
Cis
C H A P T E R 1

Cisco StadiumVision Mobile Introduction

First Published: May 26, 2015

Revised: June 12, 2015

This chapter provides an overview of the Cisco StadiumVision Mobile solution and contains the
following sections:

• Cisco StadiumVision Mobile Solution Overview, page 1-1

• Key Terms and Concepts, page 1-2

• Cisco Stadium Vision Mobile Media Input Types, page 1-3

– Streaming Video Channels, page 1-3

– Streaming Audio Channels, page 1-4

– Data Channels, page 1-4

– File Channels, page 1-5

• Content Access Control–Triplet Key, page 1-7

• Testing Your Cisco StadiumVision Mobile App, page 1-8

• Cisco StadiumVision Mobile SDK Best Practices, page 1-9

Cisco StadiumVision Mobile Solution Overview
The Cisco StadiumVision Mobile (SVM) solution enables the reliable delivery of low-delay video and
data streams to fans’ Wi-Fi devices at venues. Figure 1-1 illustrates a high-level view of the Cisco
StadiumVision Mobile solution, which has the following attributes:

• Consists of Video Encoder, Streamer and Reporter products

• Requires integration of Cisco Client SDK in the mobile application

• Builds upon Cisco Connected Stadium and Cisco Connected Stadium Wi-Fi solutions
1-1
co StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Key Terms and Concepts
Figure 1-1 Cisco StadiumVision Mobile Architecture

Key Terms and Concepts
The following are key terms and concepts as they apply to the Cisco StadiumVision Mobile solution.

Cisco Demo or Sample App: A standalone mobile application available to a Stadium Operator for
testing and evaluating the Cisco StadiumVision Mobile solution.

Repair: In the context of Cisco StadiumVision Mobile, an application-layer mechanism that allows
Cisco StadiumVision Mobile Clients to recover lost packets.

Stadium Operator: The entity hosting and configuring the Cisco StadiumVision Mobile solution.

SVM: Cisco StadiumVision Mobile

SVM Reporter: A standalone application used to collect Cisco StadiumVision Mobile Client statistics.

SVM Session: The protocol and associated parameters which define the sender and receiver
configuration for the streaming of content.

SVM Session Announcement/Discovery: Methods used by the Cisco StadiumVision Mobile Streamer
and SVM Client to allow a mobile device to obtain the list of available sessions and associated session
metadata.

SVM Session Triplet Key: A specific combination of Venue, Content Owner, and App Developer used
by the SVM Streamer and SVM Client to limit session discovery and content consumption to authorized
applications. For additional information, see “Content Access Control–Triplet Key” section on page 1-7.
The triplet key components are defined as follows:

• Venue: A text string associated with the venue where an Cisco StadiumVision Mobile Streamer is
hosted.

• Content Owner: A text string associated with an entity that wishes to distribute content over the
SVM solution.

• App Developer: The text string associated with the Application Developer authorized by a Content
Owner to consume the Content Owner’s content over the SVM solution.
1-2
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
SVM Streamer: A standalone application used to aggregate and send content to mobile applications
with an embedded Cisco StadiumVision Mobile Client.

SVM System: An end-to-end solution for the delivery of digital media content streams consisting of
specific products (Video Encoder, Cisco StadiumVision Mobile Streamer, Cisco StadiumVision Mobile
Reporter), wireline and wireless infrastructure (Connected Stadium, Connected Stadium Wi-Fi) and
mobile apps with an embedded Cisco StadiumVision Mobile Client.

Cisco Stadium Vision Mobile Media Input Types
The Cisco StadiumVision Mobile solution can accept multiple forms of media content input (in-house
video feed, IP video feed, and IP data feeds). The media is then routed through the appropriate encoder
and into the Streamer. The Cisco StadiumVision Mobile Streamer is a critical component in the Cisco
StadiumVision Mobile solution that aggregates video, audio, data, and file content streams and supports
the following content types:

Streaming Video Channels
Figure 1-2 shows the video channel (SDI or IP) inputs in the Cisco StadiumVision Mobile solution.
Streaming video can be real-time in-venue game feed, live out of the venue game taking place at the same
venue, or loop the most recent replays from the live in-venue game.

