Thu Apr 6 12:25:00 2006 syslog.txt.3
  10049181 Thu Apr 6 12:25:00 2006 syslog.txt.4
  4096 Thu Feb 16 12:29:30 2006 <DIR> var
  508 Sat Feb 25 13:18:35 2006 wdd.sh.signed
```

The following example displays only the detailed information for the logs directory:

```
WAE# dir logs
  size time of last change name
  ----------- -------------------------  -----------
  4096 Thu Apr 6 12:13:50 2006 <DIR> actona
  4096 Mon Mar 6 14:14:41 2006 <DIR> apache
  4096 Sun Apr 16 23:36:40 2006 <DIR> emdb
  4096 Thu Feb 16 11:51:51 2006 <DIR> export
  4096 Wed Apr 12 20:23:43 2006 <DIR> rpc_httpd
  0 Wed Apr 12 20:23:41 2006 snmpd.log
  4096 Sun Mar 19 18:47:29 2006 <DIR> tfo
```
Directory Descriptions

Several top-level directories of the WAAS software contain information used internally by the software and are not useful to you. These directories include the core_dir, crash, downgrade, errorlog, lost+found, sa, service_logs, spool, and var directories.

Table 1-4 describes the directories that contain information that is useful for troubleshooting or monitoring.

Table 1-4 WAAS Directory Descriptions

<table>
<thead>
<tr>
<th>Directory/File Name</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>actona</td>
<td>This directory contains the current software image installed on the WAAS device and any previous images that were installed.</td>
</tr>
<tr>
<td>logs</td>
<td>This directory contains application-specific logs used in troubleshooting. The actona subdirectory contains the commonly used Manager.log, Utilities.log, and Watchdog.log log files. See the Cisco Wide Area Application Services Configuration Guide for more details about how these log files are used.</td>
</tr>
<tr>
<td>syslog.txt</td>
<td>This file is the central repository for log messages. Important messages about the operation of WAAS or its components are sometimes logged in this file. They are often intermingled with routine messages that require no action. You may be requested to provide this file, the output of the show tech-support EXEC command, and perhaps other output to Cisco TAC personnel if a problem arises.</td>
</tr>
</tbody>
</table>

Note

The WAAS software uses the CONTENT file system for both the Wide Area File Services (WAFS) file system and the data redundancy elimination (DRE) cache.
Managing WAAS Files Per Device

The WAAS CLI provides several commands for managing files and viewing their contents per device. These commands are entered from privileged EXEC mode. Table 1-5 describes the WAAS file management commands.

Table 1-5 WAAS File Management Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>`copy {source</td>
<td>image}`</td>
</tr>
<tr>
<td></td>
<td>• cdrom—Copies the file from the CDROM.</td>
</tr>
<tr>
<td></td>
<td>• compactflash—Copies the file from the CompactFlash card.</td>
</tr>
<tr>
<td></td>
<td>• disk—Copies the configuration or file from the disk.</td>
</tr>
<tr>
<td></td>
<td>• ftp—Copies the file from the FTP server.</td>
</tr>
<tr>
<td></td>
<td>• http—Copies the file from the HTTP server.</td>
</tr>
<tr>
<td></td>
<td>• running-config—Copies information from the current system configuration.</td>
</tr>
<tr>
<td></td>
<td>• startup-config—Copies information from the startup configuration.</td>
</tr>
<tr>
<td></td>
<td>• sysreport—Copies system information.</td>
</tr>
<tr>
<td></td>
<td>• system-status—Copies the system status for debugging reference.</td>
</tr>
<tr>
<td></td>
<td>• tech-support—Copies system information for technical support.</td>
</tr>
<tr>
<td></td>
<td>• tftp—Copies the software image from the TFTP server.</td>
</tr>
<tr>
<td>`cpfile source-filename</td>
<td>Copy File—Makes a copy of a source file, and puts it in the current directory.</td>
</tr>
<tr>
<td>destination-filename`</td>
<td></td>
</tr>
<tr>
<td><code>delfile filename</code></td>
<td>Remove File—Deletes the specified file from the current directory path.</td>
</tr>
<tr>
<td><code>less filename</code></td>
<td>Display File Using LESS—Displays the specified file on the screen using the LESS program. The filename is case sensitive. Enter q to stop viewing the file and return to the directory.</td>
</tr>
<tr>
<td><code>mkfile filename</code></td>
<td>Create File—Creates a file of the specified name in the current directory path.</td>
</tr>
<tr>
<td><code>rename old-filename new-filename</code></td>
<td>Rename File— Renames the specified file with a new filename.</td>
</tr>
<tr>
<td><code>type filename</code></td>
<td>Display File—Displays the content of the specified file on the screen.</td>
</tr>
<tr>
<td>`type-tail filename [line</td>
<td>follow</td>
</tr>
<tr>
<td><code>find-pattern pattern</code></td>
<td>Find in a File—Searches a file for the specified pattern.</td>
</tr>
</tbody>
</table>

The following example shows how to save the currently running configuration to the startup configuration using the `copy` EXEC command:

```
WAE# copy running-config startup-config
```
To back up, restore, or create a system report about the WAFS-specific configuration on a WAE, use the `wafs` EXEC command. To save the WAFS-system specific configuration information, use the `wafs backup-config` EXEC command. See the *Cisco Wide Area Application Services Configuration Guide* for more information on backing up.

The following example shows how to remove a file named `sample` from the directory named `test` using the `delfile` command:

```bash
WAE# cd test
WAE# ls
sample
sample2
WAE# delfile sample
WAE# ls
sample2
```

The following example shows how to view the last lines of the `Watchdog.log` file:

```bash
WAE# cd logs
WAE# cd actona
WAE# ls
Watchdog.log
WAE# type-tail Watchdog.log
WAE#
```
Cisco WAAS Software Command Summary

This chapter summarizes the Cisco WAAS 4.0.19 software commands.

Table 2-1 lists the WAAS commands (alphabetically) and indicates the command mode for each command. The commands used to access configuration modes are marked with an asterisk. Commands that do not indicate a particular mode are EXEC mode commands. The same command may have different effects when entered in a different command mode, so they are listed and documented separately. (See Chapter 1, “Using the WAAS Command-Line Interface” for a discussion about using CLI command modes.)

In Table 2-1, in the Device Mode column “All” indicates that the particular CLI command is supported in both central manager mode and application accelerator mode.

Note
When viewing this reference online, click the name of the command in the left column of the table to jump to the command page, which provides the command syntax, examples, and usage guidelines.

Throughout this book, the term WAAS device refers collectively to a WAAS Central Manager and a WAE. The term WAE refers collectively to the supported WAE platforms that are running the WAAS software.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) aaa accounting</td>
<td>Configures AAA accounting.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) adapter</td>
<td>Enables the EndPoint Mapper (EPM) service.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) alarm overload-detect</td>
<td>Configures the detection of alarm overload.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) asset</td>
<td>Configures the tag name for the asset tag string.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) authentication</td>
<td>Configures administrative login authentication and authorization parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) auto-register</td>
<td>Enables the discovery of a primary interface on a WAE and its automatic registration with the WAAS Central Manager through DHCP.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config-if) autosense</td>
<td>Sets the current interface to autosense.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-if) bandwidth</td>
<td>Sets the specified interface bandwidth to 10, 100, or 1000 Mbps.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) banner</td>
<td>Configures message-of-the-day, login, login and EXEC banners.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) bypass</td>
<td>Configures the bypass functions on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>cd</td>
<td>Changes the directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) cdp</td>
<td>Enables the Cisco Discovery Protocol (CDP) for the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) cdp</td>
<td>Enables CDP on an interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) central-manager</td>
<td>In application accelerator mode, used to specify the IP address of the WAAS Central Manager with which the WAE needs to register. In central manager mode, used to specify the WAAS Central Manager’s role and GUI port number.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>cifs</td>
<td>Controls CIFS adapter operations and run-time configurations.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>clear</td>
<td>Resets the counters and other specified functions.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>clock</td>
<td>Manages the system clock.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) clock</td>
<td>Sets the summer daylight saving time of day and time zone.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>cms</td>
<td>Configures the parameters for the Centralized Management System (CMS) embedded database.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) cms</td>
<td>Schedules the maintenance and enables the Centralized Management System on a specific WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>cms secure-store</td>
<td>Configures the data encryption strength used when disk encryption is enabled.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>configure*</td>
<td>Enters configuration mode from privileged EXEC mode.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy cdrom</td>
<td>Copies files from a CD-ROM.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy compactflash</td>
<td>Copies files from the Compact Flash card.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy disk</td>
<td>Copies configuration information or files from a disk.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy ftp</td>
<td>Copies files from an FTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy http</td>
<td>Copies files from an HTTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy running-config</td>
<td>Copies information from the current system configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy startup-config</td>
<td>Copies information from the startup configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy sysreport</td>
<td>Copies system troubleshooting information.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy system-status</td>
<td>Copies the system status for debugging reference.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy tech-support</td>
<td>Copies system information for technical support.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>copy tftp</td>
<td>Copies the software image from the TFTP server.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>cpfile</td>
<td>Copies a file to the current directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>debug</td>
<td>Configures the debugging options.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) delete</td>
<td>Deletes a line from the standard ACL configuration.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) delete</td>
<td>Deletes a line from the extended ACL configuration.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>delfile</td>
<td>Deletes a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>deltree</td>
<td>Deletes a directory and its subdirectories.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) deny</td>
<td>Adds a line to a standard access-list that specifies the type of packets that you want the WAAS device to drop.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) deny</td>
<td>Adds a line to an extended access-list that specifies the type of packets that you want the WAAS device to drop.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) device mode</td>
<td>Specifies the device mode of the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>dir</td>
<td>Displays the files in long list format.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>disable</td>
<td>Turns off the privileged EXEC commands.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>disk</td>
<td>Configures the disks on the WAAS device.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) disk disk-name</td>
<td>Disables a RAID-1 disk for online removal.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) disk encrypt enable</td>
<td>Enables disk encryption.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) disk error-handling</td>
<td>Configures how the disk errors should be handled.</td>
<td>global configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>dnslookup</td>
<td>Resolves a DNS hostname.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) egress-method</td>
<td>Configures the egress method for intercepted connections.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>enable*</td>
<td>Accesses the privileged EXEC commands.</td>
<td>user-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) end</td>
<td>Exits configuration and privileged EXEC modes.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) exec-timeout</td>
<td>Configures the length of time that an inactive Telnet or SSH session remains open.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>exit</td>
<td>Exits from privileged EXEC mode.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) exit</td>
<td>Exits from global configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) exit</td>
<td>Exits from interface configuration mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) exit</td>
<td>Exits from standard ACL configuration mode.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) exit</td>
<td>Exits from extended ACL configuration mode.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) external-ip</td>
<td>Configures up to a maximum of eight external IP addresses on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>find-pattern</td>
<td>Searches for a particular pattern in a file.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) flow monitor</td>
<td>Configures network traffic flow monitoring.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config-if) full-duplex</td>
<td>Sets the current interface to the full-duplex mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) half-duplex</td>
<td>Sets the current interface to half-duplex mode.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) inline</td>
<td>Configures inline interception for an inlineGroup interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>help</td>
<td>Provides assistance for the WAAS command-line interface in EXEC mode.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) help</td>
<td>Provides assistance for the WAAS command-line interface.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) hostname</td>
<td>Configures the hostname of the WAAS device in global configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) inetd enable</td>
<td>Enables FTP, RCP, and TFTP services.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>install</td>
<td>Installs a new image into Flash memory.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) interface*</td>
<td>Configures a Gigabit Ethernet, Port Channel, or Standby interface. Provides access to interface configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) ip</td>
<td>Configures the initial network device configuration settings (for example, the IP address of the default gateway) on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) ip</td>
<td>Configures the IP address, subnet mask, or DHCP IP address negotiation on the interface of the WAAS device.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) ip access-group</td>
<td>Controls the connections on a specific interface by applying a predefined access list.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ip access-list*</td>
<td>Creates and modifies the access lists for controlling access to interfaces or applications. Provides access to ACL configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) kerberos</td>
<td>Configures user authentication against a Kerberos database.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) kernel kdb</td>
<td>Enables the kernel debugger configuration mode.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>less</td>
<td>Displays the contents of a file using the LESS application.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) line</td>
<td>Specifies the terminal line settings.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) list</td>
<td>Displays a list of specified entries within the standard ACL configuration.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) list</td>
<td>Displays a list of specified entries within the extended ACL configuration.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>lls</td>
<td>Displays the files in a long list format.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) logging</td>
<td>Configures system logging (syslog).</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>ls</td>
<td>Lists the files and subdirectories in a directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>mkdir</td>
<td>Makes a directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>mkfile</td>
<td>Makes a file (for testing).</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) move</td>
<td>Moves a line to a new position within the standard ACL configuration.</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-ext-nacl) move</td>
<td>Moves a line to a new position within the extended ACL configuration.</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) mtu</td>
<td>Sets the interface Maximum Transmission Unit (MTU) packet size.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) no</td>
<td>Negates a global configuration command or sets its defaults.</td>
<td>global configuration</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config-if) no</td>
<td>Negates an interface command or restores it to its default values.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ntp</td>
<td>Configures the NTP server.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>ntpdate</td>
<td>Sets the NTP server name.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-std-nacl) permit</td>
<td>Adds a line to a standard access-list that specifies the type of packets</td>
<td>standard ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>that you want the WAAS device to permit for further processing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config-ext-nacl) permit</td>
<td>Adds a line to an extended access-list that specifies the type of packets</td>
<td>extended ACL configuration</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>that you want the WAAS device to permit for further processing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ping</td>
<td>Sends the echo packets.</td>
<td>user-level EXEC and</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>privileged-level EXEC</td>
<td></td>
</tr>
<tr>
<td>(config) policy-engine application classifier</td>
<td>Defines a WAE’s application policy and assigns the policy a name, a</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>classifier, and a policy map.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map adaptorEPM</td>
<td>Configures a WAE’s application policy with advanced policy map lists of the</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>EndPoint Mapper (EPM) service.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map adaptorWAFS transport</td>
<td>Configures a WAE’s application policies with the WAFS transport option.</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td>(config) policy-engine application map basic delete</td>
<td>Deletes a specific basic (static) application policy map from the WAE’s</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>list of application policy maps.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map basic disable</td>
<td>Enables a specific basic (static) application policy map from the WAE’s</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>list of application policy maps.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map basic insert</td>
<td>Inserts new basic (static) application policy map to the list of</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>application policy maps on a WAE.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map basic list</td>
<td>Displays a list of basic (static) application policy maps for a WAE.</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td>(config) policy-engine application map basic move</td>
<td>Moves the application policy with the basic policy map list based on L3 or</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>L4 parameters only.</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td>(config) policy-engine application map basic name</td>
<td>Configures the WAE’s application policy with the basic policy map name.</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td>(config) policy-engine application map other optimize DRE</td>
<td>Configures the WAE’s optimize DRE command action for non-classified traffic.</td>
<td>global configuration</td>
<td>application</td>
</tr>
</tbody>
</table>

Table 2-1 Command Summary (continued)
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) policy-engine application map other</td>
<td>Configures the application policy for non-classified traffic with the optimize full command action.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>optimize full</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) policy-engine application map other</td>
<td>Configures the application policy for non-classified traffic with the pass-through command action.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>pass-through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) policy-engine application name</td>
<td>Creates a new application definition that specifies general information about an application.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) policy-engine config</td>
<td>Removes all of the application policy configuration or restores the application policy factory defaults on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) port-channel</td>
<td>Configures the Port Channel load-balancing options.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) primary-interface</td>
<td>Configures a primary interface for the WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) print-services</td>
<td>Enables and disables WAAS print services and configures an administrative group.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>pwd</td>
<td>Displays the present working directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) radius-server</td>
<td>Configures the RADIUS parameters on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>reload</td>
<td>Halts a device and performs a cold restart.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>rename</td>
<td>Renames a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>restore</td>
<td>Restores a device to its manufactured default status.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>rmdir</td>
<td>Removes a directory.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>scp</td>
<td>Specifies the SCP client.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>script</td>
<td>Checks the errors in a script or executes a script.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>setup</td>
<td>Configures the basic configuration settings. Invokes the interactive setup utility.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show aaa accounting</td>
<td>Displays the AAA accounting configuration.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show adapter</td>
<td>Displays the status and configuration of the EndPoint Mapper (EPM) adapter.</td>
<td>privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show alarms</td>
<td>Displays information on various types of alarms, their status, and history.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show arp</td>
<td>Displays the ARP entries.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show authentication</td>
<td>Displays the authentication configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show auto-register</td>
<td>Displays the status of auto registration feature for a WAE.</td>
<td>privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show bypass</td>
<td>Displays the bypass configuration of a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show cdp</td>
<td>Displays the CDP configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show cifs</td>
<td>Displays CIFS run-time information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show clock</td>
<td>Displays the system clock.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show cms</td>
<td>Displays the management service information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show debugging</td>
<td>Displays the state of each debugging option.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show device-mode</td>
<td>Displays the device mode.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show disks</td>
<td>Displays the disk configurations.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show egress-methods</td>
<td>Displays the egress method that is configured and that is being used on a particular WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show flash</td>
<td>Displays the flash memory information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show hardware</td>
<td>Displays the system hardware information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show hosts</td>
<td>Displays the IP domain name, name servers, IP addresses, and host table.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show inetd</td>
<td>Displays the status of TCP/IP services.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show interface</td>
<td>Displays the hardware interface information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show inventory</td>
<td>Displays the system inventory information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ip access-list</td>
<td>Displays the information about access lists that are defined and applied to specific interfaces or applications.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ip routes</td>
<td>Displays the IP routing table.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show kerberos</td>
<td>Displays the Kerberos authentication configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>show key-manager</td>
<td>Displays the key manager information for each WAAS device.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>central manager</td>
</tr>
<tr>
<td>show logging</td>
<td>Displays the system logging configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show memory</td>
<td>Displays the memory blocks and statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ntp</td>
<td>Displays the NTP configuration status.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show policy-engine application</td>
<td>Displays the display application policy information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show policy-engine status</td>
<td>Displays the policy-engine high-level information. This information includes the usage of the available resources, which include application names, classifiers, and conditions.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show print-services</td>
<td>Displays the print services administrator and process information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show processes</td>
<td>Displays the process status.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show radius-server</td>
<td>Displays the RADIUS server information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show running-config</td>
<td>Displays the current operating configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show services</td>
<td>Displays information related to services.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show smb-conf</td>
<td>Displays the smb-conf configurations.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show snmp</td>
<td>Displays the SNMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show ssh</td>
<td>Displays the status and configuration of the Secure Shell (SSH) service.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show standby</td>
<td>Displays the information related to the standby interface.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show startup-config</td>
<td>Displays the startup configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics authentication</td>
<td>Displays the authentication statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics cifs</td>
<td>Displays the CIFS statistics information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics content-distribution-network</td>
<td>Displays the status of a WAE or group of WAAS that are registered with the WAAS Central Manager.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>central manager</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show statistics dre</td>
<td>Displays the Data Redundancy Elimination (DRE) statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics dre</td>
<td>Displays the DRE connection statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics dre peer</td>
<td>Displays the DRE peer statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics epm</td>
<td>Displays the DCE-RPC EPM statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics icmp</td>
<td>Displays the ICMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics ip</td>
<td>Displays the IP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics key-manager</td>
<td>Displays the key manager information for each WAAS device.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>central manager</td>
</tr>
<tr>
<td>show statistics netstat</td>
<td>Displays the Internet socket connection statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics radius</td>
<td>Displays the RADIUS authentication statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics services</td>
<td>Displays the services statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics snmp</td>
<td>Displays the SNMP statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics tacacs</td>
<td>Displays the TACACS+ authentication and authorization statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics tcp</td>
<td>Displays the Transmission Control Protocol statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics tfo</td>
<td>Displays the Transport Flow Optimization (TFO) statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics udp</td>
<td>Displays the User Datagram Protocol (UDP) statistics.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show statistics wccp</td>
<td>Displays the WCCP statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show statistics windows-domain</td>
<td>Displays the Windows domain configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show sysfs volumes</td>
<td>Displays the system file system (SYSFS) information.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show tacacs</td>
<td>Displays the TACACS+ configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show tcp</td>
<td>Displays the TCP configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show tech-support</td>
<td>Displays the system information for Cisco technical support.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>show telnet</td>
<td>Displays the Telnet services configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show tfo accelerators</td>
<td>Displays the Transport Flow Optimization (TFO) information including the accelerators, auto-discovery, buffer manager information, connection and status for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo auto-discovery</td>
<td>Displays TFO auto-discovery statistics for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo bufpool</td>
<td>Displays TFO buffer pool information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo connection</td>
<td>Displays TFO connection information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo egress-methods</td>
<td>Displays detailed information about the egress methods for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo filtering</td>
<td>Displays TFO flow information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo status</td>
<td>Displays TFO status information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show tfo synq</td>
<td>Displays TFO statistics for the SynQ module.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show transaction-logging</td>
<td>Displays the transaction logging information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show user</td>
<td>Displays information about a particular user.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show users administrative</td>
<td>Displays the administrative users.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show version</td>
<td>Displays the software version.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>show wccp</td>
<td>Displays the WCCP information for a WAE.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>show windows-domain</td>
<td>Displays the Windows domain configuration.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) shutdown</td>
<td>Shuts down the specified interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>shutdown</td>
<td>Shuts down the device (stops all applications and operating system).</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) smb-conf</td>
<td>Manually configures parameters in the Samba configuration file, smb-conf.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) snmp-server access-list</td>
<td>Configures an access control list to allow access through an SNMP agent.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) snmp-server community</td>
<td>Enables SNMP; sets the community string, optionally names the group, and enables the read-write access with the community string.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
<td>CLI Mode</td>
<td>Device Mode</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(config) snmp-server contact</td>
<td>Specifies the text for the system contact MIB object.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) snmp-server enable</td>
<td>Enables the SNMP traps.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>traps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) snmp-server group</td>
<td>Defines a user security model group.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) snmp-server host</td>
<td>Specifies the hosts to receive SNMP traps.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) snmp-server mib</td>
<td>Configures the persistence for the SNMP Event MIB.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>persist event</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) snmp-server notify</td>
<td>Configures the SNMP inform request.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>inform</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(config) snmp-server user</td>
<td>Defines a user who can access the SNMP engine.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>view</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>snmp trigger</td>
<td>Creates or deletes SNMP triggers on a MIB variable.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>ssh</td>
<td>Allows secure encrypted communications between an untrusted client</td>
<td>user-level EXEC and</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>machine and a WAAS device over an insecure network.</td>
<td>privileged-level EXEC</td>
<td></td>
</tr>
<tr>
<td>(config) sshd</td>
<td>Configures the parameters for the Secure Shell (SSH) service.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) ssh-key-generate</td>
<td>Generates a SSH host key.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config-if) standby</td>
<td>Configures an interface to be a backup for another interface.</td>
<td>interface configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) tacacs</td>
<td>Configures the TACACS+ parameters on a WAAS device.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>(config) tcp</td>
<td>Configures the TCP parameters.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>tcpdump</td>
<td>Dumps the TCP traffic on the network.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>telnet</td>
<td>Starts the Telnet client.</td>
<td>user-level EXEC and</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>privileged-level EXEC</td>
<td></td>
</tr>
<tr>
<td>(config) telnet enable</td>
<td>Enables the Telnet services.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>terminal</td>
<td>Sets the terminal output commands.</td>
<td>user-level EXEC and</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td>privileged-level EXEC</td>
<td></td>
</tr>
<tr>
<td>tethereal</td>
<td>Analyzes network traffic from the command line.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) tfo auto-discovery</td>
<td>Discovers origin servers that cannot receive TCP packets with</td>
<td>global configuration</td>
<td>application</td>
</tr>
<tr>
<td></td>
<td>options and adds the IP addresses to a blacklist for a specified</td>
<td></td>
<td>accelerator</td>
</tr>
<tr>
<td></td>
<td>number of minutes.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) tfo optimize</td>
<td>Configures TFO optimization for DRE or full generic optimization on the WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp keepalive</td>
<td>Configures TFO optimization with TCP keepalive on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp optimized-mss</td>
<td>Configures TFO optimization with optimized-side TCP maximum segment size on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp optimized-receive-buffer</td>
<td>Configures TFO optimization with an optimized-side receive buffer on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp optimized-send-buffer</td>
<td>Configures TFO optimization with an optimized-side send buffer on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-mss</td>
<td>Configures TFO optimization with an unoptimized-side TCP maximum segment size on the WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-receive-buffer</td>
<td>Configures TFO optimization with an unoptimized-side receive buffer on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) tfo tcp original-send-buffer</td>
<td>Configures TFO optimization with an unoptimized-side send buffer on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>traceroute</td>
<td>Traces the route to a remote host.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>transaction-log</td>
<td>Forces the transaction logging for TFO and export on a WAE.</td>
<td>privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) transaction-logs</td>
<td>Configures the transaction logging on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>type</td>
<td>Displays a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>type-tail</td>
<td>Displays the last several lines of a file.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>undebug</td>
<td>Disables the debugging functions. (See debug.)</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) username</td>
<td>Establishes the username authentication.</td>
<td>global configuration</td>
<td>All</td>
</tr>
<tr>
<td>wafs</td>
<td>Performs backup or restores system configuration, and creates a system report on a WAE.</td>
<td>privileged-level EXEC</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) wccp access-list</td>
<td>Configures the IP access list for inbound Web Cache Coordination Protocol (WCCP) GRE-encapsulated traffic on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) wccp flow-redirect enable</td>
<td>Enables the WCCP flow redirection on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) wccp router-list</td>
<td>Creates a router list on a WAE for use in the WCCP Version 2 services.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
</tbody>
</table>
Table 2-1 Command Summary (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>CLI Mode</th>
<th>Device Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>(config) wccp shutdown</td>
<td>Sets the maximum time interval after which the WAE will perform a clean shutdown.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) wccp tcp-promiscuous</td>
<td>Configures the TCP promiscuous mode service (WCCP Version 2 services 61 and 62) on a WAE.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>(config) wccp version</td>
<td>Specifies the WCCP version number.</td>
<td>global configuration</td>
<td>application accelerator</td>
</tr>
<tr>
<td>whoami</td>
<td>Displays the name of the current user.</td>
<td>user-level EXEC and privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Accesses Windows domain utilities.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>(config) windows-domain</td>
<td>Configures Windows domain server options.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
<tr>
<td>write</td>
<td>Writes or erases the startup configurations to NVRAM or to a terminal session, or writes the MIB persistence configuration to disk.</td>
<td>privileged-level EXEC</td>
<td>All</td>
</tr>
</tbody>
</table>
This chapter provides detailed information for the following types of CLI commands for the WAAS software:

- EXEC mode commands you can enter after you log in to the WAAS device. See the “EXEC Mode Commands” section for a complete listing of commands.
- Global configuration mode commands that you can enter after you log in to the WAAS device and access global configuration mode. See the “Configuration Mode Commands” section for a complete listing of commands.
- Interface configuration mode commands that you can enter after you access global configuration mode (see the “Interface Configuration Mode Commands” section for a complete listing of commands.
- Standard or extended ACL configuration mode commands that you can enter after you access global configuration mode (see the “Standard ACL Configuration Mode Commands” and “Extended ACL Configuration Mode Commands” sections for a complete listing of commands.

The description of each command includes the following:

- The syntax of the command, default values, command modes, usage guidelines, and examples.
- Any related commands, when appropriate

See Chapter 1, “Using the WAAS Command-Line Interface” for a discussion about using the CLI and about the CLI command modes.
EXEC Mode Commands

Use the EXEC mode for setting, viewing, and testing system operations. In general, the user EXEC commands allow you to connect to remote devices, change terminal line settings on a temporary basis, perform basic tests, and list system information.

The EXEC mode is divided into two access levels: user and privileged.

The user EXEC mode is used by local and general system administrators, while the privileged EXEC mode is used by the root administrator. Use the `enable` and `disable` commands to switch between the two levels. Access to the user-level EXEC command line requires a valid password.

The user-level EXEC commands are a subset of the privileged-level EXEC commands. The user-level EXEC prompt is the hostname followed by a right angle bracket (>). The prompt for the privileged-level EXEC command line is the pound sign (#). To execute an EXEC command, enter the command at the EXEC system prompt and press the `Return` key.

Note
You can change the hostname using the `hostname` global configuration command.

In the following example, a user accesses the privileged-level EXEC command line from the user level:

```
WAE> enable
WAE#
```

To leave EXEC mode, use the `exit` command at the system prompt:

```
WAE# exit
WAE>
```
cd

To change from one directory to another directory in the WAAS software, use the `cd` EXEC command.

```
cd directoryname
```

Syntax Description

| `directoryname` | Directory name. |

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this command to navigate between directories and for file management. The directory name becomes the default prefix for all relative paths. Relative paths do not begin with a slash (/). Absolute paths begin with a slash (/).

Examples

The following example shows how to change to a directory using a relative path:

```
WAE(config)# cd local1
```

The following example shows how to change to a directory using an absolute path:

```
WAE(config)# cd /local1
```

Related Commands

deltree
dir
lls
ls
mkdir
pwd
To control CIFS adapter operations and run-time configurations, use the `cifs` EXEC command.

```
cifs { auto-discovery [disable | enable ] | reset-log } | mss value | restart [core | edge ] | reverse-dns { active | disable | enable } | session disconnect [client-ip ipaddress | server-ip ipaddress ]
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-discovery</td>
<td>Controls CIFS auto-discovery configuration and debug.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables CIFS server auto-discovery.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables CIFS server auto-discovery.</td>
</tr>
<tr>
<td>reset-log</td>
<td>Resets the log memory.</td>
</tr>
<tr>
<td>mss</td>
<td>Sets the TCP maximum segment size (MSS) for the CIFS adapter.</td>
</tr>
<tr>
<td>value</td>
<td>Maximum segment size. This value must be an integer in the range of 512–1460.</td>
</tr>
<tr>
<td>restart</td>
<td>Restarts the CIFS application.</td>
</tr>
<tr>
<td>core</td>
<td>Restarts the CIFS application on the Core WAE.</td>
</tr>
<tr>
<td>edge</td>
<td>Restarts the CIFS application on the Edge WAE.</td>
</tr>
<tr>
<td>reverse-dns</td>
<td>Uses reverse DNS to resolve server names on the Core WAE.</td>
</tr>
<tr>
<td>active</td>
<td>Checks whether reverse DNS is active.</td>
</tr>
<tr>
<td>disable</td>
<td>Deactivates reverse DNS on the Core WAE.</td>
</tr>
<tr>
<td>enable</td>
<td>Activates reverse DNS on the Core WAE.</td>
</tr>
<tr>
<td>session</td>
<td>Configures operations on active CIFS sessions.</td>
</tr>
<tr>
<td>disconnect</td>
<td>Disconnects the CIFS sessions.</td>
</tr>
<tr>
<td>client-ip</td>
<td>Sets the client IP address or address set.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>IP address.</td>
</tr>
<tr>
<td>server-ip</td>
<td>Sets the server IP address or address set.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Use the `cifs restart` command to restart the WAFS services for a configuration change without having to reboot the WAE.

Related Commands

- `show cifs`
- `show statistics cifs`
clear

To clear the hardware interface, statistics, and other settings, use the `clear` EXEC command.

```
clear arp-cache [ipaddress \ interface {GigabitEthernet 1-2/port \ PortChannel 1-2 \ Standby 1-4}]
```

clear cache dre

clear cdp {counters \ table}

clear ip access-list counters [acl-num \ acl-name]

clear logging

clear statistics {all \ authentication \ epm \ flow monitor tcpstat-v1 \ history \ icmp \ inline \ ip \ radius \ running \ tacacs \ tcp \ udp \ windows-domain}

clear statistics dre [connection \ global \ nack \ peer]

clear statistics tfo {all \ auto-discovery \ blacklist \ filtering \ peer \ policy-engine \ synq}

clear windows-domain-log

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arp-cache</td>
<td>Clears the ARP cache.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>Clears all ARP entries for the IP address.</td>
</tr>
<tr>
<td>interface</td>
<td>Clears all ARP entries on the interface.</td>
</tr>
<tr>
<td>GigabitEthernet</td>
<td>GigabitEthernet interface.</td>
</tr>
<tr>
<td>1-2/port</td>
<td>GigabitEthernet slot/port.</td>
</tr>
<tr>
<td>PortChannel</td>
<td>PortChannel interface.</td>
</tr>
<tr>
<td>1-2</td>
<td>PortChannel number. Values are 1 or 2.</td>
</tr>
<tr>
<td>Standby</td>
<td>Standby interface.</td>
</tr>
<tr>
<td>1-4</td>
<td>Standby interface number 1, 2, 3, or 4.</td>
</tr>
<tr>
<td>cache</td>
<td>Clears cached objects.</td>
</tr>
<tr>
<td>dre</td>
<td>Clears the DRE cache.</td>
</tr>
<tr>
<td>cdp</td>
<td>Resets the Cisco Discovery Protocol (CDP) statistical data.</td>
</tr>
<tr>
<td>counters</td>
<td>Clears the CDP counters.</td>
</tr>
<tr>
<td>table</td>
<td>Clears the CDP tables.</td>
</tr>
<tr>
<td>ip access-list</td>
<td>Clears the IP access list statistical information.</td>
</tr>
<tr>
<td>counters</td>
<td>Clears the IP access list counters.</td>
</tr>
<tr>
<td>acl-num</td>
<td>(Optional) Clears the counters for the specified access list, identified</td>
</tr>
<tr>
<td></td>
<td>using a numeric identifier (standard access list: 1–99; extended access</td>
</tr>
<tr>
<td></td>
<td>list: 100–199).</td>
</tr>
<tr>
<td>acl-name</td>
<td>(Optional) Clears the counters for the specified access list, identified</td>
</tr>
<tr>
<td></td>
<td>using an alphanumeric identifier of up to 30 characters, beginning with a</td>
</tr>
<tr>
<td></td>
<td>letter.</td>
</tr>
<tr>
<td>logging</td>
<td>Clears the syslog messages saved in the disk file.</td>
</tr>
</tbody>
</table>
statistics Clear the statistics as specified.
all Clear all statistics.
authentication Clear the authentication statistics.
dre Clear the Data Redundancy Elimination (DRE) statistics.
connection (Optional) Clear all DRE connection statistics.
global (Optional) Clear the global DRE statistics.
ack (Optional) Clear all DRE NACK statistics.
peer (Optional) Clear all DRE peer statistics.
epm Clear the DCE-RPC EPM statistics.
flow Clear the network traffic flow statistics.
monitor Clear the monitor flow performance statistics.
tcpstat-v1 Clear the tcpstat-v1 collector statistics.
history Clear the statistics history.
icmp Clear the ICMP statistics.
inline Clear the inline interception statistics.
ip Clear the IP statistics.
radius Clear the RADIUS statistics.
running Clear the running statistics.
tacacs Clear the TACACS+ statistics.
tcp Clear the TCP statistics.
udp Clear the UDP statistics.
windows-domain Clear the Windows domain statistics.
tfo Clear the TCP flow optimization (TFO) statistics.
all Clear all of the TFO statistics.
auto-discovery Clear the TFO auto-discovery statistics.
blacklist Clear the TFO blacklist statistics.
filtering Clear the TFO filter table statistics.
peer Clear the TFO peer statistics.
policy-engine Clear the TFO application and pass-through statistics.
synq Clear the TFO SynQ module statistics.
windows-domain-log Clear the Samba, Kerberos, and Winbind log files.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager
Usage Guidelines

After you use the `clear cache dre` command, the first 1 MB of data is not optimized. Cisco WAAS does not optimize the first 1 MB of data after a restart of the tcpproxy service. Data transmitted after the first 1 MB of data will be optimized according to the configured policy.

The `clear logging` command removes all current entries from the `syslog.txt` file, but does not make an archive of the file. It puts a “Syslog cleared” message in the `syslog.txt` file to indicate that the syslog has been cleared, as shown in the following example:

Feb 14 12:17:18 WAE# exec_clear_logging:Syslog cleared

The `clear statistics` command clears all statistical counters from the parameters given. Use this command to monitor fresh statistical data for some or all features without losing cached objects or configurations.

The `clear windows-domain-log` command removes all current entries from the Windows domain log file.

Examples

The following example clears all entries in the `syslog.txt` file on the WAAS device:

```
WAE# clear logging
```

The following example clears all authentication, RADIUS and TACACS+ information on the WAAS device:

```
WAE# clear statistics radius
WAE# clear statistics tacacs
WAE# clear statistics authentication
```

The following example clears all entries in the Windows domain log file on the WAAS device:

```
WAE# clear windows-domain-log
```
clear users

To clear user connections or to unlock users that have been locked out, use the clear users EXEC command.

```
clear users [administrative | locked-out {all | username username}]
```

Syntax Description

- `users`: Clears the connections (logins) of authenticated users.
- `administrative`: Clears the connections (logins) of administrative users authenticated through a remote login service.
- `locked-out all`: Unlocks all locked-out user accounts.
- `locked-out username`: Unlocks the specified locked-out user account.
- `username`: The account username to be unlocked.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The clear users administrative command clears the connections for all administrative users who are authenticated through a remote login service, such as TACACS. This command does not affect an administrative user who is authenticated through the local database.

The clear users locked-out command unlocks user accounts that have been locked out. If strong password policy is enabled (see (config) authentication strict-password-policy) a user account will be locked out if the user fails three consecutive login attempts. (This does not apply to the “admin” account.)

Examples

The following example clears the connections of all authenticated users:

```
WAE(config)# clear users
```

The following example clears the connections of all administrative users authenticated through a remote login service (it does not affect administrative users authenticated through the local database):

```
WAE(config)# clear users administrative
```

The following example unlocks all locked-out user accounts:

```
WAE(config)# clear users locked-out all
```
The following example unlocks the account for username darcy:

```
WAE(config)# clear users locked-out username darcy
```
clock

To set clock functions or update the calendar, use the `clock` EXEC command. To clear clock functions and calendar, use the `no` form of this command.

```
clock {read-calendar | set time day month year | update-calendar}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>read-calendar</code></td>
<td>Reads the calendar and updates the system clock.</td>
</tr>
<tr>
<td><code>set</code></td>
<td>Sets the time and date.</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Current time in hh:mm:ss format (hh: 00–23; mm: 00–59; ss: 00–59).</td>
</tr>
<tr>
<td><code>day</code></td>
<td>Day of the month (1–31).</td>
</tr>
<tr>
<td><code>month</code></td>
<td>Month of the year (January, February, March, April, May, June, July, August, September, October, November, December).</td>
</tr>
<tr>
<td><code>year</code></td>
<td>Year (1993–2035).</td>
</tr>
<tr>
<td><code>update-calendar</code></td>
<td>Updates the calendar with the system clock.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

If you have an outside source on your network that provides time services (such as a NTP server), you do not need to set the system clock manually. When setting the clock, enter the local time. The WAAS device calculates the UTC based on the time zone set by the `clock timezone` global configuration command.

Two clocks exist in the system: the software clock and the hardware clock. The software uses the software clock. The hardware clock is used only at bootup to initialize the software clock.

The `set` keyword sets the software clock.

Examples

The following example sets the software clock on the WAAS device:

```
WAE# clock set 13:32:00 01 February 2005
```

Related Commands

`show clock`
To configure the Centralized Management System (CMS) embedded database parameters for a WAAS device, use the `cms EXEC` command.

```
cms { config-sync | database { backup | create | delete | downgrade { script filename } | lcm { enable | disable } | maintenance { full | regular } | restore filename | validate } | deregister { force } | recover { identity word } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config-sync</td>
<td>Sets the node to synchronize configuration with the WAAS Central Manager.</td>
</tr>
<tr>
<td>database</td>
<td>Creates, backs up, deletes, restores, or validates the CMS-embedded database management tables or files.</td>
</tr>
<tr>
<td>backup</td>
<td>Backs up the database management tables.</td>
</tr>
<tr>
<td>create</td>
<td>Creates the embedded database management tables.</td>
</tr>
<tr>
<td>delete</td>
<td>Deletes the embedded database files.</td>
</tr>
<tr>
<td>downgrade</td>
<td>Downgrades the CMS database.</td>
</tr>
<tr>
<td>script (Optional)</td>
<td>Downgrades the CMS database by applying a downgrade script.</td>
</tr>
<tr>
<td>filename</td>
<td>Downgraded script filename.</td>
</tr>
<tr>
<td>lcm</td>
<td>Configures local/central management on a WAAS device that is registered with the WAAS Central Manager.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables synchronization of the WAAS network configuration of the device with the local CLI configuration.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables synchronization of the WAAS network configuration of the device with the local CLI configuration.</td>
</tr>
<tr>
<td>maintenance</td>
<td>Cleans and reindexes the embedded database tables.</td>
</tr>
<tr>
<td>full</td>
<td>Specifies a full maintenance routine for the embedded database tables.</td>
</tr>
<tr>
<td>regular</td>
<td>Specifies a regular maintenance routine for the embedded database tables.</td>
</tr>
<tr>
<td>restore</td>
<td>Restores the database management tables using the backup local filename.</td>
</tr>
<tr>
<td>filename</td>
<td>Database local backup filename.</td>
</tr>
<tr>
<td>validate</td>
<td>Validates the database files.</td>
</tr>
<tr>
<td>deregister</td>
<td>Removes the registration of the CMS proto device.</td>
</tr>
<tr>
<td>force (Optional)</td>
<td>Forces the removal of the node registration.</td>
</tr>
<tr>
<td>recover</td>
<td>Recovers the identity of a WAAS device.</td>
</tr>
<tr>
<td>identity</td>
<td>Specifies the identity of the recovered device.</td>
</tr>
<tr>
<td>word</td>
<td>Identity of the recovered device.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC
Usage Guidelines

The WAAS network is a collection of WAAS device and WAAS Central Manager nodes. One primary WAAS Central Manager retains the WAAS network settings and provides other WAAS network nodes with updates. Communication between nodes occurs over secure channels using the Secure Shell Layer (SSL) protocol, where each node on the WAAS network uses a Rivest, Shamir, Adelman (RSA) certificate-key pair to communicate with other nodes.

Use the `cms config-sync` command to enable registered WAAS devices and standby WAAS Central Manager to contact the primary WAAS Central Manager immediately for a getUpdate (get configuration poll) request before the default polling interval of 5 minutes. For example, when a node is registered with the primary WAAS Central Manager and activated, it appears as Pending in the WAAS Central Manager GUI until it sends a getUpdate request. The `cms config-sync` command causes the registered node to send a getUpdate request at once, and the status of the node changes as Online.

Use the `cms database create` command to initialize the CMS database. Before a node can join a WAAS network, it must first be registered and then activated. The `cms enable` global configuration command automatically registers the node in the database management tables and enables the CMS. The node sends its attribute information to the WAAS Central Manager over the SSL protocol and then stores the new node information. The WAAS Central Manager accepts these node registration requests without admission control and replies with registration confirmation and other pertinent security information required for getting updates. Activate the node using the WAAS Central Manager GUI.

Once the node is activated, it automatically receives configuration updates and the necessary security RSA certificate-key pair from the WAAS Central Manager. This security key allows the node to communicate with any other node in the WAAS network. The `cms deregister` command removes the node from the WAAS network by deleting registration information and database tables.

To back up the existing management database for the WAAS Central Manager, use the `cms database backup` command. For database backups, specify the following items:

- Location, password, and user ID
- Dump format in PostgreSQL plain text syntax

The naming convention for backup files includes the time stamp.

Note

For information on the procedure to back up and restore the CMS database on the WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.

When you use the `cms recover identity` word command when recovering lost registration information, or replacing a failed node with a new node that has having the same registration information, you must specify the device recovery key that you configured in the Modifying Config Property, System.device.recovery.key window of the WAAS Central Manager GUI.

Use the `lcm` command to configure local/central management (LCM) on a WAE. The LCM feature allows settings that are configured using the device CLI or GUI to be stored as part of the WAAS network-wide configuration data (enable or disable).

When you enter the `cms lcm enable` command, the CMS process running on WAEs and the standby WAAS Central Manager detects the configuration changes that you made on these devices using CLIs and sends the changes to the primary WAAS Central Manager.
When you enter the **cms lcm disable** command, the CMS process running on the WAEs and the standby WAAS Central Manager does not send the CLI changes to the primary WAAS Central Manager. Settings configured using the device CLIs will not be sent to the primary WAAS Central Manager.

If LCM is disabled, the settings configured through the WAAS Central Manager GUI will overwrite the settings configured from the WAEs; however, this rule applies only to those local device settings that have been overwritten by the WAAS Central Manager when you have configured the local device settings. If you (as the local CLI user) change the local device settings after the particular configuration has been overwritten by the WAAS Central Manager, the local device configuration will be applicable until the WAAS Central Manager requests a full device statistics update from the WAEs (clicking the **Force full database update** button from the Device Home window of the WAAS Central Manager GUI triggers a full update). When the WAAS Central Manager requests a full update from the device, the WAAS Central Manager settings will overwrite the local device settings.

Examples

The following example backs up the cms database management tables on the WAAS Central Manager named waas-cm:

```
waas-cm# cms database backup
creating backup file with label `backup'
backup file local1/acns-db-9-22-2002-17-36.dump is ready. use `copy' commands to move the backup file to a remote host.
```

The following example validates the cms database management tables on the WAAS Central Manager named waas-cm:

```
waas-cm# cms database validate
Management tables are valid
```

Related Commands

- **(config) cms**
- **show cms**
cms secure-store

To configure secure store encryption, use the `cms secure-store` commands.

```
    cms secure-store { init | open | change | clear }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>init</td>
<td>Initializes secure store encryption on the WAAS device. Secure store encryption is not active until you subsequently execute the <code>cms secure-store open</code> command. On the Central Manager, this command prompts you to enter the secure store encryption pass phrase.</td>
</tr>
<tr>
<td>open</td>
<td>Activates secure store encryption (the WAAS encrypts the stored data using secure store encryption). Secure store encryption must already be initialized using the <code>cms secure-store init</code> command. On the Central Manager, this command prompts you to enter the secure store encryption pass phrase.</td>
</tr>
<tr>
<td>change</td>
<td>Changes the secure store encryption pass phrase and encryption key. On the Central Manager this command prompts you to enter and confirm the new pass phrase. The WAAS device uses the pass phrase to generate the encryption key for secure disk encryption.</td>
</tr>
<tr>
<td>clear</td>
<td>Disables secure store encryption.</td>
</tr>
</tbody>
</table>

Defaults

The standard encryption and key management is the default.

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Secure storage encryption provides stronger encryption and key management for your WAAS system. The WAAS Central Manager and WAE devices use secure storage encryption for handling passwords, managing encryption keys, and for data encryption.

When you use the `cms secure-store` EXEC command to enable secure store on the Central Manager, or a WAE device, the WAAS system uses strong encryption algorithms and key management policies to protect certain data on the system. This data includes encryption keys used by applications in the WAAS system, CIFS passwords, and user login passwords.

When secure store is enabled on Central Manager, the data is encrypted using an key encryption key generated from the pass phrase you enter with SHA-1 hashing and an AES 256-bit algorithm. When secure store is enabled on a WAE device, the data is encrypted using a 256-bit key encryption key.
generated by SecureRandom, a cryptographically strong pseudorandom number. You must enter a password to enable secure store. You must enter this password through the console terminal every time the Central Manager is rebooted.

When you enable secure store on a WAE, the WAE initializes and retrieves a new encryption key from the Central Manager. The WAE uses this key to encrypt WAAS password credentials stored on the WAE, and to encrypt the disk if disk encryption is also enabled. When you reboot the WAE after enabling secure store, the WAE retrieves the key from the Central Manager automatically, allowing normal access to the data that is stored in WAAS persistent storage.

Examples

The following example shows how to initialize and activate secure store encryption on the WAAS Central Manager:

```
waas-cm# cms secure-store init
enter pass-phrase(case-sensitive, no less than 8 characters)***********
re-enter pass-phrase***********
successfully initialized secure-store.

waas-cm# cms secure-store open
stopping cms..stopped
stopping keymgr..stopped.
enter pass-phrase: <pass phrase>
successfully updated cifs password in database.
successfully opened secure-store.
starting cms..started.
starting keymgr..started.
waas-cm#
```

The following example shows how to deactivates secure store encryption:

```
waas-cm# cms secure-store clear
stopping cms..stopped
stopping keymgr..stopped.
successfully updated cifs password in database.
secure-store clear
starting cms..started.
starting keymgr..started.
waas-cm#
```

Related Commands

`show cms secure-store`
configure

To enter global configuration mode, use the `configure` EXEC command. You must be in global configuration mode to enter global configuration commands.

```
configure
```

To exit global configuration mode, use the `end` or `exit` commands. You can also press `Ctrl-Z` to exit from global configuration mode.

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use this command to enter global configuration mode.

Examples
The following example shows how to enable global configuration mode on a WAAS device:
```
WAE# configure
WAE(config)#
```

Related Commands
(config) end
(config) exit
show running-config
show startup-config
copy cdrom

To copy software release files from a CD-ROM, use the `copy cdrom` EXEC command.

```
copy cdrom install filedir filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cdrom</code></td>
<td>Copies a file from the CD-ROM.</td>
</tr>
<tr>
<td><code>install</code></td>
<td>Installs the software release file.</td>
</tr>
<tr>
<td><code>filedir</code></td>
<td>Directory location of the software release file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Filename of the software release file.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Related Commands

`install`
`reload`
`show running-config`
`show startup-config`
`wafs`
`write`
copy compactflash

To copy software release files from a CompactFlash card, use the **copy compactflash** EXEC command.

```
copy compactflash install filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compactflash</td>
<td>Copies a file from the CompactFlash card.</td>
</tr>
<tr>
<td>install</td>
<td>Installs a software release file.</td>
</tr>
<tr>
<td>filename</td>
<td>Image filename.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Related Commands

install
reload
show running-config
show startup-config
wafs
write
copy disk

To copy the configuration or image data from a disk to a remote location using FTP or to the startup configuration, use the copy disk EXEC command.

```
copy disk {ftp [hostname | ip-address] remotefiledir remotefilename localfilename | startup-config filename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk</td>
<td>Copies a local disk file.</td>
</tr>
<tr>
<td>ftp</td>
<td>Copies to a file on an FTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the FTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the FTP server.</td>
</tr>
<tr>
<td>remotefiledir</td>
<td>Directory on the FTP server to which the local file is copied.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the local file once it has been copied to the FTP server.</td>
</tr>
<tr>
<td>localfilename</td>
<td>Name of the local file to be copied.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Copies the configuration file from the disk to startup configuration (NVRAM).</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the existing configuration file.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the `copy disk ftp` EXEC command to copy files from a SYSFS partition to an FTP server. Use the `copy disk startup-config` EXEC command to copy a startup configuration file to NVRAM.

Related Commands

- install
- reload
- show running-config
- show startup-config
- wafs
- write
To copy software configuration or image data from an FTP server, use the `copy ftp` EXEC command.

```
copy ftp {central | hostname \ ip-address} remotefiledir remotefilename slotnumber [username
username password | proxy \ hostname \ ip-address \ proxy_portnum username username
password] | port port-num \ md5 md5sum | disk \ hostname \ ip-address \ remotefiledir
remotefilename localfilename | install \ hostname \ ip-address \ remotefiledir remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>Copies a file from an FTP server.</td>
</tr>
<tr>
<td>central</td>
<td>Copies a file to the software upgrade image repository.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the FTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the FTP server.</td>
</tr>
<tr>
<td>remotefiledir</td>
<td>Directory on the FTP server where the image file to be copied is located.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the file to be copied to the image repository.</td>
</tr>
<tr>
<td>slotnumber</td>
<td>Slot location (1–5) into which the upgrade image is to be copied.</td>
</tr>
<tr>
<td>username</td>
<td>(Optional) Specifies FTP authentication.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Clear text of the username.</td>
</tr>
<tr>
<td>password</td>
<td>(Optional) Password for FTP authentication.</td>
</tr>
<tr>
<td>proxy</td>
<td>(Optional) Specifies proxy address.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Hostname of the proxy server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>(Optional) IP address of the proxy server.</td>
</tr>
<tr>
<td>proxy_portnum</td>
<td>(Optional) Port number on the proxy server.</td>
</tr>
<tr>
<td>username</td>
<td>(Optional) Specifies the proxy server authentication username.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Clear text of the username.</td>
</tr>
<tr>
<td>password</td>
<td>(Optional) Password for proxy server authentication.</td>
</tr>
<tr>
<td>port</td>
<td>(Optional) Specifies port at which to connect to the FTP server.</td>
</tr>
<tr>
<td>port-num</td>
<td>(Optional) Port number on the FTP server.</td>
</tr>
<tr>
<td>md5</td>
<td>(Optional) Specifies MD5 signature of the file being copied.</td>
</tr>
<tr>
<td>md5sum</td>
<td>(Optional) MD5 signature.</td>
</tr>
<tr>
<td>disk</td>
<td>Copies a file to a local disk.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the FTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the FTP server.</td>
</tr>
<tr>
<td>remotefiledir</td>
<td>Directory on the FTP server where the file to be copied is located.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>(Optional) Name of the file to be copied to the local disk.</td>
</tr>
<tr>
<td>localfilename</td>
<td>(Optional) Name of the copied file as it appears on the local disk.</td>
</tr>
<tr>
<td>install</td>
<td>(Optional) Copies the file from an FTP server and installs the software</td>
</tr>
<tr>
<td></td>
<td>release file to the local device.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Name of the FTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>(Optional) IP address of the FTP server.</td>
</tr>
<tr>
<td>remotefiledir</td>
<td>Remote file directory.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename.</td>
</tr>
</tbody>
</table>
Defaults
No default behaviors or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the **copy ftp disk** EXEC command to copy a file from an FTP server to a SYSFS partition on the WAAS device.

Use the **copy ftp install** EXEC command to install an image file from an FTP server on a WAAS device. Part of the image goes to disk and part goes to flash memory. Use the **copy ftp central** EXEC command to download a software image into the repository from an FTP server.

You can also use the **copy ftp install** EXEC commands to redirect your transfer to a different location. A username and a password have to be authenticated with a primary domain controller (PDC) before the transfer of the software release file to the WAAS device is allowed.

Upgrading the BIOS
You can remotely upgrade the BIOS on the WAE-511, WAE-512, WAE-611, WAE-612, and the WAE-7326. All computer hardware has to work with software through an interface. The Basic Input Output System (BIOS) provides such an interface. It gives the computer a built-in starter kit to run the rest of the software from the hard disk drive. The BIOS is responsible for booting the computer by providing a basic set of instructions. It performs all the tasks that need to be done at start-up time, such as Power-On Self Test (POST) operations and booting the operating system from the hard disk drive. Furthermore, it provides an interface between the hardware and the operating system in the form of a library of interrupt handlers. For instance, each time a key is pressed, the CPU performs an interrupt to read that key, which is similar for other input/output devices, such as serial and parallel ports, video cards, sound cards, hard disk controllers, and so forth. Some older PCs cannot interoperate with all the modern hardware because their BIOS does not support that hardware; the operating system cannot call a BIOS routine to use it. This problem can be solved by replacing the BIOS with a newer one that does support your new hardware or by installing a device driver for the hardware.

All BIOS files needed for a particular hardware model BIOS update are available on Cisco.com as a single .bin package file. This file is a special <WAAS-installable>.bin file that you can install by using the normal software update procedure.

To update the BIOS version on a WAAS device that supports BIOS version updates, you need the following items:
- FTP server with the software files
- Network connectivity between the device to be updated and the server hosting the update files
- Appropriate .bin BIOS update file:
 - 511_bios.bin
 - 611_bios.bin
 - 7326_bios.bin
Caution

Be extraordinarily careful when upgrading a Flash BIOS. Make absolutely sure that the BIOS upgrade patch is the exact one required. If you apply the wrong patch, you can render the system unbootable, making it difficult or impossible to recover even by reapplying the proper patch.

Caution

Because a failed Flash BIOS update can have dire results, never update a Flash BIOS without first connecting the system to an uninterruptible power supply (UPS).

To remotely install a BIOS update file, use the `copy ftp install` EXEC command as follows:

```plaintext
WAE# copy ftp install ftp-server remote_file_dir 7326_bios.bin
```

After the BIOS update file is copied to your system, use the `reload` EXEC command to reboot as follows:

```plaintext
WAE# reload
```

The new BIOS takes effect after the system reboots.

Examples

The following example shows how to copy an image file from an FTP server and install the file on the local device:

```plaintext
WAE# copy ftp install 10.1.1.1 //ftp-sj.cisco.com/cisco/waas/4.0 WAAS-4.0.0-k9.bin
Enter username for remote ftp server: biff
Enter password for remote ftp server: ******
Initiating FTP download...
printing one # per 1MB downloaded
Sending:USER biff
Password required for biff.
Sending:PASS ******
User biff logged in.
Sending:TYPE I
Type set to I.
Sending:PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending:CWD //ftp-sj.cisco.com/cisco/waas/4.0
CWD command successful.
Sending PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending:RETR WAAS-4.0.0-k9.bin
Opening BINARY mode data connection for ruby.bin (8737681 bytes).
#........................................................................................#
writing flash component:
...........................................................................
The new software will run after you reload.
```

The following example shows how to upgrade the BIOS. All output is written to a separate file (`/local1/bios_upgrade.txt`) for traceability. The hardware dependant files that are downloaded from Cisco.com for the BIOS upgrade are automatically deleted from the WAAS device after the BIOS upgrade procedure has been completed.

```plaintext
WAE-7326# copy ftp install upgradeserver /bios/update53/derived/ 7326_bios.bin
Enter username for remote ftp server: myusername
Enter password for remote ftp server: ******
Initiating FTP download...
printing one # per 1MB downloaded
```
Sending: USER myusername
Password required for myusername.
Sending: PASS ******
Please read the file README_dotfiles
 it was last modified on Wed Feb 19 16:10:26 2005- 94 days ago
Please read the file README_first
 it was last modified on Wed Feb 19 16:05:29 2005- 94 days ago
User myusername logged in.
Sending: TYPE I
Type set to I.
Sending: PASV
Entering Passive Mode (128,107,193,240,57,37)
Sending: CWD /bios/update53/derived/
CWD command successful.
Sending: PASV
Entering Passive Mode (128,107,193,240,146,117)
Sending: RETR 7326_bios.bin
Opening BINARY mode data connection for 7326_bios.bin (834689 bytes).
Fri Jan 7 15:29:07 UTC 2005
BIOS installer running!
Do not turnoff the system till BIOS installation is complete.
Flash chipset: Macronix 29LV320B
 0055000.FLS:280000 [80000]
 Erasing block 2f:280000 - 28ffff
 Erasing block 30:290000 - 29ffff
 Erasing block 31:2a0000 - 2affff
 Erasing block 32:2b0000 - 2bffff
 Erasing block 33:2c0000 - 2cffff
 Erasing block 34:2d0000 - 2dffff
 Erasing block 35:2e0000 - 2effff
 Erasing block 36:2f0000 - 2fffff
 Programming block 2f:280000 - 28ffff
 Programming block 30:290000 - 29ffff
 Programming block 31:2a0000 - 2affff
 Programming block 32:2b0000 - 2bffff
 Programming block 33:2c0000 - 2cffff
 Programming block 34:2d0000 - 2dffff
 Programming block 35:2e0000 - 2effff
 Programming block 36:2f0000 - 2fffff
SCSIROM.BIN:260000 [20000]
 Erasing block 2d:260000 - 26ffff
 Erasing block 2e:270000 - 27ffff
 Programming block 2d:260000 - 26ffff
 Programming block 2e:270000 - 27ffff
PXEROM.BIN:250000 [10000]
 Erasing block 2c:250000 - 25ffff
 Programming block 2c:250000 - 25ffff
Primary BIOS flashed successfully
Cleanup BIOS related files that were downloaded....
The new software will run after you reload.
WAE-7326#

Related Commands
install
reload
show running-config
show startup-config
wafs
write
copy http

To copy configuration or image files from an HTTP server to the WAAS device, use the **copy http** EXEC command.

```
copy http install {hostname | ip-address} remotefiledir remotefilename [port portnum] [proxy proxy_portnum] [username username password]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>http</code></td>
<td>Copies the file from an HTTP server.</td>
</tr>
<tr>
<td><code>install</code></td>
<td>Copies the file from an HTTP server and installs the software release file to the local device.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Name of the HTTP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the HTTP server.</td>
</tr>
<tr>
<td><code>remotefiledir</code></td>
<td>Remote file directory.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Remote filename.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>(Optional) Port to connect to the HTTP server (default is 80).</td>
</tr>
<tr>
<td><code>portnum</code></td>
<td>HTTP server port number (1–65535).</td>
</tr>
<tr>
<td><code>proxy</code></td>
<td>(Optional) Allows the request to be redirected to an HTTP proxy server.</td>
</tr>
<tr>
<td><code>proxy_portnum</code></td>
<td>HTTP proxy server port number (1–65535).</td>
</tr>
<tr>
<td><code>username</code></td>
<td>(Optional) Username to access the HTTP proxy server.</td>
</tr>
<tr>
<td><code>password</code></td>
<td>Establishes password authentication.</td>
</tr>
</tbody>
</table>

Defaults

HTTP server port: 80

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the **copy http install** EXEC command to install an image file from an HTTP server and install it on a WAAS device. It transfers the image from an HTTP server to the WAAS device using HTTP as the transport protocol and installs the software on the device. Part of the image goes to disk and part goes to flash memory. Use the **copy http central** EXEC command to download a software image into the repository from an HTTP server.

You can also use the **copy http install** EXEC commands to redirect your transfer to a different location or HTTP proxy server, by specifying the `proxy hostname | ip-address` option. A username and a password have to be authenticated with a primary domain controller (PDC) before the transfer of the software release file to the WAAS device is allowed.
Chapter 3 CLI Commands

Upgrading the BIOS
You can remotely upgrade the BIOS on the WAE-511, WAE-512, WAE-611, WAE-612, and the WAE-7326. All computer hardware has to work with software through an interface. The Basic Input Output System (BIOS) provides such an interface. It gives the computer a built-in starter kit to run the rest of the software from the hard disk drive. The BIOS is responsible for booting the computer by providing a basic set of instructions. It performs all the tasks that need to be done at start-up time, such as Power-On Self Test (POST) operations and booting the operating system from the hard disk drive. Furthermore, it provides an interface between the hardware and the operating system in the form of a library of interrupt handlers. For instance, each time a key is pressed, the CPU performs an interrupt to read that key, which is similar for other input/output devices, such as serial and parallel ports, video cards, sound cards, hard disk controllers, and so forth. Some older PCs cannot interoperate with all the modern hardware because their BIOS does not support that hardware; the operating system cannot call a BIOS routine to use it. This problem can be solved by replacing the BIOS with a newer one that does support your new hardware or by installing a device driver for the hardware.

All BIOS files needed for a particular hardware model BIOS update are available on Cisco.com as a single .bin package file. This file is a special <WAAS-installable>.bin file that you can install by using the normal software update procedure.

To update the BIOS version on a WAAS device that supports BIOS version updates, you need the following items:
- HTTP server with the software files
- Network connectivity between the device to be updated and the server hosting the update files
- Appropriate .bin BIOS update file:
 - 511_bios.bin
 - 611_bios.bin
 - 7326_bios.bin

Caution
Be extraordinarily careful when upgrading a Flash BIOS. Make absolutely sure that the BIOS upgrade patch is the exact one required. If you apply the wrong patch, you can render the system unbootable, making it difficult or impossible to recover even by reapplying the proper patch.

Caution
Because a failed Flash BIOS update can have dire results, never update a Flash BIOS without first connecting the system to an uninterruptible power supply (UPS).

To install the BIOS update file on a WAAS device, use the copy http install EXEC command as follows:

```
WAE# copy http install http-server remote_file_dir 7326_bios.bin [portnumber]
```

After the BIOS update file is copied to your system, use the reload EXEC command to reboot the WAAS device as follows:

```
WAE# reload
```

The new BIOS takes effect after the system reboots.
Examples

The following example shows how to copy an image file from an HTTP server and install the file on the WAAS device:

```
WAE# copy http install 10.1.1.1 //ftp-sj.cisco.com/cisco/waas/4.0 WAAS-4.0.0-k9.bin
```

Enter username for remote ftp server: biff
Enter password for remote ftp server: *****
Initiating FTP download...
printing one # per 1MB downloaded
Sending: USER biff
Password required for biff.
Sending: PASS *****
User biff logged in.
Sending: TYPE I
Type set to I.
Sending: PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending: CWD //ftp-sj.cisco.com/cisco/waas/4.0
CWD command successful.
Sending: PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending: RETR WAAS-4.0.0-k9.bin
Opening BINARY mode data connection for ruby.bin (87376881 bytes).
Writing flash component:

The new software will run after you reload.

The following example shows how to upgrade the BIOS. All output is written to a separate file (/local1/bios_upgrade.txt) for traceability. The hardware dependant files that are downloaded from Cisco.com for the BIOS upgrade are automatically deleted from the WAAS device after the BIOS upgrade procedure has been completed.

```
WAE-7326# copy ftp install upgradeserver /bios/update53/derived/ 7326_bios.bin
```

Enter username for remote ftp server: myusername
Enter password for remote ftp server: *****
Initiating FTP download...
printing one # per 1MB downloaded
Sending: USER myusername
Password required for myusername.
Sending: PASS ********
Please read the file README_dotfiles it was last modified on Wed Feb 19 16:10:26 2005- 94 days ago
Please read the file README_first it was last modified on Wed Feb 19 16:05:29 2005- 94 days ago
User myusername logged in.
Sending: TYPE I
Type set to I.
Sending: PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending: CWD /bios/update53/derived/
CWD command successful.
Sending: PASV
Entering Passive Mode (128,107,193,244,55,156)
Sending: RETR 7326_bios.bin
Opening BINARY mode data connection for 7326_bios.bin (834689 bytes).
Fri Jan 7 15:29:07 UTC 2005
BIOS installer running!
Do not turnoff the system till BIOS installation is complete.
Flash chipset: Macronix 29LV320B
0055000.FLS:280000 [80000]
Erasing block 2f:280000 - 28ffff
Erasing block 30:290000 - 29ffff
Erasing block 31:2a0000 - 2affff
Erasing block 32:2b0000 - 2bffff
Erasing block 33:2c0000 - 2cffff
Erasing block 34:2d0000 - 2dffff
Erasing block 35:2e0000 - 2effff
Erasing block 36:2f0000 - 2fffff
Programming block 2f:280000 - 28ffff
Programming block 30:290000 - 29ffff
Programming block 31:2a0000 - 2affff
Programming block 32:2b0000 - 2bffff
Programming block 33:2c0000 - 2cffff
Programming block 34:2d0000 - 2dffff
Programming block 35:2e0000 - 2effff
Programming block 36:2f0000 - 2fffff
SCSIROM.BIN:260000 [20000]
Erasing block 2d:260000 - 26ffff
Erasing block 2e:270000 - 27ffff
Programming block 2d:260000 - 26ffff
Programming block 2e:270000 - 27ffff
PXEROM.BIN:250000 [10000]
Erasing block 2c:250000 - 25ffff
Programming block 2c:250000 - 25ffff
Primary BIOS flashed successfully
Cleanup BIOS related files that were downloaded....
The new software will run after you reload.

Related Commands
install
reload
show running-config
show startup-config
wafs
write
copy running-config

To copy a configuration or image data from the current configuration, use the `copy running-config` EXEC command.

```
copy running-config {disk filename | startup-config | tftp {hostname | ip-address} remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>running-config</td>
<td>Copies the current system configuration.</td>
</tr>
<tr>
<td>disk</td>
<td>Copies the current system configuration to a disk file.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the file to be created on disk.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Copies the running configuration to startup configuration (NVRAM).</td>
</tr>
<tr>
<td>tftp</td>
<td>Copies the running configuration to a file on a TFTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the configuration file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the `copy running-config` EXEC command to copy the WAAS device’s running system configuration to a SYSFS partition, flash memory, or TFTP server. The `copy running-config startup-config` EXEC command is equivalent to the `write memory` EXEC command.

Related Commands

install
reload
show running-config
show startup-config
wafs
write
copy startup-config

To copy configuration or image data from the startup configuration, use the copy startup-config EXEC command.

```
copy startup-config { disk filename | running-config | tftp { hostname | ip-address } remotefilename }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startup-config</td>
<td>Copies the startup configuration.</td>
</tr>
<tr>
<td>disk</td>
<td>Copies the startup configuration to a disk file.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the startup configuration file to be copied to the local disk.</td>
</tr>
<tr>
<td>running-config</td>
<td>Copies the startup configuration to running configuration.</td>
</tr>
<tr>
<td>tftp</td>
<td>Copies the startup configuration to a file on a TFTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the startup configuration file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the copy startup-config EXEC command to copy the startup configuration file to a TFTP server or to a SYSFS partition.

Related Commands

install
reload
show running-config
show startup-config
wafs
write
copy sysreport

To copy system troubleshooting information from the device, use the `copy sysreport` EXEC command.

```
copy sysreport {disk filename | ftp {hostname | ip-address} remotedirectory remotefilename | tftp {hostname | ip-address} remotefilename} [start-date {day month | month day} year [end-date {day month | month day} year]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysreport</td>
<td>Generates and saves a report containing WAAS system information in a file.</td>
</tr>
<tr>
<td>disk</td>
<td>Copies system information to a disk file.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the file to be created on disk. Note that .tar.gz is appended to the filename that you specify.</td>
</tr>
<tr>
<td>ftp</td>
<td>Copies system information to a FTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the FTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the FTP server.</td>
</tr>
<tr>
<td>remotedirectory</td>
<td>Remote directory where the system information file is to be created on the FTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the system information file to be created on the FTP server.</td>
</tr>
<tr>
<td>tftp</td>
<td>Copies system information to a TFTP server.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Remote filename of the system information file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
<tr>
<td>start-date</td>
<td>(Optional) Start date of information in the generated system report.</td>
</tr>
<tr>
<td>day month</td>
<td>Start date day of the month (1–31) and month of the year (January, February, March, April, May, June, July, August, September, October, November, December). You can alternately specify the month first, followed by the day.</td>
</tr>
<tr>
<td>year</td>
<td>Start date year (1993–2035).</td>
</tr>
<tr>
<td>end-date</td>
<td>(Optional) End date of information in the generated system report. If omitted, this date defaults to today’s date. The report includes files through the end of this day.</td>
</tr>
<tr>
<td>day month</td>
<td>End date day of the month (1–31) and month of the year (January, February, March, April, May, June, July, August, September, October, November, December). You can alternately specify the month first, followed by the day.</td>
</tr>
<tr>
<td>year</td>
<td>End date year (1993–2035).</td>
</tr>
</tbody>
</table>

Defaults

If `end-date` is not specified, today’s date is used.

Command Modes

EXEC
Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The `copy sysreport` command consumes significant CPU and disk resources and can adversely affect system performance while it is running.

Examples

The following example shows how to copy system information to the file `mysysinfo` on the local WAAS device:

```
WAE# copy sysreport disk mysysinfo start-date 1 April 2006 end-date April 30 2006
```

The following example shows how to copy system information by FTP to the file `foo` in the root directory of the FTP server named `myserver`:

```
WAE# copy sysreport ftp myserver / foo start-date 1 April 2006 end-date April 30 2006
```

Related Commands

- `show running-config`
- `show startup-config`
- `wafs`
copy system-status

To copy status information from the system for debugging, use the copy system-status EXEC command.

```
copy system-status disk filename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system-status disk</td>
<td>Copies the system status to a disk file.</td>
</tr>
<tr>
<td>filename</td>
<td>Name of the file to be created on the disk.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the copy system-status EXEC command to create a file on a SYSFS partition that contains hardware and software status information.

Related Commands

install
reload
show running-config
show startup-config
wafs
write
copy tech-support

To copy the configuration or image data from the system to use when working with Cisco TAC, use the `copy tech-support` EXEC command.

```
copy tech-support {disk filename | tftp {hostname | ip-address} remotefilename}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tech-support</code></td>
<td>Copies system information for technical support.</td>
</tr>
<tr>
<td><code>disk</code></td>
<td>Copies system information for technical support to disk file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name of the file to be created on disk.</td>
</tr>
<tr>
<td><code>tftp</code></td>
<td>Copies system information for technical support to a TFTP server.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td><code>remotefilename</code></td>
<td>Remote filename of the system information file to be created on the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use the `copy tech-support tftp` EXEC command to copy technical support information to a TFTP server or to a SYSFS partition.

Related Commands

- `install`
- `reload`
- `show running-config`
- `show startup-config`
- `wafs`
- `write`
To copy configuration or image data from a TFTP server, use the `copy tftp` EXEC command.

```
copy tftp { disk { hostname | ip-address } remotefilename localfilename | running-config { hostname | ip-address } remotefilename | startup-config { hostname | ip-address } remotefilename }
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tftp</td>
<td>Copies an image from a TFTP server.</td>
</tr>
<tr>
<td>disk</td>
<td>Copies an image from a TFTP server to a disk file.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the remote image file to be copied from the TFTP server. Use the complete pathname.</td>
</tr>
<tr>
<td>localfilename</td>
<td>Name of the image file to be created on the local disk.</td>
</tr>
<tr>
<td>running-config</td>
<td>Copies an image from a TFTP server to the running configuration.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the remote image file to be copied from the TFTP server. Use the complete pathname.</td>
</tr>
<tr>
<td>startup-config</td>
<td>Copies an image from a TFTP server to the startup configuration.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the TFTP server.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the TFTP server.</td>
</tr>
<tr>
<td>remotefilename</td>
<td>Name of the remote image file to be copied from the TFTP server. Use the complete pathname.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the `copy tftp disk` EXEC command to copy a file from a TFTP server to disk.

Related Commands

install
reload
copy tftp
show running-config
show startup-config
wafs
write
cpfile

To make a copy of a file, use the `cpfile` EXEC command.

```
cpfile oldfilename newfilename
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oldfilename</code></td>
<td>Name of the file to copy.</td>
</tr>
<tr>
<td><code>newfilename</code></td>
<td>Name of the copy to be created.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to create a copy of a file. Only SYSFS files can be copied.

Examples

The following example shows how to create a copy of a file.

```
WAE# cpfile fe511-194616.bin fd511-194618.bin
```

Related Commands

deltree
dir
dir
ls
ls
mkdir
mkdir
pwd
rename
To monitor and record the WAAS application acceleration and central manager functions, use the `debug` EXEC command. To disable debugging, use the `no` form of the command. (See also the `undebug` command.)

In the application-accelerator device mode, the `debug` commands are as follows:

```
debug authentication {content-request | user | windows-domain}
debug buf {all | dmbuf | dmsg}
debug cdp {adjacency | events | ip | packets}
debug cli {all | bin | parser}
debug cms
debug dataserver {all | clientlib | server}
debug dhcp
debug dre {aggregation | all | cache | connection {aggregation [acl] | cache [acl] | core [acl] | message [acl] | misc [acl] | acl} | core | lz | message | misc}
debug epm
debug flow monitor tcpstat-v1
debug logging all
debug ntp
debug print-spooler {all | brief | errors | warnings}
debug rbcp
debug snmp {all | cli | main | mib | traps}
debug stats {all | collections | computation | history}

dump translog export

dump wafs { {all | core-fe | edge-fe | manager | utilities} {debug | error | info | warn}}
dump wccp {all | detail | error | events | keepalive | packets | slowstart}
```

Note The `dre`, `epm`, `flow monitor`, `print-spooler`, `rbcp`, `tfo`, `translog`, `wafs`, and `wccp` command options are supported in the application-accelerator device mode only.
In the central manager device mode, the `debug` commands are as follows:

- `debug aaa accounting`
- `debug all`
- `debug authentication {content-request | user | windows-domain}`
- `debug buf {all | dmbuf | dmsg}`
- `debug cdp {adjacency | events | ip | packets}`
- `debug cli {all | bin | parser}`
- `debug cms`
- `debug dataserver {all | clientlib | server}`
- `debug dhcp`
- `debug emdb [level [levelnum]]`
- `debug key-manager`
- `debug logging all`
- `debug ntp`
- `debug rpc {detail | trace}`
- `debug snmp {all | cli | main | mib | traps}`
- `debug stats {all | collections | computation | history}`

Note
The `emdb` and `rpc` command options are supported in the central manager device mode only.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aaa accounting</code></td>
<td>(Optional) Enables AAA accounting actions.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>(Optional) Enables all debugging options.</td>
</tr>
<tr>
<td><code>authentication</code></td>
<td>(Optional) Enables authentication debugging.</td>
</tr>
<tr>
<td><code>content-request</code></td>
<td>Enables content request authentication debugging.</td>
</tr>
<tr>
<td><code>user</code></td>
<td>Enables debugging of the user login against the system authentication.</td>
</tr>
<tr>
<td><code>windows-domain</code></td>
<td>Enables Windows domain authentication debugging.</td>
</tr>
<tr>
<td><code>buf</code></td>
<td>(Optional) Enables buffer manager debugging.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Enables all buffer manager debugging.</td>
</tr>
<tr>
<td><code>dmbuf</code></td>
<td>Enables only dmbuf debugging.</td>
</tr>
<tr>
<td><code>dmsg</code></td>
<td>Enables only dmsg debugging.</td>
</tr>
<tr>
<td><code>cdp</code></td>
<td>(Optional) Enables CDP debugging.</td>
</tr>
<tr>
<td><code>adjacency</code></td>
<td>Enables CDP neighbor information debugging.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>events</td>
<td>Enables CDP events debugging.</td>
</tr>
<tr>
<td>ip</td>
<td>Enables CDP IP debugging.</td>
</tr>
<tr>
<td>packets</td>
<td>Enables packet-related CDP debugging.</td>
</tr>
<tr>
<td>cli</td>
<td>(Optional) Enables CLI debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all CLI debugging.</td>
</tr>
<tr>
<td>bin</td>
<td>Enables CLI command binary program debugging.</td>
</tr>
<tr>
<td>parser</td>
<td>Enables CLI command parser debugging.</td>
</tr>
<tr>
<td>cms</td>
<td>(Optional) Enables CMS debugging.</td>
</tr>
<tr>
<td>dataserver</td>
<td>(Optional) Enables data server debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all data server debugging.</td>
</tr>
<tr>
<td>clientlib</td>
<td>Enables data server client library module debugging.</td>
</tr>
<tr>
<td>server</td>
<td>Enables data server module debugging.</td>
</tr>
<tr>
<td>dhcp</td>
<td>(Optional) Enables DHCP debugging.</td>
</tr>
<tr>
<td>dre</td>
<td>(Optional) Enables DRE debugging.</td>
</tr>
<tr>
<td>aggregation</td>
<td>Enables DRE chunk-aggregation debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables the debugging of all DRE commands.</td>
</tr>
<tr>
<td>cache</td>
<td>Enables DRE cache debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Enables DRE connection debugging.</td>
</tr>
<tr>
<td>aggregation [acl]</td>
<td>Enables DRE chunk-aggregation debugging for a specified connection.</td>
</tr>
<tr>
<td>cache [acl]</td>
<td>Enables DRE cache debugging for a specified connection.</td>
</tr>
<tr>
<td>core [acl]</td>
<td>Enables DRE core debugging for a specified connection.</td>
</tr>
<tr>
<td>message [acl]</td>
<td>Enables DRE message debugging for a specified connection.</td>
</tr>
<tr>
<td>misc [acl]</td>
<td>Enables DRE other debugging for a specified connection.</td>
</tr>
<tr>
<td>acl</td>
<td>ACL to limit connections traced.</td>
</tr>
<tr>
<td>core</td>
<td>Enables DRE core debugging.</td>
</tr>
<tr>
<td>message</td>
<td>Enables DRE message debugging.</td>
</tr>
<tr>
<td>misc</td>
<td>Enables DRE other debugging.</td>
</tr>
<tr>
<td>epm</td>
<td>(Optional) Enables the DCE-RPC EPM debugging.</td>
</tr>
<tr>
<td>flow</td>
<td>(Optional) Enables network traffic flow debugging.</td>
</tr>
<tr>
<td>monitor</td>
<td>Enables monitor flow performance debugging commands.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Enables tcpstat-v1 debugging.</td>
</tr>
<tr>
<td>logging</td>
<td>(Optional) Enables logging debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all logging debugging.</td>
</tr>
<tr>
<td>ntp</td>
<td>(Optional) Enables NTP debugging.</td>
</tr>
<tr>
<td>print-spooler</td>
<td>(Optional) Enables print spooler debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables print spooler debugging using all debug features.</td>
</tr>
<tr>
<td>brief</td>
<td>Enables print spooler debugging using only brief debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Enables print spooler debugging using only the error conditions.</td>
</tr>
<tr>
<td>warnings</td>
<td>Enables print spooler debugging using only the warning conditions.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>debug</td>
<td>(Optional) Enables RBCP debugging.</td>
</tr>
<tr>
<td>rbcp</td>
<td>(Optional) Enables RBCP debugging.</td>
</tr>
<tr>
<td>snmp</td>
<td>(Optional) Enables SNMP debug commands.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all SNMP debug commands.</td>
</tr>
<tr>
<td>cli</td>
<td>Enables SNMP CLI debugging.</td>
</tr>
<tr>
<td>main</td>
<td>Enables SNMP main debugging.</td>
</tr>
<tr>
<td>mib</td>
<td>Enables SNMP MIB debugging.</td>
</tr>
<tr>
<td>traps</td>
<td>Enables SNMP trap debugging.</td>
</tr>
<tr>
<td>stats</td>
<td>(Optional) Enables statistics debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all statistics debug commands.</td>
</tr>
<tr>
<td>collection</td>
<td>Enables collection statistics debugging.</td>
</tr>
<tr>
<td>computation</td>
<td>Enables computation statistics debugging.</td>
</tr>
<tr>
<td>history</td>
<td>Enables history statistics debugging.</td>
</tr>
<tr>
<td>tfo</td>
<td>(Optional) Enables TFO debugging.</td>
</tr>
<tr>
<td>buffer-mgr</td>
<td>Enables TFO buffer manager debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Enables TFO connection debugging.</td>
</tr>
<tr>
<td>auto-discovery</td>
<td>Enables TFO connection debugging for the auto-discovery module.</td>
</tr>
<tr>
<td>comp-mgr [acl]</td>
<td>Enables TFO connection debugging for the compression module.</td>
</tr>
<tr>
<td>conn-mgr [acl]</td>
<td>Enables TFO connection debugging for the connection manager.</td>
</tr>
<tr>
<td>egress-method [acl]</td>
<td>Enables TFO connection debugging for the connection egress method.</td>
</tr>
<tr>
<td>filtering [acl]</td>
<td>Enables TFO connection debugging for filtering module.</td>
</tr>
<tr>
<td>policy-engine [acl]</td>
<td>Enables TFO connection debugging of application policies.</td>
</tr>
<tr>
<td>synq [acl]</td>
<td>Enables TFO connection debugging for the SynQ module.</td>
</tr>
<tr>
<td>acl</td>
<td>ACL to limit TFO connections.</td>
</tr>
<tr>
<td>stat-mgr</td>
<td>Enables TFO statistics manager debugging.</td>
</tr>
<tr>
<td>translog</td>
<td>Enables TFO transaction log debugging.</td>
</tr>
<tr>
<td>export</td>
<td>Enables transaction log FTP export debugging.</td>
</tr>
<tr>
<td>wafs</td>
<td>(Optional) Unsets the notification level (debug, info, warn, error) at which messages from the WAAS software component and utilities are logged.</td>
</tr>
<tr>
<td>all</td>
<td>Unsets the logging level for all software components and utilities at once.</td>
</tr>
<tr>
<td>core-fe</td>
<td>Unsets the logging level for WAEs acting as a core File Engine.</td>
</tr>
<tr>
<td>edge-fe</td>
<td>Unsets the logging level for WAEs acting as an edge File Engine.</td>
</tr>
<tr>
<td>manager</td>
<td>Unsets the logging level for the Device Manager.</td>
</tr>
<tr>
<td>utilities</td>
<td>Unsets the logging level for WAAS utilities.</td>
</tr>
<tr>
<td>wccp</td>
<td>(Optional) Enables the WCCP information debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Enables all WCCP debugging functions.</td>
</tr>
<tr>
<td>detail</td>
<td>Enables the WCCP detail debugging.</td>
</tr>
</tbody>
</table>
The following syntax table describes the options that are available in the central manager device mode:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>error</td>
<td>Enables the WCCP error debugging.</td>
</tr>
<tr>
<td>events</td>
<td>Enables the WCCP events debugging.</td>
</tr>
<tr>
<td>keepalive</td>
<td>Enables the debugging for WCCP keepalives that are sent to the applications.</td>
</tr>
<tr>
<td>packets</td>
<td>Enables the WCCP packet-related information debugging.</td>
</tr>
<tr>
<td>slowstart</td>
<td>Enables the WCCP slow-start debugging.</td>
</tr>
<tr>
<td>emdb</td>
<td>(Optional) Enables embedded database debugging.</td>
</tr>
<tr>
<td>level</td>
<td>(Optional) Enables the specified debug level for EMDB service.</td>
</tr>
<tr>
<td>levelnum</td>
<td>(Optional) Debug level to disable. (Level 0 disables debugging.)</td>
</tr>
<tr>
<td>key-manager</td>
<td>(Optional) Enables the Central Manager key manager debugging.</td>
</tr>
<tr>
<td>rpc</td>
<td>(Optional) Enables the remote procedure calls (RPC) logs.</td>
</tr>
<tr>
<td>detail</td>
<td>Enables the RPC logs of priority “detail” level or higher.</td>
</tr>
<tr>
<td>trace</td>
<td>Enables the RPC logs of priority “trace” level or higher.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Because the performance of the WAAS device degrades when you use the `debug` command, we recommend that you use this command only at the direction of Cisco TAC. For more information, see the “Obtaining Documentation and Submitting a Service Request” section on page xvi.

If the watchdog utility is not running, the message “WAAS is not running” appears.

Use the `show debugging` command to display enabled `debug` options.

Examples
The following example shows how to enable debug monitoring of user authentication, verify it is enabled, and then disable debug monitoring:

```
WAE# debug authentication user
WAE# show debugging
Debug authentication (user) is ON
WAE# no debug authentication user
```

The following example shows how to set the logging level to debug for the Core WAEs in your system, then return the logging level to its default (info):

```
```
WAE# debug wafs ?
all log level for all components
core-fe log level for Core FE
dga-fe log level for Edge FE
manager log level for Manager
utilities log level for Utilities

WAE# debug wafs core-fe ?
debug set log level to DEBUG
derror set log level to ERROR
info set log level to INFO (default)
warn set log level to WARN

WAE# debug wafs core-fe debug
corefe log level set to DEBUG

Related Commands
 show debugging
 unddebug
delfile

To delete a file from the current directory, use the `delfile` EXEC command.

```
delfile filename
```

Syntax Description

| filename | Name of the file to delete. |

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use this EXEC command to remove a file from a SYSFS partition on the disk drive of the WAAS device.

Examples

The following example shows how to delete a temporary file from the `/local1` directory using an absolute path:

```
WAE# delfile /local1/tempfile
```

Related Commands

- cpfile
- dir
- IIs
- ls
- mkdir
- mkdir
- pwd
- rename
deltree

To remove a directory along with all of its subdirectories and files, use the **deltree** EXEC command.

```bash
  deltree directory
```

Syntax Description

- `directory`: Name of the directory tree to delete.

Defaults

No default behavior or values

Command Modes

- EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use this EXEC command to remove a directory and all files within the directory from the WAAS SYSFS file system. No warning is given that you are removing the subdirectories and files.

Note

Be sure you do not remove files or directories required for the WAAS device to function properly.

Examples

The following example shows how to delete the `testdir` directory from the `/local1` directory:

```bash
  WAE# deltree /local1/testdir
```

Related Commands

- cpfile
- dir
- lls
- ls
- mkdir
- pwd
- rename
To view details of one file or all files in a directory, use the `dir` EXEC command.

```
dir [directory]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>directory</code></td>
<td>(Optional) Name of the directory to list.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use this EXEC command to view a detailed list of files contained within the working directory, including names, sizes, and time created. The `lls` EXEC command produces the same output.

