

Cisco StadiumVision M

C H A P T E R 1

Cisco StadiumVision Mobile API for Apple iOS

Revised: March 28, 2013

Introduction to Cisco StadiumVision Mobile API for Apple iOS
The iOS SDK is provided as a set of static libraries, header files, and an a sample iOS app (with a
complete Xcode project). This API uses Objective-C classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile iOS SDK library.

The Cisco StadiumVision Mobile client application supports Apple iOS 5.0 or later.

iOS Model View Controller (MVC) Design Pattern
The Model View Controller (MVC) design pattern separates aspects of an application into three distinct
parts and defines how the three communicate. Figure 1-1 illustrates the Apple iOS MVC. As the name
implies, the application is divided into three distinct parts: Model, View and Controller. The main
purpose for MVC is reusability where you can reuse the same model for different views.
1-1
obile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
iOS API Prerequisites
Figure 1-1 MVC Design Pattern

iOS API Prerequisites
Build Environment Requirements

Table 1-1 lists the various iOS SDK build environment requirements.

Note Application developers will need to link against the libstd++ library in their build. This can be done by
modifying the Build Settings->Linking->Other Linker Flags-> Add "-lstdc++" in Xcode.

Apple iOS SDK Overview
The Cisco StadiumVision Mobile iOS SDK contains the following components:

• A set of static libraries, header files, and an a sample iOS app (with a complete Xcode project)

• Customizable iOS SDK video player

Table 1-1 Apple iOS Table 2.Build Environment Requirements

Tool Version Description URL

Mac OSX 10.7 or later A Mac is required to build an
iOS application which
includes the StadiumVision
Mobile iOS SDK.

http://www.apple.com

Xcode 4.5.1 or later Apple development IDE and
tool kit.

http://developer.apple.com/xcode
1-2
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Client Application Integration Overview
Figure 1-2 illustrates the high-level view of the Cisco StadiumVision iOS API libraries and common
framework components. The left side of the graphic represents how to modifythe sample application,
and the right reprsents how the SDK is packaged.

Figure 1-2 Cisco StadiumVision Mobile iOS SDK Components

Cisco StadiumVision Mobile iOS API Class Overview
The singleton "StadiumVisionMobile" class provides the top-level API to start, configure, and stop the
framework. Video View Controller classes are provided to play the video channels and allow for
customer customization. Figure 1-3 illustrates the StadiumVision Mobile API classes.
1-3
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 1-3 Cisco StadiumVision Mobile iOS API Classes

Video View Controller Inheritance
The iOS "UIViewController" and "UIView" classes are used as base classes. The customer application
can extend the Cisco StadiumVision Mobile classes. Figure 1-4 illustrates the UIViewController and
UIView classes.

Figure 1-4 Cisco StadiumVision Mobile Video Classes

SVMDataObserver

SVMWifiInfo SVMStatus

SVMDeviceInfo

SVMChannel

SVMVideoView

SVMVideoViewController

SVMVideoChannelListObserver

SVMWifiInfoDelegate

SVMVDataChannelListObserver

StadiumVisionMobile
1-4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile Application Classes
The Cisco StadiumVision Mobile application classes:

• Extends and customizes the SVMVideoViewController class

• Adds a UI overlay for controlling video playback (play, stop, close)

• Adds a UI overlay for displaying StadiumVision Mobile stats

• Handles gestures to display UI overlays with the MyVideoViewController class

Figure 1-5 Cisco StadiumVision Mobile Sample Application Classes

Cisco StadiumVision Mobile iOS API Summary
Table 1-2 summarizes the iOS API library. Following the summary are detailed tables for each API call.

Table 1-2 Cisco StadiumVision Mobile iOS API Summary

Return Type API Method Name API Method Description

StadiumVisionMobile* sharedInstance Gets a reference to the API singleton class used
for all API calls

SVMStatus* start Starts the StadiumVision Mobile SDK

SVMStatus* shutdown Stops the StadiumVision Mobile SDK

SVMStatus* addVideoChannelListDelegate Registers a callback delegate to receive all video
channel list updates

SVMStatus* removeVideoChannelListDelegate Unregisters the callback delegate from receiving
the video channel list updates

SVMStatus* addDataChannelListDelegate Registers a callback delegate to receive all data
channel list updates

SVMStatus* removeDataChannelListDelegate Unregisters the callback delegate from receiving
the data channel list updates
1-5
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile iOS API
The following tables describe each API call in more detail, including example usage.

