
Troubleshoot Ops-center Pod in
CrashLoopBackOff State

Contents
Introduction

Acronyms

Logs Required

Sequence to Troubleshoot

Possible Scenarios Leading to an Issue with Subsequent Configuration Restoration

Configuration Unavailability

CPU Cycle Constraints

Introduction

This document describes how to identify and recover the ops-center pod in CrashLoopBackOff state.

Acronyms

RCM – Redundancy Configuration Manager

YYYY-MM-DD hh:mm:ss – Year-Month-Day Hour:Minute:second

CPU – Central Processing Unit

Logs Required

RCM command outputs required for troubleshooting:

1. kubectl get pods --namespace <namespace>
2. kubectl describe pods <podname> --namespace <namespace>
3. journalctl --since "YYYY-MM-DD hh:mm:ss" --until "YYYY-MM-DD hh:mm:ss" > /tmp/<filename>
4. kubectl --namespace rcm logs --previous <pod name> --container <container name> > /tmp/<filename>

Sequence to Troubleshoot

1. Verify if the affected ops-center pod is in a MASTER RCM or BACKUP RCM by executing the
command in the high-availability pair:

<#root>

rcm show-status

Example :

[unknown] rcm# rcm show-status
message :
{"status”: “MASTER"}

2. Collect the pod description of the affected op-centre pod and review the restart count and which exit
codes in the containers are in a problematic state. For instance, the containers confd and confd notifications
are currently in a problematic state, as indicated:

<#root>

Example:

rcm # kubectl describe pods ops-center-rcm-ops-center --namespace rcm
Name: ops-center-rcm-ops-center
Namespace: rcm
…
Containers:
 confd:
 …

Last State: Terminated

 Reason: Error

Exit Code: 137

 Started: Fri, 01 Dec 2023 12:44:13 +0530
 Finished: Fri, 01 Dec 2023 12:46:09 +0530
 Ready: False

Restart Count: 8097

 …
 confd-api-bridge:
 …
 State: Running
 Started: Tue, 09 May 2023 02:36:37 +0530
 Ready: True
 Restart Count: 0
 …
 product-confd-callback:
 …
 State: Running
 Started: Tue, 09 May 2023 02:36:38 +0530
 Ready: True
 Restart Count: 0
 …
 confd-notifications:
 …
 State: Running
 Started: Fri, 01 Dec 2023 12:46:14 +0530

Last State: Terminated

 Reason: Error

Exit Code: 1

 Started: Fri, 01 Dec 2023 12:40:50 +0530
 Finished: Fri, 01 Dec 2023 12:46:00 +0530
 Ready: True

Restart Count: 5278

…

3. Examine the exit code to understand the cause of initial container restart.

Example:

Exit code 137 indicates that the containers/pod do not have sufficient memory.

Exit code 1 indicates a container shutdown due to an application error.

4. Review the journalctl to verify the issue timeline and understand from when the issue is observed. Logs
indicating the restart of the container confd notifications, as shown here, can be used to identify the start of
the issue time:

<#root>

Nov 29 00:00:01 <nodename> kubelet[30789]: E1129 00:00:01.993620 30789 pod_workers.go:190] "Error syncing pod, skipping" err="failed to \"StartContainer\" for \"confd-notifications\" with CrashLoopBackOff: \"back-off 5m0s

restarting failed container=confd-notifications

 pod=ops-center-rcm-ops-center (<podUID>)\"" pod="rcm/ops-center-rcm-ops-center" podUID=<podUID>

5. Review the container logs of restarted containers and verify the cause for the continuous container restart
loop. In this example, the container logs indicate a failure in loading the restoration configuration:

<#root>

Example:

rcm # kubectl --namespace rcm logs --previous ops-center-rcm-ops-center --container confd
ConfD started
Failed to connect to server
All callpoints are registered - exiting
ConfD restore
Failure loading the restore configuration
ConfD load nodes config
DEBUG Failed to connect to ConfD: Connection refused

confd_load: 290: maapi_connect(sock, addr, addrlen) failed: system call failed (24): Failed to connect to ConfD: Connection refused
…
Failure loading the nodes config
ConfD load day-N config
Failure loading the day-N config
…
Failure in starting confd - see previous errors - killing 1

rcm # kubectl --namespace rcm logs --previous ops-center-rcm-ops-center --container confd-notifications
…
Checking that ConfD is running.
Checking that ConfD is running.
ConfD is up and running
Failed to load schemas from confd

Warning:

If container logs are executed with the option --previous on a container that has not restarted or
terminated, it returns an error:

rcm:~# kubectl --namespace rcm logs --previous ops-center-rcm-ops-center --container confd-api-bridge > /tmp/confd_api_bridge_p_log
Error from server (BadRequest): previous terminated container "confd-api-bridge" in pod "ops-center-rcm-ops-center" not found

Possible Scenarios Leading to an Issue with Subsequent
Configuration Restoration

Configuration Unavailability

The confd-api-bridge container has the function to read configuration from confd and create a backup
every second. The confd-api-bridge stores it in the configmap ops-center-confd-<opscenter-name>.

•

If the confd container is stopped and subsequently, the confd-api-bridge receives no reply for the
configuration, it stores an empty configuration in the configmap.

•

When the confd container attempts to restore from the backup configuration available, it fails and
causes the CrashLoopBackOff state. This can be verified from the confd container logs:

•

confd_load: 660: maapi_candidate_commit_persistent(sock, NULL) failed: notset (12): /cisco-mobile-product:kubernetes/registry is not configured

This behavior is addressed by a Cisco bug ID CSCwi15801.

CPU Cycle Constraints

When the confd container attempts to recover, if the startup is not completed within thirty seconds, the
container is restarted.

•

The startup is delayed if it does not receive the required CPU cycles due to the high CPU load on the
RCM.

•

If the RCM CPU continues in an occupied state due to load by other pods such as rcm-checkpointmgr,
the confd container continues to restart and cause the CrashLoopBackOff state.

•

This behavior is addressed by a Cisco bug ID CSCwe79529.

https://tools.cisco.com/bugsearch/bug/CSCwi15801
https://tools.cisco.com/bugsearch/bug/CSCwe79529

Note:

If the MASTER RCM is affected, perform an RCM switchover to the BACKUP RCM and
then troubleshoot further. And If no BACKUP RCM is available, continue to troubleshoot
the MASTER RCM.

•

It is recommended to consult with Cisco TAC before performing any workarounds if an ops-
center pod is observed in CrashLoopBackOff state.

•