Examples

The following example shows a detailed list of all the files for the current directory:

```
WAE# dir

<table>
<thead>
<tr>
<th>size</th>
<th>time of last change</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096</td>
<td>Fri Feb 24 14:40:00</td>
<td>&lt;DIR&gt; actona</td>
</tr>
<tr>
<td>4096</td>
<td>Tue Mar 28 14:42:44</td>
<td>&lt;DIR&gt; core_dir</td>
</tr>
<tr>
<td>4096</td>
<td>Wed Apr 12 20:23:10</td>
<td>&lt;DIR&gt; crash</td>
</tr>
<tr>
<td>4506</td>
<td>Tue Apr 11 13:52:45</td>
<td>dbupgrade.log</td>
</tr>
<tr>
<td>4096</td>
<td>Tue Apr 11 22:50:11</td>
<td>&lt;DIR&gt; downgrade</td>
</tr>
<tr>
<td>4096</td>
<td>Sun Apr 16 09:01:56</td>
<td>&lt;DIR&gt; errorlog</td>
</tr>
<tr>
<td>4096</td>
<td>Wed Apr 12 20:23:41</td>
<td>&lt;DIR&gt; logs</td>
</tr>
<tr>
<td>16384</td>
<td>Thu Feb 16 12:25:29</td>
<td>&lt;DIR&gt; lost+found</td>
</tr>
<tr>
<td>4096</td>
<td>Wed Apr 12 03:26:02</td>
<td>&lt;DIR&gt; sa</td>
</tr>
<tr>
<td>24576</td>
<td>Sun Apr 16 23:38:21</td>
<td>&lt;DIR&gt; service_logs</td>
</tr>
<tr>
<td>9945390</td>
<td>Sun Apr 16 23:38:20</td>
<td>syslog.txt</td>
</tr>
<tr>
<td>10026298</td>
<td>Thu Apr 6 12:25:00</td>
<td>syslog.txt.1</td>
</tr>
<tr>
<td>10013564</td>
<td>Thu Apr 6 12:25:00</td>
<td>syslog.txt.2</td>
</tr>
<tr>
<td>10055850</td>
<td>Thu Apr 6 12:25:00</td>
<td>syslog.txt.3</td>
</tr>
<tr>
<td>10049181</td>
<td>Thu Apr 6 12:25:00</td>
<td>syslog.txt.4</td>
</tr>
<tr>
<td>4096</td>
<td>Thu Feb 16 12:29:30</td>
<td>&lt;DIR&gt; var</td>
</tr>
<tr>
<td>508</td>
<td>Sat Feb 25 13:18:35</td>
<td>wdd.sh.signed</td>
</tr>
</tbody>
</table>
```
The following example shows only the detailed information for the *logs* directory:

```
WAE# dir logs
size          time of last change             name
-------------  -------------------------          -----------
4096  Thu Apr  6 12:13:50 2006  <DIR>    actona
4096  Mon Mar  6 14:14:41 2006  <DIR>    apache
4096  Sun Apr 16 23:36:40 2006  <DIR>    emdb
4096  Thu Feb 16 11:51:51 2006  <DIR>    export
4096  Wed Apr 12 20:23:43 2006  <DIR>    rpc_httpd
0    Wed Apr 12 20:23:41 2006           snmpd.log
4096  Sun Mar 19 18:47:29 2006  <DIR>    tfo
```

Related Commands

```
lls
ls
```
disable

To turn off privileged EXEC commands, use the `disable` EXEC command.

```disable```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values

**Command Modes**

EXEC

**Device Modes**

application-accelerator

replication-accelerator

central-manager

**Usage Guidelines**

Use the WAAS software CLI EXEC mode for setting, viewing, and testing system operations. This command mode is divided into two access levels, user and privileged. To access privileged-level EXEC mode, enter the `enable` EXEC command at the user access level prompt and specify a privileged EXEC password (superuser or admin-equivalent password) when prompted for a password.

```WAE> enable```
Password:

The `disable` command places you in the user-level EXEC shell (notice the prompt change).

Examples

The following example enters the user-level EXEC mode from the privileged EXEC mode:

```WAE# disable```

```WAE>```  

Related Commands

`enable`
To configure disks on a WAAS device, use the `disk` EXEC command.

- `disk delete-partitions diskname`
- `disk disk-name disk.xx replace`
- `disk insert diskname`
- `disk recreate-raid`
- `disk reformat diskname`
- `disk scan-errors diskname`

delete-partitions
Deletes data on the specified logical disk drive. After using this command, the WAAS software treats the specified disk drive as blank. All previous data on the drive is inaccessible.

diskname
Name of the disk from which to delete partitions (disk00, disk01).
For RAID-5 systems, this option is not available because only one logical drive is available.

disk-name disk.xx replace
Shuts down the physical disk with the name disk.xx (disk00, disk01, etc.) so that it can be replaced in the RAID-5 array.

insert
Instructs the SCSI host to rescan the bus to detect and mount the newly inserted disk.

note
This option is available only on WAE-612 and WAE-7326 models.

diskname
Name of the disk to be inserted (disk00, disk01).

recreate-raid
Recreates the RAID-5 array.

note
This option is available only on RAID-5 systems.

reformat
Performs a low-level reformatting of a SCSI disk drive and remaps bad sectors.

caution
Use this command with extreme caution to avoid loss of data.

note
This option is not available on RAID-5 systems.

diskname
Name of the disk to be reformatted (disk00, disk01).

scan-errors
Scans SCSI or IDE disks for errors and remaps the bad sectors, if they are unused.
For RAID-5 systems, this command scans the logical RAID device for errors. On these systems, there is no **diskname** option.

diskname
Name of the disk to be reformatted (disk00, disk01).

command modes
EXEC
Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Logical Disk Handling with RAID-5
Logical disk handling with Redundant Array of Independent Disks-5 (RAID-5) is implemented in WAAS as a hardware feature. RAID-5 devices can create a single logical disk drive that may contain up to six physical hard disk drives, providing increased logical disk capacity. (The WAE-7341 supports four disks, and the WAE-7371 supports six disks.)

Systems with RAID-5 continue operating if one of the physical drives fails (RAID-5 moves the drive to the Defunct state). RAID-5 also permits hot-swapping of the disk hardware after the failed drive is properly shutdown. (For the disk removal and replacement procedure for RAID-5 systems, see the Cisco Wide Area Application Services Configuration Guide, Chapter 14.)

Logical Disk Handling with RAID-1
RAID-1 is implemented in WAAS as a software feature. A RAID-1 WAAS device can use two disk drives to increase reliability. RAID-1 provides disk mirroring (data is written redundantly to two or more drives). The goal is higher reliability through redundancy. With RAID-1, file system write performance may be affected because each disk write must be executed against two disk drives. RAID-1 (mirroring) is used for all file systems on the RAID-1 device. This setup ensures reliable execution of the software in all cases.

Note
The WAAS software uses the CONTENT file system for both the Wide Area File Services (WAFS) file system and the data redundancy elimination (DRE) cache.

Hot Swap for WAE-612, WAE-7326, WAE-7341, and WAE-7371 Disk Drives
This release of WAAS supports hot swap functionality for both failed disk replacement and scheduled disk maintenance. On the WAE-612 and WAE-7326, use the `disk disk-name diskxx shutdown` global configuration command to shut down a disk for scheduled disk maintenance. On the WAE-7341 and WAE-7371, use the `disk disk-name diskxx replace` EXEC command to shut down a disk. (For the scheduled disk maintenance procedure, see the Cisco Wide Area Application Services Configuration Guide, Chapter 14.)

You must wait for the disk to be completely shut down before you physically remove the disk from the WAE. When the RAID removal process is complete, WAAS generates a disk failure alarm and trap. In addition, a syslog ERROR message is logged.

If the software removes a failed disk during the RAID rebuild process, a RAID rebuild failure alarm is generated. If you administratively shut down the disk during the RAID rebuild process, a RAID rebuild abort alarm is generated instead.

If the removal event occurs while the RAID is in the rebuild process, the RAID removal process may take up to one minute before it is successful. The exact duration of this process depends on the size of the disk.

Automatic Failed Disk Handling
The disk hot swap functionality automatically disables a failed disk if the system detects one critical disk alarm. The software removes the failed disk automatically regardless of the setting for `disk error-handling`.
Replacing a Failed Disk

For WAE-7341 and WAE-7371 models, when you replace a failed disk that was automatically disabled by the software, the disk automatically returns to service. For WAE-612 and WAE-7326 models, when you replace a failed disk that was automatically disabled by the software, use the `disk insert` command in EXEC mode to bring the disk back into service. For all other models, see the `(config) disk disk-name` command section.

Recreating the RAID-5 Disk Array

To recreate the logical disk array for RAID-5 systems, use the EXEC mode `disk recreate-raid` command, as shown in following configuration sequence:

```
WAE-7341(config)# disk logical shutdown
WAE-7341# reload
WAE-7341# copy running-config startup-config
```

Wait for the system to boot up.

```
WAE-7341# disk recreate-raid
WAE-7341(config)# no disk logical shutdown
WAE-7341# reload
WAE-7341# copy running-config startup-config
```

After the system boots, wait approximately half an hour for all of the filesystems to be recreated.

Caution

When you recreate the RAID-5 disk array, you lose all data on the drives.

Reinstall the software by entering `copy ftp install` in EXEC mode.

For 300 GB SAS drives, recreating and synchronizing the RAID array may take up to five hours. While the RAID-5 synchronization is running in the background, the system will be fully functional; however, performance may be affected by the background operation.

Disk Information

To identify which disks have been identified as failed or bad, use the `show disks failed-disk-id` EXEC command. Do not reinsert any disk with a serial number shown in this list.

Note

This command is not available on WAE-7341 and WAE-7371 models.

Reformatting a SCSI Disk Drive

Use the `disk reformat` EXEC command to reformat a SCSI disk drive on a WAAS device. The SCSI drive cannot be in use when you execute this command.

Caution

To avoid loss of data, use this command with extreme caution.

Note

This command is only available on WAE-612 systems with SCSI drives. This command is removed for WAE-611 and WAE-7326 systems in WAAS 4.0.13.

The following scenario shows how to reformat a SCSI drive:

1. Unmount the filesystem and remove the disk from the RAID-1 array by using the `disk disk-name diskxx shutdown` command in global configuration mode.
WAE611(config)# disk disk-name disk01 shutdown

2. Reformat the disk. On completion of this command the drive is blank.
WAE611# disk reformat disk01

3. Bring the disk back into service by using the no disk disk-name diskxx shutdown command in global configuration mode.
WAE611(config)# no disk disk-name disk01 shutdown

To use the disk scan errors command, follow the same procedure as for the disk reformat command.

Removing All Disk Partitions on a Single Disk Drive and Removing the Disk Partition on the Logical Drive for RAID-5 Systems

Use the disk delete-partitions EXEC command to remove all disk partitions on a single disk drive on a WAAS device or to remove the disk partition on the logical drive for RAID-5 systems.

Caution
After using the disk delete-partitions EXEC command, the WAAS software treats the specified disk drive as blank. All previous data on the drive is inaccessible.

Use this command when you want to add a new disk drive that was previously used with another operating system (for example, a Microsoft Windows or Linux operating system). When asked if you want to erase everything on the disk, specify “yes” to proceed, as follows:
WAE# disk delete-partitions disk01
This will erase everything on disk. Are you sure? [no] yes

Note
When you use the disk delete-partitions EXEC command on the WAE-7341 or WAE-7371 models, the command deletes the entire logical volume. The individual disk name option is not available on these platforms.

Related Commands
(\config) disk disk-name
(\config) disk error-handling
(\config) disk logical shutdown
show disks
To resolve a host or domain name to an IP address, use the `dnslookup` EXEC command.

```
dnslookup hostname \| domainname
```

Syntax Description

- `hostname`
 Name of DNS server on the network.
- `domainname`
 Name of domain.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Examples

The following three examples show how the `dnslookup` command is used to resolve the hostname `myhost` to IP address 172.31.69.11, `abd.com` to IP address 192.168.219.25, and an IP address used as a hostname to 10.0.11.0:

```
WAE# dnslookup myhost
official hostname: myhost.abc.com
    address: 172.31.69.11

WAE# dnslookup abc.com
official hostname: abc.com
    address: 192.168.219.25

WAE# dnslookup 10.0.11.0
official hostname: 10.0.11.0
    address: 10.0.11.0
```
enable

To access privileged EXEC commands, use the enable EXEC command.

```
enable
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the WAAS software CLI EXEC mode for setting, viewing, and testing system operations. This command mode is divided into two access levels: user and privileged. To access privileged-level EXEC mode, enter the enable EXEC command at the user access level prompt and specify a privileged EXEC password (superuser or admin-equivalent password) when prompted for a password.

In TACACS+, there is an enable password feature that allows an administrator to define a different enable password per administrative-level user. If an administrative-level user logs in to the WAAS device with a normal-level user account (privilege level of 0) instead of an admin or admin-equivalent user account (privilege level of 15), that user must enter the admin password to access privileged-level EXEC mode.

```
WAE> enable
Password:
```

Note

This caveat applies even if the WAAS users are using TACACS+ for login authentication.

The disable command takes you from privileged EXEC mode to user EXEC mode.

Examples

The following example shows how to access privileged EXEC mode:

```
WAE> enable
WAE#
```

Related Commands

disable
exit
exit

To terminate privileged-level EXEC mode and return to the user-level EXEC mode, use the exit command.

```
exit
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

All modes

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

This command is equivalent to the Ctrl-Z or the end command. The exit command issued in the user level EXEC shell terminates the console or Telnet session.

Examples

The following example shows how to terminate privileged-level EXEC mode and return to the user-level EXEC mode:

```
WAE# exit
WAE>
```
find-pattern

To search for a particular pattern in a file, use the find-pattern command in EXEC mode.

```
find-pattern [binary] regular<Expression> filename [case] [count] [lineno] [match] [nomatch] [recursive] filename
```

Syntax Description

- `binary` Does not suppress the binary output.
- `regular<Expression>` Regular expression to be matched.
- `filename` Filename.
- `case` Matches case-sensitive pattern.
- `count` Prints the number of matching lines.
- `lineno` Prints the line number with output.
- `match` Prints the matching lines.
- `nomatch` Prints the nonmatching lines.
- `recursive` Searches a directory recursively.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to search for a particular regular expression pattern in a file.

Examples

The following example shows how to search a file recursively for a case-sensitive pattern:

```
WAE# find-pattern case recursive admin removed_core
```

```
-rw------- 1 admin  root    95600640 Oct 12 10:27 /local/local1/core_dir/core.3.0.0.b5.eh.2796
-rw------- 1 admin  root    97054720 Jan 11 11:31 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.14086
-rw------- 1 admin  root    96845824 Jan 11 11:32 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.14823
-rw------- 1 admin  root    101580800 Jan 11 12:01 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.15134
-rw------- 1 admin  root    96759808 Jan 11 12:59 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.20016
```
The following example shows how to search a file for a pattern and print the matching lines:

WAE# **find-pattern match 10 removed_core**

Tue Oct 12 10:30:03 UTC 2004
-rw------ 1 admin root 95600640 Oct 12 10:27 /local/local1/core_dir/core.3.0.0.b5.eh.2796
-rw------ 1 admin root 101580800 Jan 11 12:01 /local/local1/core_dir/core.cache.3.0.0.b131.cnbuild.15134

The following example shows how to search a file for a pattern and print the number of matching lines:

WAE# **find-pattern count 10 removed_core**

3

Related Commands

| cd |
| dir |
| lls |
| ls |
help

To obtain online help for the command-line interface, use the help EXEC command.

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC and global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
You can obtain help at any point in a command by entering a question mark (?). If nothing matches, the help list will be empty, and you must back up until entering a ? shows the available options.

Two styles of help are provided:

- Full help is available when you are ready to enter a command argument (for example, show ?) and describes each possible argument.
- Partial help is provided when an abbreviated argument is entered.

Examples
The following example shows the output of the help EXEC command:

WAE# help
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument.
2. Partial help is provided when an abbreviated argument is entered.
install

To install a new software image (such as the WAAS software) into flash on the WAAS device, use the install EXEC command.

```
install imagefilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>imagefilename</code></td>
<td>Name of the <code>.bin</code> file you want to install.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The `install` command loads the system image into flash memory and copies components of the optional software to the software file system (swfs) partition.

Note

If you are installing a system image that contains optional software, make sure that an SWFS partition is mounted on disk00.

To install a system image, copy the image file to the SYSFS directory, `local1` or `local2`. Before executing the `install` command, change the present working directory to the directory where the system image resides. When the `install` command is executed, the image file is expanded. The expanded files overwrite the existing files on the WAAS device. The newly installed version takes effect after the system image is reloaded.

Note

The `install` command does not accept .pax files. Files should be of the type `.bin` (for example, `cache-sw.bin`). Also, if the release being installed does not require a new system image, then it may not be necessary to write to Flash memory. If the newer version has changes that require a new system image to be installed, then the `install` command may result in a write to Flash memory.

Examples

The following example loads the system image contained in the `wae511-cache-300.bin` file:

```
WAE# install wae511-cache-300.bin
```

Related Commands

`copy disk`
install

reload
less

To display a file using the LESS application, use the less EXEC command.

 less file_name

Syntax Description

| file_name | Name of the file to be displayed. |

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

LESS is an application that displays text files a page at a time. You can use LESS to view the contents of a file, but not edit it. LESS offers some additional features when compared to conventional text file viewer applications such as type. These features are as follows:

- Backward movement—LESS allows you to move backward in the displayed text. Use k, Ctrl-k, y, or Ctrl-y to move backward. See the summary of LESS commands for more details; to view the summary, press h or H while displaying a file in LESS.
- Searching and highlighting—LESS allows you to search for text in the file that you are viewing. You can search forward and backward. LESS highlights the text that matches your search to make it easy to see where the match is.
- Multiple file support—LESS allows you to switch between different files, remembering your position in each file. You can also do a search that spans all the files you are working with.

Examples

The following example shows how to display the text of the syslog.txt file using the LESS application:

 WAE# less syslog.txt
lls

To view a long list of directory names, use the lls EXEC command.

lls [directory]

Syntax Description

directory (Optional) Name of the directory for which you want a long list of files.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

This command provides detailed information about files and subdirectories stored in the present working directory (including size, date, time of creation, SYSFS name, and long name of the file). This information can also be viewed with the dir command.

Examples

The following example provides a detailed list of the files in the current directory:

```
WAE# lls
size  time of last change   name
-------  ---------------------  ----
    4096  Fri Feb 24 14:40:00 2006  <DIR>  actona
    4096  Tue Mar 28 14:42:44 2006  <DIR>  core_dir
    4096  Wed Apr 12 20:23:10 2006  <DIR>  crash
    4506  Tue Apr 11 13:52:45 2006  <DIR>  dbupgrade.log
    4096  Tue Apr  4 22:50:11 2006  <DIR>  downgrade
    4096  Sun Apr 16 09:01:56 2006  <DIR>  errorlog
    4096  Wed Apr 12 20:23:41 2006  <DIR>  logs
   16384  Thu Feb 16 12:25:29 2006  <DIR>  lost+found
    4096  Wed Apr 12 03:26:02 2006  <DIR>  sa
    24576  Sun Apr 16 23:54:30 2006  <DIR>  service_logs
    4096  Thu Feb 16 12:26:09 2006  <DIR>  spool
    9951236  Sun Apr 16 23:54:20 2006  <DIR>  syslog.txt
  10026298  Thu Apr  6 12:25:00 2006  <DIR>  syslog.txt.1
  10013564  Thu Apr  6 12:25:00 2006  <DIR>  syslog.txt.2
  10055850  Thu Apr  6 12:25:00 2006  <DIR>  syslog.txt.3
  10049181  Thu Apr  6 12:25:00 2006  <DIR>  syslog.txt.4
    4096  Thu Feb 16 12:29:30 2006  <DIR>  var
      508  Sat Feb 25 13:18:35 2006  <DIR>  wdd.sh.signed
```
Related Commands:
- dir
- lls
- ls
ls

To view a list of files or subdirectory names within a directory, use the `ls` EXEC command.

```
ls [directory]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>directory</td>
<td>(Optional) Name of the directory for which you want a list of files.</td>
</tr>
</tbody>
</table>

| Defaults | No default behavior or values |

| Command Modes | EXEC |

Device Modes	application-accelerator
	replication-accelerator
	central-manager

Usage Guidelines

Use the `ls directory` command to list the filenames and subdirectories within a particular directory.

Use the `ls` command to list the filenames and subdirectories of the current working directory.

Use the `pwd` command to view the present working directory.

Examples

The following example shows the files and subdirectories that are listed within the root directory:

```
WAE# ls
actona
core_dir
          crash
dbupgrade.log
downgrade
errorlog
logs
lost+found
sa
service_logs
spool
syslog.txt
syslog.txt.1
syslog.txt.2
syslog.txt.3
syslog.txt.4
var
wdd.sh.signed
```

Related Commands

`dir`
ls
pwd
mkdir

To create a directory, use the `mkdir` EXEC command.

```
mkdir directory
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directory</td>
<td>Name of the directory to create.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>EXEC</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>replication-accelerator</td>
</tr>
<tr>
<td></td>
<td>central-manager</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage Guidelines</th>
<th>Use this EXEC command to create a new directory or subdirectory in the WAAS file system.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to create a new directory, oldpaxfiles:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE# <code>mkdir /oldpaxfiles</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>cpfile</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dir</td>
</tr>
<tr>
<td></td>
<td>lls</td>
</tr>
<tr>
<td></td>
<td>ls</td>
</tr>
<tr>
<td></td>
<td>pwd</td>
</tr>
<tr>
<td></td>
<td>rename</td>
</tr>
<tr>
<td></td>
<td>rmdir</td>
</tr>
</tbody>
</table>
mkfile

To create a new file, use the `mkfile` EXEC command.

```bash
mkfile filename
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filename</code></td>
<td>Name of the file you want to create.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use this EXEC command to create a new file in any directory of the WAAS device.

Examples

The following example shows how to create a new file, `traceinfo`, in the root directory:

```bash
WAE# mkfile traceinfo
```

Related Commands

- cpfile
- dir
- ll
- ls
- mkdir
- pwd
- rename
To set the software clock (time and date) on a WAAS device using a NTP server, use the `ntpdate` EXEC command.

```
ntpdate {hostname | ip-address} [key {authentication-key}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>NTP hostname.</td>
</tr>
<tr>
<td>ip-address</td>
<td>NTP server IP address.</td>
</tr>
<tr>
<td>key</td>
<td>Add this argument to use authentication with the NTP server.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>The authentication key string to use with the NTP server authentication. This value must be between 0 and 4294967295.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use NTP to find the current time of day and set the current time on the WAAS device to match. The time must be saved to the hardware clock using the `clock save` command if it is to be restored after a reload.

Examples

The following example shows how to set the software clock on the WAAS device using an NTP server:

```
WAE# ntpdate 10.11.23.40
```

Related Commands

- `clock`
- `(config) clock`
- `(config) ntp`
- `show clock`
- `show ntp`
ping

To send echo packets for diagnosing basic network connectivity on networks, use the ping EXEC command.

```
ping {hostname | ip-address}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Hostname of system to ping.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of system to ping.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
To use this command with the `hostname` argument, be sure that DNS functionality is configured the WAAS device. To force the timeout of a nonresponsive host, or to eliminate a loop cycle, press Ctrl-C.

Examples
The following example shows how to send echo packets to a machine with address 172.19.131.189 to verify its availability on the network:

```
WAE# ping 172.19.131.189
PING 172.19.131.189 (172.19.131.189) from 10.1.1.21 : 56(84) bytes of data.
64 bytes from 172.19.131.189: icmp_seq=0 ttl=249 time=613 usec
64 bytes from 172.19.131.189: icmp_seq=1 ttl=249 time=485 usec
64 bytes from 172.19.131.189: icmp_seq=2 ttl=249 time=494 usec
64 bytes from 172.19.131.189: icmp_seq=3 ttl=249 time=510 usec
64 bytes from 172.19.131.189: icmp_seq=4 ttl=249 time=493 usec

--- 172.19.131.189 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max/mdev = 0.485/0.519/0.613/0.047 ms
WAE#
```
pwd

To view the present working directory on a WAAS device, use the **pwd** EXEC command.

 pwd

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to display the present working directory of the WAAS device.

Examples

The following example shows how to display the current working directory:

 WAE# pwd
 /local1

Related Commands

cd
dir
lls
ls
reload

To halt and perform a cold restart on a WAAS device, use the `reload` EXEC command.

```
reload [force]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>force</th>
<th>(Optional) Forces a reboot without further prompting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defaults</td>
<td>None</td>
<td>No default behavior or values</td>
</tr>
<tr>
<td>Command Modes</td>
<td>EXEC</td>
<td></td>
</tr>
<tr>
<td>Device Modes</td>
<td>application-accelerator replication-accelerator central-manager</td>
<td></td>
</tr>
</tbody>
</table>

Usage Guidelines

To reboot a WAAS device, use the `reload` command. If no configurations are saved to flash memory, you are prompted to enter configuration parameters upon restart. Any open connections are dropped after you issue this command, and the file system is reformatted upon restart.

Examples

The following example shows how to halt operation of the WAAS device and reboot it with the configuration saved in flash memory. You are not prompted for confirmations during the process.

```
WAE# reload force
```

Related Commands

`write`
rename

To rename a file on a WAAS device, use the **rename** EXEC command.

```
rename oldfilename newfilename
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oldfilename</code></td>
<td>Original filename.</td>
</tr>
<tr>
<td><code>newfilename</code></td>
<td>New filename.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

replication-accelerator

central-manager

Usage Guidelines

Use this command to rename any SYSFS file without making a copy of the file.

Examples

The following example shows how to rename the `errlog.txt` file to `old_errlog.txt`:

```
WAE# rename errlog.txt old_errlog.txt
```

Related Commands

`cpfile`
CLI Commands

Chapter 3

To restore the device to its manufactured default status, removing user data from disk and flash memory, use the `restore` EXEC command.

```
restore {factory-default [preserve basic-config] | rollback}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>factory-default</td>
<td>Resets the device configuration and data to their manufactured default status.</td>
</tr>
<tr>
<td>preserve</td>
<td>(Optional) Preserves certain configurations and data on the device.</td>
</tr>
<tr>
<td>basic-config</td>
<td>(Optional) Selects basic network configurations.</td>
</tr>
<tr>
<td>rollback</td>
<td>Roll back configuration to the last functional software and device configuration.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to restore data on disk and in flash memory to the factory default, while preserving particular time stamp evaluation data, or to roll back the configuration to the last functional data and device configuration.

This command erases all existing content on the device; however, your network settings are preserved and the device is accessible through a Telnet and Secure Shell (SSH) session after it reboots.

Backing up the Central Manager Database

Before you use the `restore factory-default` command on your primary WAAS Central Manager or change over from the primary to a standby WAAS Central Manager, be sure to back up the WAAS Central Manager database and copy the backup file to a safe location that is separate from that of the WAAS Central Manager. You must halt the operation of the WAAS Central Manager before you enter the backup and restore commands.

Caution

This command erases user-specified configuration information stored in the flash image, removes data on disk, user-defined disk partitions, and the entire Central Manager database. User-defined disk partitions that are removed include the SYSFS, WAAS, and PRINTSPoolFS partitions. The configuration being removed includes the starting configuration of the device.
By removing the WAAS Central Manager database, all configuration records for the entire WAAS network are deleted. If you do not have a valid backup file or a standby WAAS Central Manager, you must reregister every WAE with the WAAS Central Manager because all previously configured data is lost.

If you used your standby WAAS Central Manager to store the database while you reconfigured the primary, you can simply register the former primary as a new standby WAAS Central Manager.

If you created a backup file while you configured the primary WAAS Central Manager, you can copy the backup file to this newly reconfigured WAAS Central Manager.

Rolling Back the Configuration

You can roll back the software and configuration of a WAAS device to a previous version using the `restore rollback` command. You would roll back software only in cases in which a newly installed version of the WAAS software is not functioning properly.

The `restore rollback` command installs the last saved WAAS.bin image on the system disk. A WAAS.bin image is created during software installation and stored on the system disk. If the WAAS device does not have a saved version, the software is not rolled back.

Examples

The following two examples show how to use the `restore factory-default` and `restore factory-default preserve basic-config` commands. Because configuration parameters and data are lost, prompts are given before initiating the restore operation to ensure that you want to proceed.

WAE# restore factory-default

This command will wipe out all of data on the disks and wipe out WAAS CLI configurations you have ever made. If the box is in evaluation period of certain product, the evaluation process will not be affected though.

It is highly recommended that you stop all active services before this command is run.

Are you sure you want to go ahead?[yes/no]

WAE# restore factory-default preserve basic-config

This command will wipe out all of data on the disks and all of WAAS CLI configurations except basic network configurations for keeping the device online. The to-be-preserved configurations are network interfaces, default gateway, domain name, name server and hostname. If the box is in evaluation period of certain product, the evaluation process will not be affected.

It is highly recommended that you stop all active services before this command is run.

Are you sure you want to go ahead?[yes/no]

Note

You can enter basic configuration parameters (such as IP address, hostname, and name server) at this point, or later through entries in the command-line interface.
The following example shows that entering the `show disks details` command after the `restore` command is used verifies that the `restore` command has removed data from the partitioned file systems SYSFS, WAAS, and PRINTSPOOLFS:

```
WAE# show disks details

Physical disk information:

   disk00: Normal   (h00 c00 i00 100 - DAS) 140011MB(136.7GB)
   disk01: Normal   (h00 c00 i01 100 - DAS) 140011MB(136.7GB)

Mounted filesystems:

<table>
<thead>
<tr>
<th>MOUNT POINT</th>
<th>TYPE</th>
<th>DEVICE</th>
<th>SIZE</th>
<th>INUSE</th>
<th>FREE</th>
<th>USE%</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>root</td>
<td>/dev/root</td>
<td>35MB</td>
<td>30MB</td>
<td>5MB</td>
<td>85%</td>
</tr>
<tr>
<td>/swstore</td>
<td>internal</td>
<td>/dev/md1</td>
<td>991MB</td>
<td>333MB</td>
<td>658MB</td>
<td>33%</td>
</tr>
<tr>
<td>/state</td>
<td>internal</td>
<td>/dev/md2</td>
<td>3967MB</td>
<td>81MB</td>
<td>3884MB</td>
<td>2%</td>
</tr>
<tr>
<td>/disk00-04</td>
<td>CONTENT</td>
<td>/dev/md4</td>
<td>122764MB</td>
<td>33MB</td>
<td>122731MB</td>
<td>0%</td>
</tr>
<tr>
<td>/local/local1</td>
<td>SYSFS</td>
<td>/dev/md5</td>
<td>3967MB</td>
<td>271MB</td>
<td>3696MB</td>
<td>6%</td>
</tr>
<tr>
<td>.../local1/spool</td>
<td>PRINTSPOOL</td>
<td>/dev/md6</td>
<td>991MB</td>
<td>16MB</td>
<td>975MB</td>
<td>1%</td>
</tr>
<tr>
<td>/sw</td>
<td>internal</td>
<td>/dev/md0</td>
<td>991MB</td>
<td>424MB</td>
<td>567MB</td>
<td>42%</td>
</tr>
</tbody>
</table>

Software RAID devices:

<table>
<thead>
<tr>
<th>DEVICE NAME</th>
<th>TYPE</th>
<th>STATUS</th>
<th>PHYSICAL DEVICES AND STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/md0</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/00[GOOD] disk01/00[GOOD]</td>
</tr>
<tr>
<td>/dev/md1</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/01[GOOD] disk01/01[GOOD]</td>
</tr>
<tr>
<td>/dev/md2</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/02[GOOD] disk01/02[GOOD]</td>
</tr>
<tr>
<td>/dev/md3</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/03[GOOD] disk01/03[GOOD]</td>
</tr>
<tr>
<td>/dev/md4</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/04[GOOD] disk01/04[GOOD]</td>
</tr>
<tr>
<td>/dev/md5</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/05[GOOD] disk01/05[GOOD]</td>
</tr>
<tr>
<td>/dev/md6</td>
<td>RAID-1</td>
<td>NORMAL OPERATION</td>
<td>disk00/06[GOOD] disk01/06[GOOD]</td>
</tr>
</tbody>
</table>

Currently contentfilesystems RAID level is not configured to change.

The following example shows how to upgrade or restore an older version of the WAAS software. In the first example below, version Y of the software is installed (using the `copy` command), but the administrator has not switched over to it yet, so the current version is still version X. The system is then reloaded (using the `reload` command), and it verifies that version Y is the current version running.

The following example shows that the software is rolled back to version X (using the `restore rollback` command), and the software is reloaded again:

```
WAE# copy ftp install server path waas.versionY.bin
WAE# show version
Cisco Wide Area Application Services Software (WAAS)
Copyright (c) 1999-2006 by Cisco Systems, Inc.
Cisco Wide Area Application Services Software Release 4.0.0 (build b340 Mar 25 2006)
Version: fe611-4.0.0.340
Compiled 17:26:17 Mar 25 2006 by cnbuild
System was restarted on Mon Mar 27 15:25:02 2006.
The system has been up for 3 days, 21 hours, 9 minutes, 17 seconds.

WAE# show version last
Nothing is displayed.
WAE# show version pending
WAAS 4.0.1 Version Y
WAE# reload
...... reloading
WAE# show version
Cisco Wide Area Application Services Software (WAAS)
...
WAE# restore rollback
WAE# reload
...... reloading

Because flash memory configurations were removed after the restore command was used, the show startup-config command does not return any flash memory data. The show running-config command returns the default running configurations.

Related Commands

- reload
- show disks
- show running-config
- show startup-config
- show version
rmdir

To delete a directory on a WAAS device, use the `rmdir` EXEC command.

```
rmdir directory
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directory</td>
<td>Name of the directory that you want to delete.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to remove any directory from the WAAS file system. The `rmdir` command only removes empty directories.

Examples

The following example shows how to delete the `oldfiles` directory from the `local1` directory:

```
WAE# rmdir /local1/oldfiles
```

Related Commands

cpfile
dir
dl
ls
mkdir
pwd
rename
To copy files between network hosts, use the `scp` command.

```
scp [1][2][4][6][B][C][p][q][r][v] [c cipher] [F config-file] [i id-file] [l limit]
    [o ssh_option] [P port] [S program] [[user @] host : file] [...] [[user-n @] host-n : file-n]
```

Syntax Description

- **1** (Optional) Forces this command to use protocol 1.
- **2** (Optional) Forces this command to use protocol 2.
- **4** (Optional) Forces this command to use only IPv4 addresses.
- **6** (Optional) Forces this command to use only IPv6 addresses.
- **B** (Optional) Specifies the batch mode. In this mode, the `scp` command does not ask for passwords or passphrases.
- **C** (Optional) Enables compression. The `scp` command passes this option to the `ssh` command to enable compression.
- **p** (Optional) Preserves the following information from the source file: modification times, access times, and modes.
- **q** (Optional) Disables the display of progress information.
- **r** (Optional) Recursively copies directories and their contents.
- **v** (Optional) Specifies the verbose mode. Causes the `scp` and `ssh` commands to print debugging messages about their progress. This option can be helpful when troubleshooting connection, authentication, and configuration problems.
- **c** (Optional) Specifies the cipher to use for encrypting the data being copied. The `scp` command directly passes this option to the `ssh` command.
- **cipher** The cipher to use for encrypting the data being copied.
- **F** (Optional) Specifies an alternative per-user configuration file for Secure Shell (SSH). The `scp` command directly passes this option to the `ssh` command.
- **config-file** Name of the configuration file.
- **i** (Optional) Specifies the file containing the private key for RSA authentication. The `scp` command directly passes this information to the `ssh` command.
- **id-file** The name of the file containing the private key for RSA authentication.
- **l** (Optional) Limits the use of bandwidth.
- **limit** The bandwidth to use for copying files in kbps.
- **o** (Optional) Passes options to the `ssh` command in the format used in `ssh_config`.5.
- **ssh_option** See the `ssh` command for more information about the possible options.
- **P** (Optional) Specifies the port to connect to on the remote host.
- **port** The port to connect to on the remote host.
- **S** (Optional) Specifies the program to use for the encrypted connection.
- **program** Name of the program to use for the encrypted connection.
- **user** (Optional) Username.
The `scp` command uses SSH for transferring data between hosts. This command prompts you for passwords or pass phrases when needed for authentication.

Related Commands

- `ssh`
script

To execute a script provided by Cisco or check the script for errors, use the `script EXEC` command.

```
script {check | execute} file_name
```

Syntax Description

- **check**: Checks the validity of the script.
- **execute**: Executes the script. The script file must be a SYSFS file in the current directory.
- **file_name**: Name of the script file.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The `script EXEC` command opens the script utility, which allows you to execute Cisco-supplied scripts or check errors in those scripts. The script utility can read standard terminal input from the user if the script you run requires input from the user.

Note

The script utility is designed to run only Cisco-supplied scripts. You cannot execute script files that lack Cisco signatures or that have been corrupted or modified.

Examples

The following example shows how to check for errors in the script file `test_script.pl`:

```
WAE# script check test_script.pl
```
setup

To configure basic configuration settings (general settings, device network settings, and disk configuration) on the WAAS device or to complete basic configuration after upgrading to WAAS software, use the setup EXEC command.

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
For instructions on using the setup command, see the Cisco Wide Area Application Services Quick Configuration Guide.

Examples
The following example shows the first screen of the wizard when you enter the setup EXEC command on a WAAS device that is running the WAAS software:

```plaintext
WAE# setup
Please choose an interface to configure from the following list:
1: GigabitEthernet 1/0
2: GigabitEthernet 2/0

Enter choice:

. .

Press the ESC key at any time to quit this session
```
show aaa accounting

To display the AAA accounting configuration information for a WAAS device, use the show aaa EXEC command.

 show aaa accounting

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to display configuration information for the following AAA accounting types:

- Exec shell
- Command (for normal users and superusers)
- System

Examples

Table 3-1 describes the fields shown in the show aaa accounting display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting Type</td>
<td>Displays the AAA accounting configuration for the following types of user accounts: Exec Command level 0 Command level 15 System</td>
</tr>
<tr>
<td>Record Event(s)</td>
<td>Displays the configuration of the AAA accounting notice that is sent to the accounting server.</td>
</tr>
<tr>
<td>stop-only</td>
<td>The WAAS device sends a stop record accounting notice at the end of the specified activity or event to the TACACS+ accounting server.</td>
</tr>
</tbody>
</table>
Field Descriptions for the show aaa accounting Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| start-stop | The WAAS device sends a start record accounting notice at the beginning of an event and a stop record at the end of the event to the TACACS+ accounting server.
The start accounting record is sent in the background. The requested user service begins regardless of whether or not the start accounting record was acknowledged by the TACACS+ accounting server. |
| wait-start | The WAAS device sends both a start and a stop accounting record to the TACACS+ accounting server. However, the requested user service does not begin until the start accounting record is acknowledged. A stop accounting record is also sent. |
| disabled | Accounting is disabled for the specified event. |
| Protocol | Displays the accounting protocol that is configured. |
show adapter

To display the status and configuration of the EndPoint Mapper (EPM) adapter, use the `show adapter` EXEC command.

```
show adapter epm
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>epm</code></td>
<td>Specifies the Microsoft PortMapper adapter.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

This command is valid for the WAE application-accelerator appliances; it is not valid for the Central Manager (CM) appliance.

Examples

Table 3-2 describes the fields shown in the `show adapter epm` display.

<table>
<thead>
<tr>
<th>Field Description for the <code>show adapter epm</code> Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
</tr>
<tr>
<td>EPM (MS-PortMapper) adapter is enabled.</td>
</tr>
<tr>
<td>EPM (MS-PortMapper) adapter is disabled.</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Configuration status of the EPM adapter.</td>
</tr>
</tbody>
</table>

Related Commands

`show adapter epm`

`show statistics epm`
show alarms

To display information on various types of alarms, their status, and history on a WAAS device, use the show alarms EXEC command.

```
show alarms [critical [detail [support]] | detail [support] | history [start_num [end_num [detail [support]]]] | critical [start_num [end_num [detail [support]]]] | detail [support] | major [start_num [end_num [detail [support]]]] | minor [start_num [end_num [detail [support]]]] | detail [support] | major [detail [support]] | minor [detail [support]] | status]
```

Syntax Description

- **critical** *(Optional)* Displays critical alarm information.
- **detail** *(Optional)* Displays detailed information for each alarm.
- **support** *(Optional)* Displays additional information about each alarm.
- **history** *(Optional)* Displays information about the history of various alarms.
- **start_num** *(Optional)* Alarm number that appears first in the alarm history.
- **end_num** *(Optional)* Alarm number that appears last in the alarm history.
- **major** *(Optional)* Displays information about major alarms.
- **minor** *(Optional)* Displays information about minor alarms.
- **status** *(Optional)* Displays the status of various alarms and alarm overload settings.

Defaults

No default behavior or values.

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The Node Health Manager in the WAAS software enables WAAS applications to raise alarms to draw attention in error/significant conditions. The Node Health Manager, which is the data repository for such alarms, aggregates the health and alarm information for the applications, services, and resources (for example, disk drives) that are being monitored on the WAAS device. For example, this feature gives you a mechanism to determine if a WAE is receiving overwhelming number of alarms. These alarms are referred to as “WAAS software alarms.”

The WAAS software uses SNMP to report error conditions by generating SNMP traps. The following WAAS applications can generate a WAAS software alarm:

- Node Health Manager (Alarm overload condition)
- System Monitor (sysmon) for disk failures

The three levels of alarms in WAAS software are as follows:
Critical—Alarms that affect the existing traffic through the WAE, and are considered fatal (the WAE cannot recover and continue to process traffic).

Major—Alarms which indicate a major service (for example, the cache service) has been damaged or lost. Urgent action is necessary to restore this service. However, other node components are fully functional and the existing service should be minimally impacted.

Minor—Alarms which indicate that a condition that will not affect a service has occurred, but that corrective action is required to prevent a serious fault from occurring.

You can configure alarms using the `snmp-server enable traps alarms` global configuration command.

Use the `show alarms critical` EXEC command to display the current critical alarms being generated by WAAS software applications. Use the `show alarms critical detail` EXEC command to display additional details for each of the critical alarms being generated. Use the `show alarms critical detail support` EXEC command to display an explanation about the condition that triggered the alarm and how you can find out the cause of the problem. Similarly, you can use the `show alarms major` and `show alarms minor` EXEC commands to display the details of major and minor alarms.

Use the `show alarms history` EXEC command to display a history of alarms that have been raised and cleared by WAAS software on the WAAS device since the last software reload. The WAAS software retains the last 100 alarm raise and clear events only.

Use the `show alarms status` EXEC command to display the status of current alarms, and the WAAS device’s alarm overload status and alarm overload configuration.

Table 3-3 describes the fields shown in the `show alarms history` display.

Table 3-3 Field Descriptions for the show alarms history Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op</td>
<td>Operation status of the alarm. Values are R–Raised or C–Cleared.</td>
</tr>
<tr>
<td>Sev</td>
<td>Severity of the alarm. Values are Cr–Critical, Ma–Major, or Mi–Minor.</td>
</tr>
<tr>
<td>Alarm ID</td>
<td>Type of event that caused the alarm. For example: wafs_edge_down,</td>
</tr>
<tr>
<td></td>
<td>wafs_core_down.</td>
</tr>
<tr>
<td>Module/Submodule</td>
<td>Software module affected. For example: wafs.</td>
</tr>
<tr>
<td>Instance</td>
<td>Object that this alarm event is associated with. For example, for an alarm</td>
</tr>
<tr>
<td></td>
<td>event with the Alarm ID disk_failed, the instance would be the name of</td>
</tr>
<tr>
<td></td>
<td>the disk that failed. The Instance field does not have pre-defined</td>
</tr>
<tr>
<td></td>
<td>values and is application specific.</td>
</tr>
</tbody>
</table>

Table 3-4 describes the fields shown in the `show alarms status` display.

Table 3-4 Field Descriptions for the show alarms status Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Alarms</td>
<td>Number of critical alarms.</td>
</tr>
<tr>
<td>Major Alarms</td>
<td>Number of major alarms.</td>
</tr>
<tr>
<td>Minor Alarms</td>
<td>Number of minor alarms.</td>
</tr>
<tr>
<td>Overall Alarm Status</td>
<td>Aggregate status of alarms.</td>
</tr>
</tbody>
</table>
Table 3-4 Field Descriptions for the show alarms status Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device is NOT in alarm overload state.</td>
<td>Status of the device alarm overload state.</td>
</tr>
<tr>
<td>Device enters alarm overload state @ 999 alarms/sec.</td>
<td>Threshold number of alarms per second at which the device enters the alarm overload state.</td>
</tr>
<tr>
<td>Device exits alarm overload state @ 99 alarms/sec.</td>
<td>Threshold number of alarms per second at which the device exits the alarm overload state.</td>
</tr>
<tr>
<td>Overload detection is ENABLED.</td>
<td>Status of whether overload detection is enabled on the device.</td>
</tr>
</tbody>
</table>

Related Commands

(config) alarm overload-detect
(config) snmp-server enable traps
show arp

To display the ARP table for a WAAS device, use the show arp EXEC command.

 show arp

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the show arp command to display the Internet-to-Ethernet address translation tables of the Address Resolution Protocol. Without flags, the current ARP entry for the host name is displayed.

Examples

Table 3-5 describes the fields shown in the show arp display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol</td>
<td>Type of protocol.</td>
</tr>
<tr>
<td>Address</td>
<td>IP address of the hostname.</td>
</tr>
<tr>
<td>Flags</td>
<td>Current ARP flag status.</td>
</tr>
<tr>
<td>Hardware Addr</td>
<td>Hardware IP address given as six hexadecimal bytes separated by colons.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of wide-area network.</td>
</tr>
<tr>
<td>Interface</td>
<td>Name and slot/port information for the interface.</td>
</tr>
</tbody>
</table>
show authentication

To display the authentication configuration for a WAAS device, use the **show authentication** EXEC command.

```
show authentication {user | content-request}
```

Syntax Descriptions

<table>
<thead>
<tr>
<th>Syntax Descriptions</th>
<th>user</th>
<th>content-request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays authentication configuration for user login to the system.</td>
<td>Displays content request authentication configuration information in the disconnected mode.</td>
<td></td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

When the WAAS device authenticates a user through an NTLM, LDAP, TACACS+, RADIUS, or Windows domain server, a record of the authentication is stored locally. As long as the entry is stored, subsequent attempts to access restricted Internet content by the same user do not require additional server lookups. To display the local and remote authentication configuration for user login, use the **show authentication user** EXEC command.

To display the content request authentication configuration information in the disconnected mode, use the **show authentication content-request** EXEC command.

Examples

Table 3-6 describes the fields shown in the **show authentication user** display.

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication: Console/Telnet/Ftp/SSH Session</td>
<td>Displays which authentication service is enabled for login authentication and the configured status of the service.</td>
</tr>
<tr>
<td>Windows domain</td>
<td>Operation status of the authentication service. Values are enabled or disabled.</td>
</tr>
<tr>
<td>RADIUS</td>
<td></td>
</tr>
<tr>
<td>TACACS+</td>
<td>Priority status of each authentication service. Values are primary, secondary, or tertiary.</td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>
Table 3-6 \textit{Field Descriptions for the show authentication user Command (continued)}

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration Authentication: Console/Telnet/Ftp/SSH Session</td>
<td>Displays which authentication service is enabled for configuration authentication and the configured status of the service.</td>
</tr>
<tr>
<td>Windows domain</td>
<td>Operation status of the authentication service. Values are enabled or disabled.</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Priority status of each authentication service. Values are primary, secondary, or tertiary.</td>
</tr>
<tr>
<td>TACACS+</td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td></td>
</tr>
</tbody>
</table>

Table 3-7 describes the field in the \texttt{show authentication content-request} display.

Table 3-7 \textit{Field Description for the show authentication content-request Command}

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>The content request authentication in disconnected mode is XXX.</td>
<td>Operation status of content request authentication in disconnected mode. Values are enabled or disabled.</td>
</tr>
</tbody>
</table>

Related Commands
\begin{itemize}
\item \texttt{(config) authentication}
\item \texttt{clear}
\item \texttt{show statistics authentication}
\end{itemize}
show auto-register

To display the status of a WAE’s automatic registration feature, use the `show auto-register` EXEC command.

```
show auto-register
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator

Examples
Table 3-8 describes the output in the `show auto-register` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto registration is enabled</td>
<td>Configuration status of the autoregistration feature.</td>
</tr>
<tr>
<td>Auto registration is disabled</td>
<td></td>
</tr>
</tbody>
</table>

Related Commands
(config) auto-register
show banner

To display the message of the day (MOTD), login, and EXEC banner settings, use the `show banner` EXEC command.

```
show banner
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-9 describes the fields shown in the `show banner` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banner is enabled.</td>
<td>Configuration status of the banner feature.</td>
</tr>
<tr>
<td>MOTD banner is: abc</td>
<td>(Message of the day) Displays the configured message of the day.</td>
</tr>
<tr>
<td>Login banner is: abc</td>
<td>Displays the configured login banner.</td>
</tr>
<tr>
<td>Exec banner is: abc</td>
<td>Displays the configured EXEC banner.</td>
</tr>
</tbody>
</table>

Related Commands
`config auto-register`
show bypass

To display static bypass configuration information for a WAE, use the show bypass EXEC command.

 show bypass list

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list</th>
<th>Displays the bypass list entries. Maximum of 50.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

The maximum number of static bypass entries is 50.

Examples

Table 3-10 describes the fields shown in the show bypass list display.

Table 3-10 Field Descriptions for the show bypass list Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>IP address and port of the client. For any client with this IP address, the WAE will not process the packet, but will bypass it and send it back to the router.</td>
</tr>
<tr>
<td>Server</td>
<td>IP address and port of the server.</td>
</tr>
<tr>
<td>Entry type</td>
<td>Type of bypass list entry. The Entry type field contains one of the following values: static-config, auth-traffic, server-error, or accept. A static-config entry is a bypass list entry that is user-configured. An auth-traffic entry is a type of dynamic entry that the internal software adds automatically when the server requests authentication.</td>
</tr>
</tbody>
</table>

Related Commands

(config) bypass
show cdp

To display CDP configuration information, use the show cdp EXEC command.

```
show cdp [entry neighbor [protocol | version [protocol]] | holdtime | interface [FastEthernet slot/port | GigabitEthernet slot/port] | neighbors [detail | FastEthernet slot/port [detail] | GigabitEthernet slot/port [detail]] | run | timer | traffic]
```

Syntax Description

- `entry` (Optional) Displays information for a specific neighbor entry.
- `neighbor` Name of CDP neighbor entry.
- `protocol` (Optional) Displays the CDP protocol information.
- `version` (Optional) Displays the CDP version.
- `holdtime` (Optional) Displays length of time that CDP information is held by neighbors.
- `interface` (Optional) Displays interface status and configuration.
- `FastEthernet` (Optional) Displays Fast Ethernet configuration.
- `slot/port` Fast Ethernet slot (0–3) and port number.
- `GigabitEthernet` (Optional) Displays Gigabit Ethernet configuration.
- `slot/port` Gigabit Ethernet slot (1–2) and port number.
- `neighbors` (Optional) Displays CDP neighbor entries.
- `detail` (Optional) Displays detailed neighbor entry information.
- `FastEthernet` (Optional) Displays neighbor Fast Ethernet information.
- `slot/port` Neighbor Fast Ethernet slot (0–3) and port number.
- `detail` Displays detailed neighbor Fast Ethernet network information.
- `GigabitEthernet` (Optional) Displays neighbor Gigabit Ethernet information.
- `slot/port` Neighbor Gigabit Ethernet slot (1–2) and port number.
- `detail` (Optional) Displays detailed Gigabit Ethernet neighbor network information.
- `run` (Optional) Displays the CDP process status.
- `timer` (Optional) Displays the time when CDP information is resent to neighbors.
- `traffic` (Optional) Displays CDP statistical information.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager
Usage Guidelines

The `show cdp` command displays information regarding how frequently CDP packets are resent to neighbors, the length of time that CDP packets are held by neighbors, the disabled status of CDP Version 2 multicast advertisements, CDP Ethernet interface ports, and general CDP traffic information.

Examples

Table 3-11 describes the fields shown in the `show cdp` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sending CDP packets every XX seconds</td>
<td>Interval (in seconds) between transmissions of CDP advertisements. This field is controlled by the <code>cdp timer</code> command.</td>
</tr>
<tr>
<td>Sending a holdtime value of XX seconds</td>
<td>Time (in seconds) that the device directs the neighbor to hold a CDP advertisement before discarding it. This field is controlled by the <code>cdp holdtime</code> command.</td>
</tr>
<tr>
<td>Sending CDPv2 advertisements is XX</td>
<td>Transmission status for sending CDP Version-2 type advertisements. Possible values are enabled or disabled.</td>
</tr>
</tbody>
</table>

Table 3-12 describes the fields shown in the `show cdp entry neighbor` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Name of the neighbor device and either the MAC address or the serial number of this device.</td>
</tr>
<tr>
<td>Entry address(es)</td>
<td></td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the neighbor device.</td>
</tr>
<tr>
<td>CLNS address</td>
<td>Non-IP network address. Depends on type of neighbor.</td>
</tr>
<tr>
<td>DECnet address</td>
<td>Non-IP network address. Depends on type of neighbor.</td>
</tr>
<tr>
<td>Platform</td>
<td>Product name and number of the neighbor device.</td>
</tr>
<tr>
<td>Interface</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the port on the neighbor device.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Capability code discovered on the neighbor device. This is the type of the device listed in the CDP Neighbors table. Possible values are as follows: R—Router T—Transparent bridge B—Source-routing bridge S—Switch H—Host I—IGMP device r—Repeater</td>
</tr>
</tbody>
</table>
Table 3-12 Field Descriptions for the show cdp entry Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holdtime</td>
<td>Time (in seconds) that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Version</td>
<td>Software version running on the neighbor device.</td>
</tr>
</tbody>
</table>

Table 3-13 describes the fields shown in the `show cdp entry neighbor protocol` display.

Table 3-13 Field Descriptions for the show cdp entry protocol Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol information for XX</td>
<td>Name or identifier of the neighbor device.</td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the neighbor device.</td>
</tr>
<tr>
<td>CLNS address</td>
<td>Non-IP network address. Depends on type of neighbor.</td>
</tr>
<tr>
<td>DECnet address</td>
<td>Non-IP network address. Depends on type of neighbor.</td>
</tr>
</tbody>
</table>

Table 3-14 describes the fields shown in the `show cdp entry neighbor version` display.

Table 3-14 Field Descriptions for the show cdp entry version Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version information for XX</td>
<td>Name or identifier of the neighbor device.</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright information for the neighbor device.</td>
</tr>
</tbody>
</table>

Table 3-15 describes the field in the `show cdp holdtime` display.

Table 3-15 Field Descriptions for the show cdp holdtime Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX seconds</td>
<td>Time (in seconds) that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
</tbody>
</table>

Table 3-16 describes the fields shown in the `show cdp interface` display.

Table 3-16 Field Descriptions for the show cdp interface Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface_slot/port is XX</td>
<td>Operation status of the CDP interface. Values are up or down.</td>
</tr>
<tr>
<td>CDP protocol is XX</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
</tbody>
</table>
Table 3-17 describes the fields shown in the `show cdp neighbors` display.

Table 3-17 Field Descriptions for the show cdp neighbors Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Configured ID (name), MAC address, or serial number of the neighbor device.</td>
</tr>
<tr>
<td>Local Intrfce</td>
<td>(Local Interface) Protocol being used by the connectivity media.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Time (in seconds) that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Capability</td>
<td>Capability code discovered on the device. This is the type of the device</td>
</tr>
<tr>
<td></td>
<td>listed in the CDP Neighbors table. Possible values are as follows:</td>
</tr>
<tr>
<td></td>
<td>R—Router</td>
</tr>
<tr>
<td></td>
<td>T—Transparent bridge</td>
</tr>
<tr>
<td></td>
<td>B—Source-routing bridge</td>
</tr>
<tr>
<td></td>
<td>S—Switch</td>
</tr>
<tr>
<td></td>
<td>H—Host</td>
</tr>
<tr>
<td></td>
<td>I—IGMP device</td>
</tr>
<tr>
<td></td>
<td>r—Repeater</td>
</tr>
<tr>
<td>Platform</td>
<td>Product number of the device.</td>
</tr>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the device.</td>
</tr>
</tbody>
</table>

Table 3-18 describes the fields shown in the `show cdp neighbors detail` display.

Table 3-18 Field Descriptions for the show cdp neighbors detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>Configured ID (name), MAC address, or serial number of the neighbor device.</td>
</tr>
<tr>
<td>Entry address (es)</td>
<td>List of network addresses of neighbor devices.</td>
</tr>
<tr>
<td>Platform</td>
<td>Product name and number of the neighbor device.</td>
</tr>
<tr>
<td>Capabilities</td>
<td>Device type of the neighbor. This device can be a router, a bridge, a</td>
</tr>
<tr>
<td></td>
<td>transparent bridge, a source-routing bridge, a switch, a host, an IGMP</td>
</tr>
<tr>
<td></td>
<td>device, or a repeater.</td>
</tr>
<tr>
<td>Interface</td>
<td>Protocol being used by the connectivity media.</td>
</tr>
<tr>
<td>Port ID (outgoing port)</td>
<td>Port number of the port on the neighbor device.</td>
</tr>
<tr>
<td>Holdtime</td>
<td>Time (in seconds) that the current device will hold the CDP advertisement</td>
</tr>
<tr>
<td></td>
<td>from a transmitting router before discarding it.</td>
</tr>
<tr>
<td>Version</td>
<td>Software version running on the neighbor device.</td>
</tr>
<tr>
<td>Copyright</td>
<td>Copyright information for the neighbor device.</td>
</tr>
<tr>
<td>advertisement version</td>
<td>Version of CDP being used for CDP advertisements.</td>
</tr>
</tbody>
</table>
Table 3-18 Field Descriptions for the show cdp neighbors detail Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP Management Domain</td>
<td>VLAN trunk protocol management domain. The VLAN information is distributed to all switches that are part of the same domain.</td>
</tr>
<tr>
<td>Native VLAN</td>
<td>VLAN to which the neighbor interface belongs.</td>
</tr>
</tbody>
</table>

Table 3-19 describes the field in the show cdp run display.

Table 3-19 Field Description for the show cdp run Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP is XX.</td>
<td>Shows whether CDP is enabled or disabled.</td>
</tr>
</tbody>
</table>

Table 3-20 describes the field in the show cdp timer display.

Table 3-20 Field Description for the show cdp timer Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdp timer XX</td>
<td>Time when CDP information is resent to neighbors.</td>
</tr>
</tbody>
</table>

Table 3-21 describes the fields shown in the show cdp traffic display.

Table 3-21 Field Descriptions for the show cdp traffic Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total packets Output</td>
<td>(Total number of packets sent) Number of CDP advertisements sent by the local device. Note this value is the sum of the CDP Version 1 advertisements output and CDP Version 2 advertisements output fields.</td>
</tr>
<tr>
<td>Input</td>
<td>(Total number of packets received) Number of CDP advertisements received by the local device. Note this value is the sum of the CDP Version-1 advertisements input and CDP Version 2 advertisements input fields.</td>
</tr>
<tr>
<td>Hdr syntax</td>
<td>(Header Syntax) Number of CDP advertisements with bad headers, received by the local device.</td>
</tr>
<tr>
<td>Chksum error</td>
<td>(CheckSum Error) Number of times the checksum (verifying) operation failed on incoming CDP advertisements.</td>
</tr>
<tr>
<td>Encaps failed</td>
<td>(Encapsulations Failed) Number of times CDP failed to transmit advertisements on an interface because of a failure caused by the bridge port of the local device.</td>
</tr>
<tr>
<td>No memory</td>
<td>Number of times the local device did not have enough memory to store the CDP advertisements in the advertisement cache table when the device was attempting to assemble advertisement packets for transmission and parse them when receiving them.</td>
</tr>
<tr>
<td>Invalid packet</td>
<td>Number of invalid CDP advertisements received and sent by the local device.</td>
</tr>
<tr>
<td>Fragmented</td>
<td>Number of times fragments or portions of a single CDP advertisement were received by the local device instead of the complete advertisement.</td>
</tr>
</tbody>
</table>
Table 3-21 Field Descriptions for the show cdp traffic Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDP version 1 advertisements</td>
<td>Number of CDP Version 1 advertisements sent by the local device.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>Number of CDP Version 1 advertisements received by the local device.</td>
</tr>
<tr>
<td>CDP version 2 advertisements</td>
<td>Number of CDP Version 2 advertisements sent by the local device.</td>
</tr>
<tr>
<td>Output</td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>Number of CDP Version 2 advertisements received by the local device.</td>
</tr>
</tbody>
</table>

Related Commands

(config) cdp
(config-if) cdp
clear
show cifs

To display CIFS run-time information, use the `show cifs` EXEC command.

```
show cifs {auto-discovery [enabled | host-db | last] | cache [disk-use | entry-count] |
          connectivity peers | mss | requests {count | waiting} | sessions {count | list}}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>auto-discovery</th>
<th>CIFS auto-discovery status and run-time data.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enabled</td>
<td>Displays current state of CIFS auto-discovery.</td>
</tr>
<tr>
<td></td>
<td>host-db</td>
<td>Displays currently known hosts.</td>
</tr>
<tr>
<td></td>
<td>last</td>
<td>Displays last auto-discovered entries.</td>
</tr>
<tr>
<td></td>
<td>cache</td>
<td>Displays CIFS cache information.</td>
</tr>
<tr>
<td></td>
<td>disk-use</td>
<td>Displays total disk usage for CIFS cache.</td>
</tr>
<tr>
<td></td>
<td>entry-count</td>
<td>Count of cached file and directory entries.</td>
</tr>
<tr>
<td></td>
<td>connectivity</td>
<td>Displays Run-time information on Edge-Core connectivity.</td>
</tr>
<tr>
<td></td>
<td>peers</td>
<td>Displays list of connected Cores.</td>
</tr>
<tr>
<td></td>
<td>mss</td>
<td>Displays the TCP maximum segment size (MSS) for CIFS adapter. The segment size range is 512–1460.</td>
</tr>
<tr>
<td></td>
<td>requests</td>
<td>Displays run-time information on active CIFS requests.</td>
</tr>
<tr>
<td></td>
<td>count</td>
<td>Number of pending CIFS requests.</td>
</tr>
<tr>
<td></td>
<td>waiting</td>
<td>Number of waiting CIFS requests.</td>
</tr>
<tr>
<td></td>
<td>sessions</td>
<td>Displays run-time information on active CIFS sessions.</td>
</tr>
<tr>
<td></td>
<td>count</td>
<td>Connected session count.</td>
</tr>
<tr>
<td></td>
<td>list</td>
<td>List of connected CIFS sessions.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Use the `show cifs cache` command to view information about caching efficiency. You might use this command to determine if the cache contains sufficient space or if more space is needed. If you have a performance issue, you might use this command to see whether or not the cache is full.

Use the `show cifs connectivity peers` command to validate the WAN link state and the Edge to Core connectivity. This command is useful for general monitoring and debugging.

Use the `show cifs requests count` or `show cifs requests waiting` command to monitor the load for CIFS traffic. You might also use this command for debugging purposes to isolate requests that are not processing.
Use the `show cifs sessions count` or `show cifs sessions list` command to view session information. You might use this command to monitor connected users during peak and off-peak hours.

Related Commands

- `cifs`
show clock

To display information about the system clock on a WAAS device, use the `show clock` EXEC command.

```
show clock [detail | standard-timezones { all | details timezone | regions | zones region-name }]
```

Syntax Description

- **detail**: (Optional) Displays detailed information; indicates the clock source (NTP) and the current summer time setting (if any).
- **standard-timezones**: (Optional) Displays information about the standard time zones.
- **all**: Displays all of the standard time zones (approximately 1500 time zones). Each time zone is listed on a separate line.
- **details**: Displays detailed information for the specified time zone.
- **timezone**: Name of the time zone.
- **regions**: Displays the region name of all the standard time zones. All 1500 time zones are organized into directories by region.
- **zones**: Displays the name of every time zone that is within the specified region.
- **region-name**: Name of the region.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The WAAS device has several predefined “standard” time zones. Some of these time zones have built-in summer time information while others do not. For example, if you are in an eastern region of the United States (US), you must use US/Eastern time zone that includes summer time information for the system clock to adjust automatically every April and October. There are about 1500 “standard” time zone names.

Strict checking disables the `clock summertime` command when a standard time zone is configured. You can only configure summertime if the time zone is not a standard time zone (that is, if the time zone is a “customized zone”).

The `show clock standard-timezones all` EXEC command enables you to browse through all standard timezones and choose from these predefined time zones. This enables you to choose a customized name that does not conflict with the predefined names of the standard time zones. Most predefined names of the standard time zones have two components, a region name and a zone name. You can list time zones by several criteria, such as regions and zones. To display all first level time zone names organized into directories by region, use the `show clock standard-timezones region` EXEC command.
The **show clock** command displays the local date and time information and the **show clock detail** command shows optional detailed date and time information.

Examples

Table 3-22 describes the field in the **show clock** display.

Table 3-22 Field Description for the show clock Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local time</td>
<td>Day of the week, month, date, time (hh:mm:ss), and year in local time relative to the UTC offset.</td>
</tr>
</tbody>
</table>

Table 3-23 describes the fields shown in the **show clock detail** display.

Table 3-23 Field Descriptions for the show clock detail Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local time</td>
<td>Local time relative to UTC.</td>
</tr>
<tr>
<td>UTC time</td>
<td>Universal time clock date and time.</td>
</tr>
<tr>
<td>Epoch</td>
<td>Number of seconds since Jan. 1, 1970.</td>
</tr>
<tr>
<td>UTC offset</td>
<td>UTC offset in seconds, hours, and minutes.</td>
</tr>
</tbody>
</table>

Related Commands

- **clock**
- **(config) clock**
show cms

To display Centralized Management System (CMS) embedded database content and maintenance status and other information for a WAAS device, use the `show cms` EXEC command.

```
show cms {database content {dump filename | text | xml} | info | processes}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>database</code></td>
<td>Displays embedded database maintenance information.</td>
</tr>
<tr>
<td><code>content</code></td>
<td>Writes the database content to a file.</td>
</tr>
<tr>
<td><code>dump</code></td>
<td>Dumps all database content to a text file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name of the file to be saved under local1 directory.</td>
</tr>
<tr>
<td><code>text</code></td>
<td>Writes the database content to a file in text format.</td>
</tr>
<tr>
<td><code>xml</code></td>
<td>Writes the database content to a file in XML format.</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Displays CMS application information.</td>
</tr>
<tr>
<td><code>processes</code></td>
<td>Displays CMS application processes.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Examples

Table 3-24 describes the fields shown in the `show cms info` display for WAAS application engines.

Table 3-24: Field Descriptions for the show cms info Command for WAAS Application Engines

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device registration information</td>
<td></td>
</tr>
<tr>
<td>Device Id</td>
<td>Unique identifier given to the device by the Central Manager at registration, which is used to manage the device.</td>
</tr>
<tr>
<td>Device registered as</td>
<td>Type of device used during registration: WAAS Application Engine or WAAS Central Manager.</td>
</tr>
<tr>
<td>Current WAAS Central Manager</td>
<td>Address of the Central Manager as currently configured in the central-manager address global configuration command. This address may differ from the registered address if a standby Central Manager is managing the device instead of the primary Central Manager with which the device is registered.</td>
</tr>
</tbody>
</table>
Table 3-24 Field Descriptions for the show cms info Command for WAAS Application Engines (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registered with WAAS Central Manager</td>
<td>Address of the Central Manager with which the device is registered.</td>
</tr>
<tr>
<td>Status</td>
<td>Connection status of the device to the Central Manager. This field may contain one of 3 values: online, offline, or pending.</td>
</tr>
<tr>
<td>Time of last config-sync</td>
<td>Time when the device management service last contacted the Central Manager for updates.</td>
</tr>
</tbody>
</table>

CMS services information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service cms_ce is running</td>
<td>Status of the WAE device management service (running or not running). This field is specific to the WAE only.</td>
</tr>
</tbody>
</table>

Table 3-25 describes the fields shown in the `show cms info` display for WAAS Central Managers.

Table 3-25 Field Descriptions for the show cms info Command for WAAS Central Managers

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Device registration information | **Device Id**
Unique identifier given to the device by the Central Manager at registration, which is used to manage the device. |
| | **Device registered as**
Type of device used during registration: WAAS Application Engine or WAAS Central Manager. |
| Current WAAS Central Manager role | **Role of the current Central Manager: Primary or Standby.** |
| | **Note**
The output for primary and standby Central Manager devices is different. On a standby, the output includes the following additional information: Current WAAS Central Manager and Registered with WAAS Central Manager. |
| Current WAAS Central Manager | Address of the standby Central Manager as currently configured in the central-manager address global configuration command. |
| Registered with WAAS Central Manager | Address of the standby Central Manager with which the device is registered. |

CMS services information

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service cms_httpd is running</td>
<td>Status of the management service (running or not running). This field is specific to the Central Manager only.</td>
</tr>
<tr>
<td>Service cms_cdm is running</td>
<td>Status of the management service (running or not running). This field is specific to the Central Manager only.</td>
</tr>
</tbody>
</table>
Table 3-26 describes the field in the `show cms database content text` display.

Table 3-26 Field Description for the show cms database content text Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database content can be found in <code>/local1/cms-db-12-12-2002-17:06:08:070.txt.</code></td>
<td>Name and location of the database content text file. This command requests the management service to write its current configuration to an automatically generated file in text format.</td>
</tr>
</tbody>
</table>

Table 3-27 describes the field in the `show cms database content xml` display.

Table 3-27 Field Description for the show cms database content xml Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database content can be found in <code>/local1/cms-db-12-12-2002-17:07:11:629.xml.</code></td>
<td>Name and location of the database content XML file. This command requests the management service to write its current configuration to an automatically generated file in XML format.</td>
</tr>
</tbody>
</table>

Related Commands

- `cms`
- `(config) cms`
show cms secure-store

To display secure disk encryption status, use the show cms secure-store EXEC command.

 show cms secure-store

Syntax Description
This command has no keywords or arguments.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
The following example, shows that secure disk encryption is fully operational (both initialized and open):

 WAE# show cms secure-store
 secure-store initialized and open

The command will display one of the following status messages:

<table>
<thead>
<tr>
<th>Status Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>secure-store not initialized</td>
<td>Secure disk encryption is not initialized.</td>
</tr>
<tr>
<td>secure-store initialized. use secure-store open command to open</td>
<td>Secure disk encryption is initialized but not open.</td>
</tr>
<tr>
<td>secure-store initialized and open</td>
<td>Secure disk encryption is initialized and open.</td>
</tr>
</tbody>
</table>

Related Commands
 cms secure-store
show debugging

To display the state of each debugging option that was previously enabled on a WAAS device, use the `show debugging` EXEC command.

```plaintext
show debugging
```

Syntax Description

This command has no arguments or keywords.

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

This command shows which debug options have been enabled or disabled. If there are no debug options configured, this command shows no output.

The `dre`, `emdb`, `flow`, `print-spooler`, `rhcp`, `tfo`, `translog`, `wafs`, and `wccp` command options are supported in the application-accelerator device mode only. The `emdb` and `rpc` command options are supported in the central manager device mode only.

This command displays only the type of debugging enabled, not the specific subset of the command.

Examples

The following example shows that the `debug tfo buffer-mgr` and the `debug tfo connection` commands coupled with the `show debugging` command display the states of `tfo buffer-mgr` and `tfo connection` debugging options:

```plaintext
WAE# debug tfo buffer-mgr
WAE# debug tfo connection
WAE# show debugging
tfo bufmgr debugging is on
tfo connmgr debugging is on
tfo netio debugging is on
tfo statmgr debugging is on
tfo translog debugging is on
```

Related Commands

`debug`
`undebug`
show device-mode

To display the configured or current device mode of a WAAS device, use the `show device-mode` EXEC command.

```
show device-mode [configured | current]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>configured</th>
<th>Displays the configured device mode, which has not taken effect yet.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>current</td>
<td>Displays the current device mode.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

You must deploy the WAAS Central Manager on a dedicated appliance. The device mode feature allows you to deploy a WAAS device as either a WAAS Central Manager or a WAE. Because you must deploy a WAAS Central Manager on a dedicated appliance, a WAAS device can only operate in one device mode; either in central-manager mode or application-accelerator mode.

If the configured and current device modes differ, a reload is required for the configured device mode to take effect.

To display the current device mode of a WAAS device, enter the `show device mode` EXEC command:

```
WAE# show device-mode
```

To display the current mode in which the WAAS device is operating, enter the `show device-mode current` EXEC command:

```
WAE# show device-mode current
Current device mode: application-accelerator
```

To display the configured device mode that has not yet taken effect, enter the `show device-mode configured` EXEC command. For example, if you had entered the `device mode central-manager` global configuration command on a WAAS device to change its device mode to central manager but have not yet entered the `copy run start EXEC` command to save the running configuration on the device, then if you were to enter the `show device-mode configured` command on the WAAS device, the command output would indicate that the configured device mode is central-manager:

```
WAE# show device-mode configured
Configured device mode: central-manager
```
Examples

Table 3-28 describes the field in the `show device-mode current` display.

Table 3-28 Field Description for the show device-mode current Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current device mode</td>
<td>Current mode in which the WAAS device is operating.</td>
</tr>
</tbody>
</table>

Table 3-29 describes the field in the `show device-mode configured` display.

Table 3-29 Field Description for the show device-mode configured Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configured device mode</td>
<td>Device mode that has been configured, but has not yet taken effect.</td>
</tr>
</tbody>
</table>
show disks

To view information about the WAAS device disks, use the show disks EXEC command.

```
show disks {details | failed-disk-id | failed-sectors [disk_name] | tech-support [details]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>details</code></td>
<td>Displays currently effective configurations with more details.</td>
</tr>
<tr>
<td><code>failed-disk-id</code></td>
<td>Displays a list of disk serial numbers that have been identified as failed.</td>
</tr>
<tr>
<td>Note</td>
<td>This option is not available on WAE-7341 and WAE-7371 models.</td>
</tr>
<tr>
<td><code>failed-sectors</code></td>
<td>Displays a list of failed sectors on all the disks.</td>
</tr>
<tr>
<td><code>disk_name</code></td>
<td>(Optional) Name of the disk for which failed sectors are displayed (disk00 or disk01).</td>
</tr>
<tr>
<td><code>tech-support</code></td>
<td>Displays hard drive diagnostic information and information about impending disk failures.</td>
</tr>
<tr>
<td></td>
<td>Displays all available information from the RAID controller, including disk status (logical and physical), disk vendor ID, and serial numbers.</td>
</tr>
<tr>
<td></td>
<td>This command replaces the show disk smart-info EXEC command.</td>
</tr>
<tr>
<td><code>details</code></td>
<td>(Optional) Displays more detailed SMART disk monitoring information.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The `show disks details` EXEC command displays the percentage or amount of disk space allocated to each file system, and the operational status of the disk drives, after reboot.

The WAAS software supports filtering of multiple syslog messages for a single, failed section on IDE, SCSI, and SATA disks. Enter the `show disks failed-sectors` EXEC command to display a list of failed sectors on all disk drives.

```
WAE# show disks failed-sectors
disk00
========
89923
9232112
disk01
========
(None)
```
To display a list of failed sectors for only a specific disk drive, specify the name of the disk when entering the `show disks failed-sectors` command. The following example shows how to display a list of failed sectors for disk01:

```
WAE# show disks failed-sectors disk01
disk01
========
(None)
```

If there are disk failures, a message is displayed, notifying you about this situation when you log in.

Proactively Monitoring Disk Health with SMART

The ability to proactively monitor the health of disks is available using SMART. SMART provides you with hard drive diagnostic information and information about impending disk failures.

SMART is supported by most disk vendors and is a standard method used to determine how healthy a disk is. SMART attributes include several read-only attributes (for example, the power on hours attribute, the load and unload count attribute) that provide the WAAS software with information regarding the operating and environmental conditions that may indicate an impending disk failure.

SMART support is vendor and drive technology (IDE or SCSI disk drives) dependent. Each disk vendor has a different set of supported SMART attributes.

Even though SMART attributes are vendor dependent there is a common way of interpreting most SMART attributes. Each SMART attribute has a normalized current value and a threshold value. When the current value exceeds the threshold value, the disk is considered to have “failed.” The WAAS software monitors the SMART attributes and reports any impending failure through syslog messages, SNMP traps, and alarms.

To display SMART information, use the `show disks tech-support` EXEC command. To display more detailed SMART information, enter the `show disks tech-support details` EXEC command. The output from the `show tech-support` EXEC command also includes SMART information.

Examples

Table 3-30 describes the fields shown in the `show disks failed-disk-id` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diskxx</td>
<td>Number and location of the physical disk.</td>
</tr>
<tr>
<td>Alpha-numeric string</td>
<td>Serial number of the disk.</td>
</tr>
</tbody>
</table>

Table 3-31 describes the fields shown in the `show disks details` display.
Chapter 3 CLI Commands

show disks

In the following example, the output shows that partition 04 and partition 05 on disks disk00 and disk01 are GOOD, and the RAIDed partitions /dev/md4 & /dev/md5 are in NORMAL OPERATION. However, the RAIDed partition /dev/md8 has an issue with one of the drives. Disk04 with partition 00 is GOOD, but the status shows ONE OR MORE DRIVES ABNORMAL because there is no pair on this partition.

```
/dev/md4   RAID-1   NORMAL OPERATION   disk00/04[GOOD]
disk01/04[GOOD]
/dev/md5   RAID-1   NORMAL OPERATION   disk00/05[GOOD]
disk01/05[GOOD]
...        
/dev/md8   RAID-1   ONE OR MORE DRIVES ABNORMAL disk04/00[GOOD]
```

Table 3-31 Field Descriptions for the show disks details Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical disk information</td>
<td>Lists the disks by number. WAE 7300 series appliances show information for 6 disk drives and WAE 500 and 600 series appliances show information for 2 disk drives.</td>
</tr>
<tr>
<td>disk00</td>
<td>Availability of the disk: Present, Not present or Not responding, or Not used (*). Disk identification number and type, for example: (h00 c00 i00 100 - DAS). Disk size in megabytes and gigabytes, for example: 140011MB (136.7GB).</td>
</tr>
<tr>
<td>disk01</td>
<td>Same type of information is shown for each disk.</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example, the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPool.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
<tr>
<td>Inuse</td>
<td>Amount of disk space being used by the file system.</td>
</tr>
<tr>
<td>Free</td>
<td>Amount of unused disk space for the file system.</td>
</tr>
<tr>
<td>Use%</td>
<td>Percentage of the total available disk space being used by the file system.</td>
</tr>
<tr>
<td>Software RAID devices</td>
<td>If present, lists the software RAID devices and provides the following information for each:</td>
</tr>
<tr>
<td>Device name</td>
<td>Path to the partition on the disk. The partition name “md1” indicates that the partition is a raided partition and that the RAID type is RAID-1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of RAID, for example RAID-1.</td>
</tr>
<tr>
<td>Status</td>
<td>Operational status of the RAID device. Status may contain NORMAL OPERATION or REBUILDING.</td>
</tr>
<tr>
<td>Physical devices and status</td>
<td>Disk number and operational status of the disk, such as [GOOD] or [BAD].</td>
</tr>
</tbody>
</table>
Table 3-32 describes some typical fields in the `show disks tech-support` display for a RAID-1 appliance that supports SMART. SMART attributes are vendor dependent; each disk vendor has a different set of supported SMART attributes.

Table 3-32 Field Descriptions for the show disks tech-support Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk00—disk05</td>
<td>WAE 7300 series appliances show information for 6 disk drives, and WAE 500 and 600 series appliances show information for 2 disk drives.</td>
</tr>
<tr>
<td>Device</td>
<td>Vendor number and version number of the disk.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number for the disk.</td>
</tr>
<tr>
<td>Device type</td>
<td>Type of device is disk.</td>
</tr>
<tr>
<td>Transport protocol</td>
<td>Physical layer connector information, for example: Parallel SCSI (SPI-4).</td>
</tr>
<tr>
<td>Local time is</td>
<td>Day of the week, month, date, time hh:mm:ss, year, clock standard. For example, Mon Mar 19 23:33:12 2007 UTC.</td>
</tr>
<tr>
<td>Device supports SMART and is Enabled</td>
<td>Status of SMART support: Enabled or Disabled.</td>
</tr>
<tr>
<td>Temperature Warning Enabled</td>
<td>Temperature warning status: Enabled or Disabled.</td>
</tr>
<tr>
<td>SMART Health Status:</td>
<td>Health status of the disk: OK or Failed.</td>
</tr>
</tbody>
</table>

Table 3-33 describes the fields in the `show disks tech-support details` display for a RAID-1 appliance that supports SMART. Details in this display depend on the drive manufacturer and vary between drives.

Table 3-33 Field Descriptions for the show disks tech-support details Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk00—disk05</td>
<td>WAE 7300 series appliances show information for 6 disk drives, and WAE 500 and 600 series appliances show information for 2 disk drives.</td>
</tr>
<tr>
<td>Device</td>
<td>Vendor number and version number of the disk.</td>
</tr>
<tr>
<td>Serial Number</td>
<td>Serial number for the disk.</td>
</tr>
<tr>
<td>Device type</td>
<td>Type of device is disk.</td>
</tr>
<tr>
<td>Transport protocol</td>
<td>Physical layer connector information, for example: Parallel SCSI (SPI-4).</td>
</tr>
<tr>
<td>Local time is</td>
<td>Day of the week, month, date, time hh:mm:ss, year, clock standard. For example, Mon Mar 19 23:33:12 2007 UTC.</td>
</tr>
<tr>
<td>Device supports SMART and is Enabled</td>
<td>Status of SMART support: Enabled or Disabled.</td>
</tr>
<tr>
<td>Temperature Warning Enabled</td>
<td>Temperature warning status: Enabled or Disabled.</td>
</tr>
<tr>
<td>SMART Health Status:</td>
<td>Health status of the disk: OK or Failed.</td>
</tr>
<tr>
<td>Current Drive Temperature</td>
<td>Temperature of the drive in degrees Celsius.</td>
</tr>
<tr>
<td>Manufactured in week XX of year</td>
<td>Manufacturing details.</td>
</tr>
</tbody>
</table>
Table 3-33 Field Descriptions for the show disks tech-support details Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current start stop count</td>
<td>Number of times the device has stopped or started.</td>
</tr>
<tr>
<td>Recommended maximum start stop count</td>
<td>Maximum recommended count used to gauge the life expectancy of the disk.</td>
</tr>
<tr>
<td>Error counter log</td>
<td>Table displaying the error counter log. Counters for various types of disk errors.</td>
</tr>
</tbody>
</table>

Table 3-34 describes the fields shown in the `show disks tech-support` display for a RAID-5 appliance.

Table 3-34 Field Descriptions for the show disks tech-support Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controllers found</td>
<td>Number of RAID controllers found.</td>
</tr>
<tr>
<td>Controller information</td>
<td></td>
</tr>
<tr>
<td>Controller Status</td>
<td>Functional status of the controller.</td>
</tr>
<tr>
<td>Channel description</td>
<td>Description of the channel transport protocols.</td>
</tr>
<tr>
<td>Controller Model</td>
<td>Make and model of the controller.</td>
</tr>
<tr>
<td>Controller Serial Number</td>
<td>Serial number of the ServeRAID controller</td>
</tr>
<tr>
<td>Physical Slot</td>
<td>Slot number.</td>
</tr>
<tr>
<td>Installed memory</td>
<td>Amount of memory for the disk.</td>
</tr>
<tr>
<td>Copyback</td>
<td>Status of whether copyback is enabled or disabled.</td>
</tr>
<tr>
<td>Data scrubbing</td>
<td>Status of whether data scrubbing is enabled or disabled.</td>
</tr>
<tr>
<td>Defunct disk drive count</td>
<td>Number of defunct disk drives.</td>
</tr>
<tr>
<td>Logical drives/Offline/Critical</td>
<td>Number of logical drives, number of drives that are offline, and number of critical alarms.</td>
</tr>
<tr>
<td>Controller Version Information</td>
<td></td>
</tr>
<tr>
<td>BIOS</td>
<td>Version number of the BIOS.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Version number of the Firmware.</td>
</tr>
<tr>
<td>Driver</td>
<td>Version number of the Driver.</td>
</tr>
<tr>
<td>Boot Flash</td>
<td>Version number of the Boot Flash.</td>
</tr>
<tr>
<td>Controller Battery Information</td>
<td></td>
</tr>
<tr>
<td>Status</td>
<td>Functional status of the controller battery.</td>
</tr>
<tr>
<td>Over temperature</td>
<td>Over temperature condition of the battery.</td>
</tr>
<tr>
<td>Capacity remaining</td>
<td>Percent of remaining battery capacity.</td>
</tr>
<tr>
<td>Time remaining (at current draw)</td>
<td>Number of days, hours, and minutes of battery life remaining based on the current draw.</td>
</tr>
<tr>
<td>Controller Vital Product Data</td>
<td></td>
</tr>
<tr>
<td>VPD Assigned#</td>
<td>Number assigned to the controller vital product data (VPD).</td>
</tr>
<tr>
<td>EC Version#</td>
<td>Version number.</td>
</tr>
</tbody>
</table>
Field Descriptions for the `show disks tech-support` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller FRU#</td>
<td>Number assigned to the controller field-replaceable part.</td>
</tr>
<tr>
<td>Battery FRU#</td>
<td>Number assigned to the battery field-replaceable part.</td>
</tr>
<tr>
<td>Logical drive number</td>
<td>Number identifying the logical drive to which the information applies.</td>
</tr>
<tr>
<td>Logical drive name</td>
<td>Name of the logical drive.</td>
</tr>
<tr>
<td>RAID level</td>
<td>RAID level of the logical drive.</td>
</tr>
<tr>
<td>Status of logical drive</td>
<td>Functional status of the logical drive.</td>
</tr>
<tr>
<td>Size</td>
<td>Size (in megabytes) of the logical drive.</td>
</tr>
<tr>
<td>Read-cache mode</td>
<td>Configuration status of read-cache mode: Enabled or Disabled.</td>
</tr>
<tr>
<td>Write-cache mode</td>
<td>Configuration status of write-cache mode for write-back: Enabled or Disabled.</td>
</tr>
<tr>
<td>Write-cache setting</td>
<td>Configuration status of the write-cache setting for write-back: Enabled or Disabled.</td>
</tr>
<tr>
<td>Partitioned</td>
<td>Partition state. Values are Yes or No.</td>
</tr>
<tr>
<td>Number of chunks</td>
<td>Number of disks participating in the RAID-5 array.</td>
</tr>
<tr>
<td>Stripe-unit size</td>
<td>Amount of data storage per stripe unit. The default is 256 KB per disk.</td>
</tr>
<tr>
<td>Stripe order (Channel,Device)</td>
<td>Order in which data is striped across a group of physical drives that are grouped in a RAID array.</td>
</tr>
<tr>
<td>Bad stripes</td>
<td>Flag for bad stripes. Flag values are Yes or No.</td>
</tr>
<tr>
<td>Physical drive information</td>
<td></td>
</tr>
<tr>
<td>Device #</td>
<td>Device number for which the information applies.</td>
</tr>
<tr>
<td>Device is a xxxx</td>
<td>Type of device.</td>
</tr>
<tr>
<td>State</td>
<td>State of the device: Online or Offline.</td>
</tr>
<tr>
<td>Supported</td>
<td>Status showing if the device is supported.</td>
</tr>
<tr>
<td>Transfer Speed</td>
<td>Device transfer speed.</td>
</tr>
<tr>
<td>Reported Channel,Device</td>
<td>Provides channel information for all the disks participating in the RAID-5 array.</td>
</tr>
<tr>
<td>Reported Enclosure,Slot</td>
<td>Device number and slot number.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Vendor identification number.</td>
</tr>
<tr>
<td>Model</td>
<td>Model number.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Firmware number.</td>
</tr>
<tr>
<td>Serial number</td>
<td>Serial number.</td>
</tr>
<tr>
<td>Size</td>
<td>Size (in megabytes) of the physical drive.</td>
</tr>
<tr>
<td>Write Cache</td>
<td>Status of whether the write cache is enabled.</td>
</tr>
</tbody>
</table>
Table 3-34 Field Descriptions for the show disks tech-support Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRU</td>
<td>Field Replaceable Unit number. A RAID defunct drive FRU event occurs when a specified hard disk drive with the provided FRU number fails in a RAID configuration. The default value for this field is NONE.</td>
</tr>
<tr>
<td>PFA</td>
<td>Predictive Failure Analysis flag. The flag default value is No. If the RAID predicts a drive failure, this field is set to Yes and a critical alarm is raised on the WAE.</td>
</tr>
</tbody>
</table>

Related Commands

disk
(config) disk error-handling
show tech-support
show egress-methods

To view the egress method that is configured and that is being used on a particular WAE, use the show egress-methods EXEC command.

```
show egress-methods
```

Syntax Description

This command has no arguments or keywords.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

Table 3-35 describes the fields shown in the show egress-methods display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept method</td>
<td>Intercept method used by router to send packets to the WAE.</td>
</tr>
<tr>
<td>TCP Promiscuous 61 or 62</td>
<td>WCCP service number.</td>
</tr>
<tr>
<td>WCCP negotiated return method</td>
<td>WCCP return method being used by the router. Values include WCCP_GRE, WCCP_L2, NEG RTN PENDING (negotiation is pending), and UNKNOWN.</td>
</tr>
<tr>
<td>Destination</td>
<td>This value is not configurable. The value of this field is always ANY.</td>
</tr>
<tr>
<td>Egress Method Configured</td>
<td>Egress method configured in the CLI.</td>
</tr>
<tr>
<td>Egress Method Used</td>
<td>Egress method being used.</td>
</tr>
</tbody>
</table>

Related Commands

- `show tfo egress-methods connection`
- `(config) egress-method`
show flash

To display the flash memory version and usage information for a WAAS device, use the `show flash` EXEC command.

```
show flash
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-36 describes the fields shown in the `show flash` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAAS software version (disk-based code)</td>
<td>WAAS software version and build number that is running on the device.</td>
</tr>
<tr>
<td>System image on flash:</td>
<td>Version and build number of the software that is stored in flash memory.</td>
</tr>
<tr>
<td>System image</td>
<td>Number of sectors used by the system image.</td>
</tr>
<tr>
<td>Bootloader, rescue image, and other reserved</td>
<td>Number of sectors used by the bootloader, rescue image, and other reserved</td>
</tr>
<tr>
<td>areas</td>
<td>areas.</td>
</tr>
<tr>
<td>XX sectors total, XX sectors free</td>
<td>Total number of sectors. Number of free sectors.</td>
</tr>
</tbody>
</table>
show hardware

To display system hardware status for a WAAS device, use the show hardware EXEC command.

show hardware

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The show hardware command lists the system hardware status, including the version number, the startup date and time, the run time since startup, the microprocessor type and speed, the amount of physical memory available, and a list of disk drives.

