

1

Cisco UCS Infrastructure with Red Hat

OpenShift Container Platform on VMware

vSphere

Design and Deployment Guide for Cisco UCS Infrastructure

for Red Hat OpenShift Container Platform 3.9 and VMware

vSphere 6.7 on Cisco UCS Manager 3.2, Cisco UCS M5 B-

Series, and Cisco UCS M5 C-Series Servers

Last Updated: October 12, 2018

2

About the Cisco Validated Design Program

The Cisco Validated Design (CVD) program consists of systems and solutions designed, tested, and

documented to facilitate faster, more reliable, and more predictable customer deployments. For more

information, see:

http://www.cisco.com/go/designzone.

ALL DESIGNS, SPECIFICATIONS, STATEMENTS, INFORMATION, AND RECOMMENDATIONS

(COLLECTIVELY, "DESIGNS") IN THIS MANUAL ARE PRESENTED "AS IS," WITH ALL FAULTS. CISCO AND

ITS SUPPLIERS DISCLAIM ALL WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM

A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE

LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,

WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR

INABILITY TO USE THE DESIGNS, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THE DESIGNS ARE SUBJECT TO CHANGE WITHOUT NOTICE. USERS ARE SOLELY RESPONSIBLE FOR

THEIR APPLICATION OF THE DESIGNS. THE DESIGNS DO NOT CONSTITUTE THE TECHNICAL OR OTHER

PROFESSIONAL ADVICE OF CISCO, ITS SUPPLIERS OR PARTNERS. USERS SHOULD CONSULT THEIR

OWN TECHNICAL ADVISORS BEFORE IMPLEMENTING THE DESIGNS. RESULTS MAY VARY DEPENDING ON

FACTORS NOT TESTED BY CISCO.

CCDE, CCENT, Cisco Eos, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco

WebEx, the Cisco logo, DCE, and Welcome to the Human Network are trademarks; Changing the Way We

Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS,

Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the

Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the

Cisco Systems logo, Cisco Unified Computing System (Cisco UCS), Cisco UCS B-Series Blade Servers,

Cisco UCS C-Series Rack Servers, Cisco UCS S-Series Storage Servers, Cisco UCS Manager, Cisco UCS

Management Software, Cisco Unified Fabric, Cisco Application Centric Infrastructure, Cisco Nexus 9000

Series, Cisco Nexus 7000 Series. Cisco Prime Data Center Network Manager, Cisco NX-OS Software, Cisco

MDS Series, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step,

Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study,

LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking

Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet,

Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and

the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and

certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The

use of the word partner does not imply a partnership relationship between Cisco and any other company.

(0809R)

http://www.cisco.com/go/designzone

3

© 2018 Cisco Systems, Inc. All rights reserved.

4

Table of Contents

Executive Summary ... 7

Solution Overview .. 8

Introduction ... 8

Solution Benefits .. 8

Audience ... 9

Purpose of this Document .. 9

 .. 10

Technology Overview .. 11

Cisco Unified Computing System ... 11

Cisco UCS Manager .. 12

Cisco UCS Fabric Interconnects .. 12

Cisco UCS 5108 Blade Server Chassis .. 13

Cisco UCS B200 M5 Blade Server ... 13

Cisco UCS C220M5 Rack-Mount Server.. 14

Cisco UCS C240M5 Rack-Mount Server.. 15

Cisco VIC Interface Cards .. 16

Cisco UCS Fabric Extenders .. 16

Cisco Nexus 9000 Switches .. 17

Intel Scalable Processor Family .. 17

Intel® SSD DC S4500 Series ... 18

Red Hat OpenShift Container Platform ... 18

Kubernetes Infrastructure .. 18

Red Hat OpenShift Integrated Container Registry .. 19

Container-native Storage Solution from Red Hat ... 19

Docker ... 19

Kubernetes .. 19

Etcd ... 20

Open vSwitch .. 20

HAProxy .. 20

Red Hat Ansible Automation .. 20

Solution Design .. 21

Hardware and Software Revisions ... 21

Solution Components .. 22

5

Architectural Overview ... 22

Bastion Node ... 23

OpenShift Master Nodes .. 23

OpenShift Infrastructure Nodes .. 23

OpenShift Application Nodes ... 24

OpenShift Storage Nodes .. 24

Physical Topology .. 25

Logical Topology ... 25

Virtual Machine Instance Details ... 26

Red Hat OpenShift Container Platform Node Placement .. 27

HA Proxy Load Balancer .. 28

Deployment Hardware and Software ... 29

Solution Prerequisites .. 29

Required Channels .. 29

Deployment Workflow .. 29

DNS (Domain Name Server) Configuration ... 30

Application DNS .. 31

VMware vCenter Prerequisites ... 32

Networking .. 32

vCenter Shared Storage .. 33

vSphere Parameter .. 33

Resource Pool, Cluster Name, and Folder Location ... 34

Prepare RHEL VM Template ... 34

Setting Up Bastion Instance ... 35

Configure Ansible .. 36

Prepare Inventory File .. 37

Red Hat OpenShift Container Platform Instance Creation ... 42

Setup DRS Anti-Affinity Rules .. 44

Configure VM Latency Sensitivity ... 46

Red Hat OpenShift Platform Storage Node Setup .. 46

Creating Storage Profile .. 47

Boot Policy for Storage Node... 49

Service Profile Template for Storage Nodes .. 50

Installation of Red Hat Enterprise Linux Operating System in Storage Nodes ... 51

Configure Storage Node Interfaces for RHOCP .. 56

6

Creating an SSH Keypair for Ansible .. 57

Configure and Install Prerequisites for Storage Nodes ... 59

Instance Verification .. 61

Red Hat OpenShift Container Platform Prerequisites Playbook ... 61

Deploying Red Hat OpenShift Container Platform... 62

Functional Validation .. 63

Sample Application Test Scenario. .. 71

Web Console UI Operations .. 73

Scale the Environment ... 84

Add Metrics to the Installation .. 90

Add Logging to the Installation .. 90

Resources.. 91

Conclusion ... 92

About the Authors .. 93

Acknowledgements ... 93

Executive Summary

7

Executive Summary

Cisco Validated Designs are the foundation of systems design and the centerpiece of facilitating complex

customer deployments. The validated designs incorporate products and technologies into a broad portfolio

of Enterprise, Service Provider, and Commercial systems that are designed, tested, and fully documented to

help ensure faster, reliable, consistent, and more predictable customer deployments.

-effective,

efficient, and agile by integrating systems with Cisco Unified Computing System. These validated converged

Cisco leads in integrated systems and offers diversified portfolio of converged infrastructure of solutions.

They integrate wide range of technologies and products into cohesive validated and supported solutions to

previously designed, tested, and validated with VMware vSphere environment.

The recommended solution architecture offers Red Hat OpenShift platform 3.9 on VMware vSphere 6.7

validated converged infrastructure, see: https://www.cisco.com/c/en/us/solutions/data-center-

virtualization/converged-infrastructure/index.html.

https://www.cisco.com/c/en/us/solutions/data-center-virtualization/converged-infrastructure/index.html
https://www.cisco.com/c/en/us/solutions/data-center-virtualization/converged-infrastructure/index.html

Solution Overview

8

Solution Overview

Introduction

Deployment-centric application platform and DevOps initiatives are driving benefits for organizations in their

digital transformation journey. Though still early in maturity, Docker format container packaging and

Kubernetes container orchestration are emerging to cater to the rapid digital transformation. Docker format

container packaging and Kubernetes container orchestration are emerging as industry standards for state-

of-the-art PaaS solutions.

Containers have brought a lot of excitement and value to IT by establishing predictability between building

and running applications. Developers can trust and know that their application will perform the same when

e tools

to operate and maintain applications seamlessly.

Red Hat® OpenShift® Container Platform provides a set of container-based open source tools enabling digital

transformation, which accelerates application development while making optimal use of infrastructure.

Professional developers utilize fine-grained control of all aspects of the application stack, with application

configurations enabling rapid response to unforeseen events. Availability of highly secure operating systems

assists in standing up an environment capable of withstanding continuously changing security threats,

helping deployment with highly secure applications.

Red Hat OpenShift Container Platform helps organizations use the cloud delivery model and simplify

continuous delivery of applications and services on Red Hat OpenShift Container Platform, the cloud-native

way. Built on proven open source technologies, Red Hat OpenShift Container Platform also provides

development teams multiple modernization options to enable a smooth transition to microservices

architecture and the cloud for existing traditional applications.

Cisco Unified Computing (Cisco UCS®) servers adapt to meet rapidly changing business needs,

including just-in-time deployment of new computing resources to meet requirements and improve business

outcomes. With Cisco UCS, you can tune your environment to support the unique needs of each application

while powering all your server workloads on a centrally managed, highly scalable system. Cisco UCS brings

the flexibility of non-virtualized and virtualized systems in a way that no other server architecture can,

lowering costs and improving your return on investment (ROI).

Cisco UCS M5 servers built on powerful Intel® Xeon Scalable processors are unified yet modular,

scalable, high-performing, built on infrastructure-as-code for powerful integrations and continuous delivery

of distributed applications.

Cisco, Intel and Red Hat have joined hands to develop a best-in-class solution for delivering PaaS solution to

the enterprise with ease. And also, to provide the ability to develop, deploy, and manage containers in an

on-premises, Private/ Public cloud environments by bringing automation to the table with a robust platform

such as Red Hat OpenShift Container Platform.

Solution Benefits

Some of the key benefits of this solution include:

Solution Overview

9

 Red Hat OpenShift

 Strong, role-based access controls, with integrations to enterprise authentication systems.

 Powerful, web-scale container orchestration and management with Kubernetes.

 Integrated Red Hat Enterprise Linux® Atomic Host, optimized for running containers at scale with

Security-Enhanced Linux (SELinux) enabled for strong isolation.

 Integration with public and private registries.

 Integrated CI/CD tools for secure DevOps practices.

 A new model for container networking.

 Modernize application architectures toward microservices.

 Adopt a consistent application platform for hybrid cloud deployments.

 Support for remote storage volumes.

 Persistent storage for stateful cloud-native containerized applications.

 Cisco UCS

 Reduced datacenter complexities through Cisco UCS infrastructure with a single management

control plane for hardware lifecycle management.

 Easy to deploy and scale the solution.

 Superior scalability and high-availability.

 Compute form factor agnostic.

 Better response with optimal ROI.

 Optimized hardware footprint for production and dev/test deployments.

Audience

The audience for this document includes, but is not limited to, sales engineers, field consultants, professional

services, IT managers, partner engineers, IT architects, and customers who want to take advantage of an

infrastructure that is built to deliver IT efficiency and enable IT innovation. The reader of this document is

expected to have the necessary training and background to install and configure Red Hat Enterprise Linux,

Cisco Unified Computing System, and Cisco Nexus Switches, Enterprise storage sub-systems, VMware

vSphere. Furthermore, knowledge of container platform preferably Red Hat OpenShift Container Platform is

required. External references are provided where applicable and familiarity with these documents is highly

recommended.

Purpose of this Document

This document highlights the benefits of using Cisco UCS M5 servers for Red Hat OpenShift Container

Platform 3.9 on VMware vSphere 6.7 to efficiently deploy, scale, and manage a production-ready application

Solution Overview

10

container environment for enterprise customers. This document focuses design choices and best practices

of deploying Red Hat OpenShift container platform on converged infrastructure comprised of Cisco UCS,

Nexus, and VMware.

In this solution Red Hat OpenShift Platform 3.9 is validated on Cisco UCS with VMware vSphere. Red Hat

OpenShift Container platform nodes such as master, infrastructure, and application nodes are running in

VMware vSphere virtualized environment while leveraging VMware HA cluster. Furthermore, GlusterFS is

running on bare-metal environment on Cisco UCS C240 M5 which can also be utilized for provisioning

containers on bare-metal.

Technology Overview

11

Technology Overview

This section provides a brief introduction of the various hardware/ software components used in this

solution.

Cisco Unified Computing System

The Cisco Unified Computing System is a next-generation solution for blade and rack server computing. The

system integrates a low-latency; lossless 10 Gigabit Ethernet unified network fabric with enterprise-class,

x86-architecture servers. The system is an integrated, scalable, multi-chassis platform in which all resources

participate in a unified management domain. The Cisco Unified Computing System accelerates the delivery

of new services simply, reliably, and securely through end-to-end provisioning and migration support for

both virtualized and non-virtualized systems. Cisco Unified Computing System provides:

 Comprehensive Management

 Radical Simplification

 High Performance

The Cisco Unified Computing System consists of the following components:

 ComputeThe system is based on an entirely new class of computing system that incorporates rack

mount and blade servers based on Intel® Xeon® scalable processors product family.

 NetworkThe system is integrated onto a low-latency, lossless, 40-Gbps unified network fabric. This

network foundation consolidates Local Area N

high-performance computing networks which are separate networks today. The unified fabric lowers

costs by reducing the number of network adapters, switches, and cables, and by decreasing the

power and cooling requirements.

 VirtualizationThe system unleashes the full potential of virtualization by enhancing the scalability,

performance, and operational control of virtual environments. Cisco security, policy enforcement, and

diagnostic features are now extended into virtualized environments to better support changing

business and IT requirements.

 Storage accessThe system provides consolidated access to both SAN storage and Network Attached

Storage (NAS) over the unified fabric. It is also an ideal system for Software Defined Storage (SDS).

Combining the benefits of single framework to manage both the compute and Storage servers in a

single pane, Quality of Service (QOS) can be implemented if needed to inject IO throttling in the

system. In addition, the server administrators can pre-assign storage-access policies to storage

resources, for simplified storage connectivity and management leading to increased productivity. In

addition to external storage, both rack and blade servers have internal storage which can be accessed

through built-in hardware RAID controllers. With storage profile and disk configuration policy

configured in Cisco UCS Manager, storage needs for the host OS and application data gets fulfilled by

user defined RAID groups for high availability and better performance.

 Managementthe system uniquely integrates all system components to enable the entire solution to be

managed as a single entity by the Cisco UCS Manager. The Cisco UCS Manager has an intuitive

Technology Overview

12

graphical user interface (GUI), a command-line interface (CLI), and a powerful scripting library module

for Microsoft PowerShell built on a robust application programming interface (API) to manage all

system configuration and operations.

Cisco Unified Computing System (Cisco UCS) fuses access layer networking and servers. This high-

performance, next-generation server system provides a data center with a high degree of workload agility

and scalability.

Cisco UCS Manager

Cisco Unified Computing System Manager (Cisco UCS Manager) provides unified, embedded management

for all software and hardware components in Cisco UCS. Using Single Connect technology, it manages,

controls, and administers multiple chassis for thousands of virtual machines. Administrators use the software

to manage the entire Cisco Unified Computing System as a single logical entity through an intuitive GUI, a

command-line interface (CLI), or an XML API. The Cisco UCS Manager resides on a pair of Cisco UCS 6300

Series Fabric Interconnects using a clustered, active-standby configuration for high-availability.

Cisco UCS Manager offers unified embedded management interface that integrates server, network, and

storage. Cisco UCS Manager performs auto-discovery to detect inventory, manage, and provision system

components that are added or changed. It offers comprehensive set of XML API for third part integration,

exposes 9000 points of integration and facilitates custom development for automation, orchestration, and to

achieve new levels of system visibility and control.

Service profiles benefit both virtualized and non-virtualized environments and increase the mobility of non-

virtualized servers, such as when moving workloads from server to server or taking a server offline for

service or upgrade. Profiles can also be used in conjunction with virtualization clusters to bring new

resources online easily, complementing existing virtual machine mobility.

For more information about Cisco UCS Manager Information,

see: http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html.

Cisco UCS Fabric Interconnects

The Fabric interconnects provide a single point for connectivity and management for the entire system.