Table 1-1 Channel Types Supported and Use Cases

Channel Type
Maximum Number of
Channels Example Use Cases

Streaming Video 4 • Delivers live real-time venue game feed.

• Loops the most recent replays from the live in-venue
game.

• Provide live out-of-venue game feed taking place at the
same time.

Streaming Audio
(Available in Android SDK only)

10 • Provides the choice of commentary in multiple
languages.

• Offers the choice to select between the home team and
the away team commentators.

Data 4 • Distributes data through push and pull channels to the
client app.

Note The total number of data channels is 4.

• Data Push • Triggers all mobile devices to display the same content
at the same time, typically used for a sponsored moment
of exclusivity.

• Data Pull • Delivers real-time game statistics overlaid on the video
pane.

File 1 • Provides video replays, delivered by EVS C-Cast.
1-3
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Figure 1-2 Cisco StadiumVision Mobile Streaming Video

Streaming Audio Channels
Figure 1-3 shows how Cisco StadiumVision Mobile allows audio channels to compliment the live game
experience. Audio channels consume less bandwidth than video channels, which allows for more room
for channels.

Figure 1-3 Cisco StadiumVision Mobile Streaming Audio

Note Streaming audio is only supported in the Android SDK.

Data Channels
Figure 1-4 shows how Cisco StadiumVision Mobile allows for the data push and pull channels to
distribute data of any kind to the client app. The system integrator can decide what types of data is
distributed and how it is used by the application. There are two types of data channels:

• Pull: Streamer polls an external web server at regular intervals (default 10 seconds). This channel
can be used for data that changes periodically such statistics or thumbnails.

• Push: An external computer pushes data to the Cisco StadiumVision Streamer. This channel can be
used for sending on-demand triggers to all mobile devices, for example when a goal is scored.
1-4
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Figure 1-4 Cisco StadiumVision Mobile Data Channels

File Channels
Figure 1-5 shows how Cisco StadiumVision Mobile enables file channels as a way to distribute
file-based (video, audio, and data) content to a large number of mobile clients over multicast.

Figure 1-5 Cisco StadiumVision Mobile Files Channels

File Channel Distribution

File channels are often used for replays to mobile devices at a live event where the bottleneck in a
stadium is the Wi-Fi network that serves tens of thousands of fans with mobile devices. In order to scale,
you can use Cisco StadiumVision Mobile Scalable File Distribution (SFD).

SFD uses multicast over Wi-Fi to scale distribution of the C-Cast video files. Multicast works much like
over-the-air broadcast TV where your local TV station sends out a single signal that anyone in the area
can receive with an antenna on the roof. From a load perspective it makes no difference to the TV
broadcaster if ten subscribers or ten thousand subscribers are watching. Cisco StadiumVision Mobile
SFD works in a similar way by sending the files as a single multicast transmission, and any number of
mobile devices in the stadium can listen to that signal, receive the file and cache it in local storage for
later use.
1-5
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco Stadium Vision Mobile Media Input Types
Generic Ingest

Note Generic ingest is not supported in Cisco StadiumVision Release 2.1.

EVS C-Cast Integration

EVS C-Cast is the platform that Cisco StadiumVision Mobile uses for making replay video clips
available to mobile clients over high density Wi-Fi networks. Read more about EVS C-Cast at:

http://www.evs.com/nala/product/c-cast

Note Cisco StadiumVision Mobile is supported with EVS C-Cast version 2.x only. EVS C-Cast version 3.x is
not supported.