Examples

Table 3-37 describes the fields shown in the show hardware display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Wide Area Application Services Software (WAAS) Copyright (c) year by Cisco Systems, Inc. Cisco Wide Area Application Services Software Release XXX (build bXXX month day year) Version Compiled hour:minute:second month day year by cnbuild System was restarted on day of week month day hour:minute:second year The system has been up for X hours, X minutes, X seconds</td>
<td>Software application, copyright, release, and build information. Version number of the software that is running on the device. Compile information for the software build. Date and time that the system was last restarted. Length of time the system has been running since the last reboot.</td>
</tr>
</tbody>
</table>
Table 3-37 Field Descriptions for the show hardware Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU 0 is</td>
<td>CPU manufacturer information.</td>
</tr>
<tr>
<td>Total X CPU</td>
<td>Number of CPUs on the device.</td>
</tr>
<tr>
<td>XXXXX Mbytes of Physical memory</td>
<td>Number of megabytes of physical memory on the device.</td>
</tr>
<tr>
<td>X CD ROM drive</td>
<td>Number of CD-ROM drives on the device.</td>
</tr>
<tr>
<td>X GigabitEthernet interfaces</td>
<td>Number of Gigabit Ethernet interfaces on the device.</td>
</tr>
<tr>
<td>X InlineGroup interfaces</td>
<td>Number of InlineGroup interfaces on the device.</td>
</tr>
<tr>
<td>X Console interface</td>
<td>Number of console interfaces on the device.</td>
</tr>
<tr>
<td>Manufactured As</td>
<td>Product identification information.</td>
</tr>
<tr>
<td>BIOS Information</td>
<td>Information about the BIOS.</td>
</tr>
<tr>
<td>Vendor</td>
<td>Name of the BIOS vendor.</td>
</tr>
<tr>
<td>Version</td>
<td>BIOS version number.</td>
</tr>
<tr>
<td>Rel. Date</td>
<td>(Release date) Date that the BIOS was released.</td>
</tr>
<tr>
<td>Cookie info</td>
<td></td>
</tr>
<tr>
<td>SerialNumber</td>
<td>Serial number of the WAE.</td>
</tr>
<tr>
<td>SerialNumber (raw)</td>
<td>Serial number of the WAE as an ASCII value.</td>
</tr>
<tr>
<td>TestDate</td>
<td>Date that the WAE was tested.</td>
</tr>
<tr>
<td>ExtModel</td>
<td>Hardware model of the device, for example: WAE612.</td>
</tr>
<tr>
<td>ModelNum (raw)</td>
<td>Internal model number (ASCII value) that corresponds to the ExtModel number.</td>
</tr>
<tr>
<td>HWVersion</td>
<td>Number of the current hardware version.</td>
</tr>
<tr>
<td>PartNumber</td>
<td>Not implemented.</td>
</tr>
<tr>
<td>BoardRevision</td>
<td>Number of revisions for the current system board.</td>
</tr>
<tr>
<td>ChipRev</td>
<td>Number of revisions for the current chipset.</td>
</tr>
<tr>
<td>VendID</td>
<td>Vendor ID of the cookie.</td>
</tr>
<tr>
<td>CookieVer</td>
<td>Version number of the cookie.</td>
</tr>
<tr>
<td>Chksum</td>
<td>Checksum of the cookie. showing whether the cookie is valid.</td>
</tr>
<tr>
<td>List of all disk drives</td>
<td></td>
</tr>
<tr>
<td>Physical disk information</td>
<td>Disks listed by number. WAE 7300 series appliances show information for 6 disk drives and WAE 500 and 600 series appliances show information for 2 disk drives.</td>
</tr>
<tr>
<td>disk00</td>
<td>Availability of the disk: Present, Not present or not responding, or Not used (*).</td>
</tr>
<tr>
<td></td>
<td>Disk identification number and type, for example: (h00 c00i00 100 - DAS).</td>
</tr>
<tr>
<td></td>
<td>Disk size in megabytes and gigabytes, for example: 140011MB (136.7GB).</td>
</tr>
<tr>
<td>disk01</td>
<td>Same type of information is shown for each disk.</td>
</tr>
<tr>
<td>Mounted filesystems</td>
<td>Table containing the following column heads:</td>
</tr>
</tbody>
</table>
Table 3-37 Field Descriptions for the show hardware Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount point</td>
<td>Mount point for the file system. For example the mount point for SYSFS is /local/local1.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of the file system. Values include root, internal, CONTENT, SYSFS, and PRINTSPPOOL.</td>
</tr>
<tr>
<td>Device</td>
<td>Path to the partition on the disk.</td>
</tr>
<tr>
<td>Size</td>
<td>Total size of the file system in megabytes.</td>
</tr>
<tr>
<td>Inuse</td>
<td>Amount of disk space being used by the file system.</td>
</tr>
<tr>
<td>Free</td>
<td>Amount of unused disk space for the file system.</td>
</tr>
<tr>
<td>Use%</td>
<td>Percentage of the total available disk space being used by the file system.</td>
</tr>
<tr>
<td>Software RAID devices</td>
<td>If present, lists the software RAID devices and provides the following information for each:</td>
</tr>
<tr>
<td>Device name</td>
<td>Path to the partition on the disk. The partition name “md1” indicates that the partition is a raided partition and that the RAID type is RAID-1. (RAID-1 is the only RAID type supported in WAAS.)</td>
</tr>
<tr>
<td>Type</td>
<td>Type of RAID, for example RAID-1.</td>
</tr>
<tr>
<td>Status</td>
<td>Operational status of the RAID device. Status may contain NORMAL OPERATION or REBUILDING.</td>
</tr>
<tr>
<td>Physical devices and status</td>
<td>Disk number and operational status of the disk, such as [GOOD] or [BAD].</td>
</tr>
</tbody>
</table>

Related Commands

- `show disks`
- `show version`
show hosts

To view the hosts on a WAAS device, use the show hosts EXEC command.

show hosts

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The show hosts command lists the name servers and their corresponding IP addresses. It also lists the host names, their corresponding IP addresses, and their corresponding aliases (if applicable) in a host table summary.

Examples

Table 3-38 describes the fields shown in the show hosts display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain names</td>
<td>Domain names used by the WAE to resolve the IP address.</td>
</tr>
<tr>
<td>Name Server(s)</td>
<td>IP address of the DNS name server or servers.</td>
</tr>
<tr>
<td>Host Table</td>
<td></td>
</tr>
<tr>
<td>hostname</td>
<td>FQDN (hostname and domain) of the current device.</td>
</tr>
<tr>
<td>inet address</td>
<td>IP address of the current host device.</td>
</tr>
<tr>
<td>aliases</td>
<td>Name configured for the current device based on the host global configuration command.</td>
</tr>
</tbody>
</table>
show inetd

To display the status of TCP/IP services on a WAAS device, use the show inetd EXEC command.

```
show inetd
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
The show inetd EXEC command displays the enabled or disabled status of TCP/IP services on the WAAS device. You can ignore the TFTP service status because TFTP is not supported on WAAS.

Examples
Table 3-39 describes the fields shown in the show inetd display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inetd service configurations:</td>
<td></td>
</tr>
<tr>
<td>ftp</td>
<td>Status of whether the FTP service is enabled or disabled.</td>
</tr>
<tr>
<td>rcp</td>
<td>Status of whether the RCP service is enabled or disabled.</td>
</tr>
<tr>
<td>tftp</td>
<td>Status of whether the TFTP service is enabled or disabled.</td>
</tr>
</tbody>
</table>

Related Commands
(config) inetd enable
show interface

To display the hardware interface information for a WAAS device, use the `show interface` EXEC command.

```
show interface { GigabitEthernet slot/port } | { ide control_num } | { InlineGroup slot/grpnumber } |
| { InlinePort slot/grpnumber { lan | wan } } | { PortChannel port-num } | { scsi device_num } |
| { Standby group_num | usb }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>Displays the Gigabit Ethernet interface device information (only on suitably equipped systems).</td>
</tr>
<tr>
<td>slot/port</td>
<td>Slot and port number for the Gigabit Ethernet interface. The slot range is 0–3; the port range is 0–3. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td>ide</td>
<td>Displays the IDE interface device information.</td>
</tr>
<tr>
<td>control_num</td>
<td>IDE controller number (0–1).</td>
</tr>
<tr>
<td>InlineGroup</td>
<td>Displays the inline group information.</td>
</tr>
<tr>
<td>slot/grpnumber</td>
<td>Slot and inline group number for the selected interface.</td>
</tr>
<tr>
<td>InlinePort</td>
<td>Displays the inline port information.</td>
</tr>
<tr>
<td>slot/grpnumber/lan</td>
<td>Slot and inline group number for the selected interface. For the LAN port.</td>
</tr>
<tr>
<td>wan</td>
<td>Displays the inline port information for the WAN port.</td>
</tr>
<tr>
<td>PortChannel</td>
<td>Displays the port channel interface device information.</td>
</tr>
<tr>
<td>port-num</td>
<td>Port number for the port channel interface (1–2).</td>
</tr>
<tr>
<td>scsi</td>
<td>Displays the SCSI interface device information.</td>
</tr>
<tr>
<td>device_num</td>
<td>SCSI device number (0–7).</td>
</tr>
<tr>
<td>Standby</td>
<td>Displays the standby group information.</td>
</tr>
<tr>
<td>group_num</td>
<td>Standby group number (1–4).</td>
</tr>
<tr>
<td>usb</td>
<td>Displays the USB interface device information.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager
Table 3-40 describes the fields shown in the `show interface GigabitEthernet` display.

Table 3-40 Field Descriptions for the `show interface GigabitEthernet` Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Description of the device, as configured by using the <code>description</code> option of the <code>interface</code> global configuration command.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of interface. Always Ethernet.</td>
</tr>
<tr>
<td>Ethernet address</td>
<td>Layer-2 MAC address.</td>
</tr>
<tr>
<td>Internet address</td>
<td>Internet IP address configured for this interface.</td>
</tr>
<tr>
<td>Broadcast address</td>
<td>Broadcast address configured for this interface.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Netmask configured for this interface.</td>
</tr>
<tr>
<td>Maximum Transfer Unit Size</td>
<td>Current configured MTU value.</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric setting for the interface. The default is 1. The routing metric is used by the routing protocol to determine the most favorable route. Metrics are counted as additional hops to the destination network or host; the higher the metric value, the less favorable the route.</td>
</tr>
<tr>
<td>Packets Received</td>
<td>Total number of packets received by this interface.</td>
</tr>
<tr>
<td>Input Errors</td>
<td>Number of incoming errors on this interface.</td>
</tr>
<tr>
<td>Input Packets Dropped</td>
<td>Number of incoming packets that were dropped on this interface.</td>
</tr>
<tr>
<td>Input Packets Overruns</td>
<td>Number of incoming packet overrun errors.</td>
</tr>
<tr>
<td>Input Packets Frames</td>
<td>Number of incoming packet frame errors.</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>Total number of packets sent from this interface.</td>
</tr>
<tr>
<td>Output Errors</td>
<td>Number of outgoing packet errors.</td>
</tr>
<tr>
<td>Output Packets Dropped</td>
<td>Number of outgoing packets that were dropped by this interface.</td>
</tr>
<tr>
<td>Output Packets Overruns</td>
<td>Number of outgoing packet overrun errors.</td>
</tr>
<tr>
<td>Output Packets Carrier</td>
<td>Number of outgoing packet carrier errors.</td>
</tr>
<tr>
<td>Output Queue Length</td>
<td>Output queue length in bytes.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Number of packet collisions at this interface.</td>
</tr>
<tr>
<td>Interrupts</td>
<td>Number of packet interrupts at this interface.</td>
</tr>
<tr>
<td>Base address</td>
<td>Base address. hexidecimal value.</td>
</tr>
<tr>
<td>Flags</td>
<td>Interface status indicators. Values include Up, Broadcast, Running, and Multicast.</td>
</tr>
<tr>
<td>Mode</td>
<td>Speed setting, transmission mode, and transmission speed for this interface.</td>
</tr>
</tbody>
</table>
The following example displays information for inlineGroup 0 in slot 1 configured on the WAE inline network adapter:

```
WAE612# show interface inlineGroup 1/0
Interface is in intercept operating mode.
Standard NIC mode is off.
Disable bypass mode is off.
VLAN IDs configured for inline interception: All
Watchdog timer is enabled.
Timer frequency: 1600 ms.
Autoreset frequency 500 ms.
The watchdog timer will expire in 1221 ms.
```

Table 3-41 describes the fields shown in the `show interface InlinePort` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Number identifier for this inlineport interface, such as eth0, eth1, and so forth.</td>
</tr>
<tr>
<td>Packets Received</td>
<td>Total number of packets received on this inlineport interface.</td>
</tr>
<tr>
<td>Packets Intercepted</td>
<td>Total number of packets intercepted. (Only TCP packets are intercepted.)</td>
</tr>
<tr>
<td>Packets Bridged</td>
<td>Number of packets that are bridged. Packets which are not intercepted are bridged.</td>
</tr>
<tr>
<td>Packets Forwarded</td>
<td>Number of packets sent from the inline interface.</td>
</tr>
<tr>
<td>Packets Dropped</td>
<td>Number of packets dropped.</td>
</tr>
<tr>
<td>Packets Received on native</td>
<td>Number of packets forwarded by the inline module that are received on the native (GigabitEthernet 1/0) interface.</td>
</tr>
<tr>
<td>n flows through this interface</td>
<td>Number of active TCP connections on this inlineport interface.</td>
</tr>
<tr>
<td>Ethernet Driver Status</td>
<td>Type of interface. Always Ethernet.</td>
</tr>
<tr>
<td>Ethernet address</td>
<td>Layer-2 MAC address.</td>
</tr>
<tr>
<td>Maximum Transfer Unit Size</td>
<td>Current configured MTU value.</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric setting for the interface. The default is 1. The routing metric is used by the routing protocol to determine the most favorable route. Metrics are counted as additional hops to the destination network or host; the higher the metric value, the less favorable the route.</td>
</tr>
<tr>
<td>Packets Received</td>
<td>Total number of packets received by this interface.</td>
</tr>
<tr>
<td>Input Errors</td>
<td>Number of incoming errors on this interface.</td>
</tr>
<tr>
<td>Input Packets Dropped</td>
<td>Number of incoming packets that were dropped on this interface.</td>
</tr>
<tr>
<td>Input Packets Overruns</td>
<td>Number of incoming packet overrun errors.</td>
</tr>
<tr>
<td>Input Packets Frames</td>
<td>Number of incoming packet frame errors.</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>Total number of packets sent from this interface.</td>
</tr>
<tr>
<td>Output Errors</td>
<td>Number of outgoing packet errors.</td>
</tr>
</tbody>
</table>
Table 3-41 Field Descriptions for the show interface InlinePort Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Packets Dropped</td>
<td>Number of outgoing packets that were dropped by this interface.</td>
</tr>
<tr>
<td>Output Packets Overruns</td>
<td>Number of outgoing packet overrun errors.</td>
</tr>
<tr>
<td>Output Packets Carrier</td>
<td>Number of outgoing packet carrier errors.</td>
</tr>
<tr>
<td>Output Queue Length</td>
<td>Output queue length in bytes.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Number of packet collisions at this interface.</td>
</tr>
<tr>
<td>Base address</td>
<td>Base address. hexadecimal value.</td>
</tr>
<tr>
<td>Flags</td>
<td>Interface status indicators. Values include Up, Broadcast, Running, and Multicast.</td>
</tr>
<tr>
<td>Mode</td>
<td>Speed setting, transmission mode, and transmission speed for this interface.</td>
</tr>
</tbody>
</table>

Table 3-42 describes the fields shown in the **show interface PortChannel** display.

Table 3-42 Field descriptions for the show interface PortChannel Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Type of interface. Always Ethernet.</td>
</tr>
<tr>
<td>Ethernet address</td>
<td>Layer-2 MAC address.</td>
</tr>
<tr>
<td>Maximum Transfer Unit Size</td>
<td>Current configured MTU value.</td>
</tr>
<tr>
<td>Metric</td>
<td>Metric setting for the interface. The default is 1. The routing metric is used by the routing protocol. Higher metrics have the effect of making a route less favorable; metrics are counted as addition hops to the destination network or host.</td>
</tr>
<tr>
<td>Packets Received</td>
<td>Total number of packets received by this interface.</td>
</tr>
<tr>
<td>Input Errors</td>
<td>Number of incoming errors on this interface.</td>
</tr>
<tr>
<td>Input Packets Dropped</td>
<td>Number of incoming packets that were dropped on this interface.</td>
</tr>
<tr>
<td>Input Packets Overruns</td>
<td>Number of incoming packet overrun errors.</td>
</tr>
<tr>
<td>Input Packets Frames</td>
<td>Number of incoming packet frame errors.</td>
</tr>
<tr>
<td>Packet Sent</td>
<td>Total number of packets sent from this interface.</td>
</tr>
<tr>
<td>Output Errors</td>
<td>Number of outgoing packet errors.</td>
</tr>
<tr>
<td>Output Packets Dropped</td>
<td>Number of outgoing packets that were dropped by this interface.</td>
</tr>
<tr>
<td>Output Packets Overruns</td>
<td>Number of outgoing packet overrun errors.</td>
</tr>
<tr>
<td>Output Packets Carrier</td>
<td>Number of outgoing packet carrier errors.</td>
</tr>
<tr>
<td>Output Queue Length</td>
<td>Output queue length in bytes.</td>
</tr>
<tr>
<td>Collisions</td>
<td>Number of packet collisions at this interface.</td>
</tr>
<tr>
<td>Flags</td>
<td>Interface status indicators. Values include Up, Broadcast, Running, and Multicast.</td>
</tr>
</tbody>
</table>
Table 3-43 describes the field shown in the `show interface scsi` display.

Table 3-43 Field Description for the show interface scsi Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI interface X</td>
<td>Information for SCSI device number X. Shows the make, device ID number, model number, and type of SCSI device.</td>
</tr>
</tbody>
</table>

Table 3-44 describes the fields shown in the `show interface standby` display.

Table 3-44 Field Descriptions for the show interface standby Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Group</td>
<td>Number that identifies the standby group.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the device, as configured by using the <code>description</code> option of the <code>interface</code> global configuration command.</td>
</tr>
<tr>
<td>IP address, netmask</td>
<td>IP address and netmask of the standby group.</td>
</tr>
<tr>
<td>Member interfaces</td>
<td>Member interfaces of the standby group. Shows which physical interfaces are part of the standby group. Shows the interface definition, such as GigabitEthernet 1/0.</td>
</tr>
<tr>
<td>Active interface</td>
<td>Interfaces that are currently active in the standby group.</td>
</tr>
</tbody>
</table>

Related Commands

- `(config) interface`
- `show running-config`
- `show startup-config`
show inventory

To display the system inventory information for a WAAS device, use the `show inventory` EXEC command.

```
show inventory
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
The `show inventory` EXEC command allows you to view the UDI for a WAAS device. This identity information is stored in the WAAS device’s nonvolatile memory.

The UDI is electronically accessed by the product operating system or network management application to enable identification of unique hardware devices. The data integrity of the UDI is vital to customers. The UDI that is programmed into the WAAS device’s nonvolatile memory is equivalent to the UDI that is printed on the product label and on the carton label. This UDI is also equivalent to the UDI that can be viewed through any electronic means and in all customer-facing systems and tools. Currently, there is only CLI access to the UDI; there is no SNMP access to the UDI information.

You can also use the `show tech-support` EXEC command to display the WAAS device UDI.

Examples
Table 3-45 describes the fields shown in the `show inventory` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>Product identification (ID) number of the device.</td>
</tr>
<tr>
<td>VID</td>
<td>Version ID number of the device. Displays as 0 if the version number is not available.</td>
</tr>
<tr>
<td>SN</td>
<td>Serial number of the device.</td>
</tr>
</tbody>
</table>

Related Commands
`show tech-support`
show ip access-list

To display the access lists that are defined and applied to specific interfaces or applications on a WAAS device, use the **show ip access-list** EXEC command.

```
show ip access-list [acl-name | acl-num]
```

Syntax Description

- **acl-name** *(Optional)* Information for a specific access list, using an alphanumeric identifier up to 30 characters, beginning with a letter.
- **acl-num** *(Optional)* Information for a specific access list, using a numeric identifier (0–99 for standard access lists and 100–199 for extended access lists).

Defaults

Displays information about all defined access lists.

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the **show ip access-list** EXEC command to display the access lists that have been defined on the WAAS device. Unless you identify a specific access list by name or number, the system displays information about all the defined access lists, including the following sections:

- Available space for new lists and conditions
- Defined access lists
- References by interface and application

Examples

Table 3-46 describes the fields shown in the **show ip access-list** display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space available:</td>
<td></td>
</tr>
<tr>
<td>XX access lists</td>
<td>Number of access lists remaining out of 50 maximum lists allowed.</td>
</tr>
<tr>
<td>XXX access list conditions</td>
<td>Number of access list conditions remaining out of 500 maximum conditions allowed.</td>
</tr>
<tr>
<td>Standard IP access list</td>
<td>Name of a configured standard IP access list. Displays a list of the conditions configured for this list.</td>
</tr>
</tbody>
</table>
Table 3-46 Field Descriptions for the show ip access-list Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended IP access list</td>
<td>Name of a configured extended IP access list. Displays a list of the conditions configured for this list.</td>
</tr>
<tr>
<td>Interface access list references</td>
<td>List of interfaces and the access lists with which they are associated, displayed in the following format:</td>
</tr>
<tr>
<td></td>
<td>interface slot/port</td>
</tr>
<tr>
<td></td>
<td>interface direction</td>
</tr>
<tr>
<td></td>
<td>access list number</td>
</tr>
<tr>
<td>Application access list references</td>
<td>List of applications and the access lists with which they are associated, displayed in the following format:</td>
</tr>
<tr>
<td></td>
<td>application type</td>
</tr>
<tr>
<td></td>
<td>access list type and number</td>
</tr>
<tr>
<td></td>
<td>associated port</td>
</tr>
</tbody>
</table>

Related Commands
- clear
- (config) ip access-list
show ip routes

To display the IP routing table for a WAAS device, use the `show ip routes` EXEC command.

```
show ip routes
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
This command displays the IP route table, which lists all of the different routes that are configured on the WAE. The WAE uses this table to determine the next hop. This table includes routes from three sources: the WAE GigabitEthernet interfaces, any user-configured static routes, and the default gateway. The last line in this table shows the default route.

Examples
Table 3-47 describes the fields shown in the `show ip routes` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Destination IP addresses for each route.</td>
</tr>
<tr>
<td>Gateway</td>
<td>Gateway addresses for each route.</td>
</tr>
<tr>
<td>Netmask</td>
<td>Netmasks for each route.</td>
</tr>
<tr>
<td>Number of route cache entries</td>
<td>Number of entries in the route cache.</td>
</tr>
<tr>
<td></td>
<td>The route cache is a separate entity and this field is not associated with the entries in the IP route table. The number of entries in the route cache can vary depending on the number of connections that are open.</td>
</tr>
</tbody>
</table>

Related Commands
```
(config) ip
(config-if) ip
```
show kerberos

To display the Kerberos authentication configuration for a WAAS device, use the `show kerberos` EXEC command.

```
show kerberos
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the system message log to view information about events that have occurred on a WAAS device. The `syslog.txt` file is contained in the `/local1` directory.

Examples

Table 3-48 describes the fields shown in the `show kerberos` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerberos Configuration</td>
<td></td>
</tr>
<tr>
<td>Local Realm</td>
<td>Local realm name.</td>
</tr>
<tr>
<td>DNS suffix</td>
<td>DNS suffix for the realm.</td>
</tr>
<tr>
<td>Realm for DNS suffix</td>
<td>DNS addresses of the computers that are part of this realm.</td>
</tr>
<tr>
<td>Name of host running KDC for realm</td>
<td>Name of the host running the Key Distribution Center for the realm.</td>
</tr>
<tr>
<td>Master KDC</td>
<td>Primary or main Key Distribution Center.</td>
</tr>
<tr>
<td>Port</td>
<td>Port that the Kerberos server is using for incoming requests from clients. The default is port 88.</td>
</tr>
</tbody>
</table>

Related Commands

`clear`

`(config) logging`
show key-manager

To display key manager information for each WAAS device, use the `show key-manager` EXEC command.

```
show key-manager {key | status}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
<td>Shows detailed key manager information for each WAE device that is registered to the Central Manager.</td>
</tr>
<tr>
<td>status</td>
<td>Displays the overall encryption status information</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

central-manager

Examples

Table 3-49 describes the fields shown in the `show key-manager key` display.

Table 3-49 Field Descriptions for the show key-manager status Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAE Device</td>
<td>Device name.</td>
</tr>
<tr>
<td>Key ID</td>
<td>Encryption key identification number.</td>
</tr>
<tr>
<td>Creation Time</td>
<td>Time the key was created.</td>
</tr>
<tr>
<td>Encryption Algorithm</td>
<td>Encryption algorithm.</td>
</tr>
</tbody>
</table>

Related Commands

`show statistics key-manager`
show logging

To display the system message log configuration for a WAAS device, use the `show logging` EXEC command.

```
show logging
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the system message log to view information about events that have occurred on a WAAS device. The `syslog.txt` file is contained in the `/local1` directory.

Examples
The following example displays the syslog host configuration on a WAAS device:

```
WAE# show logging
Syslog to host is disabled
Priority for host logging is set to: warning

Syslog to console is disabled
Priority for console logging is set to: warning

Syslog to disk is enabled
Priority for disk logging is set to: notice
Filename for disk logging is set to: /local1/syslog.txt

Syslog facility is set to *

Syslog disk file recycle size is set to 1000000
```

Related Commands
- `clear (config) logging`
- `show sysfs volumes`
show memory

To display memory blocks and statistics for a WAAS device, use the `show memory` EXEC command.

```
show memory
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-50 describes the fields shown in the `show memory` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total physical memory</td>
<td>Total amount of physical memory in kilobytes (KB).</td>
</tr>
<tr>
<td>Total free memory</td>
<td>Total available memory (in kilobytes).</td>
</tr>
<tr>
<td>Total buffer memory</td>
<td>Total amount of memory (in kilobytes) in the memory buffer.</td>
</tr>
<tr>
<td>Total cached memory</td>
<td>Total amount of memory (in kilobytes) in the memory cache.</td>
</tr>
<tr>
<td>Total swap</td>
<td>Total amount of memory (in kilobytes) for swap purposes.</td>
</tr>
<tr>
<td>Total free swap</td>
<td>Total available memory (in kilobytes) for swap purposes.</td>
</tr>
</tbody>
</table>

Table 3-50 *Field Descriptions for the show memory Command*
show ntp

To display the NTP parameters for a WAAS device, use the **show ntp** EXEC command.

```
show ntp status
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Displays NTP status.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-51 describes the fields shown in the **show ntp status** display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP</td>
<td>Indicates whether NTP is enabled or disabled.</td>
</tr>
<tr>
<td>server list</td>
<td>NTP server IP and subnet addresses.</td>
</tr>
<tr>
<td>remote</td>
<td>Name (first 15 characters) of remote NTP server.</td>
</tr>
<tr>
<td>*</td>
<td>In the remote column, identifies the system peer to which the clock is synchronized.</td>
</tr>
<tr>
<td>+</td>
<td>In the remote column, identifies a valid or eligible peer for NTP synchronization.</td>
</tr>
<tr>
<td>space</td>
<td>In the remote column, indicates that the peer was rejected. (The peer could not be reached or excessive delay occurred in reaching the NTP server.)</td>
</tr>
<tr>
<td>x</td>
<td>In the remote column, indicates a false tick and is ignored by the NTP server.</td>
</tr>
<tr>
<td>-</td>
<td>In the remote column, indicates a reading outside the clock tolerance limits and is ignored by the NTP server.</td>
</tr>
<tr>
<td>refid</td>
<td>Clock reference ID to which the remote NTP server is synchronized.</td>
</tr>
<tr>
<td>st</td>
<td>Clock server stratum or layer. In this example, stratum 1 is the top layer.</td>
</tr>
<tr>
<td>t</td>
<td>Type of peer (local, unicast, multicast, or broadcast).</td>
</tr>
<tr>
<td>when</td>
<td>Indicates when the last packet was received from the server in seconds.</td>
</tr>
<tr>
<td>poll</td>
<td>Time check or correlation polling interval in seconds.</td>
</tr>
<tr>
<td>reach</td>
<td>8-bit reachability register. If the server was reachable during the last polling interval, a 1 is recorded; otherwise, a 0 is recorded. Octal values 377 and above indicate that every polling attempt reached the server.</td>
</tr>
</tbody>
</table>
show ntp

Related Commands

- **clock**

 `(config) clock`

- **(config) ntp**

Table 3-51 Field Descriptions for the show ntp status Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay</td>
<td>Estimated delay (in milliseconds) between the requester and the server.</td>
</tr>
<tr>
<td>offset</td>
<td>Clock offset relative to the server.</td>
</tr>
<tr>
<td>jitter</td>
<td>Clock jitter.</td>
</tr>
</tbody>
</table>
show policy-engine application

To display application policy information for a WAE, use the show policy-engine application EXEC command.

```
show policy-engine application {classifier [app-classifier] | dynamic | name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>classifier</td>
<td>Displays information about the specified application classifier. If no classifier is specified, this command displays information about all classifiers. Every application classifier with a single match is displayed in one line.</td>
</tr>
<tr>
<td>app-classifier</td>
<td>(Optional) Name of an application classifier. The name should not exceed 30 characters.</td>
</tr>
<tr>
<td>dynamic</td>
<td>Shows the application dynamic match information.</td>
</tr>
<tr>
<td>name</td>
<td>Shows the application names list.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Use the show policy-engine application dynamic command to display auto-discovered CIFS file servers that are added to the list. The servers are visible in the dynamic listing for a limited time (3 minutes by default) after any activity stops, and then they are dropped from the dynamic list until another client request causes them to be auto-discovered again.

Examples

Table 3-52 describes the fields shown in the show policy-engine application classifier display.

Table 3-52 Field Descriptions for the show policy-engine application classifier Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Application Classifiers:</td>
<td>Number of application classifiers configured.</td>
</tr>
<tr>
<td>0 to N</td>
<td>Numbered list that includes the application name and the match statement that defines which traffic is interesting. For example:</td>
</tr>
<tr>
<td></td>
<td>0) AFS match dst port range 7000 7009</td>
</tr>
<tr>
<td></td>
<td>1) Altiris-CarbonCopy match dst port eq 1680</td>
</tr>
</tbody>
</table>
Table 3-53 describes the fields shown in the **show policy-engine application dynamic** display.

Table 3-53 Field Descriptions for the show policy-engine application dynamic Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Match Freelist Information</td>
<td></td>
</tr>
<tr>
<td>Allocated</td>
<td>Total number dynamic policies that can be allocated.</td>
</tr>
<tr>
<td>In Use</td>
<td>Number of dynamic matches that are currently in use.</td>
</tr>
<tr>
<td>Max In Use</td>
<td>Maximum number of dynamic matches that have been used since the last reboot.</td>
</tr>
<tr>
<td>Allocations</td>
<td>Number times that the dynamic match entries have been added.</td>
</tr>
<tr>
<td>Individual Dynamic Match Information:</td>
<td></td>
</tr>
<tr>
<td>Number</td>
<td>Number of the match condition in the list.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of traffic to match. For example, Any-->Local tests traffic from any source to the local WAE.</td>
</tr>
<tr>
<td>User Id</td>
<td>Name of the accelerator that inserted the entry.</td>
</tr>
<tr>
<td>Src</td>
<td>Value for the source match condition. Values can be ANY, LOCAL, an IP address, or a port to which the application applies.</td>
</tr>
<tr>
<td>Dst</td>
<td>Value for the destination match condition. Values can be ANY, LOCAL, an IP address, or a port to which the application applies.</td>
</tr>
<tr>
<td>Map Name</td>
<td>Policy engine application map that is invoked if the dynamic match entry matches a connection.</td>
</tr>
<tr>
<td>Flags</td>
<td>Operation flags specifying different connection handling options.</td>
</tr>
<tr>
<td>Seconds</td>
<td>Number of seconds specified as the time limit for the dynamic match entry to exist.</td>
</tr>
<tr>
<td>Remaining</td>
<td>Number of seconds remaining before the dynamic match entry expires and is deleted.</td>
</tr>
<tr>
<td>Hits</td>
<td>Number of connections that have matched.</td>
</tr>
</tbody>
</table>
Table 3-54 describes the fields shown in the `show policy-engine application name` display.

Table 3-54 Field Descriptions for the show policy-engine application name Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Applications: X</td>
<td>Number of applications defined on the WAE, including all of the default applications. WAAS includes over 150 default application policies. (For a list of default application policies, see the Cisco Wide Area Application Services Configuration Guide, Appendix A.) The display next lists each application that is defined on the WAE by name:</td>
</tr>
<tr>
<td>1) Authentication (15)</td>
<td>Name of the application and its internal numerical identifier, which is used to manage the application name in the policy engine.</td>
</tr>
<tr>
<td>2) Backup (18)</td>
<td></td>
</tr>
<tr>
<td>3) Call-Management (17)</td>
<td></td>
</tr>
<tr>
<td>4) Conferencing (8)</td>
<td></td>
</tr>
<tr>
<td>5) Console (4)</td>
<td></td>
</tr>
<tr>
<td>6) Content-Management (21)</td>
<td></td>
</tr>
<tr>
<td>7) Directory-Services (6)</td>
<td></td>
</tr>
<tr>
<td>8) Email-and-Messaging (12)</td>
<td></td>
</tr>
<tr>
<td>9) Enterprise-Applications (13)</td>
<td></td>
</tr>
<tr>
<td>10) File-System (2)</td>
<td></td>
</tr>
<tr>
<td>11) File-Transfer (16)</td>
<td></td>
</tr>
<tr>
<td>12) Instant-Messaging (22)</td>
<td></td>
</tr>
<tr>
<td>13) Name-Services (25)</td>
<td></td>
</tr>
<tr>
<td>14) Network-Analysis (26)</td>
<td></td>
</tr>
<tr>
<td>15) P2P (7)</td>
<td></td>
</tr>
<tr>
<td>16) Printing (14)</td>
<td></td>
</tr>
<tr>
<td>17) Remote-Desktop (5)</td>
<td></td>
</tr>
<tr>
<td>18) Replication (20)</td>
<td></td>
</tr>
<tr>
<td>19) SQL (1)</td>
<td></td>
</tr>
<tr>
<td>20) SSH (24)</td>
<td></td>
</tr>
<tr>
<td>21) Storage (27)</td>
<td></td>
</tr>
<tr>
<td>22) Streaming (11)</td>
<td></td>
</tr>
<tr>
<td>23) Systems-Management (3)</td>
<td></td>
</tr>
<tr>
<td>24) VPN (23)</td>
<td></td>
</tr>
<tr>
<td>25) Version-Management (9)</td>
<td></td>
</tr>
<tr>
<td>26) WAFS (10)</td>
<td></td>
</tr>
<tr>
<td>27) Web (19)</td>
<td></td>
</tr>
<tr>
<td>28) Other (0)</td>
<td></td>
</tr>
</tbody>
</table>
Related Commands

(config) policy-engine application classifier
(config) policy-engine application map adaptor EPM
(config) policy-engine application map adaptor WAFS transport
(config) policy-engine application map basic delete
(config) policy-engine application map basic disable
(config) policy-engine application map basic insert
(config) policy-engine application map basic list
(config) policy-engine application map basic move
(config) policy-engine application map basic name
(config) policy-engine application map other optimize DRE
(config) policy-engine application map other optimize full
(config) policy-engine application map other pass-through
(config) policy-engine application name
(config) policy-engine config
show policy-engine status

To display high-level information about a WAE’s policy engine, use the `show policy-engine status` EXEC command. This information includes the usage of the available resources, which include application names, classifiers, and conditions.

```
show policy-engine status
```

Command Modes

EXEC

Device Modes

application-accelerator

Examples

Table 3-55 describes the fields shown in the `show policy-engine status` display.

Table 3-55 Field Descriptions for the show policy-engine status Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy-engine resources usage:</td>
<td>Table columns are Total, Used, and Available.</td>
</tr>
<tr>
<td>Application names</td>
<td>Total number of application names. Number of application names being used. Number of application names available.</td>
</tr>
<tr>
<td>Classifiers</td>
<td>Total number of classifiers configured. Number of classifiers being used. Number of classifiers available. The maximum number of classifiers allowed is 512.</td>
</tr>
<tr>
<td>Conditions</td>
<td>Total number of conditions configured. Number of conditions being used. Number of conditions available. The maximum number of match conditions allowed is 1024.</td>
</tr>
<tr>
<td>Policies</td>
<td>Total number of policies configured. Number of policies being used. Number of policies available. The maximum number of policies allowed is 512.</td>
</tr>
</tbody>
</table>

Related Commands

- `(config) policy-engine application classifier`
- `(config) policy-engine application map adaptor EPM`
- `(config) policy-engine application map adaptor WAFS transport`
- `(config) policy-engine application map basic delete`
- `(config) policy-engine application map basic disable`
- `(config) policy-engine application map basic insert`
- `(config) policy-engine application map basic list`
- `(config) policy-engine application map basic move`
- `(config) policy-engine application map basic name`
- `(config) policy-engine application map other optimize DRE`
- `(config) policy-engine application map other optimize full`
show policy-engine status

(config) policy-engine application map other pass-through
(config) policy-engine application name
(config) policy-engine config
show print-services

To display administrative users who have access to configuration privileges, print services, or print service processes on a WAAS device, use the show print-services EXEC command.

```
show print-services [drivers user username | process]
```

Syntax Description

- **process** Displays information about the print server and print spooler.
- **drivers** Displays printer drivers on this print server.
- **user username** Specifies a username that belongs to the print admin group.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-56 describes the fields shown in the show print-services process display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print server is running.</td>
<td>Operation status of the print server.</td>
</tr>
<tr>
<td>Print spooler is running.</td>
<td>Operation status of the print spooler.</td>
</tr>
<tr>
<td>Print Server Status</td>
<td>Samba version 3.0.20 Samba version being used.</td>
</tr>
<tr>
<td>Samba version 3.0.20</td>
<td>PID Process ID. Process identification number of the Samba process on the WAE Linux appliance.</td>
</tr>
<tr>
<td>Username</td>
<td>UNIX user that has started the Samba process.</td>
</tr>
<tr>
<td>Group</td>
<td>UNIX group to which the user belongs.</td>
</tr>
<tr>
<td>Machine</td>
<td>Machine name and IP address. The machine name is the same as the NetBIOS name.</td>
</tr>
<tr>
<td>Service</td>
<td>Service Remote procedure call (RPC) port that is used by clients to connect to the print server. Value is always IPCS.</td>
</tr>
<tr>
<td>pid</td>
<td>Process ID. Process identification number of the Samba process on the WAE Linux appliance.</td>
</tr>
<tr>
<td>machine</td>
<td>Machine name.</td>
</tr>
</tbody>
</table>
Table 3-56 Field Descriptions for the show print-services process Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected at</td>
<td>Date and time of connection to the print server.</td>
</tr>
<tr>
<td>No locked files</td>
<td>Comment line.</td>
</tr>
<tr>
<td>Print Spooler Status</td>
<td></td>
</tr>
<tr>
<td>scheduler is running</td>
<td>Operation status of the print spooler scheduler.</td>
</tr>
<tr>
<td>system default destination</td>
<td>Default print destination for WAAS (VistaPrinterOnWAAS).</td>
</tr>
<tr>
<td>device for (VistaPrinterOnWAAS)</td>
<td>Socket address for the system default print destination.</td>
</tr>
<tr>
<td>(VistaPrinterOnWAAS) accepting requests</td>
<td>Availability status of the system default print destination.</td>
</tr>
<tr>
<td>printer (VistaPrinterOnWAAS) is idle. enabled</td>
<td>Operation status of the system default printer.</td>
</tr>
</tbody>
</table>

Related Commands

(config) authentication
(config) print-services
show authentication
windows-domain
(config) windows-domain
show processes

To display CPU or memory processes for a WAAS device, use the **show processes** EXEC command.

```
show processes [cpu | debug pid | memory | system [delay 1-60 | count 1-100]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu</td>
<td>(Optional) Displays CPU utilization.</td>
</tr>
<tr>
<td>debug</td>
<td>(Optional) Prints the system call and signal traces for a specified process</td>
</tr>
<tr>
<td></td>
<td>identifier to display system progress.</td>
</tr>
<tr>
<td>pid</td>
<td>Process identifier.</td>
</tr>
<tr>
<td>memory</td>
<td>(Optional) Displays memory allocation processes.</td>
</tr>
<tr>
<td>system</td>
<td>(Optional) Displays system load information in terms of updates.</td>
</tr>
<tr>
<td>delay</td>
<td>(Optional) Specifies the delay between updates, in seconds (1–60).</td>
</tr>
<tr>
<td>count</td>
<td>(Optional) Specifies the number of updates that are displayed (1–100).</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the EXEC commands shown in this section to track and analyze system CPU utilization.

The **show processes debug** command displays extensive internal system call information and a detailed account of each system call (along with arguments) made by each process and the signals it has received.

Use the **show processes system** command to display system load information in terms of updates. The delay option specifies the delay between updates, in seconds. The count option specifies the number of updates that are displayed. This command displays these items:

- A list of all processes in wide format.
- Two tables listing the processes that utilize CPU resources. The first table displays the list of processes in descending order of utilization of CPU resources based on a snapshot taken after the processes system (ps) output is displayed. The second table displays the same processes based on a snapshot taken 5 seconds after the first snapshot.
- Virtual memory used by the corresponding processes in a series of five snapshots, each separated by 1 second.
CPU utilization and system performance are severely affected when you use these commands. We therefore recommend that you avoid using these commands, especially the `show processes debug` command, unless it is absolutely necessary.

Examples

Table 3-57 describes the fields shown in the `show processes` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Usage</td>
<td>CPU utilization as a percentage for user, system overhead, and idle.</td>
</tr>
<tr>
<td>PID</td>
<td>Process identifier.</td>
</tr>
<tr>
<td>STATE</td>
<td>Current state of corresponding processes:</td>
</tr>
<tr>
<td></td>
<td>R = running</td>
</tr>
<tr>
<td></td>
<td>S = sleeping in an interruptible wait</td>
</tr>
<tr>
<td></td>
<td>D = sleeping in an uninterruptible wait or swapping</td>
</tr>
<tr>
<td></td>
<td>Z = zombie</td>
</tr>
<tr>
<td></td>
<td>T = traced or stopped on a signal</td>
</tr>
<tr>
<td>PRI</td>
<td>Priority of processes.</td>
</tr>
<tr>
<td>User T</td>
<td>User time utilization in seconds.</td>
</tr>
<tr>
<td>Sys T</td>
<td>System time utilization in seconds.</td>
</tr>
<tr>
<td>COMMAND</td>
<td>Process command.</td>
</tr>
<tr>
<td>Total</td>
<td>Total available memory in bytes.</td>
</tr>
<tr>
<td>Used</td>
<td>Memory currently used in bytes.</td>
</tr>
<tr>
<td>Free</td>
<td>Free memory available in bytes.</td>
</tr>
<tr>
<td>Shared</td>
<td>Shared memory currently used in bytes.</td>
</tr>
<tr>
<td>Buffers</td>
<td>Buffer memory currently used in bytes.</td>
</tr>
<tr>
<td>Cached</td>
<td>Cache memory currently used in bytes.</td>
</tr>
<tr>
<td>SwapTotal</td>
<td>Total available memory in bytes for swap purposes.</td>
</tr>
</tbody>
</table>
show radius-server

To display RADIUS configuration information for a WAAS device, use the `show radius-server` EXEC command.

show radius-server

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-58 describes the fields shown in the `show radius-server` display.

<table>
<thead>
<tr>
<th>Table 3-58 Field Descriptions for the show radius-server Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
</tr>
<tr>
<td>Login Authentication for Console/Telnet Session</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session</td>
</tr>
<tr>
<td>Authentication scheme fail-over reason</td>
</tr>
<tr>
<td>RADIUS Configuration</td>
</tr>
<tr>
<td>Key</td>
</tr>
<tr>
<td>Timeout</td>
</tr>
<tr>
<td>Servers</td>
</tr>
<tr>
<td>IP</td>
</tr>
<tr>
<td>Port</td>
</tr>
</tbody>
</table>
Related Commands

```markdown
**show radius-server**
```
```
show running-config

To display a WAAS device’s current running configuration information on the terminal, use the `show running-config` EXEC command. This command replaces the `write terminal` command.

```
show running-config
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values

**Command Modes**

EXEC

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**

Use this EXEC command in conjunction with the `show startup-config` command to compare the information in running memory to the startup configuration used during bootup.

**Examples**

The following example displays the currently running configuration of a WAAS device:

```
WAE# show running-config
! WAAS version 4.0.0
!
device mode central-manager
!
hostname waas-cm
!
!
exec-timeout 60
!
!
primary-interface GigabitEthernet 1/0
!
!
...
```

**Related Commands**

- `configure`
- `copy running-config`
copy startup-config
show services

To display services-related information for a WAAS device, use the show services EXEC command.

`show services [ports [port-num]] | summary`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ports</td>
<td>Displays services by port number.</td>
</tr>
<tr>
<td>port-num</td>
<td>(Optional) Up to 8 port numbers (1–65535).</td>
</tr>
<tr>
<td>summary</td>
<td>Displays the services summary.</td>
</tr>
</tbody>
</table>

**Defaults**
No default behavior or values

**Command Modes**
EXEC

**Device Modes**
- application-accelerator
- replication-accelerator
- central-manager

**Examples**

The following example displays a summary of the services:

```
WAE# show services summary
```

```
Service Ports

CMS 1100 5256
NLM 4045
WAFS 1099
emdb 5432
MOUNT 3058
MgmtAgent 5252
WAFS_tunnel 4050
CMS_db_vacuum 5257
```
show smb-conf

To view a WAAS device’s current values of the Samba configuration file, `smb.conf`, use the `show smb-conf` EXEC command.

```
show smb-conf
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values

**Command Modes**
EXEC

**Device Modes**
application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**
This command displays the global, print$, and printers parameters values of the smb.conf file for troubleshooting purposes. For a description of these parameters and their values, see the “(config) smb-conf” command.

**Examples**
The following example displays all of the parameter values for the current configuration:

```
WAE# show smb-conf

Current smb-conf configurations -->

smb-conf section "global" name "ldap ssl" value "start_tls"
smb-conf section "printers" name "printer admin" value "root"

Output of current smb.conf file on disk -->

==
File automatically generated

[globals]
idmap uid = 70000-200000
idmap gid = 70000-200000
winbind enum users = no
winbind enum groups = no
winbind cache time = 10
winbind use default domain = yes
printcap name = cups
load printers = yes
```
printing = cups
cups options = "raw"
force printername = yes
lpq cache time = 0
log file = /local/local1/errorlog/samba.log
max log size = 50
socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
smb ports = 50139
local master = no
domain master = no
preferred master = no
dns proxy = no
template homedir = /local/local1/
template shell = /admin-shell
ldap ssl = start_tls
comment = Comment:
netbios name = MYFILEENGINE
realm = ABC
wins server = 10.10.10.1
password server = 10.10.10.10
security = domain

[print$
path = /state/samba/printers
guest ok = yes
browseable = yes
read only = yes
write list = root

[printers]
path = /local/local1/spool/samba
browseable = no
guest ok = yes
writable = no
printable = yes
printer admin = root

=================================================================

Related Commands

(config) smb-conf
windows-domain
(config) windows-domain
show snmp

To check the status of SNMP communications for a WAAS device, use the `show snmp` EXEC command.

```
show snmp {alarm-history | engine ID | event | group | stats | user}
```

**Syntax Description**

- `alarm-history` Displays SNMP alarm history information.
- `engineID` Displays local SNMP engine identifier.
- `event` Displays events configured through the Event MIB.
- `group` Displays SNMP groups.
- `stats` Displays SNMP statistics.
- `user` Displays SNMP users.

**Defaults**
No default behavior or values

**Command Modes**
EXEC

**Device Modes**
application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**
This EXEC command provides information on various SNMP variables and statistics on SNMP operations.

**Examples**
Table 3-59 describes the fields shown in the `show snmp alarm-history` display.

**Table 3-59 Field Descriptions for the show snmp alarm-history Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>Displays the serial number of the listed alarms.</td>
</tr>
<tr>
<td>Type</td>
<td>Indicates whether the alarm has been Raised (R) or Cleared (C).</td>
</tr>
<tr>
<td>Sev</td>
<td>Levels of alarm severity: Critical (Cr), Major (Ma), or Minor (Mi).</td>
</tr>
<tr>
<td>Alarm ID</td>
<td>Traps sent by a WAE contain numeric alarm IDs.</td>
</tr>
<tr>
<td>ModuleID</td>
<td>Traps sent by a WAE contain numeric module IDs. (See Table 3-60 to map module names to module IDs.)</td>
</tr>
</tbody>
</table>
Table 3-60 summarizes the mapping of module names to module IDs.

**Table 3-60 Summary of Module Names to ID Numbers**

<table>
<thead>
<tr>
<th>Module Name</th>
<th>Module ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD_DATABASE</td>
<td>8000</td>
</tr>
<tr>
<td>NHM</td>
<td>1</td>
</tr>
<tr>
<td>NHM/NHM</td>
<td>2500</td>
</tr>
<tr>
<td>nodemgr</td>
<td>2000</td>
</tr>
<tr>
<td>standby</td>
<td>4000</td>
</tr>
<tr>
<td>syson</td>
<td>1000</td>
</tr>
<tr>
<td>UNICAST_DATA_RECEIVER</td>
<td>5000</td>
</tr>
<tr>
<td>UNICAST_DATA_SENDER</td>
<td>6000</td>
</tr>
</tbody>
</table>

Table 3-61 summarizes the mapping of category names to category IDs.

**Table 3-61 Summary of Category Names to ID Numbers**

<table>
<thead>
<tr>
<th>Category Name</th>
<th>Category ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communications</td>
<td>1</td>
</tr>
<tr>
<td>Service Quality</td>
<td>2</td>
</tr>
<tr>
<td>Processing Error</td>
<td>3</td>
</tr>
<tr>
<td>Equipment</td>
<td>4</td>
</tr>
<tr>
<td>Environment</td>
<td>5</td>
</tr>
<tr>
<td>Content</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3-62 describes the fields shown in the `show snmp engineID` display.

**Table 3-62 Field Descriptions for the show snmp engineID**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local SNMP Engine ID</td>
<td>String that identifies the copy of SNMP on the local device.</td>
</tr>
</tbody>
</table>

Table 3-63 describes the fields shown in the `show snmp event` display. The `show snmp event` command displays information about the SNMP events that were set using the “snmp trigger” command:
### Table 3-63  Field Descriptions for the show snmp event Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mgmt Triggers</td>
<td>Output for management triggers, which are numbered 1, 2, 3, and so on in the output.</td>
</tr>
<tr>
<td>(1): Owner:</td>
<td>Name of the person who configured the trigger. “CLI” is the default owner; the system has a default trigger configured.</td>
</tr>
<tr>
<td>(1):</td>
<td>Name for the trigger. This name is locally-unique and administratively assigned. For example, this field might contain the “is Valid” trigger name. Numbering indicates that this is the first management trigger listed in the show output.</td>
</tr>
<tr>
<td>Comment:</td>
<td>Description of the trigger’s function and use. For example: WAFS license file is not valid.</td>
</tr>
<tr>
<td>Sample:</td>
<td>Basis on which the test sample is being evaluated. For example: Abs (Absolute) or Delta.</td>
</tr>
<tr>
<td>Freq:</td>
<td>Frequency. Number of seconds to wait between trigger samplings. To encourage consistency in sampling, the interval is measured from the beginning of one check to the beginning of the next and the timer is restarted immediately when it expires, not when the check completes.</td>
</tr>
<tr>
<td>Test:</td>
<td>Type of trigger test to perform based on the SNMP trigger configured. The Test field may contain the following types of tests: Absent—Absent existence of a test Boolean—Boolean value test Equal—Equality threshold test Falling—Falling threshold test Greater-than—Greater-than threshold test Less-than—Less-than threshold test On-change—Changed existence test Present—Present present test Rising—Rising threshold test</td>
</tr>
<tr>
<td>ObjectOwner:</td>
<td>Name of the object owner who created the trigger using the snmp trigger create global configuration command or by using an SNMP interface. “CLI” is the default owner.</td>
</tr>
<tr>
<td>Object:</td>
<td>String identifying the object.</td>
</tr>
<tr>
<td>Boolean Entry:</td>
<td></td>
</tr>
<tr>
<td>Value:</td>
<td>Object identifier of the MIB object to sample to see whether the trigger should fire.</td>
</tr>
</tbody>
</table>
Table 3-63  Field Descriptions for the show snmp event Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cmp:</td>
<td>Comparison. Type of boolean comparison to perform. The numbers 1–6 correspond to these Boolean comparisons: unequal (1), equal (2), less (3), lessOrEqual (4), greater (5), greaterOrEqual (6)</td>
</tr>
<tr>
<td>Start:</td>
<td>Starting value for which this instance will be triggered.</td>
</tr>
<tr>
<td>ObjOwn:</td>
<td>Object owner.</td>
</tr>
<tr>
<td>Obj:</td>
<td>Object.</td>
</tr>
<tr>
<td>EveOwn:</td>
<td>Event owner.</td>
</tr>
<tr>
<td>Eve:</td>
<td>Event. Type of SNMP event. For example: CLI_EVENT.</td>
</tr>
<tr>
<td>Delta Value Table:</td>
<td>Table containing trigger information for delta sampling.</td>
</tr>
<tr>
<td>(0):</td>
<td></td>
</tr>
<tr>
<td>Thresh:</td>
<td>Threshold value to check against if the trigger type is threshold.</td>
</tr>
<tr>
<td>Exis:</td>
<td>Type of existence test to perform. Values are 1 or 0.</td>
</tr>
<tr>
<td>Read:</td>
<td>Indicates whether the MIB instance has been queried or not.</td>
</tr>
<tr>
<td>OID:</td>
<td>Object ID (Same as MIB instance).</td>
</tr>
<tr>
<td>val:</td>
<td>Value ID.</td>
</tr>
<tr>
<td>(2):</td>
<td>MIB instance on which the trigger is configured. This is the second management trigger listed in the show output. The fields are repeated for each instance listed in this show command.</td>
</tr>
</tbody>
</table>

Table 3-64 describes the fields shown in the show snmp group display.

Table 3-64  Field Descriptions for the show snmp group Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groupname</td>
<td>Name of the SNMP group, or collection of users who have a common access policy.</td>
</tr>
<tr>
<td>security_model</td>
<td>Security model used by the group (either v1, v2c, or v3).</td>
</tr>
<tr>
<td>readview</td>
<td>String identifying the read view of the group.</td>
</tr>
<tr>
<td>writeview</td>
<td>String identifying the write view of the group.</td>
</tr>
<tr>
<td>notifyview</td>
<td>String identifying the notify view of the group.</td>
</tr>
</tbody>
</table>

Table 3-65 describes the fields shown in the show snmp stats display.
Table 3-65  

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP packets input</td>
<td>Total number of SNMP packets input.</td>
</tr>
<tr>
<td>Bad SNMP version errors</td>
<td>Number of packets with an invalid SNMP version.</td>
</tr>
<tr>
<td>Unknown community name</td>
<td>Number of SNMP packets with an unknown community name.</td>
</tr>
<tr>
<td>Illegal operation for community name supplied</td>
<td>Number of packets requesting an operation not allowed for that community.</td>
</tr>
<tr>
<td>Encoding errors</td>
<td>Number of SNMP packets that were improperly encoded.</td>
</tr>
<tr>
<td>Number of requested variables</td>
<td>Number of variables requested by SNMP managers.</td>
</tr>
<tr>
<td>Number of altered variables</td>
<td>Number of variables altered by SNMP managers.</td>
</tr>
<tr>
<td>Get-request PDUs</td>
<td>Number of GET requests received.</td>
</tr>
<tr>
<td>Get-next PDUs</td>
<td>Number of GET-NEXT requests received.</td>
</tr>
<tr>
<td>Set-request PDUs</td>
<td>Number of SET requests received.</td>
</tr>
<tr>
<td>SNMP packets output</td>
<td>Total number of SNMP packets sent by the router.</td>
</tr>
<tr>
<td>Too big errors</td>
<td>Number of SNMP packets that were larger than the maximum packet size.</td>
</tr>
<tr>
<td>Maximum packet size</td>
<td>Maximum size of SNMP packets.</td>
</tr>
<tr>
<td>No such name errors</td>
<td>Number of SNMP requests that specified a MIB object that does not exist.</td>
</tr>
<tr>
<td>Bad values errors</td>
<td>Number of SNMP SET requests that specified an invalid value for a MIB object.</td>
</tr>
<tr>
<td>General errors</td>
<td>Number of SNMP SET requests that failed because of some other error. (It was not a No such name error, Bad values error, or any of the other specific errors.)</td>
</tr>
<tr>
<td>Response PDUs</td>
<td>Number of responses sent in reply to requests.</td>
</tr>
<tr>
<td>Trap PDUs</td>
<td>Number of SNMP traps sent.</td>
</tr>
</tbody>
</table>

Table 3-66 describes the fields shown in the show snmp user display.

Table 3-66  

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User name</td>
<td>String identifying the name of the SNMP user.</td>
</tr>
<tr>
<td>Engine ID</td>
<td>String identifying the name of the copy of SNMP on the device.</td>
</tr>
<tr>
<td>Group Name</td>
<td>Name of the SNMP group, or collection of users who have a common access policy.</td>
</tr>
</tbody>
</table>

Related Commands  

- (config) snmp-server community  
- (config) snmp-server contact  
- (config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib persist event
(config) snmp-server notify inform
(config) snmp-server user
(config) snmp-server view
snmp trigger
show ssh

To display the status and configuration information of the Secure Shell (SSH) service for a WAAS device, use the `show ssh` EXEC command.

```
show ssh
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

No default behavior or values

**Command Modes**

EXEC

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Examples**

Table 3-67 describes the fields shown in the `show ssh` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSH server supports SSH2 protocol (SSH1 compatible).</td>
<td>Protocol support statement.</td>
</tr>
<tr>
<td>SSH service is not enabled.</td>
<td>Status of whether the SSH service is enabled or not enabled.</td>
</tr>
<tr>
<td>Currently there are no active SSH sessions.</td>
<td>Number of active SSH sessions.</td>
</tr>
<tr>
<td>Number of successful SSH sessions since last reboot:</td>
<td>Number of successful SSH sessions since last reboot.</td>
</tr>
<tr>
<td>Number of failed SSH sessions since last reboot:</td>
<td>Number of failed SSH sessions since last reboot.</td>
</tr>
<tr>
<td>SSH key has not been generated or previous key has been removed.</td>
<td>Status of the SSH key.</td>
</tr>
<tr>
<td>SSH login grace time value is 300 seconds.</td>
<td>Time allowed for login.</td>
</tr>
<tr>
<td>Allow 3 password guess(es).</td>
<td>Number of password guesses allowed.</td>
</tr>
</tbody>
</table>

**Related Commands**

- `(config) ssh-key-generate`
- `(config) ssdh`
show standby

To display information about a standby interface on a WAAS device, use the `show standby` EXEC command.

```
show standby
```

### Syntax Description
This command has no arguments or keywords.

### Defaults
No default behavior or values

### Command Modes
EXEC

### Device Modes
- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines
To display information about a specific standby group configuration, enter the `show interface standby standby_group_num` EXEC command.

### Examples
Table 3-68 describes the fields shown in the `show standby` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standby Group</td>
<td>Number that identifies the standby group.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the device, as configured by using the <code>description</code> option of the <code>interface</code> global configuration command.</td>
</tr>
<tr>
<td>IP address</td>
<td>IP address of the standby group.</td>
</tr>
<tr>
<td>netmask</td>
<td>Netmask of the standby group.</td>
</tr>
<tr>
<td>Member interfaces</td>
<td>Member interfaces of the standby group. Shows which physical interfaces are part of the standby group. Shows the interface definition, such as GigabitEthernet 1/0.</td>
</tr>
<tr>
<td>priority</td>
<td>Priority status of each interface.</td>
</tr>
<tr>
<td>Active interface</td>
<td>Interfaces that are currently active in the standby group.</td>
</tr>
<tr>
<td>Maximum errors allowed on the active interface</td>
<td>Maximum number of errors allowed on the active interface.</td>
</tr>
</tbody>
</table>
Related Commands

- show interface
- show running-config
- show startup-config
- (config-if) standby
show startup-config

To display the startup configuration for a WAAS device, use the *show startup-config* EXEC command.

```
show startup-config
```

**Syntax Description**

This command has no keywords or arguments.

**Defaults**

No default behavior or values

**Command Modes**

EXEC

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**

Use this EXEC command to display the configuration used during an initial bootup, stored in NVRAM. Note the difference between the output of this command versus the *show running-config* command.

**Examples**

The following example displays the configuration saved for use on startup of the WAAS device:

```
WAE# show startup-config
! WAAS version 4.0.0
! device mode central-manager
! hostname Edge-WAE1
! exec-timeout 60
! primary-interface GigabitEthernet 1/0
! interface GigabitEthernet 1/0
 ip address 10.10.33.255.255.255.0
 exit
interface GigabitEthernet 2/0
 shutdown
...
Related Commands

- configure
- copy running-config
- show running-config
show statistics authentication

To display authentication statistics for a WAAS device, use the show statistics authentication EXEC command.

show statistics authentication

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the show statistics authentication command to display the number of authentication access requests, denials, and allowances recorded.

Examples
The following example displays the statistics related to authentication on the WAAS device:

WAE# show statistics authentication
Authentication Statistics

Number of access requests: 115
Number of access deny responses: 12
Number of access allow responses: 103

Related Commands
(config) authentication
clear
show authentication
show statistics cifs

To display the CIFS statistics information, use the show statistics cifs EXEC command.

```
show statistics cifs {cache eviction | requests}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cache</td>
<td>Displays the statistics for CIFS cache.</td>
</tr>
<tr>
<td>eviction</td>
<td>Displays the status of CIFS cache eviction.</td>
</tr>
<tr>
<td>requests</td>
<td>Displays the statistics for CIFS requests.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Use the show statistics cifs EXEC command to view the CIFS traffic details itemized by request type. This command is useful when you want to understand how the system is being used. For example, are requests mostly for data transfer, browsing, database activity, or for some other purpose? You might correlate these statistics with performance issues for troubleshooting purposes, or you may use them to determine what specific performance optimizations to configure.

Examples

Table 3-69 describes the fields in the show statistics cifs requests display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics gathering period</td>
<td>Number of hours, minutes, seconds, and milliseconds of the statistics gathering period.</td>
</tr>
<tr>
<td>Total</td>
<td>Total number of CIFS requests.</td>
</tr>
<tr>
<td>Remote</td>
<td>Number of CIFS requests that were not handled from the local cache.</td>
</tr>
<tr>
<td>ALL_COMMANDS total</td>
<td>Alias for all of the CIFS commands shown.</td>
</tr>
<tr>
<td>ALL_COMMANDS remote</td>
<td>Total number of requests for all commands.</td>
</tr>
<tr>
<td>ALL_COMMANDS async</td>
<td>Number of async requests for all commands.</td>
</tr>
<tr>
<td>ALL_COMMANDS avg local</td>
<td>Average local request time in milliseconds for all commands.</td>
</tr>
<tr>
<td>ALL_COMMANDS avg remote</td>
<td>Average remote request time in milliseconds for all commands.</td>
</tr>
</tbody>
</table>
Table 3-69 Field Descriptions for the show statistics cifs requests Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONNECT</td>
<td>Connection check command.</td>
</tr>
<tr>
<td>total</td>
<td>Total number of requests for this command.</td>
</tr>
<tr>
<td>remote</td>
<td>Number of remote requests for this command.</td>
</tr>
<tr>
<td>async</td>
<td>Number of async requests for this command.</td>
</tr>
<tr>
<td>avg local</td>
<td>Average local request time in milliseconds for this command.</td>
</tr>
<tr>
<td>avg remote</td>
<td>Average remote request time in milliseconds for this command.</td>
</tr>
<tr>
<td>NB_SESSION_REQ</td>
<td>NetBIOS session request command.</td>
</tr>
<tr>
<td>VFN_LIVENESS</td>
<td>Liveliness check command.</td>
</tr>
</tbody>
</table>

Related Commands
cifs
show cifs
show statistics content-distribution-network

To display the status of a WAE or device group that is registered with a WAAS Central Manager, use the `show statistics content-distribution-network` EXEC command. This command is available on only WAAS Central Managers.

```
show statistics content-distribution-network device status device_id
```

Syntax Description

- **device status**
 Displays the status of a WAE or device group that is registered with the WAAS Central Manager.

- **device_id**
 Name or ID of the device or device group.

Defaults

No default behavior or values

Command Modes

- EXEC

Device Modes

- central-manager

Usage Guidelines

Use the `show statistics content-distribution-network` EXEC command to display the identification details about a WAE or WAEs in a device group, and verify if a WAE is online.

Examples

The following example displays the identification details of a WAE that is registered with the WAAS Central Manager:

```
WAE# show statistics content-distribution-network device status edge-wae-11
Device id="CdmConfig_142" name="edge-wae-11" status="Online";
```
show statistics dre

To display Data Redundancy Elimination (DRE) general statistics for a WAE, use the show statistics dre EXEC command.

show statistics dre

Command Modes
EXEC

Device Modes
application-accelerator

Examples
Table 3-70 describes the fields shown in the show statistics dre display. This command shows the aggregated statistics for all connections.

Table 3-70 Field Descriptions for the show statistics dre Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache</td>
<td>Aggregated DRE cache data statistics.</td>
</tr>
<tr>
<td>Status</td>
<td>Current DRE status. Status values include: Initializing, Usable, Temporarily Fail, and Fail.</td>
</tr>
<tr>
<td>Oldest Data (age)</td>
<td>Time that the DRE data has been in the cache in days (d), hours (h), minutes (m), and seconds (s). For example, “1d1h” means 1 day, 1 hour.</td>
</tr>
<tr>
<td>Total usable disk size</td>
<td>Total disk space allocated to the DRE cache.</td>
</tr>
<tr>
<td>Used (%)</td>
<td>Percentage of the total DRE cache disk space being used.</td>
</tr>
<tr>
<td>Hash table RAM size</td>
<td>Amount of memory allocated for the DRE hash table.</td>
</tr>
<tr>
<td>Used (%)</td>
<td>Percentage of allocated memory being used for the DRE hash table.</td>
</tr>
<tr>
<td>Completed Connections</td>
<td></td>
</tr>
<tr>
<td>Total (cumulative):</td>
<td>Number of cumulative connections that have been processed.</td>
</tr>
<tr>
<td>Active:</td>
<td>Number of connections that are still open.</td>
</tr>
<tr>
<td>Encode</td>
<td>Statistics for compressed messages.</td>
</tr>
</tbody>
</table>
| Overall: [msg | in | out | ratio] | Aggregated statistics for compressed messages.
 msg = Total number of messages.
 in = Number of bytes before compression.
 out = Number of bytes after compression.
 ratio = Percentage of the total number of bytes that were compressed. |
| DRE: [msg | in | out | ratio] | Number of DRE messages. |
| DRE bypass | Number of DRE messages that were bypassed for compression. |
Table 3-70 Field Descriptions for the show statistics dre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| LZ: [msg | in | out | ratio] | Number of LZ messages.
| Note | LZ compression is applied after DRE compression is applied. (DRE compression is always applied first.) | | | |
| LZ Bypass: [msg | in | out | ratio] | Number of LZ messages that were bypassed for compression. |
| Average Latency | Average time to compress one message for both DRE and LZ in milliseconds (ms). |
| Message size distribution | Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.) |
| Decode | Statistics for decompressed messages. |
| Overall: [msg | in | out | ratio] | Aggregated statistics for decompressed messages:
| msg = Total number of messages. |
| in = Number of bytes before decompression. |
| out = Number of bytes after decompression. |
| ratio = Percentage of the total number of bytes that were decompressed. |
| DRE: [msg | in | out | ratio] | Number of DRE messages. |
| DRE Bypass [msg | in] | Number of DRE messages that were bypassed for decompression. |
| LZ: [msg | in | out | ratio] | Number of LZ messages. |
| LZ Bypass: [msg | in] | Number of LZ messages that were bypassed for decompression. |
| Latency (Last 3 sec): [max | avg] | Maximum time to decompress one message for both DRE and LZ in milliseconds (ms).
| Average time to decompress one message for both DRE and LZ in milliseconds (ms). |
| Message size distribution | Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.) |

Related Commands

- `debug`
- `show statistics dre connection`
- `show statistics dre peer`
show statistics dre connection

To display Data Redundancy Elimination (DRE) connection statistics for a WAE, use the show statistics dre connection EXEC command.

```
```

Syntax Description

- **active** (Optional) Displays all active connection statistics.
- **client-ip** (Optional) Displays the connection statistics for the client with the specified IP address or hostname.
- **ip_address** IP address of a client or server.
- **hostname** Hostname of a client or server.
- **client-port** (Optional) Displays the connection statistics for the client with the specified port number.
- **port** Port number of a client or server (1–65535).
- **id** (Optional) Displays the connection statistics for the connection with the specified identifier.
- **connection_id** Number from 0 to 4294967295 identifying a connection.
- **last** (Optional) Displays the last connection statistics.
- **peer-no** (Optional) Displays the connection statistics for the peer with the specified identifier.
- **peer_id** Number from 0 to 4294967295 identifying a peer.
- **server-ip** (Optional) Displays the connection statistics for the server with the specified IP address or hostname.
- **server-port** (Optional) Displays the connection statistics for the server with the specified port number.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

This command displays the statistics for individual TCP connections on which DRE compression is being applied. This information is updated in real time.

Using this command without any options displays a one-line summary of all the TCP connections on the WAE for which DRE is applied. To obtain detailed statistics for a connection, use the command options to filter the connection. While most filters show detail statistics, some filters (such as, peer no.) show summary information and not details.
Table 3-71 describes the fields shown in the `show statistics dre connection` display.

Table 3-71 **Field Descriptions for the show statistics dre connection Command**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conn-ID</td>
<td>Connection ID assigned by the device for each connection.</td>
</tr>
<tr>
<td>Peer No.</td>
<td>Number assigned to the peer compression device.</td>
</tr>
<tr>
<td>Client-ip:port</td>
<td>IP address and port of the client device that initialized the TCP connection, such as the user’s PC or laptop.</td>
</tr>
<tr>
<td>Server-ip:port</td>
<td>IP address and port of the server.</td>
</tr>
<tr>
<td>Encode-in</td>
<td>Number of bytes in for compression.</td>
</tr>
<tr>
<td>Decode-in</td>
<td>Number of bytes in for decompression.</td>
</tr>
<tr>
<td>PID</td>
<td>Peer ID. MAC address of the peer device.</td>
</tr>
<tr>
<td>Status</td>
<td>State of the connection and the duration of that state. Possible values are Active or Closed.</td>
</tr>
<tr>
<td></td>
<td>A = active</td>
</tr>
<tr>
<td></td>
<td>C = closed</td>
</tr>
<tr>
<td></td>
<td>For example, C(22h) shows that the connection has been closed for 22 hours.</td>
</tr>
</tbody>
</table>

Related Commands

- `debug`
- `show statistics dre connection`
show statistics dre peer

To display Data Redundancy Elimination (DRE) peer statistics for a WAE, use the `show statistics dre peer` EXEC command.

```
show statistics dre peer {context context-value [ip ip-address | peer-id peer-id |
    peer-no peer-no] | ip ip-address | context context-value |
    ip ip-address | peer-id peer-id |
    peer-no peer-no] | peer-id peer-id [context context-value | ip ip-address | peer-no peer-no] |
    peer-no peer-no [context context-value | ip ip-address | peer-id peer-id]}
```

Syntax Description

- **context**
 - Displays peer statistics for the specified context.
- **context-value**
 - Context value (0–4294967295).
- **ip**
 - (Optional) Specifies the IP address of the peer.
 - `ip_address`
 - IP address of the peer.
- **peer-id**
 - (Optional) Specifies the MAC address of the peer.
 - `peer-id`
 - Peer ID (0–4294967295).
- **peer-no**
 - (Optional) Specifies the peer number.
 - `peer-no`
 - Peer number.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

Table 3-72 describes the fields shown in the `show statistics dre peer` display. This command shows the DRE peer device connection information.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer-No</td>
<td>Number assigned to the peer compression device.</td>
</tr>
<tr>
<td>Context</td>
<td>Context ID for the DRE debugging trace.</td>
</tr>
<tr>
<td>Peer-ID</td>
<td>MAC address of the peer device.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Hostname of the peer device.</td>
</tr>
<tr>
<td>Cache</td>
<td>DRE cache data statistics as shown by the peer.</td>
</tr>
<tr>
<td>Used disk:</td>
<td>Number of megabytes (MB) used on the disk for the DRE cache.</td>
</tr>
<tr>
<td>Age:</td>
<td>Time that the DRE data has been in the cache in days (d), hours (h), minutes (m), and seconds (s).</td>
</tr>
<tr>
<td>Connections:</td>
<td></td>
</tr>
<tr>
<td>Total (cumulative):</td>
<td>Number of cumulative connections that have been processed.</td>
</tr>
<tr>
<td>Active:</td>
<td>Number of connections that are still open.</td>
</tr>
</tbody>
</table>
Concurrent connections (Last 2 min):

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>max</td>
<td>Maximum number of concurrent connections in the last two minutes.</td>
</tr>
<tr>
<td>avg</td>
<td>Average number of concurrent connections in the last two minutes.</td>
</tr>
</tbody>
</table>

Encode

Statistics for compressed messages.

- **Overall:** \([msg | in | out | ratio]\)
 - Aggregated statistics for compressed messages:
 - \(msg\) = Total number of messages.
 - \(in\) = Number of bytes before decompression.
 - \(out\) = Number of bytes after decompression.
 - \(ratio\) = Percentage of the total number of bytes that were compressed.

- **DRE:** \([msg | in | out | ratio]\)
 - Number of DRE messages.

- **DRE Bypass:** \([msg | in]\)
 - Number of DRE messages that were bypassed for compression.

- **LZ:** \([msg | in | out | ratio]\)
 - Number of LZ messages.

- **LZ Bypass:** \([msg | in]\)
 - Number of LZ messages that were bypassed for compression.

- **Message size distribution**
 - Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.)

Decode

Statistics for decompressed messages.

- **Overall:** \([msg | in | out | ratio]\)
 - Aggregated statistics for decompressed messages:
 - \(msg\) = Total number of messages.
 - \(in\) = Number of bytes before decompression.
 - \(out\) = Number of bytes after decompression.
 - \(ratio\) = Percentage of the total number of bytes that were decompressed.

- **DRE:** \([msg | in | out | ratio]\)
 - Number of DRE messages.

- **DRE Bypass:** \([msg | in]\)
 - Number of DRE messages that were bypassed for decompression.

- **LZ:** \([msg | in | out | ratio]\)
 - Number of LZ messages.

- **LZ Bypass:** \([msg | in]\)
 - Number of LZ messages that were bypassed for decompression.

- **Latency (Last 3 sec):** \([max | avg]\)
 - Maximum time to decompress one message for both DRE and LZ in milliseconds (ms).
 - Average time to decompress one message for both DRE and LZ in milliseconds (ms).

- **Message size distribution**
 - Percentage of messages that fall into each size grouping. (The message size field is divided into 6 size groups.)
show statistics dre peer

Related Commands

- debug
- show statistics dre connection
show statistics epm

To display EndPoint Mapper (EPM) statistics for a WAE, use the `show statistics epm` EXEC command.

```plaintext
show statistics epm
```

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

This command displays the number of total requests and responses recorded.

Examples

Table 3-73 describes the fields shown in the `show statistics epm` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total requests</td>
<td>Number of requests processed by the EPM adaptor (incremented once for each connection).</td>
</tr>
<tr>
<td>success</td>
<td>Number of EPM requests which were successfully parsed by the EPM adaptor.</td>
</tr>
<tr>
<td>fault</td>
<td>Number of connections which were not successfully handled because of a bad client request (or a valid request that does not require processing by the EPM adaptor).</td>
</tr>
<tr>
<td>Total responses</td>
<td>Number of responses processed by the EPM adaptor (incremented once for each connection).</td>
</tr>
<tr>
<td>policy match</td>
<td>Number of connections which were successfully handled by the EPM adaptor, such as “dynamic match created,” for example.</td>
</tr>
<tr>
<td>UUID not configured</td>
<td>Number of times that a client requested a service that is not configured in the policy engine.</td>
</tr>
<tr>
<td>service unavailable</td>
<td>Number of times that a client requested a service, which the server reported to be unavailable.</td>
</tr>
<tr>
<td>fault</td>
<td>Number of connections which were not successfully handled because of a bad client response or because of an internal error which occurred while processing the client response.</td>
</tr>
</tbody>
</table>

Related Commands

`policy-engine application map adaptor EPM`
show statistics flow

To display flow statistics for a WAAS device, use the `show statistics flow` EXEC command.

```
show statistics flow {filters | monitor tcpstat-v1}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filters</td>
<td>Displays flow filter statistics.</td>
</tr>
<tr>
<td>monitor</td>
<td>Displays flow performance statistics.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Displays tcpstat-v1 collector statistics.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Examples

Table 3-76 describes the fields shown in the `show statistics flow filters` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Filters</td>
<td>Number of filters.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of whether the filters are enabled or disabled.</td>
</tr>
<tr>
<td>Capture Mode</td>
<td>Operation of the filter. Values include FILTER or PROMISCUOUS. The promiscuous operation is not available in WAAS.</td>
</tr>
<tr>
<td>Server</td>
<td>IP address list of the servers for which flows are being monitored.</td>
</tr>
<tr>
<td>Flow Hits</td>
<td>Number of flow hits for each server.</td>
</tr>
<tr>
<td>Flags</td>
<td>Flags identifying the flows: CSN: Client-Side Non-Optimized (Edge) SSO: Server-Side Optimized (Edge) CSO: Client-Side Optimized (Core) SSN: Server-Side Non-Optimized (Core) PT: Pass Through (Edge/Core/Intermediate) IC: Internal Client</td>
</tr>
</tbody>
</table>
Table 3-75 describes the fields shown in the **show statistics flow monitor** display.

Table 3-75 Field Descriptions for the show statistics flow monitor Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host Connection</td>
<td></td>
</tr>
<tr>
<td>Configured host address</td>
<td>IP address of the tcpstat-v1 console for the connection.</td>
</tr>
<tr>
<td>Connection State</td>
<td>State of the connection.</td>
</tr>
<tr>
<td>Connection Attempts</td>
<td>Number of connection attempts.</td>
</tr>
<tr>
<td>Connection Failures</td>
<td>Number of connection failures.</td>
</tr>
<tr>
<td>Last connection failure</td>
<td>Date and time of the last connection failure.</td>
</tr>
<tr>
<td>Last configuration check sent</td>
<td>Date and time that the last configuration check was sent.</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Date and time that the last registration occurred.</td>
</tr>
<tr>
<td>Host Version</td>
<td>Version number of the tcpstat-v1 console for the connection.</td>
</tr>
<tr>
<td>Collector Connection</td>
<td></td>
</tr>
<tr>
<td>Collector host address:port</td>
<td>IP address and port number of the tcpstat-v1 aggregator identified through the host connection.</td>
</tr>
<tr>
<td>Connection State</td>
<td>State of the connection.</td>
</tr>
<tr>
<td>Connection Attempts</td>
<td>Number of connection attempts.</td>
</tr>
<tr>
<td>Connection Failures</td>
<td>Number of connection failures.</td>
</tr>
<tr>
<td>Last connection failure</td>
<td>Date and time of the last connection failure.</td>
</tr>
<tr>
<td>Last configuration check sent</td>
<td>Date and time that the last configuration check was sent.</td>
</tr>
<tr>
<td>Last update sent</td>
<td>Date and time that the last update was sent.</td>
</tr>
<tr>
<td>Updates sent</td>
<td>Number of updates sent.</td>
</tr>
<tr>
<td>Summaries discarded</td>
<td>Number of summaries that were discarded because disk space allocated for storage has reached its limit.</td>
</tr>
<tr>
<td></td>
<td>The numbers in this field indicate when summaries are being collected faster than they are able to be transferred to the collector.</td>
</tr>
<tr>
<td></td>
<td>Counters in this field generate a data_update alarm.</td>
</tr>
<tr>
<td>Last registration occurred</td>
<td>Date and time that the last registration occurred.</td>
</tr>
<tr>
<td>Host Version</td>
<td>Version number of the tcpstat-v1 aggregator for the connection.</td>
</tr>
<tr>
<td>Collection Statistics</td>
<td></td>
</tr>
<tr>
<td>Collection State</td>
<td>State of the summary collection operation.</td>
</tr>
<tr>
<td>Summaries collected</td>
<td>Number of summaries collected. Summaries are packet digests of the traffic that is being monitored.</td>
</tr>
<tr>
<td>Summaries dropped</td>
<td>Total number of summaries dropped. This is the sum of the following subcategories.</td>
</tr>
<tr>
<td>Dropped by TFO</td>
<td>Number of packets that were dropped by TFO because of an error, such as not being able to allocate memory.</td>
</tr>
</tbody>
</table>
Table 3-75 Field Descriptions for the show statistics flow monitor Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dropped due to backlog</td>
<td>Number of packets that were dropped because the queue limit has been reached. This counter indicates whether the flow monitor application can keep up with the number of summaries being received.</td>
</tr>
<tr>
<td>Summary backlog</td>
<td>Number of packets that are waiting in the queue to be read by the collector module on the WAE.</td>
</tr>
<tr>
<td>Last drop occurred</td>
<td>Date and time that the last packet drop occurred.</td>
</tr>
</tbody>
</table>

Related Commands clear
show statistics icmp

To display ICMP statistics for a WAAS device, use the `show statistics icmp` EXEC command.

```
show statistics icmp
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-76 describes the fields shown in the `show statistics icmp` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP messages received</td>
<td>Total number of Internet Control Message Protocol (ICMP) messages which the entity received, including all those counted as ICMP input errors.</td>
</tr>
<tr>
<td>ICMP messages receive failed</td>
<td>Number of ICMP messages which the entity received but determined as having ICMP-specific errors, such as bad ICMP checksums, bad length, and so forth.</td>
</tr>
<tr>
<td>Destination unreachable</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timeout in transit</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Wrong parameters</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Source quenches</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Redirects</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Echo requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Echo replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timestamp requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Timestamp replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Address mask requests</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
<tr>
<td>Address mask replies</td>
<td>Number of ICMP messages of this type received.</td>
</tr>
</tbody>
</table>
show statistics icmp

Related Commands

- `clear`

Table 3-76 Field Descriptions for the show statistics icmp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICMP messages sent</td>
<td>Total total number of ICMP messages which this entity attempted to send. This counter includes all those counted as ICMP output errors.</td>
</tr>
<tr>
<td>ICMP messages send failed</td>
<td>Number of number of ICMP messages which this entity did not send because of problems discovered within ICMP, such as a lack of buffers.</td>
</tr>
<tr>
<td>Destination unreachable</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Time exceeded</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Wrong parameters</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Source quenches</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Redirects</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Echo requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Echo replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Timestamp requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Timestamp replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Address mask requests</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
<tr>
<td>Address mask replies</td>
<td>Number of ICMP messages of this type sent out.</td>
</tr>
</tbody>
</table>
show statistics ip

To display IP statistics for a WAAS device, use the `show statistics ip` EXEC command.

```
show statistics ip
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-77 describes the fields shown in the `show statistics ip` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP statistics</td>
<td></td>
</tr>
<tr>
<td>Total packets in</td>
<td>Total number of input datagrams received from interfaces, including all those counted as input errors.</td>
</tr>
<tr>
<td>with invalid address</td>
<td>Number of input datagrams discarded because the IP address in their IP header destination field was not a valid address to be received at this entity. This count includes invalid addresses (such as, 0.0.0.0) and addresses of unsupported Classes (such as, Class E). For entities that are not IP gateways and therefore do not forward datagrams, this counter includes datagrams discarded because the destination address was not a local address.</td>
</tr>
<tr>
<td>with invalid header</td>
<td>Number of input datagrams discarded because of errors in their IP headers, including bad checksums, version number mismatches other format errors, time-to-live exceeded errors, and errors discovered in processing their IP options.</td>
</tr>
<tr>
<td>forwarded</td>
<td>Number of input datagrams for which this entity was not their final IP destination, and as a result, an attempt was made to find a route to forward them to that final destination. In entities which do not act as IP gateways, this counter includes only those packets which were source-routed by way of this entity, and the source-route option processing was successful.</td>
</tr>
</tbody>
</table>
Table 3-77 Field Descriptions for the show statistics ip Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown protocol</td>
<td>Number of locally-addressed datagrams received successfully but discarded because of an unknown or unsupported protocol.</td>
</tr>
<tr>
<td>discarded</td>
<td>Number of input IP datagrams for which no problems were encountered to prevent their continued processing, but which were discarded (such as, for lack of buffer space). This counter does not include any datagrams discarded while awaiting reassembly.</td>
</tr>
<tr>
<td>delivered</td>
<td>Total number of input datagrams successfully delivered to IP user protocols (including ICMP).</td>
</tr>
<tr>
<td>Total packets out</td>
<td>Total number of IP datagrams which local IP user protocols (including ICMP) supplied to IP in requests for transmission. This counter does not include any datagrams counted in the forwarded field.</td>
</tr>
<tr>
<td>dropped</td>
<td>Number of output IP datagrams for which no problem was encountered to prevent their transmission to their destination, but which were discarded (such as, for lack of buffer space). This counter includes datagrams counted in the forwarded field if any such packets meet this (discretionary) discard criterion.</td>
</tr>
<tr>
<td>dropped (no route)</td>
<td>Number of IP datagrams discarded because no route could be found to transmit them to their destination. This counter includes any packets counted in the forwarded field which meet this no-route criterion, including any datagrams that a host cannot route because all of its default gateways are down.</td>
</tr>
<tr>
<td>Fragments dropped after timeout</td>
<td>Maximum number of seconds that received fragments are held while they are awaiting reassembly at this entity.</td>
</tr>
<tr>
<td>Reassemblies required</td>
<td>Number of IP fragments received which needed to be reassembled at this entity.</td>
</tr>
<tr>
<td>Packets reassembled</td>
<td>Number of IP datagrams successfully reassembled.</td>
</tr>
<tr>
<td>Packets reassemble failed</td>
<td>Number of number of failures detected by the IP reassembly algorithm (for whatever reason: timed out, errors, and so forth). This count is not necessarily a count of discarded IP fragments because some algorithms (notably the algorithm in RFC 815) can lose track of the number of fragments by combining them as they are received.</td>
</tr>
<tr>
<td>Fragments received</td>
<td>Total number of IP datagrams that have been successfully fragmented at this entity.</td>
</tr>
<tr>
<td>Fragments failed</td>
<td>Number of IP datagrams that have been discarded because they needed to be fragmented at this entity but could not be fragmented because their Don’t Fragment flag was set.</td>
</tr>
<tr>
<td>Fragments created</td>
<td>Number of IP datagram fragments that have been generated as a result of fragmentation at this entity.</td>
</tr>
</tbody>
</table>

Related Commands

- clear
- (config) ip
(config-if) ip
show ip routes
show statistics key-manager

To display key manager information for each WAAS device, use the show statistics key-manager EXEC command.

```
show statistics key-manager
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
central-manager

Examples
Table 3-78 describes the fields shown in the show statistics key-manager display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count of Retrieve key</td>
<td>Number of encryption keys retrieved.</td>
</tr>
<tr>
<td>Count of Create new key</td>
<td>Number of new keys created.</td>
</tr>
</tbody>
</table>

Related Commands
show statistics key-manager
show statistics netstat

To display Internet socket connection statistics for a WAAS device, use the `show statistics netstat` EXEC command.

```
show statistics netstat
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-79 describes the fields shown in the `show statistics netstat` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Internet connections (w/o servers)</td>
<td>A list of all open Internet connections to and from this WAE.</td>
</tr>
<tr>
<td>Proto</td>
<td>Layer 4 protocol used on the Internet connection, such as, TCP, UDP, and so forth.</td>
</tr>
<tr>
<td>Recv-Q</td>
<td>Amount of data buffered by the Layer 4 protocol stack in the receive direction on a connection.</td>
</tr>
<tr>
<td>Send-Q</td>
<td>Amount of data buffered by the Layer 4 precool stack in the send direction on a connection.</td>
</tr>
<tr>
<td>Local Address</td>
<td>IP address and Layer 4 port used at the WAE end point of a connection.</td>
</tr>
<tr>
<td>Foreign Address</td>
<td>IP address and Layer 4 port used at the remote end point of a connection.</td>
</tr>
<tr>
<td>State</td>
<td>Layer 4 state of a connection. TCP states include the following: ESTABLISHED, TIME-WAIT, LAST-ACK, CLOSED, CLOSED-WAIT, SYN-SENT, SYN-RCVD, SYN-SENT, SYN-ACK-SENT, and LISTEN.</td>
</tr>
</tbody>
</table>
show statistics radius

To display RADIUS authentication statistics for a WAAS device, use the show statistics radius EXEC command.

show statistics radius

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-80 describes the fields shown in the show statistics radius display.

Table 3-80 Field Descriptions for the show statistics radius Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RADIUS Statistics</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Number of access requests</td>
<td>Number of access requests.</td>
</tr>
<tr>
<td>Number of access deny responses</td>
<td>Number of access deny responses.</td>
</tr>
<tr>
<td>Number of access allow responses</td>
<td>Number of access allow responses.</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
</tr>
<tr>
<td>Number of authorization requests</td>
<td>Number of authorization requests.</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
<td>Number of authorization failure responses.</td>
</tr>
<tr>
<td>Number of authorization success responses</td>
<td>Number of authorization success responses.</td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Number of accounting requests</td>
<td>Number of accounting requests.</td>
</tr>
</tbody>
</table>
Table 3-80 Field Descriptions for the show statistics radius Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

Related Commands:
- clear
- (config) radius-server
- show radius-server
show statistics services

To display services statistics for a WAAS device, use the `show statistics services` EXEC command.

```
show statistics services
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-81 describes the fields shown in the `show statistics services` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Statistics</td>
<td>Service-related statistics for each port on the WAAS device.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number.</td>
</tr>
<tr>
<td>Total Connections</td>
<td>Number of total connections.</td>
</tr>
</tbody>
</table>

Related Commands

`show services`
show statistics snmp

To display SNMP statistics for a WAAS device, use the `show statistics snmp` EXEC command.