Typically deployed as an active-

single, highly-available management domain controlled by Cisco UCS Manager. The fabric interconnects

manage all I/O efficiently and securely at a single point, resulting in deterministic I/O latency regardless of a

Cisco UCS 6300 Series Fabric Interconnects support the bandwidth up to 2.43-Tbps unified fabric with low-

latency, lossless, cut-through switching that supports IP, storage, and management traffic using a single set

of cables. The fabric interconnects feature virtual interfaces that terminate both physical and virtual

connections equivalently, establishing a virtualization-aware environment in which blade, rack servers, and

virtual machines are interconnected using the same mechanisms. The Cisco UCS 6332-16UP is a 1-RU

Fabric Interconnect that features up to 40 universal ports that can support 24 40-Gigabit Ethernet, Fiber

Channel over Ethernet, or native Fiber Channel connectivity. In addition to this it supports up to 16 1- and

10-Gbps FCoE or 4-, 8- and 16-Gbps Fibre Channel unified ports.

https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-manager/index.html

Technology Overview

13

Figure 1 Cisco UCS Fabric Interconnect 6332-16UP

For more information, see: https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-6332-

16up-fabric-interconnect/index.html.

Cisco UCS 5108 Blade Server Chassis

The Cisco UCS 5100 Series Blade Server Chassis is a crucial building block of the Cisco Unified Computing

System, delivering a scalable and flexible blade server chassis. The Cisco UCS 5108 Blade Server Chassis is

six rack units (6RU) high and can mount in an industry-standard 19-inch rack. A single chassis can house up

to eight half-width Cisco UCS B-Series Blade Servers and can accommodate both half-width and full-width

blade form factors. Four single-phase, hot-swappable power supplies are accessible from the front of the

chassis. These power supplies are 92 percent efficient and can be configured to support non-redundant, N+

1 redundant and grid-redundant configurations. The rear of the chassis contains eight hot-swappable fans,

four power connectors (one per power supply), and two I/O bays for Cisco UCS 2304 Fabric Extenders. A

passive mid-plane provides multiple 40 Gigabit Ethernet connections between blade serves and fabric

interconnects. The Cisco UCS 2304 Fabric Extender has four 40 Gigabit Ethernet, FCoE-capable, Quad

Small Form-Factor Pluggable (QSFP+) ports that connect the blade chassis to the fabric interconnect. Each

Cisco UCS 2304 can provide one 40 Gigabit Ethernet ports connected through the midplane to each half-

width slot in the chassis, giving it a total eight 40G interfaces to the compute. Typically configured in pairs

for redundancy, two fabric extenders provide up to 320 Gbps of I/O to the chassis.

For more information, see: http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-5100-

series-blade-server-chassis/index.html.

Cisco UCS B200 M5 Blade Server

The Cisco UCS B200 M5 Blade Server has the following:

 Up to two Intel Xeon Scalable CPUs with up to 28 cores per CPU

 24 DIMM slots for industry-standard DDR4 memory at speeds up to 2666 MHz, with up to 3 TB of total

memory when using 128-GB DIMMs

 Modular LAN On Motherboard (mLOM) card with Cisco UCS Virtual Interface Card (VIC) 1340, a 2-

port, 40 Gigabit Ethernet, Fibre Channel over Ethernet (FCoE) capable mLOM mezzanine adapter

 Optional rear mezzanine VIC with two 40-Gbps unified I/O ports or two sets of 4 x 10-Gbps unified I/O

ports, delivering 80 Gbps to the server; adapts to either 10- or 40-Gbps fabric connections

 Two optional, hot-pluggable, Hard-Disk Drives (HDDs), Solid-State Disks (SSDs), or NVMe 2.5-inch

drives with a choice of enterprise-class RAID or pass-through controllers

https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-6332-16up-fabric-interconnect/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-6332-16up-fabric-interconnect/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-5100-series-blade-server-chassis/index.html
https://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-5100-series-blade-server-chassis/index.html
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_3.png

Technology Overview

14

Figure 2 Cisco UCS B200 M5 Blade Server

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-b-series-blade-servers/datasheet-c78-739296.html.

Cisco UCS C220M5 Rack-Mount Server

The Cisco UCS C220 M5 Rack Server is among the most versatile general-purpose enterprise infrastructure

and application servers in the industry. It is a high-density 2-socket rack server that delivers industry-leading

performance and efficiency for a wide range of workloads, including virtualization, collaboration, and bare

metal applications. The Cisco UCS C-Series Rack Servers can be deployed as standalone servers or as part

 tandards-based unified

business agility. The Cisco UCS C220 M5 server extends the capabilities of the Cisco UCS portfolio in a 1-

Rack-Unit (1RU) form factor. It incorporates the Intel® Xeon® Scalable processors, supporting up to 20

percent more cores per socket, twice the memory capacity, 20 percent greater storage density, and five

times more PCIe NVMe Solid-State Disks (SSDs) compared to the previous generation of servers. These

improvements deliver significant performance and efficiency gains that will improve your application

performance. The C220 M5 delivers outstanding levels of expandability and performance in a compact

package, with:

 Latest Intel Xeon Scalable CPUs with up to 28 cores per socket

 Up to 24 DDR4 DIMMs for improved performance

 Up to 10 Small-Form-Factor (SFF) 2.5-inch drives or 4 Large-Form-Factor (LFF) 3.5-inch drives (77

TB storage capacity with all NVMe PCIe SSDs)

 Support for 12-Gbps SAS modular RAID controller in a dedicated slot, leaving the remaining PCIe

Generation 3.0 slots available for other expansion cards

 Modular LAN-On-Motherboard (mLOM) slot that can be used to install a Cisco UCS Virtual Interface

Card (VIC) without consuming a PCIe slot

 Dual embedded Intel x550 10GBASE-T LAN-On-Motherboard (LOM) ports

Figure 3 Cisco UCS C220 M5SX

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-b-series-blade-servers/datasheet-c78-739296.html
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_4.png
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_5.png

Technology Overview

15

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-c-series-rack-servers/datasheet-c78-739281.html.

Cisco UCS C240M5 Rack-Mount Server

The Cisco UCS C240 M5 Rack Server is a 2-socket, 2-Rack-Unit (2RU) rack server offering industry-leading

performance and expandability. It supports a wide range of storage and I/O-intensive infrastructure

workloads, from big data and analytics to collaboration. Cisco UCS C-Series Rack Servers can be deployed

as standalone servers or

-

Total Cost of Ownership (TCO) and increase their business agility.

In response to ever-increasing computing and data-intensive real-time workloads, the enterprise-class

Cisco UCS C240 M5 server extends the capabilities of the Cisco UCS portfolio in a 2RU form factor. It

incorporates the Intel® Xeon® Scalable processors, supporting up to 20 percent more cores per socket,

twice the memory capacity, and five times more

Non-Volatile Memory Express (NVMe) PCI Express (PCIe) Solid-State Disks (SSDs) compared to the

previous generation of servers. These improvements deliver significant performance and efficiency gains

that will improve your application performance. The C240 M5 delivers outstanding levels of storage

expandability with exceptional performance, with:

 Latest Intel Xeon Scalable CPUs with up to 28 cores per socket

 Up to 24 DDR4 DIMMs for improved performance

 Up to 26 hot-swappable Small-Form-Factor (SFF) 2.5-inch drives, including 2 rear hot-swappable

SFF drives (up to 10 support NVMe PCIe SSDs on the NVMe-optimized chassis version), or 12 Large-

Form-Factor (LFF) 3.5-inch drives plus 2 rear hot-swappable SFF drives

 Support for 12-Gbps SAS modular RAID controller in a dedicated slot, leaving the remaining PCIe

Generation 3.0 slots available for other expansion cards

 Modular LAN-On-Motherboard (mLOM) slot that can be used to install a Cisco UCS Virtual Interface

Card (VIC) without consuming a PCIe slot, supporting dual 10- or 40-Gbps network connectivity

 Dual embedded Intel x550 10GBASE-T LAN-On-Motherboard (LOM) ports

 Modular M.2 or Secure Digital (SD) cards that can be used for boot

Figure 4 Cisco UCS C240 M5SX

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-c-series-rack-servers/datasheet-c78-739279.html.

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739281.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739279.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/datasheet-c78-739279.html
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_6.png

Technology Overview

16

Cisco VIC Interface Cards

The Cisco UCS Virtual Interface Card (VIC) 1340 is a 2-port 40-Gbps Ethernet or dual 4 x 10-Gbps Ethernet,

Fiber Channel over Ethernet (FCoE) capable modular LAN on motherboard (mLOM) designed exclusively for

the M4 generation of Cisco UCS B-Series Blade Servers. All the blade servers for both Controllers and

Computes will have MLOM VIC 1340 card. Each blade will have a capacity of 40Gb of network traffic. The

underlying network interfaces like will share this MLOM card.

The Cisco UCS VIC 1340 enables a policy-based, stateless, agile server infrastructure that can present over

256 PCIe standards-compliant interfaces to the host that can be dynamically configured as either network

interface cards (NICs) or host bus adapters (HBAs).

For more information, see: http://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-

interface-card-1340/index.html.

The Cisco UCS Virtual Interface Card 1385 improves flexibility, performance, and bandwidth for Cisco UCS

C-Series Rack Servers. It offers dual-port Enhanced Quad Small Form-Factor Pluggable (QSFP+) 40 Gigabit

Ethernet and Fibre Channel over Ethernet (FCoE) in a half-height PCI Express (PCIe) adapter. The 1385 card

works with Cisco Nexus 40 Gigabit Ethernet (GE) and 10 GE switches for high-performance applications.

The Cisco VIC 1385 implements the Cisco Data Center Virtual Machine Fabric Extender (VM-FEX), which

unifies virtual and physical networking into a single infrastructure. The extender provides virtual-machine

visibility from the physical network and a consistent network operations model for physical and virtual

servers.

For more information, see: https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-

interface-card-1385/index.html.

Cisco UCS Fabric Extenders

Cisco UCS 2304 Fabric Extender brings the unified fabric into the blade server enclosure, providing multiple

40 Gigabit Ethernet connections between blade servers and the fabric interconnect, simplifying diagnostics,

cabling, and management. It is a third-generation I/O Module (IOM) that shares the same form factor as the

second-generation Cisco UCS 2200 Series Fabric Extenders and is backward compatible with the shipping

Cisco UCS 5108 Blade Server Chassis. The Cisco UCS 2304 connects the I/O fabric between the Cisco UCS

6300 Series Fabric Interconnects and the Cisco UCS 5100 Series Blade Server Chassis, enabling a lossless

and deterministic Fibre Channel over Ethernet (FCoE) fabric to connect all blades and chassis together.

Because the fabric extender is similar to a distributed line card, it does not perform any switching and is

managed as an extension of the fabric interconnects. This approach reduces the overall infrastructure

complexity and enabling Cisco UCS to scale to many chassis without multiplying the number of switches

needed, reducing TCO and allowing all chassis to be managed as a single, highly available management

domain.

The Cisco UCS 2304 Fabric Extender has four 40Gigabit Ethernet, FCoE-capable, Quad Small Form-Factor

Pluggable (QSFP+) ports that connect the blade chassis to the fabric interconnect. Each Cisco UCS 2304

can provide one 40 Gigabit Ethernet ports connected through the midplane to each half-width slot in the

chassis, giving it a total eight 40G interfaces to the compute. Typically configured in pairs for redundancy,

two fabric extenders provide up to 320 Gbps of I/O to the chassis.

https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1340/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1340/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1385/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/ucs-virtual-interface-card-1385/index.html

Technology Overview

17

Figure 5 Cisco UCS 2304 Fabric Extender

For more information, see: https://www.cisco.com/c/en/us/products/collateral/servers-unified-

computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html.

Cisco Nexus 9000 Switches

The Cisco Nexus 9000 Series delivers proven high performance and density, low latency, and exceptional

power efficiency in a broad range of compact form factors. Operating in Cisco NX-OS Software mode or in

Application Centric Infrastructure (ACI) mode, these switches are ideal for traditional or fully automated data

center deployments.

The Cisco Nexus 9000 Series Switches offer both modular and fixed 10/40/100 Gigabit Ethernet switch

configurations with scalability up to 30 Tbps of non-blocking performance with less than five-microsecond

latency, 1152 x 10 Gbps or 288 x 40 Gbps non-blocking Layer 2 and Layer 3 Ethernet ports and wire speed

VXLAN gateway, bridging, and routing.

Figure 6 Cisco UCS Nexus 9396PX

For more information, see: https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-

series-switches/datasheet-c78-736967.html.

Intel Scalable Processor Family

Intel® Xeon® Scalable processors provide a new foundation for secure, agile, multi-cloud data centers. This

platform provides businesses with breakthrough performance to handle system demands ranging from

entry-level cloud servers to compute-hungry tasks including real-time analytics, virtualized infrastructure,

and high performance computing. This processor family includes technologies for accelerating and securing

specific workloads.

 Intel® Xeon® Scalable processors are now available in four feature configurations:

 Intel® Xeon® Bronze Processors with affordable performance for small business and basic storage.

 Intel® Xeon® Silver Processors with essential performance and power efficiency

 Intel® Xeon® Gold Processors with workload-optimized performance, advanced reliability

 Intel® Xeon® Platinum Processors for demanding, mission-critical AI, analytics, hybrid-cloud workloads

https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html
https://www.cisco.com/c/en/us/products/collateral/servers-unified-computing/ucs-6300-series-fabric-interconnects/datasheet-c78-675243.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-736967.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/datasheet-c78-736967.html
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_7.png
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_8.jpg

Technology Overview

18

Figure 7 Intel® Xeon® Scalable Processor Family

Intel® SSD DC S4500 Series

Intel® SSD DC S4500 Series is a storage inspired SATA SSD optimized for read-intensive workloads. Based

on TLC Intel® 3D NAND Technology, these larger capacity SSDs enable data centers to increase data stored

per rack unit. Intel® SSD DC S4500 Series is built for compatibility in legacy infrastructures so it enables easy

factor offers wide range of capacity from 240 GB up to 3.8 TB.

Figure 8 Intel® SSD DC S4500

Red Hat OpenShift Container Platform

Kubernetes and provides an API to manage these services. OpenShift Container Platform allows you to

create and manage containers. Containers are standalone processes that run within their own environment,

independent of operating system and the underlying infrastructure. OpenShift helps developing, deploying,

and managing container-based applications. It provides a self-service platform to create, modify, and

deploy applications on demand, thus enabling faster development and release life cycles. OpenShift

Container Platform has a microservices-based architecture of smaller, decoupled units that work together. It

runs on top of a Kubernetes cluster, with data about the objects stored in etcd, a reliable clustered key-value

store.

Kubernetes Infrastructure

Within OpenShift Container Platform, Kubernetes manages containerized applications across a set of Docker

runtime hosts and provides mechanisms for deployment, maintenance, and application-scaling. The Docker

service packages, instantiates, and runs containerized applications.

https://docs.openshift.com/container-platform/3.7/architecture/infrastructure_components/kubernetes_infrastructure.html#architecture-infrastructure-components-kubernetes-infrastructure
https://docs.openshift.com/container-platform/3.7/architecture/infrastructure_components/kubernetes_infrastructure.html#master
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_9.png
https://www.cisco.com/c/dam/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift_design.docx/_jcr_content/renditions/ucs_openshift_design_10.jpg

Technology Overview

19

A Kubernetes cluster consists of one or more masters and a set of nodes. This solution design includes HA

functionality at the hardware as well as the software stack. Kubernetes cluster is designed to run in HA mode

with 3 master nodes and 2 Infra nodes to help ensure that the cluster has no single point of failure.

Red Hat OpenShift Integrated Container Registry

OpenShift Container Platform provides an integrated container registry called OpenShift Container

Registry (OCR) that adds the ability to automatically provision new image repositories on demand. This

provides users with a built-in location for their application builds to push the resulting images. Whenever a

new image is pushed to OCR, the registry notifies OpenShift Container Platform about the new image,

passing along all the information about it, such as the namespace, name, and image metadata. Different

pieces of OpenShift Container Platform react to new images, creating new builds and deployments.