Return Status Object

Each API call returns a SVMStatus object whenever applicable. Table 1-3 lists the SVMStatus object
fields.

Table 1-3 SVMStatus class

SVMStatus* addDataChannelObserver Registers an observer class to receive data for a
particular data channel

SVMStatus* removeDataChannelObserver Unregisters an observer class from receiving data
for a particular data channel

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data
updates for a particular data channel

SVMStatus* addDataChannelObserver:forChannel
Name:

Registers an observer class to receive all data
updates for a particular data channel name

SVMStatus* removeDataChannelObserver:forChan
nel:

Unregisters an observer class from receiving any
data updates for a particular data channel

SVMStatus* removeDataChannelObserver:forChan
nelName:

Unregisters an observer class from receiving any
data updates for a particular data channel

SVMStatus* getVideoChannelListArray Returns a snapshot array of the currently
avaialable video channels.

SVMStatus* getDataChannelListArray Returns a snapshot array of the currently
avaialable data channels.

NSDictionary stats Gets an NSDictionary of curernt StadiumVision
Mobile SDK stats.

SVMStatus* version Gets the StadiumVision Mobile version string.

Return Type API Method Name API Method Description

Type BOOL NSString

Property isOk errorString

Description
Boolean indicating whether the API call was
successful or not.

If the API call was not successful (isOk == NO),
this string describes the error.

Example Usage

// make an api call
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
SVMStatus status = svm.start();
// if an error occurred
if (status.isOk == NO) {
// display the error description
NSLog(@"Error occurred: %@" + status.errorString);
1-6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-4 sharedInstance

Method Signature (StadiumVisionMobile*) sharedInstance

Prerequisites N/A

Notes

Class method that returns a reference to the StadiumVision
Mobile API singleton class. The returned
"StadiumVisionMobile" object reference is used for all
subsequent StadiumVision Mobile API calls.

Result N/A
1-7
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-5 Start

Table 1-6 addVideoChannelListDelegate

Table 1-7 setLogLevel

Table 1-8 removeVideoChannelListDelegate

Table 1-9 addDataChannelListDelegate

Method Signature (SVMStatus*)start

Prerequisites N/A

Notes

This method starts the StadiumVision Mobile SDK. This will
kick-off and start any required StadiumVision Mobile
background threads and component managers.

Result N/A

Method Signature
(SVMStatus*) addVideoChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
video channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature

StadiumVisionMobile *svm = [StadiumVisionMobile
sharedInstance];
[svm setLogLevel:SVM_API_LOG_DEBUG]

Prerequisites N/A

Notes
Sets the logging output level of the SDK, with the "DEBUG"
level being more verbose than the "INFO" level.

Result SVMStatus*

Method Signature
(SVMStatus*) addVideoChannelListDelegate:

(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any video channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature (SVMStatus*) addDataChannelListDelegate: (id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A
1-8
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-10 removeDataChannelListDelegate

Table 1-11 addDataChannelListDelegate

Table 1-12 removeDataChannelListDelegate

Table 1-13 addDataChannelObserver

Method Signature removeDataChannelListDelegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Example Usage
(SVMStatus*) removeDataChannelListDelegate:
(id)delegate

Result N/A

Method Signature
(SVMStatus*) addDataChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature
(SVMStatus*) removeDataChannelListDelegate:

(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature

(SVMStatus*) addDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel
(SVMStatus*)
addDataChannelObserver:(id<SVMDataObserver>)delegate
forChannelName: (NSString*)channelName

The following example enables reception of the data
announcements:

SVMChannel *selectedChannel1 = [dataChannelList
objectAtIndex:0];
 [svm addDataChannelObserver:self
forChannelName:selectedChannel1.name];

Prerequisites N/A

Notes
This method registers the given delegate class to receive all
data for the given data channel object.

Result N/A
1-9
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-14 removeDataChannelObserver

Table 1-15 onData

Table 1-16 Stats

Table 1-17 Stats API Hash Keys and Descriptions

Method Signature

(SVMStatus*) removeDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel

Prerequisites N/A

Notes
This method unregisters the given delegate class from
receiving any data for the given data channel name.