The traditional way of scaling C-Cast content delivery to a large number of clients is by using a Content
Delivery Network (CDN). The CDN caches the content closer to the client, and thus avoids the need for
every client to reach back and retrieve the content from the C-Cast Central server. This offloads the
C-Cast Central server and reduces the amount of duplicate content that has to traverse the network.

However, the CDN approach does not help in a Wi-Fi environment where the bottleneck is the last 25
meters from an access point to a mobile device. SVM solves this problem by multicasting the C-Cast
replays to mobile devices, and therefore avoids sending replays individually to each and every device.

Overview

In a traditional unicast C-Cast deployment (without SVM integration) the client app fetches an XML or
JSON formatted C-Cast timeline via HTTP. The timeline describes the sequence of replays (C-Cast calls
them events), and the camera angles available for each. Each camera angle consists of a thumbnail
graphic and a MP4 video file.

From the perspective of the C-Cast mobile app there is very little difference between the traditional
unicast and the Cisco StadiumVision Mobile multicast scenarios. In both cases, the exact same C-Cast
timeline provides the app with the info it needs to make replays available to the user. And in both cases,
the standard C-Cast media files are used. The only difference between the two scenarios is the transport
mechanism used to the deliver the timeline and media files to the mobile devices. And this difference is
largely, but not completely, hidden by the Cisco StadiumVision Mobile SDK. The C-Cast timeline is
delivered via an SVM data channel and the corresponding media files are delivered via an SVM file
channel.

Operation

When an SVM enabled C-Cast app is launched, it starts listening for the timeline on the SVM data
channel. By default the timeline is repeated every 10 seconds, so the app may have to wait for up to 10
seconds to receive the latest timeline.

With the timeline in hand, the app extracts the media filenames for each replay and camera angle. The
app then queries the SVM SDK to see if the file of interest has been received on the file channel and
cached in local storage on the mobile device. If the file is available, the app proceeds to use it.
1-6
Cisco StadiumVision Mobile SDK Programmer’s Guide

http://www.evs.com/nala/product/c-cast

Chapter 1 Cisco StadiumVision Mobile Introduction
 Content Access Control–Triplet Key
If a large number of replays and/or camera angles are being distributed, it can take several minutes for
all media files to be received by the mobile device. It is therefore entirely possible that the app queries
the SVM SDK for a specific file only to find that the file is not yet available. In order to provide a
responsive user experience, the app should handle this situation by retrieving the missing file directly
from C-Cast via unicast HTTP. The URL for this operation can be constructed from the timeline
metadata. Consult the C-Cast API guide for instruction on how to create this URL.

This approach for managing files that are not yet available is referred to as hybrid unicast/multicast. By
combining the two we are able to provide a solution that offers scalability and responsiveness.

To obtain the EVS C-Cast API, contact James Stellphlug (j.stellpflug@evs.com) stating that you are
developing an app to consume C-Cast clips in a Cisco StadiumVision Mobile venue.

Content Access Control–Triplet Key
An important feature of the Cisco StadiumVision Mobile solution is to limit the consumption of Cisco
StadiumVision Mobile encoded content to authorized mobile applications. Consider the following
situation:

Content Owner A (e.g., sports team) wishes to use the Cisco StadiumVision Mobile solution to deliver
live camera feeds to fans throughout a venue during the team’s home games. Content Owner B (e.g.,
entertainment company) plans to host events at the same venue at a different time and also wishes to
deliver live feeds to their fans. The two Content Owners each want to limit content consumption to their
chosen and therefore authorized, Application Developer. The reasons for needing to limit content
consumption to authorized mobile apps are many. For example, the app might need to be purchased or
it may be sponsored by an advertiser. As a result, Cisco StadiumVision Mobile video and data streams
configured for Content Owner A’s mobile app must not be consumed by Content Owner B’s mobile app
and vice-versa.