Container-native Storage Solution from Red Hat

Container-native storage solution from Red Hat makes OpenShift Container Platform a fully hyperconverged

infrastructure where storage containers co-reside with the compute containers. Storage plane is based on

containerized Red Hat Gluster® Storage services, which controls storage devices on every storage server.

Heketi is a part of the container-native storage architecture and controls all of the nodes that are members

of storage cluster. Heketi also provides an API through which storage space for containers can be easily

requested. While Heketi provides an endpoint for storage cluster, the object that makes calls to its API from

OpenShift clients is called a Storage Class. It is a Kubernetes and OpenShift object that describes the type of

storage available for the cluster and can dynamically send storage requests when a persistent volume claim

is generated.

Container-native storage for OpenShift Container Platform is built around three key technologies:

 OpenShift provides the Platform-as-a-Service (PaaS) infrastructure based on Kubernetes container

management. Basic OpenShift architecture is built around multiple master systems where each system

contains a set of nodes.

 Red Hat Gluster Storage provides the containerized distributed storage based on Red Hat Gluster

Storage container. Each Red Hat Gluster Storage volume is composed of a collection of bricks, where

each brick is the combination of a node and an export directory.

 Heketi provides the Red Hat Gluster Storage volume life cycle management. It creates the Red Hat

Gluster Storage volumes dynamically and supports multiple Red Hat Gluster Storage clusters.

Docker

Red Hat OpenShift Container Platform uses Docker runtime engine for containers.

Kubernetes

Red Hat OpenShift Container Platform is a complete container application platform that natively integrates

technologies like Docker and Kubernetes; a powerful container cluster management and orchestration

system.

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#builds
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#deployments-and-deployment-configurations

Technology Overview

20

Etcd

Etcd is a key-value store used in OpenShift Container Platform cluster. Etcd data store provides complete

cluster and endpoint states to the OpenShift API servers. Etcd data store furnishes information to API servers

about node status, network configurations, secrets, etc.

Open vSwitch

Open vSwitch is an open-source implementation of a distributed virtual multilayer switch. It is designed to

enable effective network automation through programmatic extensions, while supporting standard

management interfaces and protocols such as 802.1ag, SPAN, LACP, and NetFlow. Open vSwitch provides

software-defined networking (SDN)-specific functions in the OpenShift Container Platform environment.

HAProxy

HAProxy is open source software that provides a high availability load balancer and proxy server for TCP and

HTTP-based applications that spreads requests across multiple servers. In this solution, HAProxy is

deployed in virtual machine in VMware HA cluster which provides routing and load-balancing functions for

Red Hat OpenShift applications. Other instance of HAProxy acts as an ingress router for all applications

deployed in Red Hat OpenShift cluster.

 The external load balancer can also be utilized. However, the configuration of the external load balancer is

out of the scope of this document.

Red Hat Ansible Automation

Red Hat Ansible Automation is a powerful IT automation tool. It is capable of provisioning numerous types of

resources and deploying applications. It can configure and manage devices and operating system

components. Due to the simplicity, extensibility, and portability, this OpenShift solution is based largely on

Ansible Playbooks.

Ansible is mainly used for installation and management of the Red Hat OpenShift Container Platform

deployment.

For VMware environment, the installation of Red Hat OpenShift Container Platform is done via the Ansible

playbooks installed by the openshift-ansible-playbooks rpm package. In order to deploy 3 masters, 3

infrastructure, and 3 app nodes, Ansible playbooks are utilized. These playbooks can be altered for VM

sizing and to meet other specific requirements if needed. Details of these playbooks can be obtained from

the following https://github.com/openshift/openshift-ansible-contrib/tree/master/reference-

architecture/vmware-ansible/playbooks.

https://github.com/openshift/openshift-ansible-contrib/tree/master/reference-architecture/vmware-ansible/playbooks
https://github.com/openshift/openshift-ansible-contrib/tree/master/reference-architecture/vmware-ansible/playbooks

Solution Design

21

Solution Design

This section provides an overview of the hardware and software components used in this solution, as well as

the design factors to be considered in order to make the system work as a single, highly available solution.

Hardware and Software Revisions

 IMPORTANT The following hardware and software versions have been validated in Red Hat OpenShift

Container Platform 3.9.33.

Table 1 lists the firmware versions validated in this RHOCP solution.

 Hardware Revisions Table 1

Hardware Firmware Versions

Cisco UCS Manager 3.2.3d

Cisco UCS B200 M5 Server 3.2.3d

Cisco UCS Fabric Interconnects

6332UP

3.2.3d

 For information about the OS version and system type, see Cisco Hardware and Software Compatibility.

Table 2 lists the software versions validated in this RHOCP solution.

 Software Versions Table 2

Software Versions

Red Hat Enterprise Linux 7.5

Red Hat OpenShift Container Platform 3.9.33

VMware vSphere 6.7

Kubernetes 1.9

Docker 1.13.1

Red Hat Ansible Engine 2.4.6.0

Etcd 3.2.22

Open vSwitch 2.9.0

Red Hat Gluster Storage 3.3.0

Gluster FS 3.8.4

https://ucshcltool.cloudapps.cisco.com/public/

Solution Design

22

Solution Components

This solution is validated comprised of following components (see Table 3).

 Solution Components Table 3

Component Model Quantity

ESXi hosts for master, infra,

and application VMs

Cisco UCS B200 M5 Servers 4

Storage Nodes Cisco UCS C240M5SX

3

Chassis Cisco UCS 5108 Chassis 1

IO Modules Cisco UCS 2304XP Fabric

Extenders

2

Fabric Interconnects Cisco UCS 6332 Fabric

Interconnects

2

Nexus Switches Cisco Nexus 93180YC-EX

Switches

2

Architectural Overview

Red Hat OpenShift Container Platform is managed by the Kubernetes container orchestrator, which manages

containerized applications across a cluster of systems running the Docker container runtime. The physical

configuration of Red Hat OpenShift Container Platform is based on the Kubernetes cluster architecture.

OpenShift is a layered system designed to expose underlying Docker-formatted container image and

Kubernetes concepts as accurately as possible, with a focus on easy composition of applications by a

developer. For example, install Ruby, push code, and add MySQL. The concept of an application as a

separate object is removed in favor of more flexible composition of "services", allowing two web containers

to reuse a database or expose a database directly to the edge of the network.

Solution Design

23

Figure 9 Architectural Overview

This Red Hat OpenShift Container Platform reference architecture contains five types of nodes: bastion,

master, infrastructure, storage, and application.

Bastion Node

This is a dedicated node that serves as the main deployment and management server for the Red Hat

OpenShift cluster. It is used as the logon node for the cluster administrators to perform the system

deployment and management operations, such as running the Ansible OpenShift deployment Playbooks and

performing scale-out operations. Also, Bastion node runs DNS services for the OpenShift Cluster nodes. The

bastion node runs Red Hat Enterprise Linux 7.5.

OpenShift Master Nodes

The OpenShift Container Platform master is a server that performs control functions for the whole cluster

environment. It is responsible for the creation, scheduling, and management of all objects specific to Red

Hat OpenShift. It includes API, controller manager, and scheduler capabilities in one OpenShift binary. It is

also a common practice to install an etcd key-value store on OpenShift masters to achieve a low-latency link

between etcd and OpenShift masters. It is recommended that you run both Red Hat OpenShift masters and

etcd in highly available environments. This can be achieved by running multiple OpenShift masters in

conjunction with an external active-passive load balancer and the clustering functions of etcd. The OpenShift

master node runs Red Hat Enterprise Linux Atomic Host 7.5.

OpenShift Infrastructure Nodes

The OpenShift infrastructure node runs infrastructure specific services: Docker Registry*, HAProxy router,

and Heketi. Docker Registry stores application images in the form of containers. The HAProxy router

Solution Design

24

provides routing functions for Red Hat OpenShift applications. It currently supports HTTP(S) traffic and TLS-

enabled traffic via Server Name Indication (SNI). Heketi provides management API for configuring GlusterFS

persistent storage. Additional applications and services can be deployed on OpenShift infrastructure nodes.

The OpenShift infrastructure node runs Red Hat Enterprise Linux Atomic Host 7.5.

OpenShift Application Nodes

The OpenShift application nodes run containerized applications created and deployed by developers. An

OpenShift application node contains the OpenShift node components combined into a single binary, which

can be used by OpenShift masters to schedule and control containers. A Red Hat OpenShift application node

runs Red Hat Enterprise Linux Atomic Host 7.5.

OpenShift Storage Nodes

The OpenShift storage nodes run containerized GlusterFS services which configure persistent volumes for

application containers that require data persistence. Persistent volumes may be created manually by a

cluster administrator or automatically by storage class objects. An OpenShift storage node is also capable of

running containerized applications. A Red Hat OpenShift storage node runs Red Hat Enterprise Linux Atomic

Host 7.5.

Table 4 lists the functions and roles for each class of node in this solution for the OpenShift Container

Platform.

 Type of Nodes in OpenShift Container Platform Cluster and their Roles Table 4

Node Roles

Bastion Node

- System deployment and Management Operations

 - Runs Ansible playbooks.

- It can also be configured as IP Router that routes traffic across all the nodes via the control

network

Master Nodes

- Kubernetes services

- Etcd data store

- Controller Manager & Scheduler

- API services

Infrastructure

Nodes

- Container Registry

- Heketi

- HA Proxy Router

Application Nodes

- Application Containers PODs

- Docker Runtime

Solution Design

25

Node Roles

Storage Nodes

- Red Hat Gluster Storage

- Container-native storage services

- Storage nodes are labeled `compute`, so workload scheduling is enabled by default

Physical Topology

Figure 10 shows the physical architecture used in this reference design.

Figure 10 Red Hat OpenShift Platform Architectural Diagram

3 x C240s are acting as compute nodes as well as providing persistent storage to containers.

Enterprise storage is providing Boot LUNs to all the servers via the boot policy configuration in Cisco UCS

Manager. However, Cisco UCS C240s can also be configured to boot from local disk by configuring storage

profiles in Cisco UCS Manager with RAID 1 Mirrored.

Enterprise storage also provides data stores to VMware vSphere environment for VM virtual disks.

Logical Topology

Figure 11 illustrates the logical topology of Red Hat OpenShift Container Platform.

Solution Design

26

Figure 11 Logical Diagram

 Private Network This network is common to all nodes. This is internal network and mostly used by

bastion node to perform SSH access for Ansible playbook. Hence, bastion node is acting as a jump

host for SSH. Outbound NAT has been configured for nodes to access Red Hat content delivery

network for enabling the required repos.

 Bastion node is a part of public subnet and it can also be configured as IP Router that routes traffic

across all the nodes via the control network. In this case default gateway of all the nodes will be

bastion node private IP. This scenario would limit outside access for all the nodes if bastion node is

powered down

 OpenShift SDN OpenShift Container Platform uses a software-defined networking (SDN) approach to

provide a unified cluster network that enables communication between pods across the OpenShift

Container Platform cluster. This pod network is established and maintained by the OpenShift SDN,

which configures an overlay network using Open vSwitch (OVS).

 Public Network This network provides internet access.

Virtual Machine Instance Details

Table 5 lists the minimum VM requirements for each node.

Solution Design

27

 VM Configurations Table 5

Node

Type
CPUs Memory Disk 1 Disk 2 Disk 3 Disk 4

Master 2 vCPU 16GB RAM
1 x 60GB -

OS RHEL 7.5

1 x 40GB -

Docker

volume

1 x 40Gb -

EmptyDir volume

1 x 40GB -

ETCD volume

Infra

Nodes
2 vCPU 8GB RAM

1 x 60GB -

OS RHEL 7.5

1 x 40GB -

Docker

volume

1 x 40Gb -

EmptyDir volume

1 x 300GB for

Registry

App

Nodes
2 vCPU 8GB RAM

1 x 60GB -

OS RHEL 7.5

1 x 40GB -

Docker

volume

1 x 40Gb -

EmptyDir volume

Bastion 1 vCPU 4GB RAM
1 x 60GB -

OS RHEL 7.5

Master nodes should contain three extra disks used for Docker storage, etcd, and OpenShift volumes for

OCP pod storage. All volumes are thin provisioned. Infra and App nodes does not require etcd. In this

reference architecture, VMs are deployed in a single cluster in a single datacenter.

 When planning an environment with multiple masters, a minimum of three etcd hosts and one load-

balancer between the master hosts are required.

Red Hat OpenShift Container Platform Node Placement

The following diagram shows how the master, infrastructure, and application nodes should be placed in

vSphere ESXi hosts.

Solution Design

28

 It is recommended to configure anti-affinity rule for master VMs after they are installed from Ansible

play-book. Setting up the anti-affinity rule is described in a subsequent section of this document.

 Within vSphere environment, HA is maintained by VMware vSphere High-availability

HA Proxy Load Balancer

In the reference architecture, HA Proxy load balancer is used. However, on premise existing load balancer

can also be utilized. HA Proxy is the entry point for many Red Hat OpenShift Container Platform components.

OpenShift Container Platform console is accessible via the master nodes, which is spread across multiple

instances to provide load balancing as well as high availability.

Application traffic passes through the Red Hat OpenShift Container Platform Router on its way to the

container processes. The Red Hat OpenShift Container Platform Router is a reverse proxy service container

that multiplexes the traffic to multiple containers making up a scaled application running inside Red Hat

OpenShift Container Platform. The load balancer used by infra nodes acts as the public view for the Red Hat

OpenShift Container Platform applications.

The destination for the master and application traffic must be set in the load balancer configuration after

each instance is created, the floating IP address is assigned and before the installation. A

single haproxy load balancer can forward both sets of traffic to different destinations.

Deployment Hardware and Software

29

Deployment Hardware and Software

Solution Prerequisites

The following prerequisites must be met before starting the deployment of Red Hat OpenShift Container

platform:

 An active Red Hat account with access to the OpenShift Container Platform subscriptions through

purchased entitlements.

 Fully functional DNS server is an absolute MUST for this solution. Existing DNS server can be utilized

as long as it is accessible to and from OpenShift nodes and can provide name resolutions to hosts and

containers running on the platform.

 OpenShift Enterprise requires NTP to synchronize the system and hardware clocks. It prevents master

and nodes in the cluster from going out of sync.

 Network Manager is required on the nodes for populating dnsmasq with the DNS IP addresses.

 Have the Red Hat Enterprise Linux Server 7.5 ISO image (rhel-server-7.5-x86-64-dvd.iso) on hand

and readily available.

 Pre-existing VMware vSphere and vCenter environment with the capability of vCenter High Availability.

Required Channels

Subscription to the following channels are required. Before you start the deployment, make sure your

subscriptions have access to these channels.

 Red Hat OpenShift Container Platform Required Channels Table 6

Channel Repository Name

Red Hat Enterprise Linux 7 Server (RPMs) rhel-7-server-rpms

Red Hat OpenShift Container Platform 3.9 (RPMs) rhel-7-server-ose-3.9-rpms

Red Hat Enterprise Linux 7 Server - Extras (RPMs) rhel-7-server-extras-rpms

Red Hat Enterprise Linux Fast Datapath (RHEL 7 Server)

(RPMs)

rhel-7-fast-datapath-rpms

Red Hat Ansible Engine 2.4 RPMs for Red Hat Enterprise

Linux 7 Server

rhel-7-server-ansible-2.4-rpms

Deployment Workflow

Figure 12 shows the workflow of deployment process.

Deployment Hardware and Software

30

Figure 12 Deployment Workflow

DNS (Domain Name Server) Configuration

DNS is a mandatory requirement for successful Red Hat OpenShift Container Platform deployment. It should

provide name resolution to all the hosts and containers running on the platform.

 It is very important to note that adding entries into /etc/hosts file on each host cannot replace the require-

ment of DNS server as this file is not copied into the containers running on the platform. If you do not have

the functional DNS server, installation will fail.