```
show statistics snmp
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-82 describes the fields shown in the `show statistics snmp` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP packets input</td>
<td>Total number of SNMP packets input.</td>
</tr>
<tr>
<td>Bad SNMP version errors</td>
<td>Number of packets with an invalid SNMP version.</td>
</tr>
<tr>
<td>Unknown community name</td>
<td>Number of SNMP packets with an unknown community name.</td>
</tr>
<tr>
<td>Illegal operation for community name supplied</td>
<td>Number of packets requesting an operation not allowed for that community.</td>
</tr>
<tr>
<td>Encoding errors</td>
<td>Number of SNMP packets that were improperly encoded.</td>
</tr>
<tr>
<td>Number of requested variables</td>
<td>Number of variables requested by SNMP managers.</td>
</tr>
<tr>
<td>Number of altered variables</td>
<td>Number of variables altered by SNMP managers.</td>
</tr>
<tr>
<td>Get-request PDUs</td>
<td>Number of GET requests received.</td>
</tr>
<tr>
<td>Get-next PDUs</td>
<td>Number of GET-NEXT requests received.</td>
</tr>
<tr>
<td>Set-request PDUs</td>
<td>Number of SET requests received.</td>
</tr>
<tr>
<td>SNMP packets output</td>
<td>Total number of SNMP packets sent by the router.</td>
</tr>
<tr>
<td>Too big errors</td>
<td>Number of SNMP packets that were larger than the maximum packet size.</td>
</tr>
<tr>
<td>Maximum packet size</td>
<td>Maximum size of SNMP packets.</td>
</tr>
<tr>
<td>No such name errors</td>
<td>Number of SNMP requests that specified a MIB object that does not exist.</td>
</tr>
</tbody>
</table>
Table 3-82 Field Descriptions for the show statistics snmp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad values errors</td>
<td>Number of SNMP SET requests that specified an invalid value for a MIB object.</td>
</tr>
<tr>
<td>General errors</td>
<td>Number of SNMP SET requests that failed because of some other error. (It was not a No such name error, Bad values error, or any of the other specific errors.)</td>
</tr>
<tr>
<td>Response PDUs</td>
<td>Number of responses sent in reply to requests.</td>
</tr>
<tr>
<td>Trap PDUs</td>
<td>Number of SNMP traps sent.</td>
</tr>
</tbody>
</table>

Related Commands

- show snmp
- (config) snmp-server user
- (config) snmp-server view
show statistics tacacs

To display TACACS+ authentication and authorization statistics for a WAAS device, use the `show statistics tacacs` EXEC command.

```
show statistics tacacs
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-83 describes the fields shown in the `show statistics tacacs` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACACS+ Statistics</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Number of access requests</td>
<td>Number of access requests.</td>
</tr>
<tr>
<td>Number of access deny responses</td>
<td>Number of access deny responses.</td>
</tr>
<tr>
<td>Number of access allow responses</td>
<td>Number of access allow responses.</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
</tr>
<tr>
<td>Number of authorization requests</td>
<td>Number of authorization requests.</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
<td>Number of authorization failure responses.</td>
</tr>
<tr>
<td>Number of authorization success responses</td>
<td>Number of authorization success responses.</td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Number of accounting requests</td>
<td>Number of accounting requests.</td>
</tr>
</tbody>
</table>
show statistics tacacs

Table 3-83 Field Descriptions for the show statistics tacacs Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

Related Commands

- clear
- (config) tacacs
- show tacacs
show statistics tcp

To display TCP statistics for a WAAS device, use the `show statistics tcp` EXEC command.

```
show statistics tcp
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-84 describes the fields shown in the `show statistics tcp` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
Table 3-84 Field Descriptions for the `show statistics tcp` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments sent</td>
<td>Total number of segments sent, including those on current connections but excluding those containing only retransmitted octets.</td>
</tr>
<tr>
<td>Bad segments received</td>
<td>Number of bad segments received.</td>
</tr>
<tr>
<td>Segments retransmitted</td>
<td>Total number of segments retransmitted, that is, the number of TCP segments transmitted containing one or more previously transmitted octets.</td>
</tr>
<tr>
<td>Retransmit timer expirations</td>
<td>Number of TCP packets retransmitted due to retransmit timer expiry.</td>
</tr>
<tr>
<td>Server segments received</td>
<td>Number of TCP packets received from the server.</td>
</tr>
<tr>
<td>Server segments sent</td>
<td>Number of TCP packets sent to the server.</td>
</tr>
<tr>
<td>Server segments retransmitted</td>
<td>Number of TCP packets retransmitted to the server.</td>
</tr>
<tr>
<td>Client segments received</td>
<td>Number of TCP packets received from the client.</td>
</tr>
<tr>
<td>Client segments sent</td>
<td>Number of TCP packets sent to the client.</td>
</tr>
<tr>
<td>Client segments retransmitted</td>
<td>Number of TCP packets retransmitted to the client.</td>
</tr>
<tr>
<td>TCP extended statistics</td>
<td></td>
</tr>
<tr>
<td>Sync cookies sent</td>
<td>Number of SYN-ACK packets sent with SYN cookies in response to SYN packets.</td>
</tr>
<tr>
<td>Sync cookies received</td>
<td>Number of ACK packets received with the correct SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Sync cookies failed</td>
<td>Number of ACK packets received with the incorrect SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Embryonic connection resets</td>
<td>Number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-RCVD state, the SYN-SENT state, or the SYN-ACK-SENT state.</td>
</tr>
<tr>
<td>Prune message called</td>
<td>Number of times that the device exceeded the memory pool allocated for the connection.</td>
</tr>
<tr>
<td>Packets pruned from receive queue</td>
<td>Number of packets dropped from the receive queue of the connection because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-order-queue pruned</td>
<td>Number of times that the out-of-order queue was pruned because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-window Icmp messages</td>
<td>Number of ICMP packets received on a TCP connection that were out of the received window.</td>
</tr>
<tr>
<td>Lock dropped Icmp messages</td>
<td>Number of ICMP packets dropped because the socket is busy.</td>
</tr>
<tr>
<td>Arp filter</td>
<td>Number of ICMP responses dropped because of the ARP filter.</td>
</tr>
<tr>
<td>Time-wait sockets</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets recycled</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets killed</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from TIME-WAIT state.</td>
</tr>
</tbody>
</table>
Table 3-84 Field Descriptions for the show statistics tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAWS passive</td>
<td>Number of incoming SYN packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS active</td>
<td>Number of incoming SYN-ACK packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS established</td>
<td>Number of packets dropped in ESTABLISHED state because of a PAWS check failure.</td>
</tr>
<tr>
<td>Delayed acks sent</td>
<td>Number of delayed ACKs sent.</td>
</tr>
<tr>
<td>Delayed acks blocked by socket lock</td>
<td>Number of delayed ACKs postponed because the socket is busy.</td>
</tr>
<tr>
<td>Delayed acks lost</td>
<td>Number of delayed ACKs lost.</td>
</tr>
<tr>
<td>Listen queue overflows</td>
<td>Number of incoming TCP connections dropped because of a listening server queue overflow.</td>
</tr>
<tr>
<td>Connections dropped by listen queue</td>
<td>Number of incoming TCP connections dropped because of an internal error.</td>
</tr>
<tr>
<td>TCP packets queued to prequeue</td>
<td>Number of incoming TCP packets prequeued to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from backlog</td>
<td>Number of incoming TCP packets copied from the backlog directly to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from prequeue</td>
<td>Number of incoming TCP packets copied from the prequeue directly to a process.</td>
</tr>
<tr>
<td>TCP prequeue dropped packets</td>
<td>Number of packets removed from the TCP prequeue.</td>
</tr>
<tr>
<td>TCP header predicted packets</td>
<td>Number of TCP header-predicted packets.</td>
</tr>
<tr>
<td>Packets header predicted and queued to user</td>
<td>Number of TCP packets header-predicted and queued to the user.</td>
</tr>
<tr>
<td>TCP pure ack packets</td>
<td>Number of ACK packets received with no data.</td>
</tr>
<tr>
<td>TCP header predicted acks</td>
<td>Number of header-predicted TCP ACK packets.</td>
</tr>
<tr>
<td>TCP Reno recoveries</td>
<td>Number of TCP Reno recoveries.</td>
</tr>
<tr>
<td>TCP SACK recoveries</td>
<td>Number of TCP SACK recoveries.</td>
</tr>
<tr>
<td>TCP SACK reneging</td>
<td>Number of TCP SACK reneging.</td>
</tr>
<tr>
<td>TCP FACK reorders</td>
<td>Number of TCP FACK reorders.</td>
</tr>
<tr>
<td>TCP SACK reorders</td>
<td>Number of TCP SACK reorders.</td>
</tr>
<tr>
<td>TCP Reno reorders</td>
<td>Number of TCP Reno reorders.</td>
</tr>
<tr>
<td>TCP TimeStamp reorders</td>
<td>Number of TCP TimeStamp reorders.</td>
</tr>
<tr>
<td>TCP full undos</td>
<td>Number of TCP full undos.</td>
</tr>
<tr>
<td>TCP partial undos</td>
<td>Number of TCP partial undos.</td>
</tr>
<tr>
<td>TCP DSACK undos</td>
<td>Number of TCP DSACK undos.</td>
</tr>
<tr>
<td>TCP loss undos</td>
<td>Number of TCP loss undos.</td>
</tr>
<tr>
<td>TCP losses</td>
<td>Number of TCP losses.</td>
</tr>
<tr>
<td>TCP lost retransmit</td>
<td>Number of TCP lost retransmit.</td>
</tr>
<tr>
<td>TCP Reno failures</td>
<td>Number of TCP Reno failures.</td>
</tr>
</tbody>
</table>
Field Descriptions for the `show statistics tcp` Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments sent</td>
<td>Total number of segments sent, including those on current connections but excluding those containing only retransmitted octets.</td>
</tr>
<tr>
<td>Bad segments received</td>
<td>Number of bad segments received.</td>
</tr>
<tr>
<td>Segments retransmitted</td>
<td>Total number of segments retransmitted, that is, the number of TCP segments transmitted containing one or more previously transmitted octets.</td>
</tr>
<tr>
<td>Retransmit timer expirations</td>
<td>Number of TCP packets retransmitted due to retransmit timer expiry.</td>
</tr>
<tr>
<td>Server segments received</td>
<td>Number of TCP packets received from the server.</td>
</tr>
<tr>
<td>Server segments sent</td>
<td>Number of TCP packets sent to the server.</td>
</tr>
<tr>
<td>Server segments retransmitted</td>
<td>Number of TCP packets retransmitted to the server.</td>
</tr>
<tr>
<td>Client segments received</td>
<td>Number of TCP packets received from the client.</td>
</tr>
<tr>
<td>Client segments sent</td>
<td>Number of TCP packets sent to the client.</td>
</tr>
<tr>
<td>Client segments retransmitted</td>
<td>Number of TCP packets retransmitted to the client.</td>
</tr>
<tr>
<td>TCP extended statistics</td>
<td></td>
</tr>
<tr>
<td>Sync cookies sent</td>
<td>Number of SYN-ACK packets sent with SYN cookies in response to SYN packets.</td>
</tr>
<tr>
<td>Sync cookies received</td>
<td>Number of ACK packets received with the correct SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Sync cookies failed</td>
<td>Number of ACK packets received with the incorrect SYN cookie that was sent in the SYN-ACK packet by the device.</td>
</tr>
<tr>
<td>Embryonic connection resets</td>
<td>Number of times TCP connections have made a direct transition to the CLOSED state from either the SYN-RCVD state, the SYN-SENT state, or the SYN-ACK-SENT state.</td>
</tr>
<tr>
<td>Prune message called</td>
<td>Number of times that the device exceeded the memory pool allocated for the connection.</td>
</tr>
<tr>
<td>Packets pruned from receive queue</td>
<td>Number of packets dropped from the receive queue of the connection because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-order-queue pruned</td>
<td>Number of times that the out-of-order queue was pruned because of a memory overrun.</td>
</tr>
<tr>
<td>Out-of-window Icmp messages</td>
<td>Number of ICMP packets received on a TCP connection that were out of the received window.</td>
</tr>
<tr>
<td>Lock dropped Icmp messages</td>
<td>Number of ICMP packets dropped because the socket is busy.</td>
</tr>
<tr>
<td>Arp filter</td>
<td>Number of ICMP responses dropped because of the ARP filter.</td>
</tr>
<tr>
<td>Time-wait sockets</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets recycled</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from the TIME-WAIT state.</td>
</tr>
<tr>
<td>Time-wait sockets killed</td>
<td>Number of times that the TCP connection made a transition to the CLOSED state from TIME-WAIT state.</td>
</tr>
</tbody>
</table>
Table 3-84 Field Descriptions for the show statistics tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAWS passive</td>
<td>Number of incoming SYN packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS active</td>
<td>Number of incoming SYN-ACK packets dropped because of a PAWS check failure.</td>
</tr>
<tr>
<td>PAWS established</td>
<td>Number of packets dropped in ESTABLISHED state because of a PAWS check failure.</td>
</tr>
<tr>
<td>Delayed acks sent</td>
<td>Number of delayed ACKs sent.</td>
</tr>
<tr>
<td>Delayed acks blocked by socket lock</td>
<td>Number of delayed ACKs postponed because the socket is busy.</td>
</tr>
<tr>
<td>Delayed acks lost</td>
<td>Number of delayed ACKs lost.</td>
</tr>
<tr>
<td>Listen queue overflows</td>
<td>Number of incoming TCP connections dropped because of a listening server queue overflow.</td>
</tr>
<tr>
<td>Connections dropped by listen queue</td>
<td>Number of incoming TCP connections dropped because of an internal error.</td>
</tr>
<tr>
<td>TCP packets queued to prequeue</td>
<td>Number of incoming TCP packets prequeued to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from backlog</td>
<td>Number of incoming TCP packets copied from the backlog directly to a process.</td>
</tr>
<tr>
<td>TCP packets directly copied from prequeue</td>
<td>Number of incoming TCP packets copied from the prequeue directly to a process.</td>
</tr>
<tr>
<td>TCP prequeue dropped packets</td>
<td>Number of packets removed from the TCP prequeue.</td>
</tr>
<tr>
<td>TCP header predicted packets</td>
<td>Number of TCP header-predicted packets.</td>
</tr>
<tr>
<td>Packets header predicted and queued to user</td>
<td>Number of TCP packets header-predicted and queued to the user.</td>
</tr>
<tr>
<td>TCP pure ack packets</td>
<td>Number of ACK packets received with no data.</td>
</tr>
<tr>
<td>TCP header predicted acks</td>
<td>Number of header-predicted TCP ACK packets.</td>
</tr>
<tr>
<td>TCP Reno recoveries</td>
<td>Number of TCP Reno recoveries.</td>
</tr>
<tr>
<td>TCP SACK recoveries</td>
<td>Number of TCP SACK recoveries.</td>
</tr>
<tr>
<td>TCP SACK reneging</td>
<td>Number of TCP SACK reneging.</td>
</tr>
<tr>
<td>TCP FACK reorders</td>
<td>Number of TCP FACK reorders.</td>
</tr>
<tr>
<td>TCP SACK reorders</td>
<td>Number of TCP SACK reorders.</td>
</tr>
<tr>
<td>TCP Reno reorders</td>
<td>Number of TCP Reno reorders.</td>
</tr>
<tr>
<td>TCP TimeStamp reorders</td>
<td>Number of TCP TimeStamp reorders.</td>
</tr>
<tr>
<td>TCP full undos</td>
<td>Number of TCP full undos.</td>
</tr>
<tr>
<td>TCP partial undos</td>
<td>Number of TCP partial undos.</td>
</tr>
<tr>
<td>TCP DSACK undos</td>
<td>Number of TCP DSACK undos.</td>
</tr>
<tr>
<td>TCP loss undos</td>
<td>Number of TCP loss undos.</td>
</tr>
<tr>
<td>TCP losses</td>
<td>Number of TCP losses.</td>
</tr>
<tr>
<td>TCP lost retransmit</td>
<td>Number of TCP lost retransmit.</td>
</tr>
<tr>
<td>TCP Reno failures</td>
<td>Number of TCP Reno failures.</td>
</tr>
</tbody>
</table>
Table 3-84 Field Descriptions for the show statistics tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP SACK failures</td>
<td>Number of TCP SACK failures.</td>
</tr>
<tr>
<td>TCP loss failures</td>
<td>Number of TCP loss failures.</td>
</tr>
<tr>
<td>TCP fast retransmissions</td>
<td>Number of TCP fast retransmissions.</td>
</tr>
<tr>
<td>TCP forward retransmissions</td>
<td>Number of TCP forward retransmissions.</td>
</tr>
<tr>
<td>TCP slow-start retransmissions</td>
<td>Number of TCP slow start retransmissions.</td>
</tr>
<tr>
<td>TCP Timeouts</td>
<td>Number of TCP timeouts.</td>
</tr>
<tr>
<td>TCP Reno recovery fail</td>
<td>Number of TCP Reno recovery fail.</td>
</tr>
<tr>
<td>TCP Sack recovery fail</td>
<td>Number of TCP Sack recovery failures.</td>
</tr>
<tr>
<td>TCP scheduler failed</td>
<td>Number of TCP scheduler failures.</td>
</tr>
<tr>
<td>TCP receiver collapsed</td>
<td>Number of TCP receiver collapsed failures.</td>
</tr>
<tr>
<td>TCP DSACK old packets sent</td>
<td>Number of TCP DSACK old packets sent.</td>
</tr>
<tr>
<td>TCP DSACK out-of-order packets sent</td>
<td>Number of TCP DSACK out-of-order packets sent.</td>
</tr>
<tr>
<td>TCP DSACK packets received</td>
<td>Number of TCP DSACK packets received.</td>
</tr>
<tr>
<td>TCP DSACK out-of-order packets received</td>
<td>Number of TCP DSACK out-of-order packets received.</td>
</tr>
<tr>
<td>TCP connections abort on sync</td>
<td>Number of TCP connections aborted on sync.</td>
</tr>
<tr>
<td>TCP connections abort on data</td>
<td>Number of TCP connections aborted on data.</td>
</tr>
<tr>
<td>TCP connections abort on close</td>
<td>Number of TCP connections aborted on close.</td>
</tr>
<tr>
<td>TCP connections abort on memory</td>
<td>Number of TCP connections aborted on memory.</td>
</tr>
<tr>
<td>TCP connections abort on timeout</td>
<td>Number of TCP connections aborted on timeout.</td>
</tr>
<tr>
<td>TCP connections abort on linger</td>
<td>Number of TCP connections aborted on linger.</td>
</tr>
<tr>
<td>TCP memory pressures</td>
<td>Number of times the device approaches the allocated memory pool for the TCP stack.</td>
</tr>
</tbody>
</table>

Related Commands
- clear
- show tcp
- (config) tcp
show statistics tfo

To display Traffic Flow Optimization (TFO) statistics for a WAE, use the `show statistics tfo` EXEC command.

```
show statistics tfo [application app-name | pass-through | peer | saving app-name]
```

Syntax Description

- **application** (Optional) Displays statistics per application.
- **app-name** Application name.
- **pass-through** (Optional) Displays the pass-through statistics.
- **peer** (Optional) Displays peer information.
- **saving** (Optional) Displays savings for all applications.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

Table 3-85 describes the fields shown in the `show statistics tfo` command.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total number of optimized connections</td>
<td>Total number of TCP connections that were optimized since the last TFO statistics reset.</td>
</tr>
<tr>
<td>No. of active connections</td>
<td>Total number of TCP optimized connections.</td>
</tr>
<tr>
<td>No. of pending (to be accepted)</td>
<td>Number of TCP connections that will be optimized but are currently in the setup stage.</td>
</tr>
<tr>
<td>No. of connections closed normally</td>
<td>Number of optimized connections closed without any issues using TCP FIN.</td>
</tr>
<tr>
<td>No. of connections closed with error</td>
<td>Number of optimized connection closed with some issues or using TCP RST.</td>
</tr>
<tr>
<td>Total number of peers</td>
<td>Number of active peer WAEs. (Every connection is optimized between two WAEs: this one and a peer WAE.)</td>
</tr>
<tr>
<td>No. of entries into overload mode</td>
<td>Number of times the WAE entered into an overload state. (In the overload state, new connections are set to pass-through. This state occurs for various reasons, such as reaching the maximum number of concurrent connections.)</td>
</tr>
<tr>
<td>No. of connections reset due to</td>
<td>Details for number of connections closed with error.</td>
</tr>
<tr>
<td>Socket write failure</td>
<td>Failed to write on a socket (either on the LAN or WAN side).</td>
</tr>
<tr>
<td>Socket read failure</td>
<td>Failed to read from a socket (either LAN or WAN side).</td>
</tr>
</tbody>
</table>
Table 3-85 Field Descriptions for the show statistics tfo Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opt socket close while waiting to write</td>
<td>The socket between two WAEs (WAN socket) closed before completing writing into it.</td>
</tr>
<tr>
<td>Unopt socket close while waiting to write</td>
<td>The socket between the WAE and the client/server (LAN socket) closed before completing writing from it.</td>
</tr>
<tr>
<td>Opt socket error close while waiting to read</td>
<td>The socket between two WAEs (WAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>Unopt socket error close while waiting to read</td>
<td>The socket between the WAE and the client/server (LAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>DRE decode failure</td>
<td>DRE internal error while decoding data. (Should not happen.)</td>
</tr>
<tr>
<td>DRE encode failure</td>
<td>DRE internal error while encoding data. (Should not happen.)</td>
</tr>
<tr>
<td>Connection init failure</td>
<td>Failed to setup the connection although auto-discovery finished successfully.</td>
</tr>
<tr>
<td>Opt socket unexpected close while waiting to read</td>
<td>The socket between two WAEs (WAN socket) closed before completing reading from it.</td>
</tr>
<tr>
<td>Exceeded maximum number of supported connections</td>
<td>Connection closed ungracefully because the WAE reached its scalability limit.</td>
</tr>
<tr>
<td>Buffer allocation or manipulation failed</td>
<td>Internal memory allocation failure. (Should not happen.)</td>
</tr>
<tr>
<td>Peer received reset from end host</td>
<td>TCP RST sent by the server or client. (Can be normal behavior and does not necessarily indicate a problem.)</td>
</tr>
<tr>
<td>DRE connection state out of sync</td>
<td>DRE internal error. (Should not happen.)</td>
</tr>
<tr>
<td>Memory allocation failed for buffer heads</td>
<td>Internal memory allocation failure. (Should not happen.)</td>
</tr>
</tbody>
</table>

Related Commands

- show tfo accelerators
- show tfo bufpool
- show tfo connection
- show tfo status
show statistics udp

To display User Datagram Protocol (UDP) statistics for a WAAS device, use the show statistics udp EXEC command.

show statistics udp

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-86 describes the fields shown in the show statistics udp display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packet statistics</td>
<td>Total number of UDP datagrams delivered to UDP users.</td>
</tr>
<tr>
<td>Packets received</td>
<td>Total number of received UDP datagrams for which there was no application at the destination port.</td>
</tr>
<tr>
<td>Packets to unknown port received</td>
<td>Number of received UDP datagrams that could not be delivered for reasons other than the lack of an application at the destination port.</td>
</tr>
<tr>
<td>Packet sent</td>
<td>Total number of UDP datagrams sent from this entity.</td>
</tr>
</tbody>
</table>
show statistics wccp

To display WCCP statistics for a WAE, use the `show statistics wccp` EXEC command.

```plaintext
show statistics wccp gre
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>gre</td>
<td>Displays WCCP generic routing encapsulation packet-related statistics.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

- EXEC

Device Modes

- application-accelerator

Usage Guidelines

GRE is a Layer 3 technique that allows datagrams to be encapsulated into IP packets at the WCCP-enabled router and then redirected to a WAE (the transparent proxy server). At this intermediate destination, the datagrams are decapsulated and then routed to an origin server to satisfy the request if a cache miss occurs. In doing so, the trip to the origin server appears to the inner datagrams as one hop. Usually, the redirected traffic using GRE is referred to as GRE tunnel traffic. With GRE, all redirection is handled by the router software.

With WCCP redirection, a Cisco router does not forward the TCP SYN packet to the destination because the router has WCCP enabled on the destination port of the connection. Instead, the WCCP-enabled router encapsulates the packet using GRE tunneling and sends it to the WAE that has been configured to accept redirected packets from this WCCP-enabled router.

After receiving the redirected packet, the WAE does the following:

1. Strips the GRE layer from the packet.
2. Decides whether it should accept this redirected packet and process the request for the content as follows:
 a. If the WAE accepts the request, it sends a TCP SYN ACK packet to the client. In this response packet, the WAE uses the IP address of the original destination (origin server) that was specified as the source address so that the WAE can be invisible (transparent) to the client; it acts as if it is the destination that the client’s TCP SYN packet was trying to reach.
 b. If the WAE does not accept the request, it reencapsulates the TCP SYN packet in GRE and sends it back to the WCCP-enabled router. The router identifies that the WAE is not interested in this connection and forwards the packet to its original destination (the origin server).

For example, a WAE would not accept the request because it is configured to bypass requests that originate from a certain set of clients or that are destined to a particular set of servers.

Examples

Table 3-87 describes the fields shown in the `show statistics wccp gre` display.
Table 3-87 Field Descriptions for the show statistics wccp gre Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent GRE packets received</td>
<td>Total number of GRE packets received by the WAE, regardless of whether or not they have been intercepted by WCCP. GRE is a Layer 3 technique that allows packets to reach the WAE, even if there are any number of routers in the path to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets received</td>
<td>Number of non-GRE packets received by the WAE, either using the traffic interception and redirection functions of WCCP in the router hardware at Layer 2 or Layer 4 switching (a Content Switching Module [CSM]) that redirects requests transparently to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets passed through</td>
<td>Number of non-GRE packets transparently intercepted by a Layer 4 switch and redirected to the WAE.</td>
</tr>
<tr>
<td>Total packets accepted</td>
<td>Total number of packets that are transparently intercepted and redirected to the WAE to serve client requests for content.</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of packets that are dropped either because the redirected packet is a GRE packet and the WCCP GRE header has invalid data or the IP header of the redirected packet is invalid.</td>
</tr>
<tr>
<td>Packets received with invalid service</td>
<td>Number of WCCP version 2 GRE redirected packets that contain an invalid WCCP service number.</td>
</tr>
<tr>
<td>Packets received on a disabled service</td>
<td>Number of WCCP version 2 GRE redirected packets that specify the WCCP service number for a service that is not enabled on the WAE. For example, an HTTPS request redirected to the WAE when the HTTPS-caching service (service 70) is not enabled.</td>
</tr>
<tr>
<td>Packets received too small</td>
<td>Number of GRE packets redirected to the WAE that do not contain the minimum amount of data required for a WCCP GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to zero TTL</td>
<td>Number of GRE packets that are dropped by the WAE because the redirected packet’s IP header has a zero TTL.</td>
</tr>
<tr>
<td>Packets dropped due to bad buckets</td>
<td>Number of packets that are dropped by the WAE because the WCCP flow redirection could not be performed due to a bad mask or hash bucket determination.</td>
</tr>
<tr>
<td></td>
<td>Note A bucket is defined as a certain subsection of the allotted hash assigned to each WAE in a WAE cluster. If only one WAE exists in this environment, it has 256 buckets assigned to it.</td>
</tr>
<tr>
<td>Packets dropped due to no redirect address</td>
<td>Number of packets that are dropped because the flow redirection destination IP address could not be determined.</td>
</tr>
<tr>
<td>Packets dropped due to loopback redirect</td>
<td>Number of packets that are dropped by the WAE when the destination IP address is the same as the loopback address.</td>
</tr>
<tr>
<td>Pass-through pkts dropped on assignment update</td>
<td>Number of packets that were targeted for TFO pass-through, but were dropped instead because the bucket was not owned by the device.</td>
</tr>
</tbody>
</table>
Table 3-87 Field Descriptions for the show statistics wccp gre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connections bypassed due to load</td>
<td>Number of connection flows that are bypassed when the WAE is overloaded. When the overload bypass option is enabled, the WAE bypasses a bucket and reroutes the overload traffic. If the load remains too high, another bucket is bypassed, and so on, until the WAE can handle the load.</td>
</tr>
<tr>
<td>Packets sent back to router</td>
<td>Number of requests that are passed back by the WAE to the WCCP-enabled router from which the request was received. The router then sends the flow toward the origin web server directly from the web browser, which bypasses the WAE.</td>
</tr>
<tr>
<td>Packets sent to another WAE</td>
<td>Number of packets that are redirected to another WAE in the WCCP service group. Service groups consist of up to 32 WAEs and 32 WCCP-enabled routers. In both packet-forwarding methods, the hash parameters specify how redirected traffic should be load balanced among the WAEs in the various WCCP service groups.</td>
</tr>
<tr>
<td>GRE fragments redirected</td>
<td>Number of GRE packets received by the WAE that are fragmented. These packets are redirected back to the router.</td>
</tr>
<tr>
<td>GRE encapsulated fragments received</td>
<td>Number of GRE encapsulated fragments received by the WAE. The tcp-promiscuous service does not inspect port information and therefore the router or switch may GRE encapsulate IP fragments and redirect them to the WAE. These fragments are then reassembled into packets before being processed.</td>
</tr>
<tr>
<td>Packets failed encapsulated reassembly</td>
<td>Number of reassembled GRE encapsulated packets that were dropped because they failed the reassembly sanity check. Reassembled GRE encapsulated packets are composed of two or more GRE encapsulated fragments. This field is related to the previous statistic.</td>
</tr>
<tr>
<td>Packets failed GRE encapsulation</td>
<td>Number of GRE packets that are dropped by the WAE because they could not be redirected due to problems while encapsulating the packet with a GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to invalid fwd method</td>
<td>Number of GRE packets that are dropped by the WAE because it was redirected using GRE but the WCCP service was configured for Layer 2 redirection.</td>
</tr>
<tr>
<td>Packets dropped due to insufficient memory</td>
<td>Number of GRE packets that are dropped by the WAE due to the failure to allocate additional memory resources required to handle the GRE packet.</td>
</tr>
<tr>
<td>Packets bypassed, no conn at all</td>
<td>Number of packets that failed to be associated with an existing flow because no TCP port was listening. WCCP can also handle asymmetric packet flows and always maintains a consistent mapping of web servers to caches regardless of the number of switches or routers used in a WCCP service group (up to 32 routers or switches communicating with up to 32 WAEs in a cluster).</td>
</tr>
<tr>
<td>Packets bypassed, no pending connection</td>
<td>Number of packets that failed to be associated with a pending connection because the initial handshake was not completed.</td>
</tr>
</tbody>
</table>
Table 3-87 Field Descriptions for the show statistics wccp gre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets due to clean wccp shutdown</td>
<td>Number of connection flows that are bypassed due to a clean WCCP shutdown. During a proper shutdown of WCCP, the WAE continues to service the flows it is handling but starts to bypass new flows. When the number of flows goes down to zero, the WAE takes itself out of the cluster by having its buckets reassigned to other WAEs by the lead WAE.</td>
</tr>
<tr>
<td>Packets bypassed due to bypass-list lookup</td>
<td>Number of connection flows that are bypassed due to a bypass list entry. When the WAE receives an error response from an origin server, it adds an entry for the server to its bypass list. When it receives subsequent requests for the content residing on the bypassed server, it redirects packets to the bypass gateway. If no bypass gateway is configured, then the packets are returned to the redirecting Layer 4 switch.</td>
</tr>
<tr>
<td>Packets received with client IP addresses</td>
<td>Number of packets that are associated to a connection flow that is being spoofed. By spoofing a client’s IP address, the WAE can receive packets with the client IP (which is different from the WAE’s own IP address) and send the packet to the correct application that is waiting for the packet.</td>
</tr>
<tr>
<td>Conditionally Accepted connections</td>
<td>Number of connection flows that are accepted by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Conditionally Bypassed connections</td>
<td>Number of connection flows that are bypassed by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Packets dropped due to received on loopback</td>
<td>Number of packets that were dropped by the WCCP L2 intercept layer because they were received on the loopback interface but were not destined to a local address of the device. There is no valid or usable route for the packet.</td>
</tr>
<tr>
<td>Packets w/WCCP GRE received too small</td>
<td>Number of packets transparently intercepted by the WCCP-enabled router at Layer 2 and sent to the WAE that need to be fragmented for the packets to be redirected using GRE. The WAE drops the packets since it cannot encapsulate the IP header.</td>
</tr>
<tr>
<td>Packets dropped due to IP access-list deny</td>
<td>Number of packets that are dropped by the WAE when an IP access list that the WAE applies to WCCP GRE encapsulated packets denies access to WCCP applications (the <code>wccp access-list</code> command).</td>
</tr>
<tr>
<td>Packets fragmented for bypass</td>
<td>Number of GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packet pullups needed</td>
<td>Number of times a packet had to be consolidated as part of its processing. Consolidation is required when a packet is received as fragments and the first fragment does not contain all the information needed to process it.</td>
</tr>
<tr>
<td>Packets dropped due to no route found</td>
<td>Number of packets that are dropped by the WAE because it cannot find the route.</td>
</tr>
</tbody>
</table>

Related Commands

- `(config) wccp access-list`
- `(config) wccp flow-redirect enable`
show statistics wccp

(config) wccp router-list
(config) wccp shutdown
(config) wccp tcp-promiscuous
(config) wccp tcp-promiscuous
show statistics windows-domain

To display Windows domain server information for a WAAS device, use the `show statistics windows-domain` EXEC command.

```
show statistics windows-domain
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the `show statistics windows-domain` EXEC command to view the Windows domain server statistics, then clear the counters for these statistics by entering the `clear statistics windows-domain` EXEC command.

Examples

Table 3-88 describes the fields shown in the `show statistics windows-domain` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows Domain Statistics</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
</tr>
<tr>
<td>Number of access requests</td>
<td>Number of access requests.</td>
</tr>
<tr>
<td>Number of access deny responses</td>
<td>Number of access deny responses.</td>
</tr>
<tr>
<td>Number of access allow responses</td>
<td>Number of access allow responses.</td>
</tr>
<tr>
<td>Authorization</td>
<td></td>
</tr>
<tr>
<td>Number of authorization requests</td>
<td>Number of authorization requests.</td>
</tr>
<tr>
<td>Number of authorization failure responses</td>
<td>Number of authorization failure responses.</td>
</tr>
</tbody>
</table>
show statistics windows-domain

Table 3-88 Field Descriptions for the show statistics windows-domain Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of authorization success responses</td>
<td>Number of authorization success responses.</td>
</tr>
<tr>
<td>Accounting</td>
<td></td>
</tr>
<tr>
<td>Number of accounting requests</td>
<td>Number of accounting requests.</td>
</tr>
<tr>
<td>Number of accounting failure responses</td>
<td>Number of accounting failure responses.</td>
</tr>
<tr>
<td>Number of accounting success responses</td>
<td>Number of accounting success responses.</td>
</tr>
</tbody>
</table>

Related Commands
windows-domain
(config) windows-domain
show sysfs volumes

To display system file system (sysfs) information for a WAAS device, use the \texttt{show sysfs volumes} EXEC command.

\texttt{show sysfs volumes}

\textbf{Syntax Description}
This command has no arguments or keywords.

\textbf{Command Modes}
EXEC

\textbf{Device Modes}
application-accelerator
replication-accelerator
central-manager

\textbf{Usage Guidelines}
The system file system (sysfs) stores log files, including transaction logs, syslogs, and internal debugging logs. It also stores system image files and operating system files.

\textbf{Examples}
Table 3-89 describes the fields shown in the \texttt{show sysfs volumes} display.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
Field & Description \\
\hline
sysfs 00–04 & System file system and disk number. \\
\hline
/local/local1–5 & Mount point of the volume. \\
\hline
nnnnnKB & Size of the volume in kilobytes. \\
\hline
nn% free & Percentage of free space in the SYSFS partition. \\
\hline
\end{tabular}
\end{table}

\textbf{Related Commands}
disk
(config) disk error-handling
show tacacs

To display TACACS+ authentication protocol configuration information for a WAAS device, use the `show tacacs` EXEC command.

```
show tacacs
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-90 describes the fields shown in the `show tacacs` display.

Table 3-90 Field Descriptions for the show tacacs Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication for Console/Telnet Session</td>
<td>Indicates whether TACACS+ server is enabled for login authentication.</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session</td>
<td>Indicates whether TACACS+ server is enabled for authorization or configuration authentication.</td>
</tr>
<tr>
<td>TACACS+ Configuration</td>
<td>TACACS+ server parameters.</td>
</tr>
<tr>
<td>TACACS+ Authentication</td>
<td>Indicates whether TACACS+ authentication is enabled on the WAAS device.</td>
</tr>
<tr>
<td>Key</td>
<td>Secret key that the WAE uses to communicate with the TACACS+ server. The maximum number of characters in the TACACS+ key should not exceed 99 printable ASCII characters (except tabs).</td>
</tr>
<tr>
<td>Timeout</td>
<td>Number of seconds that the WAAS device waits for a response from the specified TACACS+ authentication server before declaring a timeout.</td>
</tr>
<tr>
<td>Retransmit</td>
<td>Number of times that the WAAS device is to retransmit its connection to the TACACS+ if the TACACS+ timeout interval is exceeded.</td>
</tr>
</tbody>
</table>
Table 3-90 Field Descriptions for the show tacacs Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Password type</td>
<td>Mechanism for password authentication. By default, the Password Authentication Protocol (PAP) is the mechanism for password authentication.</td>
</tr>
<tr>
<td>Server</td>
<td>Hostname or IP address of the TACACS+ server.</td>
</tr>
<tr>
<td>Status</td>
<td>Indicates whether server is the primary or secondary host.</td>
</tr>
</tbody>
</table>

Related Commands

- clear
- show statistics tacacs
- show tacacs
- (config) tacacs
show tcp

To display TCP configuration information for a WAAS device, use the `show tcp` EXEC command.

```
show tcp
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

Table 3-91 describes the fields shown in the `show tcp` display. This command displays the settings configured with the `tcp` global configuration command.

Table 3-91 Field Descriptions for the show tcp Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP Configuration</td>
<td></td>
</tr>
<tr>
<td>TCP keepalive timeout XX sec</td>
<td>Length of time that the WAAS device is set to keep a connection open before disconnecting.</td>
</tr>
<tr>
<td>TCP keepalive probe count X</td>
<td>Number of times the WAAS device will retry a connection before the connection is considered unsuccessful.</td>
</tr>
<tr>
<td>TCP keepalive probe interval XX sec</td>
<td>Length of time (in seconds) that the WAAS device is set to keep an idle connection open.</td>
</tr>
<tr>
<td>TCP explicit congestion notification disabled</td>
<td>Configuration status of the TCP explicit congestion notification feature. Values are enabled or disabled.</td>
</tr>
<tr>
<td>TCP cwnd base value X</td>
<td>Value (in segments) of the send congestion window.</td>
</tr>
<tr>
<td>TCP initial slowstart threshold value X</td>
<td>Threshold (in segments) for slow start.</td>
</tr>
<tr>
<td>TCP increase (multiply) retransmit timer by X</td>
<td>Number of times set to increase the length of the retransmit timer base value.</td>
</tr>
<tr>
<td>TCP memory_limit</td>
<td></td>
</tr>
<tr>
<td>Low water mark</td>
<td>Lower limit (in MB) of memory pressure mode, below which TCP enters into normal memory allocation mode.</td>
</tr>
</tbody>
</table>
Table 3-91 Field Descriptions for the show tcp Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High water mark (pressure)</td>
<td>Upper limit (in MB) of normal memory allocation mode, beyond which TCP enters into memory pressure mode.</td>
</tr>
<tr>
<td>High water mark (absolute)</td>
<td>Absolute limit (in MB) on TCP memory usage.</td>
</tr>
</tbody>
</table>

Related Commands
- clear
- show statistics tcp
- (config) tcp
show tech-support

To view information necessary for Cisco’s TAC to assist you, use the **show tech-support** EXEC command.

```
show tech-support [page]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>page (Optional) Displays output page by page.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Defaults</th>
<th>No default behavior or values</th>
</tr>
</thead>
</table>

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this command to view system information necessary for TAC to assist you with a WAAS device. We recommend that you log the output to a disk file. (See the "(config) logging" command.)

Examples

The following example displays technical support information:

```
WAE# show tech-support
------------------- version and hardware -------------------
Cisco Wide Area Application Services Software (WAAS)
Copyright (c) 1999-2006 by Cisco Systems, Inc.
...  
Version: ce510-4.0.0.180
  
Compiled 18:08:17 Feb 16 2006 by cnbuild
  
System was restarted on Fri Feb 17 23:09:53 2006.  
The system has been up for 5 weeks, 3 days, 2 hours, 9 minutes, 49 seconds.
  
CPU 0 is GenuineIntel Intel(R) Celeron(R) CPU 2.40GHz (rev 2) running at 2401MHz
  .  
Total 1 CPU.  
512 Mbytes of Physical memory.
...  
BIOS Information:
  Vendor : IBM
  Version : ~(PLECS2AUS-C.52)~
```
List of all disk drives:
Physical disk information:

```
disk00: Normal (IDE disk)  76324MB (74.5GB)
disk01: Normal (IDE disk)  76324MB (74.5GB)
```

Mounted filesystems:

```
MOUNT POINT  TYPE     DEVICE           SIZE    INUSE     FREE USE%
/             root /dev/root        31MB     26MB      5MB  83%
/sw           internal /dev/md0        991MB    430MB    561MB  43%
/swstore      internal /dev/md1        991MB    287MB    704MB  28%
/state        internal /dev/md2        3967MB   3906MB  1%  
/disk00-04    CONTENT /dev/md4        62539MB    32MB  62507MB  0%
/local/local1  SYSFS /dev/md5        3967MB    197MB  3770MB  4%
  .../local1/spool PRINTSPOOL /dev/md6        991MB    16MB  975MB  1%
```

Software RAID devices:

```
DEVICE NAME  TYPE     STATUS                PHYSICAL DEVICES AND STATUS
/dev/md0     RAID-1   NORMAL OPERATION      disk00/00[GOOD] disk01/00[GOOD]
/dev/md1     RAID-1   NORMAL OPERATION      disk00/01[GOOD] disk01/01[GOOD]
/dev/md2     RAID-1   NORMAL OPERATION      disk00/02[GOOD] disk01/02[GOOD]
```

Currently content-filesystems RAID level is not configured to change.

```
------------------ running configuration -------------------

! WAAS version 4.0.0
!
!
------------------ processes -------------------------------

CPU average usage since last reboot:
cpu: 0.00% User,  1.79% System,  3.21% User(nice),  95.00% Idle
```

```
PID  STATE PRI User T  SYS T  COMMAND
----- ----- --- ------ ------ --------------------
  1    S   0  20138  21906 (init)
  2    S   0      0      0 (migration/0)
  3    S  19      0      0 (ksoftirqd/0)
  4    S -10      0      0 (events/0)
  5    S -10      0      0 (khelper)
 17    S -10      0      0 (kacpid)
 93    S -10      0      0 (kblockd/0)
```

Related Commands:

- `show version`
- `show hardware`
- `show disks details`
- `show running-config`
show processes
show processes memory
show memory
show interface
show cdp entry
show cdp neighbors
show statistics wccp
show alarms all
show statistics tfo
show statistics tfo application
show statistics tfo saving
show statistics tfo pass-through
show statistics tfo peer
show tfo auto-discovery
show tfo status
show tfo accelerators
show tfo bufpool accounting
show policy-engine status
show policy-engine application
show statistics dre
show statistics dre peer
show statistics tcp
show statistics ip
show statistics icmp
show standby
show statistics netstat
show disks SMART-info
show disks SMART-info details
show disks failed-sectors
show telnet

To display Telnet services configuration for a WAAS device, use the show telnet EXEC command.

```
show telnet
```

Syntax Description

This command has no arguments or keywords.

Defaults

Enabled

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

The following example displays whether or not Telnet is enabled on the WAAS device:

```
WAE# show telnet
telnet service is enabled
```

Related Commands

telnet

(config) telnet enable

(config) exec-timeout
show tfo accelerators

To display Traffic Flow Optimization (TFO) accelerators information for a WAE, use the `show tfo accelerators` EXEC command.

```
show tfo accelerators
```

Syntax Description
This command has no arguments or keywords.

Command Modes
EXEC

Device Modes
application-accelerator

Examples
The following example displays TFO accelerator information for the WAE:

```
WAE# show tfo accelerators
Name: TFO                     State: Registered, Handling Level: 100%
   Keepalive timeout: 3.0 seconds, Session timeouts: 0, Total timeouts: 0
   Last keepalive received 00.5 Secs ago
   Last registration occurred 11:21:43:38.4 Days:Hours:Mins:Secs ago
Name: EPM                      State: Registered, Handling Level: 100%
   Keepalive timeout: 5.0 seconds, Session timeouts: 0, Total timeouts: 0
   Last keepalive received 00.2 Secs ago
   Last registration occurred 11:21:43:36.7 Days:Hours:Mins:Secs ago
Name: CIFS                     State: Not Registered, Handling Level: 0%
   Keepalive timeout: 0.0 seconds, Session timeouts: 0, Total timeouts: 0
   Last keepalive received -Never-
   Last Registration occurred -Never-
```

Related Commands
- `show tfo auto-discovery`
- `show tfo bufpool`
- `show tfo connection`
- `show tfo filtering`
- `show tfo status`
show tfo auto-discovery

To display Traffic Flow Optimization (TFO) auto-discovery statistics for a WAE, use the `show tfo auto-discovery` EXEC command.

```
show tfo auto-discovery [blacklist [entries [netmask netmask] [l] | statistics [l]]] [l] [l | begin regex [regex] | exclude regex [regex] | include regex [regex]]
```

Syntax Description

- **blacklist** (Optional) Displays the blacklist servers table.
- **entries** Displays all of the entries in the auto-discovery blacklist server table.
- **netmask** Displays the network mask to filter the table output.
- **netmask** Network mask (A.B.C.D/) for which you want to display the matching addresses.
- **statistics** Displays the auto-discovery blacklist server table management statistics.
- **list** (Optional) Lists TCP flows that the WAE is currently optimizing or passing through.
- **l** (Optional) Output modifier.
- **begin** Begins with the line that matches the regular expression.
- **regex** Regular expression to match. You can enter multiple expressions.
- **exclude** Excludes lines that match the regular expression.
- **include** Includes lines that match the regular expression.

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example displays TFO auto-discovery statistics for the WAE:

```
WAE# show tfo auto-discovery
Auto discovery structure:
   Allocation Failure: 0
   Allocation Success: 6615
   Deallocations: 6615
   Timed Out: 0
Auto discovery table:
   Bucket Overflows: 0
   Table Overflows: 0
   Entry Adds: 6615
   Entry Drops: 6615
   Entry Count: 0
   Lookups: 6624
Bind hash add failures: 0
Route Lookup:
   Failures: 0
   Success: 0
Socket:
   Allocation failures: 0
   Accept pair allocation failures: 0
```
show tfo auto-discovery

Unix allocation failures: 0
Connect lookup failures: 0

Packets:
Memory allocation failures: 0
Total Sent: 6624
Total Received: 13228
Incorrect length or checksum received: 0
Invalid filtering tuple received: 0
Received for dead connection: 0
Ack dropped in synack received state: 0
Non Syn dropped in nostate state: 0

Auto discovery failure:
No peer or asymmetric route: 6604
Insufficient option space: 0
Invalid connection state: 0
Missing Ack conf: 0

Auto discovery success TO:
Internal server: 0
External server: 0

Auto discovery success FOR:
Internal client: 0
External client: 0

Auto discovery success SYN retransmission:
Zero retransmit: 0
One retransmit: 0
Two+ retransmit: 0

Auto discovery Miscellaneous:
Intermediate device: 0
RST received: 0
SYNs found with our device id: 0
SYN retransmit count resets: 0

Related Commands
show statistics tfo
show tfo accelerators
show tfo bufpool
show tfo connection
show tfo filtering
show tfo status
show tfo bufpool

To display Traffic Flow Optimization (TFO) buffer pool information for a WAE, use the `show tfo bufpool` EXEC command.

```
show tfo bufpool { accounting | from-index index | owner-connection conn-id |
   owner-module { RElib | tcpproxy } [ from-index index | owner-connection conn-id | |
   state { free | in-use } [ from-index index | owner-connection conn-id | to-index index ] |
   to-index index ] | state { free | in-use } [ from-index index | owner-connection conn-id | |
   to-index index ] | to-index index }
```

Syntax Description

- `accounting` Displays the buffer pool overall usage.
- `from-index` Displays the starting index of the buffer units to be displayed.
- `index` Index of a buffer unit (0–4294967295).
- `owner-connection` Displays the owner connection of the buffer units.
- `conn-id` Connection ID (0–4294967295).
- `owner-module` Displays the owner module of the buffer units.
- `RElib` Shows the buffer units owned by the RE-library.
- `tcpproxy` Shows the buffer units owned by the TCP proxy.
- `state` Displays the state (free or used) of the buffer units.
- `free` Shows the free buffer units.
- `in-use` Shows the buffer units in use.
- `to-index` Displays the ending index of the buffer units to be displayed.

Command Modes

- EXEC

Device Modes

- application-accelerator

Examples

The following example displays TFO buffer pool information for the WAE:

```
WAE# show tfo bufpool accounting
Total buffer pool size: 80740352 bytes
Free buffer: 80740352 bytes, in 78848 units (unit size: 1024 bytes)
Used buffer: 0 bytes, in 0 units
   Buffer usage by module:
      Tcpproxy: using 0 bytes, in 0 units
      RElib: using 0 bytes, in 0 units
      LZlib: using 0 bytes, in 0 units
   Buffer usage by connection:
```

Related Commands

- `show tfo accelerators`
- `show tfo auto-discovery`
- `show tfo connection`
show tfo filtering
show tfo status
show statistics tfo
show tfo connection

To display Traffic Flow Optimization (TFO) connection information for a WAE, use the `show tfo connection` EXEC command.

```
show tfo connection [[summary] | [client-ip host-address | client-port port | peer-id mac | server-ip host-address | server-port port]]
```

Syntax Description

- **summary** (Optional) Displays a summary list of connections.
- **client-ip** (Optional) Source IP address.
- **host-address** Hostname or IP address.
- **client-port** (Optional) IP address of the source client.
- **port** Port number on the client or server.
- **peer-id** (Optional) Displays the connection statistics for a specific peer.
- **mac** MAC address of a peer host.
- **server-ip** (Optional) IP address of the destination server.
- **server-port** (Optional) Destination port number.

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Using this command without options displays detailed information about each of the TFO connections for a WAE. To display a summary list of the connections, use the `summary` option.

For the listed connections that have the F, D or L optimization policy, you can find additional information on DRE statistics by using the `show statistics dre connection` command with the `id` option to identify a specific connection id.

Examples

The following example displays a summary of TFO optimized connections for the WAE:

```
WAE# show tfo connection summary
```

Optimized Connection List

Policy summary order: Our's, Peer's, Negotiated, Applied
F: Full optimization, D: DRE only, L: LZ Compression, T: TCP Optimization

<table>
<thead>
<tr>
<th>Local-IP:Port</th>
<th>Remote-IP:Port</th>
<th>ConId</th>
<th>PeerId</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.77.156.99:59950</td>
<td>10.77.156.106:10005</td>
<td>21</td>
<td>00:11:25:ac:3e:04</td>
<td>F,F,F,F</td>
</tr>
<tr>
<td>10.77.156.99:59951</td>
<td>10.77.156.106:10007</td>
<td>22</td>
<td>00:11:25:ac:3e:04</td>
<td>F,F,F,F</td>
</tr>
<tr>
<td>10.77.156.99:59952</td>
<td>10.77.156.106:10008</td>
<td>23</td>
<td>00:11:25:ac:3e:04</td>
<td>F,F,F,F</td>
</tr>
<tr>
<td>10.77.156.99:59953</td>
<td>10.77.156.106:10009</td>
<td>24</td>
<td>00:11:25:ac:3e:04</td>
<td>F,F,F,F</td>
</tr>
</tbody>
</table>
show tfo connection

Related Commands

- show statistics dre connection
- show statistics tfo
- show tfo accelerators
- show tfo auto-discovery
- show tfo bufpool
- show tfo filtering
- show tfo status
show tfo egress-methods connection

To display detailed egress method-related information about the connection segments for a WAE, use the show tfo egress-methods connection EXEC command.

 show tfo egress-methods connection [local-ip ipaddress | local-port port | remote-ip ipaddress | remote-port port]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>egress-methods</td>
<td>Shows detailed information on the egress methods.</td>
</tr>
<tr>
<td>connection</td>
<td>Shows the egress method-related statistics for the connection.</td>
</tr>
<tr>
<td>local-ip</td>
<td>(Optional) Local IP address for the connection tuple.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>IP address.</td>
</tr>
<tr>
<td>local-port</td>
<td>(Optional) Local port number for the connection tuple.</td>
</tr>
<tr>
<td>port</td>
<td>Port number.</td>
</tr>
<tr>
<td>remote-ip</td>
<td>(Optional) Remote IP address for the connection tuple.</td>
</tr>
<tr>
<td>ipaddress</td>
<td>IP address.</td>
</tr>
<tr>
<td>remote-port</td>
<td>(Optional) Remote port number for the connection tuple.</td>
</tr>
<tr>
<td>port</td>
<td>Port number.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

Using this command without options displays detailed information about each of the TFO connections for a WAE.

This command displays egress method-related information about connection segments in an environment where the data flow from start-point to end-point is being transparently intercepted by multiple devices. A connection tuple represents one segment of an end-to-end connection that is intercepted by a WAAS device (WAE) for processing.

For example, a single client-server connection may have three segments (see Figure 3-1):

- Between the client and the Edge WAE
- Between the Edge WAE and the Core WAE
- Between the Core WAE and the server

In this example, the Edge WAE has two connection tuples for the two segments that it participates in:

- One connection tuple to represent the Client—Edge segment
- One connection tuple to represent the Edge—Core segment

In the show output, these two connection tuples appear as TUPLE and MATE. (See Table 3-92.) The important information to view is the local and remote IP address of the connection tuple and not whether it is marked as TUPLE or MATE.
Because the WAAS device is transparent to both the client-end of the connection and the server-end of the connection, the local IP address for a connection tuple depends on the segment in the end-to-end topology.

For example, when WAAS intercepts a packet from the client, this packet enters the connection tuple that represents the Client—Edge segment. On this tuple, the WAAS device appears to the client as though it were the server: the local IP address in this connection tuple is the IP address of the server, while the remote IP address in this connection tuple is that of the client. Similarly, when the Edge WAE sends data to the client, the packet egresses from this connection tuple as though it were coming from the server.

When WAAS sends a packet to the server, the packet egresses from the connection tuple that represents the Edge—Core segment. On this tuple, the WAAS device appears to the server as though it were the client: the local IP address in the connection tuple is the IP address of the client, while the remote IP address in this connection tuple is that of the server. Similarly, when the Edge WAE intercepts a packet from the Core WAE, the data in this connection tuple appears to be coming from the server.

Examples

Table 3-92 describes the fields shown in the `show tfo egress-methods connection` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUPLE</td>
<td></td>
</tr>
<tr>
<td>Local-IP:Port</td>
<td>IP address and port number of the local device in the connection tuple.</td>
</tr>
<tr>
<td>Remote-IP:Port</td>
<td>IP address and port number of the remote device in the connection tuple.</td>
</tr>
</tbody>
</table>
Table 3-92 Field Descriptions for the show tfo egress-methods connection Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATE</td>
<td>IP address and port number of the local device in the mate connection tuple.</td>
</tr>
<tr>
<td>Local-IP:Port</td>
<td>IP address and port number of the remote device in the mate connection tuple.</td>
</tr>
<tr>
<td>Remote-IP:Port</td>
<td>Egress method being used.</td>
</tr>
<tr>
<td>Egress method</td>
<td>WCCP service number and bucket number for the connection tuple and mate connection tuple.</td>
</tr>
<tr>
<td>Tuple Flags</td>
<td>Flags for intercept method and intercept mechanism. This field may contain the following values: WCCP or NON-WCCP as the intercept method; L2 or GRE as the intercept mechanism; or PROT showing whether this tuple is receiving packets through the flow protection mechanism.</td>
</tr>
<tr>
<td>Intercepts device (ID)</td>
<td>IP address of the intercepting device.</td>
</tr>
<tr>
<td>ID IP address</td>
<td>MAC address of the intercepting device.</td>
</tr>
<tr>
<td>ID MAC address</td>
<td>Number of IP address changes for the intercepting device.</td>
</tr>
<tr>
<td>ID MAC address updates</td>
<td>Number of MAC address changes for the intercepting device.</td>
</tr>
<tr>
<td>Memory address</td>
<td>Memory address.</td>
</tr>
</tbody>
</table>

Each time a packet enters the connection tuple, the intercepting device IP address or MAC address is recorded. The updates field in the command output indicates whether the intercepting device IP address or intercepting device MAC address has been recorded. If, for example, the ID MAC address updates field is zero (0), the MAC address was not recorded, and the ID MAC address field will be blank. The recorded intercepting device information is used when a packet egresses from the WAE.

If the egress method for the connection tuple is IP forwarding, the updates fields are always zero (0) because the intercepting device information is neither required nor recorded for the IP forwarding egress method.

If the intercept method is WCCP GRE redirect and the egress method is WCCP GRE, only the IP address field is updated and recorded. The MAC address information is neither required nor recorded because the destination address in the GRE header only accepts an IP address.

If the intercept method is WCCP L2 redirect and the egress method is WCCP GRE, both the MAC address and the IP address fields are updated and recorded because incoming WCCP L2 packets contain only a MAC header. The MAC address is recorded and the intercepting device IP address is derived from a reverse ARP lookup and is then recorded, also. When packets egress the connection tuple in this scenario, they will have a GRE header with the destination IP address of the intercepting device that was recorded.
The updates count may be greater than 1 in certain topologies. For example, in a redundant router topology, where for the same direction of the same connection between two hosts, packets may be coming in from different intercepting routers. Each time a packet comes in, the intercepting device MAC or IP address is compared against the last recorded address. If the MAC or IP address has changed, the updates field is incremented and the new MAC or IP address is recorded.

Related Commands

- `show egress-methods`
- `show statistics tfo`
show tfo filtering

To display information about the incoming and outgoing TFO flows that the WAE currently has, use the `show tfo filtering` EXEC command.

```
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>list (Optional) Lists TCP flows that the WAE is currently optimizing or passing through.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I (Optional) Output modifier.</td>
</tr>
<tr>
<td></td>
<td>begin Begins with the line that matches the regular expression.</td>
</tr>
<tr>
<td></td>
<td>regex Regular expression to match. You can enter multiple expressions.</td>
</tr>
<tr>
<td></td>
<td>exclude Excludes lines that match the regular expression.</td>
</tr>
<tr>
<td></td>
<td>include Includes lines that match the regular expression.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Device Modes

application-accelerator

Usage Guidelines

This command lists TCP flows that the WAE is currently optimizing. It also includes TCP flows that are not being optimized but that are being passed through by the WAE. A “P” in the State column indicates a passed through flow.

Examples

The following examples display TFO connection information for the WAE:

```
WAE# show tfo filtering
Number of filtering tuples: 2
Packets dropped due to ttl expiry: 0
Packets dropped due to bad route: 0
Syn packets dropped with our own id in the options: 0
Syn packets received and dropped on estab. conn: 0
Syn-Ack packets received and dropped on estab. conn: 0
Packets recv on in progress conn. and not handled: 0
Packets dropped due to peer connection alive: 0
Packets dropped due to invalid TCP flags: 0
Packets dropped by FB packet input notifier: 0
Packets dropped by FB packet output notifier: 0
Number of errors by FB tuple create notifier: 0
Number of errors by FB tuple delete notifier: 0
Dropped WCCP GRE packets due to invalid WCCP service: 0
Dropped WCCP L2 packets due to invalid WCCP service: 0

WAE# show tfo filtering list
E: Established, S: Syn, A: Ack, F: Fin, R: Reset
s: sent, r: received, O: Options, P: Passthrough
B: Bypass, T: Timedout, C: Closed
```
show tfo filtering

<table>
<thead>
<tr>
<th>Local-IP:Port</th>
<th>Remote-IP:Port</th>
<th>Tuple(Mate)</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.99.11.200:1398</td>
<td>10.99.22.200:80</td>
<td>0xcba709c0(0xcba70a00)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1425</td>
<td>10.99.22.200:80</td>
<td>0xcba70780(0xcba707c0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1439</td>
<td>10.99.22.200:5222</td>
<td>0xcba703c0(0xcba70b40)</td>
<td>Sr</td>
</tr>
<tr>
<td>10.99.11.200:1440</td>
<td>10.99.22.200:5222</td>
<td>0xcba70400(0xcba70440)</td>
<td>Sr</td>
</tr>
<tr>
<td>10.99.22.200:1800</td>
<td>10.99.11.200:23</td>
<td>0xcba70480(0x0)</td>
<td>PE</td>
</tr>
<tr>
<td>10.99.11.200:1392</td>
<td>10.99.22.200:80</td>
<td>0xcba70f80(0x0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:20</td>
<td>10.99.11.200:1417</td>
<td>0xcba701c0(0xcba70180)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1417</td>
<td>10.99.22.200:20</td>
<td>0xcba70180(0x0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:1987</td>
<td>10.99.11.200:80</td>
<td>0xcba70240(0xcba70200)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.11.200:1438</td>
<td>10.99.22.200:5222</td>
<td>0xcba70900(0xcba70580)</td>
<td>Sr</td>
</tr>
<tr>
<td>10.99.22.200:1990</td>
<td>10.99.11.200:80</td>
<td>0xcba70100(0xcba70140)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1426</td>
<td>0xcba70740(0xcba70700)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:1985</td>
<td>10.99.11.200:80</td>
<td>0xcba70a40(0xcba70a80)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1410</td>
<td>0xcba70500(0xcba70540)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1398</td>
<td>0xcba70a00(0xcba709c0)</td>
<td>E</td>
</tr>
<tr>
<td>10.99.22.200:80</td>
<td>10.99.11.200:1392</td>
<td>0xcba70f40(0xcba70f80)</td>
<td>E</td>
</tr>
<tr>
<td>10.0.19.5:54247</td>
<td>10.1.242.5:80</td>
<td>0xc9e5b400(0xc9e5b100)</td>
<td>ED</td>
</tr>
</tbody>
</table>

Note

Some state descriptions are missing from the legend. D = Done. The “ED” state occurs when one socket in the pair is closed (D), but the mate is still established (E).

Related Commands

- `show tfo accelerators`
- `show tfo auto-discovery`
- `show tfo bufpool`
- `show tfo connection`
- `show tfo status`
show tfo status

To display global Traffic Flow Optimization (TFO) status information for a WAE, use the show tfo status EXEC command.

```
show tfo status
```

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example displays global TFO status information for the WAE:

```
WAE# show tfo status
Optimization Status:
  Configured: optimize full
  Current: optimize full
TFO is up since Sat Feb 25 13:18:51 2006
TFO is functioning normally.
Total number of optimized connections since start: 0
Number of active connections: 0
Total number of peers: 0
```

Related Commands

- show statistics tfo
- show tfo accelerators
- show tfo auto-discovery
- show tfo bufpool
- show tfo connection
- show tfo filtering
show tfo synq

To display the cumulative statistics for the SynQ module, use the `show tfo synq` EXEC command.

```
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list</td>
<td>(Optional) Lists the connections tracked in the SynQ module.</td>
</tr>
<tr>
<td>l</td>
<td>(Optional) Output modifier.</td>
</tr>
<tr>
<td>begin</td>
<td>Begins with the line that matches the regular expression.</td>
</tr>
<tr>
<td>regex</td>
<td>Regular expression to match. You can enter multiple expressions.</td>
</tr>
<tr>
<td>exclude</td>
<td>Excludes lines that match the regular expression.</td>
</tr>
<tr>
<td>include</td>
<td>Includes lines that match the regular expression.</td>
</tr>
</tbody>
</table>

Command Modes

- EXEC

Device Modes

- application-accelerator

Usage Guidelines

Use the `show tfo synq list` command to list connections that are currently being tracked in the SynQ module.

Examples

The following example displays the output for the `show tfo synq` command:

```
WWAE# show tfo synq
Synq structures allocations success: 0
Synq structures allocations failure: 0
Synq structures deallocations: 0
Synq table entry adds: 0
Synq table entry drops: 0
Synq table entry lookups: 0
Synq table overflows: 0
Synq table entry count: 0
Packets received by synq: 0
Packets received with invalid filtering tuple: 0
Non-syn packets received: 0
Locally originated/terminating syn packets received: 0
Retransmitted syn packets received while in Synq: 0
Synq user structure allocations success: 0
Synq user structure allocations failure: 0
Synq user structure deallocations: 0
```
show transaction-logging

To display the transaction log configuration settings and a list of archived transaction log files for a WAE, use the show transaction-logging EXEC command.

show transaction-logging

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator

Usage Guidelines
Use the show transaction-log or show transaction-logging EXEC commands to display information about the current configuration of transaction logging on a WAE. Both of these EXEC commands display the same output. Transaction log file information is displayed for HTTP and WMT MMS caching proxy transactions and TFTP and ICAP transactions.

Note
For security reasons, passwords are never displayed in the output of the show transaction-log EXEC command.

Examples
The following example displays information about the current configuration of transaction logging on a WAE:

```
WAAE# show transaction-logging
Transaction log configuration:
---------------------------------------
TFO Logging is disabled.
TFO Archive interval: every-day every 1 hour
TFO Maximum size of archive file: 2000000 KB

TFO logging to remote syslog host is disabled.
TFO remote syslog host is not configured.
TFO facility is the default "*" which is "user".

Exporting files to ftp servers is disabled.
```

Related Commands
clear
transaction-log
(config) transaction-logs
show user

To display user identification number and username information for a particular user of a WAAS device, use the `show user` EXEC command.

```
show user {uid number | username name}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>uid</td>
<td>Displays user information based on the identification number of the user.</td>
</tr>
<tr>
<td>number</td>
<td>Identification number (0–65535).</td>
</tr>
<tr>
<td>username</td>
<td>Displays user information based on the name of the user.</td>
</tr>
<tr>
<td>name</td>
<td>Name of user.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Examples

Table 3-93 describes the fields shown in the `show user` display.

Table 3-93 Field Descriptions for the show user Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uid</td>
<td>User ID number.</td>
</tr>
<tr>
<td>Username</td>
<td>Username.</td>
</tr>
<tr>
<td>Password</td>
<td>Login password. This field does not display the actual password.</td>
</tr>
<tr>
<td>Privilege</td>
<td>Privilege level of the user.</td>
</tr>
<tr>
<td>Configured in</td>
<td>Database in which the login authentication is configured.</td>
</tr>
</tbody>
</table>

Related Commands

- clear
- show users administrative
- (config) username
show users administrative

To display users with administrative privileges or users that have been locked out, use the `show users administrative` EXEC command.

```
show users administrative { history | logged-in | locked-out }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>history</td>
<td>Displays a list of users that had previously logged in to the appliance CLI.</td>
</tr>
<tr>
<td>logged-in</td>
<td>Displays a list of users that are currently logged in to the appliance CLI.</td>
</tr>
<tr>
<td>locked-out</td>
<td>Displays a list of users that are locked out of the CLI.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

replication-accelerator

central-manager

Examples

The following example displays a list of users that had logged in to an appliance in the past:

```
WAE# show users administrative history
<username> <line> <ip address/host> <login details>
<username> <line> <ip address/host> <login details>
<username> <line> <ip address/host> <login details>
```

Table 3-94 describes the fields shown in the `show users administrative history` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Users that have logged in to this appliance CLI during the historical period.</td>
</tr>
<tr>
<td>Line</td>
<td>Type of terminal used to access this appliance.</td>
</tr>
<tr>
<td>IP address/Host</td>
<td>IP address or hostname of the user that logged in to this appliance.</td>
</tr>
<tr>
<td>Login details</td>
<td>Day of the week, month, date, time, and whether or not the user is still logged in.</td>
</tr>
</tbody>
</table>

The following example displays a list of users that are currently logged in to an appliance:

```
WAE# show users administrative logged-in
<username> <line> <ip address/host> <login details>
<username> <line> <ip address/host> <login details>
```

Cisco Wide Area Application Services Command Reference
show users administrative

<username> <line> <ip address/host> <login details>

Table 3-95 describes the fields shown in the show users administrative logged-in display.

Table 3-95 Field Descriptions for the show users administrative logged-in Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>Users currently logged in to the appliance CLI.</td>
</tr>
<tr>
<td>Line</td>
<td>Type of terminal used to access this appliance.</td>
</tr>
<tr>
<td>IP address/Host</td>
<td>IP address or hostname of the user that is logged in to this appliance.</td>
</tr>
<tr>
<td>Login details</td>
<td>Day of week, month, date, and time that each user logged in.</td>
</tr>
</tbody>
</table>

The following example displays a list of users that are locked out of the appliance:

WAE# show users administrative locked-out
<username>
<username>

You can use the username data with the clear users locked-out username username EXEC mode command. See “clear users”.

Related Commands

- clear
- clear users
- (config) username
show version

To display version information about the WAAS software that is running on the WAAS device, use the `show version` EXEC command.

```
show version [last | pending]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>last</code></td>
<td>Displays the version information for the last saved image.</td>
</tr>
<tr>
<td><code>pending</code></td>
<td>Displays the version information for the pending upgraded image.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Examples

Table 3-96 describes the fields shown in the `show version` display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco Wide Area Application Services Software (WAAS)</td>
<td>Software application, copyright, release, and build information.</td>
</tr>
<tr>
<td>Copyright (c) year by Cisco Systems, Inc.</td>
<td></td>
</tr>
<tr>
<td>Cisco Wide Area Application Services Software Release XXX (build bXXX month day year)</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>Version number of the software that is running on the device.</td>
</tr>
<tr>
<td>Compiled hour:minute:second month day year by cnbuild</td>
<td>Complie information for the software build.</td>
</tr>
<tr>
<td>System was restarted on day of week month day hour:minute:second year</td>
<td>Date and time that the system was last restarted.</td>
</tr>
<tr>
<td>The system has been up for X hours, X minutes, X seconds</td>
<td>Length of time the system has been running since the last reboot.</td>
</tr>
</tbody>
</table>
To display Web Cache Connection Protocol (WCCP) information for a WAE, use the `show wccp` EXEC command.

```
show wccp wide-area-engines
show wccp flows {tcp-promiscuous} [summary]
show wccp gre
show wccp masks {tcp-promiscuous} [summary]
show wccp routers
show wccp services [detail]
show wccp slowstart {tcp-promiscuous} [summary]
show wccp status
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>wide-area-engines</code></td>
<td>Displays which WAEs are seen by which routers.</td>
</tr>
<tr>
<td><code>flows</code></td>
<td>Displays WCCP packet flows.</td>
</tr>
<tr>
<td><code>tcp-promiscuous</code></td>
<td>Displays TCP-PROMISCUOUS caching service packet flows.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>(Optional) Displays summarized information about TCP-PROMISCUOUS caching service packet flows.</td>
</tr>
<tr>
<td><code>gre</code></td>
<td>Displays WCCP generic routing encapsulation packet-related information.</td>
</tr>
<tr>
<td><code>masks</code></td>
<td>Displays WCCP mask assignments for a given service.</td>
</tr>
<tr>
<td><code>routers</code></td>
<td>Displays routers seen and not seen by this WAE.</td>
</tr>
<tr>
<td><code>services</code></td>
<td>Displays WCCP services configured.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Displays details of services.</td>
</tr>
<tr>
<td><code>slowstart</code></td>
<td>Displays WCCP slow-start state for the selected service.</td>
</tr>
<tr>
<td><code>status</code></td>
<td>Displays version of WCCP that is enabled and running.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example shows the output of the `show wccp services` command:

```
WAE# show wccp services
Services configured on this File Engine
```
TCP Promiscuous 61
TCP Promiscuous 62

The following example is partial output from the \texttt{show wccp services detail} command:

\texttt{WAE\# show wccp services detail}

\textbf{Service Details for TCP Promiscuous 61 Service}

\begin{itemize}
\item Service Enabled : Yes
\item Service Priority : 34
\item Service Protocol : 6
\item Application : Unknown
\item Service Flags (in Hex) : 501
\item Service Ports : 0 0 0 0 0
\item Security Enabled for Service : No
\item Multicast Enabled for Service : No
\item Weight for this Web-CE : 0
\item Negotiated forwarding method : GRE
\item Negotiated assignment method : HASH
\item Negotiated return method : GRE
\item Received Values:
\begin{itemize}
\item Source IP mask (in Hex) : 0
\item Destination IP mask (in Hex) : 0
\item Source Port mask (in Hex) : 0
\item Destination Port mask (in Hex) : 0
\end{itemize}
\item Calculated Values:
\begin{itemize}
\item Source IP mask (in Hex) : 0
\item Destination IP mask (in Hex) : 1741
\item Source Port mask (in Hex) : 0
\item Destination Port mask (in Hex) : 0
\end{itemize}
\end{itemize}

\textbf{Service Details for TCP Promiscuous 62 Service}

\begin{itemize}
\item Service Enabled : Yes
\item Service Priority : 34
\item Service Protocol : 6
\item Application : Unknown
\item Service Flags (in Hex) : 502
\item Service Ports : 0 0 0 0 0
\item Security Enabled for Service : No
\item Multicast Enabled for Service : No
\item Weight for this Web-CE : 0
\item Negotiated forwarding method : GRE
\item Negotiated assignment method : HASH
\item Negotiated return method : GRE
\item Received Values:
\begin{itemize}
\item Source IP mask (in Hex) : 0
\item Destination IP mask (in Hex) : 0
\item Source Port mask (in Hex) : 0
\item Destination Port mask (in Hex) : 0
\end{itemize}
\item Calculated Values:
\begin{itemize}
\item Source IP mask (in Hex) : 0
\item Destination IP mask (in Hex) : 1741
\item Source Port mask (in Hex) : 0
\item Destination Port mask (in Hex) : 0
\end{itemize}
\end{itemize}

The following example is the output from the \texttt{show wccp routers} command:

\texttt{WAE\# show wccp routers}

\textbf{Router Information for Service: TCP Promiscuous 61}

\begin{tabular}{|c|c|c|}
\hline
Router Id & Sent To & Recv ID \\
\hline
0.0.0.0 & 10.10.20.1 & 00000000 \\
\hline
\end{tabular}

Routers not Seeing this File Engine
show wccp

10.10.20.1
Routers Notified of but not Configured
-NONE-
Multicast Addresses Configured
-NONE-

Router Information for Service: TCP Promiscuous 62
Routers Configured and Seeing this File Engine(1)

<table>
<thead>
<tr>
<th>Router Id</th>
<th>Sent To</th>
<th>Recv ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0.0.0</td>
<td>10.10.20.1</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Routers not Seeing this File Engine
10.10.20.1
Routers Notified of but not Configured
-NONE-
Multicast Addresses Configured
-NONE-

The following example is the output from the show wccp status command:

WAE# show wccp status
WCCP version 2 is enabled and currently active

Table 3-97 describes the fields shown in the show wccp gre display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent GRE packets received</td>
<td>Total number of GRE packets received by the WAE, regardless of whether or not they have been intercepted by WCCP. GRE is a Layer 3 technique that allows packets to reach the WAE, even if there are any number of routers in the path to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets received</td>
<td>Number of non-GRE packets received by the WAE, either using the traffic interception and redirection functions of WCCP in the router hardware at Layer 2 or Layer 4 switching (a Content Switching Module [CSM]) that redirects requests transparently to the WAE.</td>
</tr>
<tr>
<td>Transparent non-GRE packets passed through</td>
<td>Number of non-GRE packets transparently intercepted by a Layer 4 switch and redirected to the WAE.</td>
</tr>
<tr>
<td>Total packets accepted</td>
<td>Total number of packets that are transparently intercepted and redirected to the WAE to serve client requests for content.</td>
</tr>
<tr>
<td>Invalid packets received</td>
<td>Number of packets that are dropped either because the redirected packet is a GRE packet and the WCCP GRE header has invalid data or the IP header of the redirected packet is invalid.</td>
</tr>
<tr>
<td>Packets received with invalid service</td>
<td>Number of WCCP version 2 GRE redirected packets that contain an invalid WCCP service number.</td>
</tr>
<tr>
<td>Packets received on a disabled service</td>
<td>Number of WCCP version 2 GRE redirected packets that specify the WCCP service number for a service that is not enabled on the WAE. For example, an HTTPS request redirected to the WAE when the HTTPS-caching service (service 70) is not enabled.</td>
</tr>
<tr>
<td>Packets received too small</td>
<td>Number of GRE packets redirected to the WAE that do not contain the minimum amount of data required for a WCCP GRE header.</td>
</tr>
<tr>
<td>Packets dropped due to zero TTL</td>
<td>Number of GRE packets that are dropped by the WAE because the redirected packet’s IP header has a zero TTL.</td>
</tr>
</tbody>
</table>
Table 3-97 Field Descriptions for the show wccp gre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped due to bad buckets</td>
<td>Number of packets that are dropped by the WAE because the WCCP flow redirection could not be performed due to a bad mask or hash bucket determination.</td>
</tr>
<tr>
<td></td>
<td>Note A bucket is defined as a certain subsection of the allotted hash assigned to each WAE in a WAE cluster. If only one WAE exists in this environment, it has 256 buckets assigned to it.</td>
</tr>
<tr>
<td>Packets dropped due to no redirect address</td>
<td>Number of packets that are dropped because the flow redirection destination IP address could not be determined.</td>
</tr>
<tr>
<td>Packets dropped due to loopback redirect</td>
<td>Number of packets that are dropped by the WAE when the destination IP address is the same as the loopback address.</td>
</tr>
<tr>
<td>Pass-through pkts dropped on assignment update</td>
<td>Number of packets that were targeted for TFO pass-through, but were dropped instead because the bucket was not owned by the device.</td>
</tr>
<tr>
<td>Connections bypassed due to load</td>
<td>Number of connection flows that are bypassed when the WAE is overloaded. When the overload bypass option is enabled, the WAE bypasses a bucket and reroutes the overload traffic. If the load remains too high, another bucket is bypassed, and so on, until the WAE can handle the load.</td>
</tr>
<tr>
<td>Packets sent back to router</td>
<td>Number of requests that are passed back by the WAE to the WCCP-enabled router from which the request was received. The router then sends the flow toward the origin web server directly from the web browser, which bypasses the WAE.</td>
</tr>
<tr>
<td>Packets sent to another WAE</td>
<td>Number of packets that are redirected to another WAE in the WCCP service group. Service groups consist of up to 32 WAEs and 32 WCCP-enabled routers. In both packet-forwarding methods, the hash parameters specify how redirected traffic should be load balanced among the WAEs in the various WCCP service groups.</td>
</tr>
<tr>
<td>GRE fragments redirected</td>
<td>Number of GRE packets received by the WAE that are fragmented. These packets are redirected back to the router.</td>
</tr>
<tr>
<td>GRE encapsulated fragments received</td>
<td>Number of GRE encapsulated fragments received by the WAE. The tcp-promiscuous service does not inspect port information and therefore the router or switch may GRE encapsulate IP fragments and redirect them to the WAE. These fragments are then reassembled into packets before being processed.</td>
</tr>
<tr>
<td>Packets failed encapsulated reassembly</td>
<td>Number of reassembled GRE encapsulated packets that were dropped because they failed the reassembly sanity check. Reassembled GRE encapsulated packets are composed of two or more GRE encapsulated fragments. This field is related to the previous statistic.</td>
</tr>
<tr>
<td>Packets failed GRE encapsulation</td>
<td>Number of GRE packets that are dropped by the WAE because they could not be redirected due to problems while encapsulating the packet with a GRE header.</td>
</tr>
</tbody>
</table>
Table 3-97 Field Descriptions for the show wccp gre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped due to invalid fwd method</td>
<td>Number of GRE packets that are dropped by the WAE because it was redirected using GRE but the WCCP service was configured for Layer 2 redirection.</td>
</tr>
<tr>
<td>Packets dropped due to insufficient memory</td>
<td>Number of GRE packets that are dropped by the WAE due to the failure to allocate additional memory resources required to handle the GRE packet.</td>
</tr>
<tr>
<td>Packets bypassed, no conn at all</td>
<td>Number of packets that failed to be associated with an existing flow because no TCP port was listening. WCCP can also handle asymmetric packet flows and always maintains a consistent mapping of web servers to caches regardless of the number of switches or routers used in a WCCP service group (up to 32 routers or switches communicating with up to 32 WAEs in a cluster).</td>
</tr>
<tr>
<td>Packets bypassed, no pending connection</td>
<td>Number of packets that failed to be associated with a pending connection because the initial handshake was not completed.</td>
</tr>
<tr>
<td>Packets due to clean wccp shutdown</td>
<td>Number of connection flows that are bypassed due to a clean WCCP shutdown. During a proper shutdown of WCCP, the WAE continues to service the flows it is handling but starts to bypass new flows. When the number of flows goes down to zero, the WAE takes itself out of the cluster by having its buckets reassigned to other WAEs by the lead WAE.</td>
</tr>
<tr>
<td>Packets bypassed due to bypass-list lookup</td>
<td>Number of connection flows that are bypassed due to a bypass list entry. When the WAE receives an error response from an origin server, it adds an entry for the server to its bypass list. When it receives subsequent requests for the content residing on the bypassed server, it redirects packets to the bypass gateway. If no bypass gateway is configured, then the packets are returned to the redirecting Layer 4 switch.</td>
</tr>
<tr>
<td>Packets received with client IP addresses</td>
<td>Number of packets that are associated to a connection flow that is being spoofed. By spoofing a client’s IP address, the WAE can receive packets with the client IP (which is different from the WAE’s own IP address) and send the packet to the correct application that is waiting for the packet.</td>
</tr>
<tr>
<td>Conditionally Accepted connections</td>
<td>Number of connection flows that are accepted by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Conditionally Bypassed connections</td>
<td>Number of connection flows that are bypassed by the WAE due to the conditional accept feature.</td>
</tr>
<tr>
<td>Packets dropped due to received on loopback</td>
<td>Number of packets that were dropped by the WCCP L2 intercept layer because they were received on the loopback interface but were not destined to a local address of the device. There is no valid or usable route for the packet.</td>
</tr>
<tr>
<td>Packets w/WCCP GRE received too small</td>
<td>Number of packets transparently intercepted by the WCCP-enabled router at Layer 2 and sent to the WAE that need to be fragmented for the packets to be redirected using GRE. The WAE drops the packets since it cannot encapsulate the IP header.</td>
</tr>
</tbody>
</table>
Table 3-97 Field Descriptions for the show wccp gre Command (continued)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets dropped due to IP access-list deny</td>
<td>Number of packets that are dropped by the WAE when an IP access list that the WAE applies to WCCP GRE encapsulated packets denies access to WCCP applications (the <code>wccp access-list</code> command).</td>
</tr>
<tr>
<td>Packets fragmented for bypass</td>
<td>Number of GRE packets that do not contain enough data to hold an IP header.</td>
</tr>
<tr>
<td>Packet pullups needed</td>
<td>Number of times a packet had to be consolidated as part of its processing. Consolidation is required when a packet is received as fragments and the first fragment does not contain all the information needed to process it.</td>
</tr>
<tr>
<td>Packets dropped due to no route found</td>
<td>Number of packets that are dropped by the WAE because it cannot find the route.</td>
</tr>
</tbody>
</table>

Related Commands

- `(config) wccp access-list`
- `(config) wccp flow-redirect enable`
- `(config) wccp router-list`
- `(config) wccp shutdown`
- `(config) wccp tcp-promiscuous`
- `(config) wccp version`
show windows-domain

To display Windows domain configuration information for a WAAS device, use the show windows-domain EXEC command.

show windows-domain

Syntax Description
This command has no arguments or keywords.

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
Table 3-98 describes the fields shown in the show windows-domain display.

Table 3-98 Field Descriptions for the show windows-domain Command

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login Authentication for Console/Telnet Session:</td>
<td>Status of the primary login authentication method for the session: enabled or disabled.</td>
</tr>
<tr>
<td>Configuration Authentication for Console/Telnet Session: enabled (secondary)</td>
<td>Status of the secondary login authentication method for the session: enabled or disabled.</td>
</tr>
<tr>
<td>Windows domain Configuration:</td>
<td>Shows the Windows domain configuration settings.</td>
</tr>
<tr>
<td>Workgroup</td>
<td>Workgroup identification string.</td>
</tr>
<tr>
<td>Comment</td>
<td>Comment line.</td>
</tr>
<tr>
<td>Net BIOS</td>
<td>Windows NetBIOS name for the WAE.</td>
</tr>
<tr>
<td>Realm</td>
<td>Kerberos Realm (similar to the Windows domain name, except for Kerberos).</td>
</tr>
<tr>
<td>WINS Server</td>
<td>IP address of the WINS server.</td>
</tr>
<tr>
<td>Password Server</td>
<td>Kerberos server DNS name.</td>
</tr>
<tr>
<td>Security</td>
<td>Type of authentication configured, either “Domain” for NTLM or “ADS” for Kerberos.</td>
</tr>
<tr>
<td>Administrative groups</td>
<td></td>
</tr>
<tr>
<td>Super user group</td>
<td>Active Directory(AD) group name. Users in this group have administrative rights.</td>
</tr>
<tr>
<td>Normal user group</td>
<td>AD group name. Users in this group have the normal/default privilege level in the WAE.</td>
</tr>
</tbody>
</table>
Related Commands

windows-domain

(config) windows-domain
shutdown

To shut down the WAAS device use the **shutdown** EXEC command.

```
shutdown [poweroff]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>poweroff</td>
<td>(Optional) Turns off the power after closing all applications and operating system.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

A controlled shutdown refers to the process of properly shutting down a WAAS device without turning off the power on the device. With a controlled shutdown, all of the application activities and the operating system are properly stopped on a WAE, but the power remains on. Controlled shutdowns of a WAAS device can help you minimize the downtime when the WAAS device is being serviced.

⚠️ **Caution**

If a controlled shutdown is not performed, the WAAS file system can be corrupted. Rebooting the WAAS device takes longer if it was not properly shut down.

⚠️ **Note**

A WAAS device cannot be powered on again through the WAAS software after a software poweroff. You must press the power button once on a WAAS device to bring it back online.

The **shutdown** EXEC command facilitates a proper shutdown for WAAS device, and is supported on all WAE hardware models. The **shutdown poweroff** command is also supported by all of the WAE hardware models as they support the ACPI.

The **shutdown** command closes all applications and stops all system activities, but keeps the power on. The fans continue to run and the power LED is on, indicating that the device is still powered on. The device console displays the following menu after the shutdown process is completed:

```
================= SHUTDOWN SHELL =================
System has been shut down.
```

You can

0. Power down system by pressing and holding power button
1. Reload system by software
2. Power down system by software
The `shutdown` command closes all applications and the operating system, stops all system activities, and turn off the power. The fans stop running and the power LED starts flashing, indicating that the device has been powered off.

Note

If you use the `shutdown` or `shutdown poweroff` commands, the device does not perform a file system check when you power on and boot the device the next time.

Table 3-99 describes the shutdown-only operation and the shutdown poweroff operation for a WAAS device.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>User performs a shutdown operation on the WAE</td>
<td>Shutdown poweroff</td>
</tr>
<tr>
<td></td>
<td>WAE# <code>shutdown poweroff</code></td>
</tr>
<tr>
<td>User intervention to bring WAE back online</td>
<td>After a shutdown poweroff, you must press the power button once to bring the WAAS device back online.</td>
</tr>
<tr>
<td>File system check</td>
<td>Is not performed after you turn the power on again and reboot the WAAS device.</td>
</tr>
</tbody>
</table>

You can enter the `shutdown` EXEC command from a console session or from a remote session (Telnet or SSH version 1 or SSH version 2) to perform shutdown on a WAAS device.

To perform a shutdown on a WAAS device, enter the `shutdown` EXEC command as follows:

```
WAE# shutdown
```

When you are asked if you want to save the system configuration, enter `yes`.

```
System configuration has been modified. Save?[yes]: yes
```

When you are asked if you want to proceed with the shutdown, press `Enter` to proceed with the shutdown operation.

```
Device cannot be powered on again through software after shutdown. Proceed with shutdown?[confirm]
```

A message appears, reporting that all services are being shut down on this WAE.

```
Shutting down all services, will timeout in 15 minutes.
shutdown in progress ..System halted.
```

After the system is shut down (the system has halted), a WAAS software shutdown shell displays the current state of the system (for example, “System has been shut down”) on the console. You are asked whether you want to perform a software power off (the **Power down system by software** option), or if you want to reload the system through the software.

```
================= SHUTDOWN SHELL =================
System has been shut down.
You can either
  Power down system by pressing and holding power button
or
  1. Reload system through software
```
2. Power down system through software

To power down the WAAS device, press and hold the power button on the WAAS device, or use one of the following methods to perform a shutdown poweroff:

- From the console command line, enter 2 when prompted, as follows:

 ============== SHUTDOWN SHELL ==============
 System has been shut down.
 You can either
 Power down system by pressing and holding power button
 or
 1. Reload system through software
 2. Power down system through software

- From the WAAS CLI, enter the shutdown poweroff EXEC command as follows:

 WAE# shutdown poweroff

 When you are asked if you want to save the system configuration, enter yes.
 System configuration has been modified. Save?[yes]: yes

 When you are asked to confirm your decision, press Enter.
 Device can not be powered on again through software after poweroff.
 Proceed with poweroff?[confirm]
 Shutting down all services, will timeout in 15 minutes.
 poweroff in progress ..Power down.