Result N/A

Method Signature
(void) onData:(NSData*)data
withChannelName:(NSString*)channelName

Prerequisites N/A

Notes

This method is implemented by the customer app to support
the "SVMDataObserver" protocol. This delegate method is
used as a callback from the StadiumVision Mobile SDK.
Each callback from the SDK to the customer app provides a
received data message on the given data channel. The data
channel message is delivered as an array of bytes (NSData).

Results N/A

Method Signature (NSDictionary*) stats

Prerequisites N/A

Notes

This method returns the StadiumVision Mobile SDK stats as
a dictionary of name / value pairs.
Stats are currently only available for the video channel (not
data channels).

Result N/A

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

announcement_session_title The session announcement name

total_num_bytes_written The total number of video bytes played

num_ts_discontinuities The total number of MPEG2-TS packet discontinuities

num_dropped_video_frames The total number of video frames dropped

protection_windows The total number of protection windows sent
1-10
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-18 getVideoChannelListArray

Table 1-19 getDataChannelListArray

Table 1-20 wifiInfo

The following tables contain properties are available within the SVMWifiInfo object.

window_no_loss The total number of protection windows with no dropped
video packets

window_recovery_successes The total number of protection windows with recovered
video packets

window_recovery_failures The total number of protection windows that could not
recover dropped packets. Recovery failure occurs when the
number of received repair packets is less than the number of
dropped video packets

window_warning The total number of protection windows with more packets
per window than the recommended value

window_error The total number of protection windows with more packets
per window than can be supported by Cisco StadiumVision
Mobile.

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];

NSArray *currentChannels = [svm

getVideoChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available video channels (array of “SVMChannel” objects).

Result NSArray* of SVMChannel objects

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];
NSArray *currentChannels = [svm
getDataChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available data channels (array of “SVMChannel” objects)

Result NSArray* of SVMChannel objects

Method Signature (SVMWifiInfo*) wifiInfo

Prerequisites N/A

Notes

This method returns the current WiFi network connection
information. This information gets collected in the statistics
information that gets uploaded to the Reporter server.

Result N/A

Stats Hash Key Stats Description
1-11
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-21 wifiInfo Object Properties

Table 1-22 version

The 'SVMVideoVideoController' class can be extended and customized. The
SVMVideoVideoController API methods are listed in Table 1-23.

Table 1-23 Video View Controller API Summary

Table 1-24 Video View API Summary

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

Method Signature (NSString*) version

Prerequisites N/A

Notes
This method returns the StadiumVision Mobile SDK version
string.

Result N/A

Return Type API Method Name API Method Description

void setRenderVideoView Sets the iOS UI video view where video frames will get
rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing
channels on subsequent calls

SVMStatus seekRelative Moves the video playback buffer pointer relative to the
current video playback buffer offset position

SVMStatus seekAbsolute Moves the video playback buffer pointer relative to the
starting "live" video playback buffer offset position

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the
current playback buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head ("live")
offset position in the video playback buffer

Return Type API Method Name API Method Description

void setRenderVideoView Sets the iOS UI video view where video frames will get rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on
subsequent calls

SVMStatus seekRelative Moves the video playback buffer pointer relative to the current video
playback buffer offset position

SVMStatus seekAbsolute Moves the video playback buffer pointer relative to the starting "live"
video playback buffer offset position
1-12
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-25 setRenderVideoView

Table 1-26 playVideo Channel

Table 1-27 seekRelative

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current
playback buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head ("live") offset
position in the video playback buffer

Method Signature (void)setRenderVideoView: (UIView*)aVideoView;

Prerequisites N/A

Notes

This method sets the target iOS video view (SVMVideoView)
that will be used by the StadiumVision Mobile SDK to render
video frames.

Result N/A

Method Signature (void)playVideoChannel:(SVMChannel*)channel;

Prerequisites N/A

Notes

This method plays the given video channel object.
When subsequently called with a different video channel
object, the video view controller will automatically stop the
currently playing channel and start playback of the new
channel

Result N/A

Method Signaure (void) seekRelative: (NSInteger)durationMs;

Prerequisites N/A

Return Type API Method Name API Method Description
1-13
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-28 seekAbsolute

Notes

• This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to its current position.