Below is the sample DNS configuration for reference:

$ORIGIN apps.ocp3.cisco.com

* A 192.x.x.240

$ORIGIN ocp3.cisco.com.

haproxy-0 A 10.x.y.200

infra-0 A 10.x.y.100

infra-1 A 10.x.y.101

infra-2 A 10.x.y.102

master-0 A 10.x.y.103

master-1 A 10.x.y.104

master-2 A 10.x.y.105

app-0 A 10.x.y.106

app-1 A 10.x.y.107

app-2 A 10.x.y.108

storage-01 A 10.x.y.109

storage-02 A 10.x.y.110

storage-03 A 10.x.y.111

openshift A 10.x.x.200

$ORIGIN external.ocp3.cisco.com

openshift A 192.x.x.240

bastion A 192.x.x.120

 Setting up DNS server is beyond the scope of this document. For this reference architecture, it is assumed

that functional DNS already exists.

Deployment Hardware and Software

31

Figure 13 shows forward lookup zone ocp3.cisco.com and the DNS records used to point to sub-domain to

an IP address.

Figure 13 DNS Configuration

 The name of the Red Hat OpenShift Container Platform console is the address of the haproxy-0 instance

on the network. For example, openshift.ocp3.cisco.com DNS name has the IP address of ha-proxy node.

Application DNS

Applications served by OpenShift are accessible by the router on ports 80/TCP and 443/TCP. The

router uses a wildcard record to map all host names under a specific sub domain to the same IP address

without requiring a separate record for each name. This allows Red Hat OpenShift Container Platform to add

applications with arbitrary names as long as they are under that sub domain.

For example, a wildcard record for *.apps.ocp3.cisco.com causes DNS name lookups for

wordpress.apps.ocp3.cisco.com and nginx-01.apps.ocp3.cisco.com to both return the same IP address:

192.168.91.240. All traffic is forwarded to the OpenShift Routers. The Routers examine the HTTP headers of

the queries and forward them to the correct destination.

With a load-balancer host address of 192.168.91.240, the wildcard DNS record can be added as follows:

 Load Balancer DNS records Table 7

IP Address Host Name Purpose

192.168.91.240 *.apps.ocp3.cisco.com User access to application

webs services.

Figure 14 shows wildcard DNS record that resolves to the IP address of the OpenShift router.

Deployment Hardware and Software

32

Figure 14 DNS Wildcard Record

VMware vCenter Prerequisites

This reference architecture assumes a pre-existing VMware vCenter environment and is configured based

on the best practices for the infrastructure.

VMware HA and storage IO control should already be configured. Once the environment is setup, anti-

affinity rules are recommended to be setup for maximum uptime and optimal performance.

Networking

An existing port group and virtual LAN (VLAN) are required for deployment. The initial configuration of the

Red Hat OpenShift nodes in this reference architecture assumes you will be deploying VMs to a port group

called "VM Network".

The environment can utilize a VMware vSphere Distributed Switch (VDS) or Standard vSwitch. The specifics

of that are unimportant and beyond the scope of this document. However, a vDS is required if you wish to

utilize network IO control and some of the quality of service (QoS) technologies.

Furthermore, specifics of setting up the VMware environment on Cisco UCS is not covered in this document

such as physical NICs, storage configuration whether IP based or Fibre channel, UCS vNIC failover and

redundancy, vNIC templates, service profiles, other policies, and so on. These design choices and scenarios

have been previously validated in various Cisco Validated Designs. For best practices and supported design,

see:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1_n9kiscsi.htm

l?referring_site=RE&pos=3&page=https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CV

Ds/flexpod_esxi65u1design.html

The figure below shows the standard vSwitch configuration used in this reference architecture. After the VM

deployment is completed from Ansible playbook (described in a subsequent section), vSphere vDS can be

configured, details of which are outlined in the link above.

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1_n9kiscsi.html?referring_site=RE&pos=3&page=https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1design.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1_n9kiscsi.html?referring_site=RE&pos=3&page=https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1design.html
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1_n9kiscsi.html?referring_site=RE&pos=3&page=https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65u1design.html

Deployment Hardware and Software

33

vCenter Shared Storage

All vSphere hosts should have shared storage to provision VMware virtual machine disk files (VMDKs) for

templates. It is also recommended to enable storage I/O control (SIOC) to address any latency issues

caused by performance. For in-depth overview of storage IO control, see:

https://kb.vmware.com/s/article/1022091.

vSphere Parameter

Table 8 lists the vSphere parameter required for inventory file discussed in later section of this document.

These parameter must be handy and pre-configured in vCenter environment before preparing the inventory

file.

 vSphere Parameter Table 8

Parameter Description Example or Defaults

openshift_cloudprovider_vsphere_host IP or Hostname of vCenter

Server

openshift_cloudprovider_vsphere_username Username of vCenter

Administrator

'administrator@vsphere.local'

openshift_cloudprovider_vsphere_password Password of vCenter

administrator

openshift_cloudprovider_vsphere_cluster Cluster to place VM in OCP-Cluster

openshift_cloudprovider_vsphere_datacenter Datacenter to place VM in OCP-Datacenter

openshift_cloudprovider_vsphere_datastore Datastore for VM VMDK datastore4

https://kb.vmware.com/s/article/1022091

Deployment Hardware and Software

34

Parameter Description Example or Defaults

openshift_cloudprovider_vsphere_resource_pool Resource pool to be used for

newly created VMs

ocp39

openshift_cloudprovider_vsphere_folder= Folder to place newly created

VMs in

ocp39

openshift_cloudprovider_vsphere_template Template to clone new VM

from

RHEL75

openshift_cloudprovider_vsphere_vm_network Destination network for VMs.

(vSwitch or VDS)

VM Network

openshift_cloudprovider_vsphere_vm_netmask Network Mask for VM network 255.255.255.0

openshift_cloudprovider_vsphere_vm_gateway Gateway of VM Network 10.1.166.1

openshift_cloudprovider_vsphere_vm_dns DNS for VM 10.1.166.9

Resource Pool, Cluster Name, and Folder Location

This reference architecture assumes some default names as per the playbook used to deploy the cluster

VMs. However, it is recommend to follow the information mentioned in Table 8.

Create the following per Table 8:

1. Create a resource pool named: "ocp3"

2. Create a folder for the Red Hat OpenShift VMs for logical organization named: "ocp"

3. Make sure this folder exists under the datacenter and cluster you will use for deployment

If you would like customize the names, remember to specify them later while creating the inventory file.

Prepare RHEL VM Template

This reference architecture is based on RHEL 7.5. VM template and needs to be prepared for use with the

RHOCP instance deployment.

To prepare the RHEL VM template, complete the following steps:

1. Create a Virtual machine using RHEL 7.5 iso. You can create the VM with 2 vCPU, 4GB RAM, and 50GB

disk for RHEL 7.5 OS. Specify net.ifnames=0 biosdevname=0 after pressing tab key as boot parameter to

get consistent naming for network interfaces.

2. Power-On VM, configure /etc/sysconfig/network-script/ifcfg-eth0 with IP address, Netmask, Gateway,

and DNS. Restart networking by running the following command.

systemctl restart network

3. Register VM with Red Hat OpenShift subscription and enable required repositories:

subscription-manager register --username <username> --password <password>

Deployment Hardware and Software

35

subscription-manager list --available

subscription-manager attach --pool=<pool-id>

subscription-manager repos --disable='*'

subscription-manager repos --enable="rhel-7-server-rpms" --enable="rhel-7-server-extras-rpms" --

enable="rhel-7-server-ose-3.9-rpms" --enable="rhel-7-fast-datapath-rpms" --enable="rhel-7-server-ansible-

2.4-rpms"

4. Install following packages:

yum install -y open-vm-tools PyYAML perl net-tools chrony python-six iptables iptables-services

 These packages are also installed by vmware-guest-setup TASK in ansible playbook for deploying pro-

duction VM. However, if it is not pre-installed, playbook will not be able to configure instance IP address

and hostname, which will fail subsequent steps in openshift-ansible-contrib/reference-

architecture/vmware-ansible/playbooks/prod.yaml

5. Unregister the VM:

subscription-manager unregister

subscription-manager clean

6. Follow the steps mentioned in https://access.redhat.com/solutions/198693 to create clean VM for use

as a template or cloning.

7. Change the /etc/sysconfig/network-script/ifcfg-eth0 with the following:

TYPE=Ethernet

BOOTPROTO=none

DEVICE=eth0

NAME=eth0

ONBOOT=yes

8. Run the following:

ifdown eth0

9. Power-off the VM and convert it into template by Right click VM > Template > Convert to Template.

Setting Up Bastion Instance

The Bastion host serves as the installer of the Ansible playbooks that deploy Red Hat OpenShift Container

Platform as well as an entry point for management tasks.

Bastion instance is a non-OpenShift instance accessible from outside of the Red Hat OpenShift Container

Platform environment, configured to allow remote access via secure shell (ssh). To remotely access an

instance, the systems administrator first accesses the bastion instance, then "jumps" via

another ssh connection to the intended OpenShift instance. The bastion instance may be referred to as a

"jump host".

 As the bastion instance can access all internal instances, it is recommended to take extra measures to

 For more information about hardening the bastion instance, visit the follow-

ing guide https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/7/html/security_guide/index

To set up the bastion instance, complete the following steps:

https://access.redhat.com/solutions/198693
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/index

Deployment Hardware and Software

36

1. below based on

the requirements mentioned in Table 1.

Figure 15 Deploy Bastion Instance from Template

2. After the VM is deployed, configure eth0 interface as shown below:

[root@bastion ~]# cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

BOOTPROTO=static

DEFROUTE=yes

NAME=eth0

DEVICE=eth0

ONBOOT=yes

IPADDR=10.1.166.104

NETMASK=255.255.255.0

GATEWAY=10.1.166.1

DNS1=10.1.166.9

3. Set the host name:

[root@bastion ~]#hostnamectl set-hostname bastion.ocp3.cisco.com

[root@bastion ~]#hostnamectl status

4. Register Bastion instance with Red Hat OpenShift subscription and enable required repositories:

[root@bastion ~]# subscription-manager register --username <username> --password <password>

[root@bastion ~]# subscription-manager list --available

[root@bastion ~]# subscription-manager attach --pool=<pool-id>

[root@bastion ~]# subscription-manager repos --disable='*'

[root@bastion ~]# subscription-manager repos --enable="rhel-7-server-rpms" --enable="rhel-7-server-

extras-rpms" --enable="rhel-7-server-ose-3.9-rpms" --enable="rhel-7-fast-datapath-rpms" --enable="rhel-7-

server-ansible-2.4-rpms"

 Red Hat subscription might fail if the system date is too far off with current date and time.

5. Install atomic-openshift-util package via following command:

[root@bastion ~]#sudo yum install -y ansible atomic-openshift-utils git

Configure Ansible

Ansible is installed on the deployment instance to perform the registration, installation of packages, and the

deployment of the Red Hat OpenShift Container Platform environment on the master and node instances.

Before running playbooks, it is important to create an ansible.cfg to reflect the deployed environment:

 [root@dephost ansible]# cat ~/ansible.cfg

[defaults]

Deployment Hardware and Software

37

forks = 20

host_key_checking = False

roles_path = roles/

gathering = smart

remote_user = root

private_key = ~/.ssh/id_rsa

fact_caching = jsonfile

fact_caching_connection = $HOME/ansible/facts

fact_caching_timeout = 600

log_path = $HOME/ansible.log

nocows = 1

callback_whitelist = profile_tasks

[ssh_connection]

ssh_args = -C -o ControlMaster=auto -o ControlPersist=900s -o GSSAPIAuthentication=no -o

PreferredAuthentications=publickey control_path = %(directory)s/%%h-%%r

pipelining = True

timeout = 10

[persistent_connection]

connect_timeout = 30

connect_retries = 30

connect_interval = 1

[root@dephost ansible]#

Prepare Inventory File

Ansible Playbook execution requires an inventory file to perform tasks on multiple systems at the same time.

 being saved in

the location /etc/ansible/hosts on the Bastion node for this solution. This inventory file consists of Hosts and

Groups, Host Variables, Group Variables and behavioral Inventory Parameters.

This inventory file is customized for the Playbooks we used in this solution for preparing nodes and installing

OpenShift Container Platform. The inventory file also describes the configuration of our OCP cluster and

include/exclude additional OCP components and their configurations.

Table 9 table lists the sections used in the inventory file.

 Inventory File Sections and their Descriptions Table 9

Sections Description

[OSEv3:children]

- This section defines set of target systems on which Playbook tasks will be executed

- Target system groups used in this solution are masters, nodes, etcd, lb, local and

glusterfs

- glusterfs host group are the storage nodes hosting CNS and Container Registry storage

services

[OSEv3:vars]

- This section is used for defining OCP Cluster variables

- These are environmental variable that are used during Ansible install and applied globally to the

OCP cluster

[local]

- This host group points to the Bastion node

- All tasks assigned for host group local gets applied to Bastion node only

Deployment Hardware and Software

38

Sections Description

[masters] - All master nodes, master-0/1/2.ocp3.cisco.com are grouped under this section

[nodes]

- Host group contains definition of all nodes that are part of OCP cluster including master nodes

- Both `containerized` and `openshift_schedulable` is set to true except for master nodes

[etcd]

- Host group having nodes which will run etcd data store services

- In this solution master node co-host etcd data store as well

- Host names given are master-0/1/2.ocp3.cisco.com. These names will resolve to master node

hosts

[lb]

- This host group is for nodes which will run load-balancer OpenShift_loadbalancer/haproxy-

router

[glusterfs]

- All storage nodes are grouped together under this

- CNS services run on these nodes as glusterfs PODs

- `glusterfs_devices` variable is used to allocate physical storage JBOD devices for container-

native storage

[glusterfs_registry]

This will have entries for each node that will host glusterfs-backend registry and include

glusterfs_devices.

Table 10 lists the inventory key variables used in this solution and their descriptions.