The Cisco StadiumVision Mobile Streamer includes a Triplet (Venue/Content Owner/App Developer) in
each announced session. Only mobile apps with the identical Triplet will be able to discover Cisco
StadiumVision Mobile sessions and consume the associated content. The Streamer may be configured
to support multiple Content Owner and App Developer combinations, though only a single Triplet may
be active at any one time.

The Venue, Content Owner, Application Developer (triplet key) settings are critical to enabling content
consumption on mobile devices. The Streamer settings must match those used by the App Developer for
content to be discovered and consumed by a mobile app. App Developers must be notified of a change
in Venue name so that their app may be updated. Conversely, if the App Developer has already deployed
the app, App Developers must also be notified if the associated Content Owner/App Developer setting
on the Streamer is modified.

Note The Stadium Operator is responsible for correctly configuring the Streamer and working with Content
Owner/App Developer to enable content consumption. The Content Owner/App Developer paring must
match the values hard coded into the specific SDK for the App Developer contracted for a particular
venue.

Additional information regarding the triplet key is available in the Cisco StadiumVision Mobile Streamer
Administration Guide available on Cisco.com at:

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-maintenance-guides-list.html
1-7
Cisco StadiumVision Mobile SDK Programmer’s Guide

http://www.cisco.com/c/en/us/support/video/stadiumvision/products-maintenance-guides-list.html#anchor10

Chapter 1 Cisco StadiumVision Mobile Introduction
 Testing Your Cisco StadiumVision Mobile App
Testing Your Cisco StadiumVision Mobile App
The Cisco StadiumVision Mobile SDK includes the ability for developers to test their application
without being connected to a Cisco Connected Wi-Fi Network. This capability is provided with a set of
files that can emulate the data received over the network. The clean.stream file that comes bundled with
the SDK contains just one video channel.

To provide app developers with additional ways to test multiple channels, an additional set of
clean.stream files is available for use on Apple iOS and Google Android. This package includes a
number of Cisco StadiumVision Mobile stream files for local playback on a mobile device. The stream
files enable an SVM app developer to perform some basic testing when access to the Cisco
StadiumVision Mobile backend infrastructure is not available.

You can download the set of files at the same location where you obtained the Cisco StadiumVision
Mobile SDK tar.bz2 file or contact your Cisco account team for details as to how to become part of the
Cisco StadiumVision Mobile SDK partner program by sending an email to:

svm-sdk@external.cisco.com.

We recommend that you get started using these stream files with the included Cisco StadiumVision
Mobile demo app before attempting to use it with the app you are developing. For details consult the
read-me files included in the root folder of the SDK package.

All stream files are encoded with the default triplet below. The app listening to these stream files must
use this exact triplet in order to receive the streams.

"license": { "venueName": "VenueName", "contentOwner": "ContentOwner", "appDeveloper":
"AppDeveloper" }

The following stream files are included:

• video.stream: This stream file contains 4 video channels, as opposed to the one video channel in
the stream file that comes bundled with the SDK. The stream file starts off with one channel. Every
10 seconds another channel appears, until all 4 channels are present. The channels then start
dropping off one by one, until there are none left.

Note The video on channel 1 freezes when the channel disappears from the channel lineup. In
order to keep the file size reasonable, only one of the channels includes media.

• audio.stream: This stream file contains one audio channel.

Note Only the Android SDK supports audio channels.

• ccast.stream: This stream file contains the required streams to test basic EVS C-Cast functionality.
The stream file contains these 3 channels:

– CcastTimeLineXML: Data channel carrying the C-cast timeline in XML format.

– CcastTimeLineJSON: Data channel carrying the C-cast timeline in JSON format.

– CcastTimeMedia: File channel carrying the C-Cast mp4 video and jpg thumbnail files.

Note The iOS Sample app 2.1 does not support file channels. The iOS SDK does however have full
support file channels.