Examples

The following example shows that the shutdown command is used to close all applications and stop all system activities:

 WAE1# shutdown
 System configuration has been modified. Save?[yes]: yes
 Device can not be powered on again through software after shutdown.
 Proceed with shutdown?[confirm]
 Shutting down all services, will timeout in 15 minutes.
 shutdown in progress ..System halted.

The following example shows that the shutdown poweroff command is used to close all applications, stop all system activities, and then turn off power to the WAAS device:

 WAE2# shutdown poweroff
 System configuration has been modified. Save?[yes]: yes
 Device can not be powered on again through software after poweroff.
 Proceed with poweroff?[confirm]
 Shutting down all services, will timeout in 15 minutes.
 poweroff in progress ..Power down.
snmp trigger

To configure thresholds for a user-selected MIB object for monitoring purposes on a WAAS device, use the `snmp trigger` EXEC command. Use the `no` form of this command to return the setting to the default value.

```bash
snmp trigger { create { mibvar [wildcard] [wait-time [absent [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | equal [absolute value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | delta value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | falling [absolute value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | delta value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | greater-than [absolute value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | less-than [absolute value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | on-change [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | delta value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | present [LINE | mibvar1 mibvar1] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | rising [absolute value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE] | delta value [LINE | mibvar1 mibvar2] [LINE | mibvar2 mibvar2] [LINE | mibvar3 mibvar3] [LINE]] | delete mibvar}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>create</code></td>
<td>Configures a threshold for a MIB object.</td>
</tr>
<tr>
<td><code>mibvar</code></td>
<td>Name of the MIB object that you want to monitor or the MIB object for which you want to remove a monitoring threshold.</td>
</tr>
<tr>
<td><code>wildcard</code></td>
<td>(Optional) Treats the specified MIB variable name as having a wildcard.</td>
</tr>
<tr>
<td><code>wait-time</code></td>
<td>(Optional) Number of seconds, 60–600, to wait between trigger samples.</td>
</tr>
<tr>
<td><code>absent</code></td>
<td>(Optional) Applies the absent existence test.</td>
</tr>
<tr>
<td><code>LINE</code></td>
<td>(Optional) Description of the threshold being created.</td>
</tr>
<tr>
<td><code>mibvar1</code>, <code>mibvar2</code>, <code>mibvar3</code></td>
<td>(Optional) Description of the threshold being created.</td>
</tr>
<tr>
<td><code>mibvar1</code>, <code>mibvar2</code>, <code>mibvar3</code></td>
<td>Name of the MIB object to add to the notification.</td>
</tr>
<tr>
<td><code>equal</code></td>
<td>Applies the equality threshold test.</td>
</tr>
<tr>
<td><code>absolute</code></td>
<td>(Optional) Uses an absolute sample type.</td>
</tr>
<tr>
<td><code>value</code></td>
<td>(Optional) Absolute or delta value for sample.</td>
</tr>
<tr>
<td><code>delta</code></td>
<td>Uses a delta sample type.</td>
</tr>
<tr>
<td><code>falling</code></td>
<td>Applies the falling threshold test.</td>
</tr>
<tr>
<td><code>greater-than</code></td>
<td>Applies the greater-than threshold test.</td>
</tr>
<tr>
<td><code>less-than</code></td>
<td>Applies the less-than threshold test.</td>
</tr>
<tr>
<td><code>on-change</code></td>
<td>Applies the changed existence test.</td>
</tr>
<tr>
<td><code>present</code></td>
<td>Applies the present test.</td>
</tr>
<tr>
<td><code>rising</code></td>
<td>Applies the rising threshold test.</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Removes a threshold for a MIB object.</td>
</tr>
</tbody>
</table>
Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Using the `snmp trigger` global configuration command, you can define additional SNMP traps for other MIB objects of interest to your particular configuration. You can select any MIB object from any of the support MIBs for your trap. The trap can be triggered based on a variety of tests:

- **absent**—A specified MIB object that was present at the last sampling is no longer present as of the current sampling.
- **equal**—The value of the specified MIB object is equal to the specified threshold.
- **falling**—The value of the specified MIB object has fallen below the specified threshold value. After a trap is generated against this condition, another trap for this same condition is not generated until the sampled MIB object value rises above the threshold value and then falls below the falling threshold value again.
- **greater-than**—The value of the specified MIB object is greater than the specified threshold value.
- **less-than**—The value of the specified MIB object is less than the specified threshold value.
- **on-change**—The value of the specified MIB object has changed since the last sampling.
- **present**—A specified MIB object is present as of the current sampling that was not present at the previous sampling.
- **rising**—The value of the specified MIB object has risen above the specified threshold. After a trap is generated against this condition, another trap for this same condition is not generated until the sampled MIB object value falls below the threshold value and then rises above the rising threshold value again.

The threshold value can be based on an **absolute** sample type or on a **delta** sample type. An absolute sample type is one in which the test is evaluated against a fixed integer value between zero and 4294967295. A delta sample type is one in which the test is evaluated against the change in the MIB object value between the current sampling and the previous sampling.

After you configure SNMP traps, you must use the `snmp-server enable traps event` global configuration command for the event traps you just created to be generated. Also, to preserve SNMP trap configuration across a system reboot, you must configure event persistence using the `snmp mib persist event` global configuration command, and save the MIB data using the `write mib-data` EXEC command.

Examples
The following example shows how to create a threshold for the MIB object `esConTabIsConnected` so that a trap is sent when the connection from the Edge WAE to the Core WAE is lost:

```
WAE# snmp trigger create esConTabIsConnected ?
<60-600>  The number of seconds to wait between trigger sample
 wildcard  Option to treat the MIB variable as wildcarded
WAE# snmp trigger create esConTabIsConnected wildcard 600 ?
```
absent Absent existence test
equal Equality threshold test
falling Falling threshold test
greater-than Greater-than threshold test
less-than Less-than threshold test
on-change Changed existence test
present Present present test
rising Rising threshold test

WAE# snmp trigger create esConTabIsConnected wildcard 600 falling ?
 absolute Absolute sample type
 delta Delta sample type
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute ?
 <0-4294967295> Falling threshold value
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute 1 ?
 LINE Trigger-comment
 mibvar1 Optional mib object to add to the notification
WAE# snmp trigger create esConTabIsConnected wildcard 600 falling absolute 1 "Lost the
collection with the core server."
WAE# configure
WAE(config)# snmp-server enable traps event

Once you have configured the WAE to send SNMP traps, you can view the results of these newly created
traps using the show snmp events EXEC command.

You can also delete user-created SNMP traps. The following example shows how to delete the trap set
for esConTabIsConnected that we created in the previous example.

WAE# snmp trigger delete esConTabIsConnected

Related Commands
 (config) snmp-server community
 (config) snmp-server contact
 (config) snmp-server enable traps
 (config) snmp-server group
 (config) snmp-server host
 (config) snmp-server location
 (config) snmp-server mib persist event
 (config) snmp-server notify inform
 (config) snmp-server user
 (config) snmp-server view
To allow secure encrypted communications between an untrusted client machine and a WAAS device over an insecure network, use the `ssh` EXEC command.

```plaintext
ssh options
```

Syntax Description

Options to use with the `ssh` EXEC command. For more information about the possible options, see Request for Comments (RFC 4254) at http://www.rfc-archive.org/getrfc.php?rfc=4254.

Defaults

By default, the Secure Shell (SSH) feature is disabled on a WAAS device.

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

SSH consists of a server and a client program. Like Telnet, you can use the client program to remotely log in to a machine that is running the SSH server, but unlike Telnet, messages transported between the client and the server are encrypted. The functionality of SSH includes user authentication, message encryption, and message authentication.

Note

The Telnet daemon can still be used with the WAAS device. SSH does not replace Telnet.

Related Commands

```plaintext
(config) sshd
(config) ssh-key-generate
```
tcpdump

To dump network traffic, use the `tcpdump` EXEC command.

`tcpdump [LINE]`

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Optional) Dump options.</td>
<td><code>tcpdump -h</code></td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

TCPdump is a utility that allows a user to intercept and capture packets passing through a network interface, making it useful for troubleshooting network applications.

During normal network operation, only the packets which are addressed to a network interface are intercepted and passed on to the upper layers of the TCP/IP protocol layer stack. Packets which are not addressed to the interface are ignored. In Promiscuous mode, the packets which are not intended to be received by the interface are also intercepted and passed on to the higher levels of the protocol stack. TCPdump works by putting the network interface into promiscuous mode. TCPdump uses the free libpcap (packet capture library).

Use the `-h` option to view the options available, as shown in this example:

```
WAE# tcpdump -h
```

```
tcpdump version 3.8.1 (jlemon)
libpcap version 0.8
Usage: tcpdump [-aAdDeflLnNOpqRStuUvxX] [-c count] [-C file_size]
            [-s snaplen] [-T type] [-w file] [-y datalinktype]
            [expression]
```

Examples

The following example starts a network traffic dump to a file named `tcpdump.txt`:

```
WAE# tcpdump -w tcpdump.txt
```

Related Commands

`less`
`ping`
`tethereal`
traceroute
telnet

To log in to a WAAS device using the Telnet client, use the `telnet` EXEC command.

```
telnet {hostname | ip-address} [portnum]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Hostname of the network device.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of the network device.</td>
</tr>
<tr>
<td>portnum</td>
<td>(Optional) Port number (1–65535). Default port number is 23.</td>
</tr>
</tbody>
</table>

Defaults

The default port number is 23.

Command Modes

EXEC

Device Modes

application-accelerator
 replication-accelerator
 central-manager

Usage Guidelines

UNIX shell functions such as escape and the `suspend` command are not available in the Telnet client. Multiple Telnet sessions are also not supported. This Telnet client allows you to specify a destination port.

Examples

The following example shows several ways that you can log in to a WAAS device using the Telnet client:

```
WAE# telnet cisco-wae
WAE# telnet 10.168.155.224
WAE# telnet cisco-wae 2048
WAE# telnet 10.168.155.224 2048
```

Related Commands

(config) telnet enable
terminal

To set the number of lines displayed in the console window, or to display the current console debug command output, use the terminal EXEC command.

```plaintext
terminal {length length | monitor [disable]}
```

Syntax Description

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>Sets the length of the display on the terminal.</td>
</tr>
<tr>
<td>length</td>
<td>Length of the display on the terminal (0–512). Setting the length to 0 means there is no pausing.</td>
</tr>
<tr>
<td>monitor</td>
<td>Copies the debug output to the current terminal.</td>
</tr>
<tr>
<td>disable</td>
<td>(Optional) Disables monitoring at this specified terminal.</td>
</tr>
</tbody>
</table>

Defaults
The default is 24 lines.

Command Modes
EXEC

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
When 0 is entered as the `length` parameter, the output to the screen does not pause. For all nonzero values of `length`, the -More- prompt is displayed when the number of output lines matches the specified `length` number. The -More- prompt is considered a line of output. To view the next screen, press the **Spacebar**. To view one line at a time, press the **Enter** key.

The `terminal monitor` command allows a Telnet session to display the output of the `debug` commands that appear on the console. Monitoring continues until the Telnet session is terminated.

Examples
The following example sets the number of lines to display to 20:

```
WAE# terminal length 20
```

The following example configures the terminal for no pausing:

```
WAE# terminal length 0
```

Related Commands
All `show` commands
tethereal

To analyze network traffic from the command line, use the tethereal EXEC command.

tethereal [LINE]

Syntax Description

| LINE | (Optional) Options |

Defaults

No default behavior values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Tethereal is the command line version of the network traffic analyzer tool Ethereal. Like TCPdump, it also uses the packet capture library (libpcap). Aside from network traffic analysis, Tethereal also provides facilities for decoding packets.

The following example shows the options available with the WAAS tethereal command:

WAE# tethereal -h
This is GNU tethereal 0.10.6
(C) 1998-2004 Gerald Combs <gerald@ethereal.com>
Compiled with GLib 1.2.9, with libpcap 0.6, with libz 1.1.3, without libpcre, without UCD-SNMP or Net-SNMP, without ADNS.
NOTE: this build does not support the "matches" operator for Ethereal filter syntax.
Running with libpcap (version unknown) on Linux 2.4.16.

tethereal [-vh] [-DlnpqSVx] [-a <capture autostop condition>] ...
[-b <number of ring buffer files>[:<duration>]] [-c <count>]
[-d <layer_type>==<selector>,<decode_as_protocol>] ...
[-f <capture filter>] [-F <output file type>] [-i <interface>]
[-N <resolving>] [-o <preference setting>] ... [-r <infile>]
[-R <read filter>] [-s <snaplen>] [-t <time stamp format>]
[-T pdml|ps|psml|text] [-w <savefile>] [-y <link type>]
[-z <statistics string>]

Valid file type arguments to the "-F" flag:
libpcap - libpcap (tcpdump, Ethereal, etc.)
rh6_1libpcap - RedHat Linux 6.1 libpcap (tcpdump)
suse6_3libpcap - SUSE Linux 6.3 libpcap (tcpdump)
modlibpcap - modified libpcap (tcpdump)
nokiaapcap - Nokia libpcap (tcpdump)
lanalyzer - Novell LANalyzer
ngsniffer - Network Associates Sniffer (DOS-based)
snoop - Sun snoop
netmon1 - Microsoft Network Monitor 1.x
netmon2 - Microsoft Network Monitor 2.x
ngwsniffer_1_1 - Network Associates Sniffer (Windows-based) 1.1
ngwsniffer_2_0 - Network Associates Sniffer (Windows-based) 2.00x
visual - Visual Networks traffic capture
5views - Accellent 5Views capture
niobserverv9 - Network Instruments Observer version 9
default is libpcap

Related Commands tcpdump
traceroute

To trace the route between a WAAS device to a remote host, use the **traceroute** EXEC command.

```
traceroute {hostname | ip-address}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname</td>
<td>Name of remote host.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of remote host.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Traceroute is a widely available utility on most operating systems. Much like ping, it is a valuable tool for determining connectivity in a network. Ping allows the user to find out if there is a connection between two end systems. Traceroute does this as well, but also lists the intermediate routers between the two systems. Users can therefore see the possible routes packets can take from one system to another. Use **traceroute** to find the route to a remote host, when either the hostname or the IP address is known.

Examples

The following example traces the route between the WAAS device and a device with an IP address of 10.0.0.0:

```
WAE# traceroute 10.0.0.0
traceroute to 10.0.0.0 (10.0.0.0), 30 hops max, 38 byte packets
 1 sblab2-rtr.abc.com (192.168.10.1) 0.959 ms 0.678 ms 0.531 ms
 2 192.168.11.1 (192.168.11.1) 0.665 ms 0.576 ms 0.492 ms
 3 172.24.115.66 (172.24.115.66) 0.757 ms 0.734 ms 0.833 ms
 4 sjc20-rbb-gw5.abc.com (192.168.180.93) 0.683 ms 0.644 ms 0.544 ms
 5 sjc20-rbb-gw5.abc.com (192.168.180.9) 0.588 ms 0.611 ms 0.569 ms
 6 sjce-rbb-gw1.abc.com (172.16.7.249) 0.746 ms 0.743 ms 0.737 ms
 7 sj-wall-2.abc.com (172.16.7.178) 1.505 ms 1.101 ms 0.802 ms
 8 * * *
 9 * * *
 .
 .
29 * * *
30 * * *
```

Related Commands

[ping](#)
transaction-log

To force the exporting or the archiving of the transaction log, use the `transaction-log` EXEC command.

```
transaction-log { export | tfo force archive }
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>export</td>
<td>Forces the archiving of a WAE’s transaction file.</td>
</tr>
<tr>
<td>tfo force archive</td>
<td>Forces the archiving of the Traffic Flow Optimization (TFO) transaction log file.</td>
</tr>
</tbody>
</table>

Command Modes

EXEC

Device Modes

application-accelerator

Examples

The following example forces the archiving of the transaction file on the WAE:

```
WAE# transaction-log export
```

The following example forces the archiving of a WAE’s TFO transaction log file:

```
WAE# transaction-log tfo force archive
```

Related Commands

```
(config) transaction-logs
show transaction-logging
```
type

To display a file, use the type EXEC command.

 type filename

Syntax Description

<table>
<thead>
<tr>
<th>filename</th>
<th>Name of file.</th>
</tr>
</thead>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to display the contents of a file within any file directory on a WAAS device. This command may be used to monitor features such as transaction logging or system logging (syslog).

Examples

The following example shows how to display the contents of the syslog.txt file:

```
WAE# type /local1/syslog.txt
```

Related Commands

cpfile
dir
lls
ls
pwd
rename
To view a specified number of lines of the end of a log file, to view the end of the file continuously as new lines are added to the file, to start at a particular line in the file, or to include or exclude specific lines in the file, use the **type-tail** command in EXEC mode.

```
WAE# ls /local1
actona
core_dir
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>filename</td>
<td>File to be examined.</td>
</tr>
<tr>
<td>line</td>
<td>(Optional) Number of lines from the end of the file to be displayed (1–65535).</td>
</tr>
<tr>
<td>follow</td>
<td>(Optional) Displays the end of the file continuously as new lines are added to the file.</td>
</tr>
<tr>
<td>begin</td>
<td>Identifies the line at which to begin file display.</td>
</tr>
<tr>
<td>LINE</td>
<td>Regular expression to match in the file where you want to begin display, or that is to be included or excluded from display.</td>
</tr>
<tr>
<td>exclude</td>
<td>Indicates lines that are to be excluded from the file display.</td>
</tr>
<tr>
<td>include</td>
<td>Indicates lines that are to be included in the file display.</td>
</tr>
</tbody>
</table>

Defaults

Last ten lines are shown.

Command Modes

EXEC

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

This EXEC command allows you to monitor a log file by letting you view the end of the file. You can specify the number of lines at the end of the file that you want to view, or you can follow the last line of the file as it continues to log new information. To stop the last line from continuously scrolling as with the **follow** option, use the key sequence **Ctrl-C**.

You can further indicate the type of information to display using the output modifiers. These allow you to include or exclude specific lines or to indicate where to begin displaying the file.

Examples

The following example looks for a list of log files in the `/local1` directory and then displays the last ten lines of the `syslog.txt` file. In this example, the number of lines to display is not specified, so the default of ten lines is used:

```
WAE# ls /local1
actona
core_dir
```
crash
dbupgrade.log
downgrade
errorlog
logs
lost+found
sa
service_logs
spool
syslog.txt
syslog.txt.1
syslog.txt.2
syslog.txt.3
syslog.txt.4
var
wdd.sh.signed

WAE# type-tail /local1/syslog.txt
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: unable to get https request throughput stats(error 4)
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: ds_getStruct got err r: 4 for key stat/cache/ftp connection 5
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: ds_getStruct: unable to get 'stat/cache/ftp' from dataserver
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: unable to get ftp-ov r-ftp request throughput stats(error 4)
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: setValues getMethod all ...
Apr 17 00:21:09 edge-wae-11 java: %CE-CMS-4-700001: setValues found...
Apr 17 00:21:48 edge-wae-11 java: %CE-CMS-4-700001: ds_getStruct got err r: 4 for key stat/cache/http/perf/throughput/requests/sum connection 5
Apr 17 00:21:48 edge-wae-11 java: %CE-CMS-4-700001: ds_getStruct: unable to get 'stat/cache/http/perf/throughput/requests/sum' from dataserver
Apr 17 00:21:48 edge-wae-11 java: %CE-CMS-4-700001: unable to get http request throughput stats(error 4)
Apr 17 00:23:20 edge-wae-11 java: %CE-TBD-3-100000: WCCP_COND_ACCEPT: TU LE DELETE conditional accept tuple {Source IP [port] = 0.0.0.0 [0] Destination IP [port] = 32.60.43.2 [53775] } returned error: -1 errno 9

The following example follows the syslog.txt file as it grows:

WAE# type-tail /local1/syslog.txt follow
To disable debugging functions, use the `undebug` EXEC command. (See also the `no` form of the `debug` EXEC command.)

In the application-accelerator device mode, the `undebug` commands are as follows:

```
undebug aaa accounting
undebug all
undebug authentication \{content-request \| user \| windows-domain\}
undebug buf \{all \| dmbuf \| dmsg\}
undebug cdp \{adjacency \| events \| ip \| packets\}
undebug cli \{all \| bin \| parser\}
undebug cms
undebug dataserver \{all \| clientlib \| server\}
undebug dhcp
undebug dre \{aggregation \| all \| cache \| connection \{aggregation \[acl\] \| cache \[acl\] \| core \[acl\] \| message \[acl\] \| misc \[acl\] \| ael\} \| core \| lz \| message \| misc\}
undebug epm
undebug flow monitor tcpstat-v1
undebug logging all]
undebug ntp
undebug print-spooler \{all \| brief \| errors \| warnings\}
undebug rbcp
undebug snmp \{all \| cli \| main \| mib \| traps\}
undebug tfo \{buffer-mgr \| connection \| auto-discovery \[acl\] \| comp-mgr \[acl\] \| conn-mgr \[acl\] \| egress-method \[acl\] \| filtering \[acl\] \| netio-engine \[acl\] \| policy-engine \[acl\] \| synq \[acl\] \| acl\} \| stat-mgr \| translog\}
undebug translog export
undebug wafs \{\{all \| core-fe \| edge-fe \| manager \| utilities\} \{debug \| error \| info \| warn\}\}
undebug wccp \{all \| detail \| error \| events \| keepalive \| packets \| slowstart\}
```

Note The `dre`, `epm`, `flow`, `print-spooler`, `rbcp`, `tfo`, `translog`, `wafs`, and `wccp` command options are supported in the application-accelerator device mode only.
In the central manager device mode, the **undebug** commands are as follows:

```
undebug aaa accounting
undebug all
undebug authentication {content-request | user | windows-domain}
undebug buf {all | dmbuf | dmsg}
undebug cdp {adjacency | events | ip | packets}
undebug cli {all | bin | parser}
undebug cms
undebug dataserver {all | clientlib | server}
undebug dhcp
undebug emdb [level [levelnum]]
undebug logging all
undebug ntp
undebug rpc {detail | trace}
undebug snmp {all | cli | main | mib | traps}
```

Note
The **emdb**, **key-manager**, and **rpc** command options are supported in the central manager device mode only.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa accounting</td>
<td>(Optional) Disables AAA accounting actions.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Disables all debugging options.</td>
</tr>
<tr>
<td>authentication</td>
<td>(Optional) Disables authentication debugging.</td>
</tr>
<tr>
<td>content-request</td>
<td>Disables content request authentication debugging.</td>
</tr>
<tr>
<td>user</td>
<td>Disables debugging of the user login against the system authentication.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Disables Windows domain authentication debugging.</td>
</tr>
<tr>
<td>buf</td>
<td>(Optional) Disables buffer manager debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables all buffer manager debugging.</td>
</tr>
<tr>
<td>dmbuf</td>
<td>Disables only dmbuf debugging.</td>
</tr>
<tr>
<td>dmsg</td>
<td>Disables only dmsg debugging.</td>
</tr>
<tr>
<td>cdp</td>
<td>(Optional) Disables CDP debugging.</td>
</tr>
<tr>
<td>adjacency</td>
<td>Disables CDP neighbor information debugging.</td>
</tr>
<tr>
<td>events</td>
<td>Disables CDP events debugging.</td>
</tr>
<tr>
<td>ip</td>
<td>Disables CDP IP debugging.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>packets</td>
<td>Disables packet-related CDP debugging.</td>
</tr>
<tr>
<td>cli</td>
<td>(Optional) Disables CLI debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables all CLI debugging.</td>
</tr>
<tr>
<td>bin</td>
<td>Disables CLI command binary program debugging.</td>
</tr>
<tr>
<td>parser</td>
<td>Disables CLI command parser debugging.</td>
</tr>
<tr>
<td>cms</td>
<td>(Optional) Disables CMS debugging.</td>
</tr>
<tr>
<td>dataserver</td>
<td>(Optional) Disables data server debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables all data server debugging.</td>
</tr>
<tr>
<td>clientlib</td>
<td>Disables data server client library module debugging.</td>
</tr>
<tr>
<td>server</td>
<td>Disables data server module debugging.</td>
</tr>
<tr>
<td>dhcp</td>
<td>(Optional) Disables DHCP debugging.</td>
</tr>
<tr>
<td>dre</td>
<td>(Optional) Disables DRE debugging.</td>
</tr>
<tr>
<td>aggregation</td>
<td>Disables DRE chunk-aggregation debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables the debugging of all DRE commands.</td>
</tr>
<tr>
<td>cache</td>
<td>Disables DRE cache debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Disables DRE connection debugging.</td>
</tr>
<tr>
<td>aggregation</td>
<td>Disables DRE chunk-aggregation debugging for a specified connection.</td>
</tr>
<tr>
<td>cache</td>
<td>Disables DRE cache debugging for a specified connection.</td>
</tr>
<tr>
<td>core</td>
<td>Disables DRE core debugging for a specified connection.</td>
</tr>
<tr>
<td>message</td>
<td>Disables DRE message debugging for a specified connection.</td>
</tr>
<tr>
<td>misc</td>
<td>Disables DRE other debugging for a specified connection.</td>
</tr>
<tr>
<td>acl</td>
<td>ACL to limit connections traced.</td>
</tr>
<tr>
<td>core</td>
<td>Disables DRE core debugging.</td>
</tr>
<tr>
<td>message</td>
<td>Disables DRE message debugging.</td>
</tr>
<tr>
<td>misc</td>
<td>Disables DRE other debugging.</td>
</tr>
<tr>
<td>epm</td>
<td>(Optional) Disables the DCE-RPC EPM debugging.</td>
</tr>
<tr>
<td>flow</td>
<td>(Optional) Enables network traffic flow debugging.</td>
</tr>
<tr>
<td>monitor</td>
<td>Enables monitor flow performance debugging commands.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Enables tcpstat-v1 debugging.</td>
</tr>
<tr>
<td>logging</td>
<td>(Optional) Disables logging debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables all logging debugging.</td>
</tr>
<tr>
<td>ntp</td>
<td>(Optional) Disables NTP debugging.</td>
</tr>
<tr>
<td>print-spooler</td>
<td>(Optional) Disables print spooler debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables print spooler debugging using all debug features.</td>
</tr>
<tr>
<td>brief</td>
<td>Disables print spooler debugging using only brief debug messages.</td>
</tr>
<tr>
<td>errors</td>
<td>Disables print spooler debugging using only the error conditions.</td>
</tr>
<tr>
<td>warnings</td>
<td>Disables print spooler debugging using only the warning conditions.</td>
</tr>
<tr>
<td>rbcp</td>
<td>(Optional) Disables RBCP debugging.</td>
</tr>
<tr>
<td>snmp</td>
<td>(Optional) Disables SNMP debug commands.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>all</td>
<td>Disables all SNMP debug commands.</td>
</tr>
<tr>
<td>cli</td>
<td>Disables SNMP CLI debugging.</td>
</tr>
<tr>
<td>main</td>
<td>Disables SNMP main debugging.</td>
</tr>
<tr>
<td>mib</td>
<td>Disables SNMP MIB debugging.</td>
</tr>
<tr>
<td>traps</td>
<td>Disables SNMP trap debugging.</td>
</tr>
<tr>
<td>tfo</td>
<td>(Optional) Disables TFO debugging.</td>
</tr>
<tr>
<td>buffer-mgr</td>
<td>Disables TFO buffer manager debugging.</td>
</tr>
<tr>
<td>connection</td>
<td>Disables TFO connection debugging.</td>
</tr>
<tr>
<td>comp-mgr [acl]</td>
<td>(Optional) Disables TFO connection debugging for the compression module.</td>
</tr>
<tr>
<td>conn-mgr [acl]</td>
<td>(Optional) Disables TFO connection debugging for the connection manager.</td>
</tr>
<tr>
<td>egress-method [acl]</td>
<td>(Optional) Disables TFO connection debugging for the egress-method.</td>
</tr>
<tr>
<td>filtering [acl]</td>
<td>(Optional) Disables TFO connection debugging for filtering module.</td>
</tr>
<tr>
<td>netio-engine [acl]</td>
<td>(Optional) Disables TFO connection debugging for network input/output module.</td>
</tr>
<tr>
<td>policy-engine [acl]</td>
<td>(Optional) Disables TFO connection debugging of application policies.</td>
</tr>
<tr>
<td>synq [acl]</td>
<td>(Optional) Disables TFO connection debugging for the SynQ module.</td>
</tr>
<tr>
<td>acl</td>
<td>(Optional) ACL to limit TFO connections.</td>
</tr>
<tr>
<td>stat-mgr</td>
<td>Disables TFO statistics manager debugging.</td>
</tr>
<tr>
<td>translog</td>
<td>Disables TFO transaction log debugging.</td>
</tr>
<tr>
<td>translog</td>
<td>(Optional) Disables transaction logging debug commands.</td>
</tr>
<tr>
<td>export</td>
<td>Disables transaction log FTP export debugging.</td>
</tr>
<tr>
<td>wafs</td>
<td>(Optional) Unsets the notification level (debug, info, warn, error) at which messages from the WAAS software component and utilities are logged.</td>
</tr>
<tr>
<td>all</td>
<td>Unsets the logging level for all software components and utilities at once.</td>
</tr>
<tr>
<td>core-fe</td>
<td>Unsets the logging level for WAEs acting as a core File Engine.</td>
</tr>
<tr>
<td>edge-fe</td>
<td>Unsets the logging level for WAEs acting as an edge File Engine.</td>
</tr>
<tr>
<td>manager</td>
<td>Unsets the logging level for the Device Manager.</td>
</tr>
<tr>
<td>utilities</td>
<td>Unsets the logging level for WAAS utilities.</td>
</tr>
<tr>
<td>wccp</td>
<td>(Optional) Disables the WCCP information debugging.</td>
</tr>
<tr>
<td>all</td>
<td>Disables all WCCP debugging functions.</td>
</tr>
<tr>
<td>detail</td>
<td>Disables the WCCP detail debugging.</td>
</tr>
<tr>
<td>error</td>
<td>Disables the WCCP error debugging.</td>
</tr>
<tr>
<td>events</td>
<td>Disables the WCCP events debugging.</td>
</tr>
</tbody>
</table>
The following syntax table describes the options that are available in the central manager device mode:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>keepalive</td>
<td>Disables the debugging for WCCP keepalives that are sent to the applications.</td>
</tr>
<tr>
<td>packets</td>
<td>Disables the WCCP packet-related information debugging.</td>
</tr>
<tr>
<td>slowstart</td>
<td>Disables the WCCP slow-start debugging.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

We recommend that the `debug` and `undebug` commands be used only at the direction of Cisco Systems technical support personnel.

Related Commands

- `debug`
- `show debugging`
wafs

To back up, restore, or create a system report about the Wide Area File Services (WAFS)-related network configuration, plus the configurations of file servers, printers, users, and so forth, on a WAE, use the `wafs` EXEC command.

```
wafs {backup-config filename | restore-config filename | sysreport [filename | date-range from_date end_date filename]}
```

Note
Executing the `wafs sysreport` command can temporarily impact the performance of your WAE.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backup-config</code></td>
<td>Copies current WAFS-related configuration information to a file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name of the file, in <code>xxxx.tar.gz</code> format, where you want to save the WAFS configuration. This file is saved to the <code>/local/local1</code> directory.</td>
</tr>
<tr>
<td><code>restore-config</code></td>
<td>Loads saved WAFS-related configuration information from a file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>(Optional) Name of the file, in <code>xxxx.tar.gz</code> format, where the desired WAFS configuration information has been stored. This file should be in the <code>/local/local1</code> directory.</td>
</tr>
<tr>
<td><code>sysreport</code></td>
<td>Deprecated; use <code>copy sysreport</code>.</td>
</tr>
<tr>
<td><code>date-range</code></td>
<td>(Optional) Displays the range of time that the system report is to cover.</td>
</tr>
<tr>
<td><code>from_date</code></td>
<td>Start date of information in the generated system report.</td>
</tr>
<tr>
<td><code>to_date</code></td>
<td>End date of information in the generated system report.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name of the file, in <code>xxxx.tar.gz</code> format, in which the system information is to be stored.</td>
</tr>
</tbody>
</table>

Defaults
No default behavior or values

Command Modes
EXEC

Device Modes
application-accelerator

Usage Guidelines

The `wafs backup-config` EXEC command is used when back up of basic network configuration is not sufficient (performed using the `copy running-config` command), for example, when you want to back up system configurations before making any changes using the WAAS CLI global configuration mode and you want to protect the current configuration from loss of data by erroneous operations.

The `wafs restore-config` automatically performs a reload function. We strongly recommend that you re-register your WAE on completion of this command.

This `wafs` command is also useful when backup and system restoration, or generation of a system report, are not available from the WAAS Central Manager GUI.
The following example creates a backup file of the WAFS configuration information:

```
WAE# wafs ?
    backup-config   backup system configurations to a file.
    restore-config  restore system configurations from a file. WARNING: After
                    restoring configuration, the system needs to be restarted and
                    re-registered.
    sysreport       system report to a file
```

```
WAE# wafs backup-config backup.tar.gz
    system configuration is stored in file /local/local1/backup.tar.gz
```

The following example restores a system with previously saved WAAS configuration information:

```
WAE# wafs restore-config backup.tar.gz
    Restoring configurations ...
    After upload is completed the File Engine will be reloaded. We strongly recommend you
    re-register after the engine is reloaded.
```

Related Commands

`copy running-config`
whoami

To display the username of the current user, use the **whoami** EXEC command.

```text
whoami
```

Syntax Description

This command has no arguments or keywords.

Defaults

No default behavior or values

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this EXEC command to display the username of the current user.

Examples

The following example displays your username:

```text
WAE# whoami
admin
```

Related Commands

pwd
windows-domain

To access the Windows domain utilities on a WAAS device, use the windows-domain EXEC command.

```
windows-domain diagnostics {findsmb | getent | net | nmblookup | smbclient | smbstatus | smbtree | tdbbackup | tdbdump | testparm | wbinfo}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>diagnostics</th>
<th>Enables selection of Windows domain diagnostic utilities.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>findsmb</td>
<td>Displays the utility for troubleshooting NetBIOS name resolution and browsing.</td>
</tr>
<tr>
<td></td>
<td>getent</td>
<td>Displays the utility to get unified list of both local and PDC users and groups.</td>
</tr>
<tr>
<td></td>
<td>net</td>
<td>Displays the utility for administration of remote CIFS servers.</td>
</tr>
<tr>
<td></td>
<td>nmblookup</td>
<td>Displays the utility for troubleshooting NetBIOS name resolution and browsing.</td>
</tr>
<tr>
<td></td>
<td>smbclient</td>
<td>Displays the utility for troubleshooting the Windows environment and integration.</td>
</tr>
<tr>
<td></td>
<td>smbstatus</td>
<td>Displays the utility for inspecting the Samba server status, connected clients, etc.</td>
</tr>
<tr>
<td></td>
<td>smbtree</td>
<td>Displays the utility for inspecting the Windows network neighborhood structure and content.</td>
</tr>
<tr>
<td></td>
<td>tdbbackup</td>
<td>Displays the utility for backing up, verifying and restoring Samba database files.</td>
</tr>
<tr>
<td></td>
<td>tdbdump</td>
<td>Displays the utility for inspecting the Samba database files.</td>
</tr>
<tr>
<td></td>
<td>testparm</td>
<td>Displays the utility to validate smb.conf file correctness.</td>
</tr>
<tr>
<td></td>
<td>wbinfo</td>
<td>Displays the utility for Winbind and domain integration troubleshooting.</td>
</tr>
</tbody>
</table>

| Defaults | No default behavior or values |

| Command Modes | EXEC |

Device Modes	application-accelerator
	replication-accelerator
	central-manager

| Usage Guidelines | Use this command to activate the selected Windows domain diagnostic utility. |

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows the options available for the Get Entity utility:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE# windows-domain diagnostics getent --help</td>
</tr>
</tbody>
</table>
Usage: getent [OPTION...] database [key ...]
getent - get entries from administrative database.

-s, --service=CONFIG Service configuration to be used
-?, --help Give this help list
--usage Give a short usage message
-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional
for any corresponding short options.

Supported databases:
aliases ethers group hosts netgroup networks passwd protocols rpc
services shadow

The following example shows the options available for the NMB Lookup Utility for troubleshooting
NetBIOS name resolution and browsing:

WAE# windows-domain diagnostics nmblookup -h
 [-1 LOGFILEBASE] [-O SOCKETOPTIONS] [-n NETBIOSNAME] [-W WORKGROUP]
 [-i SCOPE] <NODE> ...

The following example shows the options available for the Samba Client Utility for troubleshooting the
Windows environment and integration:

WAE# windows-domain diagnostics smbclient -h
 [-t CODE] [-m LEVEL] [-T <c|x>IXFqgbNan] [-D DIR] [-c STRING] [-b BYTES]
 [-p PORT] [-d DEBUGLEVEL] [-s CONFIGFILE] [-l LOGFILEBASE]
 [-O SOCKETOPTIONS] [-n NETBIOSNAME] [-W WORKGROUP] [-i SCOPE]
 [-U USERNAME] [-A FILE] [-S on|off|required] service <password>

The following example shows the options available for the TDB Backup Utility:

WAE# windows-domain diagnostics tdbbackup -h
Usage: tdbbackup [options] <fname…>
 -h this help message
 -s suffix set the backup suffix
 -v verify mode (restore if corrupt)

The following example shows the use of the -u option of the WinBind Utility to view the information
about a user registered in a Windows domain:

WAE# windows-domain diagnostics wbinfo -u
administrator
guest
user98
tuser1

WAE# show user username user98
Uid : 70012
Username : user98
Password : *****
Privilege : super user
Configured in : Windows Domain database

WAE# show user uid 70012
Uid : 70012
Username : user98
Password : *****
Privilege : super user
Configured in : Windows Domain database

The following example shows how to register a Windows domain:

```bash
WAE# windows-domain diagnostics
    net join -S<domain server> -U<domain admin username>%<domain admin password>
```

Related Commands

```text
(config) windows-domain
```
write

To save startup configurations on a WAAS device, use the `write` EXEC command.

```
write [erase | memory | mib-data | terminal]
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>erase</td>
<td>(Optional) Erases startup configuration from NVRAM.</td>
</tr>
<tr>
<td>memory</td>
<td>(Optional) Writes the configuration to NVRAM. This is the default location</td>
</tr>
<tr>
<td></td>
<td>for saving startup information.</td>
</tr>
<tr>
<td>mib-data</td>
<td>(Optional) Saves MIB persistent configuration data to disk.</td>
</tr>
<tr>
<td>terminal</td>
<td>(Optional) Writes the configuration to a terminal session.</td>
</tr>
</tbody>
</table>

Defaults

The configuration is written to NVRAM by default.

Command Modes

EXEC

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this command to either save running configurations to NVRAM or to erase memory configurations. Following a `write erase` command, no configuration is held in memory, and a prompt for configuration specifics occurs after you reboot the WAAS device.

Use the `write terminal` command to display the current running configuration in the terminal session window. The equivalent command is `show running-config`.

Examples

The following example saves the current startup configuration to memory:

```
WAE# write memory
```

Related Commands

- `copy running-config`
- `copy startup-config`
- `show running-config`
- `show startup-config`
Configuration Mode Commands

Use global configuration mode for setting, viewing, and testing configuration of WAAS software features for the entire device. To enter this mode, enter the configure command from privileged EXEC mode. The prompt for global configuration mode consists of the hostname of the WAE followed by (config) and the pound sign (#). You must be in global configuration mode to enter global configuration commands.

```
WAE# configure
WAE(config)#
```

Commands entered in global configuration mode update the running configuration file as soon as they are entered. These changes are not saved into the startup configuration file until you enter the copy running-config startup-config EXEC mode command. Once the configuration is saved, it is maintained across WAE reboots.

You also can use global configuration mode to enter specific configuration modes. From global configuration mode you can enter the interface configuration mode, standard ACL configuration mode, or the extended ACL configuration mode.

To exit global configuration mode and return to privileged-level EXEC mode, use either the exit or end global configuration command:

```
WAE(config)# exit
WAE#
```
(config) aaa accounting

To configure AAA accounting on a WAAS device, use the `aaa accounting` command in global configuration mode.

```
tacacs
exec
start-stop
stop-only
wait-start
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>commands</td>
<td>Configures accounting for all commands at the specified privilege level.</td>
</tr>
<tr>
<td>0</td>
<td>User privilege level for a normal user.</td>
</tr>
<tr>
<td>15</td>
<td>User privilege level for an administrative user.</td>
</tr>
<tr>
<td>default</td>
<td>Sets AAA accounting to use the default accounting list.</td>
</tr>
<tr>
<td>start-stop</td>
<td>Sends a start accounting notice at the beginning of a process and a stop accounting notice at the end of a process. The start accounting record is sent in the background. The requested user process begins regardless of whether the start accounting notice was received by the accounting server.</td>
</tr>
<tr>
<td>stop-only</td>
<td>Sends a stop accounting notice at the end of the process requested by the user.</td>
</tr>
<tr>
<td>wait-start</td>
<td>Sends both a start and a stop accounting notice to the accounting server. However, the requested user service does not begin until the start accounting notice is acknowledged. The user cannot execute a CLI command or login until the user is on record. A stop accounting notice is also sent but does not need acknowledgement.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Enables use of TACACS+ for accounting.</td>
</tr>
<tr>
<td>exec</td>
<td>Enables accounting for user EXEC processes (user shells). When enabled, the EXEC shell accounting reports EXEC terminal session (user shell) events and login and logout by an administrator to the EXEC shell.</td>
</tr>
<tr>
<td>system</td>
<td>Enables accounting for all system-level events not associated with users, such as reloads.</td>
</tr>
</tbody>
</table>

Defaults

AAA accounting is disabled by default.

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager
The AAA accounting feature enables you to track the activities of an administrative user, services that users access, and the amount of network resources they consume (for example, connection time or the bytes transferred). You can use the AAA accounting feature to track user activity for billing, auditing, reporting, or security purposes. WAAS uses TACACS+ to implement AAA accounting; RADIUS is not currently supported. When AAA accounting is enabled, the WAAS device reports user activity to the TACACS+ security server in the form of accounting records. This data can then be analyzed for network management, client billing, and auditing.

You can activate accounting for the following types of events:

- EXEC—EXEC shell accounting is used to report the events of an administrator logging in and out of the EXEC shell through Telnet, FTP, or SSH (SSH Version 1 or Version 2). This type of accounting records information about user EXEC terminal sessions (user shells) on the WAAS device, including username, date, start and stop times for each session, time zone, and IP address of the system used to access the WAAS device. The EXEC shell accounting information can be accessed through the accounting log file on the TACACS+ server. This log file uses the following report format for this type of accounting information:

 WeekDay#Month#Day#Time#Year#CEaddress#username#terminal#RemoteHost#Event#
 EventTime#TaskId#Timezone#Service

- Command—The WAAS device records information about the CLI commands that were executed on the WAAS device. Each command accounting record includes the executed command syntax, username of the user who executed the command, the privilege level of the user, and the date and time that each command was executed. The WAAS device supports two privilege levels, 0 and 15, representing normal users and administrative users, respectively. The command accounting information can be accessed through the accounting log file on the TACACS+ server. This log file uses the following report format for this type of accounting information:

 WeekDay#Month#Day#Time#Year#CEaddress#username#terminal#RemoteHost#Event#
 EventTime#TaskId#Timezone#Service#PrivilegeLevel#CLICommand

- System—The WAAS device records information about all system-level events (for example, when the system reboots). You can access the system accounting information through the accounting log file on the TACACS+ server. This log file uses the following report format for this type of accounting information:

 WeekDay#Month#Day#Time#Year#CEaddress#username#terminal#RemoteHost#Event#
 EventTime#TaskId#Timezone#SystemService#SystemAccountingEvent#EventReason

The WAAS software supports only the default accounting list.

Caution

Before using the **wait-start** option, make sure that the WAAS device is configured with the TACACS+ server and is able to successfully contact the server. If the WAAS device cannot contact a configured TACACS+ server, it might become unresponsive.

The WAAS software displays the following warning message if the **wait-start** option is configured:

Warning: The device may become non-responsive if it cannot contact a configured TACACS+ server.

The administrator is asked to confirm the configuration in an indefinite loop until the administrator enters “yes” to the following prompt:

Are you sure you want to proceed? [yes]
Examples

The following example configures TACACS+ on the WAAS device and also specifies that a start accounting notice should be sent at the beginning of the process and a stop accounting notice at the end of the process, and the requested user process should begin regardless of whether the start accounting notice was received by the accounting server:

```
WAE(config)# tacacs key abc
WAE(config)# tacacs server 192.168.50.1 primary
WAE(config)# aaa accounting system default start-stop tacacs
```

```
show aaa accounting
Accounting Type     Record event(s)     Protocol
----------------------------------------------
Exec shell          unknown           unknown
Command level 0     unknown           unknown
Command level 15    unknown           unknown
System              start-stop        TACACS+
```

The following example shows that the WAAS device is set to record all user EXEC sessions. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of the session.

```
WAE(config)# aaa accounting exec default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by a normal user. The command also specifies that a stop accounting notice should be sent to the TACACS+ server at the end of each CLI command executed by a normal user.

```
WAE(config)# aaa accounting commands 0 default stop-only tacacs
```

The following example shows that the WAAS device is set to record all CLI commands executed by an administrative user. The command also specifies that a start accounting notice should be sent to the TACACS+ server at the beginning of the process and a stop accounting notice at the end of the process. The CLI command executed by the administrative user does not proceed until the start accounting notice has been acknowledged.

```
WAE(config)# aaa accounting commands 15 default wait-start tacacs
```

The following examples show the EXEC shell accounting report that is available on the TACACS+ server:

```
Wed Apr 14 11:19:19 2004 172.16.0.0 super10 pts/0 172.31.0.0 start
start_time=1081919558 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:19:23 2004 172.16.0.0 super10 pts/0 172.31.0.0 stop
stop_time=1081919562 task_id=3028 timezone=PST service=shell
Wed Apr 14 11:22:13 2004 172.16.0.0 normal20 pts/0 via5.abc.com start
start_time=1081919732 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:22:16 2004 172.16.0.0 normal20 pts/0 via5.abc.com stop
stop_time=1081919735 task_id=3048 timezone=PST service=shell
Wed Apr 14 11:25:29 2004 172.16.0.0 admin ftp via5.abc.com start
start_time=1081919928 task_id=3069 timezone=PST service=shell
Wed Apr 14 11:25:33 2004 172.16.0.0 admin ftp via5.abc.com stop
stop_time=1081919931 task_id=3069 timezone=PST service=shell
```

The following examples show the system accounting report that is available on the TACACS+ server:

```
Wed Apr 14 08:37:14 2004 172.16.0.0 unknown unknown 0.0.0.0 start
start_time=1081909831 task_id=2725 timezone=PST service=system event=sys_acct reason=reload
Wed Apr 14 10:19:18 2004 172.16.0.0 admin ttyS0 0.0.0.0 stop
stop_time=1081915955 task_id=5358 timezone=PST service=system event=sys_acct reason=shutdown
```

The following examples show the command accounting report that is available on the TACACS+ server:

```
Wed Apr 14 12:35:38 2004 172.16.0.0 admin ttyS0 0.0.0.0 start
start_time=1081924137 task_id=3511 timezone=PST service=shell -lvl=0 cmd=logging console enable
```
In addition to command accounting, the WAAS device records any executed CLI command in the system log (syslog.txt). The message format is as follows:

```c
ce_syslog(LOG_INFO, CESM_PARSER, PARSER_ALL, CESM_350232,
   "CLI_LOG %s: %s \n", __FUNCTION__, pd->command_line);
```

Related Commands

- `debug`
- `show aaa accounting`
(config) adapter

To enable the EndPoint Mapper (EPM) service, use the `adapter` global configuration command. To disable the EPM service, use the `no` form of the command.

```
adapter epm enable
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>epm</td>
<td>Specifies the Microsoft PortMapper adapter.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the EPM service.</td>
</tr>
</tbody>
</table>

Defaults

The EPM service is enabled by default when you upgrade to WAAS software release 4.0.3 and later releases. The EPM service is disabled by default on new WAE appliances or when you restore the factory default settings.

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use the `adapter epm enable` command to enable EPM service when the Microsoft PortMapper adapter is installed.

Examples

The following example enables the EPM service:

```
WAE(config)# adapter epm enable
```

Related Commands

- `show adapter`
- `show statistics epm`
(config) alarm overload-detect

To detect alarm overload situations, use the `alarm overload-detect` global configuration command.

```
alarm overload-detect (clear 1-999 [raise 10-1000] | enable | raise 10-1000 [clear 1-999])
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear</code></td>
<td>Specifies the threshold at which the alarm overload state on the WAAS device is cleared. When the alarm drops below this threshold, the alarm is cleared and the SNMP traps and alarm notifications are again sent to your NMS.</td>
</tr>
<tr>
<td><code>raise</code></td>
<td>(Optional) Specifies the threshold at which the WAAS device enters an alarm overload state and SNMP traps and alarm notifications to your network management station (NMS) are suspended.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the detection of alarm overload situations.</td>
</tr>
<tr>
<td><code>1-999</code></td>
<td>Number of alarms per second that ends an alarm overload condition.</td>
</tr>
<tr>
<td><code>10-1000</code></td>
<td>Number of alarms per second that triggers an alarm overload.</td>
</tr>
</tbody>
</table>

Defaults

- `clear`: 1 alarm per second
- `raise`: 10 alarms per second

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

When multiple applications running on a WAAS device experience problems at the same time, numerous alarms are set off simultaneously, and the WAAS device may stop responding. You can use the `alarm overload-detect` global configuration command to set an overload limit for the incoming alarms from the node health manager. If the number of alarms exceeds the maximum number of alarms allowed, the WAAS device enters an alarm overload state until the number of alarms drops down to the number defined in the `clear` option.

When the WAAS device is in the alarm overload state, the following events occur:

- An alarm overload notification is sent to SNMP and the NMS. The `clear` and `raise` values are also communicated to SNMP and the NMS.
- SNMP traps and NMS notifications for subsequent alarm raise and clear operations are suspended.
- Alarm overload clear notification is sent.
The WAAS device remains in the alarm overload state until the rate of incoming alarms decreases to the clear value.

Note In the alarm overload state, applications continue to raise alarms and the alarms are recorded within the WAAS device. The show alarms and show alarms history EXEC commands display all the alarms even in the alarm overload state.

Examples

The following example enables detection of alarm overload:

```
WAE(config)# alarm overload-detect enable
```

The following example sets the threshold for triggering the alarm overload at 100 alarms per second:

```
WAE(config)# alarm overload-detect raise 100
```

The following example sets the level for clearing the alarm overload at 10 alarms per second:

```
WAE(config)# alarm overload-detect clear 10
```

Related Commands

show alarms
(config) asset

To set the tag name for the asset tag string, use the asset global configuration command. To remove the asset tag name, use the no form of this command.

```
asset tag name
```

Syntax Description

<table>
<thead>
<tr>
<th>Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tag</td>
<td>Sets the asset tag.</td>
</tr>
<tr>
<td>name</td>
<td>Asset tag name string.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

The following example shows how to configure a tag name for the asset tag string on a WAAS device:

```
WA(config)# asset tag entitymib
```
To specify administrative login authentication and authorization methods for a WAAS device, use the `authentication` global configuration mode command. To selectively disable options, use the `no` form of this command.

```
authentication { configuration { local | radius | tacacs | windows-domain } enable [ primary | secondary | tertiary | quaternary ] | fail-over server-unreachable | login { local | radius | tacacs | windows-domain } enable [ primary | secondary | tertiary | quaternary ] | content-request windows-domain disconnected-mode enable }
```

Syntax Description

- **configuration**

 Sets the administrative login authorization (configuration) parameters for the WAAS device.

- **local**

 Selects the local database method as a login authorization (configuration) method for the WAAS device.

- **radius**

 Selects the RADIUS method as a login authorization (configuration) method for the WAAS device.

- **tacacs**

 Selects the TACACS+ method as a login authorization (configuration) method for the WAAS device.

- **windows-domain**

 Selects the Windows domain controller method as a login authorization (configuration) method for the WAAS device.

- **enable**

 Enables the specified administrative login authorization methods for the WAAS device.

- **primary**

 (Optional) Specifies the first method the WAAS device should use for administrative login authorization.

- **secondary**

 (Optional) Specifies the second method the WAAS device should use for administrative login authorization if the primary method fails.

- **tertiary**

 (Optional) Specifies the third method the WAAS device should use for administrative login authorization if the primary and secondary methods fail.

- **quaternary**

 (Optional) Specifies the fourth method the WAAS device should use for administrative login authorization if the primary, secondary, and tertiary methods all fail.

- **fail-over server-unreachable**

 Specifies that the WAAS device is to query the secondary authentication database if the primary authentication server is unreachable.

- **login**

 Sets the administrative login authentication parameters for the WAAS device.

- **local**

 Selects the local database method as an administrative login authentication method for the WAAS device.

- **radius**

 Selects the RADIUS method as an administrative login authentication method for the WAAS device.

- **tacacs**

 Selects the TACACS+ method as an administrative login authentication method for the WAAS device.

- **windows-domain**

 Selects the Windows domain controller method as an administrative login authentication method for the WAAS device.
(config) authentication

Defaults

The local authentication method is enabled by default.

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The authentication command configures both the authentication and authorization methods that govern login and configuration access to the WAAS device.

We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure administrative login authentication and authorization for your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure administrative login authentication and authorization on an single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.

The authentication login command determines whether the user has any level of permission to access the WAAS device. The authentication configuration command authorizes the user with privileged access (configuration access) to the WAAS device.

The authentication login local and the authentication configuration local commands use a local database for authentication and authorization.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the selected administrative login authentication methods for the WAAS device.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Specifies the first method the WAAS device should use for administrative login authentication.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Specifies the second method the WAAS device should use for administrative login authentication if the primary method fails.</td>
</tr>
<tr>
<td>tertiary</td>
<td>(Optional) Specifies the second method the WAAS device should use for administrative login authentication if the primary method fails.</td>
</tr>
<tr>
<td>quaternary</td>
<td>(Optional) Specifies the fourth method the WAAS device should use for administrative login authentication if the primary, secondary, and tertiary methods all fail.</td>
</tr>
<tr>
<td>content-request</td>
<td>Authenticates a request for content. Note This option is available in the application-accelerator device mode only.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Selects a Windows domain controller for domain server authentication.</td>
</tr>
<tr>
<td>disconnected-mode</td>
<td>Authenticates in the disconnected mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables authentication in the disconnected mode.</td>
</tr>
</tbody>
</table>
The `authentication login tacacs` and `authentication configuration tacacs` commands use a remote TACACS+ server to determine the level of user access. WAAS software supports only TACACS+ and not TACACS or Extended TACACS.

To configure TACACS+, use the `authentication` and `tacacs` commands. To enable TACACS+, use the `tacacs enable` command. For more information on TACACS+ authentication, see the “`(config) tacacs`” command.

The `authentication login radius` and `authentication configuration radius` commands use a remote RADIUS server to determine the level of user access.

By default, the local method is enabled, with TACACS+ and RADIUS both disabled for login and configuration. Whenever TACACS+ and RADIUS are disabled, local is automatically enabled. TACACS+, RADIUS, and local methods can be enabled at the same time.

The `primary` option specifies the first method to attempt for both login and configuration; the `secondary` option specifies the method to use if the primary method fails. The `tertiary` option specifies the method to use if both primary and secondary methods fail. The `quaternary` option specifies the method to use if the primary, secondary, and tertiary methods fail. If all methods of an `authentication login` or `authentication configuration` command are configured as primary, or all as secondary or tertiary, local is attempted first, then TACACS+, and then RADIUS.

Enforcing Authentication with the Primary Method

The `authentication fail-over server-unreachable` global configuration command allows you to specify that failover to the secondary authentication method should occur only if the primary authentication server is unreachable. This feature ensures that users gain access to the WAAS device using the local database only when remote authentication servers (TACACS+ or RADIUS) are unreachable. For example, when a TACACS+ server is enabled for authentication with user authentication failover configured and the user tries to log in to the WAAS device using an account defined in the local database, login fails. Login succeeds only when the TACACS+ server is unreachable.

Login Authentication and Authorization Through the Local Database

Local authentication and authorization uses locally configured login and passwords to authenticate administrative login attempts. The login and passwords are local to each WAAS device and are not mapped to individual usernames.

By default, local login authentication is enabled first. You can disable local login authentication only after enabling one or more of the other administrative login authentication methods. However, when local login authentication is disabled, if you disable all other administrative login authentication methods, local login authentication is reenabled automatically.

Specifying RADIUS Authentication and Authorization Settings

To configure RADIUS authentication on a WAAS device, you must first configure a set of RADIUS authentication server settings on the WAAS device by using the `radius-server` global configuration command. (See the “`(config) radius-server`” command.)

Use the `authentication login radius` global configuration command to enable RADIUS authentication for normal login mode.

Use the `authentication configuration radius` global configuration command to enable RADIUS authorization.

To disable RADIUS authentication and authorization on a WAAS device, use the `no` form of the `authentication` global configuration command (for example, use the `no authentication login radius enable` command to disable RADIUS authentication).
Specifying TACACS+ Authentication and Authorization Settings

To configure TACACS+ authentication on WAAS devices, you must configure a set of TACACS+ authentication settings on the WAAS device by using the `tacacs` global configuration command. (See the “(config) tacacs” command.)

Server Redundancy

Authentication servers can be specified with the `tacacs host` or `radius-server host` global configuration commands. In the case of TACACS+ servers, the `tacacs host hostname` command can be used to configure additional servers. These additional servers provide authentication redundancy and improved throughput, especially when WAAS device load-balancing schemes distribute the requests evenly between the servers. If the WAAS device cannot connect to any of the authentication servers, no authentication takes place and users who have not been previously authenticated are denied access.

Specifying Windows Domain Login Authentication

You can enable Windows domain as an administrative login authentication and authorization method for a device or device group. Before you enable Windows authentication, you must first configure the Windows domain controller by using the `windows-domain wins-server` global configuration command. (See the “(config) windows-domain” command.)

We recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure Windows domain controller settings. See Chapter 6 of the Cisco Wide Area Application Services Configuration Guide.

Examples

The following example shows how to query the secondary authentication database if the primary authentication server is unreachable, enter the following command. This feature is referred to as the fail-over server-unreachable feature.

```
WAE(config)# authentication fail-over server-unreachable
```

If you enable the fail-over server-unreachable feature on the WAAS device, only two login authentication scheme (a primary and secondary scheme) can be configured on the WAAS device. The WAAS device fails over from the primary authentication scheme to the secondary authentication scheme only if the specified authentication server is unreachable.

To enable authentication privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authentication use the `authentication login` global configuration command. The following example shows that RADIUS is specified as the primary method, TACACS+ is specified as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authentication methods are specified because the fail-over server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication login radius enable primary
WAE(config)# authentication login tacacs enable secondary
WAE(config)# authentication login windows-domain enable tertiary
WAE(config)# authentication login local enable quaternary
```

Note

If you have enabled the failover server unreachable feature on the WAAS device, make sure that you specify either TACACS+ or RADIUS as the primary scheme for authentication, and specify local as the secondary scheme for authentication.
To enable authorization privileges using the local, TACACS+, RADIUS, or Windows databases, and to specify the order of the administrative login authorization (configuration), use the `authentication configuration` global configuration command.

Note
Authorization privileges apply to console and Telnet connection attempts, secure FTP (SFTP) sessions, and Secure Shell (SSH, Version 1 and Version 2) sessions.

We strongly recommend that you set the administrative login authentication and authorization methods in the same order. For example, configure the WAAS device to use RADIUS as the primary login method, TACACS+ as the secondary login method, Windows as the tertiary method, and the local method as the quaternary method for both administrative login authentication and authorization.

The following example shows that RADIUS is specified as the primary method, TACACS+ as the secondary method, Windows as the third method, and the local database as the fourth method. In this example, four login authorization (configuration) methods are specified because the fail-over server-unreachable feature is not enabled on the WAAS device.

```
WAE(config)# authentication configuration radius enable primary
WAE(config)# authentication configuration tacacs enable secondary
WAE(config)# authentication configuration windows-domain enable tertiary
WAE(config)# authentication configuration local enable quaternary
```

Note
If you have enabled the failover server unreachable feature on the WAAS device, make sure that you specify either **TACACS+** or **RADIUS** as the primary scheme for authorization (configuration), and specify local as the secondary scheme for authorization (configuration).

The following example shows the resulting output of the `show authentication` command:

```
WAE# show authentication user
Login Authentication:         Console/Telnet/Ftp/SSH Session
-----------------------------------
local                         enabled (primary)
Windows domain               enabled
Radius                        disabled
Tacacs+                       disabled

Configuration Authentication: Console/Telnet/Ftp/SSH Session
-----------------------------------
local                         enabled (primary)
Radius                        disabled
Tacacs+                       disabled
```

Related Commands
- `(config) radius-server`
- `show authentication`
- `show statistics radius`
- `show statistics tacacs`
- `(config) tacacs`
- `windows-domain`
- `(config) windows-domain`
(config) authentication strict-password-policy

To activate strong password policy on a WAAS device, use the authentication strict-password-policy global configuration command. To deactivate strong password policy and use standard password policy on a WAAS device, use the no form of this command.

authentication strict-password-policy

Syntax Description
This command has no arguments or keywords.

Defaults
Strong password policy is enabled on the WAAS device.

Command Modes
- global configuration

Device Modes
- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines
When strong password policy is enabled, user passwords must meet the following requirements:

- The password must be at least 11 characters long.
- The password can include both uppercase and lowercase letters (A–Z and a–z), numbers (0–9), and special characters including `!@#$%^&*()_+-=\[\]{};:,</>.
- The password cannot contain all the same characters (for example, 99999).
- The password cannot contain consecutive characters (for example, 12345).
- The password cannot be the same as the username.
- User passwords expire within 90 days. Each new password must be different from the previous 12 passwords.
- The password cannot contain the characters ` " | (apostrophe, double quote, or pipe) or any control characters.

When strong password policy is disabled, user passwords must meet the following requirements:

- The password must be 1 to 34 characters long.
- The password can include both uppercase and lowercase letters (A–Z and a–z), and numbers (0–9).
- The password cannot contain the characters ` " | (apostrophe, double quote, or pipe) or any control characters.

Note
When strong password policy is enabled, existing standard-policy passwords will still work. However, these passwords are subject to expiration under the strong password policy.
Examples

The following example enables strong password policy:

```
WAE(config)# authentication strict-password-policy
```

The following example disables strong password policy:

```
WAE(config)# no authentication strict-password-policy
```

Related Commands

- `clear users`
- `authentication`
(config) auto-register

To enable discovery of a Fast Ethernet or Gigabit Ethernet WAE and its automatic registration with the WAAS Central Manager through Dynamic Host Configuration Protocol (DHCP), use the **auto-register** global configuration command. To disable the autoregistration feature on a WAE, use the **no** form of this command.

auto-register enable [**FastEthernet slot/port** | **GigabitEthernet slot/port**]

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables the automatic registration of devices using DHCP with the WAAS Central Manager.</td>
</tr>
<tr>
<td>FastEthernet</td>
<td>(Optional) Selects a Fast Ethernet interface for automatic registration using DHCP.</td>
</tr>
<tr>
<td>slot/port</td>
<td>Fast Ethernet slot (0–3) and port number.</td>
</tr>
<tr>
<td>GigabitEthernet</td>
<td>(Optional) Selects a Gigabit Ethernet interface for automatic registration using DHCP.</td>
</tr>
<tr>
<td>slot/port</td>
<td>Gigabit Ethernet slot (1–2) and port number.</td>
</tr>
</tbody>
</table>

Defaults

Automatic registration using DHCP is enabled on a WAE by default.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Autoregistration automatically configures network settings and registers WAEs with the WAAS Central Manager. On bootup, devices running WAAS software (with the exception of the WAAS Central Manager itself) automatically discover the WAAS Central Manager and register with it. The administrator does not have to do any manual configuration on the device. Once the WAE is registered, the administrator approves the device and configures it remotely using the WAAS Central Manager GUI.

The **auto-register enable** command allows a Fast Ethernet or Gigabit Ethernet WAE to discover the hostname of the WAAS Central Manager through DHCP and to automatically register the device with the WAAS Central Manager. Discovery and registration occur at bootup.

To assign a static IP address using the **interface GigabitEthernet slot/port** command, the automatic registration of devices through DHCP must be disabled by using the **no auto-register enable** command, because automatic registration through DHCP is enabled by default.

For autoregistration to work, you must have a DHCP server that is configured with the hostname of the WAAS Central Manager and that is capable of handling vendor class option 43.

Note

The form of DHCP used for autoregistration is *not* the same as the interface-level DHCP that is configurable through the **ip address dhcp** interface configuration command.
The DHCP server needs to send the vendor class option (option 43) information to the WAAS device in the format for encapsulated vendor-specific options as provided in RFC 2132. The relevant section of RFC 2132, Section 8.4, is reproduced here as follows:

You should encode the encapsulated vendor-specific options field as a sequence of code/length/value fields of syntax identical to that of the DHCP options field with the following exceptions:

1. There should not be a “magic cookie” field in the encapsulated vendor-specific extensions field.
2. Codes other than 0 or 255 may be redefined by the vendor within the encapsulated vendor-specific extensions field but should conform to the tag-length-value syntax defined in section 2.
3. Code 255 (END), if present, signifies the end of the encapsulated vendor extensions, not the end of the vendor extensions field. If no code 255 is present, then the end of the enclosing vendor-specific information field is taken as the end of the encapsulated vendor-specific extensions field.

In accordance with the RFC standard, the DHCP server needs to send the WAAS Central Manager hostname information in code/length/value format. (Code and length are single octets.) The code for the WAAS Central Manager hostname is 0x01. DHCP server management and configuration are not within the scope of the autoregistration feature.

The WAAS device sends CISCOCDN as the vendor class identifier in option 60 to facilitate device groupings by customers.

Autoregistration DHCP also requires that the following options be present in the DHCP server’s offer to be considered valid:

- Subnet-mask (option 1)
- Routers (option 3)
- Domain-name (option 15)
- Domain-name-servers (option 6)
- Host-name (option 12)

Interface-level DHCP requires only subnet-mask (option 1) and routers (option 3) for an offer to be considered valid; domain-name (option 15), domain-name-servers (option 6), and host-name (option 12) are optional. All of the above options, with the exception of domain-name-servers (option 6), replace the existing configuration on the system. The domain-name-servers option is added to the existing list of name servers with the restriction of a maximum of eight name servers.

Autoregistration is enabled by default on the first interface of the device. The first interface depends on the WAE model as follows:

- For the WAE-511, WAE-512, WAE-611, WAE-612, and WAE-7320, use GigabitEthernet 1/0.

If you do not have a DHCP server, the device is unable to complete autoregistration and eventually times out. You can disable autoregistration at any time after the device has booted and proceed with manual setup and registration.

Examples

The following example enables autoregistration on GigabitEthernet port 2/0:

```plaintext
WAE(config)# auto-register enable GigabitEthernet 2/0
```

The following example disables autoregistration on all configured interfaces on the WAE:

```plaintext
WAE(config)# no auto-register enable
```

Related Commands

- `show auto-register`
(config) auto-register

show running-config
show startup-config
(config) banner

To configure the EXEC, login, and message-of-the-day (MOTD) banners, use the `banner` global configuration command. To disable the banner feature, use the `no` form of this command.

```
banner enable \{ \{exec | login | motd\} \{message text\}\}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables banner support on the WAE.</td>
</tr>
<tr>
<td>exec</td>
<td>Configures an EXEC banner.</td>
</tr>
<tr>
<td>message</td>
<td>(Optional) Specifies a message to be displayed when an EXEC process is created.</td>
</tr>
<tr>
<td>text</td>
<td>Message text on a single line. The WAE translates the \n portion of the message to a new line when the banner is displayed to the user.</td>
</tr>
<tr>
<td>login</td>
<td>Configures a login banner.</td>
</tr>
<tr>
<td>motd</td>
<td>Configures an MOTD banner.</td>
</tr>
</tbody>
</table>

Defaults

Banner support is disabled by default

Command Modes

global configuration

Usage Guidelines

You can configure the following three types of banners in any device mode:

- The MOTD banner sets the message of the day. This message is the first message that is displayed when a login is attempted.
- The login banner is displayed after the MOTD banner but before the actual login prompt appears.
- The EXEC banner is displayed after the EXEC CLI shell has started.

Note

All of these banners are effective on a console, Telnet, or a Secure Shell (SSH) version 2 session.

The `message` keyword is optional. If you enter a carriage return without specifying the `message` keyword, you will be prompted to enter your message text. For message text on one or more lines, press the `Return` key or enter delimiting characters (`\n`) to specify a message to appear on a new line. You can enter up to a maximum of 980 characters, including new-line characters (`\n`). Enter a period (.) at the beginning of a new line to save the message and return to the prompt for the global configuration mode.

Note

The EXEC banner content is obtained from the command-line input that the user enters after being prompted for the input.

After you configure the banners, enter the `banner enable` global configuration command to enable banner support on the appliance. Enter the `show banner` EXEC command to display information about the configured banners.
Note

When you run an SSH version 1 client and log in to the WAE, the MOTD and login banners are not displayed. You need to use SSH version 2 to display the banners when you log in to the WAE.

Examples

The following example shows how to use the `banner motd message` global configuration command to configure the MOTD banner. In this example, the MOTD message consists of a single line of text.

```
WAE(config)# banner motd message This is a WAAS 4.0.7 device
```

The following example shows how to use the `banner motd message` global command to configure a MOTD message that is longer than a single line. In this case, the WAE translates the `\n` portion of the message to a new line when the MOTD message is displayed to the user.

```
WAE(config)# banner motd message "This is the motd message.\nThis is a WAAS 4.0.7 device"
```

The following example shows how to use the `banner login message` global configuration command to configure a login message that is longer than a single line. In this case, the WAE translates the `\n` portion of the message to a new line in the login message that is displayed to the user.

```
WAE(config)# banner login message "This is login banner.\nUse your password to login"
```

The following example shows how to enable banner support:

```
WAE(config)# banner enable
```

The following example shows how to use the `banner exec` global configuration command to configure an interactive banner. The `banner exec` command is similar to the `banner motd message` commands except that for the `banner exec` command, the banner content is obtained from the command-line input that the user enters after being prompted for the input.

```
WAE(config)# banner exec
Please type your MOTD messages below and end it with '.' at beginning of line: (plain text only, no longer than 980 bytes including newline)
\nThis is the EXEC banner.\nUse your WAAS username and password to log in to this WAE.\n
Message has 99 characters.
WAE(config)#
```

Assume that a WAE has been configured with the MOTD, login, and EXEC banners as shown in the previous examples. When a user uses an SSH session to log in to the WAE, the user will see a login session that includes a MOTD banner and a login banner that asks the user to enter a login password as follows:

```
This is the motd banner.
This is a WAAS 4.0.7 device
This is login banner.
Use your password to login.

Cisco Wide Area Application Services Engine
admin@wae's password:
```

After the user enters a valid login password, the EXEC banner is displayed, and the user is asked to enter the WAAS username and password as follows:

```
Last login: Fri Oct  1 14:54:03 2004 from client
System Initialization Finished.
This is the EXEC banner.
```
Use your WAAS username and password to log in to this WAE.

After the user enters a valid WAAS username and password, the WAE CLI is displayed. The CLI prompt varies depending on the privilege level of the login account. In the following example, because the user entered a username and password that had administrative privileges (privilege level of 15), the EXEC mode CLI prompt is displayed:

WAE#
(config) bypass

To configure static bypass lists on a WAE, use the bypass global configuration command. To disable the bypass feature (clear the static bypass lists), use the no form of this command.

```
bypass static {clientip | any-client} {serverip | any-server}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>static</td>
<td>Adds a static entry to the bypass list.</td>
</tr>
<tr>
<td>clientip</td>
<td>Requests from this IP address bypass the WAE.</td>
</tr>
<tr>
<td>any-client</td>
<td>Bypasses the traffic from any client destined to a particular server.</td>
</tr>
<tr>
<td>serverip</td>
<td>Requests from this IP address bypass the WAE.</td>
</tr>
<tr>
<td>any-server</td>
<td>Requests from a specified client to any server bypass the WAE.</td>
</tr>
</tbody>
</table>

Defaults

No default behaviors or values

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Using a static bypass allows traffic flows between a configurable set of clients and file servers to bypass handling by the WAE. By configuring static bypass entries on the Edge WAE, you can control traffic interception without modifying the router configuration. Separately, if so desired, IP access lists may be configured on the router to bypass traffic without first redirecting it to the Edge WAE. Typically, the WCCP accept list defines the group of file servers that are cached (and the file servers that are not). Static bypass can be used in rare cases when you want to prevent WAAS from caching a connection from a certain client to a certain file server (or from a certain client to all file servers).

The bypass static command permits traffic from specified sources to bypass the WAE. Wildcards in either the client or server IP addresses are not supported.

Note

We recommend that you use IP access lists on the WCCP-enabled router, rather than using the static bypass feature, because access lists are more efficient.

Examples

The following example forces traffic from a specified client to a specified server to bypass the WAE:

```
WAE(config)# bypass static 10.1.17.1 172.16.7.52
```

The following example forces all traffic destined to a specified server to bypass the WAE:

```
WAE(config)# bypass static any-client 172.16.7.52
```

The following example forces all traffic from a specified client to any file server to bypass the WAE:

```
WAE(config)# bypass static 10.1.17.1 any-server
```
A static list of source and destination addresses helps to isolate instances of problem-causing clients and servers. To display static configuration list items, use the `show bypass list` command as follows:

```
WAE# show bypass list
Client          Server          Entry type
-----           ------           ----------
10.1.17.1:0     172.16.7.52:0    static-config
any-client:0    172.16.7.52:0    static-config
10.1.17.2:0     any-server:0    static-config
```

Related Commands

- `show bypass`
To configure the Cisco Discovery Protocol (CDP) options globally on all WAAS device interfaces, use the `cdp` command in global configuration mode.

```
cdp { enable | holdtime seconds | timer seconds }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables CDP globally.</td>
</tr>
<tr>
<td><code>holdtime</code></td>
<td>Sets the length of time in seconds that a receiver keeps CDP packets before they are discarded. The default is 180 seconds.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Length of time that a receiver keeps the CDP packet in seconds (10–255).</td>
</tr>
<tr>
<td><code>timer</code></td>
<td>Interval between the CDP advertisements in seconds. The default is 60 seconds.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Interval in seconds (5–254).</td>
</tr>
</tbody>
</table>

Defaults

- `holdtime`: 180 seconds
- `timer`: 60 seconds

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

When enabled with the `cdp enable` command, CDP obtains protocol addresses of neighboring devices and discovers the platform of those devices. It also shows information about the interfaces used by your device. CDP is media- and protocol-independent and runs on Cisco-manufactured equipment.

Use of SNMP with the CDP MIB allows network management applications to learn the device type and the SNMP agent address of neighboring devices and to send SNMP queries to those devices. Cisco Discovery Protocol uses the CISCO-CDP-MIB.

Each device configured for CDP sends periodic messages, known as advertisements, to a multicast address. The `cdp timer seconds` command specifies the rate at which CDP packets are sent. Each device advertises at least one address at which it can receive SNMP messages. The advertisements also contain Time-To-Live or hold-time information. To set the hold time, use the `cdp holdtime seconds` command to specify the period of time in seconds that a receiver is to keep CDP packets. Each device also listens to the periodic CDP messages sent by others to learn about neighboring devices.
Examples

The following example shows that CDP is first enabled, the hold time is set to 10 seconds for keeping CDP packets, and then the rate at which CDP packets are sent (15 seconds) is set:

WAE(config)# cdp enable
WAE(config)# cdp holdtime 10
WAE(config)# cdp timer 15

Related Commands

(config-if) cdp
clear
show cdp
(config) central-manager

To specify the WAAS Central Manager’s role and port number, use the central-manager global configuration command in central-manager device mode. To specify the IP address or hostname of the WAAS Central Manager with which a WAE is to register, use the central-manager global configuration command in application-accelerator device mode. To negate these actions, use the no form of this command.

```
central-manager { address { hostname | ip-address } | role { primary | standby } | ui port port-num }
```

Syntax Description

- **address**
 - Specifies the hostname or IP address of the WAAS Central Manager with which the WAE should register.
- **hostname**
 - Hostname of the WAAS Central Manager with which the WAE should register.
- **ip-address**
 - IP address of the WAAS Central Manager with which the WAE should register.
- **role**
 - Configures the WAAS Central Manager role to either primary or standby.
- **primary**
 - Configures the WAAS Central Manager to be the primary WAAS Central Manager for the WAEs that are registered with it.
- **standby**
 - Configures the WAAS Central Manager to be the standby WAAS Central Manager for the WAEs that are registered with it.
- **ui**
 - Configures the WAAS Central Manager GUI port address.
- **port**
 - Configures the WAAS Central Manager GUI port. The default is port 8443.
- **port-num**
 - Port number (1–65535).

Note

The address option works in the application-accelerator device mode only. The role and ui port options work in the central-manager device mode only.

Defaults

The WAAS Central Manager GUI is preconfigured to use port 8443.

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager
The **central-manager address** global configuration command associates a WAE device with the WAAS Central Manager so that the device can be approved as a part of the WAAS network. After the device is configured with the WAAS Central Manager IP address, it presents a self-signed security certificate and other essential information, such as its IP address or hostname, disk space allocation, and so forth, to the WAAS Central Manager.

If you change the WAAS Central Manager GUI port number, the Centralized Management System (CMS) service is automatically restarted on the WAAS Central Manager if the cms service has been enabled on the WAAS Central Manager by entering the **cms enable** global configuration command on the WAAS Central Manager.

Configuring Devices Inside a NAT

In a WAAS network, there are two methods for a WAAS device that is registered with the WAAS Central Manager (WAES or a standby WAAS Central Manager) to obtain configuration information from the primary WAAS Central Manager. The primary method is for the device to periodically poll the primary WAAS Central Manager on port 443 to request a configuration update. You cannot configure this port number. The backup method is when the WAAS Central Manager pushes configuration updates to a registered device as soon as possible by issuing a notification to the registered device on port 443. This method allows changes to take effect in a timelier manner. You cannot configure this port number even when the backup method is being used. WAAS networks do not work reliably if devices registered with the WAAS Central Manager are unable to poll the WAAS Central Manager for configuration updates.

All of the above methods become complex in the presence of Network Address Translation (NAT) firewalls. When a WAAS device (WAES at the edge of the network and the primary or standby WAAS Central Managers) is inside a NAT firewall, those devices that are inside the same NAT use one IP address (the inside local IP address) to access the device, and those devices that are outside the NAT use a different IP address (the inside global IP address) to access the device. A centrally managed device advertises only its inside local IP address to the WAAS Central Manager. All other devices inside the NAT use the inside local IP address to contact the centrally managed device that resides inside the NAT. A device that is not inside the same NAT as the centrally managed device is not able to contact it without special configuration.

If the primary WAAS Central Manager is inside a NAT, you can allow a device outside the NAT to poll it for getUpdate requests by configuring a static translation (inside global IP address) for the WAAS Central Manager’s inside local IP address on its NAT, and using this address, rather than the WAAS Central Manager’s inside local IP address, in the **central-manager address ip-address** global configuration command when you register the device to the WAAS Central Manager. If a WAAS device is inside a NAT and the WAAS Central Manager is outside the NAT, you can allow the WAAS device to poll for getUpdate requests by configuring a static translation (inside global IP address) for the WAAS device’s inside local address on its NAT and specifying this address in the Use IP Address field under the NAT Configuration heading in the Device Activation window.

Note Static translation establishes a one-to-one mapping between your inside local address and an inside global address. Static translation is useful when a host on the inside must be accessible by a fixed address from the outside.

Standby WAAS Central Managers

The Cisco WAAS software implements a standby WAAS Central Manager. This process allows you to maintain a copy of the WAAS network configuration. If the primary WAAS Central Manager fails, the standby can be used to replace the primary.
For interoperability, when a standby WAAS Central Manager is used, it must be at the same software version as the primary WAAS Central Manager to maintain the full WAAS Central Manager configuration. Otherwise, the standby WAAS Central Manager detects this status and does not process any configuration updates that it receives from the primary WAAS Central Manager until the problem is corrected.

Note

We recommend that you upgrade your standby WAAS Central Manager first and then upgrade your primary WAAS Central Manager. We also recommend that you create a database backup on your primary WAAS Central Manager and copy the database backup file to a safe place before you upgrade the software.

Switching a WAAS Central Manager from Warm Standby to Primary

If your primary WAAS Central Manager becomes inoperable, you can manually reconfigure one of your warm standby WAAS Central Managers to be the primary WAAS Central Manager. Configure the new role by using the global configuration `central-manager role primary` command as follows:

```
WAE# configure
WAE(config)# central-manager role primary
```

This command changes the role from standby to primary and restarts the management service to recognize the change.

Caution

If you switch a warm standby WAAS Central Manager to primary while your primary WAAS Central Manager is still online and active, both WAAS Central Managers detect each other, automatically shut themselves down, and disable management services. The WAAS Central Managers are switched to halted, which is automatically saved in flash memory. For information about how to return halted WAAS Central Managers to an online status, see the *Cisco Wide Area Application Services Configuration Guide*.

Caution

When you switch a WAAS Central Manager from primary to standby, the configuration on the Central Manager is erased. The Central Manager, after becoming a standby, will begin replicating its configuration information from whichever Central Manager is now the primary. If standby and primary units are not synchronized before switching roles, important configuration information can be lost. Before you use this command, see the *Cisco Wide Area Application Services Configuration Guide*.

Examples

The following example specifies that the WAAS device named waas-cm is to function as the primary WAAS Central Manager for the WAAS network:

```
waas-cm(config)# central-manager role primary
```

The following example specifies the WAE should register with the WAAS Central Manager that has an IP address of 10.1.1.1. This command associates the WAE with the primary WAAS Central Manager so that the WAE can be approved as a part of the WAAS network.

```
WAE(config)# central-manager address 10.1.1.1
```

The following example configures a new GUI port to access the WAAS Central Manager GUI:

```
WAE(config)# central-manager ui port 8550
```

The following example configures the WAAS Central Manager as the standby WAAS Central Manager:
WAE(config)# **central-manager role standby**
Switching CDM to standby will cause all configuration settings made on this CDM to be lost.
Please confirm you want to continue [no]?yes
Restarting CMS services
(config) clock

To set the summer daylight savings time and time zone for display purposes, use the clock global configuration command. To disable this function, use the no form of this command.

```plaintext
clock \{summertime timezone \{date startday startmonth startyear starthour endday endmonth endyear offset \\{recurring \{1-4 startweekday startmonth starthour endweekday endmonth endhour offset \\{first startweekday startmonth starthour endweekday endmonth endhour offset \\{last startweekday startmonth starthour endweekday endmonth endhour offset \} \\} \\}\\}\timezone \{timezone hoursoffset minutesoffset \}\}
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>summertime</td>
<td>Configures the summer or daylight saving time.</td>
</tr>
<tr>
<td>timezone</td>
<td>Name of the summer time zone.</td>
</tr>
<tr>
<td>date</td>
<td>Configures the absolute summer time.</td>
</tr>
<tr>
<td>startday</td>
<td>Date (1–31) to start.</td>
</tr>
<tr>
<td>startmonth</td>
<td>Month (January through December) to start.</td>
</tr>
<tr>
<td>startyear</td>
<td>Year (1993–2032) to start.</td>
</tr>
<tr>
<td>starthour</td>
<td>Hour (0–23) to start in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>endday</td>
<td>Date (1–31) to end.</td>
</tr>
<tr>
<td>endmonth</td>
<td>Month (January through December) to end.</td>
</tr>
<tr>
<td>endyear</td>
<td>Year (1993–2032) to end.</td>
</tr>
<tr>
<td>endhour</td>
<td>Hour (0–23) to end in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>offset</td>
<td>Minutes offset (see the table below in the “Usage Guidelines” section) from UTC (0–59).</td>
</tr>
<tr>
<td>recurring</td>
<td>Configures the recurring summer time.</td>
</tr>
<tr>
<td>1-4</td>
<td>Configures the starting week number 1–4.</td>
</tr>
<tr>
<td>first</td>
<td>Configures the summer time to recur beginning the first week of the month.</td>
</tr>
<tr>
<td>last</td>
<td>Configures the summer time to recur beginning the last week of the month.</td>
</tr>
<tr>
<td>startweekday</td>
<td>Day of the week (Monday–Friday) to start.</td>
</tr>
<tr>
<td>startmonth</td>
<td>Month (January–December) to start.</td>
</tr>
<tr>
<td>starthour</td>
<td>Hour (0–23) to start in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>endweekday</td>
<td>Weekday (Monday–Friday) to end.</td>
</tr>
<tr>
<td>endmonth</td>
<td>Month (January–December) to end.</td>
</tr>
<tr>
<td>endhour</td>
<td>Hour (0–23) to end in hour:minute (hh:mm) format.</td>
</tr>
<tr>
<td>offset</td>
<td>Minutes offset (see the table below in the “Usage Guidelines” section) from UTC (0–59).</td>
</tr>
<tr>
<td>timezone</td>
<td>Configures the standard time zone.</td>
</tr>
<tr>
<td>timezone</td>
<td>Name of the time zone. (see the table below in the “Usage Guidelines” section.)</td>
</tr>
<tr>
<td>hoursoffset</td>
<td>Hours offset (see the table below in the “Usage Guidelines” section) from UTC (–23 to +23).</td>
</tr>
<tr>
<td>minutesoffset</td>
<td>Minutes offset (see the table below in the “Usage Guidelines” section) from UTC (0–59).</td>
</tr>
</tbody>
</table>
Chapter 3 CLI Commands

(config) clock

Defaults
No default behavior or values

Command Modes
global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
To set and display the local and UTC current time of day without an NTP server, use the clock timezone command with the clock set command. The clock timezone parameter specifies the difference between UTC and local time, which is set with the clock set EXEC command. The UTC and local time are displayed with the show clock detail EXEC command.

Use the clock timezone offset command to specify a time zone, where timezone is the desired time zone entry listed in the table below and 0 0 is the offset (ahead or behind) UTC is in hours and minutes. (UTC was formerly known as Greenwich mean time [GMT]).

WAE(config)# clock timezone timezone 0 0

Note
The time zone entry is case sensitive and must be specified in the exact notation listed in Table 3-100. When you use a time zone entry from the time zone table, the system is automatically adjusted for daylight saving time.