 Inventory Key Variables Used in this Solution and Descriptions Table 10

Key Variables Description

deployment_type=openshift-enterprise

openshift_release=v3.9

os_sdn_network_plugin_name ='redhat/openshift-ovs-

multitenant'

- With this variable OpenShift Container Platform gets

deployed

- OCP release version as used in this solution

- This variable configures which OpenShift SDN plug-in to

use for the pod network, which defaults to redhat/openshift-

ovs-subnet for the standard SDN plug-in. `redhat/openshift-

ovs-multitenant` value enable multi-tenanc

openshift_hosted_manage_registry=true

openshift_hosted_registry_storage_kind=glusterfs

openshift_hosted_registry_storage_volume_size=30Gi

- These variables make Ansible Playbook to install

OpenShift managed internal image registry

- Storage definition for the image repository. In our

Solution we use GlusterFS as back-end storage

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/#architecture-additional-concepts-sdn

Deployment Hardware and Software

39

Key Variables Description

- Pre-provisioned Volume size for the repo.

openshift_master_dynamic_provisioning_enabled=True

openshift_storage_glusterfs_storageclass=true

openshift_storage_glusterfs_storageclass_default=true

openshift_storage_glusterfs_block_deploy=false

- To enable dynamic storage provisioning while cluster is

getting deployed and any subsequent application pod

requiring persistent volume/persistent volume claim

- To create a storage class. In this solution we rely on a

single default storage class, as we have a single 3 node

storage cluster have identical set of internal drives

- Making storage class default, so that PV/PVC can be

provisioned through CNS by provisioner plugin. In our solution

its kubernetes.io/glusterfs

Below is the sample inventory file used in this reference architecture:

 [root@bastion ansible]# cat /etc/ansible/hosts

[OSEv3:children]

ansible

masters

infras

apps

etcd

nodes

lb

glusterfs

glusterfs_registry

[OSEv3:vars]

ansible_ssh_user=root

deployment_type=openshift-enterprise

debug_level=2

openshift_release="3.9"

openshift_enable_service_catalog=false

#ansible_become=true

See https://access.redhat.com/solutions/3480921

oreg_url=registry.access.redhat.com/openshift3/ose-${component}:${version}

#openshift_examples_modify_imagestreams=true

openshift_disable_check=docker_image_availability

console_port=8443

openshift_debug_level="{{ debug_level }}"

openshift_node_debug_level="{{ node_debug_level | default(debug_level,true) }}"

openshift_master_debug_level="{{ master_debug_level |default(debug_level, true) }}"

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true',

'kind': 'HTPasswdPasswordIdentityProvider', 'filename': '/etc/origin/master/htpasswd'}]

openshift_hosted_router_replicas=3

openshift_master_cluster_method=native

openshift_enable_service_catalog=false

osm_cluster_network_cidr=172.16.0.0/16

Deployment Hardware and Software

40

openshift_node_local_quota_per_fsgroup=512Mi

openshift_cloudprovider_vsphere_username="administrator@vsphere.local"

openshift_cloudprovider_vsphere_password="<password>"

openshift_cloudprovider_vsphere_host="ocp-vcenter.aflexpod.cisco.com"

openshift_cloudprovider_vsphere_datacenter=OCP-Datacenter

openshift_cloudprovider_vsphere_cluster=OCP-Cluster

openshift_cloudprovider_vsphere_resource_pool=ocp39

openshift_cloudprovider_vsphere_datastore="datastore4"

openshift_cloudprovider_vsphere_folder="ocp39"

openshift_cloudprovider_vsphere_template="Rhel75"

openshift_cloudprovider_vsphere_vm_network="VM Network"

openshift_cloudprovider_vsphere_vm_netmask="255.255.255.0"

openshift_cloudprovider_vsphere_vm_gateway="10.1.166.1"

openshift_cloudprovider_vsphere_vm_dns="10.1.166.9"

default_subdomain=ocp3.cisco.com

load_balancer_hostname=openshift.ocp3.cisco.com

openshift_master_cluster_hostname="{{ load_balancer_hostname }}"

openshift_master_cluster_public_hostname="{{ load_balancer_hostname }}"

openshift_master_default_subdomain="apps.ocp3.cisco.com"

os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

osm_use_cockpit=false

openshift_clock_enabled=true

CNS registry storage

openshift_hosted_registry_replicas=3

openshift_registry_selector="region=infra"

openshift_hosted_registry_storage_kind=glusterfs

openshift_hosted_registry_storage_volume_size=30Gi

CNS storage cluster for applications

openshift_storage_glusterfs_namespace=app-storage

openshift_storage_glusterfs_storageclass=true

openshift_storage_glusterfs_block_deploy=false

CNS storage for OpenShift infrastructure

openshift_storage_glusterfs_registry_namespace=infra-storage

openshift_storage_glusterfs_registry_storageclass=false

openshift_storage_glusterfs_registry_block_deploy=true

openshift_storage_glusterfs_registry_block_storageclass=true

openshift_storage_glusterfs_registry_block_storageclass_default=true

openshift_storage_glusterfs_registry_block_host_vol_create=true

openshift_storage_glusterfs_registry_block_host_vol_size=100

red hat subscription name and password

rhsub_user=<username>

rhsub_pass=<password>

rhsub_pool=<pool-id>

#registry

openshift_public_hostname=openshift.ocp3.cisco.com

[ansible]

localhost

[masters]

master-0.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.110

master-1.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.111

master-2.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.112

[infras]

infra-0.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.113

infra-1.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.114

infra-2.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.115

[apps]

Deployment Hardware and Software

41

app-0.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" ipv4addr=10.1.166.116

app-1.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" ipv4addr=10.1.166.117

app-2.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" ipv4addr=10.1.166.118

[etcd]

master-0.ocp3.cisco.com

master-1.ocp3.cisco.com

master-2.ocp3.cisco.com

[lb]

haproxy-0.ocp3.cisco.com openshift_node_labels="{'region': 'haproxy'}" ipv4addr=10.1.166.119

[storage]

storage-01.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.120

storage-02.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.121

storage-03.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" ipv4addr=10.1.166.122

[nodes]

master-0.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-0.ocp3.cisco.com

master-1.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-1.ocp3.cisco.com

master-2.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-2.ocp3.cisco.com

infra-0.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

0.ocp3.cisco.com

infra-1.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

1.ocp3.cisco.com

infra-2.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

2.ocp3.cisco.com

app-0.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-0.ocp3.cisco.com

app-1.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-1.ocp3.cisco.com

app-2.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-2.ocp3.cisco.com

storage-01.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

01.ocp3.cisco.com

storage-02.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

02.ocp3.cisco.com

storage-03.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

03.ocp3.cisco.com

[glusterfs]

storage-01.ocp3.cisco.com glusterfs_devices='[

"/dev/sde","/dev/sdf","/dev/sdg","/dev/sdh","/dev/sdi","/dev/sdj"]'

storage-02.ocp3.cisco.com glusterfs_devices='[

"/dev/sde","/dev/sdf","/dev/sdg","/dev/sdh","/dev/sdi","/dev/sdj"]'

storage-03.ocp3.cisco.com glusterfs_devices='[

"/dev/sde","/dev/sdf","/dev/sdg","/dev/sdh","/dev/sdi","/dev/sdj"]'

[glusterfs_registry]

infra-0.ocp3.cisco.com glusterfs_devices='["/dev/sdd"]'

infra-1.ocp3.cisco.com glusterfs_devices='["/dev/sdd"]'

infra-2.ocp3.cisco.com glusterfs_devices='["/dev/sdd"]'

[root@dephost ansible]#

 For simplicity, we used htpasswd utility for authenticating users to log into Red Hat OpenShift Container

Platform. However, existing authentication methods like LDAP, AD, etc., can also be used.

For more information about various OpenShift environment variables, see:

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-

single/installation_and_configuration/#configuring-ansible

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-ansible
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/installation_and_configuration/#configuring-ansible

Deployment Hardware and Software

42

Red Hat OpenShift Container Platform Instance Creation

In this section, the following instance will be created:

 1 x bastion, 3 x masters, 3 x infra, 3 x app, and 1 x haproxy

etcd requires that an odd number of cluster members exist. For collocating etcd with master nodes, three

masters were chosen to support high availability and etcd clustering. Three infrastructure instances allow for

minimal to zero downtime for applications running in the OpenShift environment. Applications instance can

be one to many instances depending on the requirements of the organization.

 When you scale, more infra and app nodes can be added after the initial installation.

yum install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

yum install -y python2-pyvmomi

cd /etc/ansible

git clone -b vmw-3.9 https://github.com/openshift/openshift-ansible-contrib

Run the following command:

 Before running the prod.yaml as mentioned below, it is important that all the FQDNs are added in DNS

server. Once the instance is provisioned, IP is assigned, and hostname is configured, prod.yaml playbook

ssh to these nodes to perform Ansible tasks. By now having the entry in DNS server will fail those tasks by

issuing error fatal: [master-0.ocp3.cisco.com]: UNREACHABLE! => {"changed": false, "msg": "Failed to

connect to the host via ssh: ssh: connect to host master-0.ocp3.cisco.com port 22: Connection timed

out\r\n", "unreachable": true}

ansible-playbook openshift-ansible-contrib/reference-architecture/vmware-ansible/playbooks/prod.yaml

For haproxy instance, run the following command:

$ ansible-playbook openshift-ansible-contrib/reference-architecture/vmware-ansible/playbooks/haproxy.yaml

 Prod.yaml runs tasks in /etc/ansible/openshift-ansible-contrib/reference-architecture/vmware-

ansible/playbooks/roles/create-vm-prod-ose/tasks/main.yaml file. Some of the values in this file are com-

ing from inventory file /etc/ansible/hosts while some are fixed such as disk size, instance memory, and

CPU. However, based on the need of different VM configuration, you may need to modify the main.yaml

file.

Below is the summary of the Red Hat OpenShift Platform vSphere instance creation playbook.

 The following steps do not need to be performed. Prod.yaml play book performs these tasks. However, if

one or more of the tasks fail for some reason, these steps are useful for troubleshooting purposes.

1. Register with Red Hat subscription manager.

2. Enable the required repositories and disable the repositories that should not be enabled.

3. Setup vmware guest instance by installing prerequisites packages, such as open-vm-tools, PyYAML,

perl, net-tools, chrony, python-six, iptables, iptables-services, and docker.

https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
https://github.com/openshift/openshift-ansible-contrib

Deployment Hardware and Software

43

 Except docker, all other pre-requisite packages are already installed in VM template. Therefore,

they will be skipped after making sure all prerequisites packages are installed.

4. Create a docker storage setup file as follows and start docker service:

cat /etc/sysconfig/docker-storage-setup

DEVS="/dev/sdb"

VG="docker-vol"

DATA_SIZE="95%VG"

STORAGE_DRIVER=overlay2

CONTAINER_ROOT_LV_NAME="dockerlv"

CONTAINER_ROOT_LV_MOUNT_PATH="/var/lib/docker"

 The /etc/sysconfig/docker-storage-setup file must be created before starting the docker service,

otherwise the storage is configured using a loopback device. The container storage setup is per-

formed on all hosts running containers, therefore masters, infrastructure, and application nodes.

5. A VMDK volume should be created for the directory of /var/lib/origin/openshift.local.volumes that is used

with the perFSGroup setting at installation and with the mount option of gquota. These settings and vol-

umes set a quota to make sure that the containers cannot grow to an unreasonable size. Create

openshift-volume-quota by creating filesystem for /var/lib/origin/openshift.local.volumes

 The value of OpenShift local volume size should be at least 30 GB.

6. Create fstab entry as shown below and mount the fstab entry:

cat /etc/fstab

/etc/fstab

Created by anaconda on Sat Feb 20 16:27:06 2010

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

/dev/mapper/rhel-root / xfs defaults 0 0

UUID=6a562c8a-f543-4851-bca1-1be97b64f18c /boot xfs defaults 0 0

/dev/mapper/rhel-swap swap swap defaults 0 0

/dev/sdc /var/lib/origin/openshift.local.volumes xfs gquota 0 0

To create the master prerequisites, complete the following steps. (These are only performed on master

nodes.)

1. Install git.

2. Setup etcd storage. A VMDK volume should be created on the master instances for the storage of

/var/lib/etcd. Storing etcd allows the similar benefit of protecting /var but more importantly provides the

ability to perform snapshots of the volume when performing etcd maintenance. Create lvm volume and

create local partition on lvm lv.

3. Create the following fstab entry and mount the fstab:

/dev/etcd_vg/etcd_lv /var/lib/etcd xfs defaults 0 0

Figure 16 shows the VM instances created as a result of ansible playbook.

Deployment Hardware and Software

44

Figure 16 RHOCP Instances

Setup DRS Anti-Affinity Rules

Create a DRS anti-affinity rules to ensure maximum availability for the cluster before you begin the

deployment. To setup DRS anti-affinity rules, complete the following steps:

1. Open the VMware vCenter web client, select the cluster. Click Configure tab and select VM/Host Rules

as shown.

Deployment Hardware and Software

45

Figure 17 Configure Cluster for VM/Host Rules

2. Click + Add to Create VM/Host Rule

3. Type Rule name such as master-away in this case. Make sure rule is enabled. Click + Add and select

master-0, master-1, master-2 from Add Virtual Machine pop-up. Click OK to create the rule.

Figure 18 Create VM/Host Rule

Deployment Hardware and Software

46

 See https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-

7297C302-378F-4AF2-9BD6-6EDB1E0A850A.html for detailed information about creating and configur-

ing affinity rules.

Configure VM Latency Sensitivity

Configure all of the VMs created to High VM Latency ass recommended by VMware for latency sensitive

workloads.

To configure VM Latency Sensitivity, complete the following steps:

1. Open the VMware vCenter web client. Right-click VM and select Edit Settings.

2. Select VM Options tab in Edit Settings window.

3. Under VM Options tab, expand Advanced.

4. Select the 'Latency Sensitivity' dropdown and select 'High' as shown in below Figure. Click OK.

Figure 19 VMware High Latency

Red Hat OpenShift Platform Storage Node Setup

In this section, three storage nodes will be setup in Cisco UCS C240M5 Servers.

https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-7297C302-378F-4AF2-9BD6-6EDB1E0A850A.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-7297C302-378F-4AF2-9BD6-6EDB1E0A850A.html

Deployment Hardware and Software

47

Creating Storage Profile

Storage Profiles provide a systematic way to automate the steps for provisioning Disk Groups, RAID Levels,

LUNs, boot drives, hot spares, and other related resources. They are used in combination with Service

Profile Templates to map the associations between logically defined storage resources and servers.

Having a Storage Profile created will reduce the task of configuring two virtual disks in the RAID Controller

Option ROM or create a custom file system layout at the time of OS installation.

In this reference architecture, we used C240M5 servers for storage nodes. Cisco UCS C240 M5 servers

support 26 drive bays. We populated 20 Intel S4500 Series SSDs to present them as JBOD disks in the

solution.

We created separate storage profiles C-Series nodes.

A Storage Profile is created with two local LUNs one each for boot and data. To create a storage profile,

complete the following steps:

1. Click Storage in the left Navigation pane.

2. Create a disk group policy by right clicking Storage Policies > root > Disk Group Policy.

3. Enter the Disk Group name (for example, OCP-Glstr-Boot). Keep the RAID Level as RAID 1 Mirrored.

4. Select Disk Group Configuration (Manual) radio button. Click + to add two slots; slot 25 and 26.

5. Click OK.

Figure 20 Create Disk Group Policy

6. Select Storage Profiles.

7. Right-click Storage Profiles and select Create Storage Profile.

8. Enter the name for the Storage Profile (for example, OCP-Glstr for Rack servers C240M5) as shown.

Deployment Hardware and Software

48

Figure 21 Create Storage Profile OCP-Glstr

9. Click Add to in the Local LUN tab. Select Create Local LUN radio button. Specify the LUN name for ex-

ample Boot-LUN, size 50GB, and select OCP-Glstr-Boot from Select Disk Group Configuration drop

down as shown.

10. Click OK to create Boot-LUN.

Figure 22 Create Local LUN

Deployment Hardware and Software

49

11. Repeat step 9 to create Docker LUN and OCP-LUN. Final output will look like as shown below.

12. Click OK to create storage profile with three LUNs; Boot, Docker, and OpenShift local.

Figure 23 Create Local LUN

Boot Policy for Storage Node

To create a boot policy for storage node, complete the following steps:

1. Click Servers in the left navigation pane. Expand Policies > root > Boot Policies. Right-click Boot Policies.

2. Provide a boot policy name (for example. Local-lun-boot).

3. Add Local LUN and Local CD/DVD in the boot order as shown below.

4. Click OK to create the boot policy.

Deployment Hardware and Software

50

Figure 24 Create Boot Policy Storage Nodes

 Boot, docker, and openshift volume LUNs can also be provided from already existing SAN. Boot Policy

should be configured by adding iSCSI Boot if IP based storage is configured using iSCSI or by adding SAN

boot if vHBAs are configured in the existing environment.

Service Profile Template for Storage Nodes

If Storage profile is used for booting the storage nodes, storage nodes service profile template, then Storage

provisioning should be configured with storage profile as shown in Figure 25.