• The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data.

• A negative duration value rewinds the video play-head
within the video history buffer.

• A positive duration value forwards the video play-head
towards the latest "live" video data in the video history
buffer.

• Should a duration be given (positive or negative) that is
larger than the available size of the video history buffer,
then the StadiumVision Mobile SDK move the video
play-head as far as possible within the video history
buffer.

Result N/A

Method Signature (void) seekAbsolute: (NSUInteger)durationMs;

Prerequisites N/A

Notes

• This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to the latest "live" video
data.

• The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data

• A positive duration value moves the video play-head
away from the latest "live" video data in the video history
buffer.

• Should a duration be given that is larger than the
available size of the video history buffer, then the
StadiumVision Mobile SDK move the video play-head to
the end of the video history buffer.

Result N/A

Method Signaure (void) seekRelative: (NSInteger)durationMs;
1-14
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-29 playLive

NS Notification Events
The StadiumVision Mobile SDK broadcasts the following iOS NSNotification events for use by the
client application.

Table 1-30 NSNotification Event Properties

The following source code registers to receive the Cisco video notifications:

#include "StadiumVisionMobile.h"
// register to handle the video buffering events
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoEvent:)
 name:kSVMVideoEventNotification
 object:nil];

The following source code handles the Cisco video notifications:

#include "StadiumVisionMobile.h"

// video event notification handler
 (void)onVideoEvent:(NSNotification*)notification {
 // get the passed "SVMEvent" object
 SVMEvent *event = [notification object];

 // determine the video event type
 switch (event.type) {
 case kSVMEventTypeVideoBufferingActive:
 // activate the UI "buffering" indicator
 break;
 case kSVMEventTypeVideoBufferingInactive:
 // deactivate the UI "buffering" indicator
 break;
 }
}

Method Signature (void) playLive;

Prerequisites N/A

Notes

• This method forwards the video play-head to the starting
"live" position at the beginning of the video data buffer.

• This convenience method acts as a wrapper for the
"seekAbsolute" API method; making "playLive()"
equivalent to "seekAbsolute(0)".

Result N/A

Event Constant Description

kSVMVideoEventNotification Constant defining the video event generated by the
StadiumVision Mobile SDK

kSVMEventTypeVideoBufferingActive Constant defining the "Video Buffering" type of video event

kSVMEventTypeVideoBufferingInactive Constant defining the "Video Not Buffering" type of video
event
1-15
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
SDK Workflow

Starting the SDK

The StadiumVision Mobile SDK needs to be started at the application initialization by calling the "start"
API method as in the following example:

#import "StadiumVisionMobile.h"
// get a reference to the StadiumVision Mobile API
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// start the StadiumVision Mobile SDK
[svm start];

Setting the Log Level

Sets the logging output level of the SDK, with the “DEBUG” level being more verbose than the “INFO”
level. An example follows:

// start method sets logs to INFO by default
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
[svm start];

// set the desired log level
[svm setLogLevel:SVM_API_LOG_DEBUG];

Getting the Video Channel List

The client application registers to receive callback whenever the video channel list is updated, as in the
following example:

// register to receive video channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addVideoChannelListDelegate:self];

The StadiumVision Mobile SDK will callback the client application with any video channel list updates.

#import "StadiumVisionMobile.h"
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>
// video channel handler (array of 'SVMChannel' objects)
 -(void)onVideoChannelListUpdated:(NSArray*)channelList;

Presenting the Video Channel List

Each "SVMChannel" video channel object contains all of the information needed to display the channel
list to the user.

Table 1-31 SVMChannel object properties

"SVMChannel" Property Property Description

"name” The name of the video channel

"bandwidthKbps” The nominal video stream bandwidth (in kbps)

"sessionNum” The session number of the channel

"channelText” The complete text description of the video channel

“venueName” The name of the venue.
1-16
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Playing A Video Channel

The example below demonstrates these actions:

• Selects a channel from the locally saved channel list

• Presents the video view controller modally

• Commands the video view controller to play the selected channel

#import "StadiumVisionMobile"

// get the user-selected video channel object
SVMChannel *selectedChannel = [videochannelList objectAtIndex:0];

NSLog(@"Selected Video Channel = %@", selectedChannel.name);

// create the video view controller
MyVideoViewController *myVC = [[MyVideoViewController alloc] init];

// present the modal video view controller
myVC.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
[self presentModalViewController:myVC animated:YES];

// play the selected video channel
[myVC playVideoChannel:selectedChannel];

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in the device RAM. The following example jumps
backwards 20 seconds in the video buffer (instant replay).