Please direct your questions to: svm-sdk@external.cisco.com.
1-8
Cisco StadiumVision Mobile SDK Programmer’s Guide

mailto:svm-sdk@external.cisco.com

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Cisco StadiumVision Mobile SDK Best Practices

Apple iOS
Consider the following best practices when developing and delivering an app for Apple iOS:

Correlating Reporter Data to a Specific Device

• Apple does not permit applications to access any device information that can be used to identify that
device or its owner. As a result, the iOS SDK is unable to include the MAC address in the periodic
stats that it sends to the Cisco StadiumVision Mobile Reporter. As a substitute for the MAC address,
the SDK instead includes a SVM Device UUID (universally unique identifier) that is unique for
every device. This UUID allows Reporter data to be correlated with a specific device. In order for
the correlation to work, the mobile app must display the UUID somewhere in its menu system (for
example on the About or Help tabs).

The app can retrieve the UUID from the SDK via the code sample below. The getDeviceUUID
method is documented in the iOS SVM header file.

StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
NSString *deviceUUID = [svm getDeviceUUID];
NSLog(@"Device UUID is %@", deviceUUID);

Note The Cisco StadiumVision Mobile Device UUID should not be confused with the Unique Device
Identifier (UDID) that is displayed in iTunes.

Google Android
Consider the following best practices when developing and delivering an app for Google Android:

Delivering Channel Content

• Internet Group Management Protocol (IGMP) is a prerequisite for Cisco StadiumVision Mobile
multicast to function correctly. Most, but not all, Android devices support IGMP. A user will see an
empty channel list in the SVM app if they are using a device that does not support IGMP unless
another active SVM client is associated to the same Access Point (AP). As a result, the user would
experience sporadic channel support without knowing why. We recommend that all SVM-enabled
Android apps perform the IGMP capability check as detailed in the example below. If the IGMP
capability check returns false, then the app should warn the user when the user attempts to access
any part of the app that relies on the SVM SDK.

 boolean isCapable = false;
 File f = new File("/proc/net/igmp");
 if(f.exists()) {
 isCapable = true;
 }
1-9
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Apple iOS, Google Android, and Windows Phone
Consider the following best practices when developing and delivering an app for Apple iOS, Google
Android, and Windows Phone:

Delivering Channel Content

• Start the SDK immediately when the app is launched or when the app detects that it is in venue.
Do not wait until the user navigates to the SVM features in the UI. This ensures the best possible
user experience so that content is then available to present to the user immediately. This is
particularly important when using data and file channels because it can take several minutes for a
content rotation to complete.

• When a user selects a channel on their mobile device, there could be a 5-10 second delay before the
app starts receiving multicast video if the client has to wait for the IGMP/PIM to set up the multicast
tree. The same delay could occur when a device resumes from background or sleep mode. Instead
of displaying a black screen, communicate to the user that their request is being processed by
showing a transition graphic (for example a spinning wheel image) or text that asks them to please
wait while the channel is located.

• A channel will disappear from the lineup if it is stopped on the Streamer or if the Streamer detects
a loss of input signal. The app should remove the channel immediately, however if a user is already
watching the channel when it disappears, terminate the video rendering and return the user to the
channel guide where they can select a new channel.

• If the Cisco StadiumVision Mobile administrator starts the Streamer before the video control room
has switched content to the encoder inputs, the user will receive an empty channel listing. To avoid
a poor user experience, display a message indicating that there aren’t any live channels currently
available.

Using the Latest Version of the app

• Prevent or warn a user if they are attempting to access SVM services with an older or incompatible
version of the app. Set the app to perform a self-check to see if a newer app version is available.
If a new version is detected, the app should:

– Block or warn the user that their app is out-of-date or may not perform as expected

– Encourage the user to upgrade

Connecting to Wi-Fi

• If the client looses complete Wi-Fi connectivity, the Operating System sends the app a notification.
The app should notify the user that the Wi-Fi service is not available and remind them of the Wi-Fi
network (SSID) to connect to.