Figure 25 Service Profile Template Storage Provisioning

Deployment Hardware and Software

51

Installation of Red Hat Enterprise Linux Operating System in Storage Nodes

To install the Operating System on the storage nodes, complete the following steps:

1. Download Red Hat Enterprise Linux 7.5 from http://access.redhat.com.

2. Complete the following to install Red Hat Enterprise Linux 7.5 OS.

3. From Cisco UCS Manager, click Servers > Service Profiles > Storage-01

4. Launch the KVM console from General tab. Click >> to launch Java JVM Console. Click OK.

5. In the KVM Console, select Activate Virtual Devices by clicking the Virtual Media drop-down list.

6. When the virtual devices get activated, select Map CD/DVD from the Virtual Media drop-down list.

7. Click Browse in the Virtual Media Map CD/DVD pop-up window.

http://access.redhat.com/

Deployment Hardware and Software

52

8. Locate the Red Hat Enterprise Linux Server 7.5 installer ISO image file and click Map Device as shown.

9. The image gets mapped to CD/DVD.

10. Click the Reset on the menu bar. Click Power Cycle. Click OK.

11. In KVM window, monitor the reboot. On reboot, the machine detects the presence of the Red Hat Enter-

prise Linux Server 7.5 install media. At the prompt press F6 to select the Boot Device. Select Cisco

vKVM-Mapped vDVD and press Enter key.

12. Server will detect the installation media of RHEL 7.5

13. Press tab key for full configuration

14. Type the following and press the Enter key to proceed to installation.

rd.iscsi.ibft=1 net.ifnames=0 biosdevname=0

Deployment Hardware and Software

53

15. Select Language and click Continue.

16. Click DATE & TIME.

Deployment Hardware and Software

54

17. Select Region and City in DATE & TIME screen and click Done.

Deployment Hardware and Software

55

18. Click INSTALLATION DESTINATION. Select boot LUN. Click Done.

19. Click Done on device selection for installation destination.

20. Click Done and click Begin Installation.

21. While the installation in is progress, click ROOT PASSWORD to assert a password and then click User

Creation to set user credentials.

Deployment Hardware and Software

56

22. When the installation is complete, click Reboot.

Configure Storage Node Interfaces for RHOCP

To configure the storage node interfaces for RHOCP, complete the following steps:

1. Add vlan tag interface in all three storage nodes as below. Assign the respective IP addresses to each

storage node:

nmcli con add type vlan ifname vlan117 dev eth0 id 117 ip4 10.1.166.120/24 \

Deployment Hardware and Software

57

gw4 10.1.166.1

nmcli con show

[root@storage-01 ~]# nmcli con show

NAME UUID TYPE DEVICE

eth0 5fb06bd0-0bb0-7ffb-45f1-d6edd65f3e03 ethernet eth0

vlan-vlan117 0cfc3855-bf9d-4c10-952b-fc284d4cd885 vlan vlan117

2. Interface configuration will look like as below:

[root@storage-01 ~]#

[root@storage-01 ~]# cat /etc/sysconfig/network-scripts/ifcfg-eth0

TYPE=Ethernet

BOOTPROTO=none

DEFROUTE=yes

NAME=eth0

DEVICE=eth0

ONBOOT=yes

[root@storage-01 ~]# cat /etc/sysconfig/network-scripts/ifcfg-vlan-vlan117

VLAN=yes

TYPE=Vlan

PHYSDEV=eth0

VLAN_ID=117

REORDER_HDR=yes

GVRP=no

MVRP=no

PROXY_METHOD=none

BROWSER_ONLY=no

BOOTPROTO=none

IPADDR=10.1.166.120

PREFIX=24

GATEWAY=10.1.166.1

DNS1=10.1.166.120

DNS2=10.1.166.9

DEFROUTE=yes

IPV4_FAILURE_FATAL=no

IPV6INIT=yes

IPV6_AUTOCONF=yes

IPV6_DEFROUTE=yes

IPV6_FAILURE_FATAL=no

IPV6_ADDR_GEN_MODE=stable-privacy

NAME=vlan-vlan117

UUID=0cfc3855-bf9d-4c10-952b-fc284d4cd885

DEVICE=vlan117

ONBOOT=yes

NM_CONTROLLED=yes

[root@storage-01 ~]#

3. Configure host name for storage nodes by running the following command:

hostnamectl set-hostname storage-01.ocp3.cisco.com

Creating an SSH Keypair for Ansible

After all the VMs and Cisco UCS C240 Servers are deployed successfully. The VMware infrastructure

In the bastion instance, complete the following steps:

1. Generate a new SSH key to be used for authentication.

$ ssh-keygen -N '' -f ~/.ssh/id_rsa

Generating public/private rsa key pair.

Created directory '/root/.ssh'.

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

Deployment Hardware and Software

58

SHA256:aaQHUf2rKHWvwwl4RmYcmCHswoouu3rdZiSH/BYgzBg root@ansible-test

The key's randomart image is:

+---[RSA 2048]----+

| .. o=.. |

|E ..o.. . |

| * |

|. * o +=. . |

|.. + o.=S . |

|o + =o= . . |

|. . * = = + |

|... . B . = . |

+----[SHA256]-----+

2. Add the ssh keys to all the deployed virtual machines and storage bare-metal nodes via ssh-copy-id or

to the template prior to deployment as shown below:

[root@bastion ansible]# MASTERS="master-0 master-1 master-2"

[root@bastion ansible]# INFRA_NODES="infra-0 infra-1 infra-2"

[root@bastion ansible]# APP_NODES="app-0 app-1 app-2"

[root@bastion ansible]# STORAGE_NODES="storage-01 storage-02 storage-03"

[root@bastion ansible]# ALL_HOSTS="$MASTERS $INFRA_NODES $APP_NODES $STORAGE_NODES"

[root@bastion ansible]# for H in $ALL_HOSTS ; do ssh-copy-id -i ~/.ssh/id_rsa.pub root@$H; done

3. Verify ssh by the running the following command for Ansible. Ensure all virtual nodes (master, infra, and

app) and physical storage nodes are accessible via Ansible through fully qualified domain names.

ssh master-0

4. Make sure there is connectivity to all instances via bastion node as follows:

[root@bastion ansible]# ansible all -m ping

storage-02.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

storage-01.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

storage-03.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

master-0.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

master-1.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

localhost | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

infra-0.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

Deployment Hardware and Software

59

master-2.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

infra-1.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

app-0.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

infra-2.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

app-1.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

haproxy-0.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

app-2.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

[root@bastion ansible]#

Configure and Install Prerequisites for Storage Nodes

To verify the following prerequisites in storage nodes before proceeding for RHOCP deployment, complete

the following steps:

1. Verify storage nodes are accessible via Ansible.

[root@bastion ansible]# ansible storage -m ping

storage-02.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

storage-03.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

storage-01.ocp3.cisco.com | SUCCESS => {

 "changed": false,

 "failed": false,

 "ping": "pong"

}

2. Register storage nodes with Red Hat subscription and enable required repositories

ansible storage -m command -a "subscription-manager register --username <user-name> --password

'<password>’"

ansible all -m command -a "subscription-manager attach --pool=<pool-id>"

ansible storage -m command -a "subscription-manager repos --disable='*'"

Deployment Hardware and Software

60

ansible storage -m command -a "subscription-manager repos --enable="rhel-7-server-rpms" --enable="rhel-

7-server-extras-rpms" --enable="rhel-7-server-ose-3.9-rpms" --enable="rhel-7-fast-datapath-rpms" --

enable="rhel-7-server-ansible-2.4-rpms""

 If the system is slow, registration will fail with the following:

Registering to: subscription.rhsm.redhat.com:443/subscription. Unable to verify server's identity: [SSL:

CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:579) non-zero return code.

3. Install prerequisites packages such as PyYAML, perl, net-tools, chrony, python-six, iptables, iptables-

services, docker:

ansible storage -m command -a “yum install -y PyYAML perl net-tools chrony python-six iptables

iptables-services”

4. Create a docker-storage-setup file in bastion node with the following contents and copy it in

/etc/sysconfig/ in all storage nodes:

vi docker-storage-setup

DEVS="/dev/sdb"

VG="docker-vol"

DATA_SIZE="95%VG"

STORAGE_DRIVER=overlay2

CONTAINER_ROOT_LV_NAME="dockerlv"

CONTAINER_ROOT_LV_MOUNT_PATH="/var/lib/docker"

for H in $STORAGE_NODES ; do echo “Copying to-->”$H; scp ~/docker-storage-setup

root@$H:/etc/sysconfig/.; done

5. Setup OpenShift local volume:

ansible storage -m command -a “mkfs -t xfs /dev/sdc”

6. Create an fstab entry for OpenShift local volume:

ansible storage -m command -a “echo ‘/dev/sdc /var/lib/origin/openshift.local.volumes xfs gquota 0 0’

>> /etc/fstab”

[root@bastion ansible]# ansible storage -m command -a "cat /etc/fstab"

storage-03.ocp3.cisco.com | SUCCESS | rc=0 >>

/etc/fstab

Created by anaconda on Wed Aug 8 15:54:42 2018

Accessible filesystems, by reference, are maintained under '/dev/disk'

See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info

/dev/mapper/rhel-root / xfs defaults 0 0

UUID=e561477b-4e29-4cb3-8394-d20b42fcef5f /boot xfs defaults 0 0

/dev/mapper/rhel-home /home xfs defaults 0 0

#/dev/mapper/rhel-swap swap swap defaults 0 0

/dev/sdc /var/lib/origin/openshift.local.volumes xfs gquota 0 0

--- ouput truncated.

7. Mount the file system mentioned in fstab:

#ansible storage -m command -a “mount -a”

8. Start and verify the docker service:

ansible storage -m command -a "systemctl start docker"

ansible storage -m command -a "systemctl status docker"

Deployment Hardware and Software

61

Instance Verification

It can be useful to check for potential issues or misconfigurations in the instances before continuing the

installation process. Connect to every instance using the deployment host and verify the disks are properly

created and mounted:

$ ssh master-0.ocp3.cisco.com

$ lsblk

$ sudo journalctl

$ free -m

$ cat /etc/sysconfig/docker-storage-setup

$ cat /etc/fstab

$ sudo yum repolist

Where the instance is master-0.ocp3.cisco.com

For reference, the following is an example output of lsblk for the master nodes:

 [root@master-0 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

├─sda1 8:1 0 1G 0 part /boot

└─sda2 8:2 0 49G 0 part

 ├─rhel-root 253:0 0 45.1G 0 lvm /

 └─rhel-swap 253:1 0 3.9G 0 lvm [SWAP]

sdb 8:16 0 40G 0 disk

└─sdb1 8:17 0 40G 0 part

 └─docker--vol-dockerlv 253:2 0 40G 0 lvm /var/lib/docker

sdc 8:32 0 40G 0 disk /var/lib/origin/openshift.local.volumes

sdd 8:48 0 40G 0 disk

└─etcd_vg-etcd_lv 253:3 0 38G 0 lvm /var/lib/etcd

sr0 11:0 1 4.3G 0 rom

[root@master-0 ~]#

For reference, the following is an example of output of lsblk for the infra and app nodes:

 [root@infra-0 ~]# lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 60G 0 disk

├─sda1 8:1 0 1G 0 part /boot

└─sda2 8:2 0 49G 0 part

 ├─rhel-root 253:0 0 45.1G 0 lvm /

 └─rhel-swap 253:1 0 3.9G 0 lvm [SWAP]

sdb 8:16 0 40G 0 disk

└─sdb1 8:17 0 40G 0 part

 └─docker--vol-dockerlv 253:2 0 40G 0 lvm /var/lib/docker

sdc 8:32 0 40G 0 disk /var/lib/origin/openshift.local.volumes

sdd 8:48 0 300G 0 disk

sr0 11:0 1 4.3G 0 rom

[root@infra-0 ~]#

Red Hat OpenShift Container Platform Prerequisites Playbook

The Red Hat OpenShift Container Platform Ansible installation provides a playbook to ensure all prerequisites

are met prior to the installation of Red Hat OpenShift Container Platform. This includes steps such as

registering all the nodes with Red Hat Subscription Manager and setting up the docker on the docker

volumes. The playbook also skips if anything is found already configured and installed. Playbook will also

report any error if occurs.

Run the prerequisites ansible-playbook on the bastion node to help ensure all the prerequisites are met

using prerequisites.yml playbook as shown in Figure 26:

Deployment Hardware and Software

62

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

Figure 26 Prerequisites Playbook

Deploying Red Hat OpenShift Container Platform

With the prerequisites met, the focus shifts to the installation of Red Hat OpenShift Container Platform. The

installation and configuration is done via a series of Ansible playbooks and roles provided by the OpenShift

RPM packages.

Deploy Red Hat OpenShift Container Platform by running the installer playbook as shown below:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

The playbook will run through several tasks while installing Red Hat OpenShift Container Platform. It will

report any errors if occur. Figure 27 shows the successful output of the playbook. For detailed information

about the tasks, use the -vvv option as shown below:

ansible-playbook -vvv /usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

Deployment Hardware and Software

63

Figure 27 Deploy Red Hat OpenShift Container Platform Playbook Output

Functional Validation

In this section, you will go through a series of deployment verification tasks; these include both UI and CLI

tasks. After the installation has completed successfully, complete the following steps:

1. Verify if the master is started and nodes are registered and reporting `Ready` status. On one of the mas-

ter node, run the following as root:

[root@master-1 ~]# oc get nodes

NAME STATUS ROLES AGE VERSION

app-0.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

app-1.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

app-2.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

infra-0.ocp3.cisco.com Ready <none> 26d v1.9.1+a0ce1bc657

infra-1.ocp3.cisco.com Ready <none> 26d v1.9.1+a0ce1bc657

infra-2.ocp3.cisco.com Ready <none> 26d v1.9.1+a0ce1bc657

master-0.ocp3.cisco.com Ready master 26d v1.9.1+a0ce1bc657

master-1.ocp3.cisco.com Ready master 26d v1.9.1+a0ce1bc657

master-2.ocp3.cisco.com Ready master 26d v1.9.1+a0ce1bc657

storage-01.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

storage-02.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

storage-03.ocp3.cisco.com Ready compute 26d v1.9.1+a0ce1bc657

[root@master-1 ~]#

 In order to provide `admin` user cluster-admin role, execute following command on the master

node:

[root@OCP-Mstr-1 ~]# oc adm policy add-cluster-role-to-user cluster-admin admin --

as=system:admin

cluster role "cluster-admin" added: "admin"

This allows admin user to act as cluster-admin user and can manage cluster wide projects.

Deployment Hardware and Software

64

2. Verify services:

[root@master-1 ~]# oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

docker-registry ClusterIP 172.30.200.159 <none> 5000/TCP 26d

glusterfs-registry-endpoints ClusterIP 172.30.97.152 <none> 1/TCP 26d

kubernetes ClusterIP 172.30.0.1 <none> 443/TCP,53/UDP,53/TCP 26d

registry-console ClusterIP 172.30.122.27 <none> 9000/TCP 26d

router ClusterIP 172.30.253.218 <none> 80/TCP,443/TCP,1936/TCP 26d

[root@master-1 ~]#

3. Verify hxproxy-0 instance is up and running and /etc/haproxy/haproxy.cfg file matches with the following

and haproxy service is running before validating web console. It is also important to note that

openshift.ocp3.cisco.com is resolving to haproxy IP address in DNS records.