Table 3-100 Time Zone—Offsets from UTC

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa/Algiers</td>
<td>+1</td>
</tr>
<tr>
<td>Africa/Cairo</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Casablanca</td>
<td>0</td>
</tr>
<tr>
<td>Africa/Harare</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Johannesburg</td>
<td>+2</td>
</tr>
<tr>
<td>Africa/Nairobi</td>
<td>+3</td>
</tr>
<tr>
<td>America/Buenos_Aires</td>
<td>-3</td>
</tr>
<tr>
<td>America/Caracas</td>
<td>-4</td>
</tr>
<tr>
<td>America/Mexico_City</td>
<td>-6</td>
</tr>
<tr>
<td>America/Lima</td>
<td>-5</td>
</tr>
<tr>
<td>America/Santiago</td>
<td>-4</td>
</tr>
<tr>
<td>Atlantic/Azores</td>
<td>-1</td>
</tr>
<tr>
<td>Atlantic/Cape_Verde</td>
<td>-1</td>
</tr>
<tr>
<td>Asia/Almaty</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Baghdad</td>
<td>+3</td>
</tr>
</tbody>
</table>
Table 3-100 Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia/Baku</td>
<td>+4</td>
</tr>
<tr>
<td>Asia/Bangkok</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Colombo</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Dacca</td>
<td>+6</td>
</tr>
<tr>
<td>Asia/Hong_Kong</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Irkutsk</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Jerusalem</td>
<td>+2</td>
</tr>
<tr>
<td>Asia/Kabul</td>
<td>+4.30</td>
</tr>
<tr>
<td>Asia/Karachi</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Katmandu</td>
<td>+5.45</td>
</tr>
<tr>
<td>Asia/Krasnoyarsk</td>
<td>+7</td>
</tr>
<tr>
<td>Asia/Magadan</td>
<td>+11</td>
</tr>
<tr>
<td>Asia/Muscat</td>
<td>+4</td>
</tr>
<tr>
<td>Asia/New Delhi</td>
<td>+5.30</td>
</tr>
<tr>
<td>Asia/Rangoon</td>
<td>+6.30</td>
</tr>
<tr>
<td>Asia/Riyadh</td>
<td>+3</td>
</tr>
<tr>
<td>Asia/Seoul</td>
<td>+9</td>
</tr>
<tr>
<td>Asia/Singapore</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Taipei</td>
<td>+8</td>
</tr>
<tr>
<td>Asia/Tehran</td>
<td>+3.30</td>
</tr>
<tr>
<td>Asia/Vladivostok</td>
<td>+10</td>
</tr>
<tr>
<td>Asia/Yekaterinburg</td>
<td>+5</td>
</tr>
<tr>
<td>Asia/Yakutsk</td>
<td>+9</td>
</tr>
<tr>
<td>Australia/Adelaide</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Brisbane</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Darwin</td>
<td>+9.30</td>
</tr>
<tr>
<td>Australia/Hobart</td>
<td>+10</td>
</tr>
<tr>
<td>Australia/Perth</td>
<td>+8</td>
</tr>
<tr>
<td>Australia/Sydney</td>
<td>+10</td>
</tr>
<tr>
<td>Canada/Atlantic</td>
<td>–4</td>
</tr>
<tr>
<td>Canada/Newfoundland</td>
<td>–3.30</td>
</tr>
<tr>
<td>Canada/Saskatchewan</td>
<td>–6</td>
</tr>
<tr>
<td>Europe/Athens</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Berlin</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Bucharest</td>
<td>+2</td>
</tr>
<tr>
<td>Europe/Helsinki</td>
<td>+2</td>
</tr>
</tbody>
</table>
Table 3-100 Time Zone—Offsets from UTC (continued)

<table>
<thead>
<tr>
<th>Time Zone</th>
<th>Offset from UTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe/London</td>
<td>0</td>
</tr>
<tr>
<td>Europe/Moscow</td>
<td>+3</td>
</tr>
<tr>
<td>Europe/Paris</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Prague</td>
<td>+1</td>
</tr>
<tr>
<td>Europe/Warsaw</td>
<td>+1</td>
</tr>
<tr>
<td>Japan</td>
<td>+9</td>
</tr>
<tr>
<td>Pacific/Auckland</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Fiji</td>
<td>+12</td>
</tr>
<tr>
<td>Pacific/Guam</td>
<td>+10</td>
</tr>
<tr>
<td>Pacific/Kwajalein</td>
<td>–12</td>
</tr>
<tr>
<td>Pacific/Samoa</td>
<td>–11</td>
</tr>
<tr>
<td>US/Alaska</td>
<td>–9</td>
</tr>
<tr>
<td>US/Central</td>
<td>–6</td>
</tr>
<tr>
<td>US/Eastern</td>
<td>–5</td>
</tr>
<tr>
<td>US/East-Indiana</td>
<td>–5</td>
</tr>
<tr>
<td>US/Hawaii</td>
<td>–10</td>
</tr>
<tr>
<td>US/Mountain</td>
<td>–7</td>
</tr>
<tr>
<td>US/Pacific</td>
<td>–8</td>
</tr>
</tbody>
</table>

Examples

The following example specifies the local time zone as Pacific Standard Time with an offset of 8 hours behind UTC:

WAE(config)# clock timezone US/Pacific -8 0

The following example negates the time zone setting on the WAAS device:

WAE(config)# no clock timezone

The following example configures daylight saving time:

WAE(config)# clock summertime US/Pacific date 10 October 2005 23:59 29 April 2006 23:59 60

Related Commands

clock

show clock
(config) cms

To schedule maintenance and enable the Centralized Management System (CMS) on a WAAS device, use the `cms` global configuration command. To negate these actions, use the `no` form of this command.

```
cms {database maintenance {full {enable | schedule weekday at time} | regular {enable | schedule weekday at time}} | enable | rpc timeout {connection 5-1800 | incoming-wait 10-600 | transfer 10-7200}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>database maintenance</code></td>
<td>Configures the embedded database clean or reindex maintenance routine.</td>
</tr>
<tr>
<td><code>full</code></td>
<td>Configures the full maintenance routine and cleans the embedded database tables.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the full maintenance routine to be performed on the embedded database tables.</td>
</tr>
<tr>
<td><code>schedule</code></td>
<td>Sets the schedule for performing the maintenance routine.</td>
</tr>
<tr>
<td><code>weekday</code></td>
<td>Day of the week to start the maintenance routine.</td>
</tr>
<tr>
<td><code>every-day</code></td>
<td>Every day</td>
</tr>
<tr>
<td><code>Mon</code></td>
<td>every Monday</td>
</tr>
<tr>
<td><code>Tue</code></td>
<td>every Tuesday</td>
</tr>
<tr>
<td><code>Wed</code></td>
<td>every Wednesday</td>
</tr>
<tr>
<td><code>Thu</code></td>
<td>every Thursday</td>
</tr>
<tr>
<td><code>Fri</code></td>
<td>every Friday</td>
</tr>
<tr>
<td><code>Sat</code></td>
<td>every Saturday</td>
</tr>
<tr>
<td><code>Sun</code></td>
<td>every Sunday</td>
</tr>
<tr>
<td><code>at</code></td>
<td>Sets the maintenance schedule time of day to start the maintenance routine.</td>
</tr>
<tr>
<td><code>time</code></td>
<td>Time of day to start the maintenance routine (0–23:0–59) (hh:mm).</td>
</tr>
<tr>
<td><code>regular</code></td>
<td>Configures the regular maintenance routine and reindexes the embedded database tables.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the CMS process on the WAAS device.</td>
</tr>
<tr>
<td><code>rpc timeout</code></td>
<td>Configures the timeout values for remote procedure call connections.</td>
</tr>
<tr>
<td><code>connection</code></td>
<td>Specifies the maximum time to wait when making a connection.</td>
</tr>
<tr>
<td><code>5-1800</code></td>
<td>Timeout period in seconds. The default for the WAAS Central Manager is 30 seconds; the default for a WAE is 180 seconds.</td>
</tr>
<tr>
<td><code>incoming-wait</code></td>
<td>Specifies the maximum time to wait for a client response.</td>
</tr>
<tr>
<td><code>10-600</code></td>
<td>Timeout period in seconds. The default is 30 seconds.</td>
</tr>
<tr>
<td><code>transfer</code></td>
<td>Specifies the maximum time to allow a connection to remain open.</td>
</tr>
<tr>
<td><code>10-7200</code></td>
<td>Timeout period in seconds. The default is 300 seconds.</td>
</tr>
</tbody>
</table>
Defaults

- **database maintenance regular**: enabled
- **database maintenance full**: enabled
- **connection**: 30 seconds for WAAS Central Manager; 180 seconds for a WAE
- **incoming wait**: 30 seconds
- **transfer**: 300 seconds

Command Modes
global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the `cms database maintenance` global configuration command to schedule routine full maintenance cleaning (vacuuming) or a regular maintenance reindexing of the embedded database. The full maintenance routine runs only when the disk is more than 90 percent full and only runs once a week. Cleaning the tables returns reusable space to the database system.

The `cms enable` global configuration command automatically registers the node in the database management tables and enables the CMS process. The `no cms enable` global configuration command only stops the management services on the WAAS device. Use the `cms deregister` EXEC command to de-register (remove) a WAAS device from the WAAS network.

Examples
The following example schedules a regular (reindexing) maintenance routine to start every Friday at 11:00 p.m on the WAAS device:

```
WAE(config)# cms database maintenance regular schedule Fri at 23:00
```

The following example shows how to enable the CMS process on a WAAS device:

```
WAE(config)# cms enable
Generating new RPC certificate/key pair
Restarting RPC services
Registering Wide Area Central Manager...
Registration complete.
Please preserve running configuration using 'copy running-config startup-config'. Otherwise management service will not be started on reload and node will be shown 'offline' in Wide Area Central Manager UI.
management services enabled
```

Related Commands
- `cms`
- `show cms`
To configure the device mode for the WAAS device, use the `device mode` global configuration command. To reset the mode of operation on your WAAS device, use the `no` form of this command.

```
device mode {application-accelerator | replication-accelerator | central-manager}
```

Syntax Description

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>application-accelerator</td>
<td>Configures the WAAS device to function as a WAAS Accelerator. All of your Edge WAEs and Core WAEs should be operating in this mode or replication-accelerator mode.</td>
</tr>
<tr>
<td>replication-accelerator</td>
<td>Configures the WAAS device to function as a WAAS Accelerator for data center replication applications. All Core WAEs participating in the replication must be in replication-accelerator mode.</td>
</tr>
<tr>
<td>central-manager</td>
<td>Configures the WAAS device to function as a WAAS Central Manager.</td>
</tr>
</tbody>
</table>

Defaults

The default device operation mode is application-accelerator.

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

You must deploy the WAAS Central Manager on a dedicated appliance. In the WAAS 4.0 software release, the device mode feature was added, which allows you to deploy a WAAS device as either a WAAS Central Manager or a WAE. A WAAS device can operate in one device mode only. The set of WAAS CLI commands that are available vary based on the device mode of the WAAS device.

Note

A WAAS Central Manager is the device management station of a WAAS network. It allows you to centrally configure, manage, and monitor your WAEs.

By default, a WAAS device uses the application-accelerator mode, which makes it operate as a Wide Area Application Engine (WAE). Before you configure network settings for your WAAS Central Managers using the WAAS CLI, you must change the device mode to central-manager.

After you have changed the device mode to central-manager, use the `cms enable` global configuration command to enable WAAS network-related applications and services. Use the `no` form of this command to disable the WAAS network.

You cannot configure the WAE network module (any of the NME-WAE family of devices) as a Central Manager.
You can configure an inline WAE as a Central Manager, but the functionality of the inline feature will not be available.

Examples

The following example shows how to specify central manager as the device mode of a WAAS device:

```
WAE(config)# device mode central-manager
```

The following example shows how to specify application accelerator as the device mode of a WAAS device:

```
WAE(config)# device mode application-accelerator
```

The following example shows how to specify replication accelerator as the device mode of a WAAS device:

```
WAE(config)# device mode replication-accelerator
```

The following example shows how to change the device mode from central-manager to application-accelerator or replication-accelerator:

```
WAE(config)# device mode application-accelerator
```

Note

You must first use the `cms deregister force` command in EXEC mode to disable the Centralized Management System on the Central Manager, and then use the `device mode` command in global configuration mode.

```
WAE# cms deregister force
WAE(config)# device mode application-accelerator
WAE# copy running-config startup-config
```

Related Commands

`show device-mode`
(config) disk disk-name

To disable the disk for online removal, use the `disk disk-name` global configuration command. To reenable the disk, use the `no` form of this command.

```
disk disk-name diskxx shutdown [force]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diskxx</td>
<td>Name of the disk (disk00-disk05).</td>
</tr>
<tr>
<td>shutdown</td>
<td>Disables the disk for maintenance.</td>
</tr>
<tr>
<td>force</td>
<td>(Optional) When used with the <code>no</code> form of this command, forces a disk to be reenabled. This option is not available on RAID-5 systems.</td>
</tr>
</tbody>
</table>

Defaults

Disks enabled

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

This command replaces the `disk mark` EXEC mode command.

This command is not available on the WAE-7341 and WAE-7371 models. Instead, use the `disk disk-name diskxx replace` EXEC mode command.

Logical Disk Handling with RAID-1

RAID-1 is implemented in WAAS as a software feature. A RAID-1 WAAS device can use two disk drives to increase reliability. RAID-1 provides disk mirroring (data is written redundantly to two or more drives). The goal is higher reliability through redundancy. With RAID-1, file system write performance may be affected because each disk write must be executed against two disk drives. RAID-1 (mirroring) is used for all file systems on the RAID-1 device. This setup ensures reliable execution of the software in all cases.

The WAAS software uses the CONTENT file system for both the Wide Area File Services (WAFS) file system and the data redundancy elimination (DRE) cache.

Hot Swap for WAE-612, WAE-7326, WAE-7341, and WAE-7371 Disk Drives

This release of WAAS supports hot swap functionality for both failed disk replacement and scheduled disk maintenance. On the WAE-612 and WAE-7326, use the `disk disk-name diskxx shutdown` global configuration command to manually shut down a disk for scheduled disk maintenance. On the
WAE-7341 and WAE-7371, use the `disk disk-name diskxx replace` EXEC command to manually shut down a disk for scheduled disk maintenance. (For the schedule disk maintenance procedure, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 14.)

You must wait for the disk to be completely shut down before you physically remove the disk from the WAE. When the RAID removal process is complete, WAAS generates a disk failure alarm and trap. In addition, a syslog ERROR message is logged.

If the software removes a failed disk during the RAID rebuild process, a RAID rebuild failure alarm is generated. If you administratively shut down the disk during the RAID rebuild process, a RAID rebuild abort alarm is generated instead.

If the removal event occurs while the RAID is in the rebuild process, the RAID removal process may take up to one minute before it is successful. The exact duration of this process depends on the size of the disk.

Automatic Failed Disk Handling for RAID-1

The disk hot swap functionality automatically disables a failed disk if the system detects one critical disk alarm. The software will remove the failed disk automatically regardless of the setting for `disk error-handling`.

Replacing a Failed Disk

To administratively disable disks for removal, use the `disk disk-name` command in global configuration mode. To administratively reenable disks after replacement, use the `no` form of this command.

When a disk is manually shutdown, it remains shutdown until you enter the `no disk disk-name diskxx shutdown` command.

For RAID-1 devices, you may replace a disk that was previously identified as a bad disk by using the `disk disk-name diskxx shutdown force` command in global configuration mode to manually override the bad status.

Disk Information

To identify which disks have been identified as failed or bad, use the `show disks failed-disk-id` EXEC command. Do not reinsert any disk with a serial number shown in this list.

Note

The `show disks failed-disk-id` EXEC command is not available on WAE-7341 and WAE-7371 models.

Related Commands

- `(config) disk error-handling`
- `(config) disk logical shutdown`
- `disk`
- `show disks`
(config) disk encrypt enable

To enable disk encryption, use the **disk encrypt enable** global configuration command. To disable disk encryption, use the **no** form of this command.

```
disk encrypt enable
```

Syntax Description
There are no keywords or arguments for this command.

Defaults
Disk encryption is disabled by default.

Command Modes
- global configuration

Device Modes
- application-accelerator

Usage Guidelines
The disk encryption feature addresses the need to securely protect sensitive information that flows through deployed ACE service module systems and that is stored in ACE service module persistent storage. Disk encryption includes two aspects: the actual data encryption on the WAE disk and the encryption key storage and management.

When you enable disk encryption, all data in ACE service module persistent storage will be encrypted. The encryption key for unlocking the encrypted data is stored on the Central Manager, and key management is handled by the Central Manager. When you reboot the WAE after configuring disk encryption, the WAE retrieves the key from the Central Manager, allowing normal access to the data that is stored in ACE service module persistent storage.

Disk encryption requirements are as follows:

- You must have a Central Manager configured for use in your network.
- Your WAE devices must be registered with the Central Manager.
- Your WAE devices must be online (have an active connection) with the Central Manager. This requirement applies only if you are enabling disk encryption.
- You must reboot your WAE for the disk encryption configuration to take effect.

After you reboot your WAE, the encryption partitions are created using the new key, and any previously existing data is removed from the partition.

Any change to the disk encryption configuration, whether to enable or disable encryption, causes the disk to clear its cache. This feature protects sensitive customer data from being decrypted and accessed should the WAE ever be stolen.

If you enable disk encryption and then downgrade to a software version that does not support this feature, you cannot use the disk partitions. In such cases, you must delete the disk partitions after you downgrade.

To enable or disable disk encryption, use the **disk encrypt** global configuration command. When you enable or disable disk encryption, the file system is reinitialized during the first subsequent reboot. Reinitialization may take from ten minutes to several hours, depending on the size of the disk partitions. During this time, the WAE is accessible, but it does not provide any services.
If you change the Central Manager IP address, or if you relocate the Central Manager, or replace one Central Manager with another Central Manager that has not copied over all the information from the original Central Manager, and you reload the WAE when disk encryption is enabled, the WAE file system cannot complete the reinitialization process or obtain the encryption key from the Central Manager.

If the WAE fails to obtain the encryption key, disable disk encryption by using the `disk encrypt disable` global configuration command from the CLI, and reload the WAE. Ensure connectivity to the Central Manager before you enable disk encryption and reload the WAE. This process clears the disk cache.

To view the encryption status details, use the `show disks details` EXEC command. While the file system is initializing, `show disks details` displays the following message: “System initialization is not finished, please wait...” You may also view the disk encryption status, whether it is enabled or disabled, in the Central Manager GUI, Device Home window.

Related Commands

- `disk`
- `show disks`
(config) disk error-handling

To configure how disk errors are handled and to define a disk error-handling threshold on a WAAS device, use the `disk error-handling` global configuration command. Use the `no` form of this command to return to the default error-handling threshold.

```
disk error-handling { reload | remap | threshold number }
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reload</code></td>
<td>Reloads the disk if the system file system (SYSFS) on disk00 has problems.</td>
</tr>
<tr>
<td><code>remap</code></td>
<td>Sets the disk to attempt to remap disk errors automatically.</td>
</tr>
<tr>
<td><code>threshold</code></td>
<td>Sets the number of disk errors allowed before the disk is marked as bad.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Number of disk errors allowed before the disk is marked as bad (0–100). The default is 10. A value of zero indicates that the disk should never be marked bad.</td>
</tr>
</tbody>
</table>

Defaults

```
error-handling threshold number: 10
```

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

If you have a two-drive system, the RAID software protects the SYSFS from single-drive failures and prevents applications from seeing I/O errors. With this configuration, error handling need not be specified. For all other configurations, error handling should be specified.

To operate properly, the WAAS device must have a disk drive named disk00. The WAAS device must also contain a disk drive that contains the first SYSFS (system file system) partition. The SYSFS partition is used to store log files, including system logs and internal debugging logs. It may also be used to store image files and configuration files on a WAAS device. Disk00 always contains the SYSFS partition. When software RAID is applied, the SYSFS partitions are contained on both disk00 and disk01. In either case, the disk00 disk and the disk that contains the first SYSFS partition are called critical drives and are required for proper operation of the WAAS device.

When a WAE is booted and a critical disk drive is not detected at system startup time, the WAAS device runs at a degraded state. If one of the critical disk drives becomes inoperable at run time, the WAAS device can exhibit symptoms such as the applications malfunctioning or failing, or the WAAS device can stop responding. You must monitor the critical disk drives on a WAAS device and report any disk drive errors to Cisco TAC.
With a WAAS device, a disk device error is defined as any of the following events:

- A SCSI or IDE device error is printed by the Linux kernel.
- A disk device access by an application (for example, an open(2), read(2), or write(2) system call) fails with an EIO error code.
- A disk device that existed at startup time is not accessible at run time.

The disk status is recorded in Flash memory (nonvolatile storage). When an error occurs on the disk drive of a WAAS device, a message is written to the system log (syslog) if the SYSFS partition is still intact, and an SNMP trap is generated if SNMP is configured on the WAAS device.

Specifying the Disk Error-Handling Threshold

You can define a disk device error-handling threshold on the WAAS device. If the number of disk device errors reaches the specified threshold, the corresponding disk device is automatically marked as bad. By default, this threshold is set to 10. The device does not stop using the bad disk device immediately; it stops using the bad disk drive after the next reboot.

To change the default threshold, use the `disk error-handling threshold` global configuration command. Specify 0 if you never want the disk drive to be marked as bad.

If the specified threshold is exceeded, the WAAS device either records this event or reboots. If the bad disk drive is a critical disk drive, and the automatic reload feature (`disk error-handling reload` command) is enabled, then the WAAS software marks the disk drive as bad, and the WAAS device is automatically reloaded. After the WAAS device is reloaded, a syslog message and an SNMP trap are generated.

By default, the automatic reload feature is disabled on a WAAS device. To enable the automatic reload feature, use the `disk error-handling reload` global configuration command. After enabling the automatic reload feature, use the `no disk error-handling reload` global configuration command to disable it.

Examples

The following example shows how to configure five disk drive errors for a particular disk drive (for example, disk00) as the maximum number of errors allowed before the disk drive is automatically marked as bad:

```
WAE(config)# disk error-handling threshold 5
```

Related Commands

- `disk`
- `show disks`
(config) disk logical shutdown

To shutdown the RAID-5 logical disk drive, use the `disk logical shutdown` global configuration command. To reenable the RAID-5 logical disk drive, use the `no` form of this command.

```
disk logical shutdown
```

Syntax Description
There are no keywords or arguments for this command.

Defaults
The RAID-5 array is enabled by default.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
This command is supported on WAE-7341 and WAE-7371 models only.
Use this command to operate the WAE-7341 or WAE-7371 in diskless mode. In diskless mode, the partitions and disks are not mounted and cannot be used.
You must reload the device for this command to take effect.
(config) egress-method

To configure the egress method for intercepted connections, use the `egress-method` global configuration command.

```
(egress-method) {ip-forwarding | negotiated-return} intercept-method wccp
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-forwarding</td>
<td>Configures the IP forwarding egress method.</td>
</tr>
<tr>
<td>negotiated-return</td>
<td>Configures the WCCP negotiated return egress method.</td>
</tr>
<tr>
<td>intercept-method</td>
<td>Chooses for which interception method the egress method is being configured.</td>
</tr>
<tr>
<td>wccp</td>
<td>Configures the egress method for WCCP interception.</td>
</tr>
</tbody>
</table>

Defaults

The default egress method is IP forwarding.

Command Modes

`global configuration`

Device Modes

`application-accelerator`

Usage Guidelines

WCCP interception mode supports two egress configuration options: IP forwarding and negotiated return. Negotiated return supports WCCP GRE as the WCCP egress method.

WCCP GRE packet return allows you to place WAEs on the same VLAN or subnet as clients and servers, a topology that is not allowed when using the IP forwarding egress method. For optimized flows, WCCP GRE packet return also provides “best effort” support for redundant routers and router load balancing.

When you configure WCCP GRE as the egress method, WAAS makes a best effort to maintain the original router selection when router load balancing is used in the network. WAAS applies the following logic in its router selection for WCCP GRE:

- When WAAS applies DRE and compression to a TCP flow, the number of packets sent out may be fewer, such that a single packet carrying optimized data may represent original data that was received in multiple packets redirected from different routers. That optimized data-carrying packet egresses from the WAE to the router that last redirected a packet to the WAE for that flow direction.

- When the WAE receives optimized data, the data may arrive in multiple packets from different routers. WAAS expands the optimized data back to the original data, which is sent out as several packets. Those original data-carrying packets egress from the WAE to the router that last redirected a packet to the WAE for that flow direction.

Negotiated return supports WCCP GRE as the only WCCP egress method. When WCCP negotiates WCCP L2 return, the WAE defaults to using IP forwarding as the egress method. You do not receive any notification if the negotiated egress method defaults to IP forwarding; however, a syslog message is generated if such a case occurs.

The default egress method is IP forwarding. If you do not configure the `negotiated-return` option, IP forwarding is used.
WCCP bypass flows, however, use the WCCP negotiated return method and not IP forwarding, regardless of the CLI configuration.

Note
The WCCP GRE egress method does not apply to the inline mode of operation.

Examples
To configure the egress method for WCCP interception mode from the Central Manager GUI, choose Devices > Devices > Interception > Egress Methods.

The following example shows how to configure the interception and egress method for WCCP GRE packet return from the CLI:

```
WAE(config)# egress-method negotiated-return intercept-method wccp
```

The following example shows how to configure the interception and egress method for IP forwarding from the CLI:

```
WAE(config)# egress-method ip-forwarding intercept-method wccp
```

To view the egress method that is configured and that is being used on a particular WAE, use the show egress-methods EXEC command or the show tfo egress-methods connection EXEC command.

Related Commands
- `show egress-methods`
- `show tfo egress-methods connection`
- `(config) wccp tcp-promiscuous`
Command: (config) end

To exit global configuration mode, use the `end` global configuration command.

```
end
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the `end` command to exit global configuration mode after completing any changes to the running configuration. To save new configurations to NVRAM, use the `write` command.

The `Ctrl-Z` command also exits global configuration mode.

Examples
The following example shows how to exit global configuration mode on a WAAS device:

```
WAE(config)# end
WAE#
```

Related Commands
(config) exit
(config) exec-timeout

To configure the length of time that an inactive Telnet or SSH session remains open on a WAAS device, use the `exec-timeout` global configuration command. To revert to the default value, use the `no` form of this command.

```
exec-timeout timeout
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>timeout</td>
<td>Timeout in minutes (0–44640).</td>
</tr>
</tbody>
</table>

Defaults

- The default is 15 minutes.

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

A Telnet session or Secure Shell (SSH) session with the WAAS device can remain open and inactive for the interval of time specified by the `exec-timeout` command. When the `exec-timeout` interval elapses, the WAAS device automatically closes the Telnet or SSH session.

Examples

The following example configures a timeout of 100 minutes:

```
WAE(config)# exec-timeout 100
```

The following example negates the configured timeout of 100 minutes and reverts to the default value of 15 minutes:

```
WAE(config)# no exec-timeout
```

Related Commands

- `telnet enable`
(config) exit

To terminate global configuration mode and return to the privileged-level EXEC mode, use the exit command.

exit

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
All modes

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
This command is equivalent to the Ctrl-Z or the end command.

Examples
The following example terminates global configuration mode and returns to the privileged-level EXEC mode:
WAE(config)# exit
WAE#

Related Commands
(config) end
(config) external-ip

To configure up to eight external Network Address Translation (NAT) IP addresses on a WAE, use the `external-ip` global configuration command. To remove the NAT IP addresses, use the `no` form of this command.

```
external-ip ip-addresses
```

Syntax Description

| `ip-addresses` | A maximum of eight external or NAT IP addresses can be configured. |

Defaults

No default behavior or values

Command Modes

`global configuration`

Device Modes

`application-accelerator`

Usage Guidelines

Use this command to configure up to eight NAT IP addresses on a WAE to allow the router to translate up to eight internal addresses to registered unique addresses and translate external registered addresses to addresses that are unique to the private network.

In a WAAS network, there are two methods for a WAE that is registered with a WAAS Central Manager to obtain configuration information from the primary WAAS Central Manager. The primary method is for the device to periodically poll the primary WAAS Central Manager on port 443 to request a configuration update. You cannot configure this port number. The backup method is when the WAAS Central Manager pushes configuration updates to a registered device as soon as possible by issuing a notification to the registered device on port 443. This method allows changes to take effect in a more timely manner. You cannot configure this port number even when the backup method is being used. WAAS networks do not work reliably if devices registered with the WAAS Central Manager are unable to poll the WAAS Central Manager for configuration updates.

When a WAAS device (WAEs at the edge of the network and the primary or standby WAAS Central Managers) is inside a NAT firewall, those devices that are inside the same NAT use one IP address (the inside local IP address) to access the device and those devices that are outside the NAT use a different IP address (the NAT IP address or inside global IP address) to access the device. A centrally managed device advertises only its inside local IP address to the WAAS Central Manager. All other devices inside the NAT use the inside local IP address to contact the centrally managed device that resides inside the NAT. A device that is not inside the same NAT as the centrally managed device cannot contact it without a special configuration.

If the primary WAAS Central Manager is inside a NAT, you can allow a WAAS device outside the NAT to poll it for `getUpdate` requests by configuring a static translation (NAT IP address or inside global IP address) for the WAAS Central Manager’s inside local IP address on its NAT, and using this address, rather than the WAAS Central Manager’s inside local IP address in the `central manager address ip-address` global configuration command when you register the WAAS device to the WAAS Central Manager. If a WAAS device is inside a NAT and the WAAS Central Manager is outside the NAT, you can allow the WAAS device to poll for `getUpdate` requests by configuring a static translation (NAT IP address or inside global IP address) for the WAE inside local address on its NAT.
Note

Static translation establishes a one-to-one mapping between your inside local address and an inside global address. Static translation is useful when a host on the inside must be accessible by a fixed address from the outside.

Examples

The following example configures four external NAT IP addresses on a WAAS device:

```
WAE(config)# external-ip 192.168.43.1 192.168.43.2 192.168.43.3 192.168.43.4
```

Related Commands

- (config) interface
- (config) ip
- (config-if) ip
To enable network traffic flow monitoring and to register the WAE with the tcpstat-v1 collector for traffic analysis, use the `flow monitor` global configuration command. To disable the network traffic flow configuration, use the `no` form of this command.

```
flow monitor tcpstat-v1 {enable | host ip_address}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>Monitors the flow performance.</td>
</tr>
<tr>
<td>tcpstat-v1</td>
<td>Sets the tcpstat-v1 collector configuration.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables flow monitoring.</td>
</tr>
<tr>
<td>host</td>
<td>Specifies the collection control agent.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of the collection control agent.</td>
</tr>
</tbody>
</table>

Defaults

The default configuration has no host address configured and the feature is disabled.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

For procedures to configure flow monitoring on the WAE, see the *Cisco Wide Area Application Services Configuration Guide*, Chapter 15.

For information about using the NetQoS SuperAgent console and configuring NetQoS SuperAgent entities, go to the following website: http://www.netqos.com
To obtain online help for the command-line interface, use the `help` global configuration command.

```
help
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
EXEC and global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
You can obtain help at any point in a command by entering a question mark (`?`). If nothing matches, the help list will be empty, and you must back up until entering a `?` shows the available options.

Two styles of help are provided:
- Full help is available when you are ready to enter a command argument (for example, `show ?`) and describes each possible argument.
- Partial help is provided when you enter an abbreviated command and you want to know what arguments match the input (for example, `show stat?`).

Examples
The following example shows the output of the `help` global configuration command:

```
WAE# configure
WAE(config)# help
Help may be requested at any point in a command by entering a question mark '?'. If nothing matches, the help list will be empty and you must backup until entering a '?' shows the available options.

Two styles of help are provided:
1. Full help is available when you are ready to enter a command argument (for example, `show ?`) and describes each possible argument.
2. Partial help is provided when an abbreviated argument is entered.

The following example shows how to use full help to see what WCCP command arguments are available:

```
WAE# configure
WAE(config)# wccp ?
access-list Configure an IP access-list for inbound WCCP encapsulate traffic
flow-redirect Redirect moved flows
router-list Router List for use in WCCP services
shutdown Wccp Shutdown parameters
slow-start accept load in slow-start mode
```
tcp-promiscuous  TCP promiscuous mode service
version        WCCP Version Number

The following example shows how to use partial help to determine the syntax of a WCCP argument:

WAE(config)# wccp tcp ?
mask Specify mask used for CE assignment
router-list-num Router list number
(config) hostname

To configure the network hostname on a WAAS device, use the `hostname` global configuration command. To reset the hostname to the default setting, use the `no` form of this command.

`hostname name`

**Syntax Description**

| name         | New hostname for the WAAS device; the name is case sensitive. The name may be from 1 to 30 alphanumeric characters. |

**Defaults**

The default hostname is the model number of the WAAS device (for example WAE-511, WAE-611, or WAE-7326).

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

Use this command to configure the hostname for the WAAS device. The hostname is used for the command prompts and default configuration filenames. This name is also used for routing, so it conforms to the following rules:

- It can use only alphanumeric characters and hyphens (-).
- The maximum length is 30 characters.
- The following characters are considered illegal and cannot be used when naming a device: @, #, $, %, ^, &, *, (), |, ", /, <, >.

**Examples**

The following example changes the hostname of the WAAS device to `sandbox`:

```
WAE-511(config)# hostname sandbox
Sandbox(config)#
```

The following example removes the hostname:

```
Sandbox(config)# no hostname
WAE-511(config)#
```

**Related Commands**

- `dnslookup`
- `(config) ip`
- `(config-if) ip`
(config) hostname

show hosts
(config) inetd enable

To enable FTP and RCP services on a WAAS device, use the `inetd enable` global configuration command. To disable these same services, use the `no` form of this command.

`inetd enable {ftp | rcp}`

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>Enables FTP services.</td>
</tr>
<tr>
<td>rcp</td>
<td>Enables RCP services.</td>
</tr>
</tbody>
</table>

**Defaults**

FTP is enabled; RCP is disabled.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

Inetd (an Internet daemon pronounced eye net dee) is a program that listens for connection requests or messages for certain ports and starts server programs to perform the services associated with those ports. Use the `inetd enable` command with the `ftp` and `rcp` keywords to enable and disable services on the WAAS device. To disable the service, enter the `no` form of the `inetd enable` command. Use the `show inetd` EXEC command to see whether current `inetd` sessions are enabled or disabled.

**Examples**

The following example enables an FTP service session on the WAAS device:

```
WAE(config)# inetd enable ftp
```

The following example disables FTP services:

```
WAE(config)# no inetd enable ftp
```

**Related Commands**

- `show inetd`
(config) interface

To configure a Gigabit Ethernet, InlineGroup, port-channel, or standby interface, use the `interface` global configuration command. To disable selected options, restore default values, or enable a shutdown interface, use the `no` form of this command.

```
interface GigabitEthernet slot/port [autosense | bandwidth {10 | 100 | 1000} | cdp enable | channel-group {1} | description text | full-duplex | half-duplex | ip {access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary]} | dhcp [client-id id hostname name | hostname name client-id id]} | mtu mtusize | shutdown | standby grpnumber [priority priority]]
```

```
interface InlineGroup slot/grpnumber [autosense | bandwidth {10 | 100 | 1000} | failover timeout {1 | 3 | 5} | full-duplex | half-duplex | inline [vlan all | native | vlan_list]] | shutdown
```

```
interface PortChannel {1} [description text | ip {access-group {acl-num | acl_name} {in | out} | address ip-address netmask}] | shutdown
```

```
interface Standby grpnumber [description text | errors max-error-number | ip ip_address | no {description text | errors max-error-number | ip ip_address | shutdown}] | shutdown
```

### Syntax Description

<table>
<thead>
<tr>
<th><strong>GigabitEthernet</strong></th>
<th>Selects a Gigabit Ethernet interface to configure.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>slot/port</strong></td>
<td>Slot and port number for the selected interface. The slot range is 0–2; the port range is 0–3. The slot number and port number are separated with a forward slash character (/).</td>
</tr>
<tr>
<td><strong>autosense</strong></td>
<td>(Optional) Sets the GigabitEthernet interface to automatically sense the interface speed.</td>
</tr>
<tr>
<td><strong>bandwidth</strong></td>
<td>(Optional) Sets the bandwidth of the specified interface.</td>
</tr>
<tr>
<td><strong>10</strong></td>
<td>Sets the bandwidth of the interface to 10 megabits per second (Mbps).</td>
</tr>
<tr>
<td><strong>100</strong></td>
<td>Sets the bandwidth of the interface to 100 Mbps.</td>
</tr>
<tr>
<td><strong>1000</strong></td>
<td>Sets the bandwidth of the interface to 1000 Mbps. This option is not available on all ports and is the same as autosense.</td>
</tr>
<tr>
<td><strong>cdp enable</strong></td>
<td>(Optional) Enables Cisco Discovery Protocol (CDP) on the specified interface.</td>
</tr>
<tr>
<td><strong>channel-group</strong></td>
<td>(Optional) Configures the EtherChannel group.</td>
</tr>
<tr>
<td><strong>1</strong></td>
<td>Assigns the interface EtherChannel to group 1.</td>
</tr>
<tr>
<td><strong>description</strong></td>
<td>Enters a description of the interface.</td>
</tr>
<tr>
<td><strong>text</strong></td>
<td>Text describing this interface.</td>
</tr>
<tr>
<td><strong>full-duplex</strong></td>
<td>(Optional) Sets the interface to full-duplex operation.</td>
</tr>
<tr>
<td><strong>half-duplex</strong></td>
<td>(Optional) Sets the interface to half-duplex operation.</td>
</tr>
<tr>
<td><strong>ip</strong></td>
<td>(Optional) Enables IP configuration commands for the interface.</td>
</tr>
<tr>
<td><strong>access-group</strong></td>
<td>Configures access control for IP packets on this interface using access control list (ACL).</td>
</tr>
</tbody>
</table>

**Note** We strongly recommend that you do not use half-duplex connections on the WAE or on routers, switches, or other devices.
### Interface Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl_num</td>
<td>Numeric identifier that identifies the ACL to apply to the current interface. For standard ACLs, the valid range is 1–99; for extended ACLs, the valid range is 100–199.</td>
</tr>
<tr>
<td>acl_name</td>
<td>Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.</td>
</tr>
<tr>
<td>in</td>
<td>Applies the specified ACL to inbound packets on the current interface.</td>
</tr>
<tr>
<td>out</td>
<td>Applies the specified ACL to outbound packets on the current interface.</td>
</tr>
<tr>
<td>address</td>
<td>Sets the interface IP address.</td>
</tr>
<tr>
<td>ip-address</td>
<td>IP address of this interface.</td>
</tr>
<tr>
<td>netmask</td>
<td>Netmask of this interface.</td>
</tr>
<tr>
<td>secondary</td>
<td>(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
<tr>
<td>dhcp</td>
<td>(Optional) Sets the IP address to that negotiated over Dynamic Host Configuration Protocol (DHCP).</td>
</tr>
<tr>
<td>client-id</td>
<td>(Optional) Specifies the client identifier.</td>
</tr>
<tr>
<td>id</td>
<td>Client identifier.</td>
</tr>
<tr>
<td>hostname</td>
<td>(Optional) Specifies the hostname.</td>
</tr>
<tr>
<td>name</td>
<td>Hostname.</td>
</tr>
<tr>
<td>mtu</td>
<td>(Optional) Sets the interface Maximum Transmission Unit (MTU) size.</td>
</tr>
<tr>
<td>mtusize</td>
<td>MTU size in bytes (88–1500).</td>
</tr>
<tr>
<td>shutdown</td>
<td>(Optional) Shuts down this interface.</td>
</tr>
<tr>
<td>standby</td>
<td>(Optional) Sets standby interface configuration commands.</td>
</tr>
<tr>
<td>grpnumber</td>
<td>Standby group number (1–4).</td>
</tr>
<tr>
<td>priority</td>
<td>(Optional) Sets the priority of an interface for the standby group.</td>
</tr>
<tr>
<td>priority</td>
<td>Interface priority for the standby group (0–4294967295).</td>
</tr>
<tr>
<td>InlineGroup</td>
<td>Sets the InlineGroup of interfaces to configure.</td>
</tr>
<tr>
<td>slot/grpnumber</td>
<td>Slot and inline group number for the selected interface. The group number for the inline feature is either 0 or 1 (each adapter has 2 grouped pairs).</td>
</tr>
<tr>
<td>failover</td>
<td>(Optional) Modifies failover parameters.</td>
</tr>
<tr>
<td>timeout</td>
<td>Sets the maximum time for the inline group of interfaces to transfer traffic to another port in the group after a failover event.</td>
</tr>
<tr>
<td>1</td>
<td>Number of seconds before failover occurs.</td>
</tr>
<tr>
<td>3</td>
<td>Number of seconds before failover occurs.</td>
</tr>
<tr>
<td>5</td>
<td>Number of seconds before failover occurs.</td>
</tr>
<tr>
<td>inline</td>
<td>(Optional) Enables inline interception for an InlineGroup of interfaces.</td>
</tr>
<tr>
<td>vlan</td>
<td>(Optional) Modifies the VLAN list parameters.</td>
</tr>
<tr>
<td>all</td>
<td>Applies the command to all tagged and untagged packets.</td>
</tr>
<tr>
<td>native</td>
<td>Specifies untagged packets.</td>
</tr>
<tr>
<td>vlan_list</td>
<td>Comma-separated list of VLAN IDs. Restricts the inline feature to the specified set of VLANs.</td>
</tr>
<tr>
<td>PortChannel</td>
<td>Selects the EtherChannel of interfaces to configure.</td>
</tr>
<tr>
<td>1</td>
<td>Sets the port-channel interface number to 1.</td>
</tr>
</tbody>
</table>
(config) interface

**Errors**

<table>
<thead>
<tr>
<th>errors</th>
<th>Specifies the maximum error number.</th>
</tr>
</thead>
<tbody>
<tr>
<td>max-error-number</td>
<td>Maximum number of errors.</td>
</tr>
<tr>
<td>ip</td>
<td>Specifies the IP address of the interface.</td>
</tr>
<tr>
<td>ip_address</td>
<td>IP address of the interface.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values

**Command Modes**

Global configuration

**Device Modes**

Application-accelerator

Replication-accelerator

Central-manager

**Usage Guidelines**

The `interface` command contains an option for `FibreChannel`; however, the FibreChannel interface is not supported for WAAS devices. The `interface FibreChannel` command is not documented in this Command Reference.

To configure an interface bandwidth on a WAAS device, use the `bandwidth` interface configuration command. The bandwidth is specified in megabits per second (Mbps). The **1000 Mbps** option is not available on all ports. Using this option automatically enables autosense on the interface. You cannot change the interface speed on a WAE-7320 model that has an optical Gigabit Ethernet interface. Gigabit Ethernet interfaces only run at 1000 Mbps for a WAE-7320. For newer models of the WAAS device (for example, the WAE-611 or WAE-7326) that have a Gigabit Ethernet interface over copper, this restriction does not apply; you can configure these Gigabit Ethernet interfaces to run at 10, 100, or 1000 Mbps. On newer WAAS models, the 1000-Mbps setting implies autosense. For example, you cannot configure the Gigabit Ethernet interface to run at 1000 Mbps and half duplex.

Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces. If you want to control CDP behavior per interface, then use the `cdp enable` command in interface configuration mode. The interface level control overrides the global control.

To display the interface identifiers (for example, interface GigabitEthernet 1/0), use the `show running-config` or `show startup-config` commands. The `autosense`, `bandwidth`, `full-duplex`, `half-duplex`, `ip`, and `shutdown` commands are listed separately in this command reference.

**Configuring Multiple Secondary IP Addresses on a Single Physical Interface**

Use the `interface secondary` global configuration command to configure more than one IP address on the same interface. By configuring multiple IP addresses on a single interface, the WAAS device can be present in more than one subnet. This configuration allows you to optimize the response time because the content goes directly from the WAAS device to the requesting client without being redirected through a router. The WAAS device becomes visible to the client because both are configured on the same subnet.

Up to four secondary addresses can be assigned to an interface. These addresses become active only after the primary address is configured. No two interfaces can have the same IP address in the same subnetwork. To set these secondary IP addresses, use the `ip address` command.
If a WAAS device has one physical interface that has multiple secondary IP addresses assigned to it, the egress traffic uses the source IP address that is chosen by IP routing. If the secondary IP addresses of a WAAS device in the same subnet as the primary IP address, then the egress traffic uses the primary IP address only. In contrast, if the secondary IP addresses are in a different subnet than the primary IP address, then the destination IP address determines which IP address on the WAAS device is used for the egress traffic.

**Configuring Interfaces for DHCP**

During the initial configuration of a WAAS device, you have the option of configuring a static IP address for the WAAS device or using interface-level DHCP to dynamically assign IP addresses to the interfaces on the WAAS device.

If you do not enable interface-level DHCP on the WAAS device, you must manually specify a static IP address and network mask for the WAAS device. If the WAAS device moves to another location in another part of the network, you must manually enter a new static IP address and network mask for this WAAS device.

An interface can be enabled for DHCP by using the `ip address dhcp [client_id | hostname]` interface configuration command. The client identifier is an ASCII value. The WAAS device sends its configured client identifier and hostname to the DHCP server when requesting network information. DHCP servers can be configured to identify the client identifier information and the hostname information that the WAAS device is sending and then send back the specific network settings that are assigned to the WAAS device.

**Note**

You must disable autoregistration before you can manually configure an interface for DHCP. Autoregistration is enabled by default on the first interface of the device.

**Defining Interface Descriptions**

You can specify a one-line description for a specific interface on a WAAS device. Use the `description text interface configuration command to enter the description for the specific interface. The maximum length of the description text is 240 characters. This feature is supported for the Gigabit Ethernet, port-channel, and Standby interfaces.

**Note**

This feature is not currently supported for the SCSI or IDE interfaces.

After you define the description for an interface, use the `show EXEC commands to display the defined interface descriptions. Enter the `show interface interface type slot/port EXEC command to display the defined description for a specific interface on the WAE.

**Port-Channel (EtherChannel) Interface**

EtherChannel for the WAAS software supports the grouping of two same-speed network interfaces into one virtual interface. This configuration allows you to set or remove a virtual interface that consists of the two integrated Gigabit Ethernet interfaces. EtherChannel also provides interoperability with Cisco routers, switches, and other networking devices or hosts supporting EtherChannel, load balancing, and automatic failure detection and recovery based on each interface’s current link status.

**Note**

You cannot use the inline Ethernet interfaces that are located on the WAE inline network adapter to form an EtherChannel.
**InlineGroup Interface**

An InlineGroup interface is a logical grouping of a pair of Ethernet ports that are physically contained in the optional 4-port inline network adapter card. The inline network adapter is supported on all WAAS appliance platforms beginning with the WAAS 4.0.7 release. You can have up to two InlineGroup interfaces, which allows for two bypass-enabled paths for traffic to pass through the WAE appliance, making multiple-router deployments possible. The InlineGroup interfaces provide failover capability and can be assigned to any desired set of VLANs. (For examples of InlineGroup interface configurations, see the “(config-if) inline” command.)

You can configure the InlineGroup interface for link speed (**bandwidth** or **autosense**) and mode of operation (**half-duplex** or **full-duplex**).

**Note**

We strongly recommend that you do not use half-duplex connections on the WAE or on routers, switches, or other devices. Use of half-duplex impedes the system’s ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full-duplex is configured.

---

**Examples**

The following example configures an attribute of an interface with a single CLI command:

```
WAE(config)# interface GigabitEthernet 1/0 full-duplex
```

The following example shows that an interface can be configured in a sequence of CLI commands:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# full-duplex
WAE(config-if)# exit
WAE(config)#
```

The following example enables a shutdown interface:

```
WAE(config)# no interface GigabitEthernet 1/0 shutdown
```

The following example creates an EtherChannel. The port channel is port channel 1 and is assigned an IP address of 10.10.10.10 and a netmask of 255.0.0.0:

```
WAE# configure
WAE(config)# interface PortChannel 1
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
```

The following example removes an EtherChannel:

```
WAE(config)# interface PortChannel 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
WAE(config)# no interface PortChannel 1
```

The following example adds an interface to a channel group:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# channel-group 1
WAE(config-if)# exit
```

The following example removes an interface from a channel group:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# no channel-group 1
WAE(config-if)# exit
```
The following example assigns a secondary IP address on a Gigabit Ethernet interface on a WAAS device using the `ip address` configuration interface command:

```plaintext
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# ip address 10.10.10.10 255.0.0.0 secondary
```

The following example configures a description for a Gigabit Ethernet interface:

```plaintext
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# description This is a GigabitEthernet interface.
```

The following example shows a sample output of the `show running-config` EXEC command:

```plaintext
WAE# show running-config
 .
 .
interface GigabitEthernet 1/0
 description This is an interface to the WAN
 ip address dhcp
 ip address 192.168.1.200 255.255.255.0
 no autosense
 bandwidth 100
 full-duplex
 exit
 .
 .
```

The following example shows the sample output of the `show interface` command:

```plaintext
WAE# show interface GigabitEthernet 1/0
Description: This is the interface to the lab
 type: Ethernet
 .
 .
```

**Related Commands**

- `show interface`
- `show running-config`
- `show startup-config`
To change initial network device configuration settings, use the `ip` global configuration command. To delete or disable these settings, use the `no` form of this command.

```
ip default-gateway ip-address
ip domain-name name1 name2 name3
ip name-server ip-addresses
ip path-mtu-discovery enable
ip route dest_addrs net_addrs gateway_addrs
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default-gateway</code></td>
<td>Specifies the default gateway (if not routing IP).</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the default gateway.</td>
</tr>
<tr>
<td><code>domain-name</code></td>
<td>Specifies domain names.</td>
</tr>
<tr>
<td><code>name1</code> through <code>name3</code></td>
<td>Domain name (up to three can be specified).</td>
</tr>
<tr>
<td><code>name-server</code></td>
<td>Specifies the address of the name server.</td>
</tr>
<tr>
<td><code>ip-addresses</code></td>
<td>IP addresses of the name servers (up to a maximum of eight).</td>
</tr>
<tr>
<td><code>path-mtu-discovery</code></td>
<td>Configures RFC 1191 Path Maximum Transmission Unit (MTU) discovery.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables Path MTU discovery.</td>
</tr>
<tr>
<td><code>route</code></td>
<td>Specifies the net route.</td>
</tr>
<tr>
<td><code>dest_addrs</code></td>
<td>Destination route address.</td>
</tr>
<tr>
<td><code>net_addrs</code></td>
<td>Netmask address.</td>
</tr>
<tr>
<td><code>gateway_addrs</code></td>
<td>Gateway address.</td>
</tr>
</tbody>
</table>

### Defaults

No default behavior or values

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines

To define a default gateway, use the `ip default-gateway` command. Only one default gateway can be configured. To remove the IP default gateway, use the `no` form of this command. The WAAS device uses the default gateway to route IP packets when there is no specific route found to the destination.
To define a default domain name, use the `ip domain-name` command. To remove the IP default domain name, use the `no` form of this command. Up to three domain names can be entered. If a request arrives without a domain name appended in its hostname, the proxy tries to resolve the hostname by appending `name1`, `name2`, and `name3` in that order until one of these names succeeds.

The WAAS device appends the configured domain name to any IP hostname that does not contain a domain name. The appended name is resolved by the DNS server and then added to the host table. The WAAS device must have at least one domain name server specified for hostname resolution to work correctly.

To specify the address of one or more name servers to use for name and address resolution, use the `ip name-server ip-addresses` command. To disable IP name servers, use the `no` form of this command. For proper resolution of the hostname to the IP address or the IP address to the hostname, the WAAS device uses DNS servers. Use the `ip name-server` command to point the WAAS device to a specific DNS server. You can configure up to eight servers.

Path MTU auto discovery discovers the MTU and automatically sets the correct value. Use the `ip path-mtu-discovery enable` command to start this autodiscovery utility. By default, this feature is enabled. When this feature is disabled, the sending device uses a packet size that is smaller than 576 bytes and the next hop MTU. Existing connections are not affected when this feature is turned on or off.

The WAAS software supports IP Path MTU Discovery, as defined in RFC 1191. When enabled, Path MTU Discovery discovers the largest IP packet size allowable between the various links along the forwarding path and automatically sets the correct value for the packet size. By using the largest MTU that the links will bear, the sending device can minimize the number of packets that it must send.

**Note**

IP Path MTU Discovery is useful when a link in a network goes down, forcing the use of another, different MTU-sized link. IP Path MTU Discovery is also useful when a connection is first being established and the sender has no information at all about the intervening links.

IP Path MTU Discovery is initiated by the sending device. If a server does not support IP Path MTU Discovery, the receiving device will have no mechanism available to avoid fragmenting datagrams generated by the server.

Use the `ip route` command to add a specific static route for a network or host. Any IP packet designated for the specified destination uses the configured route.

To configure static IP routing, use the `ip route` command. To remove the route, use the `no` form of this command. Do not use the `ip route 0.0.0.0 0.0.0.0` command to configure the default gateway; use the `ip default-gateway` command instead.

**Examples**

The following example configures a default gateway for the WAAS device:

```
WAE(config)# ip default-gateway 192.168.7.18
```

The following example disables the default gateway:

```
WAE(config)# no ip default-gateway
```

The following example configures a static IP route for the WAAS device:

```
WAE(config)# ip route 172.16.227.128 255.255.255.0 172.16.227.250
```

The following example negates the static IP route:

```
WAE(config)# no ip route 172.16.227.128 255.255.255.0 172.16.227.250
```
The following example configures a default domain name for the WAAS device:

WAE(config)# ip domain-name cisco.com

The following example negates the default domain name for the WAAS device:

WAE(config)# no ip domain-name

The following example configures a name server for the WAAS device:

WAE(config)# ip name-server 10.11.12.13

The following example disables the name server for the WAAS device:

WAE(config)# no ip name-server 10.11.12.13

**Related Commands**  
`show ip routes`
(config) ip access-list

To create and modify access lists on a WAAS device for controlling access to interfaces or applications, use the **ip access-list** global configuration commands. To disable an access list, use the **no** form of the command.

```
ip access-list {standard | extended} {acl-name | acl-num}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>standard</strong></td>
<td>Enables standard ACL configuration mode. The CLI enters the standard ACL configuration mode in which all subsequent commands apply to the current standard access list. The (config-std-nacl) prompt appears:</td>
</tr>
<tr>
<td></td>
<td>WAE(config-std-nacl)#</td>
</tr>
<tr>
<td></td>
<td>See the “Standard ACL Configuration Mode Commands” section for details about working with entries in a standard access list and the commands available from the standard ACL configuration mode (config-std-nacl)#.</td>
</tr>
<tr>
<td><strong>extended</strong></td>
<td>Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access list. The (config-ext-nacl) prompt appears:</td>
</tr>
<tr>
<td></td>
<td>WAE(config-ext-nacl)#</td>
</tr>
<tr>
<td></td>
<td>See the “Extended ACL Configuration Mode Commands” section for details about working with entries in an extended access list and the commands available from the extended ACL configuration mode (config-ext-nacl)#.</td>
</tr>
<tr>
<td><strong>acl-name</strong></td>
<td>Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td><strong>acl-num</strong></td>
<td>Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For standard access lists, the valid range is 1 to 99; for extended access lists, the valid range is 100 to 199.</td>
</tr>
</tbody>
</table>

**Defaults**

An access list drops all packets unless you configure at least one **permit** entry.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager
Usage Guidelines

Use access lists to control access to specific applications or interfaces on a WAAS device. An access control list consists of one or more condition entries that specify the kind of packets that the WAAS device will drop or accept for further processing. The WAAS device applies each entry in the order in which it occurs in the access list, which by default is the order in which you configured the entry.

Note

IP ACLs that are defined on a router take precedence over the IP ACLs that are defined on the WAE. IP ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

Within ACL configuration mode, you can use the editing commands (list, delete, and move) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, enter exit at the ACL configuration mode prompt.

To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. Therefore, you must include at least one permit entry to create a valid access list.

After creating an access list, you can include the access list in an access group using the access-group command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a permit any condition statement.

To work with access lists, enter either the ip access-list standard or ip access-list extended global configuration command. Identify the new or existing access list with a name up to 30 characters long beginning with a letter, or with a number. If you use a number to identify a standard access list, it must be between 1 and 99; for an extended access list, use a number from 100 to 199. You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

After you identify the access list, the CLI enters the appropriate configuration mode and all subsequent commands apply to the specified access list. The prompt for each configuration mode is shown in the following examples.

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it, but limits host administrative access using SSH:

```plaintext
WAE(config)# ip access-list extended example
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
```

The following example activates the access list for an interface:

```plaintext
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group example in
WAE(config-if)# exit
```
The following example shows how this configuration appears when you enter the `show running-configuration` command:

```plaintext
...
!
interface GigabitEthernet 1/0
 ip address 10.1.1.50 255.255.0.0
 ip access-group example in
 exit
...
ip access-list extended example
 permit tcp any any eq www
 permit tcp host 10.1.1.5 any eq ssh
 exit
...
```

**Related Commands**

- `clear`
- `(config-if) ip access-group`
- `show ip access-list`
(config) kerberos

To authenticate a user that is defined in the Kerberos database, use the `kerberos` global configuration command. To disable authentication, use the `no` form of the command.

```
kerberos { local-realm kerberos-realm | realm { dns-domain | host } kerberos-realm | server kerberos-realm { hostname | ip-address } [port-number] }
```

**Note**
Your Windows domain server must have a Reverse DNS Zone configured for this command to execute successfully.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>local-realm</code></td>
<td>Displays the default realm for WAAS. Configures a switch to authenticate users defined in the Kerberos database.</td>
</tr>
<tr>
<td><code>kerberos-realm</code></td>
<td>IP address or name (in UPPERCASE letters) of the Kerberos realm. Default value is a NULL string.</td>
</tr>
<tr>
<td><code>realm</code></td>
<td>Maps a host name or DNS domain name to a Kerberos realm.</td>
</tr>
<tr>
<td><code>dns-domain</code></td>
<td>DNS domain name to map to Kerberos realm.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Host IP address or name to map to Kerberos host realm.</td>
</tr>
<tr>
<td><code>server</code></td>
<td>Specifies the Key Distribution Center (KDC) to use in a given Kerberos realm and, optionally, the port number the KDC is monitoring.</td>
</tr>
<tr>
<td><code>hostname</code></td>
<td>Name of the host running the KDC.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of the host running the KDC.</td>
</tr>
<tr>
<td><code>port-number</code></td>
<td>(Optional) Number of the port on the KDC server.</td>
</tr>
</tbody>
</table>

**Defaults**

kerberos-realm: NULL string
port-number: 88

**Command Modes**

global configuration

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**

All Windows 2000 domains are also Kerberos realms. Because the Windows 2000 domain name is also a DNS domain name, the Kerberos realm name for the Windows 2000 domain name is always in uppercase letters. This capitalization follows the recommendation for using DNS names as realm names in the Kerberos Version 5 protocol document (RFC-1510) and affects only interoperability with other Kerberos-based environments.
The KDC server and all hosts with Kerberos authentication configured must interact within a 5-minute window or authentication will fail. All hosts, especially the KDC, should be running NTP. For information about configuring NTP, see the “(config) ntp” command.

The KDC server and Admin server must have the same IP address. The default port number for both servers is port 88.

The **kerberos** command modifies the krb5.conf file.

### Examples

The following example shows how to configure the WAAS device to authenticate with a specified KDC in a specified Kerberos realm. The configuration is then verified.

WAE(config)# kerberos ?
local-realm  Set local realm name
realm        Add domain to realm mapping
server       Add realm to host mapping
WAE(config)# kerberos local-realm WAE.ABC.COM
WAE(config)# kerberos realm wae.abc.com WAE.ABC.COM
WAE(config)# kerberos server wae.abc.com 10.10.192.50
WAE(config)# exit
WAE# show kerberos
Kerberos Configuration:
------------------------
Local Realm: WAE.ABC.COM
DNS suffix: wae.abc.com
Realm for DNS suffix: WAE.ABC.COM
Name of host running KDC for realm: Master KDC: 10.10.192.50
Port: 88

### Related Commands

**show kerberos**
To enable access to the kernel debugger (kdb), use the `kernel kdb` global configuration command. Once enabled, kdb is automatically activated if kernel problems occur, or you can manually activate it from the local console for the WAAS device by pressing the required key sequence. To disable access to the kernel debugger, use the `no` form of the command.

```
(kernel) kernel kdb
```

### Syntax Description
This command has no arguments or keywords.

### Defaults
The kernel debugger is disabled by default.

### Command Modes
- global configuration

### Device Modes
- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines
Once enabled, kdb is automatically activated when kernel problems occur. Once activated, all normal functioning of the WAAS device is suspended until kdb is manually deactivated. The kdb prompt looks like this:

```
[0]kdb>
```

To deactivate kdb, enter `go` at the kdb prompt. If kdb was automatically activated because of kernel problems, the system generates a core dump and restarts. If you activated kdb manually for diagnostic purposes, the system resumes normal functioning in whatever state it was when you activated kdb. In either case, if you enter `reboot`, the system restarts and normal operation resumes.

kdb is disabled by default and you must enter the `kernel kdb` command in global configuration mode to enable it. If kdb has been previously enabled, you can enter the `no kernel kdb` global configuration command to disable it. When kdb is enabled, you can activate it manually from the local console by pressing `Ctrl-_` followed by `Ctrl-B`.

The rationale for disabling the kernel debugger is as follows: the WAAS device is often unattended at many sites, and it is desirable for the WAAS device to automatically reboot after generating a core dump instead of requiring user intervention. Disabling the kernel debugger allows automatic recovery.

### Examples
The following example shows to enable, and then disable, access to the kernel debugger:

```
WAE(config)# kernel kdb
WAE(config)# no kernel kdb
```
(config) line

To specify terminal line settings, use the `line` global configuration command. To configure the WAAS device to not check for the carrier detect signal, use the `no` form of the command.

```
line console carrier-detect
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>console</td>
<td>Configures the console terminal line settings.</td>
</tr>
<tr>
<td>carrier-detect</td>
<td>Sets the device to check the carrier detect signal before writing to the console.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Examples**

The following example sets the WAAS device to check for the carrier detect signal:

```
WAEC(config)# line console carrier-detect
```
To configure system logging, use the `logging` global configuration command. To disable logging functions, use the `no` form of this command.

```
logging { console { enable | priority loglevel } | disk { enable | filename filename | priority loglevel | recycle size } | facility facility | host { hostname | ip-address } [port port_num | priority loglevel | rate-limit message_rate] }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>console</code></td>
<td>Sets system logging to a console.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables system logging to a console.</td>
</tr>
<tr>
<td><code>priority</code></td>
<td>Sets which priority level messages to send to syslog file.</td>
</tr>
<tr>
<td><code>loglevel</code></td>
<td>Use one of the following keywords:</td>
</tr>
<tr>
<td></td>
<td>• <code>alert</code>—Immediate action needed. Priority 1.</td>
</tr>
<tr>
<td></td>
<td>• <code>critical</code>—Immediate action needed. Priority 2.</td>
</tr>
<tr>
<td></td>
<td>• <code>debug</code>—Debugging messages. Priority 7.</td>
</tr>
<tr>
<td></td>
<td>• <code>emergency</code>—System is unusable. Priority 0.</td>
</tr>
<tr>
<td></td>
<td>• <code>error</code>—Error conditions. Priority 3.</td>
</tr>
<tr>
<td></td>
<td>• <code>information</code>—Informational messages. Priority 6.</td>
</tr>
<tr>
<td></td>
<td>• <code>notice</code>—Normal but significant conditions. Priority 5.</td>
</tr>
<tr>
<td></td>
<td>• <code>warning</code>—Warning conditions. Priority 4.</td>
</tr>
<tr>
<td><code>disk</code></td>
<td>Sets system logging to a disk file.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables system logging to a disk file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Sets the name of the syslog file.</td>
</tr>
<tr>
<td><code>filename</code></td>
<td>Name of the syslog file.</td>
</tr>
<tr>
<td><code>recycle</code></td>
<td>Overwrites <code>syslog.txt</code> when it surpasses the recycle size.</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Size of syslog file in bytes (1000000–50000000).</td>
</tr>
<tr>
<td><code>facility</code></td>
<td>Sets facility parameter for syslog messages.</td>
</tr>
</tbody>
</table>
facility

Use one of the following keywords:

- auth—Authorization system
- daemon—System daemons
- kernel—Kernel
- local0—Local use
- local1—Local use
- local2—Local use
- local3—Local use
- local4—Local use
- local5—Local use
- local6—Local use
- local7—Local use
- mail—Mail system
- news—USENET news
- syslog—Syslog itself
- user—User process
- uucp—UUCP system

host

Sets system logging to a remote host.

hostname

Hostname of the remote syslog host. Specify up to four remote syslog hosts.

Note To specify more than one syslog host, use multiple command lines; specify one host per command.

ip-address

IP address of the remote syslog host. Specify up to four remote syslog hosts.

Note To specify more than one syslog host, use multiple command lines; specify one host per command.

port

(Optional) Specifies the port to be used when logging to a host.

port_num

Port to be used when logging to a host. The default port is 514.

priority

(Optional) Sets the priority level for messages when logging messages to a host. The default priority is warning.

loglevel

Use one of the following keywords:

- alert—Immediate action needed. Priority 1.
- emergency—System is unusable. Priority 0.
- error—Error conditions. Priority 3.
- notice—Normal but significant conditions. Priority 5.
(config) logging

| **rate-limit** | (Optional) Sets the rate limit (in messages per second) for sending messages to a host. |
| **message_rate** | Rate limit (in messages per second) for sending messages to the host. (0–10000). Setting the rate limit to 0 disables rate limiting. |

**Defaults**

Logging: on
Priority of message for console: warning
Priority of message for disk log file: debug
Priority of message for a host: warning
Log file: /local1/syslog.txt
Log file recycle size: 10,000,000 bytes

**Command Modes**
global configuration

**Device Modes**
application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**

Use the `logging` command to set specific parameters of the system log file. System logging is always enabled internally. By default, system logging is enabled on a WAAS device. The system log file is located on the SYSFS partition at /local1/syslog.txt. This file contains authentication entries, privilege levels, and administrative details.

WAAS supports filtering multiple syslog messages for a single failed section on SCSI disks and SATA disks.

To configure the WAAS device to send varying levels of event messages to an external syslog host, use the `logging host` option. Logging can be configured to send various levels of messages to the console using the `logging console priority` option.

The `no logging disk recycle size` command sets the file size to the default value. Whenever the current log file size surpasses the recycle size, the log file is rotated. The log file cycles through at most five rotations, and they are saved as `[log file name].[1-5]` under the same directory as the original log. The rotated log file is the one configured using the `logging disk filename` command.

**Configuring System Logging to Remote Syslog Hosts**

You can configure a WAAS device to send varying levels of messages to up to four remote syslog hosts. Use the `logging host hostname` global configuration command as follows:

WAE(config)# [no] logging host hostname [priority priority-code | port port | rate-limit limit]

where
hostname is the hostname or IP address of the remote syslog host. Specify up to four remote syslog hosts. To specify more than one syslog host, use multiple command lines; specify one host per command.

priority-code is the severity level of the message that should be sent to the specified remote syslog host. The default priority-code is “warning” (level 4). Each syslog host is capable of receiving a different level of event messages.

Note
You can achieve syslog host redundancy by configuring multiple syslog hosts on the WAAS device and assigning the same priority code to each configured syslog host (for example, assigning a priority code of “critical” level 2 to syslog host 1, syslog host 2, and syslog host 3).

port is the destination port of the remote syslog host to which the WAAS device is to send the messages. The default port is port 514.

rate-limit specifies the number of messages that are allowed to be sent to the remote syslog host per second. To limit bandwidth and other resource consumption, messages to the remote syslog host can be rate limited. If this limit is exceeded, the specified remote syslog host drops the messages. There is no default rate limit, and by default all syslog messages are sent to all of the configured syslog hosts. If the rate limit is exceeded, a “message of the day” (motd) will be printed for any CLI EXEC shell login.

Examples
The following example shows how the WAAS device is configured to send messages that have a priority code of “error” (level 3) to the console:

```
WAE(config)# logging console priority error
```

The following example shows how the WAAS device is configured to disable sending of messages that have a priority code of “error” (level 3) to the console:

```
WAE(config)# no logging console error
```

The following example shows how the WAAS device is configured to send messages that have a priority code of “error” (level 3) to the remote syslog host that has an IP address of 172.31.2.160:

```
WAE(config)# logging host 172.31.2.160 priority error
```

Related Commands
- clear
- show logging
To undo a global configuration command or set its defaults, use the **no** form of a global configuration command.

```
no command
```

### Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>Unconfigures AAA.</td>
</tr>
<tr>
<td>alarm</td>
<td>Unconfigures alarm parameters.</td>
</tr>
<tr>
<td>authentication</td>
<td>Unconfigures login authentication and authorization.</td>
</tr>
<tr>
<td>bypass</td>
<td>Unconfigures bypass.</td>
</tr>
<tr>
<td>cdp</td>
<td>Unconfigures CDP.</td>
</tr>
<tr>
<td>clock</td>
<td>Unconfigures the time-of-day clock.</td>
</tr>
<tr>
<td>disk</td>
<td>Unconfigures disk-related parameters.</td>
</tr>
<tr>
<td>exec-timeout</td>
<td>Unconfigures the exec timeout.</td>
</tr>
<tr>
<td>help</td>
<td>Unconfigures assistance for the command-line interface.</td>
</tr>
<tr>
<td>hostname</td>
<td>Unconfigures the system’s network name.</td>
</tr>
<tr>
<td>inetd</td>
<td>Unconfigures FTP, rcp, and TFTP services.</td>
</tr>
<tr>
<td>interface</td>
<td>Not supported.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong>: Although the CLI contains the <strong>no interface</strong> option, the <strong>no</strong> command cannot be applied to an interface. The software displays the following error message: Removing of physical interface is not permitted.</td>
</tr>
<tr>
<td>ip</td>
<td>Unconfigures IP parameters.</td>
</tr>
<tr>
<td>ip access-list</td>
<td>Unconfigures IP access lists.</td>
</tr>
<tr>
<td>kerberos</td>
<td>Unconfigures kerberos security options.</td>
</tr>
<tr>
<td>kernel</td>
<td>Disables access to the kernel debugger.</td>
</tr>
<tr>
<td>line</td>
<td>Unconfigures terminal line settings.</td>
</tr>
<tr>
<td>logging</td>
<td>Unconfigures system logging (syslog).</td>
</tr>
<tr>
<td>ntp</td>
<td>Unconfigures NTP.</td>
</tr>
<tr>
<td>port-channel</td>
<td>Unconfigures port channel global options.</td>
</tr>
<tr>
<td>print-services</td>
<td>Unconfigures the parameters for the WAAS print services.</td>
</tr>
<tr>
<td>radius-server</td>
<td>Unconfigures RADIUS server parameters.</td>
</tr>
<tr>
<td>smb-conf</td>
<td>Unconfigures the Windows domain <em>smb.conf</em> file.</td>
</tr>
<tr>
<td>sshd</td>
<td>Unconfigures the parameters for the Secure Shell (SSH) service.</td>
</tr>
<tr>
<td>ssh-key-generate</td>
<td>Unconfigures the SSH host key.</td>
</tr>
<tr>
<td>tacacs</td>
<td>Unconfigures the TACACS+ parameters.</td>
</tr>
<tr>
<td>tcp</td>
<td>Unconfigures the global TCP parameters.</td>
</tr>
<tr>
<td>telnet enable</td>
<td>Disables the Telnet service.</td>
</tr>
<tr>
<td>username</td>
<td>Unconfigures username authentication.</td>
</tr>
<tr>
<td>wccp</td>
<td>Disables WCCP.</td>
</tr>
<tr>
<td>windows-domain</td>
<td>Unconfigures Windows domain server parameters.</td>
</tr>
</tbody>
</table>


Defaults

No default behavior or values

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use the no command to disable functions or negate a command. If you need to negate a specific argument in a command, such as the default gateway IP address, you must include the specific string in your command, such as no ip default-gateway ip-address.

Examples

The following example shows how the Telnet service is disabled on the WAAS device:

WAE(config)# no telnet enable
(config) ntp

To configure the NTP server and to allow the system clock to be synchronized by a time server, use the `ntp` global configuration command. To disable this function, use the `no` form of this command.

```
ntp [authenticate | authentication-key authentication-key [md5 encryption-type] | server
 {ip-address | hostname} [ip-addresses | hostnames] | server-with-authentication {ip-address | hostname} key authentication-key]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>authenticate</td>
<td>Authenticate the NTP server.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>Sets the NTP authentication key.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>The NTP authentication key value. Must be from 0 to 4294967295.</td>
</tr>
<tr>
<td>md5</td>
<td>Sets MD5 cryptographic hash function.</td>
</tr>
<tr>
<td>encryption-type</td>
<td>The MD5 encryption type must be set to 0.</td>
</tr>
<tr>
<td>server</td>
<td>Sets the NTP server IP address for the WAAS device.</td>
</tr>
<tr>
<td>ip-address</td>
<td>NTP server IP address.</td>
</tr>
<tr>
<td>hostname</td>
<td>NTP server hostname.</td>
</tr>
<tr>
<td>ip-addresses</td>
<td>(Optional) IP address of the time server providing the clock synchronization (maximum of 4).</td>
</tr>
<tr>
<td>hostnames</td>
<td>(Optional) Hostname of the time server providing the clock synchronization (maximum of 4).</td>
</tr>
<tr>
<td>server-with-authentication</td>
<td>Sets the authentication NTP server IP address for the WAAS device.</td>
</tr>
<tr>
<td>ip-address</td>
<td>NTP server IP address.</td>
</tr>
<tr>
<td>hostname</td>
<td>NTP server hostname.</td>
</tr>
<tr>
<td>key</td>
<td>Sets the NTP authentication key value.</td>
</tr>
<tr>
<td>authentication-key</td>
<td>The NTP authentication key value. Must be from 0 to 4294967295.</td>
</tr>
</tbody>
</table>

### Defaults

The default NTP version number is 3.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines

Use this command to synchronize the clock on the WAAS device with the specified NTP server. The `ntp` command enables NTP servers for timekeeping purposes and is the only way to synchronize the system clock with a time server in WAAS software.
Examples

The following example specifies the NTP server IP address as the time source for a WAAS device. It also removes this configuration.

```
WAE(config)# ntp 172.16.22.44
WAE(config)# no ntp 172.16.22.44
```

Related Commands

- clock
  - (config) clock
- ntpdate
- show clock
- show ntp
### (config) policy-engine application classifier

To create or edit an existing application classifier on a WAE, use the `policy-engine application classifier` global configuration command. You can use this command to add or modify rules, also known as match conditions, to identify specific types of traffic. You can also use this command to list the classifier’s match conditions.

To delete an application classifier or a condition, use the `no` form of this command.

```
policy-engine application classifier classifier-name [list | match {all | dst {host hostname | ip ip_address | port {eq port | range port1 port2}} | src {host hostname | ip ip_address | port {eq port | range port1 port2}}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>classifier-name</code></td>
<td>Classifier name (up to 30 characters). The name must start with a letter representing the application class.</td>
</tr>
<tr>
<td><code>list</code></td>
<td>(Optional) Lists the conditions contained in the specified classifier.</td>
</tr>
<tr>
<td><code>match</code></td>
<td>(Optional) Specifies the criteria for matching traffic.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Matches any type of traffic.</td>
</tr>
<tr>
<td><code>dst</code></td>
<td>Specifies the criteria for identifying the destination host.</td>
</tr>
<tr>
<td><code>host hostname</code></td>
<td>Specifies the hostname of the system that is the source or destination of the traffic.</td>
</tr>
<tr>
<td><code>ip ip_address</code></td>
<td>Specifies the IP address of the system that is the source or destination of the traffic.</td>
</tr>
<tr>
<td><code>port</code></td>
<td>Specifies the criteria for identifying the port or ports used by the source or destination hosts.</td>
</tr>
<tr>
<td><code>eq port</code></td>
<td>Specifies the source or destination port number.</td>
</tr>
<tr>
<td><code>range port1 port2</code></td>
<td>Specifies a range of source or destination port numbers.</td>
</tr>
<tr>
<td><code>src</code></td>
<td>Specifies the criteria for identifying the source host.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Modes</th>
<th>global configuration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Device Modes</th>
<th>application-accelerator</th>
</tr>
</thead>
</table>

| Usage Guidelines | Deleting a classifier fails if there are policies using it. When creating a new application classifier or adding an existing application classifier, the WAAS CLI enters into an appropriate submode allowing you to specify one or more conditions. However, if the condition specified matches an already existing condition in the classifier’s conditions list, no action is taken. A condition can be deleted by using the `no` form of this command. When creating a new classifier, you must add at least one condition. |

| Note | You cannot have more than 512 different application classifiers. |
The WAAS software comes with over 150 default application policies that help your WAAS system classify and optimize some of the most common traffic on your network. Before you create a new application policy, we recommend that you review the default policies and modify them as appropriate. It is usually easier to modify an existing policy than to create a new one. For a list of the default applications and classifiers that WAAS will either optimize or pass through based on the policies that come bundled with the system, see the *Cisco Wide Area Application Services Configuration Guide*.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**

- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
(config) policy-engine application map adaptor EPM

To configure the application policy with advanced policy map lists of the EndPoint Mapper (EPM) service on a WAE, use the **policy-engine application map adaptor EPM** global configuration command. To disable the EPM service in the application policy configuration, use the **no** form of this command.

```
policy-engine application map adaptor EPM epm-map {

delete line-number |

disable line-number |

insert { first | last | pos line-number } name app-name { All | classifier classifier-name }
[disable] action { optimize { DRE { yes | no } compression { LZ | none | full } | pass-through } |

list [from line-number [to line-number] | to line-number [from line-number]] |

move from line-number to line-number |

name app-name { All | classifier classifier-name } [disable] action { optimize { DRE { yes | no } compression { LZ | none | full } | pass-through } }
```

### Syntax Description

<table>
<thead>
<tr>
<th><strong>epm-map</strong></th>
<th>Messaging Application Programming Interface (MAPI) or Universal Unique ID (UUID).</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>delete</strong></td>
<td>Deletes the application policy map specified by the line number.</td>
</tr>
<tr>
<td><strong>line-number</strong></td>
<td>Line number or position of an application policy map in the list.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables the application policy map specified by the line number.</td>
</tr>
<tr>
<td><strong>insert</strong></td>
<td>Inserts or adds a new policy map at the specified position.</td>
</tr>
<tr>
<td><strong>first</strong></td>
<td>Inserts the new application policy map at the beginning of the list.</td>
</tr>
<tr>
<td><strong>last</strong></td>
<td>Inserts the new application policy map at the end of the list.</td>
</tr>
<tr>
<td><strong>pos</strong></td>
<td>Inserts the new application policy map at the specified line number.</td>
</tr>
<tr>
<td><strong>name</strong></td>
<td>Specifies the name of the application.</td>
</tr>
<tr>
<td><strong>app-name</strong></td>
<td>Name of the application.</td>
</tr>
<tr>
<td><strong>All</strong></td>
<td>Specifies all traffic.</td>
</tr>
<tr>
<td><strong>classifier</strong></td>
<td>Specifies the name of the application traffic classifier.</td>
</tr>
<tr>
<td><strong>classifier-name</strong></td>
<td>Name of the application traffic classifier.</td>
</tr>
<tr>
<td><strong>disable</strong></td>
<td>Disables optimization or pass-through.</td>
</tr>
<tr>
<td><strong>action</strong></td>
<td>Specifies whether to optimize the traffic or let it pass through.</td>
</tr>
<tr>
<td><strong>optimize</strong></td>
<td>Applies general optimization.</td>
</tr>
<tr>
<td><strong>DRE</strong></td>
<td>Enables or disables DRE optimization.</td>
</tr>
<tr>
<td><strong>yes</strong></td>
<td>Enables DRE optimization.</td>
</tr>
<tr>
<td><strong>no</strong></td>
<td>Disables DRE optimization.</td>
</tr>
<tr>
<td><strong>compression</strong></td>
<td>Applies Lempel-Ziv (LZ) compression or no compression.</td>
</tr>
</tbody>
</table>
Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

EndPoint Mapper (EPM) is a service that dynamically allocates server ports to certain applications. Unlike most applications that always use the same port, applications that rely on the EPM service can be assigned a different port at every request.

Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

Related Commands

- `(config) policy-engine application classifier`
- `(config) policy-engine application map adaptor WAFS transport`
- `(config) policy-engine application map basic delete`
- `(config) policy-engine application map basic disable`
- `(config) policy-engine application map basic insert`
- `(config) policy-engine application map basic list`
- `(config) policy-engine application map basic move`
- `(config) policy-engine application map basic name`
- `(config) policy-engine application map other optimize DRE`
- `(config) policy-engine application map other optimize full`

<table>
<thead>
<tr>
<th>LZ</th>
<th>Applies LZ compression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>Applies no compression.</td>
</tr>
<tr>
<td>full</td>
<td>Applies full generic optimization.</td>
</tr>
<tr>
<td>pass-through</td>
<td>Allows traffic to pass through without any optimization.</td>
</tr>
<tr>
<td>list</td>
<td>Lists the specified application policy maps.</td>
</tr>
<tr>
<td>from</td>
<td>(Optional) Specifies the line number of the first application policy map to list.</td>
</tr>
<tr>
<td>to</td>
<td>(Optional) Specifies the line number of the last application policy map to list.</td>
</tr>
<tr>
<td>move</td>
<td>Moves the specified application policy map from one line to another.</td>
</tr>
</tbody>
</table>

LZ

- Applies LZ compression.

none

- Applies no compression.

full

- Applies full generic optimization.

pass-through

- Allows traffic to pass through without any optimization.

list

- Lists the specified application policy maps.

downstream

- Specifies the line number of the first application policy map to list.

to

- Specifies the line number of the last application policy map to list.

move

- Moves the specified application policy map from one line to another.
(config) policy-engine application map adaptor WAFS transport

To configure application policies with the Wide Area File Services (WAFS) transport option, use the `policy-engine application map adaptor WAFS transport` global configuration command. To disable the WAFS transport policy map in the application policy configuration, use the `no` form of this command.

```
(policy-engine application map adaptor WAFS transport)

delete line-number

disable line-number

insert {first | last | pos line-number} name app-name {All | classifier classifier-name} [disable] action {optimize {DRE {yes | no} compression {LZ | none} | full} | pass-through} |

list [from line-number to line-number] | to line-number [from line-number]] |

move from line-number to line-number |

name app-name {All | classifier classifier-name} [disable] action {optimize {DRE {yes | no} compression {LZ | none} | full} | pass-through} |
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete line-number</td>
<td>Deletes the application policy map specified by the line number.</td>
</tr>
<tr>
<td>disable line-number</td>
<td>Disables the application policy map specified by the line number.</td>
</tr>
<tr>
<td>insert first</td>
<td>Inserts or adds a new policy map at the beginning of the list.</td>
</tr>
<tr>
<td>insert last</td>
<td>Inserts the new application policy map at the end of the list.</td>
</tr>
<tr>
<td>insert pos line-number</td>
<td>Inserts the new application policy map at the specified line number.</td>
</tr>
<tr>
<td>name app-name</td>
<td>Specifies the name of the application.</td>
</tr>
<tr>
<td>All classifier</td>
<td>Specifies all traffic.</td>
</tr>
<tr>
<td>classifier classifier-name</td>
<td>Specifies the name of the application traffic classifier.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables optimization or pass-through.</td>
</tr>
<tr>
<td>action optimize</td>
<td>Specifies whether to optimize the traffic or let it pass through.</td>
</tr>
<tr>
<td>optimize DRE</td>
<td>Applies general optimization.</td>
</tr>
<tr>
<td>DRE yes</td>
<td>Enables or disables DRE optimization.</td>
</tr>
<tr>
<td>DRE no</td>
<td>Enables DRE optimization.</td>
</tr>
<tr>
<td>compression LZ</td>
<td>Applies Lempel-Ziv (LZ) compression or no compression.</td>
</tr>
<tr>
<td>compression none</td>
<td>Applies LZ compression.</td>
</tr>
<tr>
<td>compression full</td>
<td>Applies full generic optimization.</td>
</tr>
<tr>
<td>compression no</td>
<td>Applies no compression.</td>
</tr>
</tbody>
</table>
(config) policy-engine application map adaptor WAFS transport

pass-through	Allows traffic to pass through without any optimization.
list	Lists the specified application policy maps.
from	(Optional) Specifies the line number of the first application policy map to list.
to	(Optional) Specifies the line number of the last application policy map to list.
move	Moves the specified application policy map from one line to another.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

By default, when you enable WAFS, all CIFS traffic going between an Edge WAE and a core cluster is accelerated. Use this command to specify another action (such as `optimize`) for CIFS traffic traveling between edge and core devices.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAES. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
(config) policy-engine application map basic delete

To delete a specific basic (static) application policy map from the list of application policy maps on a WAE, use the `policy-engine application map basic delete` global configuration command.

```
policy-engine application map basic delete pos
```

**Syntax Description**

| pos | Line number indicating the exact position of the policy map in the list. |

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

A policy map consists of a set of application policies and the order in which they are checked. This command is ignored if the line number specified does not represent a current policy map.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
(config) policy-engine application map basic disable

To disable a specific basic (static) application policy map from the list of application policy maps on a
WA E, use the policy-engine application map basic disable global configuration command.

```
policy-engine application map basic disable pos
```

**Syntax Description**

| pos | Line number indicating the exact position of the policy map in the list. |

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

This command is ignored if the line number specified does not represent a current policy map.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WA E s. For more information, see the Cisco Wide Area Application Services Configuration Guide.

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
(config) policy-engine application map basic insert

To insert a new basic (static) application policy map to the list of application policy maps on a WAE, use the `policy-engine application map basic insert` global configuration command.

```
policy-engine application map basic insert { first | last | pos pos } name app-name
```

**Syntax Description**

- **first**: Inserts the policy map at the beginning of the list.
- **last**: Inserts the policy map at the end of the list.
- **pos**: Inserts the policy map at a specific position in the list.
- **pos pos**: Line number at which to insert the policy map.
- **name**: Specifies an already defined application name.
- **app-name**: Name of the application.

**Command Modes**

global configuration

**Device Modes**

application-accelerator

**Usage Guidelines**

Use the `policy-engine application map basic insert` global configuration command to insert a new basic (static) application policy map to the list of application policy maps on a WAE.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAES. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
To display a list of basic (static) application policy maps on a WAE, use the `policy-engine application map basic list` global configuration command.

```
policy-engine application map basic list [from pos [to pos] | to pos]
```

**Syntax Description**
- `from` (Optional) Starts the listing from the specified position.
- `to` (Optional) Stops the listing at the specified position.
- `pos` Line number indicating the exact position of a policy map in the list.

**Command Modes**
- global configuration

**Device Modes**
- application-accelerator

**Usage Guidelines**
Use the `policy-engine application map basic list` global configuration command to display a list of basic application policy maps on a WAE.

**Note**
We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**
- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
(config) policy-engine application map basic move

To move the application policy with the basic policy map list based on only L3 or L4 parameters on a WAE, use the `policy-engine application map basic move` global configuration command.

```
policy-engine application map basic move from pos to pos
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>from</td>
<td>Moves the policy at the specified line number.</td>
</tr>
<tr>
<td>to</td>
<td>Moves the policy to the specified line number.</td>
</tr>
<tr>
<td>pos</td>
<td>Line number indicating the exact position of a policy map in the list.</td>
</tr>
</tbody>
</table>

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use the `policy-engine application map basic move` global configuration command to move the application policy with the basic policy map list based on only Layer 3 or Layer 4 parameters on a WAE.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Examples**

The following example shows how to move a policy map from line 10 to line 16:

```
WAE(config)# policy-engine application map basic move from 10 to 16
```

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
(config) policy-engine application name
(config) policy-engine application map basic name

To configure the application policy with the basic policy map name, use the `policy-engine application map basic name` global configuration command.

```
policy-engine application map basic name app-name classifier classifier-name { [disable] action { optimize { DRE { yes | no } compression { LZ | none | full } | pass-through } [accelerate { cifs | MS-port-mapper }] } }
```

**Syntax Description**

- **app-name**: Application name.
- **classifier**: Specifies the name of the application traffic classifier.
- **classifier-name**: Name of the classifier.
- **disable**: Disables optimization or pass-through.
- **action**: Specifies whether to optimize the traffic or allow it to pass through.
- **optimize**: Applies general optimization.
- **DRE**: Enables or disables DRE optimization.
- **yes**: Enables DRE optimization.
- **no**: Disables DRE optimization.
- **compression**: Applies compression.
- **LZ**: Applies Lempel-Ziv (LZ) compression.
- **none**: Does not apply any compression.
- **full**: Applies full generic optimization.
- **pass-through**: Allows traffic pass through with no optimization.
- **accelerate**: Accelerates the traffic using a special adapter.
- **cifs**: Accelerates the traffic using the CIFS accelerator.
- **MS-port-mapper**: Accelerates the traffic using the Microsoft EndPoint Port Mapper (EPM).

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use the `policy-engine application map basic name` global configuration command to configure the application policy with the basic policy map name.

To view WAFS dynamic accept or deny list entries, use the `show policy-engine application dynamic` command.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*. 
Related Commands

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other optimize full
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
- show policy-engine application dynamic
(config) policy-engine application map other optimize DRE

To configure the optimize DRE action on non-classified traffic on a WAE, use the `policy-engine application map other optimize DRE` global configuration command.

```
policy-engine application map other optimize DRE {yes | no} compression {LZ | none}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>Applies the optimize DRE action on non-classified traffic.</td>
</tr>
<tr>
<td>no</td>
<td>Does not apply the optimize DRE action on non-classified traffic.</td>
</tr>
<tr>
<td>compression</td>
<td>Applies the specified compression.</td>
</tr>
<tr>
<td>LZ</td>
<td>Applies the Lempel-Ziv (LZ) compression.</td>
</tr>
<tr>
<td>none</td>
<td>Applies no compression.</td>
</tr>
</tbody>
</table>

Command Modes

- `global configuration`

Device Modes

- `application-accelerator`

Usage Guidelines

Use the `policy-engine application map other optimize DRE` global configuration command to configure the optimize DRE action on nonclassified traffic on a WAE.

Note

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

Examples

The following example shows how to configure the optimize DRE action on nonclassified traffic with no compression:

```
WAE(config)# policy-engine application map other optimize DRE yes compression none
```

Related Commands

- `(config) policy-engine application classifier`
- `(config) policy-engine application map adaptor EPM`
- `(config) policy-engine application map adaptor WAFS transport`
- `(config) policy-engine application map basic delete`
- `(config) policy-engine application map basic disable`
- `(config) policy-engine application map basic insert`
- `(config) policy-engine application map basic list`
- `(config) policy-engine application map basic move`
- `(config) policy-engine application map basic name`
(config) policy-engine application map other optimize full
(config) policy-engine application map other pass-through
(config) policy-engine application name
(config) policy-engine application map other optimize full

To configure the application policy on non-classified traffic with the optimize full action, use the `policy-engine application map other optimize full` global configuration command.

```
policy-engine application map other optimize full
```

**Syntax Description**
This command has no keywords or arguments.

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
Use the `policy-engine application map other optimize full` global configuration command to configure the application policy on non-classified traffic with the optimize full action.

**Note**
We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**
- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map other optimize DRE
- (config) policy-engine application map other pass-through
- (config) policy-engine application name
(config) policy-engine application map other pass-through

To configure the application policy on nonclassified traffic with the pass-through action on a WAE, use the **policy-engine application map other pass-through** global configuration command.

```
policy-engine application map other pass-through
```

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use the **policy-engine application map other pass-through** global configuration command to configure the application policy on nonclassified traffic with the pass-through action on a WAE.

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**

- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
- (config) policy-engine application map basic name
- (config) policy-engine application map other optimize full
(config) policy-engine application name

To create a new application definition that specifies general information about an application on a WAE, use the `policy-engine application name` global configuration command. To delete the application definition, use the `no` form of this command.

```
policy-engine application name app-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>app-name</code></td>
<td>Application name (up to 30 characters). The name cannot contain spaces or special characters.</td>
</tr>
</tbody>
</table>

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator

**Usage Guidelines**

Use this command to create a new application name that can be used later to gather statistics about an application. Deleting an application name fails if there are policies using this name. Successful deletion clears all statistics that were once associated with this application.

**Note**

There is a limitation of 256 different application names.

**Note**

We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Examples**

The following example shows how to create an application definition for the Payroll application:

```
WAE(config)# policy-engine application name Payroll
```

**Related Commands**

- (config) policy-engine application classifier
- (config) policy-engine application map adaptor EPM
- (config) policy-engine application map adaptor WAFS transport
- (config) policy-engine application map basic delete
- (config) policy-engine application map basic disable
- (config) policy-engine application map basic insert
- (config) policy-engine application map basic list
- (config) policy-engine application map basic move
- (config) policy-engine application map basic name
(config) policy-engine application map basic name
(config) policy-engine application map other optimize DRE
(config) policy-engine application map other optimize full
(config) policy-engine application map other pass-through
To remove application policy configurations or replace application policy configurations with factory defaults on a WAE, use the `policy-engine config` global configuration command.

```
policy-engine config { remove-all | restore-predefined }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>remove-all</td>
<td>Removes the application policy configurations all together and resets other changed configurations.</td>
</tr>
<tr>
<td>restore-predefined</td>
<td>Replaces application policy configurations (including the application names, classifiers, and policy maps) with factory defaults.</td>
</tr>
</tbody>
</table>

**Command Modes**
global configuration

**Device Modes**
application-accelerator

**Usage Guidelines**
This action includes but is not limited to the following:
- Remove all application names except “other.”
- Remove all classifiers.
- Remove all policy maps.
- Reset the default action to pass-through.

**Note**
We strongly recommend that you use the WAAS Central Manager GUI to centrally configure application policies for your WAEs. For more information, see the *Cisco Wide Area Application Services Configuration Guide*.

**Related Commands**
- `show policy-engine status`
(config) port-channel

To configure the port channel load-balancing options on a WAAS device, use the `port-channel` global configuration command. Use the `no` form of this command to set load balancing on the port channel to its default method.