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// rewind 20 seconds
[svm rewindForDuration:-20000];

The example below jumps back to the top of the video buffer ("live" video playback):

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// play at the "live" video offset
[svm playLive];

Getting The Data Channel List

In the following example, the client application registers to receive callback whenever the data channel
list is updated.

// register to receive data channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addDataChannelListDelegate:self];

In this example, the StadiumVision Mobile SDK will callback the client application with any data
channel list updates:

#import "StadiumVisionMobile.h"

contentOwner The name of the content owner.

appDeveloper The name of the application developer.

"SVMChannel" Property Property Description
1-17
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>

// data channel handler (array of 'SVMChannel' objects)
 (void)onDataChannelListUpdated:(NSArray*)channelList;

Observing a Data Channel

In the following example, the registered class needs to implement the "SVMDataObserver" protocol:

#import "SVMDataObserver.h"
@interface DataChannelViewController : UIViewController <SVMDataObserver>

In this example, the "onData:withChannelName" method is called to push the received data to the
registered class:

-(void)onData:(NSData*)data withChannelName:(NSString *)channelName {
 // convert the data bytes into a string
 NSString *dataStr = [[NSString alloc] initWithBytes:[data bytes]
 length:[data length]
 encoding:NSUTF8StringEncoding];

 // display the data bytes and associated channel name
 NSLog(@"ChannelListViewController: onData callback: "
 "channelName = %@, data = %@", channelName, dataStr);

 [dataStr release];}

Getting the SDK Version String

The example below gets the StadiumVision Mobile SDK Version string:

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// get the sdk version string
NSString *sdkVersion = [svm version];

Shutting Down the SDK (Optional)

The StadiumVision Mobile SDK automatically shuts-down and restarts based upon the iOS life-cycle
notifications (NSNotifications). The client iOS application does not need to explicitly stop and restart
the StadiumVision Mobile SDK. This 'shutdown' API is provided in case a customer use-case requires
an explicit SDK shutdown.

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// shutdown the StadiumVision Mobile SDK
[svm shutdown];
1-18
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Video Player View Controller Customization

Default Cisco Video Player View Controller

The default Cisco video player has the following features:

• Implemented as a separate iOS "UIViewController"

• Support for fullscreen and partial-screen video views

• Video frames rendered using an iOS "UIView" and OpenGL layer (CAEAGLLayer)

• Customizable by extending the "SVMVideoViewController" class

• The Cisco demo app uses a customized video player

Customized Video Player

To customize the video player, extend the "SVMVideoViewController" base class as in the following
example:

#import "SVMVideoViewController.h";

@interface MyVideoViewController : SVMVideoViewController {
}

Figure 1-6 Video Player Customization

Cisco Demo Customized Video Player

The demo customized video player has the following properties:

• Implemented as "MyVideoViewController"

• Extends the "SVMVideoViewController" class

• Handles all video overlays and gestures

• Single-tap gesture and "Back", "Rewind" / "Live" overlay buttons
1-19
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
• Two-finger double-tap gesture and stats overlay

• Uses the "MyVideoViewController~iphone.xib" to layout the screen

• Located in the "Customer App / App UI Resources / UI XML Files" Xcode project folder

The video view shown in Interface Builder is connected to the "videoView" property and is of class type
"MyVideoView".

Configuration

Configuration Files

There are three configuration files that must be bundled with any iOS app using the StadiumVision
Mobile SDK, as listed in the following table:

Table 1-32 Configuration Files

Field of Use Configuration

There are three "field-of-use" (also known as the triplet key) properties in the "cisco_svm.cfg"
configuration file that need to be configured for each StadiumVision Mobile application: These fields
must match the channel settings in the Cisco StadiumVision Mobile Streamer for the channels to be
accessible by the application.