 [root@haproxy-0 ~]# cat /etc/haproxy/haproxy.cfg

Global settings

#---

global

 maxconn 20000

 log /dev/log local0 info

 chroot /var/lib/haproxy

 pidfile /var/run/haproxy.pid

 user haproxy

 group haproxy

 daemon

 # turn on stats unix socket

 stats socket /var/lib/haproxy/stats

#---

common defaults that all the 'listen' and 'backend' sections will

use if not designated in their block

#---

defaults

mode http

 log global

 option httplog

 option dontlognull

 option http-server-close

option forwardfor except 127.0.0.0/8

 option redispatch

 retries 3

 timeout http-request 10s

 timeout queue 1m

 timeout connect 10s

 timeout client 300s

 timeout server 300s

 timeout http-keep-alive 10s

 timeout check 10s

 maxconn 20000

listen stats

 bind :9000

 mode http

 stats enable

 stats uri /

frontend main_80

 bind *:80

 default_backend router80

 mode tcp

 option tcplog

backend router80

 balance source

 mode tcp

 # INFRA_80

 server infra-0.ocp3.cisco.com 10.1.166.113:80 check

Deployment Hardware and Software

65

 server infra-1.ocp3.cisco.com 10.1.166.114:80 check

 server infra-2.ocp3.cisco.com 10.1.166.115:80 check

frontend main_443

 bind *:443

 default_backend router443

 mode tcp

 option tcplog

backend router443

 balance source

 mode tcp

INFRA_443

 server infra-0.ocp3.cisco.com 10.1.166.113:443 check

 server infra-1.ocp3.cisco.com 10.1.166.114:443 check

 server infra-2.ocp3.cisco.com 10.1.166.115:443 check

frontend main_8443

 bind *:8443

 default_backend mgmt8443

 mode tcp

 option tcplog

backend mgmt8443

 balance source

 mode tcp

 # MASTERS_8443

 server master-0.ocp3.cisco.com 10.1.166.110:8443 check

 server master-1.ocp3.cisco.com 10.1.166.111:8443 check

 server master-2.ocp3.cisco.com 10.1.166.112:8443 check

[root@haproxy-0 ~]#

4. Verify if the web console is installed correctly. Use `openshift_master_cluster_public_hostname` value,

as defined in the inventory file, with the URL for web-console access:

https://openshift.ocp3.cisco.com:8443.

Figure 28 Red Hat OpenShift Container Platform Web Console

5. Login by providing Username and Password.

https://openshift.ocp3.cisco.com:8443/

Deployment Hardware and Software

66

Figure 29 OpenShift Container Platform Browser Catalog

6. Verify for OpenShift Integrated Container Registry console access, by clicking the registry console URL

as displayed on dashboard under default project:

Deployment Hardware and Software

67

Figure 30 OpenShift Integrated Container Registry Console

7. Verify the etcd cluster health and membership status. Login to one of the master node and run following

commands:

 [root@master-1 ~]# etcdctl -C https://master-0.ocp3.cisco.com:2379,https://master-

1.ocp3.cisco.com:2379,https://master-2.ocp3.cisco.com:2379 --ca-

file=/etc/origin/master/master.etcd-ca.crt --cert-file=/etc/origin/master/master.etcd-

client.crt --key-file=/etc/origin/master/master.etcd-client.key cluster-health

Figure 31 shows the healthy status of the etcd cluster.

Figure 31 ETCD Cluster Health

8. Verify the member list by running the following command:

Deployment Hardware and Software

68

 [root@master-1 ~]# etcdctl -C https://master-0.ocp3.cisco.com:2379,https://master-

1.ocp3.cisco.com:2379,https://master-2.ocp3.cisco.com:2379 --ca-file=/etc/origin/master/master.etcd-

ca.crt --cert-file=/etc/origin/master/master.etcd-client.crt --key-file=/etc/origin/master/master.etcd-

client.key member list

Figure 32 shows the etcd member list and mentions which node is participating as a leader.

Figure 32 ETCD Member List

9. Follow these instructions to setup OpenShift client

further validate the deployment:

a. Download and install OpenShift v3.9 Linux Client from this

URL: https://access.redhat.com/downloads/content/290

b. Once downloaded extract the .tar file and also copy it in /usr/bin and /usr/sbin folder as shown be-

low.

[root@bastion oc]# tar -xvf oc-3.9.33-linux.tar.gz

[root@bastion oc]# ls

oc oc-3.9.33-linux.tar.gz

[root@bastion oc]# cp oc /usr/bin/.

[root@bastion oc]# cp oc /usr/sbin/.

c. Access OpenShift Web Console and click `?` on top right corner to get the authentication token as

shown below.

Figure 33 OpenShift Web Console - Command Line Tools

d. Copy login command with the token from the screenshot shown below:

https://access.redhat.com/downloads/content/290

Deployment Hardware and Software

69

Figure 34 Command Line Tools Login Command Copy to Clipboard

e. Use copied command on the Bastion node to login to OpenShift Container cluster:

[root@bastion oc]# oc login https://openshift.ocp3.cisco.com:8443 --

token=XRmWO_zw2eJ9zet7UG25OgMRfZLm_kxuFG7jzZFraMs

The server uses a certificate signed by an unknown authority.

You can bypass the certificate check, but any data you send to the server could be intercepted by others.

Use insecure connections? (y/n): y

Logged into "https://openshift.ocp3.cisco.com:8443" as "admin" using the token provided.

You have access to the following projects and can switch between them with 'oc project <projectname>':

 app-storage

 * default

 demo

 kube-public

 kube-system

 logging

 management-infra

 openshift

 openshift-infra

 openshift-node

 openshift-web-console

Using project "default".

Welcome! See 'oc help' to get started.

f. Login through cli client `oc` can be done without having to supply authentication token by using `in-

secure` connection as below. Here we need to provide username and password to login.

[root@bastion oc]# oc login https://openshift.ocp3.cisco.com:8443 --insecure-skip-tls-verify=true

Authentication required for https://openshift.ocp3.cisco.com:8443 (openshift)

Username: admin

Password:

Login successful.

You have access to the following projects and can switch between them with 'oc project <projectname>':

 app-storage

 * default

 demo

 kube-public

 kube-system

 logging

 management-infra

 openshift

Deployment Hardware and Software

70

 openshift-infra

 openshift-node

 openshift-web-console

Using project "default".

[root@bastion oc]#

g. Verify container native storage PODs and other resources are running:

 [root@bastion oc]# oc project app-storage

[root@bastion oc]# oc get all

h. Verify Gluster cluster status and storage resource health by logging in to one of the glusterfs-storage

pods:

[root@bastion oc]# oc rsh po/glusterfs-storage-5hszr

sh-4.2# gluster peer status

Number of Peers: 2

Hostname: 10.1.166.120

Uuid: a872255e-d85a-441c-aa90-2bc64887fdbe

State: Peer in Cluster (Connected)

Hostname: 10.1.166.122

Uuid: eec34aa6-5dbf-49e9-94ce-14f380e548e7

State: Peer in Cluster (Connected)

sh-4.2#

sh-4.2# gluster volume list

glusterfs-registry-volume

heketidbstorage

vol_1487d27ac9805062124758c1085f71c3

vol_58380614fe1181e20ade3a0c3b5e4783

vol_617f6754b3520b36740147c568c5eae1

Deployment Hardware and Software

71

vol_a5b2f2168b97888ed26ef584fa544698

vol_c6608b88db1ca2e15d4c7593b37474fd

sh-4.2#

sh-4.2# gluster pool list

UUID Hostname State

a872255e-d85a-441c-aa90-2bc64887fdbe 10.1.166.120 Connected

eec34aa6-5dbf-49e9-94ce-14f380e548e7 10.1.166.122 Connected

2a4c3e83-89b3-43c9-bc68-5dd95326bb45 localhost Connected

sh-4.2#

i. Verify Router and Registry Health, value in the DESIRED and CURRENT field should match:

[root@bastion oc]# oc -n default get deploymentconfigs/router

NAME REVISION DESIRED CURRENT TRIGGERED BY

router 1 3 3 config

[root@bastion oc]#

[root@bastion oc]# oc -n default get deploymentconfigs/docker-registry

NAME REVISION DESIRED CURRENT TRIGGERED BY

docker-registry 1 1 1 config

[root@bastion oc]#

j. Verify PODs are distributed on desired Infra nodes:

[root@bastion oc]# oc -n default get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

docker-registry-1-z8w57 1/1 Running 0 27d 172.16.4.9 infra-1.ocp3.cisco.com

registry-console-1-fs8qt 1/1 Running 0 27d 172.16.2.7 master-

0.ocp3.cisco.com

router-1-7kqxv 1/1 Running 0 27d 10.1.166.114 infra-1.ocp3.cisco.com

router-1-chtpg 1/1 Running 0 27d 10.1.166.113 infra-0.ocp3.cisco.com

router-1-nrtff 1/1 Running 0 27d 10.1.166.115 infra-2.ocp3.cisco.com

[root@bastion oc]#

Sample Application Test Scenario.

In this section, you will deploy a sample application to validate the complete environmental health of the

deployment.

1. - below:

[root@bastion oc]# oc new-project sample-test

Now using project "sample-test" on server "https://openshift.ocp3.cisco.com:8443".

You can add applications to this project with the 'new-app' command. For example, try:

 oc new-app centos/ruby-22-centos7~https://github.com/openshift/ruby-ex.git

to build a new example application in Ruby.

[root@bastion oc]#

2. Deploy a sample application `cakephp-mysql-example`:

[root@bastion oc]# oc new-app cakephp-mysql-example

--> Deploying template "openshift/cakephp-mysql-example" to project sample-test

 CakePHP + MySQL (Ephemeral)

 An example CakePHP application with a MySQL database. For more information about using this

template, including OpenShift considerations, see https://github.com/openshift/cakephp-

ex/blob/master/README.md.

 WARNING: Any data stored will be lost upon pod destruction. Only use this template for testing.

Deployment Hardware and Software

72

 The following service(s) have been created in your project: cakephp-mysql-example, mysql.

 For more information about using this template, including OpenShift considerations, see

https://github.com/openshift/cake-ex/blob/master/README.md.

 * With parameters:

 * Name=cakephp-mysql-example

 * Namespace=openshift

 * Memory Limit=512Mi

 * Memory Limit (MySQL)=512Mi

 * Git Repository URL=https://github.com/openshift/cakephp-ex.git

 * Git Reference=

 * Context Directory=

 * Application Hostname=

 * GitHub Webhook Secret=XdOl55T4ry4wG58hNrJINiBMXj6JH2yvKbFbvfhr # generated

 * Database Service Name=mysql

 * Database Engine=mysql

 * Database Name=default

 * Database User=cakephp

 * Database Password=QuCR3aD5j3gDKXBv # generated

 * CakePHP secret token=Og_nU4fJH7WGKlB1vVLpS8R2kQxa4Wp3KHzza5PA0bCGqIDOkp # generated

 * CakePHP Security Salt=tfh52qgntPPyHCoAmHh7qbycT3XD3nH2TnfWCyMM # generated

 * CakePHP Security Cipher Seed=656325452333584321308842208434 # generated

 * OPcache Revalidation Frequency=2

 * Custom Composer Mirror URL=

--> Creating resources ...

 secret "cakephp-mysql-example" created

 service "cakephp-mysql-example" created

 route "cakephp-mysql-example" created

 imagestream "cakephp-mysql-example" created

 buildconfig "cakephp-mysql-example" created

 deploymentconfig "cakephp-mysql-example" created

 service "mysql" created

 deploymentconfig "mysql" created

--> Success

 Access your application via route 'cakephp-mysql-example-sample-test.apps.ocp3.cisco.com'

 Build scheduled, use 'oc logs -f bc/cakephp-mysql-example' to track its progress.

 Run 'oc status' to view your app.

[root@bastion oc]#

3. After the successful build, we should see two POD running i.e. application POD and database POD as

shown below.

[root@bastion oc]# oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

cakephp-mysql-example-1-build 0/1 Completed 0 5m 172.16.20.18 storage-

02.ocp3. cisco.com

cakephp-mysql-example-1-x74gc 1/1 Running 0 4m 172.16.10.18 storage-

01.ocp3. cisco.com

mysql-1-pftpx 1/1 Running 0 5m 172.16.10.17 storage-

01.ocp3. cisco.com

[root@bastion oc]#

4. Verify to access the application via route 'cakephp-mysql-example-sample-test.apps.ocp3.cisco.com'

by copy and paste in the browser as shown below.

Deployment Hardware and Software

73

Figure 35 Access Application via Route cakephp-mysql-example-sample-test.apps.ocp3.cisco.com

Web Console UI Operations

To create a project and deploy a sample application from the service catalog, complete the following steps:

1. Select previously created project or create a new one. For example demo project under project-list

2. Create storage by clicking Storage in the left pane and Create Storage button on the right pane. Select

Storage Class, name of the PV claim, and size as shown below:

Deployment Hardware and Software

74

Figure 36 Create Persistent Storage

3. Browse Catalog by clicking Catalog in the left pane for MySQL. Click MySQL.

Figure 37 Browse Catalog for MySQL

Deployment Hardware and Software

75

4. MySQL Information screen will show up as shown below. Click Next

Figure 38 MySQL - Information

5. Specify database service name for example mysql in this case. Click Create

Deployment Hardware and Software

76

Figure 39 MySQL - Configuration

6. Click Close.

Deployment Hardware and Software

77

Figure 40 MySQL-Results

7. Verify persistent volume claim in mysql pod.

Figure 41 Pods > mysql Persistent Volume Claim

8. Browse Catalog for PHP application. Click PHP.

Deployment Hardware and Software

78

Figure 42 Catalog - PHP

9. Click Next on PHP information screen as shown below

Figure 43 PHP - Information

Deployment Hardware and Software

79

10. Specify the PHP application name, for example wordpress, in this case and git repository as

https://github.com/wordpress/wordpress. Click Create.

Figure 44 PHP Application Configuration

11. Wordpress PHP application is created as show below. Click Close.

Figure 45 WordPress PHP Application Results

12.

https://github.com/wordpress/wordpress

Deployment Hardware and Software

80

Figure 46 WordPress Application

As shown in Figure 46, the PHP pod is provisioned in storage node, such as storage-03.ocp3.cisco.com. As

mentioned previously in this document, Cisco C240 M5 nodes are not only providing GlusterFS, it is also

acting as compute nodes to provision pods. In this reference architecture, pods can be provisioned in

virtualized nodes as well as in bare-metal nodes.

13. Launch wordpress by clicking the Routes that is exposing this service as shown below:

Deployment Hardware and Software

81

Figure 47 Wordpress - Routes

14. Go to the Terminal of mysql to capture the mysql user and password that would be needed to configure

and install wordpress. This information is also available in the Results screen while create mysql pod.

Figure 48 MySQL Capture MySQL user and password

Deployment Hardware and Software

82

15. Configure wordpress for installation as shown below:

Figure 49 WordPress Configuration

16. Install wordpress by providing all required fields such as Site Title, Username, Password, and email ad-

dress.

Deployment Hardware and Software

83

Figure 50 WordPress Information for Installation

17. You will receive a successful installation notice and you are ready to login. Click Login and provide the

credentials used in setting up the installation in step 15. Figure 51 shows the WordPress Dashboard.

Deployment Hardware and Software

84

Figure 51 WordPress Dashboard

18. On , get the application pod and pvc status verified as shown below:

[root@bastion oc]# oc project demo

[root@bastion oc]# oc get pods -o wide|grep wordpress

wordpress-1-b7h45 1/1 Running 0 2h 172.16.22.17 storage-

03.ocp3.cisco.com

wordpress-1-build 0/1 Completed 0 2h 172.16.16.18 app-

1.ocp3.cisco.com

[root@bastion oc]#

[root@bastion oc]# oc get pvc|grep mysql

mysql Bound pvc-a969adab-9ff5-11e8-86cc-0050568a8862 1Gi

RWO glusterfs-storage 22m

[root@bastion oc]#

[root@bastion oc]# oc get pv | grep mysql

pvc-a969adab-9ff5-11e8-86cc-0050568a8862 1Gi RWO Delete Bound

demo/mysql glusterfs-storage 22m

[root@bastion oc]#

Scale the Environment

To add more master or app/infra nodes in the cluster, complete the following steps:

1. Add DNS record for the newly added node.

Deployment Hardware and Software

85

Figure 52 DNS Record for New Host

2. Create an inventory file for adding new nodes to be used by prod.yaml. This step provision VM instances

for new hosts. You can scale to more than one node at the same time by specifying the nodes. This file

can be created by copying the /etc/ansible/hosts file and update accordingly as shown in the below ex-

ample. Important entries have been highlighted in bold.