```
port-channel load-balance { dst-ip | dst-mac | round-robin }
```

**Syntax Description**

- `load-balance` Configures the load-balancing method.
- `dst-ip` Specifies the load-balancing method using destination IP addresses.
- `dst-mac` Specifies the load-balancing method using destination MAC addresses.
- `round-robin` Specifies the load-balancing method using round-robin sequential, cyclical resource allocation.

**Defaults**

Round-robin is the default load-balancing method.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

The `port-channel load-balance` command configures one of three load-balancing algorithms and provides flexibility in choosing interfaces when an Ethernet frame is sent. The `round-robin` option allows evenly balanced usage of identical network interfaces in a channel group. Because this command takes effect globally, if two channel groups are configured, they must use the same load-balancing option.

**Examples**

The following example configures destination IP load balancing on a port channel and then disables it:

```
WAE(config)# port-channel load-balance dst-ip
WAE(config)# no port-channel load-balance
```
To configure the primary interface for a WAAS device, use the `primary-interface` command in global configuration mode. To remove the configured primary interface, use the `no` form of the command.

```
primary-interface { GigabitEthernet 1-2/port | PortChannel 1-2 | Standby group_num }
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet</td>
<td>Selects a Gigabit Ethernet interface as the primary interface of the WAAS device.</td>
</tr>
<tr>
<td>1-2/port</td>
<td>Gigabit Ethernet slot number 1 or 2.</td>
</tr>
<tr>
<td>PortChannel</td>
<td>Selects a port channel interface as the primary interface of the WAAS device.</td>
</tr>
<tr>
<td>1-2</td>
<td>Port Channel number 1 or 2.</td>
</tr>
<tr>
<td>Standby</td>
<td>Selects a standby group as the primary interface of the WAAS device.</td>
</tr>
<tr>
<td>group_num</td>
<td>Standby group number 1–4.</td>
</tr>
</tbody>
</table>

### Defaults

The default primary interface is the Gigabit Ethernet 1/0 interface. If this is not configured, then the first operational interface on which a link beat is detected becomes the default primary interface. Interfaces with lower-number IDs are polled first (for example, Gigabit Ethernet 1/0 is checked before 2/0). The Gigabit Ethernet interfaces are polled before the Port Channel interfaces.

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines

The `primary-interface` global configuration command permits the administrator to specify the primary interface for the WAAS device.

The primary interface can be changed without disabling the WAAS device. To change the primary interface, reenter the command string and specify a different interface.

**Note**

If you use the `restore factory-default preserve basic-config` command, the configuration for the primary interface is not preserved. If you want to reenable the WAAS device after using the `restore factory-default preserve basic-config` command, make sure to reconfigure the primary interface after the factory defaults are restored.

Setting the primary interface to be a Standby group does not imply that Standby functionality is available. You must configure relevant Standby interfaces using the `interface standby` global configuration command.
Examples

The following example shows how to specify the Gigabit Ethernet slot 1 port 0 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 1/0
```

The following example shows how to specify the Gigabit Ethernet slot 2 port 0 as the primary interface on a WAAS device:

```
WAE(config)# primary-interface GigabitEthernet 2/0
```

Related Commands

```
(config) interface
```
(config) print-services

To enable print services and designate a group name for administrators allowed configuration access on a WAAS device, use the print-services global configuration command. To disable print services on a WAAS device or to clear the administrative group, use the no form of this command.

```
print-services { enable | admin-group admin-group-name | guest-print enable }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables print services on the WAAS device.</td>
</tr>
<tr>
<td>admin-group</td>
<td>Configures a group of administrators with print services configuration privileges.</td>
</tr>
<tr>
<td>admin-group-name</td>
<td>Name of the administrative group, up to 127 characters. No spaces are allowed.</td>
</tr>
<tr>
<td>guest-print enable</td>
<td>Enables the guest print service. Guest printing allows any user to print to the WAAS print server.</td>
</tr>
</tbody>
</table>

**Note** This option is available only in the application-accelerator device mode.

**Defaults**

By default, print services are disabled and no administrative group is defined (admin-group-name is null).

**Command Modes**

global configuration

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**

WAAS print services are typically enabled on WAEs residing in branch offices. The WAE acts as a print server and handles requests from multiple clients for access to multiple printers. The WAAS print services feature enables administrators to perform the following print-related tasks:

- Add, modify, and delete printers from the printer list
- Add, modify, and delete a group of printers (Printer Cluster)
- View and control print jobs
- Monitor the status of individual printers
- Perform diagnostics and troubleshooting
- Install client printer driver from the print server
- Download log files using FTP
- Enforce printing quotas (1 GB total for spooling)
- Allow any user to print to the WAAS print server
From the WAAS CLI, you can start and stop WAAS print services, configure a print services administrative group, and debug the print spooler. WAAS print services provide an alternative to Windows print services.

**Starting and Stopping Print Services**

When the `print-services enable` command is executed, the following sequence of events occurs:

- The node manager starts the CUPS process (cupsd), checking every second for an updated timestamp in the `printcap` file.

  CUPS must start within 30 seconds or print services are not enabled, and a “CUPS fails to start” message is logged by the node manager.

- The node manager starts the Samba process (smbd).

  If Samba could not be started, a “Samba fails to start” message is logged by the node manager. CUPS is not stopped.

- Success messages are logged by the node manager.

- The DataServer value (/cfg/print-services/enable) is set to one.

Stopping print services is accomplished using the `no print-services enable` command. Entering this command causes the following sequence of events:

- The node manager stops the Samba process (smbd).

- The node manager stops the CUPS process (cupsd).

- The corresponding DataServer value is set to zero.

**Configuring the Print Services Administrative Group**

You can define a set of administrators to have control over WAAS print services on a particular Edge WAE using the `print-services admin-group` command. When this command is entered, the following events occur:

- The `smb.conf` file is updated with the specified administrative group.

  If the update fails, and the print services administrative group can be returned to its original value, the error message “Failed to configure print-services admin group” is displayed. If the update fails, and the print services administrative group cannot be returned to its original value, two error messages, “Failed to configure print-services admin group,” and “Failed to revert back the print-services admin group changes.” are displayed.

- The `cupsd.conf` file is updated with the specified administrative group.

  If the update fails, the old setting is restored, the changes to the `smb.conf` file are reverted, and the error message: “Failed to configure print-services admin group” is displayed. If the update fails and the old setting cannot be restored, two error messages, “Failed to configure print-services admin group.” and “Failed to revert back the print-services admin group changes.” are displayed.

- The DataServer value (/cfg/print-services/administrators) is updated with the specified administrative group.

  If setting the DataServer value fails, both configurations of `smb.conf` and `cupsd.conf` are reverted, and an error message is displayed.
You can delete a print services administrative group using the `no print-services admin-group` command. When this command is executed, the following events occur:

- The `smb.conf` setting is cleared.
  If the clear fails, the old setting is restored and the error message “Failed to configure print-services admin group” is displayed. If the clear fails and the old setting cannot be restored, two error messages, “Failed to configure print-services admin group.” and “Failed to revert back the print-services admin group changes.” are displayed.

- The `cupsd.conf` file is modified to clear the admin group setting.
  If the clear fails, the old setting is restored, and changes in the `smb.conf` are reverted, the error message “Failed to configure print-services admin group” is displayed. If the clear fails and the old setting cannot be restored, two error messages, “Failed to configure print-services admin group.” and “Failed to revert back the print-services admin group changes.” are displayed.

- The corresponding DataServer value is cleared.
  If clearing the DataServer value fails, both configurations of `smb.conf` and `cupsd.conf` are reverted, and an error message is displayed.

The Samba and CUPS processes must be manually restarted for this change to take effect.

### Examples

The following example enables print services on a WAAS device:

```
WAE(config)# print-services enable
```

The following example adds a print services administrative group called `printAdmins`:

```
WAE(config)# print-services admin-group printAdmins
The new print-services administrator group is configured successfully. Please restart print services for the change to take effect.
WAE(config)# no print-services enable
WAE(config)# print-services enable
```

The following example removes the print services administrative group from the WAAS device:

```
WAE(config)# no print-services admin-group printAdmins
The print-services administrator group is removed successfully. Please restart print services for the change to take effect.
WAE(config)# no print-services enable
WAE(config)# print-services enable
```

### Related Commands

- `debug`
- `show print-services`
- `show running-config`
- `show startup-config`
(config) radius-server

To configure a set of RADIUS authentication server settings on the WAAS device, use the `radius-server` command in global configuration mode. To disable RADIUS authentication server settings, use the `no` form of this command.

```
radius-server host hostname | hostipaddr [primary] | key keyword | retransmit retries | timeout seconds
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>host</td>
<td>Specifies a RADIUS server. You can specify up to five servers.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the RADIUS server.</td>
</tr>
<tr>
<td>hostipaddr</td>
<td>IP address of the RADIUS server.</td>
</tr>
<tr>
<td>primary</td>
<td>(Optional) Sets the server as the primary server.</td>
</tr>
<tr>
<td>key</td>
<td>Specifies the encryption key shared with the RADIUS servers.</td>
</tr>
<tr>
<td>keyword</td>
<td>Text of the shared key (15 characters maximum).</td>
</tr>
<tr>
<td>retransmit</td>
<td>Specifies the number of transmission attempts to an active server.</td>
</tr>
<tr>
<td>retries</td>
<td>Number of transmission attempts for a transaction (1–3). The default is 2.</td>
</tr>
<tr>
<td>timeout</td>
<td>Specifies the time to wait for a RADIUS server to reply. The range is 1 to 20 seconds.</td>
</tr>
<tr>
<td>seconds</td>
<td>Wait time in seconds (1–20). The default is 5 seconds.</td>
</tr>
</tbody>
</table>

### Defaults

- `retransmit retries`: 2
- `timeout seconds`: 5

### Command Modes

- **global configuration**

### Device Modes

- application-accelerator
- replication-accelerator
- central-manager

### Usage Guidelines

RADIUS is a client/server authentication and authorization access protocol used by a NAS to authenticate users attempting to connect to a network device. The NAS functions as a client, passing user information to one or more RADIUS servers. The NAS permits or denies network access to a user based on the response it receives from one or more RADIUS servers. RADIUS uses UDP for transport between the RADIUS client and server.

You can configure a RADIUS key on the client and server. If you configure a key on the client, it must be the same as the one configured on the RADIUS servers. The RADIUS clients and servers use the key to encrypt all RADIUS packets transmitted. If you do not configure a RADIUS key, packets are not encrypted. The key itself is never transmitted over the network.
(config) radius-server

Note
For more information about how the RADIUS protocol operates, refer to RFC 2138, *Remote Authentication Dial In User Service (RADIUS)*.

RADIUS authentication usually occurs when an administrator first logs in to the WAAS device to configure the WAE for monitoring, configuration, or troubleshooting purposes.

RADIUS authentication is disabled by default. You can enable RADIUS authentication and other authentication methods at the same time. You can also specify which method to use first. (See the “(config) authentication” command.)

Examples
The following example specifies a RADIUS server, specifies the RADIUS key, and accepts retransmit defaults. Configuration can be verified with the `show radius-server` command.

```
WAE(config)# radius-server host 172.16.90.121
WAE(config)# radius-server key myradiuskey
WAE# show radius-server
Radius Configuration:

Radius Authentication is on
 Timeout = 5
 Retransmit = 3
 Key = ****
Servers

```

Related Commands  show radius-server
(config) smb-conf

To manually configure the parameters for a WAAS device’s Samba configuration file, `smb.conf`, use the `smb-conf` global configuration command. To return a parameter to its default value, use the `no` form of this command.

```
smb-conf section (global | print$ | printers) name attr-name value attr-value [service print]
```

**Syntax Description**

- **global**: Specifies one of the global print parameters.
- **print$**: Specifies one of the print$ parameters.
- **printers**: Specifies one of the printers parameters.
- **name**: Specifies the name of the parameter in the specified section that you want to manually configure.
- **attr-name**: Parameter name, up to 80 characters.
- **value**: Specifies the value of the parameter.
- **attr-value**: Parameter value, up to 255 characters.
- **service print** (Optional) Updates the Samba configuration file for print services. Without this option, the `smb-conf` command updates the Samba configuration file that is used for windows authentication.

See Table 3-101 for a description of the global, print$, and printers parameters, including names and default values.

**Defaults**

No default behavior or values

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

The `smb.conf` file contains a variety of print-related parameters. The `global` parameters apply to the server as a whole. Service level parameters that define default settings for all other sections and shares are included in this set of parameters. This avoids the need to set the same value repeatedly. You can override these globally set share settings and specify other values for each individual section or share. The `print$` parameters apply to the printers. The `printers` parameters apply to the shares. They make it possible to share all printers with minimal configuration. These parameters apply as default to all printers.

Table 3-101 describes the print-related parameters.
### Table 3-101 Print-Related Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>global parameters</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>idmap uid</td>
<td>70000-200000</td>
<td>Range of user IDs allocated for mapping UNIX users to NT user SIDs.</td>
</tr>
<tr>
<td>idmap gid</td>
<td>70000-200000</td>
<td>Range of group IDs allocated for mapping UNIX groups to NT group SIDs.</td>
</tr>
<tr>
<td>winbind enum users</td>
<td>no</td>
<td>Do not enumerate domain users using MSRPC.</td>
</tr>
<tr>
<td>winbind enum groups</td>
<td>no</td>
<td>Do not enumerate domain groups using MSRPC.</td>
</tr>
<tr>
<td>winbind cache time</td>
<td>10</td>
<td>Time that domain user or group information remains in the cache before expiring.</td>
</tr>
<tr>
<td>winbind use default domain</td>
<td>yes</td>
<td>Use default domain for users and groups.</td>
</tr>
<tr>
<td>printcap name</td>
<td>cups</td>
<td>Use CUPS to determine available printer names.</td>
</tr>
<tr>
<td>load printers</td>
<td>yes</td>
<td>Automatically create all available printer shares.</td>
</tr>
<tr>
<td>printing</td>
<td>cups</td>
<td>Use CUPS-compatible print commands.</td>
</tr>
<tr>
<td>cups options</td>
<td>raw</td>
<td>Sets the format of the print output to raw.</td>
</tr>
<tr>
<td>force printername</td>
<td>yes</td>
<td>Enforce the same printer name specified in the CUPS GUI to be used as the printer name in Samba.</td>
</tr>
<tr>
<td>lpq cache time</td>
<td>0</td>
<td>Controls the cache time for the results of the lpq command.</td>
</tr>
<tr>
<td>log file</td>
<td>/local/local1/errorlog/samba.log</td>
<td>Location where print-related errors are logged.</td>
</tr>
<tr>
<td>max log size</td>
<td>50</td>
<td>Maximum number of errors the log file can contain. After 50 errors, for each new error logged, the oldest error is removed.</td>
</tr>
<tr>
<td>socket options</td>
<td>TCP_NODELAY</td>
<td>Set controls on the network layer of the operating system to allow the connection with the client to be tuned. This option is typically used to tune your Samba server for optimal performance for your local network.</td>
</tr>
<tr>
<td></td>
<td>SO_RCVBUF=8192</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SO_SNDBUF=8192</td>
<td></td>
</tr>
<tr>
<td>smb ports</td>
<td>50139</td>
<td>Available ports on the Samba server.</td>
</tr>
<tr>
<td>local master</td>
<td>no</td>
<td>Sets nmbd to be a local master browser on a subnet.</td>
</tr>
<tr>
<td>domain master</td>
<td>no</td>
<td>Sets nmbd to be a domain master browser for its given workgroup.</td>
</tr>
<tr>
<td>preferred master</td>
<td>no</td>
<td>Sets nmbd to be a preferred master browser for its workgroup.</td>
</tr>
<tr>
<td>dns proxy</td>
<td>no</td>
<td>DNS proxy is not enabled.</td>
</tr>
<tr>
<td>template homedir</td>
<td>/local/local1/</td>
<td>Home directory on File Engine or WAE.</td>
</tr>
<tr>
<td>template shell</td>
<td>/admin-shell</td>
<td>Directory of the administrative shell.</td>
</tr>
<tr>
<td>comment</td>
<td>Comment:</td>
<td>Optional description of print server (or share) that is visible when a client queries the server. Can also be set by the windows-domain comment command.</td>
</tr>
<tr>
<td>netbios name</td>
<td>MYFILEENGINE</td>
<td>Name of the Samba server hosting print services. Can also be set by the windows-domain netbios-name command.</td>
</tr>
</tbody>
</table>
realm
CISCO
Active Directory domain name. Always uppercase. Can also be set by the windows-domain realm command.

wins server
10.10.10.1
IP address of the Windows domain server used to authenticate user access to print services. Can also be set by the windows-domain wins-server command.

password server
10.10.10.10
Optional IP address of the password server used for authentication of users. Can also be set by the windows-domain password-server command.

security
domain
Use Windows domain server for authentication. Can also be set by the windows-domain security command.

client schannel
no
Secure channel indicator used for Windows domain server authentication.

ldap ssl
on
Defines whether or not Samba should use SSL when connecting to the LDAP server. Default is to always use SSL when contacting the LDAP server. If set to “off,” SSL is never used when querying the directory server. If set to “start_tls,” LDAPv3 StartTLS extended operation (RFC2830) is used for communicating with the directory server.

print$ Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>/state/samba/printers</td>
<td>Location of printer list.</td>
</tr>
<tr>
<td>guest ok</td>
<td>yes</td>
<td>A password is not required to connect to the printer.</td>
</tr>
<tr>
<td>browseable</td>
<td>yes</td>
<td>Allows the printer to be visible in the list of printers.</td>
</tr>
<tr>
<td>read only</td>
<td>yes</td>
<td>Prevents users from creating or modifying the printer list.</td>
</tr>
<tr>
<td>write list</td>
<td>root</td>
<td>Allows the printer administrator (root user) to modify the printer list.</td>
</tr>
</tbody>
</table>

print$ Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path</td>
<td>/local/local1/spool/samba</td>
<td>Location where incoming files are spooled for printing.</td>
</tr>
<tr>
<td>browseable</td>
<td>no</td>
<td>Always set to no if printable = yes. It makes the printer share invisible in the list of available shares.</td>
</tr>
<tr>
<td>guest ok</td>
<td>yes</td>
<td>A password is not required to connect to the printer's service.</td>
</tr>
<tr>
<td>writable</td>
<td>no</td>
<td>Prevents users from creating or modifying files in the print service directory.</td>
</tr>
<tr>
<td>printable</td>
<td>yes</td>
<td>Allows connected clients to open, write to and submit spool files into the directory specified with the path parameter for printing. Used by Samba to differentiate printer shares from file shares. If this is set to no, printing is not allowed.</td>
</tr>
<tr>
<td>printer admin</td>
<td>root</td>
<td>Lets the print administrator (root user) add drivers and set printer properties.</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to change the maximum size of the Samba error log file from the default of 50 errors to 75 errors:

WAE# smb-conf global max log size 75

The following example shows how to change the realm from the default of CISCO to MYCOMPANYNAME:

WAE# smb-conf global realm MYCOMPANYNAME

The following example shows how to enable and then disable LDAP server signing:

WAE# smb-conf global name "ldap ssl" value "start_tls"

Related Commands

show smb-conf
windows-domain
(config) windows-domain
(config) snmp-server access-list

To configure a standard access control list on a WAAS device to allow access through an SNMP agent, use the snmp-server access-list global configuration command. To remove a standard access control list, use the no form of this command.

```
snmp-server access-list { num | name }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>num</td>
<td>Standard access list number (1–99).</td>
</tr>
<tr>
<td>name</td>
<td>Standard access list name, up to a maximum of 30 characters.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

The snmp-server access-list number global configuration command configures an access control list to allow access to an SNMP agent. The number variable is a number in the range 1 to 99, indicating a standard access control list. SNMP checks against the specified access control list before accepting or dropping incoming packets.

**Examples**

The following example allows the SNMP agent to check against access control list 12 before accepting or dropping packets:

```
WAE(config)# snmp-server access-list 12
```

**Note**

You must first create access list 12 using the ip access-list standard global configuration command.

**Related Commands**

- (config) ip access-list
- show running-config
(config) snmp-server community

To enable the SNMP agent on a WAAS device and to set up the community access string to permit access to the SNMP agent, use the `snmp-server community` global configuration command. To disable the SNMP agent and remove the previously configured community string, use the `no` form of this command.

```
 snmp-server community string [group groupname | rw]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>string</code></td>
<td>Community string that acts like a password and permits access to the SNMP agent. Supports up to a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>group</code></td>
<td>(Optional) Specifies the group to which the community string belongs.</td>
</tr>
<tr>
<td><code>groupname</code></td>
<td>Name of the group. Supports up to a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>rw</code></td>
<td>(Optional) Enables read-write access to this community string.</td>
</tr>
</tbody>
</table>

**Defaults**

The SNMP agent is disabled and a community string is not configured. When configured, an SNMP community string by default permits read-only access to all objects.

**Usage Guidelines**

The SNMP community string is used as a password for authentication when accessing the SNMP agent on the WAE. To be authenticated, the Community Name field of any SNMP message sent to the WAAS device must match the SNMP community string defined on the WAAS device.

The SNMP agent on the WAAS device is enabled when an SNMP community string is defined on the WAAS device. The maximum number of SNMP communities that can be created is 10.

The `snmp-server community string` global configuration command provides view-based access control for SNMPv1, SNMPv2c, and SNMPv3, yet continues to provide backward compatibility between different versions.

**Tip**

Any SNMP message sent to the WAAS device must have the “Community Name” field of the message match the community string defined here to be authenticated.

It is possible to configure a community string that grants access to only part of the MIB subtree. To provide backward compatibility with previous versions of this command, a default read group or default write group (if the `rw` option is specified on the command line) is associated with the community string if no group name is specified. Both of these default groups are hidden from users and not displayed in the configuration file or in the `show snmp group` EXEC command, but are created during initialization of the SNMP agent.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager
Examples

The following example enables the SNMP agent and assigns the community string comaccess to SNMP:

WAE(config)# snmp-server community comaccess

The following example disables the SNMP agent and removes the previously defined community string:

WAE(config)# no snmp-server community

Related Commands

(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib persist event
(config) snmp-server notify inform
(config) snmp-server trap-source
(config) snmp-server user
(config) snmp-server view
snmp trigger
(config) snmp-server contact

To set the system server contact string on a WAAS device, use the `snmp-server contact` global configuration command. To remove the system contact information, use the `no` form of this command.

```
snmp-server contact line
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact</td>
<td>Specifies text for MIB-II object <code>sysContact</code>.</td>
</tr>
<tr>
<td>line</td>
<td>Identification of the contact person for this managed node.</td>
</tr>
</tbody>
</table>

**Command Modes**
- global configuration

**Device Modes**
- application-accelerator
- replication-accelerator
- central-manager

**Defaults**
- No system contact string is set.

**Usage Guidelines**
- The system contact string is the value stored in the MIB-II system group `sysContact` object.

**Examples**
- The following example sets a system contact string and then removes it:
  ```
 WAE(config)# snmp-server contact Dial System Operator at beeper # 27345
 WAE(config)# no snmp-server contact
  ```

**Related Commands**
- (config) snmp-server community
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib persist event
- (config) snmp-server notify inform
- (config) snmp-server trap-source
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
(config) snmp-server enable traps

To enable the WAAS device to send SNMP traps, use the **snmp-server enable traps** global configuration command. To disable all SNMP traps or only SNMP authentication traps, use the **no** form of this command.

```
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alarm</td>
<td>(Optional) Enables WAAS alarm traps.</td>
</tr>
<tr>
<td>clear-critical</td>
<td>(Optional) Enables clear-critical alarm trap.</td>
</tr>
<tr>
<td>clear-major</td>
<td>(Optional) Enables clear-major alarm trap.</td>
</tr>
<tr>
<td>clear-minor</td>
<td>(Optional) Enables clear-minor alarm trap.</td>
</tr>
<tr>
<td>raise-critical</td>
<td>(Optional) Enables raise-critical alarm trap.</td>
</tr>
<tr>
<td>raise-major</td>
<td>(Optional) Enables raise-major alarm trap.</td>
</tr>
<tr>
<td>raise-minor</td>
<td>(Optional) Enables raise-minor alarm trap.</td>
</tr>
<tr>
<td>config</td>
<td>(Optional) Enables CiscoConfigManEvent traps.</td>
</tr>
<tr>
<td>content-engine</td>
<td>(Optional) Enables SNMP WAAS traps.</td>
</tr>
<tr>
<td>disk-fail</td>
<td>(Optional) Enables disk failure error trap.</td>
</tr>
<tr>
<td>disk-read</td>
<td>(Optional) Enables disk read error trap.</td>
</tr>
<tr>
<td>disk-write</td>
<td>(Optional) Enables disk write error trap.</td>
</tr>
<tr>
<td>overload-bypass</td>
<td>(Optional) Enables WCCP overload bypass error trap.</td>
</tr>
<tr>
<td>transaction-log</td>
<td>(Optional) Enables transaction log write error trap.</td>
</tr>
<tr>
<td>entity</td>
<td>(Optional) Enables SNMP entity traps.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Enables Event MIB traps.</td>
</tr>
<tr>
<td>snmp</td>
<td>(Optional) Enables SNMP-specific traps.</td>
</tr>
<tr>
<td>authentication</td>
<td>(Optional) Enables authentication trap.</td>
</tr>
<tr>
<td>cold-start</td>
<td>(Optional) Enables cold start trap.</td>
</tr>
<tr>
<td>wafs</td>
<td>(Optional) Enables all WAFS-specific traps.</td>
</tr>
<tr>
<td>cslog</td>
<td>(Optional) Enables the CS log traps.</td>
</tr>
<tr>
<td>eslog</td>
<td>(Optional) Enables the ES log traps.</td>
</tr>
<tr>
<td>mgrlog</td>
<td>(Optional) Enables the Manager log traps.</td>
</tr>
</tbody>
</table>

**Defaults**

This command is disabled by default. No traps are enabled.

**Command Modes**

- global configuration
Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

You can configure a WAAS device to generate an SNMP trap for a specific alarm condition. You can configure the generation of SNMP alarm traps on the WAAS device based on the following:

- The severity of the alarm (critical, major, or minor)
- The action (the alarm is raised or cleared).

In the WAAS software release, the following six generic alarm traps are available in the CISCO-CONTENT-ENGINE-MIB.

<table>
<thead>
<tr>
<th>Name of Alarm Trap</th>
<th>Severity</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>cceAlarmCriticalRaised</td>
<td>Critical</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmCriticalCleared</td>
<td>Critical</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMajorRaised</td>
<td>Major</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMajorCleared</td>
<td>Major</td>
<td>Cleared</td>
</tr>
<tr>
<td>cceAlarmMinorRaised</td>
<td>Minor</td>
<td>Raised</td>
</tr>
<tr>
<td>cceAlarmMinorCleared</td>
<td>Minor</td>
<td>Cleared</td>
</tr>
</tbody>
</table>

Note

By default, these six general alarm traps are disabled.

These six general alarm traps provide SNMP and Node Health Manager integration. Each of these six alarm traps can be enabled or disabled through the WAAS CLI.

To configure traps, you must enter the \texttt{snmp-server enable traps} command. If you do not enter an \texttt{snmp-server enable traps} command, no traps are sent.

The \texttt{snmp-server enable traps} command is used in conjunction with the \texttt{snmp-server host} command. Use the \texttt{snmp-server host} command to specify which host or hosts receive SNMP traps. To send traps, you must configure at least one host using the \texttt{snmp-server host} command.

For a host to receive a trap, both the \texttt{snmp-server enable traps} command and the \texttt{snmp-server host} command for that host must be enabled.

In addition, SNMP must be enabled with the \texttt{snmp-server community} command.

To disable the sending of the MIB-II SNMP authentication trap, you must enter the command \texttt{no snmp-server enable traps snmp authentication}.

Examples

The following example enables the WAAS device to send all traps to the host 172.31.2.160 using the community string public:

\begin{verbatim}
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.31.2.160 public
\end{verbatim}
The following example disables all traps:

```
WAE(config)# no snmp-server enable traps
```
(config) snmp-server group

To define a user security model group for a WAAS device, use the `snmp-server group` global configuration command. To remove the specified group, use the `no` form of this command.

```
(snmp-server group name \{ v1 \{ notify name \} \{ read name \} \{ write name \} v2c \{ notify name \} \{ read name \} \{ write name \} v3 \{ auth \{ notify name \} \{ read name \} \{ write name \} noauth \{ notify name \} \{ read name \} \{ write name \} priv \{ notify name \} \{ read name \} \{ write name \} \})
```

Syntax Description

- **name**: Name of the SNMP group. Supports up to a maximum of 64 characters.
- **v1**: Specifies the group using the Version 1 Security Model.
- **notify**: (Optional) Specifies a notify view for the group that enables you to specify a notify, inform, or trap.
- **name**: Notify view name. Supports up to a maximum of 64 characters.
- **read**: (Optional) Specifies a read view for the group that enables you only to view the contents of the agent.
- **name**: Read view name. Supports up to a maximum of 64 characters.
- **write**: (Optional) Specifies a write view for the group that enables you to enter data and configure the contents of the agent.
- **name**: Write view name. Supports up to a maximum of 64 characters.
- **v2c**: Specifies the group using the Version 2c Security Model.
- **v3**: Specifies the group using the User Security Model (SNMPv3).
- **auth**: Specifies the group using the AuthNoPriv Security Level.
- **noauth**: Specifies the group using the noAuthNoPriv Security Level.
- **priv**: Specifies the group using the AuthPriv Security Level.

Defaults

The default is that no user security model group is defined.

Command Modes

- global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The maximum number of SNMP groups that can be created is 10.

Select one of three SNMP security model groups: Version 1 (v1) Security Model, Version 2c (v2c) Security Model, or the User Security Model (v3 or SNMPv3). Optionally, you then specify a notify, read, or write view for the group for the particular security model chosen. The v3 option allows you to specify the group using one of three security levels: auth (AuthNoPriv Security Level), noauth (noAuthNoPriv Security Level), or priv (AuthPriv Security Level).
Examples

The following example defines a user security model group named `acme` that uses SNMP version 1 security model and a view name of `mymib` for notifications:

```
WAE(config)# snmp-server group acme v1 notify mymib
```

Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server host`
- `(config) snmp-server location`
- `(config) snmp-server mib persist event`
- `(config) snmp-server notify inform`
- `(config) snmp-server trap-source`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `snmp trigger`
(config) snmp-server host

To specify the recipient of a host SNMP trap operation, use the `snmp-server host` global configuration command. To remove the specified host, use the no form of this command.

```
snmp-server host { hostname | ip-address } communitystring [v2c [retry number] [timeout seconds]] | [v3 { auth [retry number] [timeout seconds] | noauth [retry number] [timeout seconds] | priv [retry number] [timeout seconds]]]
```

### Syntax Description

- **hostname**: Hostname of the SNMP trap host that will be sent in the SNMP trap messages from the WAAS device.
- **ip-address**: IP address of the SNMP trap host that will be sent in the SNMP trap messages from the WAAS device.
- **communitystring**: Password-like community string sent in the SNMP trap messages from the WAE. You can enter a maximum of 64 characters.
- **v2c** (Optional): Specifies the Version 2c Security Model.
- **retry** (Optional): Sets the count for the number of retries for the inform request. (The default is 2 tries.)
- **number**: Number of retries for the inform request (1–10).
- **timeout** (Optional): Sets the timeout for the inform request (1–1000). (The default is 15 seconds.)
- **seconds**: Timeout value in seconds.
- **v3** (Optional): Specifies the User Security Model (SNMPv3).
- **auth**: Sends notification using the AuthNoPriv Security Level.
- **noauth**: Sends notification using the noAuthNoPriv Security Level.
- **priv**: Sends notification using the AuthPriv Security Level.

### Defaults

This command is disabled by default. No traps are sent. If enabled, the default version of the SNMP protocol used to send the traps is SNMP Version 1.

- **retry number**: 2 retries
- **timeout**: 15 seconds

### Command Modes

- global configuration

### Device Modes

- application-accelerator
- replication-accelerator
- central-manager
Usage Guidelines

If you do not enter an `snmp-server host` command, no traps are sent. To configure the WAAS device to send SNMP traps, you must enter at least one `snmp-server host` command. To enable multiple hosts, you must issue a separate `snmp-server host` command for each host. The maximum number of `snmp-server host` commands is four.

When multiple `snmp-server host` commands are given for the same host, the community string in the last command is used.

The `snmp-server host` command is used in conjunction with the `snmp-server enable traps` command to enable SNMP traps.

In addition, SNMP must be enabled with the `snmp-server community` command.

Examples

The following example sends the SNMP traps defined in RFC 1157 to the host specified by the IP address 172.16.2.160. The community string is comaccess:

```
WAE(config)# snmp-server enable traps
WAE(config)# snmp-server host 172.16.2.160 comaccess
```

The following example removes the host 172.16.2.160 from the SNMP trap recipient list:

```
WAE(config)# no snmp-server host 172.16.2.160
```

Related Commands

- `(config) snmp-server community`
- `(config) snmp-server contact`
- `(config) snmp-server enable traps`
- `(config) snmp-server group`
- `(config) snmp-server location`
- `(config) snmp-server mib persist event`
- `(config) snmp-server notify inform`
- `(config) snmp-server trap-source`
- `(config) snmp-server user`
- `(config) snmp-server view`
- `snmp trigger`
(config) snmp-server location

To set the SNMP system location string on a WAAS device, use the `snmp-server location` global configuration command. To remove the location string, use the no form of this command.

```
 snmp-server location line
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Location</th>
<th>Specifies text for MIB-II object <code>sysLocation</code>.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>line</code></td>
<td>String that describes the physical location of this node.</td>
</tr>
</tbody>
</table>

**Defaults**

No system location string is set.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

The system location string is the value stored in the MIB-II system group system location object. You can see the system location string with the `show snmp` EXEC command.

**Examples**

The following example shows a system location string:

```
WAE(config)# snmp-server location Building 3/Room 214
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server mib persist event
- (config) snmp-server notify inform
- (config) snmp-server trap-source
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
(config) snmp-server mib persist event

To configure persistence for the SNMP Event MIB, use the `snmp-server mib persist event` global configuration command. To disable the Event MIB, use the `no` form of this command.

**snmp-server mib persist event**

**Syntax Description**
This command has no keywords or arguments.

**Defaults**
No default behavior or values

**Command Modes**
global configuration

**Device Modes**
application-accelerator
replication-accelerator
central-manager

**Usage Guidelines**
The Event MIB can set the threshold on any MIB variables supported by WAAS software and store the threshold permanently on disk.

The WAAS software implementation of SNMP supports the following MIBs:

- ACTONA-ACTASTORE-MIB
- CISCO-CONFIG-MAN-MIB
- CISCO-CDP-MIB
- CISCO-CONTENT-ENGINE-MIB (partial)
- CISCO-ENTITY-ASSET-MIB
- CISCO-SMI
- CISCO-TC
- ENTITY-MIB
- EVENT-MIB
- HOST-RESOURCES-MIB
- MIB-II
- SNMP-COMMUNITY-MIB
- SNMP-FRAMEWORK-MIB
- SNMP-NOTIFICATION-MIB
- SNMP-TARGET-MIB
- SNMP-USM-MIB
- SNMPv2
In WAAS software, there are six generic alarm traps in the CISCO-CONTENT-ENGINE-MIB for SNMP and Node Health Manager integration.

In WAAS software, you can use IP ACLs to control SNMP access on a WAAS device.

**Downloading MIB Files to WAEs**

From the following Cisco FTP site you can download the MIB files for all of the MIBS that are supported by a WAAS device that is running WAAS software:


The MIB objects that are defined in each MIB are described in the MIB files at the above FTP site are self explanatory.

**Examples**

The following example sets persistence for the Event MIB:

```
WAE(config)# snmp-server mib persist event
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server notify inform
- (config) snmp-server trap-source
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
(config) snmp-server notify inform

To configure the SNMP notify inform request on WAAS device, use the **snmp-server notify inform** global configuration command. To return the setting to the default value, use the **no** form of this command.

```
 snmp-server notify inform
```

**Syntax Description**  This command has no arguments or keywords.

**Defaults** If you do not issue the **snmp-server notify inform** command, the default is an SNMP trap request.

**Command Modes**  global configuration

**Device Modes**  application-accelerator
replication-accelerator
central-manager

**Examples**  The following example configures an SNMP notify inform request versus the default SNMP trap:

```
WAE(config)# snmp-server notify inform
```

**Related Commands**  (config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib persist event
(config) snmp-server trap-source
(config) snmp-server user
(config) snmp-server view
snmp trigger
(config) snmp-server trap-source

To configure the network interface to be used for sending out SNMP trap messages from a WAAS device, use the **snmp-server trap-source** global configuration command. To remove the configured trap-source, use the **no** form of the command.

```
 snmp-server trap-source {GigabitEthernet 1-2/port | PortChannel 1-2 | Standby group_num}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>GigabitEthernet</strong></td>
<td>Selects a Gigabit Ethernet interface’s IP as trap source for sending SNMP trap messages.</td>
</tr>
<tr>
<td>1-2/</td>
<td>Gigabit Ethernet slot number 1 or 2.</td>
</tr>
<tr>
<td><strong>port</strong></td>
<td>Port number of the Gigabit Ethernet interface.</td>
</tr>
<tr>
<td><strong>PortChannel</strong></td>
<td>Selects a port channel interface’s IP as trap source for sending SNMP trap messages.</td>
</tr>
<tr>
<td>1-2</td>
<td>Port Channel number 1 or 2.</td>
</tr>
<tr>
<td><strong>Standby</strong></td>
<td>Selects a standby group’s IP as trap source for sending SNMP trap messages.</td>
</tr>
<tr>
<td><strong>group_num</strong></td>
<td>Standby group number 1–4.</td>
</tr>
</tbody>
</table>

**Defaults**

The primary interface’s IP is used as default trap source for sending SNMP traps. If the primary interface is not configured, then the local IP address of the WAAS device is used as trap source.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

The **snmp-server trap-source** global configuration command allows you to specify the interface with the IP address that will be included in the SNMP trap messages as a trap source. To change the trap-source interface, reenter the command with a different network interface.

If there is no trap-source interface configured in the WAAS device, the IP address of the WAAS device’s current primary interface is used. If the primary interface is not configured, the local IP address of the WAAS device is used as a trap source.

**Examples**

The following example shows how to specify the Gigabit Ethernet slot 1 port 0 as the SNMP trap-source interface on a WAAS device:

```
 WAE(config)# snmp-server trap-source GigabitEthernet 1/0
```
The following example shows how to specify the Gigabit Ethernet slot 2 port 0 as the SNMP trap-source interface on a WAAS device:

WAE(config)# snmp-server trap-source GigabitEthernet 2/0

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib persist event
- (config) snmp-server notify inform
- (config) snmp-server user
- (config) snmp-server view
- snmp trigger
To define a user who can access the SNMP server, use the `snmp-server user` global configuration command. To remove access, use the `no` form of this command.

```
(snmp-server user name group [auth {md5 password [priv password]} | sha password [priv password]] | remote octetstring [auth {md5 password [priv password]} | sha password [priv password]])
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>Name of the SNMP user. Use letters, numbers, dashes, and underscores, but no blanks. This is the name of the user on the SNMP host who wants to communicate with the SNMP agent on the W AAS device. You can enter a maximum of 64 characters.</td>
</tr>
<tr>
<td>group</td>
<td>Name of the group to which the SNMP user belongs. You can enter a maximum of 64 characters.</td>
</tr>
<tr>
<td>auth</td>
<td>(Optional) Configures user authentication parameters.</td>
</tr>
<tr>
<td>md5</td>
<td>Configures HMAC MD5 authentication algorithm.</td>
</tr>
<tr>
<td>password</td>
<td>HMAC-MD5 user authentication password.</td>
</tr>
<tr>
<td>priv</td>
<td>(Optional) Configures authentication parameters for the packet.</td>
</tr>
<tr>
<td>password</td>
<td>HMAC-MD5 user private password. You can enter a maximum of 256 characters.</td>
</tr>
<tr>
<td>sha</td>
<td>Configures HMAC-SHA authentication algorithm.</td>
</tr>
<tr>
<td>password</td>
<td>HMAC-SHA authentication password. You can enter a maximum of 256 characters.</td>
</tr>
<tr>
<td>remote</td>
<td>(Optional) Specifies engine identity of remote SNMP entity to which the user belongs.</td>
</tr>
<tr>
<td>octetstring</td>
<td>Globally unique identifier for a remote SNMP entity (for example, the SNMP network management station) for at least one of the SNMP users.</td>
</tr>
</tbody>
</table>

#### Tip
To send an SNMPv3 inform message, at least one SNMPv3 user with a remote SNMP ID option must be configured on the WAAS device. The SNMP ID is entered in octet string form. For example, if the IP address of a remote SNMP entity is 192.147.142.129, then the octet string would be 00:00:63:00:00:00:a1:c0:93:8e:81.

### Defaults
No default behavior or values

### Command Modes
- global configuration

### Device Modes
- application-accelerator
- replication-accelerator
- central-manager
Usage Guidelines

When defining SNMP users for WAAS devices, note the following:

- If the SNMPv3 protocol is going to be used for SNMP requests, you must define at least one SNMPv3 user account on the WAAS device for the WAAS device to be accessed through SNMP.
- A group defined with the SNMPv1 or SNMPv2c security model should not be associated with SNMP users; they should only be associated with the community strings.

Examples

The following example shows how an SNMPv3 user account is created on the WAAS device. The SNMPv3 user is named `acme` and belongs to the group named `admin`. Because this SNMP user account has been set up with no authentication password, the SNMP agent on the WAAS device does not perform authentication on SNMP requests from this user.

```
WAE(config)# snmp-server user acme admin
```

Related Commands

```
(config) snmp-server community
(config) snmp-server contact
(config) snmp-server enable traps
(config) snmp-server group
(config) snmp-server host
(config) snmp-server location
(config) snmp-server mib persist event
(config) snmp-server notify inform
(config) snmp-server trap-source
(config) snmp-server view
snmp trigger
```
(config) snmp-server view

To define a SNMPv2 MIB view on a WAAS device, use the `snmp-server view` global configuration command. To remove the MIB view definition, use the `no` form of this command.

```
snmp-server view viewname MIBfamily {excluded | included}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>viewname</code></td>
<td>Name of this family of view subtrees. You can enter a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>MIBfamily</code></td>
<td>Object identifier that identifies a subtree of the MIB. You can enter a maximum of 64 characters.</td>
</tr>
<tr>
<td><code>excluded</code></td>
<td>Excludes MIB family from the view.</td>
</tr>
<tr>
<td><code>included</code></td>
<td>Includes MIB family in the view.</td>
</tr>
</tbody>
</table>

**Defaults**

No default behavior or values

**Command Modes**

global configuration

**Device Modes**

application-accelerator
replication-accelerator
central-manager

**Examples**

The following example defines an SNMPv2 MIB view:

```
WAE(config)# snmp-server view fileview ciscoFileEngineMIB included
```

**Related Commands**

- (config) snmp-server community
- (config) snmp-server contact
- (config) snmp-server enable traps
- (config) snmp-server group
- (config) snmp-server host
- (config) snmp-server location
- (config) snmp-server mib persist event
- (config) snmp-server notify inform
- (config) snmp-server trap-source
- (config) snmp-server user
- snmp trigger
To enable the SSH daemon on a WAAS device, use the `sshd` command in global configuration mode. To disable the SSH daemon on a WAAS device, use the `no` form of this command.

```
sshd [allow-non-admin-users | enable | password-guesses number | timeout seconds | version {1 | 2}]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>allow-non-admin-users</code></td>
<td>Allows non-administrative users to gain SSH access to the chosen device</td>
</tr>
<tr>
<td></td>
<td>(or device group). By default, this option is disabled.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> Non-administrative users are non-superuser administrators. All</td>
</tr>
<tr>
<td></td>
<td>non-superuser administrators only have restricted access to a WAAS device</td>
</tr>
<tr>
<td></td>
<td>because their login accounts have a privilege level of 0. Superuser</td>
</tr>
<tr>
<td></td>
<td>administrators have full access to a WAAS device because their login</td>
</tr>
<tr>
<td></td>
<td>accounts have the highest level of privileges, a privilege level of 15.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables the SSH daemon on a WAAS device.</td>
</tr>
<tr>
<td><code>password-guesses</code></td>
<td>Specifies the number of allowable password guesses per connection.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Maximum number of incorrect password guesses allowed (1–99). (The default is 3.)</td>
</tr>
<tr>
<td><code>timeout</code></td>
<td>Configures the number of seconds for which an SSH session will be active</td>
</tr>
<tr>
<td></td>
<td>during the negotiation (authentication) phase between client and server</td>
</tr>
<tr>
<td></td>
<td>before it times out.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> If you have established an SSH connection to the WAAS device but</td>
</tr>
<tr>
<td></td>
<td>have not entered the username when prompted at the login prompt, the</td>
</tr>
<tr>
<td></td>
<td>connection will be terminated by the WAAS device if the grace period</td>
</tr>
<tr>
<td></td>
<td>expires even after successful login.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>SSH login grace time value in seconds (1–99999). (The default is 300.)</td>
</tr>
<tr>
<td><code>version</code></td>
<td>Configures the SSH version to be supported on the WAAS device.</td>
</tr>
<tr>
<td><code>1</code></td>
<td>Specifies that SSH Version 1 is supported on the WAAS device.</td>
</tr>
<tr>
<td><code>2</code></td>
<td>Specifies that SSH Version 2 is supported on the WAAS device.</td>
</tr>
</tbody>
</table>

### Defaults

By default, the SSH daemon is disabled on a WAAS device. If you use the `sshd enable` command to enable the SSH daemon on a WAAS device, the following default settings are used:

- `password-guesses number`: 3 guesses
- `timeout seconds`: 300 seconds
- `version`: Both SSH Version 1 and 2 are enabled.
central-manager

**Usage Guidelines**

SSH enables login access to the WAAS device through a secure and encrypted channel. SSH consists of a server and a client program. Like Telnet, you can use the client program to remotely log on to a machine that is running the SSH server, but unlike Telnet, messages transported between the client and the server are encrypted. The functionality of SSH includes user authentication, message encryption, and message authentication.

Before you enable the `sshd` command, use the `ssh-key-generate` command to generate a private and a public host key, which the client programs use to verify the server’s identity.

Although the `sshd password-guesses` command specifies the number of allowable password guesses from the SSH server side, the actual number of password guesses for an SSH login session is determined by the combined number of allowable password guesses of the SSH server and the SSH client. Some SSH clients limit the maximum number of allowable password guesses to three (or to one in some cases), even though SSH server side allows more than this number of guesses.

When `sshd password-guesses` is entered, specifying `n` allowable password guesses, certain SSH clients interpret this `number` as `n+1`. For example, when configuring the number of guesses to two by issuing the command `sshd password-guesses 2` for a particular device, SSH sessions from some SSH clients will allow three password guesses.

You can enable both SSH Version 1 and Version 2, or you can enable one version and not the other. When you enable the SSH daemon using the `sshd enable` global configuration command, support for both SSH Version 1 and SSH Version 2 is enabled. If you want the WAAS device to support only one version of SSH (for example SSH version 2), you must disable the other version. For example, to disable SSH Version 1, enter the `no sshd version 1` command.

If the SSH daemon is currently enabled on a WAAS device, at least one version of SSH must be enabled on the device. Before you can disable both versions of SSH, you must enter the `no sshd enable` command to disable the SSH daemon on the WAAS device. If you attempt to disable both versions of SSH before you have disabled the SSH daemon, the following message will appear on your console informing you that you must disable the SSH daemon before you can disable both versions of SSH:

```
WAE(config)# no sshd version 1
WAE(config)# no sshd version 2
Atleast SSHv1 or SSHv2 must be enabled with sshd enabled.
Disable sshd to disable both SSHv1 and SSHv2.
Did not update ssh version support. Please retry.
```

When support for both SSH version 1 and SSH version 2 are enabled in the WAAS device, the `show running-config` EXEC command output does not display any SSHD configuration.

If you have disabled the support for one version of SSH, the `show running-config` EXEC command output contains the following line:

```
no sshd version version_number
```

---

**Note**

The Telnet daemon can still be used with the WAAS device. SSH does not replace Telnet.

---

**Examples**

The following example enables and configures a Secure Shell daemon on the WAAS device:

```
WAE(config)# sshd enable
WAE(config)# sshd password-guesses 4
WAE(config)# sshd timeout 20
```
The following example disables the support for SSH Version 1 in the WAAS device:

```
WAE(config)# no sshd version 1
```

**Related Commands**

```
(config) ssh-key-generate
```
To generate the SSH host key for a WAAS device, use the `ssh-key-generate` global configuration command. To remove the SSH key, use the `no` form of the command.

```
ssh-key-generate [key-length length]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key-length</td>
<td>(Optional) Configures the length of the SSH key.</td>
</tr>
<tr>
<td>length</td>
<td>Number of bits to create an SSH key (512–2048).</td>
</tr>
</tbody>
</table>

**Defaults**

```
key-length length: 1024 bits
```

**Command Modes**

```
global configuration
```

**Device Modes**

```
application-accelerator
replication-accelerator
central-manager
```

**Usage Guidelines**

Before you enter the `sshd enable` command, enter the `ssh-key-generate` command to generate a private and a public host key, which the client programs use to verify a server’s identity.

When you use an SSH client and log in to a WAAS device, the public key for the SSH daemon that is running on the device is recorded in the client machine known_hosts file in your home directory. If you subsequently regenerate the host key by specifying the number of bits in the `key-length` command option, you must delete the old public key entry associated with the WAAS device in the known_hosts file before running the SSH client program to log in to the WAAS device. When you use the SSH client program after deleting the old entry, the known_hosts file is updated with the new SSH public key for the WAAS device.

**Examples**

The following example generates an SSH public key and then enables the SSH daemon on the WAAS device:

```
WAE(config)# ssh-key-generate
Ssh host key generated successfully
Saving the host key to box ...
Host key saved successfully
WAE(config)# ssdh enable
Starting ssh daemon ...
Ssh daemon started successfully
```

**Related Commands**

```
(config) ssdh
```
(config) tacacs

To configure TACACS+ server parameters on a WAAS device, use the tacacs command in global configuration mode. To disable individual options, use the no form of this command.

```
tacacs { host [hostname | ip-address] [primary] | key keyword | password ascii | retransmit retries | timeout seconds }
```

**Syntax Description**

- **host**: Specifies a server address.
- **hostname**: Hostname of the TACACS+ server.
- **ip-address**: IP address of the TACACS+ server.
- **primary**: (Optional) Sets the server as the primary server.
- **key**: Sets the security word.
- **keyword**: Keyword. An empty string is the default.
- **password ascii**: Specifies ASCII as the TACACS+ password type.
- **retransmit**: Sets the number of times that requests are retransmitted to a server.
- **retries**: Number of retry attempts allowed (1–3). The default is 2 retry attempts.
- **timeout**: Sets the number of seconds to wait before a request to a server is timed out.
- **seconds**: Timeout in seconds (1–20). The default is 5 seconds.

**Defaults**

- **keyword**: none (empty string)
- **timeout seconds**: 5
- **retries**: 2
- **password**: The default password type is PAP.

**Command Modes**

- global configuration

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**

One primary and two backup TACACS+ servers can be configured on a WAAS device; authentication is attempted on the primary server first, then on the others in the order in which they were configured. The primary server is the first server configured unless another is explicitly specified as primary with the tacacs host hostname primary command.

TACACS+ uses the standard port (port 49) for communication, based on the specified service. Using the tacacs command, configure the TACACS+ key, number of retransmits, server hostname or IP address, and timeout.
To enable user authentication with a TACACS+ server, use the `authentication` global configuration command. (See the “(config) authentication” command.)

The TACACS+ remote database can also be used to maintain login and configuration privileges for administrative users. The `tacacs host` command allows you to configure the network parameters required to access the remote database.

Use the `tacacs key` command to specify the TACACS+ key, used to encrypt the packets transmitted to the server. This key must be the same as the one specified on the server daemon. The maximum number of characters in the key should not exceed 99 printable ASCII characters (except tabs). An empty key string is the default. All leading spaces are ignored; spaces within and at the end of the key string are not ignored. Double quotes are not required even if there are spaces in the key, unless the quotes themselves are part of the key.

The `tacacs timeout` is the number of seconds that the WAAS device waits before declaring a timeout on a request to a particular TACACS+ server. The range is from 1 to 20 seconds, with 5 seconds as the default. The number of times that the WAAS device repeats a retry-timeout cycle before trying the next TACACS+ server is specified by the `tacacs retransmit` command. The default is two retry attempts.

Three unsuccessful login attempts are permitted. TACACS+ logins may appear to take more time than local logins depending on the number of TACACS+ servers and the configured timeout and retry values.

Use the `tacacs password ascii` command to specify the TACACS+ password type as ASCII. The default password type is PAP (Password Authentication Protocol). When the `no tacacs password ascii` command is used to disable the ASCII password type, the password type is once again reset to PAP.

The TACACS+ client can send different requests to the server for user authentication. The client can send a TACACS+ request with the PAP password type. In this scenario, the authentication packet includes both the username and password of the user. The server must have an appropriately configured account for the user.

Alternatively, the client can send a TACACS+ request with the ASCII password type as another option. In this scenario, the authentication packet includes the username only and waits for the server response. Once the server confirms that the account exists for a user, the client sends another Continue request with the password of the user. The authentication server must have an appropriately configured account for the user to support either type of password.

### Examples

The following example configures the key used in encrypting packets:

```
WAE(config)# tacacs key human789
```

The following example configures the host named spearhead as the primary TACACS+ server:

```
WAE(config)# tacacs host spearhead primary
```

The following example sets the timeout interval for the TACACS+ server:

```
WAE(config)# tacacs timeout 10
```

The following example sets the number of times that authentication requests are retried (retransmitted) after a timeout:

```
WAE(config)# tacacs retransmit 5
```

The following example shows the password type to be PAP by default:

```
WAE# show tacacs
Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)
```

```
TACACS+ Configuration:
```

```
TACACS+ Authentication is off
Key = ******
Timeout = 5
Retransmit = 2
Password type: pap

Server Status
---------------------------- -----
10.107.192.148 primary
10.107.192.168
10.77.140.77

You can configure the password type to be ASCII using the tacacs password ascii command. You can then verify the changes using the show tacacs command.

WAE(config)# tacacs password ascii
WAE(config)# exit
WAE# show tacacs
Login Authentication for Console/Telnet Session: enabled (secondary)
Configuration Authentication for Console/Telnet Session: enabled (secondary)

TACACS+ Configuration:

TACACS+ Authentication is off
Key = ******
Timeout = 5
Retransmit = 2
Password type: ascii

Server Status
---------------------------- -----
10.107.192.148 primary
10.107.192.168
10.77.140.77

Related Commands
(config) authentication
show authentication
show statistics authentication
show statistics tacacs
show tacacs
To configure TCP parameters on a WAAS device, use the `tcp` global configuration command. To disable TCP parameters, use the `no` form of this command.

```plaintext
(config) tcp
```

- **tcp cwnd-base segments**
 - Sets initial send congestion window in segments.

- **tcp ecn enable**
 - Enables TCP explicit congestion notification.

- **tcp increase-xmit-timer-value value**
 - Specifies the factor (1-3) used to modify the length of the retransmit timer by 1 to 3 times the base value determined by the TCP algorithm.
 - **Note** Modify this factor with caution. It can improve throughput when TCP is used over slow reliable connections but should never be changed in an unreliable packet delivery environment.

- **tcp init-ss-threshold value**
 - Sets initial slow-start threshold value.

- **tcp keepalive-probe-cnt count**
 - Specifies the length of time that the WAAS device keeps an idle connection open.

- **tcp keepalive-probe-interval seconds**
 - Specifies the number of times that the WAAS device retries a connection.

- **tcp keepalive-timeout seconds**
 - Specifies the length of time that the WAAS device keeps a connection open before disconnecting.

- **tcp memory-limit low-water-mark low high-water-mark-pressure high high-water-mark-absolute absolute**
 - Specifies the system TCP memory usage limit (including send and receive buffer usage of all connections).
 - **Caution** To prevent TCP buffer overflow, do not modify the default values unless you are sure of the procedure.
Chapter 3 CLI Commands

(config) tcp

Defaults

- **tcp cwnd-base:** 2
- **tcp increase-xmit-timer-value:** 1
- **tcp init-ss-threshold:** 2 segments
- **tcp keepalive-probe-cnt:** 4
- **tcp keepalive-probe-interval:** 75 seconds
- **tcp keepalive-timeout:** 90 seconds

Command Modes
global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
You can adjust the TCP stack parameters to maximize cache performance and throughput of HTTP streams over TCP end to end. The relevant TCP parameters to maximize cache performance and throughput include the ability to tune timeout periods, client and server receive and send buffer sizes, and TCP window scaling behavior.

Note
Because of the complexities involved in TCP parameters, care is advised in tuning these parameters. In nearly all environments, the default TCP settings are adequate. Fine tuning of TCP settings is for network administrators with adequate experience and full understanding of TCP operation details. See the *Cisco Wide Area Application Services Configuration Guide* for more information.

Use the **tcp keepalive-probe-cnt** global configuration command to specify how many times the WAAS device should attempt to connect to the device before closing the connection. The count can be from 1 to 10. The default is 4 attempts.

Use the **tcp keepalive-probe-interval** global configuration command to specify how often the WAAS device is to send out a TCP keepalive. The interval can be from 1 to 120 seconds. The default is 75 seconds.

low-water-mark
Specifies the memory usage mark (in megabytes) below which TCP goes out of the memory pressure mode and enters into the normal memory allocation mode.

<table>
<thead>
<tr>
<th>low</th>
<th>Memory usage in megabytes (4–600).</th>
</tr>
</thead>
<tbody>
<tr>
<td>high-water-mark-pressure</td>
<td>Specifies the memory usage mark (in megabytes) above which TCP goes out of the normal memory allocation mode and enters the memory pressure mode.</td>
</tr>
<tr>
<td>high</td>
<td>Memory usage in megabytes (5–610).</td>
</tr>
<tr>
<td>high-water-mark-absolute</td>
<td>Specifies the absolute hard limit on TCP memory usage (in megabytes).</td>
</tr>
<tr>
<td>absolute</td>
<td>Memory usage in megabytes (6–620).</td>
</tr>
</tbody>
</table>

Note
Because of the complexities involved in TCP parameters, care is advised in tuning these parameters. In nearly all environments, the default TCP settings are adequate. Fine tuning of TCP settings is for network administrators with adequate experience and full understanding of TCP operation details. See the *Cisco Wide Area Application Services Configuration Guide* for more information.

Use the **tcp keepalive-probe-cnt** global configuration command to specify how many times the WAAS device should attempt to connect to the device before closing the connection. The count can be from 1 to 10. The default is 4 attempts.

Use the **tcp keepalive-probe-interval** global configuration command to specify how often the WAAS device is to send out a TCP keepalive. The interval can be from 1 to 120 seconds. The default is 75 seconds.
Use the **tcp keepalive-timeout** global configuration command to wait for a response (the device does not respond) before the WAAS device logs a miss. The timeout can be from 1 to 120 seconds. The default is 90 seconds.

Examples

The following example enables TCP explicit congestion notification:

```
WAE(config)# tcp ecn enable
```

The following example specifies a low watermark memory usage of 100 MB, a high watermark memory usage of 450 MB, and an absolute high watermark memory usage of 500 MB:

```
WAE(config)# tcp memory-limit low-water-mark 100 high-water-mark-pressure 450 high-water-mark-absolute 500
```

Related Commands

- `clear`
- `show statistics tcp`
- `show tcp`
(config) telnet enable

To enable Telnet on a WAAS device, use the **telnet enable** global configuration command.

`telnet enable`

Syntax Description
This command has no arguments or keywords.

Defaults
By default, the Telnet service is enabled on a WAAS device.

Command Modes
global configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use terminal emulation software to start a Telnet session with a WAAS device.

You must use a console connection instead of a Telnet session to define device network settings on the WAAS device. However, after you have used a console connection to define the device network settings, you can use a Telnet session to perform subsequent configuration tasks.

Note
Messages transported between the client and the device are not encrypted.

Examples
The following example enables the use of Telnet on the WAAS device:

```
WAE(config)# telnet enable
```

Related Commands
`telnet`
`show telnet`
(config) tfo auto-discovery

To configure a WAE to automatically discover origin servers (such as those servers behind firewalls) that cannot receive TCP packets with setup options and add these server IP addresses to a blacklist for a specified number of minutes, use the tfo auto-discovery blacklist global configuration command. To disable TFO auto-discovery, use the no form of this command.

```
tfo auto-discovery [blacklist] {enable | hold-time minutes}
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>enable</th>
<th>Activates the TFO auto-discovery feature.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>blacklist enable</td>
<td>Activates the TFO auto-discovery blacklist feature.</td>
</tr>
<tr>
<td></td>
<td>blacklist hold-time</td>
<td>Specifies the maximum time to hold the blacklisted server address in the cache.</td>
</tr>
<tr>
<td></td>
<td>minutes</td>
<td>Number of minutes to hold the server blacklist entry. The range is 1–10080 minutes. The default is 60 minutes.</td>
</tr>
</tbody>
</table>

Defaults

The default TFO auto-discovery blacklist hold time is 60 minutes.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

Use the tfo auto-discovery blacklist hold-time command to adjust the blacklist hold time for the TFO auto-discovery feature. With auto-discovery, the WAE keeps track of origin servers (such as those servers behind firewalls) that cannot receive optioned TCP packets and learns not to send out TCP packets with options to these blacklisted servers. When a server IP address is added to the blacklist, it remains on the blacklist for the configured number of minutes. After the hold time expires, subsequent connection attempts will again include TCP options so that the WAE can redetermine if the server can receive them. Resending TCP options periodically is useful because network packet loss could cause a server to be blacklisted erroneously.

Related Commands

show statistics tfo
show tfo status
To configure a WAE for Traffic Flow Optimization (TFO), use the `tfo optimize` global configuration command. Use the `no` form of this command to disable TFO optimization.

```
tfo optimize {DRE {yes | no} compression {LZ | none | full}}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRE</td>
<td>Configures TFO optimization with or without Data Redundancy Elimination (DRE).</td>
</tr>
<tr>
<td>yes</td>
<td>Enables DRE.</td>
</tr>
<tr>
<td>no</td>
<td>Disables DRE.</td>
</tr>
<tr>
<td>compression</td>
<td>Configures TFO optimization with or without generic compression.</td>
</tr>
<tr>
<td>LZ</td>
<td>Configures TFO optimization with Lempel-Ziv (LZ) compression.</td>
</tr>
<tr>
<td>none</td>
<td>Configures TFO optimization with no compression.</td>
</tr>
<tr>
<td>full</td>
<td>Configures TFO optimization with DRE and LZ compression. Using this keyword is the same as specifying the <code>tfo optimize DRE yes compression LZ</code> command.</td>
</tr>
</tbody>
</table>

Defaults

The default TFO optimization on a WAAS device is `tfo optimize full`.

Command Modes

- global configuration

Device Modes

- application-accelerator

Related Commands

- `show statistics tfo`
- `show tfo bufpool`
- `show tfo status`
(config) tfo tcp keepalive

To configure a WAE for Traffic Flow Optimization (TFO) optimization with TCP keepalive, use the tfo tcp keepalive global configuration command.

```
tfo tcp keepalive
```

Syntax Description
This command has no keywords or arguments.

Defaults
Keepalive is disabled by default.

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
This command enables TCP keepalive on the TFO optimized sockets (the connection between two peer WAE’s).

Related Commands
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
To configure a WAE for Traffic Flow Optimization (TFO) optimization with an optimized-side TCP maximum segment size, use the `tfo tcp optimized-mss` global configuration command.

```
tfo tcp optimized-mss segment-size
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>segment-size</code></td>
<td>Segment size (512–1460).</td>
</tr>
</tbody>
</table>

Defaults

The default value of the segment size is 1432 bytes.

Command Modes

- Global configuration

Device Modes

- Application accelerator

Usage Guidelines

This command sets the TCP maximum segment size on TFO optimized sockets (the connection between two peer WAEs).

Related Commands

- `(config) tfo tcp keepalive`
- `(config) tfo tcp optimized-receive-buffer`
- `(config) tfo tcp optimized-send-buffer`
- `(config) tfo tcp original-mss`
- `(config) tfo tcp original-receive-buffer`
- `(config) tfo tcp original-send-buffer`
To configure a WAE for Traffic Flow Optimization (TFO) optimization with an optimized-side receive buffer, use the `tfo tcp optimized-receive-buffer` global configuration command.

```
tfo tcp optimized-receive-buffer buffer-size
```

Syntax Description

- `buffer-size`: Receive buffer size in kilobytes.

Defaults

- 32 KB

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

This command sets the TCP receive buffer size on TFO optimized sockets (the connection between two peer WAEs). For high Bandwidth Delay Product (BDP) links, you should use a value larger than the default.

The buffer should be equal to or greater than the BDP. The BDP is equivalent to the bandwidth (in bits per second) * latency (in seconds). For example, for a 45-Mbps link with a 150-ms (0.15 sec) round-trip delay, the BDP is 45 Mbps * 0.15 sec = 6.75 Mb, or 0.844 MB (844 KB). In this case, you could set the buffer size to 1024 KB.

Related Commands

- `tfo tcp keepalive`
- `tfo tcp optimized-mss`
- `tfo tcp optimized-send-buffer`
- `tfo tcp original-mss`
- `tfo tcp original-receive-buffer`
- `tfo tcp original-send-buffer`
(config) tfo tcp optimized-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) optimization with an optimized-side send buffer, use the tfo tcp optimized-send-buffer global configuration command.

```
tfo tcp optimized-send-buffer buffer-size
```

Syntax Description

- `buffer-size`: Send buffer size in kilobytes.

Defaults

- 32 KB

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

This command sets the TCP send buffer size on TFO optimized sockets (the connection between two peer WAES). For high Bandwidth Delay Product (BDP) links, you should use a value larger than the default.

The buffer should be equal to or greater than the BDP. The BDP is equivalent to the bandwidth (in bits per second) * latency (in seconds). For example, for a 45-Mbps link with a 150-ms (0.15 sec) round-trip delay, the BDP is 45 Mbps * 0.15 sec = 6.75 Mb, or 0.844 MB (844 KB). In this case, you could set the buffer size to 1024 KB.

Related Commands

- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-receive-buffer
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-mss

To configure a WAE for Traffic Flow Optimization (TFO) optimization with an unoptimized-side TCP maximum segment size, use the `tfo tcp original-mss` global configuration command.

```
tfo tcp original-mss segment-size
```

Syntax Description

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>segment-size</code></td>
<td>Segment size (512–1460).</td>
</tr>
</tbody>
</table>

Defaults

1432 bytes

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

This command sets the TCP maximum segment size on TFO unoptimized sockets (the connection between the WAE and the client or the WAE and the server).

Related Commands

- `(config) tfo tcp keepalive`
- `(config) tfo tcp optimized-mss`
- `(config) tfo tcp optimized-receive-buffer`
- `(config) tfo tcp optimized-send-buffer`
- `(config) tfo tcp original-receive-buffer`
- `(config) tfo tcp original-send-buffer`
(config) tfo tcp original-receive-buffer

To configure a WAE for Traffic Flow Optimization (TFO) optimization with an unoptimized-side receive buffer, use the `tfo tcp original-receive-buffer` global configuration command.

```plaintext
(tfo tcp original-receive-buffer) buffer-size
```

Syntax Description
- `buffer-size` Receive buffer size in kilobytes.

Defaults
- 32 KB

Command Modes
- global configuration

Device Modes
- application-accelerator

Usage Guidelines
This command sets the TCP receive buffer size on TFO unoptimized sockets (the connection between the WAE and the client or the WAE and the server).

Related Commands
- (config) tfo tcp keepalive
- (config) tfo tcp optimized-mss
- (config) tfo tcp optimized-receive-buffer
- (config) tfo tcp optimized-send-buffer
- (config) tfo tcp original-mss
- (config) tfo tcp original-send-buffer
(config) tfo tcp original-send-buffer

To configure a WAE for Traffic Flow Optimization (TFO) optimization with an unoptimized-side send buffer, use the `tfo tcp original-send-buffer` global configuration command.

```
tfo tcp original-send-buffer buffer-size
```

Syntax Description

<table>
<thead>
<tr>
<th>Buffer Size</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buffer-size</code></td>
<td>Send buffer size in kilobytes.</td>
</tr>
</tbody>
</table>

Defaults

32 KB

Command Modes

`global configuration`

Device Modes

`application-accelerator`

Usage Guidelines

This command sets the TCP send buffer size on TFO unoptimized sockets (the connection between the WAE and the client or the WAE and the server).

Related Commands

- `(config) tfo tcp keepalive`
- `(config) tfo tcp optimized-mss`
- `(config) tfo tcp optimized-receive-buffer`
- `(config) tfo tcp optimized-send-buffer`
- `(config) tfo tcp original-mss`
- `(config) tfo tcp original-receive-buffer`
(config) transaction-logs

To configure and enable transaction logging on a WAE, use the `transaction-logs` global configuration command. To disable a transaction logging option, use the `no` form of this command.

```
transaction-logs tfo enable

transaction-logs tfo logging { enable | facility parameter | host { hostname | ip-address } [ port port-num ] [ rate-limit number-message-per-sec ] }

transaction-logs tfo archive interval seconds

transaction-logs tfo archive interval every-day { at hour:minute | every hours }

transaction-logs tfo archive interval every-hour { at minute | every minutes }

transaction-logs tfo archive interval every-week [ on weekdays at hour:minute ]

transaction-logs tfo archive max-file-size filesize

transaction-logs export compress

transaction-logs export enable

transaction-logs export ftp-server { hostname | servipaddr } login passw directory

transaction-logs export interval minutes

transaction-logs export interval every-day { at hour:minute | every hours }

transaction-logs export interval every-hour { at minute | every minutes }

transaction-logs export interval every-week [ on weekdays at hour:minute ]

transaction-logs export sftp-server { hostname | servipaddr } login passw directory
```

Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tfo</td>
<td>Specifies the TFO transaction log feature.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables the TFO transaction log feature.</td>
</tr>
<tr>
<td>logging</td>
<td>Specifies logging TFO transactions to a remote syslog host.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables logging TFO transactions to a remote syslog host.</td>
</tr>
<tr>
<td>facility</td>
<td>Specifies the appropriate transaction log facility.</td>
</tr>
<tr>
<td></td>
<td>This drop-down list is set to an initial value of Do not set. This setting denotes that the</td>
</tr>
<tr>
<td></td>
<td>facility sent to the syslog host will be the facility on the local host that is sending the</td>
</tr>
<tr>
<td></td>
<td>syslog message. For instance, in the case of the transaction logging module that sends the</td>
</tr>
<tr>
<td></td>
<td>real-time transaction log message, the facility is the “user” facility.</td>
</tr>
<tr>
<td>parameter</td>
<td>Specifies one of the following facilities:</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemons</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0</td>
<td>Local use</td>
</tr>
<tr>
<td>local1</td>
<td>Local use</td>
</tr>
<tr>
<td>local2</td>
<td>Local use</td>
</tr>
<tr>
<td>local3</td>
<td>Local use</td>
</tr>
<tr>
<td>local4</td>
<td>Local use</td>
</tr>
<tr>
<td>local5</td>
<td>Local use</td>
</tr>
<tr>
<td>local6</td>
<td>Local use</td>
</tr>
<tr>
<td>local7</td>
<td>Local use</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>syslog</td>
<td>Syslog itself</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UUCP system</td>
</tr>
</tbody>
</table>

host	Configures the remote syslog server.
hostname	Hostname or IP address of the remote syslog server to which transaction logs must be sent. No remote syslog server is specified by default.
ip-address	IP address of the remote syslog server.
port	(Optional) Configures the port to use when sending transaction log messages to the syslog server.
port-num	Destination port on the remote syslog host to which the WAE should send the transaction log files. The default port number is 514. This port is a well-known port for system logging.
rate-limit	(Optional) Configures the rate at which the transaction logger is allowed to send messages to the remote syslog server.
number-message-per-sec	Number of messages that are allowed to be sent to the remote syslog host per second. To limit bandwidth and other resource consumption, messages to the remote syslog host can be rate-limited. If this limit is exceeded, the specified remote syslog host drops the messages. There is no default rate limit (rate-limit is set to 0), and by default all syslog messages are sent to all of the configured syslog hosts. The range is 1 to 10,000 messages per second.

archive	Configures archive parameters.
interval	Determines how frequently the archive file is to be saved.
seconds	Frequency of archiving in seconds (120–604800).
every-day	Archives using intervals of 1 day or less.
at	Specifies the local time at which to archive each day.
hour:minute	Time of day at which to archive in local time (hh:mm).
every	Specifies the interval in hours. Interval aligns with midnight.
Chapter 3 CLI Commands

(config) transaction-logs

hours

Number of hours for daily file archive.

1 Hourly
12 Every 12 hours
2 Every 2 hours
24 Every 24 hours
3 Every 3 hours
4 Every 4 hours
6 Every 6 hours
8 Every 8 hours

every-hour

Specifies the archives using intervals of 1 hour or less.
at

Sets the time to archive at each hour.
minute

Minute alignment for the hourly archive (0–59).
every

Specifies the interval in minutes for hourly archive that aligns with the top of the hour.
minutes

Number of minutes for hourly archive.

10 Every 10 minutes
15 Every 15 minutes
20 Every 20 minutes
30 Every 30 minutes
5 Every 5 minutes

every-week

Archives using intervals of 1 or more times a week.
on

(Optional) Sets the day of the week on which to archive.
weekdays

Weekdays on which to archive. One or more weekdays can be specified.

Fri Every Friday
Mon Every Monday
Sat Every Saturday
Sun Every Sunday
Thu Every Thursday
Tue Every Tuesday
Wed Every Wednesday

at

(Optional) Sets the local time at which to archive each day.
hour:minute

Time of day at which to archive in local time (hh:mm).
max-file-size

Specifies the maximum size (in kilobytes) of the archive file to be maintained on the local disk.
filesize

Maximum archive file size in kilobytes (1000–2000000). This value is the maximum size of the archived file to be maintained on the local disk.

export

Configures file export parameters. The FTP export feature can support up to four servers. Each server must be configured with a username, password, and directory that are valid for that server.
compress

Enables compression of archived log files into zip format before exporting them to external FTP servers.

enable

Enables the exporting of log files at the specified interval.
ftp-server

Sets the FTP server to receive exported archived files.
hostname

Hostname of the target FTP server.

servipaddr

IP address of the target FTP server.
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>login</td>
<td>User login to target FTP server.</td>
</tr>
<tr>
<td>passw</td>
<td>User password to target FTP server.</td>
</tr>
<tr>
<td>directory</td>
<td>Target directory path for exported files on FTP server.</td>
</tr>
<tr>
<td>interval</td>
<td>Specifies the interval at which the working log should be cleared by moving data to the FTP server.</td>
</tr>
<tr>
<td>minutes</td>
<td>Number of minutes in the interval at which to export a file (1–10080).</td>
</tr>
<tr>
<td>every-day</td>
<td>Specifies the exports using intervals of 1 day or less.</td>
</tr>
<tr>
<td>at</td>
<td>Specifies the local time at which to export each day.</td>
</tr>
<tr>
<td>hour:minute</td>
<td>Time of day at which to export in local time (hh:mm).</td>
</tr>
<tr>
<td>every</td>
<td>Specifies the interval in hours for the daily export.</td>
</tr>
<tr>
<td>hours</td>
<td>Number of hours for the daily export.</td>
</tr>
<tr>
<td>1</td>
<td>Hourly</td>
</tr>
<tr>
<td>12</td>
<td>Every 12 hours</td>
</tr>
<tr>
<td>2</td>
<td>Every 2 hours</td>
</tr>
<tr>
<td>24</td>
<td>Every 24 hours</td>
</tr>
<tr>
<td>3</td>
<td>Every 3 hours</td>
</tr>
<tr>
<td>4</td>
<td>Every 4 hours</td>
</tr>
<tr>
<td>6</td>
<td>Every 6 hours</td>
</tr>
<tr>
<td>8</td>
<td>Every 8 hours</td>
</tr>
<tr>
<td>every-hour</td>
<td>Specifies the exports using intervals of 1 hour or less.</td>
</tr>
<tr>
<td>at</td>
<td>Specifies the time at which to export each hour.</td>
</tr>
<tr>
<td>minute</td>
<td>Minute (0–59) alignment for the hourly export.</td>
</tr>
<tr>
<td>every</td>
<td>Specifies the interval in minutes that align with the top of the hour.</td>
</tr>
<tr>
<td>minutes</td>
<td>Number of minutes for the hourly export.</td>
</tr>
<tr>
<td>10</td>
<td>Every 10 minutes</td>
</tr>
<tr>
<td>15</td>
<td>Every 15 minutes</td>
</tr>
<tr>
<td>2</td>
<td>Every 2 minutes</td>
</tr>
<tr>
<td>20</td>
<td>Every 20 minutes</td>
</tr>
<tr>
<td>30</td>
<td>Every 30 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Every 5 minutes</td>
</tr>
<tr>
<td>every-week</td>
<td>Specifies the exports using intervals of 1 or more times a week.</td>
</tr>
<tr>
<td>on</td>
<td>(Optional) Specifies the days of the week for the export.</td>
</tr>
<tr>
<td>weekdays</td>
<td>Weekdays on which to export. One or more weekdays can be specified.</td>
</tr>
<tr>
<td>Fri</td>
<td>Every Friday</td>
</tr>
<tr>
<td>Mon</td>
<td>Every Monday</td>
</tr>
<tr>
<td>Sat</td>
<td>Every Saturday</td>
</tr>
<tr>
<td>Sun</td>
<td>Every Sunday</td>
</tr>
<tr>
<td>Thu</td>
<td>Every Thursday</td>
</tr>
<tr>
<td>Tue</td>
<td>Every Tuesday</td>
</tr>
<tr>
<td>Wed</td>
<td>Every Wednesday</td>
</tr>
<tr>
<td>at</td>
<td>(Optional) Specifies the time of day at which to perform the weekly export.</td>
</tr>
<tr>
<td>hour:minute</td>
<td>Time of day at which to export in the local time (hh:mm).</td>
</tr>
<tr>
<td>sftp-server</td>
<td>Sets the Secure File Transfer Protocol (SFTP) server to receive exported archived files.</td>
</tr>
<tr>
<td>hostname</td>
<td>Hostname of the target SFTP server.</td>
</tr>
</tbody>
</table>
Chapter 3 CLI Commands

(config) transaction-logs

<table>
<thead>
<tr>
<th>servipaddr</th>
<th>IP address of the target SFTP server.</th>
</tr>
</thead>
<tbody>
<tr>
<td>login</td>
<td>User login to the target SFTP server (less than 40 characters).</td>
</tr>
<tr>
<td>passw</td>
<td>User password to the target SFTP server (less than 40 characters).</td>
</tr>
<tr>
<td>directory</td>
<td>Target directory path for exported files on the SFTP server.</td>
</tr>
</tbody>
</table>

Defaults

- archive: disabled
- enable: disabled
- export compress: disabled
- export: disabled
- archive interval: every day, every one hour
- archive max-file-size: 2,000,000 KB
- export interval: every day, every one hour
- logging port port-num: 514

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

Depending upon where the sysfs is mounted, transactions are logged to a working log on the local disk in one of these files:

- /local1/logs/working.log
- /local2/logs/working.log

When you enable transaction logging, you can specify the interval at which the working log should be cleared by moving the data to an archive log. The archive log files are located on the local disk in the directory /local1/logs/ or /local2/logs/, depending upon where the sysfs is mounted.

Because multiple archive files are saved, the filename includes the time stamp when the file was archived. Because the files can be exported to an FTP/SFTP server, the filename also contains the IP address of this WAE.

The archive file name uses this format:

celog_IPADDRESS_YYYYMMDD_HHMMSS.txt.

You can monitor transaction logs in real-time for particular errors such as authentication errors. By sending HTTP transaction log messages to a remote syslog server, you can monitor the remote syslog server for HTTP request authentication failures in real-time. This real-time transaction log feature allows you to monitor transaction logs in real-time for particular errors such as HTTP request authentication errors. The existing transaction logging to the local file system remains unchanged.

For this purpose, you must configure the WAE to send transaction log messages to a remote syslog server using UDP as the transport protocol. Because UDP is an unreliable transport protocol, message transport to a remote syslog host is not reliable and you must monitor the syslog messages received at the remote...
syslog server. You can limit the rate at which the transaction logging module is allowed to send messages to the remote syslog server. The format of the syslog message is in standard syslog message format with the transaction log message as the payload of the syslog message.

Real-time transaction logging to a remote syslog server uses the standard syslog message format with the message payload as the transaction log entry. A new syslog error identifier is defined for this type of real-time transaction log message. You can configure a WAE to send transaction log messages in real-time to one remote syslog host. The message format of the transaction log entry to the remote syslog host is the same as in the transaction log file and prepended with Cisco’s standard syslog header information.

The following is an example of the format of the real-time syslog message sent from the transaction logging module (WAE) to the remote syslog host:

```plaintext
fac-pri Apr 22 20:10:46 ce-host cache: %CE-TRNSLG-6-460012: translog formatted msg
```

The fields in the message are described as follows:

- `fac-pri` denotes the facility parameter and priority for transaction log messages encoded (as in standard syslog format) as a 32-bit decimal value between 0 and 1023 (0x0000 and 0x03FF). The least significant 3 bits denote priority (0-7) and the next least significant 7 bits denote facility (0-127).

 The facility parameter used by the transaction logging module when a real-time transaction log message is logged to the remote syslog host is `user`. The same facility is sent to the remote syslog host unless you configure a different facility parameter for transaction logging. The priority field is always set to LOG_INFO for real-time transaction log messages.

 In the above example, the default value of `fac-pri` is 14 (0x000E) where facility = user (LOG_USER (1)) and priority = LOG_INFO (6).

- The next field in the message is the date, which follows the format as shown in the above example.
- `ce-host` is the hostname or IP of the WAE that is sending the message.
- `cache` is the name of the process on the WAE that is sending the message.
- `%CE-TRNSLG-6-460012` is the Cisco standard formatted syslog header on the WAE for a real-time transaction log message. This identifier indicates a priority level of 6, which denotes informational messages.

 Note The WAAS system syslog messages report communication errors with the remote syslog host that is configured for transaction logging. These syslog messages are in the error message range: `%CE-TRNSLG-6-460013` to `%CE-TRNSLG-3-460016`. The last error message (`%CE-TRNSLG-3-460016`), shows level “3” (for error-level messages) instead of “6” (for information-level messages). Information-level messages are reported when messages are dropped due to rate limiting and the number of dropped messages are reported. For more information about these syslog messages, see the *Cisco WAAS System Messages Reference*.

- `translog formatted msg` is the transaction log message as it appears in the transaction log file.

 Note The total length of the real-time syslog message is 1024 characters. If the actual transaction log entry exceeds this limit, it is truncated.

When the remote syslog server logs this message to a file, the format appears as follows:

```plaintext
Apr 22 20:10:46 ce-host cache: %CE-TRNSLG-6-460012: translog formatted msg
```
where ce-host is the hostname of the WAE that sent the real-time transaction log message to the remote syslog server.

The configuration of host settings for transaction logs is identical to the configuration settings for syslog messages except that you need not specify the priority level of the message for real time transaction logs. All messages are associated with the priority level of 6 (LOG_INFO). You are not required to filter messages based on priority levels.

Related Commands

- `clear`
- `show transaction-logging`
- `transaction-log`
(config) username

To establish username authentication on a WAAS device, use the `username` global configuration command.

```
username name { passwd | print-admin-passwd | privilege { 0 | 15 } }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>name</code></td>
<td>Username.</td>
</tr>
<tr>
<td><code>passwd</code></td>
<td>Specifies the password for the user interactively. You are prompted to enter the password, and then prompted again to re-enter the password to confirm it.</td>
</tr>
<tr>
<td><code>print-admin-passwd</code></td>
<td>Sets the user’s print administration password interactively. You are prompted to enter the password, and then prompted again to re-enter the password to confirm it.</td>
</tr>
<tr>
<td><code>privilege</code></td>
<td>Sets the user privilege level.</td>
</tr>
<tr>
<td><code>0</code></td>
<td>Specifies the user privilege level for normal user.</td>
</tr>
<tr>
<td><code>15</code></td>
<td>Specifies the user privilege level for superuser.</td>
</tr>
</tbody>
</table>

Defaults

Default administrator account:
- Username: admin
- Password: default
- Privilege: superuser (15)

Command Modes

global configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

A system administrator can log in to a WAAS device that is functioning as a Core or Edge WAE through the console port or the WAE Device Manager GUI. An administrator can log in to the WAAS Central Manager through the console port or the WAAS Central Manager GUI.

When the system administrator logs in to a WAAS device before authentication and authorization have been configured, the administrator can access the WAAS device by using the predefined superuser account (the predefined username is `admin` and the predefined password is `default`). When you log in to a WAAS device using this predefined superuser account, you are granted access to all the WAAS services and entities in the WAAS system.
After you have initially configured your WAAS devices, we strongly recommend that you immediately change the password for the predefined superuser account (the predefined username is admin, the password is default, and the privilege level is superuser, privilege level 15) on each WAAS device.

If the predefined password for this superuser account has not been changed on a WAAS device, the following message is displayed each time you use this superuser account to log in to the WAAS CLI:

Device is configured with a (well known) default username/password for ease of initial configuration. This default username/password should be changed in order to avoid unwanted access to the device.

System Initialization Finished.
waas-cm#

If the predefined password for this superuser account has not been changed on a WAAS Central Manager, a dialog box is also displayed each time you use this superuser account to log in to the WAAS Central Manager GUI.

Note
We strongly recommend that you use the WAAS Central Manager GUI instead of the WAAS CLI to configure passwords and privilege levels for users on your WAAS devices, if possible. For information about how to use the WAAS Central Manager GUI to centrally configure and administer users on an single WAE or group of WAEs, which are registered with a WAAS Central Manager, see the Cisco Wide Area Application Services Configuration Guide.

The username global configuration command allows you to change the password and privilege level for existing user accounts. To change the password for the predefined superuser account on a per device basis, use the passwd option of the username global configuration command:

waas-cm(config)# username admin passwd

For example, change the predefined password for the superuser account to mysecret for the WAAS Central Manager named waas-cm, as follows:

waas-cm# config
waas-cm(config)# username admin passwd

Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure user accounts.
New UNIX password: mysecret (Note that the text is not displayed)
Retype new UNIX password: mysecret
waas-cm(config)# exit

User Authentication

User access is controlled at the authentication level. For every HTTP request, including every WAAS CLI request, that arrives at the WAAS device, the authentication level has visibility into the supplied username and password. Based on CLI-configured parameters, a decision is then made to either accept or reject the request. This decision is made either by checking local authentication or by performing a query against a remote authentication server. The authentication level is decoupled from the authorization level, and there is no concept of role or domain at the authentication level.

When local CLI authentication is used, all configured users can be displayed by entering the show running-config EXEC command.
User Authorization

Domains and roles are applied by the WAAS device at the authorization level. Requests must be accepted by the authentication level before they are considered by the authorization level. The authorization level regulates access to resources based on the specified role in WAAS Central Manager GUI and domain configuration.

Regardless of the authentication mechanism, all user authorization configuration is visible in the GUI.