• If a Streamer service announcement has not been received for 30 seconds, the SDK will notify the
user that the Cisco StadiumVision Mobile service is down. This could happen because the user
exited the venue and is out of range, if their device roamed to a non SVM SSID, or if they entered
an area in the venue without Wi-Fi. When this occurs, notify the user that the SVM service is not
available and remind them of the name of the Wi-Fi network (SSID) that they must be connected to
in order to receive the SVM service.

• The SDK continuously monitors signal quality as a user moves throughout a venue. As a result, the
SDK sends the app a ‘service down’ or ‘service up’ notification. These notifications can be used by
the app for conditional playback based on network conditions. It is recommended that conditional
playback is implemented as a passive informational service (as it should never display prompts that
require an active response from the user). Refer to Table 1-2 for app guidelines as to how the app
should respond depending on the state of the app when the notification is received.
1-10
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
Table 1-2 App Guidelines for Responding to Notifications

app State Event or Notification Recommended app Response

The app is rendering a video. Service down notification, due to poor
quality.

Overlay the active video plane with a
transparent graphic that contains the text
such as, "Video quality degraded due to poor
reception". The app continues the video
session without interruption regardless of
the poor quality and renders whatever video
it receives underneath the text overlay.

The app previously received a
service down notification with
the poor quality reason code. It is
currently rendering degraded
video with the "Video quality
degraded due to poor reception"
overlay.

Service down notification, due to poor
quality.

Remove the overlay and resume normal
video rendering. Do not restart the video
session.

The app is currently not rendering
video.

Service down notification, due to poor
quality.

Delete all channels from the channel list
page and replace them with a message such
as "Live video is currently unavailable due
to poor reception".

The app is currently not rendering
video. The app had previously
received a service down
notification with the poor quality
reason code and is currently
displaying the message "Live
video unavailable due to poor
reception" in the channel guide.

Service up notification, due to quality
rebounding.

Remove the "Live video unavailable due to
poor reception" message and populate the
channel page with the current list of
channels available.

The app previously received a
service down notification with
the poor quality reason code and
is currently rendering video with
the "Video quality degraded due
to poor reception" overlay.

The user now stops the video and returns to
the channel page.

Upon returning to the channel page, the user
sees the message "Live video unavailable
due to poor reception" instead of a list of
channels.
1-11
Cisco StadiumVision Mobile SDK Programmer’s Guide

Chapter 1 Cisco StadiumVision Mobile Introduction
 Cisco StadiumVision Mobile SDK Best Practices
1-12
Cisco StadiumVision Mobile SDK Programmer’s Guide

	1
	Cisco StadiumVision Mobile Introduction

	Cisco StadiumVision Mobile Solution Overview
	Figure 1-1 Cisco StadiumVision Mobile Architecture

	Key Terms and Concepts
	Cisco Stadium Vision Mobile Media Input Types
	Table 1-1 Channel Types Supported and Use Cases
	Streaming Video Channels
	Figure 1-2 Cisco StadiumVision Mobile Streaming Video

	Streaming Audio Channels
	Figure 1-3 Cisco StadiumVision Mobile Streaming Audio

	Data Channels
	Figure 1-4 Cisco StadiumVision Mobile Data Channels

	File Channels
	Figure 1-5 Cisco StadiumVision Mobile Files Channels
	File Channel Distribution
	Generic Ingest
	EVS C-Cast Integration
	Overview
	Operation

	Content Access Control–Triplet Key
	Testing Your Cisco StadiumVision Mobile App
	Cisco StadiumVision Mobile SDK Best Practices
	Apple iOS
	Correlating Reporter Data to a Specific Device

	Google Android
	Delivering Channel Content

	Apple iOS, Google Android, and Windows Phone
	Delivering Channel Content
	Using the Latest Version of the app
	Connecting to Wi-Fi
	Table 1-2 App Guidelines for Responding to Notifications