 [root@bastion ansible]# cat add-app-node

[OSEv3:children]

ansible

masters

infras

apps

etcd

nodes

lb

glusterfs

glusterfs_registry

[OSEv3:vars]

ansible_ssh_user=root

deployment_type=openshift-enterprise

debug_level=2

openshift_release="3.9"

openshift_enable_service_catalog=false

See https://access.redhat.com/solutions/3480921

oreg_url=registry.access.redhat.com/openshift3/ose-${component}:${version}

#openshift_examples_modify_imagestreams=true

openshift_disable_check=docker_image_availability

console_port=8443

openshift_debug_level="{{ debug_level }}"

openshift_node_debug_level="{{ node_debug_level | default(debug_level,true) }}"

openshift_master_debug_level="{{ master_debug_level |default(debug_level, true) }}"

openshift_master_identity_providers=[{'name': 'htpasswd_auth', 'login': 'true', 'challenge': 'true',

'kind': 'HTPasswdPasswordIdentityProvider', 'filename': '/etc/origin/master/htpasswd'}]

openshift_hosted_router_replicas=3

openshift_master_cluster_method=native

Deployment Hardware and Software

86

openshift_enable_service_catalog=false

osm_cluster_network_cidr=172.16.0.0/16

openshift_node_local_quota_per_fsgroup=512Mi

openshift_cloudprovider_vsphere_username="administrator@vsphere.local"

openshift_cloudprovider_vsphere_password="H1ghV0lt!"

openshift_cloudprovider_vsphere_host="ocp-vcenter.aflexpod.cisco.com"

openshift_cloudprovider_vsphere_datacenter=OCP-Datacenter

openshift_cloudprovider_vsphere_cluster=OCP-Cluster

openshift_cloudprovider_vsphere_resource_pool=ocp39

openshift_cloudprovider_vsphere_datastore="datastore4"

openshift_cloudprovider_vsphere_folder="ocp39"

openshift_cloudprovider_vsphere_template="Rhel75"

openshift_cloudprovider_vsphere_vm_network="VM Network"

openshift_cloudprovider_vsphere_vm_netmask="255.255.255.0"

openshift_cloudprovider_vsphere_vm_gateway="10.1.166.1"

openshift_cloudprovider_vsphere_vm_dns="10.1.166.9"

default_subdomain=ocp3.cisco.com

load_balancer_hostname=openshift.ocp3.cisco.com

openshift_master_cluster_hostname="{{ load_balancer_hostname }}"

openshift_master_cluster_public_hostname="{{ load_balancer_hostname }}"

openshift_master_default_subdomain="apps.ocp3.cisco.com"

os_sdn_network_plugin_name='redhat/openshift-ovs-multitenant'

osm_use_cockpit=false

openshift_clock_enabled=true

CNS registry storage

openshift_hosted_registry_replicas=1

openshift_registry_selector="region=infra"

openshift_hosted_registry_storage_kind=glusterfs

openshift_hosted_registry_storage_volume_size=30Gi

CNS storage cluster for applications

openshift_storage_glusterfs_namespace=app-storage

openshift_storage_glusterfs_storageclass=true

openshift_storage_glusterfs_block_deploy=false

CNS storage for OpenShift infrastructure

openshift_storage_glusterfs_registry_namespace=infra-storage

openshift_storage_glusterfs_registry_storageclass=false

openshift_storage_glusterfs_registry_block_deploy=true

openshift_storage_glusterfs_registry_block_storageclass=true

openshift_storage_glusterfs_registry_block_storageclass_default=true

openshift_storage_glusterfs_registry_block_host_vol_create=true

openshift_storage_glusterfs_registry_block_host_vol_size=100

red hat subscription name and password

rhsub_user=<username>

rhsub_pass=<password>

rhsub_pool=<pool-id>

#registry

openshift_public_hostname=openshift.ocp3.cisco.com

[ansible]

localhost

[masters]

[infras]

[apps]

app-3 openshift_node_labels="{'region': 'app'}" ipv4addr=10.1.166.123

Deployment Hardware and Software

87

[etcd]

[lb]

[storage]

[nodes]

app-3.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-3.ocp3.cisco.com

[glusterfs]

[glusterfs_registry]

[root@bastion ansible]#

3. Run the prod.yaml file as shown below:

[root@bastion ansible]# ansible-playbook -i add-app-node openshift-ansible-contrib/reference-

architecture/vmware-ansible/playbooks/prod.yaml

 If ssh key is not added in VM template via ssh-copy-id, playbook will

gathering facts for the authenticity of the newly created host. If prod.yaml playbook fails in estab-

lishing the authenticity of the host, launch the web console in vCenter and verify that IP address has

been assigned and host n # ip a hostnamectl status

command. Run # ansible -i add-app-node all -m ping to verify success and re-run the prod.yaml

playbook.

4. Verify VM in vCenter.

Figure 53 App-3 Instance Verification

5. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section:

 [OSEv3:children]

masters

nodes

new_nodes

6. To add new master hosts, add new_masters.

7. Create a [new_<host_type>] section much like an existing section, specifying host information for any

new hosts you want to add. For example, when adding a new node:

Deployment Hardware and Software

88

 [nodes]

master-0.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-0.ocp3.cisco.com

master-1.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-1.ocp3.cisco.com

master-2.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-2.ocp3.cisco.com

infra-0.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

0.ocp3.cisco.com

infra-1.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

1.ocp3.cisco.com

infra-2.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

2.ocp3.cisco.com

app-0.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-0.ocp3.cisco.com

app-1.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-1.ocp3.cisco.com

app-2.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-2.ocp3.cisco.com

storage-01.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

01.ocp3.cisco.com

storage-02.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

02.ocp3.cisco.com

storage-03.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

03.ocp3.cisco.com

[new_nodes]

app-3.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-3.ocp3.cisco.com

8. When adding new masters, hosts added to the [new_masters] section must also be added to

the [new_nodes] section. This helps ensure the new master host is part of the OpenShift SDN.

 [masters]

master-0.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.110

master-1.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.111

master-2.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.112

[new_masters]

master3.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" ipv4addr=10.1.166.124

[nodes]

master-0.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-0.ocp3.cisco.com

master-1.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-1.ocp3.cisco.com

master-2.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-2.ocp3.cisco.com

infra-0.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

0.ocp3.cisco.com

infra-1.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

1.ocp3.cisco.com

infra-2.ocp3.cisco.com openshift_node_labels="{'region': 'infra'}" openshift_hostname=infra-

2.ocp3.cisco.com

app-0.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-0.ocp3.cisco.com

app-1.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-1.ocp3.cisco.com

app-2.ocp3.cisco.com openshift_node_labels="{'region': 'app'}" openshift_hostname=app-2.ocp3.cisco.com

storage-01.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

01.ocp3.cisco.com

storage-02.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

02.ocp3.cisco.com

storage-03.ocp3.cisco.com openshift_node_labels="{'region': 'storage'}" openshift_hostname=storage-

03.ocp3.cisco.com

[new_nodes]

master-3.ocp3.cisco.com openshift_node_labels="{'region': 'master'}" openshift_schedulable=true

openshift_hostname=master-3.ocp3.cisco.com

9. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default

of /etc/ansible/hosts.

10. For additional nodes:

Deployment Hardware and Software

89

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-node/scaleup.yml

11. For additional masters:

ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-master/scaleup.yml

Figure 41 shows the successful output of scaleup.yml

Figure 54 Output of scaleup.yml

12. Verify the installation. ssh to one of the master nodes and run the following command.

 [root@master-0 ~]# oc get nodes

NAME STATUS ROLES AGE VERSION

app-0.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

app-1.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

app-2.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

app-3.ocp3.cisco.com Ready compute 4m v1.9.1+a0ce1bc657

infra-0.ocp3.cisco.com Ready <none> 27d v1.9.1+a0ce1bc657

infra-1.ocp3.cisco.com Ready <none> 27d v1.9.1+a0ce1bc657

infra-2.ocp3.cisco.com Ready <none> 27d v1.9.1+a0ce1bc657

master-0.ocp3.cisco.com Ready master 27d v1.9.1+a0ce1bc657

master-1.ocp3.cisco.com Ready master 27d v1.9.1+a0ce1bc657

master-2.ocp3.cisco.com Ready master 27d v1.9.1+a0ce1bc657

storage-01.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

storage-02.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

storage-03.ocp3.cisco.com Ready compute 27d v1.9.1+a0ce1bc657

[root@master-0 ~]#

13. Finally, move any hosts you had defined in the [new_<host_type>] section into their appropriate sec-

tion (but leave the [new_<host_type>] section definition itself in place) so that subsequent runs using

Deployment Hardware and Software

90

this inventory file are aware of the nodes but do not handle them as new nodes. For example, when add-

ing new nodes

Add Metrics to the Installation

1. After the installation has been completed, metrics can be added via the following process:

$ cat /etc/ansible/hosts

...omitted...

metrics

openshift_metrics_install_metrics=true

openshift_metrics_hawkular_nodeselector={"role":"infra"}

openshift_metrics_cassandra_nodeselector={"role":"infra"}

openshift_metrics_heapster_nodeselector={"role":"infra"}

openshift_metrics_cassanda_pvc_storage_class_name="glusterfs-registryblock"

openshift_metrics_cassandra_pvc_size=25Gi

openshift_metrics_storage_kind=dynamic

...omitted...

2. Run the following playbook:

$ ansible-playbook /usr/share/ansible/openshiftansible/playbooks/openshift-metrics/config.yml

Add Logging to the Installation

To add logging, complete the following steps:

1. Configure /etc/ansible/hosts file with the following:

$ cat /etc/ansible/hosts

...omitted...

logging

openshift_logging_install_logging=true

openshift_logging_es_cluster_size=3

openshift_logging_es_nodeselector={"role":"infra"}

openshift_logging_kibana_nodeselector={"role":"infra"}

openshift_logging_curator_nodeselector={"role":"infra"}

openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block"

openshift_logging_es_pvc_size=10Gi

openshift_logging_storage_kind=dynamic

2. Run the following playbook to add logging:

$ ansible-playbook /usr/share/ansible/openshiftansible/playbooks/openshift-logging/config.yml

Resources

91

Resources

Cisco UCS Infrastructure for Red Hat OpenShift Container Platform Deployment Guide:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift.html

Deploying and Managing OpenShift 3.9 on VMware vSphere: https://access.redhat.com/documentation/en-

us/reference_architectures/2018/html-

single/deploying_and_managing_openshift_3.9_on_vmware_vsphere/index

FlexPod Datacenter with VMware vSphere 6.5 Design Guide:

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65design.html

OpenShift: https://www.openshift.com/

Red Hat OpenShift Container Platform 3.9 Architecture: https://access.redhat.com/documentation/en-

us/openshift_container_platform/3.9/html-single/architecture/

Day Two Operations: https://access.redhat.com/documentation/en-

us/openshift_container_platform/3.9/html-single/day_two_operations_guide/

CLI Reference: https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-

single/cli_reference/

Red Hat OpenShift: https://www.redhat.com/en/technologies/cloud-computing/openshift

https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/ucs_openshift.html
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html-single/deploying_and_managing_openshift_3.9_on_vmware_vsphere/index
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html-single/deploying_and_managing_openshift_3.9_on_vmware_vsphere/index
https://access.redhat.com/documentation/en-us/reference_architectures/2018/html-single/deploying_and_managing_openshift_3.9_on_vmware_vsphere/index
https://www.cisco.com/c/en/us/td/docs/unified_computing/ucs/UCS_CVDs/flexpod_esxi65design.html
https://www.openshift.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/architecture/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/day_two_operations_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/day_two_operations_guide/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.9/html-single/cli_reference/
https://www.redhat.com/en/technologies/cloud-computing/openshift

Conclusion

92

Conclusion

Solution involving Cisco UCS Infrastructure and Red Hat OpenShift Container Platform with container-native

storage has been created to deliver a production-ready foundation that simplifies the deployment process,

shares the latest best practices, and provides a stable, highly available environment to run your containerized

production applications. This reference architecture covers the process of provisioning and deploying a

highly available Red Hat OpenShift Container Platform cluster on a VMware vSphere private cloud

environment with both the registry and the application pods backed by container-native storage solution

from Red Hat.

For enterprise IT, this solution provides a quick and easy journey to DevOps and CI/CD model for application

development to address immediate business needs and reducing time to market. Enterprises can accelerate

on the path to an enterprise-grade Kubernetes solution with Red Hat OpenShift Container Platform running

on Cisco UCS infrastructure.

About the Authors

93

About the Authors

Muhammad Afzal, Engineering Architect, Cisco UCS Solutions Engineering, Cisco Systems, Inc.

Muhammad Afzal is an Engineering Architect and Technical Marketing Engineer at Cisco Systems in Cisco

UCS Product Management and Datacenter Solutions Engineering. He is currently responsible for designing,

developing, and producing validated converged architectures while working collaboratively with product

partners. Previously, Afzal had been a lead architect for various cloud and data center solutions in Solution

De

group, where he worked closely with Cisco's large enterprise and service provider customers delivering data

center and cloud solutions. Afzal holds an MBA in Finance and a BS in Computer Engineering.

Acknowledgements

 Vishwanath Jakka, Cisco Systems, Inc.

 Babu Mahadevan, Cisco Systems, Inc.

 Antonios Dakopoulos, Red Hat

 Chris Morgan, Red Hat

	Executive Summary
	Solution Overview
	Introduction
	Solution Benefits
	Audience
	Purpose of this Document
	What’s New in this Release?

	Technology Overview
	Cisco Unified Computing System
	Cisco UCS Manager
	Cisco UCS Fabric Interconnects
	Cisco UCS 5108 Blade Server Chassis
	Cisco UCS B200 M5 Blade Server
	Cisco UCS C220M5 Rack-Mount Server
	Cisco UCS C240M5 Rack-Mount Server
	Cisco VIC Interface Cards
	Cisco UCS Fabric Extenders
	Cisco Nexus 9000 Switches
	Intel Scalable Processor Family
	Intel® SSD DC S4500 Series
	Red Hat OpenShift Container Platform
	Kubernetes Infrastructure
	Red Hat OpenShift Integrated Container Registry
	Container-native Storage Solution from Red Hat
	Docker
	Kubernetes
	Etcd
	Open vSwitch
	HAProxy
	Red Hat Ansible Automation

	Solution Design
	Hardware and Software Revisions
	Solution Components
	Architectural Overview
	Bastion Node
	OpenShift Master Nodes
	OpenShift Infrastructure Nodes
	OpenShift Application Nodes
	OpenShift Storage Nodes

	Physical Topology
	Logical Topology
	Virtual Machine Instance Details
	Red Hat OpenShift Container Platform Node Placement
	HA Proxy Load Balancer

	Deployment Hardware and Software
	Solution Prerequisites
	Required Channels
	Deployment Workflow
	DNS (Domain Name Server) Configuration
	Application DNS

	VMware vCenter Prerequisites
	Networking
	vCenter Shared Storage
	vSphere Parameter
	Resource Pool, Cluster Name, and Folder Location

	Prepare RHEL VM Template
	Setting Up Bastion Instance
	Configure Ansible
	Prepare Inventory File

	Red Hat OpenShift Container Platform Instance Creation
	Setup DRS Anti-Affinity Rules
	Configure VM Latency Sensitivity
	Red Hat OpenShift Platform Storage Node Setup
	Creating Storage Profile
	Boot Policy for Storage Node
	Service Profile Template for Storage Nodes
	Installation of Red Hat Enterprise Linux Operating System in Storage Nodes
	Configure Storage Node Interfaces for RHOCP

	Creating an SSH Keypair for Ansible
	Configure and Install Prerequisites for Storage Nodes
	Instance Verification
	Red Hat OpenShift Container Platform Prerequisites Playbook
	Deploying Red Hat OpenShift Container Platform
	Functional Validation
	Sample Application Test Scenario.
	Web Console – UI Operations

	Scale the Environment
	Add Metrics to the Installation
	Add Logging to the Installation

	Resources
	Conclusion
	About the Authors
	Acknowledgements