• Venue Name

• Content Owner

• App Developer

An example set of fields in the "cisco_svm.cfg" file is shown below:

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi Access Point Configuration

The "cisco_svm.cfg" configuration file can optionally include an array of WiFi AP information that will
be used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example WiFi
AP info entry in the "cisco_svm.cfg" configuration file:

{
 "network": {

Configuration File Name Description

"cisco_svm.cfg” StadiumVision Mobile SDK configuration file that contains the "Field-of-Use"
parameters and some optional WiFi network debugging information

"vompPlay.cfg” Video decoder configuration file that contains the tuned decoding parameters. These
settings should never be changed. Any changes could result in poor video or audio
playback.
1-20
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

CIntegration Checklist

The following list outlines integration steps for using the Cisco StadiumVision Mobile SDK.

1. Supported iOS version

– Set the app's iOS version target set to iOS v4.0 or above

2. Copy configuration files

– Copy the "cisco_svm.cfg" and vompPlay.cfg" config files, and the "voVidDec.dat" license file
into the Xcode project.

3. Copy libraries

– Copy the "libStadiumVisionMobile.a" and "libvoCTS.a" static libraries into the Xcode project.

4. Set the Xcode Project "Build Settings"

– Add the "-ObjC" flag to the "Other Linker Flags" build setting. This ensures all Objective-C
categories are loaded from the StadiumVision Mobile static library.

– Add the "-lstdc++" flag to the "Other Linker Flags" build setting. This ensures that the C++
video decoder library is properly linked to the final app build.

5. Include Required iOS Libraries by adding frameworks in the target build phases pane of the Xcode
project, under "Link Binary With Libraries" section, as shown in Figure 1-7.

Figure 1-7 Adding frameworks in Xcode
1-21
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Required iOS Libraries

• UIKit.framework

• Foundation.framework

• CoreGraphics.framework

• AudioToolbox.framework

• OpenGLES.framework

• QuartzCore.framework

• CFNetwork.framework

• SystemConfiguration.framework

• MobileCoreServices.framework

• libz.dylib

What the SDK Handles

The StadiumVision Mobile SDK automatically handles the following events:

• Dynamic video channel discovery and notification

• Dynamic data channel discovery and notification

• Automatic SDK shutdown / restart in response to WiFi up / down events

• Automatic SDK shutdown / restart in response to iOS life-cycle events

• Management of multicast network data threads

• On-demand management of video / audio decoding threads

• Automatic statistics reporting to the StadiumVision Mobile Reporter server

Customer Application Roles

Figure 1-8 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlays
1-22
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 1-8 Customer Application Responsibilities

SVMVideoViewController
class

MyVideoViewController

StadiumVisionMobile
class

- Start the framework
- Get video channels
- Shutdown the framework

- Handles all video
 playback details
- Provides noti?cations
 to the sub-class

VideoChannelList
ViewController

Customer
App

StadiumVision
Mobile SDK

Chan 1
Chan 2

Chan 3

Get Video
Channels

Playback
Noti?cations

Launch
Video
Player

Overlay

Play Channel,
Seek, Dismiss
1-23
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
1-24
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

	Cisco StadiumVision Mobile API for Apple iOS
	Introduction to Cisco StadiumVision Mobile API for Apple iOS
	iOS Model View Controller (MVC) Design Pattern

	iOS API Prerequisites
	Apple iOS SDK Overview
	Client Application Integration Overview
	Cisco StadiumVision Mobile iOS API Class Overview
	Video View Controller Inheritance
	Cisco StadiumVision Mobile Application Classes
	Cisco StadiumVision Mobile iOS API Summary
	Cisco StadiumVision Mobile iOS API
	Return Status Object

	NS Notification Events
	SDK Workflow
	Starting the SDK
	Setting the Log Level
	Getting the Video Channel List
	Presenting the Video Channel List
	Playing A Video Channel
	Seeking Within the Video Buffer
	Getting The Data Channel List
	Observing a Data Channel
	Getting the SDK Version String
	Shutting Down the SDK (Optional)

	Video Player View Controller Customization
	Default Cisco Video Player View Controller
	Customized Video Player
	Cisco Demo Customized Video Player

	Configuration
	Configuration Files
	Field of Use Configuration
	Wi-Fi Access Point Configuration
	CIntegration Checklist
	What the SDK Handles
	Customer Application Roles