Examples

The following example demonstrates how passwords and privilege levels are reconfigured:

```plaintext
WAE# show user username abeddoe
Uid     : 2003
Username : abeddoe
Password : *************
Privilege : normal user

WAE# show user username bwhidney
Uid     : 2002
Username : bwhidney
Password : *************
Privilege : normal user

WAE(config)# username bwhidney passwd
Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure user accounts.
New UNIX password: newpassword (Note that the text is not displayed)
Retype new UNIX password: newpassword

WAE(config)# username abeddoe privilege 15
Warning: User configuration performed via CLI may be overwritten by the central manager. Please use the central manager to configure user accounts.

WAE# show user username abeddoe
Uid     : 2003
Username : abeddoe
Password : *************
Privilege : super user
Configured in   : Local database

WAE# show user username bwhidney
Uid     : 2002
Username : bwhidney
Password : *************
Privilege : normal user
Configured in   : Local database
```

Related Commands

```
show user
```
(config) wccp access-list

To configure an IP access list on a WAE for inbound WCCP GRE encapsulated traffic, use the **wccp access-list** global configuration command.

```
wccp access-list [acl-number | ext-acl-number | acl-name]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>acl-number</td>
<td>Standard IP access list number (1–99).</td>
</tr>
<tr>
<td>ext-acl-number</td>
<td>Extended IP access list number (100–199).</td>
</tr>
<tr>
<td>acl-name</td>
<td>Name of the access list (30 characters maximum).</td>
</tr>
</tbody>
</table>

Defaults

WCCP access lists are not configured by default.

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

The **wccp access-list number** global configuration command configures an access control list to allow access to WCCP applications. The **number** variable is a number in the range 1 to 99, indicating a standard access control list or a number in the range 100 to 199, indicating an extended access control list. WCCP checks against the specified access control list before accepting or dropping incoming packets.

See the [Cisco Wide Area Application Services Configuration Guide](#) for a detailed description of how to use standard IP ACLs to control WCCP access on a WAE.

Note

WCCP works only with IPv4 networks.

Examples

The following example configures the WAE to apply IP access list number 10 to inbound WCCP traffic:

```
WAE(config)# wccp access-list 10
```

The following example shows sample output from the **show ip access-list** EXEC command from a WAE that has several WCCP access lists configured:

```
WAE(config)# show ip access-list
Space available:
  40 access lists
  489 access list conditions

Standard IP access list 10
  1 deny 10.1.1.1
  2 deny any
      (implicit deny any: 0 matches)
  total invocations: 0

Standard IP access list 98
  1 permit any
```
(implicit deny any: 0 matches)
total invocations: 0
Extended IP access list 100
 1 permit icmp any any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 101
 1 permit ip any any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 102
 1 permit icmp 0.0.1.1 255.255.0.0 any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 111
 1 permit gre 0.1.1.1 255.0.0.0 any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 112
 1 permit ip any any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list 113
 1 permit gre 0.1.1.1 255.0.0.0 any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list ext_acl_2
 1 permit gre any any
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0
Extended IP access list extended_ip_acl
 1 permit tcp any eq 2 any eq exec
 (implicit fragment permit: 0 matches)
 (implicit deny ip any any: 0 matches)
total invocations: 0

Interface access list references:
 PortChannel 2 inbound extended_ip_acl
 PortChannel 2 outbound 101

Application access list references:
 snmp-server standard 2
 UDP ports: none (List Not Defined)
 WCCP either 10
 Any IP Protocol

The following example shows sample output from the **show wccp gre** EXEC command when WCCP access lists are defined on the WAE:

WAE# **show wccp gre**
Transparent GRE packets received: 366
Transparent non-GRE packets received: 0
Transparent non-GRE packets passed through: 0
Total packets accepted: 337
Invalid packets received: 0
Packets received with invalid service: 0
Packets received on a disabled service: 0
<table>
<thead>
<tr>
<th>Count</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Packets received too small:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to zero TTL:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to bad buckets:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to no redirect address:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to loopback redirect:</td>
</tr>
<tr>
<td>0</td>
<td>Connections bypassed due to load:</td>
</tr>
<tr>
<td>0</td>
<td>Packets sent back to router:</td>
</tr>
<tr>
<td>0</td>
<td>Packets sent to another CE:</td>
</tr>
<tr>
<td>0</td>
<td>GRE fragments redirected:</td>
</tr>
<tr>
<td>0</td>
<td>Packets failed GRE encapsulation:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to invalid fwd method:</td>
</tr>
<tr>
<td>0</td>
<td>Packets dropped due to insufficient memory:</td>
</tr>
<tr>
<td>0</td>
<td>Packets bypassed, no conn at all:</td>
</tr>
<tr>
<td>0</td>
<td>Packets bypassed, no pending connection:</td>
</tr>
<tr>
<td>0</td>
<td>Packets due to clean wccp shutdown:</td>
</tr>
<tr>
<td>0</td>
<td>Packets bypassed due to bypass-list lookup:</td>
</tr>
<tr>
<td>0</td>
<td>Packets received with client IP addresses:</td>
</tr>
<tr>
<td>0</td>
<td>Conditionally Accepted connections:</td>
</tr>
<tr>
<td>0</td>
<td>Conditionally Bypassed connections:</td>
</tr>
<tr>
<td>0</td>
<td>L2 Bypass packets destined for loopback:</td>
</tr>
<tr>
<td>0</td>
<td>Packets w/WCCP GRE received too small:</td>
</tr>
<tr>
<td>29</td>
<td>Packets dropped due to IP access-list deny:</td>
</tr>
<tr>
<td>0</td>
<td>L2 Packets fragmented for bypass:</td>
</tr>
</tbody>
</table>

Related Commands

- (config) egress-method
- show ip access-list
- show wccp
(config) wccp flow-redirect enable

To enable WCCP flow redirection on a WAE, use the `wccp flow-redirect` global configuration command. To disable flow redirection, use the `no` form of this command.

```
wccp flow-redirect enable
```

Syntax Description
Tis command has no keywords or arguments.

Defaults
Enabled

Command Modes
global configuration

Device Modes
application-accelerator

Usage Guidelines
WCCP flow protection is a mechanism that ensures that no existing flows are broken when a new WAE is brought online or removed from a service group. When transparent traffic interception or redirection first begins, WCCP flow protection ensures that no existing HTTP flows are broken by allowing preexisting, established HTTP flows to continue on. WCCP flow protection also ensures that when a new WAE joins an existing WAE group, existing flows serviced by preexisting WAEs in the cluster continue to receive those existing flows.

The mechanisms used by WCCP flow protection result in all of the benefits of maintaining per flow state information in a centralized location but without the overhead, scaling issues, and redundancy or resiliency issues (for example, asymmetrical traffic flows) associated with keeping per flow state information in the switching layer.

Use the `wccp flow-redirect` global configuration command to implement WCCP flow protection. Flow protection is designed to keep the TCP flow intact as well as to not overwhelm WAEs when they are first started up or are reassigned new traffic. This feature also has a slow start mechanism whereby the WAEs try to take a load appropriate for their capacity.

Note
When bypass is enabled, the client itself tries to reach the origin web server. You must disable all bypass options to eliminate an unnecessary burden on the network.

WCCP works only with IPv4 networks.

Examples
The following example shows how to enable WCCP flow protection on a WAE:

```
WAE(config)# wccp flow-redirect enable
```
(config) wccp router-list

To configure a router list for WCCP Version 2, use the `wccp router-list` global configuration command. To disable this function, use the `no` form of this command.

```
wccp router-list number ip-address
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>number</code></td>
<td>Router list number (1–8).</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of router to add to the list.</td>
</tr>
</tbody>
</table>

Defaults

Disabled

Command Modes

global configuration

Device Modes

application-accelerator

Usage Guidelines

As part of configuring a WCCP Version 2 service on a WAE, you must create a list of WCCP Version 2-enabled routers that support the CIFS cache service for the WAE.

Each router list can contain up to eight routers. You can add up to 8 router lists and up to 32 IP addresses per list.

Note

The `ip wccp` global configuration command must be used to enable WCCP on each router that is included on the router list.

WCCP works only with IPv4 networks.

Examples

The following examples show that router list number 7 is created, and contains a single router (the WCCP Version 2-enabled router with IP address 192.168.68.98):

```
WAE(config)# wccp router-list 7 192.168.68.98
```

The following example deletes the router list number 7 created in the previous example:

```
WAE(config)# no wccp router-list 7 192.168.68.98
```

The following example shows how to create a router list (router list 1) and then configure the WAE to accept redirected TCP traffic from the WCCP Version 2-enabled router on router list 1:

```
WAE(config)# wccp router-list 1 10.10.10.2
WAE(config)# wccp tcp-promiscuous router-list 1
WAE(config)# wccp version 2
```

Related Commands

`wccp`
(config) wccp shutdown

To set the maximum time interval after which the WAE will perform a clean shutdown of WCCP, use the `wccp shutdown` global configuration command. To disable the clean shutdown, use the `no` form of the command.

`wccp shutdown [max-wait seconds]`

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max-wait</code></td>
<td>Sets the clean shutdown time interval.</td>
</tr>
<tr>
<td><code>seconds</code></td>
<td>Time in seconds (0–86400). The default is 120 seconds.</td>
</tr>
</tbody>
</table>

Defaults

The maximum time interval before a clean shutdown is 120 seconds by default.

Command Modes

- **global configuration**

Device Modes

- **application-accelerator**

Usage Guidelines

To prevent broken TCP connections, the WAE performs a clean shutdown of WCCP after a `reload` or `wccp version` command is issued. The WAE does not reboot until either all connections have been serviced or the configured `max-wait` interval has elapsed.

During a clean shutdown, the WAE continues to service the flows it is handling, but starts to bypass new flows. When the number of flows goes down to zero, the WAE takes itself out of the cluster by having its buckets reassigned to other WAEs by the lead WAE. TCP connections can still be broken if the WAE crashes or is rebooted without WCCP being cleanly shut down. The clean shutdown can be aborted while in progress.

You cannot shut down an individual WCCP service on a particular port on a WAE; you must shut down WCCP on the WAE. After WCCP is shut down on the WAE, the WAE preserves its WCCP configuration settings and services proxy-style requests (for example, HTTP requests that the FWA E receives directly from a client browser).

Note

WCCP works only with IPv4 networks.

Examples

The following example shows how to configure the WAE to wait 1000 seconds:

```
WAE(config)# wccp shutdown max-wait 1000
```

The following example shows how to shut down WCCP Version 2 on the WAE by entering the `no wccp version 2` command. In this case, after you enter the `no wccp version 2` command, the WAE waits 1000 seconds before it shuts down WCCP Version 2.

```
WAE(config)# no wccp version 2
```
A countdown message appears, indicating how many seconds remain before WCCP will be shut down on the WAE:

Waiting (999 seconds) for WCCP shutdown. Press ^C to skip shutdown

The clean shutdown can be aborted while in progress by simultaneously pressing ^C after the countdown message appears.

Related Commands

(1) wccp flow-redirect enable

(1) wccp version
To configure the Web Cache Coordination Protocol (WCCP) Version 2 TCP promiscuous mode service (WCCP Version 2 services 61 and 62) on a WAE, use the `wccp tcp-promiscuous` global configuration command.

```
wccp tcp-promiscuous [ mask { dst-ip-mask mask | src-ip-mask mask } | router-list-num number [ assign-method-strict | hash-destination-ip | hash-source-ip | l2-redirect | l2-return | mask-assign | password password | weight weight ]]
```

Syntax Description

mask
- Specifies the mask used for WAE assignment.

dst-ip-mask
- Specifies the IP address mask defined by a hexadecimal number (for example, 0xFE000000) used to match the packet destination IP address. The range is 0x00000000–0xFE000000. The default is 0x00000000.

src-ip-mask
- Specifies the IP address mask defined by a hexadecimal number (for example, 0xFE000000) used to match the packet source IP address. The range is 0x00000000–0xFE000000. The default is 0x00001741.

mask
- Mask in hexadecimal (0x00000000–0xFE000000).

router-list-num
- Specifies the number of the WCCP router list that should be associated with the TCP promiscuous mode service.

number
- Number of the WCCP router list (1–8) that should be associated with the TCP promiscuous mode service. (These WCCP Version 2-enabled routers will transparently redirect TCP traffic to the WAE.)

assign-method-strict
- (Optional) Specifies that only the configured assignment method be used.

hash-destination-ip
- (Optional) Specifies that the load-balancing hash method should make use of the destination IP address. You can specify both the `hash-destination-ip` option and the `hash-source-ip` option.

hash-source-ip
- (Optional) Specifies that the load-balancing hash method should make use of the source IP address. This is the default.

l2-redirect
- (Optional) Specifies that Layer 2 redirection be used for packet forwarding. If the WAE has a Layer 2 connection with the device, and the device is configured for Layer 2 redirection, Layer 2 redirection permits the WAE to receive transparently redirected traffic from a WCCP Version 2-enabled switch or router.

l2-return
- (Optional) Specifies that Layer 2 rewriting be used for packet return.

mask-assign
- (Optional) Specifies that the mask method be used for WAE assignment.

password
- (Optional) Specifies the password to be used for secure traffic between the WAEs within a cluster and the router for a specified service. Be sure to enable all other WAEs and routers within the cluster with the same password.

password
- WCCP service password. Passwords must not exceed 8 characters in length.
weight
(Optional) Specifies that a weight percentage be used. The weight represents a percentage of the total load redirected to the device for load-balancing purposes (for example, a WAE with a weight of 30 receives 30 percent of the total load).

weight
Weight percentage. The weight value ranges from 0 to 100%. By default, weights are not assigned and the traffic load is distributed evenly between the WAEs in a service groups.

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

WCCP provides the mechanism to transparently redirect client requests to a WAE for processing. To configure basic WCCP, you must enable the WCCP service on the router and the Core WAE in the data center and the router and Edge WAE in the branch office. It is not necessary to configure all of the available WCCP features or services to get a WAE up and running.

This WCCP service requires that WCCP Version 2 is running on the router and the WAE.

The TCP promiscuous mode service is a WCCP service that intercepts all TCP traffic and redirects it to the local WAE.

In order for the WAE to function as a promiscuous TCP device for TCP traffic that is transparently redirected to it by the specified WCCP Version 2 routers, the WAE uses WCCP Version 2 services 61 and 62. The WCCP services 61 and 62 are represented by the canonical name of “tcp-promiscuous” on the WAE in the WAAS CLI.

To configure the egress method for WCCP intercepted connections, use the `egress-method` global configuration command.

Note

WCCP works with IPv4 networks only.

Examples

The following example shows how to turn on the TCP promiscuous mode service and associate this service with the router list by using the `wccp tcp-promiscuous router-list-num` command:

```
WAE # wccp tcp-promiscuous router-list-num 1
WCCP configuration for TCP Promiscuous service 61 succeeded.
WCCP configuration for TCP Promiscuous succeeded.
Please remember to configure WCCP service 61 and 62 on the corresponding router.
```

Related Commands

- (config) `egress-method`
- (config) `wccp router-list`
- `show wccp`
(config) wccp version

To specify the version of WCCP that the WAE should use, enter the `wccp version` global configuration command. To disable the currently running version, use the `no` form of the command.

```
( config ) wccp version { 2 }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Configures the WAE to use WCCP Version 2.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

- global configuration

Device Modes

- application-accelerator

Usage Guidelines

You must configure a WAE to use WCCP Version 2 instead of WCCP Version 1 because WCCP Version 1 only supports web traffic (port 80).

The WAE performs a clean shutdown after a `reload` or `no wccp version 2` command is entered. A clean shutdown prevents broken TCP connections.

The following sequence of events details the interaction between WAEs and routers that have been configured to run WCCP Version 2:

1. Each WAE is configured with a router list. (See the “(config) wccp router-list” command.)

2. Each WAE announces its presence and a list of all routers with which it has established communications. The routers reply with their view (list) of WAES in the group.

 Routers and WAES become aware of one another and form a WCCP service group using a management protocol. The WAES also send periodic “Here I am” messages to the routers that allow the routers to rediscover the WAES. To properly depict the view, the protocol needs to include the list of routers in the service group as part of its messages.

3. Once the view is consistent across all the WAES in the WAE cluster, one WAE is designated the lead. When there is a group of WAES, the one seen by all routers and the one that has the lowest IP address becomes the lead WAE.

 The role of this lead WAE is to determine how traffic should be allocated across the WAES in the WAE group. The lead WAE sets the policy that the WCCP-enabled routers must adhere to when redirecting packets to the WAES in this cluster. The assignment information is passed to the entire service group from the designated WAE so that the routers in the service group can redirect the packets properly and the WAES in the service group can better manage their load.

Note

WCCP works only with IPv4 networks.
Examples

The following example shows how to enable WCCP Version 2 on a WAE:

WAE(config)# wccp version 2

Related Commands

(config) wccp tcp-promiscuous
(config) wccp router-list
(config) windows-domain

To configure Windows domain server options on a WAAS device, use the windows-domain global configuration command.

```
windows-domain {administrative group [normal-user | super-user] groupname | comment string | netbios-name name | password-server {hostname | ipaddress} | realm kerberos-realm | wins-server {hostname | ipaddress} | workgroup name | security ADS}
```

Syntax Description

- **administrative**: Sets administrative options.
- **group**: Sets an administrative group name.
- **normal-user**: Sets the administrative group name for the normal user (privilege 0).
- **super-user**: Sets the administrative group name for the superuser (privilege 15).
- **groupname**: Name of the administrative group.
- **comment**: Specifies a comment for the Windows domain server.
- **string**: Text string.
- **netbios-name**: Specifies the NetBIOS name of the WAE. This is the name provided when the Edge FE announces its availability for print services.
- **name**: NetBIOS name.
- **password-server**: Specifies the password server used to verify a client’s password.
- **hostname**: Hostname of the password server.
- **ipaddress**: IP address of the password server.
- **realm**: Specifies the Kerberos realm to use for authentication. The realm is used as the Active Directory Service (ADS) equivalent of the NT4 domain. This argument is valid only when Kerberos ADS mode is used.
- **kerberos-realm**: IP address or name (in UPPERCASE letters) of the Kerberos realm. The Kerberos realm is typically set to the DNS name of the Kerberos server or Active Directory domain. The default value is a NULL string.
 Example: kerberos-realm = MYBOX.MYCOMPANY.COM
- **wins-server**: Specifies the Windows Internet Naming Service (WINS) server.
- **hostname**: Hostname of the WINS server.
- **ipaddress**: IP address of the WINS server.
- **workgroup**: Specifies the workgroup (or domain) in which the WAAS device resides.
- **name**: Name of the workgroup or domain.
- **security**: Sets Kerberos authentication.
- **ADS**: Specifies the Active Directory Service.

Defaults

Windows domain options are disabled by default.

Command Modes

- Global configuration
Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Use this global configuration command to set the Windows domain server parameters for a WAAS device.

When Kerberos authentication is enabled, the default realm is DOMAIN.COM and the security is ADS.
If Kerberos authentication is disabled, security is domain.

Examples

The following example shows how to configure the Windows domain server at 10.10.24.1 for an Edge FE with a NetBIOS name of myFileEngine in the ABD domain. It also identifies the password server:

WAE(config)# windows-domain wins-server 10.10.24.1
WAE(config)# windows-domain password-server 10.10.100.4
WAE(config)# windows-domain netbios-name myFileEngine
WAE(config)# windows-domain workgroup ABC

The following example shows how to configure the windows domain server when Kerberos authentication is enabled using the kerberos command:

WAE(config)# windows-domain realm ABC.COM
WAE(config)# windows security ADS

=============== checking new config using testparm ===============
Load smb config files from /state/actona/conf/smb.conf
Processing section "[print$]"
Processing section "[printers]"
Loaded services file OK.

WAE(config)# exit
WAE# show windows-domain
Login Authentication for Console/Telnet Session: enabled

Windows domain Configuration:

Workgroup:
Comment: Comment:
Net BIOS: MYFILEENGINE
Realm: ABC
WINS Server: 10.10.10.1
Password Server: 10.10.10.10
Security: ADS

Related Commands

(config) kerberos
show windows-domain
windows-domain
Interface Configuration Mode Commands

Use the interface configuration mode for setting, viewing, and testing the configuration of WAAS software features on a specific interface. To enter this mode, enter the `interface` command from the global configuration mode. The following example demonstrates how to enter interface configuration mode:

```
WAE# configure
WAE(config)# interface ?
    GigabitEthernet  Select a gigabit ethernet interface to configure
    InlineGroup     Select an inline group interface to configure
    PortChannel     Ethernet Channel of interfaces
    Standby         Standby groups
WAE(config)# interface gigabitethernet ?
    <1-2>/ GigabitEthernet slot/port
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)#
```

To exit interface configuration mode, enter `exit` to return to global configuration mode:

```
WAE(config-if)# exit
WAE(config)#
```
(config-if) autosense

To enable autosense on an interface, use the `autosense` interface configuration command. To disable this function, use the `no` form of this command.

```
autosense
```

Syntax Description

This command has no arguments or keywords.

Defaults

Autosense is enabled by default.

Command Modes

interface configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Cisco router Ethernet interfaces do not negotiate duplex settings. If the WAAS device is connected to a router directly with a crossover cable, the WAAS device interface must be manually set to match the router interface settings. Disable `autosense` before configuring an Ethernet interface. When `autosense` is on, manual configurations are overridden. You must reboot the WAAS device to start autosensing.

Examples

The following example disables autosense on Gigabit Ethernet port 1/0:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# no autosense
```

The following example reenables autosense on Gigabit Ethernet port 1/0:

```
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# autosense
WAE(config-if)# exit
WAE(config)# exit
WAE# reload
```

Related Commands

- (config) interface
- show interface
- show running-config
- show startup-config
(config-if) bandwidth

To configure the link speed on a network interface, use the bandwidth interface configuration command. To restore default values, use the no form of this command.

```
bandwidth {10 | 100 | 1000}
```

Syntax Description

- **10**: Sets the link speed to 10 megabits per second (Mbps).
- **100**: Sets the link speed to 100 Mbps.
- **1000**: Sets the link speed to 1000 Mbps. This option is not available on all ports and is the same as autosense.

Defaults

No default behaviors or values

Command Modes

interface configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

To configure the link speed of a network interface on a WAAS device, use the `bandwidth` interface configuration command. The speed is specified in megabits per second (Mbps). The WAAS software automatically enables autosense if the speed is set to 1000 Mbps.

You can configure the Gigabit Ethernet interface settings (autosense, link speed, and duplex settings) if the Gigabit over copper interface is up or down. If the interface is up, it applies the specific interface settings. If the interface is down, the specified settings are stored and then applied when the interface is brought up. For example, you can specify any of the following commands for an Gigabit over copper interface, which is currently down, and have these settings automatically applied when the interface is brought up.

```
WAE(config-if)# bandwidth 10
WAE(config-if)# bandwidth 100
WAE(config-if)# bandwidth 1000
WAE(config-if)# autosense
WAE(config-if)# half-duplex
WAE(config-if)# full-duplex
```

Note

We strongly recommend that you do not use half-duplex connections on the WAE or on routers, switches, or other devices. Use of half-duplex impedes the system's ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full-duplex is configured.
The following example shows how to set an interface bandwidth to 1000 Mbps:

```
WAE(config-if)# bandwidth 1000
```

The following example shows how to restore default bandwidth values on an interface:

```
WAE(config-if)# no bandwidth
```

Related Commands

- `(config-if) autosense`
- `(config) interface`
(config-if) cdp

To enable the Cisco Discovery Protocol (CDP) on a particular interface on a WAAS device, rather than on all interfaces, use the `cdp` command in interface configuration mode.

```
cdp { enable }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables CDP on an interface.</td>
</tr>
</tbody>
</table>

Defaults

No default behavior or values

Command Modes

interface configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

Using the `cdp enable` command in global configuration mode enables CDP globally on all the interfaces of the WAAS device. If you want to control CDP behavior per interface, then use the `cdp enable` command in interface configuration mode.

Note

Enabling CDP at the interface level overrides the global control. However, you must enable CDP globally on the WAAS device before you enable CDP on an interface. Otherwise, the following message is displayed in the command output:

```
WAE(config-if)# cdp enable
Cannot enable CDP on this interface, CDP Global is disabled
```

Examples

The following example enables CDP on Gigabit Ethernet interface (slot 1/port 0) of the WAAS device:

```
WAE# configure
WAE(config)# cdp enable
WAE(config)# enable interface GigabitEthernet 1/0
WAE(config-if)# cdp enable
```

Related Commands

- `(config) cdp`
- `show cdp`
- `show interface`
- `show running-config`
- `show startup-config`
(config-if) exit

To terminate interface configuration mode and return to the global configuration mode, use the exit command.

exit

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
All modes

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
The following example terminates interface configuration mode and returns to global configuration mode:

WAE(config-if)# exit
WAE(config)#
(config-if) failover timeout

To set the maximum time for the inline interface to transition traffic to another port after a failure event, use the failover timeout command. To disable this function, use the no form of this command.

failover timeout {1 | 3 | 5}

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
<tr>
<td>3</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
<tr>
<td>5</td>
<td>Specifies the number of seconds to a failover.</td>
</tr>
</tbody>
</table>

Defaults

The default is 1 second.

Command Modes

interface configuration

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

The failover timeout command is used in inlineGroup interface scope. It sets the maximum time (in seconds) for the inline interface to transition to a fail-to-wire mode of operation after a failure event occurs (such as a power outage and kernel crash). For example, if the timeout is set to 3 seconds, traffic is dropped for a maximum of 3 seconds after the WAE loses power or suffers a kernel crash. After this time, all traffic received on either port of the group interface is sent out of the other port in the group. The default timeout is 1 second.

Examples

The following example sets the failover time limit for the inline group 0 of the adapter that is installed in slot 1 to 5 seconds and then removes that setting:

```
(config)# interface inlineGroup 1/0
(config-if)# failover timeout 5
(config-if)# no failover timeout 5
```
(config-if) full-duplex

To configure an interface for full-duplex operation on a WAAS device, use the full-duplex interface configuration command. To disable this function, use the no form of this command.

```
full-duplex
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
interface configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use this EXEC command to configure an interface for full-duplex operation. Full duplex allows data to travel in both directions at the same time through an interface or a cable. A half-duplex setting ensures that data only travels in one direction at any given time. Although full duplex is faster, the interfaces sometimes cannot operate effectively in this mode. If you encounter excessive collisions or network errors, configure the interface for half duplex rather than full duplex.

Note
We strongly recommend that you do not use half-duplex connections on the WAE or on routers, switches, or other devices. Use of half-duplex impedes the system’s ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full-duplex is configured.

Examples
The following example configures full-duplex operation on a Gigabit Ethernet interface in slot 1/port 0:

```
WAE# configure
WAE(config)# interface GigabitEthernet 1/0
WAE(config-if)# full-duplex
```

The following example disables full-duplex operation:

```
WAE(config-if)# no full-duplex
```

Related Commands
(config-if) half-duplex
(config) interface
show interface
show running-config
show startup-config
To configure an interface for half-duplex operation on a WAAS device, use the `half-duplex` interface configuration command. To disable this function, use the `no` form of this command.

```plaintext
half-duplex
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
- interface configuration

Device Modes
- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines
Use this interface configuration command to configure an interface for half-duplex operation. Full duplex allows data to travel in both directions at the same time through an interface or a cable. A half-duplex setting ensures that data only travels in one direction at any given time. Although full duplex is faster, the interfaces sometimes cannot operate effectively in this mode. If you encounter excessive collisions or network errors, configure the interface for half-duplex rather than full duplex.

Note
We strongly recommend that you do not use half-duplex connections on the WAE or on routers, switches, or other devices. Use of half-duplex impedes the system’s ability to improve performance and should not be used. Double-check each Cisco WAE interface as well as the port configuration on the adjacent device (router, switch, firewall, WAE) to verify that full-duplex is configured.

Examples
The following example configures half-duplex operation on the Gigabit Ethernet interface in slot 1/port 0:

```plaintext
WAE(config-if)# half-duplex
```

The following example disables half-duplex operation:

```plaintext
WAE(config-if)# no half-duplex
```

Related Commands
- (config-if) full-duplex
- (config) interface
show interface
show running-config
show startup-config
(config-if) inline

To enable inline interception for an inlineGroup interface, use the **inline** interface configuration command. To disable inline interception, use the **no** form of this command.

```
inline [vlan { all | native | vlan_list }]
```

Syntax Description

- **vlan**: (Optional) Modifies the VLAN list parameters.
- **all**: Applies the command to all tagged and untagged packets.
- **native**: Specifies untagged packets.
- **vlan_list**: List of VLAN IDs to either allow or restrict on this interface. A comma (,) is used to separate list entries. A hyphen (-) is used to specify a range of VLAN IDs. The valid range is 0 to 4095.

Defaults

The default is enabled for all VLANs if you have a WAE inline network adapter installed.

Command Modes

- interface configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The **inline** command is used in inlineGroup interface scope. It enables or disables inline interception. If the VLAN list is omitted, the command applies to all VLAN tagged or untagged packets. You can restrict the inline feature to any specified set of VLANs.

The VLAN list can be “all” or a comma-separated list of VLAN IDs or ranges of VLAN IDs. The special VLAN ID “native” can be included to specify untagged packets.

Note

When inline inspection is active, you cannot configure WCCP until you explicitly disable the inline capability on all VLANs. Conversely, you cannot enable inline interception on any inline groups until you disable WCCP.

Examples

The following example shows how to enable inline interception for all untagged and tagged packets with any VLAN ID received on ports in inlineGroup 0 of the adapter that is installed in slot 1:

```
(config)# interface inlineGroup 1/0
(config-if)# inline
(config-if)# exit
```
The following example shows how to disable inline interception on the same ports for 802.1Q-encapsulated packets that have the VLAN ID 5 or any VLAN ID between 10 and 15, inclusive. If the two VLANs are combined in the given order, inline interception is performed for all packets received on ports in group 0 of slot 1, except those on VLANs 5, 10, 11, 12, 13, 14 and 15.

```
(config)# interface inlineGroup 1/0
(config-if)# no inline vlan 5,10-15
(config-if)# exit
```

The following example shows how to enable inline interception for all untagged traffic and traffic only on VLANs 0 through 100 on the ports in group 1 in slot 2:

```
(config)# interface inlineGroup 2/1
(config-if)# no inline vlan 101-4095
(config-if)# exit
```

The following example shows how to enable inline interception for traffic only on VLAN 395 on the ports in group 1 in slot 2. Because the default behavior is to enable traffic on all VLANs, you must first disable all VLANs, then enable just the set that you want.

```
(config)# interface inlineGroup 2/1
(config-if)# no inline vlan all
(config-if)# inline vlan 395
(config-if)# exit
```

Related Commands: show interface
(config-if) ip

To configure the IP address or subnet mask, or to negotiate an IP address from DHCP on the interface of the WAAS device, use the `ip` interface configuration command. To disable this function, use the `no` form of this command.

```
ip address {ip-address ip-subnet [secondary] | dhcp [client-id id [hostname name] | hostname name [client-id id]}}
```

Syntax Description

- `address`: Sets the IP address of an interface.
- `ip-address`: IP address.
- `ip-subnet`: IP subnet mask.
- `secondary`: (Optional) Makes this IP address a secondary address.
- `dhcp`: Sets the IP address negotiated over DHCP.
- `client-id`: (Optional) Specifies client identifier.
- `id`: Client identifier.
- `hostname`: (Optional) Specifies the hostname.
- `name`: Hostname.

Defaults

No default behavior or values

Command Modes

interface configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use this command to set or change the IP address, subnet mask, or DHCP IP address negotiation of the network interfaces of the WAAS device. The change in the IP address takes place immediately.

The `ip address` interface configuration command allows configuration of secondary IP addresses for a specified interface as follows.

```
WAE(config-if)# ip address ip_address netmask [secondary]
```

Up to four secondary IP addresses can be specified for each interface. The same IP address cannot be assigned to more than one interface. The secondary IP address becomes active only after a primary IP address is configured. The following command configures the primary IP address.

```
WAE(config-if)# ip address ip_address netmask
```

The secondary IP addresses are disabled when the interface is shut down, and are enabled when the interface is brought up.

Use the `no` form of the command to disable a specific IP address.
WAE(config-if)# no ip address ip_address netmask

Note

No two interfaces can have IP addresses in the same subnet.

Use the `ip-address dhcp` command to negotiate a reusable IP address from DHCP.

Examples

The following example shows how to configure the port channel interface with an IP address of 10.10.10.10 and a netmask of 255.0.0.0:

```
WAE# configure
WAE(config)# interface PortChannel 2
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
```

The following example deletes the IP address configured on the interface:

```
WAE(config-if)# no ip address
```

The following example enables an interface for DHCP:

```
WAE(config-if)# ip address dhcp
```

The following example configures a client identifier and hostname on the WAAS device to be sent to the DHCP server:

```
WAE(config-if)# ip address dhcp client-id myclient hostname myhost
```

Related Commands

- `(config) interface`
- `show interface`
- `show running-config`
- `show startup-config`
(config-if) ip access-group

To control connections on a specific interface of a WAAS device by applying a predefined access list, use the **ip access-group** interface configuration command. To disable an access list, use the **no** form of the command.

```
ip access-group { acl-name | acl-num } { in | out }
```

Syntax Description

- **acl-name**
 - Alphanumeric identifier of up to 30 characters, beginning with a letter that identifies the ACL to apply to the current interface.

- **acl-num**
 - Numeric identifier that identifies the access list to apply to the current interface. For standard access lists, the valid range is 1 to 99; for extended access lists, the valid range is 100 to 199.

- **in**
 - Applies the specified access list to inbound packets on the current interface.

- **out**
 - Applies the specified access list to outbound packets on the current interface.

Defaults
No default behavior or values

Command Modes
interface configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
Use the **ip access-group** interface configuration command to activate an access list on a particular interface. You can use one outbound access list and one inbound access list on each interface.

Before entering the **ip access-group** command, enter interface configuration mode for the interface to which you want to apply the access list. Define the access list to apply using the **ip access-list** command.

Examples
The following example shows how to apply the access list named `acl-out` to outbound traffic on the interface Gigabit Ethernet 1/2:

```
WAE(config)# interface GigabitEthernet 1/2
WAE(config-if)# ip access-group acl-out out
```

Related Commands
- clear
- (config) ip access-list
- show ip access-list
(config-if) ip access-group
(config-if) mtu

To set the interface Maximum Transmission Unit (MTU) packet size, use the `mtu` interface configuration command. Use the `no` form of this command to reset the MTU packet size.

```
mtu mtusize
```

Syntax Description

- `mtusize`
 MTU packet size in bytes (88–1500).

Defaults

No default behavior or values

Command Modes

- interface configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

The MTU is the largest size of IP datagram that can be transferred using a specific data link connection. Use the `mtu` command to set the maximum packet size in bytes.

Examples

The following example sets the MTU to 1500 bytes, and then removes that setting:

```
WAE(config-if)# mtu 1500
WAE(config-if)# no mtu 1500
```

Related Commands

- `show interface`
- `show running-config`
- `show startup-config`
To negate a Gigabit Ethernet interface configuration command or set its defaults, use the following `no` command from GigabitEthernet interface configuration mode.

```
no [autosense | bandwidth {10 | 100 | 1000} | cdp enable | channel-group {1 | 2} | description text | full-duplex | half-duplex | ip | access-group {acl-num | acl_name} {in | out} | address {ip_address netmask [secondary]} | dhcp {client-id id hostname name | hostname name | client-id id} | mtu mtusize | shutdown | standby grpnumber [priority priority]]
```

To negate an InlineGroup interface configuration command or set its defaults, use the following `no` commands from the InlineGroup interface configuration mode.

```
no [autosense | bandwidth {10 | 100 | 1000} | failover timeout {1 | 3 | 5} | full-duplex | half-duplex | inline [vlan {all | native | vlan_list}] | shutdown]
```

To negate a PortChannel interface configuration command or set its defaults, use the following `no` commands from the Port Channel interface configuration mode.

```
no [description text | ip {access-group {acl-num | acl_name} {in | out} | address ip-address netmask} | shutdown]
```

Syntax Description
The command options vary. For more information on the syntax description, see the “(config) interface” command.

Command Defaults
No default behavior or values

Command Modes
interface configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
The command options for the no interface configuration command vary depending on the current interface configuration mode. For example, if you are in Gigabit interface configuration mode, there are 11 options for the no command.

```
WAE(config)# interface GigabitEthernet 2/0
WAE(config-if)# no ?
 autosense Interface autosense
 bandwidth Interface bandwidth
 cdp Cisco Discovery Protocol Interface Config commands
 channel-group Configure EtherChannel group
 description Interface specific description
 full-duplex Interface fullduplex
 half-duplex Interface halfduplex
 ip Interface Internet Protocol Config commands
```
mtu Set the interface Maximum Transmission Unit (MTU)
shutdown Shutdown the specific interface
standby Standby interface config commands

WAE(config-if)# no

However, if you are in Standby interface configuration mode, there are only 4 options for the no command:

WAE(config)# interface standby 4
WAE(config-if)# no ?
 description Standby interface description
 errors Set the maximum number of errors allowed on this interface
 ip Set the IP address of a standby group
 shutdown Shutdown this interface

WAE(config-if)# no

Examples

The following example configures the Gigabit Ethernet interface in slot 2, port 0 not to autosense the interface bandwidth:

WAE(config)# interface GigabitEthernet 2/0
WAE(config-if)# no autosense

Related Commands

(config) interface
show interface
show running-config
show startup-config
(config-if) shutdown

To shut down a specific hardware interface on a WAAS device, use the **shutdown** interface configuration command. To restore an interface to operation, use the **no** form of this command.

```
shutdown
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
interface configuration

Device Modes
application-accelerator
replication-accelerator
central-manager

Usage Guidelines
See the “**(config) interface**” command for alternative syntax.

Examples
The following example shuts down a Gigabit Ethernet interface on the WAAS device:

```
WAE# configure  
WAE(config)# interface GigabitEthernet 2/0  
WAE(config-if)# shutdown
```

Related Commands
*(config) interface
show interface
show running-config
show startup-config*
(config-if) standby

To configure an interface on a WAAS device to be a backup for another interface, use the `standby` command in interface configuration mode. Use the `no` form of the command to restore the default configuration of the interface.

```
standby group_number {description text | errors max-errors | ip ip-address netmask | priority priority_level | shutdown}
```

Syntax Description

- **group_number**: Standby group number (1–4).
- **description**: (Optional) Sets the description for the specified interface.
- **text**: Description for the specified interface. The maximum length of the description text is 240 characters.
- **errors**: Sets the maximum number of errors allowed on the active interface before the interface is shut down and the standby interface is brought up. This option is disabled by default.
- **max-errors**: Maximum number of errors (0–4294967295).
- **ip**: Sets the IP address for the specified standby group (Standby Group 1, 2, 3, or 4).
- **ip-address**: IP address of the specified standby group (Standby Group 1, 2, 3, or 4). The group IP address and netmask of a standby group must be configured on all of the member interfaces.
- **netmask**: Netmask of the specified standby group (Standby Group 1, 2, 3, or 4).
- **priority**: Sets the priority of the member interface within a standby group. The priority of a member interface can be changed at runtime. The member interface that has the highest priority after this change becomes the new active interface (the default action is to preempt the currently active interface if an interface with higher priority exists).
- **priority_level**: Each member interface is assigned a priority number. The member interface with the highest priority number is the active interface for that standby group. Only the active interface uses the group IP address.

 If the **priority** option is specified without a priority number, the default value of 100 is used.
- **shutdown**: (Optional) Shuts down the specified standby group (Standby Group 1, 2, 3, or 4). You can shut down a standby group even if you have not configured a group IP address for the standby group.

Defaults

There are no standby interfaces by default. The **errors** option is disabled by default.

Command Modes

interface configuration
Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

You can configure one or more interfaces to act as a backup interface (a standby interface) for another interface on a WAAS device. This feature is called “standby interface support.” Standby groups, which are logical groups of interfaces, are used to implement this feature. When an active network interface fails (because of cable trouble, Layer 2 switch failure, high error count, or other failures) and that interface is part of a standby group, a standby interface can become active and take the load off the failed interface.

There must be at least two interfaces in a standby group. Interfaces that are part of a standby group are called “member interfaces.” After you create a standby group, you define which interfaces should be assigned to this logical group. As part of defining the member interfaces, you specify the priority of each member interface in a standby group. The member interface with the highest assigned priority is the active interface for that particular standby group. If the active interface fails, the operational member interface with the next highest priority in the standby group comes up, and so forth. If all member interfaces of a particular standby group are down and then one of the member interfaces comes up, the WAAS software detects this situation and brings up the standby group on the member interface that just came up.

The failure or failover of member interfaces within a standby group triggers alarms and traps (if alarms and traps are enabled on the WAAS device). Alarms are sent out when failover occurs between member interfaces in a standby group. Specifically, minor alarms are sent out when member interfaces fail, and these alarms are cleared automatically when the interface failover has been successfully completed. Major alarms are sent out if the standby group goes down (that is, no member interface in a standby group can be brought up.)

A physical interface can belong to more than one standby group. Consequently, a single interface can act as a standby interface for more than one standby group.

To configure standby interfaces, interfaces are logically assigned to standby groups. The following rules define the standby group relationships:

- Each standby group is assigned a unique standby IP address, shared by all member interfaces of the standby group. The IP address of the standby group is shared among the member interfaces; however, only the active interface of the standby group uses this shared IP address at any one time. This shared IP address is configured as an alias on the active interface.
- Configure the duplex and speed settings of the member interfaces for better reliability.
- If all the member interfaces of a standby group fail and then one recovers, the WAAS software brings up the standby group on the operational member interface.
- If a physical interface is a member of a port channel group, it cannot join a standby group. Likewise, if a physical interface is a member of a standby group, it cannot join a port channel group.
- A standby group comprises two or more interfaces.
- The maximum number of standby groups on a WAAS device is four.
Interface IP addresses and standby group IP addresses must be on different subnets to ensure reliable operation. You can use dummy IP addresses in the private address space to serve as interface primary IP addresses, and use the real WAAS device’s IP address to serve as the standby group IP address in a different subnet to satisfy this requirement. When dummy IP addresses are used, these interface IP addresses serve only as substitutes to bring up the interface. For example, the WAAS device’s interface requires an IP address on an interface for initialization. Make sure to configure the interface default gateway using the `ip default-gateway` global configuration command instead of the `ip route` command.

- Each interface in a standby group is assigned a priority. The operational interface with the highest priority in a standby group is the active interface. Only the active interface uses the group IP address.
- The priority of an interface in a standby group can be changed at runtime. The member interface that has the highest priority after this change becomes the new active interface (the default action is to preempt the currently active interface if an interface with higher priority exists).
- The maximum number of errors allowed on the active interface before the interface is shut down and the standby is brought up is configured with the `errors` option, which is disabled by default.

If an interface belongs to more than one standby group, you can configure the interface with a different priority in each standby group for better load-balancing. For example, interfaces Gigabit Ethernet 1/0 and Gigabit Ethernet 2/0 are both in standby group 1 and in standby group 2. If you configure Gigabit Ethernet 1/0 with the highest priority in standby group 1 and configure Gigabit Ethernet 2/0 with the highest priority in standby group 2, standby group 1 uses Gigabit Ethernet 1/0 as the active interface, while standby group 2 uses Gigabit Ethernet 2/0 as the active interface. This configuration allows each interface to back up the other one, if one of them fails.

Unlike port channels, standby groups do not support IP ACLs at a group level. However, you can configure a member interface of a standby group to support an IP ACL at the interface level. For example, you can individually configure the two member interfaces of Standby Group 1 (the Gigabit Ethernet slot 1/port 0 interface and the Gigabit Ethernet slot 2/port 0 interface) to support an IP ACL named ACL1, but you cannot configure the Standby Group 1 to support ACL1.

Examples

The following example configures two Gigabit Ethernet interfaces to be part of the same standby group, with interface 1/0 as the active interface:

```
WAE(config-if)# interface gigabitEthernet 1/0 standby 1 ip 10.16.10.10 255.255.254.0
WAE(config-if)# interface gigabitEthernet 2/0 standby 1 ip 10.16.10.10 255.255.254.0
WAE(config-if)# interface gigabitEthernet 1/0 standby 1 priority 300
WAE(config-if)# interface gigabitEthernet 2/0 standby 1 priority 200
WAE(config-if)# interface gigabitEthernet 1/0 standby 1 errors 10000
WAE(config-if)# interface gigabitEthernet 2/0 standby 1 errors 10000
```

The following example displays information about the standby group configuration by entering the `show standby` EXEC command. In the following sample command output, one standby group (Standby Group 1) is configured on this WAAS device. The command output also shows which member interface is the active interface. In this case, the active interface is the Gigabit Ethernet slot 1/port 0 interface.

```
WAE# show standby
Standby Group: 1
    Description: This a backup for Gigabit Ethernet 2/0.
    IP address: 10.16.10.10, netmask: 255.0.0.0
```
Member interfaces: none
Active interface: Gigabit Ethernet 1/0
Maximum errors allowed on the active interface: 500

To display information about a specific standby group configuration, enter the `show interface standby group_number` EXEC command.

The following example creates a standby group, Standby Group 1:

```
WAE# configure
WAE(config)# interface standby 1
WAE(config-if)#
```

The following example assigns a group IP address of 10.10.10.10 and a netmask of 255.0.0.0 to Standby Group 1. You can configure a group IP address regardless of whether the standby group is shut down or not.

```
WAE(config-if)# ip address 10.10.10.10 255.0.0.0
WAE(config-if)# errors 500
```

The following example shows how to add two Gigabit Ethernet interfaces to Standby Group 1 and then assign each of these member interfaces a priority within the group:

a. First a Gigabit Ethernet interface (slot 1/port 0) is added to Standby Group 1 and assigned a priority of 150.

```
WAE(config)# interface gigabitEthernet 1/0
WAE(config-if)# standby 1 priority 150
```

b. Next, a second Gigabit Ethernet interface (slot 2/port 0) is added to Standby Group 1 and assigned a priority of 100 (the default value).

```
WAE(config)# interface gigabitEthernet 2/0
WAE(config-if)# standby 1
WAE(config-if)# exit
WAE(config)#
```

Because GigabitEthernet 0/0 is assigned the highest priority (a priority number of 150) of all the member interfaces in the group, it is chosen as the active interface for the group if it can be brought up.

The following example removes the GigabitEthernet slot 1/port 0 interface from Standby Group 1 using the `no` form of the `standby` command:

```
WAE(config)# interface gigabitEthernet 1/0
WAE(config-if)# no standby 1
WAE(config-if)# exit
WAE(config)#
```

The following example shows how to shut down Standby Group 1. When a standby group is shut down, all of the alarms previously raised by this standby group are cleared:

```
WAE(config)# interface standby 1
WAE(config-if)# exit
WAE(config)#
```

The following example shows how to tear down Standby Group 1:

```
WAE(config)# interface standby 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
Please remove member interface(s) from this standby group first.
WAE(config)# interface GigabitEthernet 2/0
WAE(config-if)# no standby 1
```
WAE(config-if)# exit
WAE(config)# interface standby 1
WAE(config-if)# no ip address 10.10.10.10 255.0.0.0
WAE(config-if)# exit
WAE(config)# no interface standby 1
WAE(config)# exit

Related Commands
(config) interface
show interface
show running-config
show standby
show startup-config
Standard ACL Configuration Mode Commands

From global configuration mode, you can enter the standard and extended ACL configuration modes.

- To work with a standard access list, enter the `ip access-list standard` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.

- To work with an extended access list, enter the `ip access-list extended` command from the global configuration mode prompt. The CLI enters a configuration mode in which all subsequent commands apply to the current access list.

To exit an ACL configuration mode, enter `exit` to return to global configuration mode:

```
WAE(config-std-nacl)# exit
WAE(config)#
```

To return to global configuration mode, enter the `exit` command.
To create and modify standard access lists on a WAAS device for controlling access to interfaces or applications, use the `ip access-list standard` global configuration command. To disable a standard access list, use the `no` form of the command.

```
ip access-list standard {acl-name | acl-num}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard</td>
<td>Enables standard ACL configuration mode. The CLI enters the standard ACL configuration mode in which all subsequent commands apply to the current standard access list. The <code>(config-std-nacl)</code> prompt appears:</td>
</tr>
<tr>
<td>acl-name</td>
<td>Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td>acl-num</td>
<td>Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For standard access lists, the valid range is 1 to 99.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

- Global configuration

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

Use access lists to control access to specific applications or interfaces on a WAAS device. An access control list consists of one or more condition entries that specify the kind of packets that the WAAS device will drop or accept for further processing. The WAAS device applies each entry in the order in which it occurs in the access list, which by default is the order in which you configured the entry.

Note

IP ACLs that are defined on a router take precedence over the IP ACLs that are defined on the WAE. IP ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

Within ACL configuration mode, you can use the editing commands (`list`, `delete`, and `move`) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, enter `exit` at the ACL configuration mode prompt.
To create an entry, use a **deny** or **permit** keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit **deny any** entry. Therefore, you must include at least one **permit** entry to create a valid access list.

After creating an access list, you can include the access list in an access group using the **access-group** command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a **permit any** condition statement.

To create a standard access list, enter the **ip access-list standard** global configuration command.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the **permit host source-ip** option and replace **source-ip** with the IP address of the specific host.

To allow connections from a specific network, use the **permit host source-ip wildcard** option. Replace **source-ip** with a network ID or the IP address of any host on the network that you want to specify. Replace **wildcard** with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the **permit 192.168.1.0 0.0.0.255** entry allows access from any host on the 192.168.1.0 network.

After you identify the standard access list, the CLI enters the standard ACL configuration mode and all subsequent commands apply to the specified access list.

Examples

The following example creates a standard access list on the WAAS device that permits any packets from source IP address 192.168.1.0 for further processing:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# permit 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following commands activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the **show running-configuration** command:

```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group teststdacl in
exit
```
(config) ip access-list standard
teststdacl
permit 192.168.1.0 any
exit

Related Commands

- clear
- show ip access-list
- (config-if) ip access-group
- (config-std-nacl) deny
- (config-std-nacl) delete
- (config-std-nacl) list
- (config-std-nacl) move
- (config-std-nacl) permit
(config-std-nacl) delete

To delete a line from the standard IP ACL, use the delete command.

```
delete line-num
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>line-num</code></td>
<td>Entry at a specific line number in the access list.</td>
</tr>
</tbody>
</table>

| Command Modes | Standard ACL configuration mode |

Device Modes	application-accelerator
	replication-accelerator
	central-manager

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example deletes line 10 from the standard IP ACL teststdacl:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WAE(config)# ip access-list standard teststdacl</td>
</tr>
<tr>
<td></td>
<td>WAE(config-std-nacl)# delete 10</td>
</tr>
</tbody>
</table>

Related Commands	(config-std-nacl) deny
	(config-std-nacl) delete
	(config-std-nacl) list
	(config-std-nacl) move
	(config-std-nacl) permit
To add a line to a standard access-list that specifies the type of packets that you want the WAAS device to drop, use the `deny` command.

```
```

To negate a standard IP ACL, use the following syntax.

```
no deny [source-ip [wildcard] | host source-ip | any]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert</code></td>
<td>(Optional) Inserts the conditions following the specified line number into</td>
</tr>
<tr>
<td></td>
<td>the access list.</td>
</tr>
<tr>
<td><code>line-num</code></td>
<td>Entry at a specific line number in the access list.</td>
</tr>
<tr>
<td><code>deny</code></td>
<td>Causes packets that match the specified conditions to be dropped.</td>
</tr>
<tr>
<td><code>source-ip</code></td>
<td>Source IP address. The number of the network or host from which the</td>
</tr>
<tr>
<td></td>
<td>packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal</td>
</tr>
<tr>
<td></td>
<td>format (for example, 0.0.0.0).</td>
</tr>
<tr>
<td><code>wildcard</code></td>
<td>(Optional) Portions of the preceding IP address to match, expressed using</td>
</tr>
<tr>
<td></td>
<td>4-digit, dotted-decimal notation. Bits to match are identified by a digital</td>
</tr>
<tr>
<td></td>
<td>value of 0; bits to ignore are identified by a 1.</td>
</tr>
<tr>
<td>Note</td>
<td>For standard IP ACLs, the <code>wildcard</code> parameter of the <code>ip access-list</code></td>
</tr>
<tr>
<td></td>
<td>command is always optional. If the <code>host</code> keyword is specified for a</td>
</tr>
<tr>
<td></td>
<td>standard IP ACL, then the <code>wildcard</code> parameter is not allowed.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Matches the following IP address.</td>
</tr>
<tr>
<td><code>any</code></td>
<td>Matches any IP address.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

Standard ACL configuration mode

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

To create an entry, use a `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the `permit host source-ip` option and replace `source-ip` with the IP address of the specific host.
To allow connections from a specific network, use the **permit host source-ip wildcard** option. Replace `source-ip` with a network ID or the IP address of any host on the network that you want to specify. Replace `wildcard` with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

Examples

The following example creates a standard access-list that denies any packets from source IP address 192.168.1.0 for processing:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# deny 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following example shows how to activate the standard access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the **show running-configuration** command:

```
...
interface GigabitEthernet 1/0
  ip address 10.1.1.50 255.255.0.0
  ip access-group teststdacl in
  exit

ip access-list standard example
  deny 192.168.1.0 any
  exit
  ...
```

Related Commands

- `delete`
- `list`
- `move`
- `permit`
(config-std-nacl) exit

To terminate standard ACL configuration mode and return to the global configuration mode, use the `exit` command.

```
exit
```

Syntax Description
This command has no arguments or keywords.

Defaults
No default behavior or values

Command Modes
All modes

Device Modes
application-accelerator
replication-accelerator
central-manager

Examples
The following example terminates standard ACL configuration mode and returns to global configuration mode:

```
WAE(config-std-nacl)# exit
WAE(config)#
```
(config-std-nacl) list

To display a list of specified entries within the standard IP ACL, use the list command.

```
list [start-line-num [end-line-num]]
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start-line-num</td>
<td>(Optional) Line number from which the list begins.</td>
</tr>
<tr>
<td>end-line-num</td>
<td>(Optional) Last line number in the list.</td>
</tr>
</tbody>
</table>

Command Modes

Standard ACL configuration mode

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Examples

The following example displays a list of specified entries within the standard IP ACL:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# list 25 50
```

Related Commands

- (config-std-nacl) delete
- (config-std-nacl) move
(config-std-nacl) move

To move a line to a new position within the standard IP ACL, use the move command.

move old-line-num new-line-num

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>old-line-num</td>
<td>Line number of the entry to move.</td>
</tr>
<tr>
<td>new-line-num</td>
<td>New position of the entry. The existing entry is moved to the following position in the access list.</td>
</tr>
</tbody>
</table>

Command Modes

Standard ACL configuration mode

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

The following example moves a line to a new position within the standard IP ACL:

WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# move 25 30

Related Commands

(config-std-nacl) delete
(config-std-nacl) list
(config-std-nacl) permit

To add a line to a standard access-list that specifies the type of packets that you want the WAAS device to accept for further processing, use the `permit` command.

```
[insert line-num] permit {source-ip [wildcard] | host source-ip | any}
```

To negate a standard IP ACL, use the following syntax.

```
no permit {source-ip [wildcard] | host source-ip | any}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>insert</code></td>
<td>(Optional) Inserts the conditions following the specified line number into the access list.</td>
</tr>
<tr>
<td><code>line-num</code></td>
<td>Entry at a specific line number in the access list.</td>
</tr>
<tr>
<td><code>source-ip</code></td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
<tr>
<td><code>wildcard</code></td>
<td>(Optional) Portions of the preceding IP address to match, expressed using 4-digit, dotted-decimal notation. Bits to match are identified by a digital value of 0; bits to ignore are identified by a 1.</td>
</tr>
<tr>
<td><code>host</code></td>
<td>Matches the following IP address.</td>
</tr>
<tr>
<td><code>any</code></td>
<td>Matches any IP address.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

Standard ACL configuration mode

Device Modes

- application-accelerator
- replication-accelerator
- central-manager

Usage Guidelines

To create an entry, use a `deny` or `permit` keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit `deny any` entry. Therefore, you must include at least one `permit` entry to create a valid access list.

You typically use a standard access list to allow connections from a host with a specific IP address or from hosts on a specific network. To allow connections from a specific host, use the `permit host source-ip` option and replace `source-ip` with the IP address of the specific host.
To allow connections from a specific network, use the `permit host source-ip wildcard` option. Replace `source-ip` with a network ID or the IP address of any host on the network that you want to specify. Replace `wildcard` with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

Examples

The following example creates standard access-list that permits any packets from source IP address 192.168.1.0 for further processing:

```
WAE(config)# ip access-list standard teststdacl
WAE(config-std-nacl)# permit 192.168.1.0 any
WAE(config-std-nacl)# exit
```

The following example shows how to activate the standard access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group teststdacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
... ! interface GigabitEthernet 1/0
   ip address 10.1.1.50 255.255.0.0
   ip access-group teststdacl in
   exit
   ... ip access-list standard example
   permit 192.168.1.0 any
   exit
   ... ...
```

Related Commands

- `(config-std-nacl) delete`
- `(config-std-nacl) deny`
- `(config-std-nacl) list`
- `(config-std-nacl) move`
Extended ACL Configuration Mode Commands

To create and modify extended access lists on a WAAS device for controlling access to interfaces or applications, use the `ip access-list extended` global configuration command. To disable an extended access list, use the `no` form of the command.

```
ip access-list extended {acl-name | acl-num}
```

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>extended</code></td>
<td>Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access list. The (config-ext-nacl) prompt appears:</td>
</tr>
<tr>
<td><code>acl-name</code></td>
<td>Access list to which all commands entered from ACL configuration mode apply, using an alphanumeric string of up to 30 characters, beginning with a letter.</td>
</tr>
<tr>
<td><code>acl-num</code></td>
<td>Access list to which all commands entered from access list configuration mode apply, using a numeric identifier. For extended access lists, the valid range is 100 to 199.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one `permit` entry.

Command Modes

Global configuration

Device Modes

- `application-accelerator`
- `replication-accelerator`
- `central-manager`

Usage Guidelines

Use access lists to control access to specific applications or interfaces on a WAAS device. An access control list consists of one or more condition entries that specify the kind of packets that the WAAS device will drop or accept for further processing. The WAAS device applies each entry in the order in which it occurs in the access list, which by default is the order in which you configured the entry.

The following list contains examples of how ACLs can be used in environments that use WAAS devices:

- A WAAS device resides on the customer premises and is managed by a service provider, and the service provider wants to secure the device for its management only.
- A WAAS device is deployed anywhere within the enterprise. As with routers and switches, the administrator wants to limit Telnet, SSH, and WAAS GUI access to the IT source subnets.
An application layer proxy firewall with a hardened outside interface has no ports exposed.
(Hardened means that the interface carefully restricts which ports are available for access, primarily for security reasons. With an outside interface, many types of security attacks are possible.) The WAE's outside address is Internet global, and its inside address is private. The inside interface has an ACL to limit Telnet, SSH, and WAAS GUI access to the device.

A WAAS device using WCCP is positioned between a firewall and an Internet router or a subnet off the Internet router. Both the WAAS device and the router must have ACLs.

Note
ACLs that are defined on a router take precedence over the ACLs that are defined on the WAE. ACLs that are defined on a WAE take precedence over the WAAS application definition policies that are defined on the WAE.

Within ACL configuration mode, you can use the editing commands (list, delete, and move) to display the current condition entries, to delete a specific entry, or to change the order in which the entries will be evaluated. To return to global configuration mode, enter exit at the ACL configuration mode prompt.

To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. Therefore, you must include at least one permit entry to create a valid access list.

After creating an access list, you can include the access list in an access group using the access-group command, which determines how the access list is applied. You can also apply the access list to a specific application using the appropriate command. A reference to an access list that does not exist is the equivalent of a permit any condition statement.

To create an extended access list, enter the ip access-list extended global configuration command. Identify the new or existing access list with a name up to 30 characters long beginning with a letter, or with a number. If you use a number to identify an extended access list, it must be from 100 to 199.

Note
You must use a standard access list for providing access to the SNMP server or to the TFTP gateway/server. However, you can use either a standard access list or an extended access list for providing access to the WCCP application.

To allow connections from a specific host, use the permit host source-ip option and replace source-ip with the IP address of the specific host.

To allow connections from a specific network, use the permit host source-ip wildcard option. Replace source-ip with a network ID or the IP address of any host on the network that you want to specify. Replace wildcard with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the permit 192.168.1.0 0.0.0.255 entry allows access from any host on the 192.168.1.0 network.

After you identify the extended access list, the CLI enters the extended ACL configuration mode and all subsequent commands apply to the specified access list.

WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)#
The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it, but limits host administrative access using SSH:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit
```

The following example shows how to activate the access list for an interface:

```
WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group testextacl in
WAE(config-if)# exit
```

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group testextacl in
exit
...
ip access-list extended testextacl
  permit tcp any any eq www
  permit tcp host 10.1.1.5 any eq ssh
exit
...
```

Related Commands

- `clear`
- `show ip access-list`
- `(config-if) ip access-group`
- `(config-ext-nacl) deny`
- `(config-ext-nacl) delete`
- `(config-ext-nacl) list`
- `(config-ext-nacl) move`
- `(config-ext-nacl) permit`
To delete a line from the extended ACL, use the `delete` command.

```
delete line-num
```

Syntax Description

| line-num | Entry at a specific line number in the access list. |

Command Modes

Extended ACL configuration mode

Device Modes

application-accelerator
replication-accelerator
central-manager

Examples

The following example deletes line 10 from the extended ACL testextacl:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# delete 10
```

Related Commands

```
(config-ext-nacl) list
(config-ext-nacl) move
```
(config-ext-nacl) deny

To add a line to an extended access list that specifies the type of packets that you want the WAAS device to drop, use the **deny** command. To add a condition to the extended ACL, note that the options depend on the chosen protocol.

For IP, use the following syntax to add a condition:

```
```

```
no deny { gre | icmp | tcp | udp | ip | proto-num } { source-ip [wildcard] | host source-ip | any } { dest-ip [wildcard] | host dest-ip | any }
```

For TCP, use the following syntax to add a condition:

```
```

```
no deny tcp { source-ip [wildcard] | host source-ip | any } { operator port [port] } { dest-ip [wildcard] | host dest-ip | any } { operator port [port] } [established]
```

For UDP, use the following syntax to add a condition:

```
```

```
no deny udp { source-ip [wildcard] | host source-ip | any } { operator port [port] } { dest-ip [wildcard] | host dest-ip | any } { operator port [port] }
```

For ICMP, use the following syntax to add a condition:

```
```

```
no deny icmp { source-ip [wildcard] | host source-ip | any } { dest-ip [wildcard] | host dest-ip | any } { icmp-type [code] | icmp-msg }
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>(Optional) Inserts the conditions following the specified line number into</td>
</tr>
<tr>
<td>line-num</td>
<td>the access list.</td>
</tr>
<tr>
<td>gre</td>
<td>Matches packets using the Generic Routing Encapsulation protocol.</td>
</tr>
<tr>
<td>icmp</td>
<td>Matches ICMP packets.</td>
</tr>
<tr>
<td>tcp</td>
<td>Matches packets using the TCP protocol.</td>
</tr>
<tr>
<td>udp</td>
<td>Matches packets using the UDP protocol.</td>
</tr>
<tr>
<td>ip</td>
<td>Matches all IP packets.</td>
</tr>
<tr>
<td>proto-num</td>
<td>(Optional) IP protocol number.</td>
</tr>
<tr>
<td>source-ip</td>
<td>Source IP address. The number of the network or host from which the packet</td>
</tr>
<tr>
<td></td>
<td>is being sent, specified as a 32-bit quantity in 4-part dotted-decimal</td>
</tr>
<tr>
<td></td>
<td>format (for example, 0.0.0.0).</td>
</tr>
</tbody>
</table>
Chapter 3 CLI Commands

(config-ext-nacl) deny

<table>
<thead>
<tr>
<th>wildcard</th>
<th>(Optional) Portions of the preceding IP address to match, expressed using 4-digit, dotted-decimal notation. Bits to match are identified by a digital value of 0; bits to ignore are identified by a 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>For extended IP ACLs, the wildcard parameter of the ip access-list command is always optional. If the host keyword is specified for a extended IP ACL, then the wildcard parameter is not allowed.</td>
</tr>
<tr>
<td>host</td>
<td>Matches the following IP address.</td>
</tr>
<tr>
<td>any</td>
<td>Matches any IP address.</td>
</tr>
<tr>
<td>dest-ip</td>
<td>Destination IP address. The number of the network or host to which the packet is being sent, specified as a 32-bit quantity in 4-part dotted decimal format (for example, 0.0.0.0).</td>
</tr>
<tr>
<td>operator</td>
<td>(Optional) Operator to use with specified ports, where lt = less than, gt = greater than, eq = equal to, neq = not equal to, and range = an inclusive range.</td>
</tr>
<tr>
<td>port</td>
<td>(Optional) Port, using a number (0–65535) or a keyword; 2 port numbers are required with range. See the Usage Guidelines section for a listing of the UDP and TCP keywords.</td>
</tr>
<tr>
<td>established</td>
<td>(Optional) Matches TCP packets with the acknowledgment or reset bits set.</td>
</tr>
<tr>
<td>icmp-type</td>
<td>(Optional) Match with ICMP message type (0–255).</td>
</tr>
<tr>
<td>code</td>
<td>(Optional) Used with icmp-type to further match by ICMP code type (0–255).</td>
</tr>
<tr>
<td>icmp-msg</td>
<td>(Optional) Match combination of ICMP message type and code types, as expressed by the keywords shown in the Usage Guidelines section.</td>
</tr>
</tbody>
</table>

Defaults

An access list drops all packets unless you configure at least one **permit** entry.

Command Modes

Extended ACL configuration mode

Device Modes

application-accelerator
replication-accelerator
central-manager

Usage Guidelines

To create an entry, use a **deny** or **permit** keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit **deny any** entry. Therefore, you must include at least one **permit** entry to create a valid access list.

To allow connections from a specific host, use the **permit host source-ip** option and replace **source-ip** with the IP address of the specific host.

To allow connections from a specific network, use the **permit host source-ip wildcard** option. Replace **source-ip** with a network ID or the IP address of any host on the network that you want to specify. Replace **wildcard** with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For
instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

For extended IP ACLs, the `wildcard` parameter is required if the `host` keyword is not specified.

Use an extended access list to control connections based on the destination IP address or based on the protocol type. You can combine these conditions with information about the source IP address to create more restrictive condition.

Table 3-102 lists the UDP keywords that you can use with extended access lists.

<table>
<thead>
<tr>
<th>CLI UDP Keyword</th>
<th>Description</th>
<th>UDP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootpc</td>
<td>Bootstrap Protocol (BOOTP) client</td>
<td>68</td>
</tr>
<tr>
<td>bootps</td>
<td>Bootstrap Protocol (BOOTP) server</td>
<td>67</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name System (DNS)</td>
<td>53</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>NetBIOS datagram service</td>
<td>138</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>NetBIOS name service</td>
<td>137</td>
</tr>
<tr>
<td>netbios-ss</td>
<td>NetBIOS session service</td>
<td>139</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ntp</td>
<td>Network Time Protocol</td>
<td>123</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol</td>
<td>161</td>
</tr>
<tr>
<td>snmptrap</td>
<td>SNMP traps</td>
<td>162</td>
</tr>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>tftp</td>
<td>Trivial File Transfer Protocol</td>
<td>69</td>
</tr>
<tr>
<td>wccp</td>
<td>Web Cache Communication Protocol</td>
<td>2048</td>
</tr>
</tbody>
</table>

Table 3-103 lists the TCP keywords that you can use with extended access lists.

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>Domain Name System</td>
<td>53</td>
</tr>
<tr>
<td>exec</td>
<td>Exec (rcp)</td>
<td>512</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections (used infrequently)</td>
<td>20</td>
</tr>
<tr>
<td>https</td>
<td>Secure HTTP</td>
<td>443</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ssh</td>
<td>Secure Shell login</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3-103 TCP Keywords for Extended Access Lists (continued)

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>www</td>
<td>World Wide Web (HTTP)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 3-104 lists the keywords that you can use to match specific ICMP message types and codes.

Table 3-104 Keywords for ICMP Messages

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administratively-prohibited</td>
<td>alternate-address conversion-error</td>
</tr>
<tr>
<td>dod-host-prohibited</td>
<td>dod-net-prohibited echo</td>
</tr>
<tr>
<td>echo-reply</td>
<td>general-parameter-problem host-isolated</td>
</tr>
<tr>
<td>host-precedence-unreachable</td>
<td>host-redirect host-tos-redirect</td>
</tr>
<tr>
<td>host-tos-unreachable</td>
<td>host-unknown host-unreachable</td>
</tr>
<tr>
<td>information-reply</td>
<td>information-request mask-reply</td>
</tr>
<tr>
<td>mask-request</td>
<td>mobile-redirect net-redirect</td>
</tr>
<tr>
<td>net-tos-redirect</td>
<td>net-tos-unreachable net-unreachable</td>
</tr>
<tr>
<td>network-unknown</td>
<td>no-room-for-option option-missing</td>
</tr>
<tr>
<td>packet-too-big</td>
<td>parameter-problem port-unreachable</td>
</tr>
<tr>
<td>precedence-unreachable</td>
<td>protocol-unreachable reassembly-timeout</td>
</tr>
<tr>
<td>redirect</td>
<td>router-advertisement router-solicitation</td>
</tr>
<tr>
<td>source-quench</td>
<td>source-route-failed time-exceeded</td>
</tr>
<tr>
<td>timestamp-reply</td>
<td>timestamp-request traceroute</td>
</tr>
<tr>
<td>ttl-exceeded</td>
<td>unreachable</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it, but limits host administrative access using SSH:

WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# deny tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit

The following example shows how to activate the access list for an interface:

WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group extended testextacl in
WAE(config-if)# exit

The following example shows how this configuration appears when you enter the show running-configuration command:

```
...```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group extended testextacl in
exit

ip access-list extended testextacl
permit tcp any any eq www
permit tcp host 10.1.1.5 any eq ssh
exit

Related Commands
(config-ext-nacl) delete
(config-ext-nacl) list
(config-ext-nacl) move
(config-ext-nacl) permit
(config-ext-nacl) exit

To terminate extended ACL configuration mode and return to the global configuration mode, use the exit command.

```plaintext
exit
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
No default behavior or values

**Command Modes**
All modes

**Device Modes**
application-accelerator
replication-accelerator
central-manager

**Examples**
The following example terminates extended ACL configuration mode and returns to global configuration mode:

```plaintext
WAE(config-ext-nacl)# exit
WAE(config)#
```
(config-ext-nacl) list

To display a list of specified entries within the extended ACL, use the list command.

```
list [start-line-num [end-line-num]]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>start-line-num</td>
<td>(Optional) Line number from which the list begins.</td>
</tr>
<tr>
<td>end-line-num</td>
<td>(Optional) Last line number in the list.</td>
</tr>
</tbody>
</table>

**Command Modes**

Extended ACL configuration mode

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Examples**

The following example shows how to display a list of specified entries within the extended ACL:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# list 25 50
```

**Related Commands**

- (config-ext-nacl) delete
- (config-ext-nacl) move
(config-ext-nacl) move

To move a line to a new position within the extended ACL, use the move command.

```
move old-line-num new-line-num
```

**Syntax Description**

- `old-line-num` Line number of the entry to move.
- `new-line-num` New position of the entry. The existing entry is moved to the following position in the access list.

**Command Modes**

Extended ACL configuration mode

**Device Modes**

- application-accelerator
- replication-accelerator
- central-manager

**Examples**

The following example shows how to move a line to a new position within the extended ACL:

```
WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# move 25 30
```

**Related Commands**

- (config-ext-nacl) delete
- (config-ext-nacl) list
(config-ext-nacl) permit

To add a line to an extended access-list that specifies the type of packets that you want the WAAS device to accept for further processing, use the **permit** command. To add a condition to the extended ACL, note that the options depend on the chosen protocol.

For IP, use the following syntax to add a condition:

```
```

```
no permit { gre | icmp | tcp | udp | ip | proto-num } { source-ip [wildcard] | host source-ip | any } { dest-ip [wildcard] | host dest-ip | any }
```

For TCP, use the following syntax to add a condition:

```
```

```
no permit tcp { source-ip [wildcard] | host source-ip | any } { operator port [port] } { dest-ip [wildcard] | host dest-ip | any } { operator port [port] } [established]
```

For UDP, use the following syntax to add a condition:

```
```

```
no permit udp { source-ip [wildcard] | host source-ip | any } { operator port [port] } { dest-ip [wildcard] | host dest-ip | any } { operator port [port] }
```

For ICMP, use the following syntax to add a condition:

```
```

```
no permit icmp { source-ip [wildcard] | host source-ip | any } { dest-ip [wildcard] | host dest-ip | any } { icmp-type [code] | icmp-msg }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>(Optional) Inserts the conditions following the specified line number into the access list.</td>
</tr>
<tr>
<td>line-num</td>
<td>Identifies the entry at a specific line number in the access list.</td>
</tr>
<tr>
<td>gre</td>
<td>Matches packets using the Generic Routing Encapsulation protocol.</td>
</tr>
<tr>
<td>icmp</td>
<td>Matches ICMP packets.</td>
</tr>
<tr>
<td>tcp</td>
<td>Matches packets using the TCP protocol.</td>
</tr>
<tr>
<td>udp</td>
<td>Matches packets using the UDP protocol.</td>
</tr>
<tr>
<td>ip</td>
<td>Matches all IP packets.</td>
</tr>
<tr>
<td>proto-num</td>
<td>(Optional) IP protocol number.</td>
</tr>
<tr>
<td>source-ip</td>
<td>Source IP address. The number of the network or host from which the packet is being sent, specified as a 32-bit quantity in 4-part dotted-decimal format (for example, 0.0.0.0).</td>
</tr>
</tbody>
</table>
Chapter 3  CLI Commands

(config-ext-nacl) permit

**wildcard**  (Optional) Portions of the preceding IP address to match, expressed using 4-digit, dotted-decimal notation. Bits to match are identified by a digital value of 0; bits to ignore are identified by a 1.

**Note**  For extended IP ACLs, the wildcard parameter of the ip access-list command is always optional. If the host keyword is specified for a extended IP ACL, then the wildcard parameter is not allowed.

**host**  Matches the following IP address.

**any**  Matches any IP address.

**dest-ip**  Destination IP address. The number of the network or host to which the packet is being sent, specified as a 32-bit quantity in 4-part dotted decimal format (for example, 0.0.0.0).

**operator**  (Optional) Operator to use with specified ports, where lt = less than, gt = greater than, eq = equal to, neq = not equal to, and range = an inclusive range.

**port**  (Optional) Port, using a number (0–65535) or a keyword; 2 port numbers are required with range. See the Usage Guidelines section for a listing of the UDP and TCP keywords.

**established**  (Optional) Matches TCP packets with the acknowledgment or reset bits set.

**icmp-type**  (Optional) Match with ICMP message type (0–255).

**code**  (Optional) Used with icmp-type to further match by ICMP code type (0–255).

**icmp-msg**  (Optional) Match combination of ICMP message type and code types, as expressed by the keywords shown in the Usage Guidelines section.

**Defaults**  An access list drops all packets unless you configure at least one permit entry.

**Command Modes**  Extended ACL configuration mode

**Device Modes**  
- application-accelerator
- replication-accelerator
- central-manager

**Usage Guidelines**  
To create an entry, use a deny or permit keyword and specify the type of packets that you want the WAAS device to drop or to accept for further processing. By default, an access list denies everything because the list is terminated by an implicit deny any entry. Therefore, you must include at least one permit entry to create a valid access list.

To allow connections from a specific host, use the permit host source-ip option and replace source-ip with the IP address of the specific host.

To allow connections from a specific network, use the permit host source-ip wildcard option. Replace source-ip with a network ID or the IP address of any host on the network that you want to specify. Replace wildcard with the dotted decimal notation for a mask that is the reverse of a subnet mask, where a 0 indicates a position that must be matched and a 1 indicates a position that does not matter. For
instance, the wildcard 0.0.0.255 causes the last eight bits in the source IP address to be ignored. Therefore, the `permit 192.168.1.0 0.0.0.255` entry allows access from any host on the 192.168.1.0 network.

For extended IP ACLs, the `wildcard` parameter is required if the `host` keyword is not specified.

Use an extended access list to control connections based on the destination IP address or based on the protocol type. You can combine these conditions with information about the source IP address to create more restrictive condition.

Table 3-105 lists the UDP keywords that you can use with extended access lists.

### Table 3-105  UDP Keywords for Extended Access Lists

<table>
<thead>
<tr>
<th>CLI UDP Keyword</th>
<th>Description</th>
<th>UDP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootpc</td>
<td>Bootstrap Protocol (BOOTP) client</td>
<td>68</td>
</tr>
<tr>
<td>bootps</td>
<td>Bootstrap Protocol (BOOTP) server</td>
<td>67</td>
</tr>
<tr>
<td>domain</td>
<td>Domain Name System (DNS)</td>
<td>53</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>netbios-dgm</td>
<td>NetBIOS datagram service</td>
<td>138</td>
</tr>
<tr>
<td>netbios-ns</td>
<td>NetBIOS name service</td>
<td>137</td>
</tr>
<tr>
<td>netbios-ss</td>
<td>NetBIOS session service</td>
<td>139</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ntp</td>
<td>Network Time Protocol</td>
<td>123</td>
</tr>
<tr>
<td>snmp</td>
<td>Simple Network Management Protocol</td>
<td>161</td>
</tr>
<tr>
<td>snmptrap</td>
<td>SNMP traps</td>
<td>162</td>
</tr>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>tftp</td>
<td>Trivial File Transfer Protocol</td>
<td>69</td>
</tr>
<tr>
<td>wccp</td>
<td>Web Cache Communication Protocol</td>
<td>2048</td>
</tr>
</tbody>
</table>

Table 3-106 lists the TCP keywords that you can use with extended access lists.

### Table 3-106  TCP Keywords for Extended Access Lists

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>Domain Name System</td>
<td>53</td>
</tr>
<tr>
<td>exec</td>
<td>Exec (rcp)</td>
<td>512</td>
</tr>
<tr>
<td>ftp</td>
<td>File Transfer Protocol</td>
<td>21</td>
</tr>
<tr>
<td>ftp-data</td>
<td>FTP data connections (used infrequently)</td>
<td>20</td>
</tr>
<tr>
<td>https</td>
<td>Secure HTTP</td>
<td>443</td>
</tr>
<tr>
<td>mms</td>
<td>Microsoft Media Server</td>
<td>1755</td>
</tr>
<tr>
<td>nfs</td>
<td>Network File System service</td>
<td>2049</td>
</tr>
<tr>
<td>ssh</td>
<td>Secure Shell login</td>
<td>22</td>
</tr>
</tbody>
</table>
Table 3-106  TCP Keywords for Extended Access Lists (continued)

<table>
<thead>
<tr>
<th>CLI TCP Keyword</th>
<th>Description</th>
<th>TCP Port Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>tacacs</td>
<td>Terminal Access Controller Access Control System</td>
<td>49</td>
</tr>
<tr>
<td>telnet</td>
<td>Telnet</td>
<td>23</td>
</tr>
<tr>
<td>www</td>
<td>World Wide Web (HTTP)</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 3-107 lists the keywords that you can use to match specific ICMP message types and codes.

Table 3-107  Keywords for ICMP Messages

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>administratively-prohibited</td>
<td>alternate-address</td>
</tr>
<tr>
<td>dod-host-prohibited</td>
<td>alternate-address</td>
</tr>
<tr>
<td>echo-reply</td>
<td>destination-address</td>
</tr>
<tr>
<td>host-precedence-unreachable</td>
<td>host-redirection</td>
</tr>
<tr>
<td>host-tos-unreachable</td>
<td>host-known</td>
</tr>
<tr>
<td>information-reply</td>
<td>information-request</td>
</tr>
<tr>
<td>mask-request</td>
<td>mobile-redirection</td>
</tr>
<tr>
<td>net-tos-redirect</td>
<td>net-redirection</td>
</tr>
<tr>
<td>network-unknown</td>
<td>no-room-for-option</td>
</tr>
<tr>
<td>packet-too-big</td>
<td>parameter-problem</td>
</tr>
<tr>
<td>precedence-unreachable</td>
<td>protocol-unreachable</td>
</tr>
<tr>
<td>redirect</td>
<td>router-advertisement</td>
</tr>
<tr>
<td>source-quench</td>
<td>source-route-failed</td>
</tr>
<tr>
<td>timestamp-reply</td>
<td>timestamp-request</td>
</tr>
<tr>
<td>ttl-exceeded</td>
<td>unreachable</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to create an access list on the WAAS device. You create this access list to allow the WAAS device to accept all web traffic that is redirected to it, but limits host administrative access using SSH:

WAE(config)# ip access-list extended testextacl
WAE(config-ext-nacl)# permit tcp any any eq www
WAE(config-ext-nacl)# permit tcp host 10.1.1.5 any eq ssh
WAE(config-ext-nacl)# exit

The following example shows how to activate the access list for an interface:

WAE(config)# interface gigabitethernet 1/0
WAE(config-if)# ip access-group example in
WAE(config-if)# exit

The following example shows how this configuration appears when you enter the `show running-configuration` command:

```
...!
```
interface GigabitEthernet 1/0
ip address 10.1.1.50 255.255.0.0
ip access-group testextacl in
exit
...  
ip access-list extended testextacl
  permit tcp any any eq www
  permit tcp host 10.1.1.5 any eq ssh
  exit
  ...

Related Commands

- (config-ext-nacl) delete
- (config-ext-nacl) deny
- (config-ext-nacl) list
- (config-ext-nacl) move
Table A-1 defines the acronyms and abbreviations that are used in this publication.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>authentication, authorization, and accounting</td>
</tr>
<tr>
<td>ACL</td>
<td>access control list</td>
</tr>
<tr>
<td>ACPI</td>
<td>Advanced Configuration and Power Interface</td>
</tr>
<tr>
<td>ADS</td>
<td>Active Directory Service</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>BIOS</td>
<td>Basic Input Output System</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Bootstrap Protocol</td>
</tr>
<tr>
<td>CBA</td>
<td>cipher block chaining</td>
</tr>
<tr>
<td>CDP</td>
<td>Cisco Discovery Protocol</td>
</tr>
<tr>
<td>CIFS</td>
<td>Common Internet File System</td>
</tr>
<tr>
<td>CLI</td>
<td>command-line interface</td>
</tr>
<tr>
<td>CUPS</td>
<td>Common UNIX Printing System</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DSCP</td>
<td>differentiated services code point</td>
</tr>
<tr>
<td>ECN</td>
<td>Explicit Congestion Notification</td>
</tr>
<tr>
<td>FTP</td>
<td>file transfer protocol</td>
</tr>
<tr>
<td>GMT</td>
<td>Greenwich Mean Time (now known as UTC)</td>
</tr>
<tr>
<td>GRE</td>
<td>generic routing encapsulation</td>
</tr>
<tr>
<td>GUI</td>
<td>graphical user interface</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hash-Based Message Authentication Code</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Drive Electronics</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
</tbody>
</table>
Table A-1   List of Acronyms and Abbreviations (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDC</td>
<td>key distribution center</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>Mbps</td>
<td>megabits per second</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MSRPC</td>
<td>Microsoft Remote Procedure Call</td>
</tr>
<tr>
<td>MTU</td>
<td>maximum transmission unit</td>
</tr>
<tr>
<td>NAS</td>
<td>network access server/network attached storage</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Network Basic Input/Output System</td>
</tr>
<tr>
<td>NMS</td>
<td>Network Management system</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NTLM</td>
<td>NT LAN Manager</td>
</tr>
<tr>
<td>NVRAM</td>
<td>nonvolatile RAM</td>
</tr>
<tr>
<td>PAP</td>
<td>Password Authentication Protocol</td>
</tr>
<tr>
<td>PDC</td>
<td>primary domain controller</td>
</tr>
<tr>
<td>PID</td>
<td>product ID</td>
</tr>
<tr>
<td>POST</td>
<td>Power-on Self Test</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Access Dial-In User Service</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>RAM</td>
<td>random access memory</td>
</tr>
<tr>
<td>rcp</td>
<td>remote copy protocol</td>
</tr>
<tr>
<td>RMSS</td>
<td>receiver maximum segment size</td>
</tr>
<tr>
<td>ROM</td>
<td>read-only memory</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer Systems Interface</td>
</tr>
<tr>
<td>SHA</td>
<td>Secure Hash Algorithm</td>
</tr>
<tr>
<td>SMART</td>
<td>Self Monitoring, Analysis, and Reporting Technology</td>
</tr>
<tr>
<td>SMB</td>
<td>Server Message Block</td>
</tr>
<tr>
<td>SMSS</td>
<td>sender maximum segment size</td>
</tr>
<tr>
<td>SN</td>
<td>serial number</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SSH</td>
<td>Secure Shell Protocol</td>
</tr>
<tr>
<td>SYSFS</td>
<td>System File System</td>
</tr>
<tr>
<td>TAC</td>
<td>Technical Assistance Center</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access Control System Plus</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>TDB</td>
<td>Trivial DataBase</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>ToS</td>
<td>type of service</td>
</tr>
<tr>
<td>UDI</td>
<td>unique device identifier</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UPS</td>
<td>uninterruptible power supply</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>UUCP</td>
<td>Unix-to-Unix Copy Program</td>
</tr>
<tr>
<td>VID</td>
<td>version ID</td>
</tr>
<tr>
<td>WAE</td>
<td>Wide Area Application Engine</td>
</tr>
<tr>
<td>WAAS</td>
<td>Wide Area Application Services</td>
</tr>
<tr>
<td>WAFSFS</td>
<td>Wide Area File Services File System</td>
</tr>
<tr>
<td>WCCP</td>
<td>Web Cache Communication Protocol</td>
</tr>
<tr>
<td>WINS</td>
<td>Windows naming service</td>
</tr>
</tbody>
</table>
### Configuration Mode Commands

- (config) aaa accounting 3-281
- (config) adapter 3-285
- (config) alarm overload-detect 3-286
- (config) asset 3-288
- (config) authentication 3-289
- (config) auto-register 3-296
- (config) banner 3-299
- (config) bypass 3-302
- (config) cdp 3-304
- (config) central-manager 3-306
- (config) clock 3-310
- (config) cms 3-314
- (config) device mode 3-316
- (config) disk disk-name 3-318
- (config) disk encrypt 3-320
- (config) disk error-handling 3-322
- (config) disk logical shutdown 3-324
- (config) egress-method 3-325
- (config) end 3-327
- (config) exec-timeout 3-328
- (config) exit 3-329
- (config) external-ip 3-330
- (config) flow monitor 3-332
- (config) help 3-333
- (config) hostname 3-335
- (config) inetd 3-337
- (config) interface 3-338
- (config) ip 3-344
- (config) ip access-list 3-347
- (config) kerberos 3-350
- (config) kernel 3-352
- (config) line 3-353
- (config) logging 3-354
- (config) no 3-358
- (config) ntp 3-360
- (config) policy-engine application classifier 3-362
- (config) policy-engine application map adaptor EPM 3-364
- (config) policy-engine application map adaptor WAFS transport 3-366
- (config) policy-engine application map basic delete 3-368
- (config) policy-engine application map basic disable 3-369
- (config) policy-engine application map basic insert 3-370
- (config) policy-engine application map basic list 3-371
- (config) policy-engine application map basic move 3-372
- (config) policy-engine application map basic name 3-374
- (config) policy-engine application map other optimize DRE 3-376
- (config) policy-engine application map other optimize full 3-378
- (config) policy-engine application map other pass-through 3-379
- (config) policy-engine application name 3-380
- (config) policy-engine config 3-382
- (config) port-channel 3-383
- (config) primary-interface 3-384
- (config) print-services 3-386
- (config) radius-server 3-389
- (config) smb-conf 3-391
- (config) snmp-server access-list 3-395
- (config) snmp-server community 3-396
(config) snmp-server contact 3-398
(config) snmp-server enable traps 3-399
(config) snmp-server group 3-402
(config) snmp-server host 3-404
(config) snmp-server location 3-406
(config) snmp-server mib 3-407
(config) snmp-server notify inform 3-409
(config) snmp-server user 3-412
(config) snmp-server view 3-414
(config) sshd 3-415
(config) ssh-key-generate 3-418
(config) tacacs 3-419
(config) tcp 3-422
(config) telnet enable 3-425
(config) tfo auto-discovery 3-426
(config) tfo optimize 3-427
(config) tfo tcp keepalive 3-428
(config) tfo tcp optimized-mss 3-429
(config) tfo tcp optimized-receive-buffer 3-430
(config) tfo tcp optimized-send-buffer 3-431
(config) tfo tcp original-mss 3-432
(config) tfo tcp original-receive-buffer 3-433
(config) tfo tcp original-send-buffer 3-434
(config) transaction-logs 3-435
(config) username 3-442
(config) wccp access-list 3-445
(config) wccp flow-redirect 3-448
(config) wccp router-list 3-449
(config) wccp shutdown 3-450
(config) wccp tcp-promiscuous 3-452
(config) wccp version 3-454
(config) windows-domain 3-456

clear users 3-8
clock 3-10
cms 3-11
cms secure-store 3-14
configure 3-16
copy cdrom 3-17
copy compactflash 3-18
copy disk 3-19
copy ftp 3-20
copy http 3-25
copy running-config 3-29
copy startup-config 3-30
copy sysreport 3-31
copy system-status 3-33
copy tech-support 3-34
copy tftp 3-35
cpfile 3-37
debug 3-38
delfile 3-44
deltree 3-45
dir 3-46
disable 3-48
disk 3-49
dnslookup 3-53
enable 3-54
exit 3-55
find-pattern 3-56
help 3-58
install 3-59
less 3-61
lls 3-62
ls 3-64
mkdir 3-66
mkfile 3-67
ntpdace 3-68
ping 3-69
pwd 3-70
reload 3-71
rename 3-72
show tfo filtering 3-233
show tfo status 3-235
show tfo synq 3-236
show transaction-logging 3-237
show user 3-238
show users administrative 3-239
show version 3-241
show wccp 3-242
show windows-domain 3-248
shutdown 3-250
snmp trigger 3-253
ssh 3-256
tcpdump 3-257
telnet 3-259
terminal 3-260
tethereal 3-261
traceroute 3-263
transaction-log 3-264
type 3-265
type-tail 3-266
undebug 3-268
wafs 3-273
whoami 3-275
windows-domain 3-276
write 3-279

## Interface Configuration Mode Commands

(config-if) autosense 3-459
(config-if) bandwidth 3-460
(config-if) cdp 3-462
(config-if) exit 3-463
(config-if) failover timeout 3-464
(config-if) full-duplex 3-465
(config-if) half-duplex 3-467
(config-if) inline 3-469
(config-if) ip 3-471
(config-if) ip access-group 3-473
(config-if) mtu 3-475
(config-if) no 3-476
(config-if) shutdown 3-478
(config-if) standby 3-479

## Standard ACL Configuration Mode Commands

(config) ip access-list standard 3-485
(config-std-nacl) delete 3-488
(config-std-nacl) deny 3-489
(config-std-nacl) exit 3-491
(config-std-nacl) list 3-492
(config-std-nacl) move 3-493
(config-std-nacl) permit 3-494

## Extended ACL Configuration Mode Commands

(config-ext-nacl) delete 3-499
(config-ext-nacl) deny 3-500
(config-ext-nacl) exit 3-505
(config-ext-nacl) list 3-506
(config-ext-nacl) move 3-507
(config-ext-nacl) permit 3-508